Deleted Added
full compact
cam_xpt.c (249466) cam_xpt.c (249468)
1/*-
2 * Implementation of the Common Access Method Transport (XPT) layer.
3 *
4 * Copyright (c) 1997, 1998, 1999 Justin T. Gibbs.
5 * Copyright (c) 1997, 1998, 1999 Kenneth D. Merry.
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions, and the following disclaimer,
13 * without modification, immediately at the beginning of the file.
14 * 2. The name of the author may not be used to endorse or promote products
15 * derived from this software without specific prior written permission.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
21 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 */
29
30#include <sys/cdefs.h>
1/*-
2 * Implementation of the Common Access Method Transport (XPT) layer.
3 *
4 * Copyright (c) 1997, 1998, 1999 Justin T. Gibbs.
5 * Copyright (c) 1997, 1998, 1999 Kenneth D. Merry.
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions, and the following disclaimer,
13 * without modification, immediately at the beginning of the file.
14 * 2. The name of the author may not be used to endorse or promote products
15 * derived from this software without specific prior written permission.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
21 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 */
29
30#include <sys/cdefs.h>
31__FBSDID("$FreeBSD: head/sys/cam/cam_xpt.c 249466 2013-04-14 09:28:14Z mav $");
31__FBSDID("$FreeBSD: head/sys/cam/cam_xpt.c 249468 2013-04-14 09:55:48Z mav $");
32
33#include <sys/param.h>
34#include <sys/bus.h>
35#include <sys/systm.h>
36#include <sys/types.h>
37#include <sys/malloc.h>
38#include <sys/kernel.h>
39#include <sys/time.h>
40#include <sys/conf.h>
41#include <sys/fcntl.h>
42#include <sys/interrupt.h>
43#include <sys/sbuf.h>
44#include <sys/taskqueue.h>
45
46#include <sys/lock.h>
47#include <sys/mutex.h>
48#include <sys/sysctl.h>
49#include <sys/kthread.h>
50
51#include <cam/cam.h>
52#include <cam/cam_ccb.h>
53#include <cam/cam_periph.h>
54#include <cam/cam_queue.h>
55#include <cam/cam_sim.h>
56#include <cam/cam_xpt.h>
57#include <cam/cam_xpt_sim.h>
58#include <cam/cam_xpt_periph.h>
59#include <cam/cam_xpt_internal.h>
60#include <cam/cam_debug.h>
61
62#include <cam/scsi/scsi_all.h>
63#include <cam/scsi/scsi_message.h>
64#include <cam/scsi/scsi_pass.h>
65
66#include <machine/md_var.h> /* geometry translation */
67#include <machine/stdarg.h> /* for xpt_print below */
68
69#include "opt_cam.h"
70
71/*
72 * This is the maximum number of high powered commands (e.g. start unit)
73 * that can be outstanding at a particular time.
74 */
75#ifndef CAM_MAX_HIGHPOWER
76#define CAM_MAX_HIGHPOWER 4
77#endif
78
79/* Datastructures internal to the xpt layer */
80MALLOC_DEFINE(M_CAMXPT, "CAM XPT", "CAM XPT buffers");
81MALLOC_DEFINE(M_CAMDEV, "CAM DEV", "CAM devices");
82MALLOC_DEFINE(M_CAMCCB, "CAM CCB", "CAM CCBs");
83MALLOC_DEFINE(M_CAMPATH, "CAM path", "CAM paths");
84
85/* Object for defering XPT actions to a taskqueue */
86struct xpt_task {
87 struct task task;
88 void *data1;
89 uintptr_t data2;
90};
91
92typedef enum {
93 XPT_FLAG_OPEN = 0x01
94} xpt_flags;
95
96struct xpt_softc {
97 xpt_flags flags;
98 u_int32_t xpt_generation;
99
100 /* number of high powered commands that can go through right now */
101 STAILQ_HEAD(highpowerlist, ccb_hdr) highpowerq;
102 int num_highpower;
103
104 /* queue for handling async rescan requests. */
105 TAILQ_HEAD(, ccb_hdr) ccb_scanq;
106 int buses_to_config;
107 int buses_config_done;
108
109 /* Registered busses */
110 TAILQ_HEAD(,cam_eb) xpt_busses;
111 u_int bus_generation;
112
113 struct intr_config_hook *xpt_config_hook;
114
115 int boot_delay;
116 struct callout boot_callout;
117
118 struct mtx xpt_topo_lock;
119 struct mtx xpt_lock;
120};
121
122typedef enum {
123 DM_RET_COPY = 0x01,
124 DM_RET_FLAG_MASK = 0x0f,
125 DM_RET_NONE = 0x00,
126 DM_RET_STOP = 0x10,
127 DM_RET_DESCEND = 0x20,
128 DM_RET_ERROR = 0x30,
129 DM_RET_ACTION_MASK = 0xf0
130} dev_match_ret;
131
132typedef enum {
133 XPT_DEPTH_BUS,
134 XPT_DEPTH_TARGET,
135 XPT_DEPTH_DEVICE,
136 XPT_DEPTH_PERIPH
137} xpt_traverse_depth;
138
139struct xpt_traverse_config {
140 xpt_traverse_depth depth;
141 void *tr_func;
142 void *tr_arg;
143};
144
145typedef int xpt_busfunc_t (struct cam_eb *bus, void *arg);
146typedef int xpt_targetfunc_t (struct cam_et *target, void *arg);
147typedef int xpt_devicefunc_t (struct cam_ed *device, void *arg);
148typedef int xpt_periphfunc_t (struct cam_periph *periph, void *arg);
149typedef int xpt_pdrvfunc_t (struct periph_driver **pdrv, void *arg);
150
151/* Transport layer configuration information */
152static struct xpt_softc xsoftc;
153
154TUNABLE_INT("kern.cam.boot_delay", &xsoftc.boot_delay);
155SYSCTL_INT(_kern_cam, OID_AUTO, boot_delay, CTLFLAG_RDTUN,
156 &xsoftc.boot_delay, 0, "Bus registration wait time");
157
158/* Queues for our software interrupt handler */
159typedef TAILQ_HEAD(cam_isrq, ccb_hdr) cam_isrq_t;
160typedef TAILQ_HEAD(cam_simq, cam_sim) cam_simq_t;
161static cam_simq_t cam_simq;
162static struct mtx cam_simq_lock;
163
164/* Pointers to software interrupt handlers */
165static void *cambio_ih;
166
167struct cam_periph *xpt_periph;
168
169static periph_init_t xpt_periph_init;
170
171static struct periph_driver xpt_driver =
172{
173 xpt_periph_init, "xpt",
174 TAILQ_HEAD_INITIALIZER(xpt_driver.units), /* generation */ 0,
175 CAM_PERIPH_DRV_EARLY
176};
177
178PERIPHDRIVER_DECLARE(xpt, xpt_driver);
179
180static d_open_t xptopen;
181static d_close_t xptclose;
182static d_ioctl_t xptioctl;
183
184static struct cdevsw xpt_cdevsw = {
185 .d_version = D_VERSION,
186 .d_flags = 0,
187 .d_open = xptopen,
188 .d_close = xptclose,
189 .d_ioctl = xptioctl,
190 .d_name = "xpt",
191};
192
193/* Storage for debugging datastructures */
194struct cam_path *cam_dpath;
195u_int32_t cam_dflags = CAM_DEBUG_FLAGS;
196TUNABLE_INT("kern.cam.dflags", &cam_dflags);
197SYSCTL_UINT(_kern_cam, OID_AUTO, dflags, CTLFLAG_RW,
198 &cam_dflags, 0, "Enabled debug flags");
199u_int32_t cam_debug_delay = CAM_DEBUG_DELAY;
200TUNABLE_INT("kern.cam.debug_delay", &cam_debug_delay);
201SYSCTL_UINT(_kern_cam, OID_AUTO, debug_delay, CTLFLAG_RW,
202 &cam_debug_delay, 0, "Delay in us after each debug message");
203
204/* Our boot-time initialization hook */
205static int cam_module_event_handler(module_t, int /*modeventtype_t*/, void *);
206
207static moduledata_t cam_moduledata = {
208 "cam",
209 cam_module_event_handler,
210 NULL
211};
212
213static int xpt_init(void *);
214
215DECLARE_MODULE(cam, cam_moduledata, SI_SUB_CONFIGURE, SI_ORDER_SECOND);
216MODULE_VERSION(cam, 1);
217
218
219static void xpt_async_bcast(struct async_list *async_head,
220 u_int32_t async_code,
221 struct cam_path *path,
222 void *async_arg);
223static path_id_t xptnextfreepathid(void);
224static path_id_t xptpathid(const char *sim_name, int sim_unit, int sim_bus);
225static union ccb *xpt_get_ccb(struct cam_ed *device);
226static void xpt_run_dev_allocq(struct cam_ed *device);
227static void xpt_run_devq(struct cam_devq *devq);
228static timeout_t xpt_release_devq_timeout;
229static void xpt_release_simq_timeout(void *arg) __unused;
230static void xpt_release_bus(struct cam_eb *bus);
231static void xpt_release_devq_device(struct cam_ed *dev, u_int count,
232 int run_queue);
233static struct cam_et*
234 xpt_alloc_target(struct cam_eb *bus, target_id_t target_id);
235static void xpt_release_target(struct cam_et *target);
236static struct cam_eb*
237 xpt_find_bus(path_id_t path_id);
238static struct cam_et*
239 xpt_find_target(struct cam_eb *bus, target_id_t target_id);
240static struct cam_ed*
241 xpt_find_device(struct cam_et *target, lun_id_t lun_id);
242static void xpt_config(void *arg);
243static xpt_devicefunc_t xptpassannouncefunc;
244static void xptaction(struct cam_sim *sim, union ccb *work_ccb);
245static void xptpoll(struct cam_sim *sim);
246static void camisr(void *);
247static void camisr_runqueue(void *);
248static dev_match_ret xptbusmatch(struct dev_match_pattern *patterns,
249 u_int num_patterns, struct cam_eb *bus);
250static dev_match_ret xptdevicematch(struct dev_match_pattern *patterns,
251 u_int num_patterns,
252 struct cam_ed *device);
253static dev_match_ret xptperiphmatch(struct dev_match_pattern *patterns,
254 u_int num_patterns,
255 struct cam_periph *periph);
256static xpt_busfunc_t xptedtbusfunc;
257static xpt_targetfunc_t xptedttargetfunc;
258static xpt_devicefunc_t xptedtdevicefunc;
259static xpt_periphfunc_t xptedtperiphfunc;
260static xpt_pdrvfunc_t xptplistpdrvfunc;
261static xpt_periphfunc_t xptplistperiphfunc;
262static int xptedtmatch(struct ccb_dev_match *cdm);
263static int xptperiphlistmatch(struct ccb_dev_match *cdm);
264static int xptbustraverse(struct cam_eb *start_bus,
265 xpt_busfunc_t *tr_func, void *arg);
266static int xpttargettraverse(struct cam_eb *bus,
267 struct cam_et *start_target,
268 xpt_targetfunc_t *tr_func, void *arg);
269static int xptdevicetraverse(struct cam_et *target,
270 struct cam_ed *start_device,
271 xpt_devicefunc_t *tr_func, void *arg);
272static int xptperiphtraverse(struct cam_ed *device,
273 struct cam_periph *start_periph,
274 xpt_periphfunc_t *tr_func, void *arg);
275static int xptpdrvtraverse(struct periph_driver **start_pdrv,
276 xpt_pdrvfunc_t *tr_func, void *arg);
277static int xptpdperiphtraverse(struct periph_driver **pdrv,
278 struct cam_periph *start_periph,
279 xpt_periphfunc_t *tr_func,
280 void *arg);
281static xpt_busfunc_t xptdefbusfunc;
282static xpt_targetfunc_t xptdeftargetfunc;
283static xpt_devicefunc_t xptdefdevicefunc;
284static xpt_periphfunc_t xptdefperiphfunc;
285static void xpt_finishconfig_task(void *context, int pending);
286static void xpt_dev_async_default(u_int32_t async_code,
287 struct cam_eb *bus,
288 struct cam_et *target,
289 struct cam_ed *device,
290 void *async_arg);
291static struct cam_ed * xpt_alloc_device_default(struct cam_eb *bus,
292 struct cam_et *target,
293 lun_id_t lun_id);
294static xpt_devicefunc_t xptsetasyncfunc;
295static xpt_busfunc_t xptsetasyncbusfunc;
296static cam_status xptregister(struct cam_periph *periph,
297 void *arg);
298static __inline int periph_is_queued(struct cam_periph *periph);
299static __inline int device_is_queued(struct cam_ed *device);
300
301static __inline int
302xpt_schedule_devq(struct cam_devq *devq, struct cam_ed *dev)
303{
304 int retval;
305
306 if ((dev->ccbq.queue.entries > 0) &&
307 (dev->ccbq.dev_openings > 0) &&
308 (dev->ccbq.queue.qfrozen_cnt == 0)) {
309 /*
310 * The priority of a device waiting for controller
311 * resources is that of the highest priority CCB
312 * enqueued.
313 */
314 retval =
315 xpt_schedule_dev(&devq->send_queue,
316 &dev->devq_entry.pinfo,
317 CAMQ_GET_PRIO(&dev->ccbq.queue));
318 } else {
319 retval = 0;
320 }
321 return (retval);
322}
323
324static __inline int
325periph_is_queued(struct cam_periph *periph)
326{
327 return (periph->pinfo.index != CAM_UNQUEUED_INDEX);
328}
329
330static __inline int
331device_is_queued(struct cam_ed *device)
332{
333 return (device->devq_entry.pinfo.index != CAM_UNQUEUED_INDEX);
334}
335
336static void
337xpt_periph_init()
338{
339 make_dev(&xpt_cdevsw, 0, UID_ROOT, GID_OPERATOR, 0600, "xpt0");
340}
341
342static void
343xptdone(struct cam_periph *periph, union ccb *done_ccb)
344{
345 /* Caller will release the CCB */
346 wakeup(&done_ccb->ccb_h.cbfcnp);
347}
348
349static int
350xptopen(struct cdev *dev, int flags, int fmt, struct thread *td)
351{
352
353 /*
354 * Only allow read-write access.
355 */
356 if (((flags & FWRITE) == 0) || ((flags & FREAD) == 0))
357 return(EPERM);
358
359 /*
360 * We don't allow nonblocking access.
361 */
362 if ((flags & O_NONBLOCK) != 0) {
363 printf("%s: can't do nonblocking access\n", devtoname(dev));
364 return(ENODEV);
365 }
366
367 /* Mark ourselves open */
368 mtx_lock(&xsoftc.xpt_lock);
369 xsoftc.flags |= XPT_FLAG_OPEN;
370 mtx_unlock(&xsoftc.xpt_lock);
371
372 return(0);
373}
374
375static int
376xptclose(struct cdev *dev, int flag, int fmt, struct thread *td)
377{
378
379 /* Mark ourselves closed */
380 mtx_lock(&xsoftc.xpt_lock);
381 xsoftc.flags &= ~XPT_FLAG_OPEN;
382 mtx_unlock(&xsoftc.xpt_lock);
383
384 return(0);
385}
386
387/*
388 * Don't automatically grab the xpt softc lock here even though this is going
389 * through the xpt device. The xpt device is really just a back door for
390 * accessing other devices and SIMs, so the right thing to do is to grab
391 * the appropriate SIM lock once the bus/SIM is located.
392 */
393static int
394xptioctl(struct cdev *dev, u_long cmd, caddr_t addr, int flag, struct thread *td)
395{
396 int error;
397
398 error = 0;
399
400 switch(cmd) {
401 /*
402 * For the transport layer CAMIOCOMMAND ioctl, we really only want
403 * to accept CCB types that don't quite make sense to send through a
404 * passthrough driver. XPT_PATH_INQ is an exception to this, as stated
405 * in the CAM spec.
406 */
407 case CAMIOCOMMAND: {
408 union ccb *ccb;
409 union ccb *inccb;
410 struct cam_eb *bus;
411
412 inccb = (union ccb *)addr;
413
414 bus = xpt_find_bus(inccb->ccb_h.path_id);
415 if (bus == NULL)
416 return (EINVAL);
417
418 switch (inccb->ccb_h.func_code) {
419 case XPT_SCAN_BUS:
420 case XPT_RESET_BUS:
421 if (inccb->ccb_h.target_id != CAM_TARGET_WILDCARD ||
422 inccb->ccb_h.target_lun != CAM_LUN_WILDCARD) {
423 xpt_release_bus(bus);
424 return (EINVAL);
425 }
426 break;
427 case XPT_SCAN_TGT:
428 if (inccb->ccb_h.target_id == CAM_TARGET_WILDCARD ||
429 inccb->ccb_h.target_lun != CAM_LUN_WILDCARD) {
430 xpt_release_bus(bus);
431 return (EINVAL);
432 }
433 break;
434 default:
435 break;
436 }
437
438 switch(inccb->ccb_h.func_code) {
439 case XPT_SCAN_BUS:
440 case XPT_RESET_BUS:
441 case XPT_PATH_INQ:
442 case XPT_ENG_INQ:
443 case XPT_SCAN_LUN:
444 case XPT_SCAN_TGT:
445
446 ccb = xpt_alloc_ccb();
447
448 CAM_SIM_LOCK(bus->sim);
449
450 /*
451 * Create a path using the bus, target, and lun the
452 * user passed in.
453 */
32
33#include <sys/param.h>
34#include <sys/bus.h>
35#include <sys/systm.h>
36#include <sys/types.h>
37#include <sys/malloc.h>
38#include <sys/kernel.h>
39#include <sys/time.h>
40#include <sys/conf.h>
41#include <sys/fcntl.h>
42#include <sys/interrupt.h>
43#include <sys/sbuf.h>
44#include <sys/taskqueue.h>
45
46#include <sys/lock.h>
47#include <sys/mutex.h>
48#include <sys/sysctl.h>
49#include <sys/kthread.h>
50
51#include <cam/cam.h>
52#include <cam/cam_ccb.h>
53#include <cam/cam_periph.h>
54#include <cam/cam_queue.h>
55#include <cam/cam_sim.h>
56#include <cam/cam_xpt.h>
57#include <cam/cam_xpt_sim.h>
58#include <cam/cam_xpt_periph.h>
59#include <cam/cam_xpt_internal.h>
60#include <cam/cam_debug.h>
61
62#include <cam/scsi/scsi_all.h>
63#include <cam/scsi/scsi_message.h>
64#include <cam/scsi/scsi_pass.h>
65
66#include <machine/md_var.h> /* geometry translation */
67#include <machine/stdarg.h> /* for xpt_print below */
68
69#include "opt_cam.h"
70
71/*
72 * This is the maximum number of high powered commands (e.g. start unit)
73 * that can be outstanding at a particular time.
74 */
75#ifndef CAM_MAX_HIGHPOWER
76#define CAM_MAX_HIGHPOWER 4
77#endif
78
79/* Datastructures internal to the xpt layer */
80MALLOC_DEFINE(M_CAMXPT, "CAM XPT", "CAM XPT buffers");
81MALLOC_DEFINE(M_CAMDEV, "CAM DEV", "CAM devices");
82MALLOC_DEFINE(M_CAMCCB, "CAM CCB", "CAM CCBs");
83MALLOC_DEFINE(M_CAMPATH, "CAM path", "CAM paths");
84
85/* Object for defering XPT actions to a taskqueue */
86struct xpt_task {
87 struct task task;
88 void *data1;
89 uintptr_t data2;
90};
91
92typedef enum {
93 XPT_FLAG_OPEN = 0x01
94} xpt_flags;
95
96struct xpt_softc {
97 xpt_flags flags;
98 u_int32_t xpt_generation;
99
100 /* number of high powered commands that can go through right now */
101 STAILQ_HEAD(highpowerlist, ccb_hdr) highpowerq;
102 int num_highpower;
103
104 /* queue for handling async rescan requests. */
105 TAILQ_HEAD(, ccb_hdr) ccb_scanq;
106 int buses_to_config;
107 int buses_config_done;
108
109 /* Registered busses */
110 TAILQ_HEAD(,cam_eb) xpt_busses;
111 u_int bus_generation;
112
113 struct intr_config_hook *xpt_config_hook;
114
115 int boot_delay;
116 struct callout boot_callout;
117
118 struct mtx xpt_topo_lock;
119 struct mtx xpt_lock;
120};
121
122typedef enum {
123 DM_RET_COPY = 0x01,
124 DM_RET_FLAG_MASK = 0x0f,
125 DM_RET_NONE = 0x00,
126 DM_RET_STOP = 0x10,
127 DM_RET_DESCEND = 0x20,
128 DM_RET_ERROR = 0x30,
129 DM_RET_ACTION_MASK = 0xf0
130} dev_match_ret;
131
132typedef enum {
133 XPT_DEPTH_BUS,
134 XPT_DEPTH_TARGET,
135 XPT_DEPTH_DEVICE,
136 XPT_DEPTH_PERIPH
137} xpt_traverse_depth;
138
139struct xpt_traverse_config {
140 xpt_traverse_depth depth;
141 void *tr_func;
142 void *tr_arg;
143};
144
145typedef int xpt_busfunc_t (struct cam_eb *bus, void *arg);
146typedef int xpt_targetfunc_t (struct cam_et *target, void *arg);
147typedef int xpt_devicefunc_t (struct cam_ed *device, void *arg);
148typedef int xpt_periphfunc_t (struct cam_periph *periph, void *arg);
149typedef int xpt_pdrvfunc_t (struct periph_driver **pdrv, void *arg);
150
151/* Transport layer configuration information */
152static struct xpt_softc xsoftc;
153
154TUNABLE_INT("kern.cam.boot_delay", &xsoftc.boot_delay);
155SYSCTL_INT(_kern_cam, OID_AUTO, boot_delay, CTLFLAG_RDTUN,
156 &xsoftc.boot_delay, 0, "Bus registration wait time");
157
158/* Queues for our software interrupt handler */
159typedef TAILQ_HEAD(cam_isrq, ccb_hdr) cam_isrq_t;
160typedef TAILQ_HEAD(cam_simq, cam_sim) cam_simq_t;
161static cam_simq_t cam_simq;
162static struct mtx cam_simq_lock;
163
164/* Pointers to software interrupt handlers */
165static void *cambio_ih;
166
167struct cam_periph *xpt_periph;
168
169static periph_init_t xpt_periph_init;
170
171static struct periph_driver xpt_driver =
172{
173 xpt_periph_init, "xpt",
174 TAILQ_HEAD_INITIALIZER(xpt_driver.units), /* generation */ 0,
175 CAM_PERIPH_DRV_EARLY
176};
177
178PERIPHDRIVER_DECLARE(xpt, xpt_driver);
179
180static d_open_t xptopen;
181static d_close_t xptclose;
182static d_ioctl_t xptioctl;
183
184static struct cdevsw xpt_cdevsw = {
185 .d_version = D_VERSION,
186 .d_flags = 0,
187 .d_open = xptopen,
188 .d_close = xptclose,
189 .d_ioctl = xptioctl,
190 .d_name = "xpt",
191};
192
193/* Storage for debugging datastructures */
194struct cam_path *cam_dpath;
195u_int32_t cam_dflags = CAM_DEBUG_FLAGS;
196TUNABLE_INT("kern.cam.dflags", &cam_dflags);
197SYSCTL_UINT(_kern_cam, OID_AUTO, dflags, CTLFLAG_RW,
198 &cam_dflags, 0, "Enabled debug flags");
199u_int32_t cam_debug_delay = CAM_DEBUG_DELAY;
200TUNABLE_INT("kern.cam.debug_delay", &cam_debug_delay);
201SYSCTL_UINT(_kern_cam, OID_AUTO, debug_delay, CTLFLAG_RW,
202 &cam_debug_delay, 0, "Delay in us after each debug message");
203
204/* Our boot-time initialization hook */
205static int cam_module_event_handler(module_t, int /*modeventtype_t*/, void *);
206
207static moduledata_t cam_moduledata = {
208 "cam",
209 cam_module_event_handler,
210 NULL
211};
212
213static int xpt_init(void *);
214
215DECLARE_MODULE(cam, cam_moduledata, SI_SUB_CONFIGURE, SI_ORDER_SECOND);
216MODULE_VERSION(cam, 1);
217
218
219static void xpt_async_bcast(struct async_list *async_head,
220 u_int32_t async_code,
221 struct cam_path *path,
222 void *async_arg);
223static path_id_t xptnextfreepathid(void);
224static path_id_t xptpathid(const char *sim_name, int sim_unit, int sim_bus);
225static union ccb *xpt_get_ccb(struct cam_ed *device);
226static void xpt_run_dev_allocq(struct cam_ed *device);
227static void xpt_run_devq(struct cam_devq *devq);
228static timeout_t xpt_release_devq_timeout;
229static void xpt_release_simq_timeout(void *arg) __unused;
230static void xpt_release_bus(struct cam_eb *bus);
231static void xpt_release_devq_device(struct cam_ed *dev, u_int count,
232 int run_queue);
233static struct cam_et*
234 xpt_alloc_target(struct cam_eb *bus, target_id_t target_id);
235static void xpt_release_target(struct cam_et *target);
236static struct cam_eb*
237 xpt_find_bus(path_id_t path_id);
238static struct cam_et*
239 xpt_find_target(struct cam_eb *bus, target_id_t target_id);
240static struct cam_ed*
241 xpt_find_device(struct cam_et *target, lun_id_t lun_id);
242static void xpt_config(void *arg);
243static xpt_devicefunc_t xptpassannouncefunc;
244static void xptaction(struct cam_sim *sim, union ccb *work_ccb);
245static void xptpoll(struct cam_sim *sim);
246static void camisr(void *);
247static void camisr_runqueue(void *);
248static dev_match_ret xptbusmatch(struct dev_match_pattern *patterns,
249 u_int num_patterns, struct cam_eb *bus);
250static dev_match_ret xptdevicematch(struct dev_match_pattern *patterns,
251 u_int num_patterns,
252 struct cam_ed *device);
253static dev_match_ret xptperiphmatch(struct dev_match_pattern *patterns,
254 u_int num_patterns,
255 struct cam_periph *periph);
256static xpt_busfunc_t xptedtbusfunc;
257static xpt_targetfunc_t xptedttargetfunc;
258static xpt_devicefunc_t xptedtdevicefunc;
259static xpt_periphfunc_t xptedtperiphfunc;
260static xpt_pdrvfunc_t xptplistpdrvfunc;
261static xpt_periphfunc_t xptplistperiphfunc;
262static int xptedtmatch(struct ccb_dev_match *cdm);
263static int xptperiphlistmatch(struct ccb_dev_match *cdm);
264static int xptbustraverse(struct cam_eb *start_bus,
265 xpt_busfunc_t *tr_func, void *arg);
266static int xpttargettraverse(struct cam_eb *bus,
267 struct cam_et *start_target,
268 xpt_targetfunc_t *tr_func, void *arg);
269static int xptdevicetraverse(struct cam_et *target,
270 struct cam_ed *start_device,
271 xpt_devicefunc_t *tr_func, void *arg);
272static int xptperiphtraverse(struct cam_ed *device,
273 struct cam_periph *start_periph,
274 xpt_periphfunc_t *tr_func, void *arg);
275static int xptpdrvtraverse(struct periph_driver **start_pdrv,
276 xpt_pdrvfunc_t *tr_func, void *arg);
277static int xptpdperiphtraverse(struct periph_driver **pdrv,
278 struct cam_periph *start_periph,
279 xpt_periphfunc_t *tr_func,
280 void *arg);
281static xpt_busfunc_t xptdefbusfunc;
282static xpt_targetfunc_t xptdeftargetfunc;
283static xpt_devicefunc_t xptdefdevicefunc;
284static xpt_periphfunc_t xptdefperiphfunc;
285static void xpt_finishconfig_task(void *context, int pending);
286static void xpt_dev_async_default(u_int32_t async_code,
287 struct cam_eb *bus,
288 struct cam_et *target,
289 struct cam_ed *device,
290 void *async_arg);
291static struct cam_ed * xpt_alloc_device_default(struct cam_eb *bus,
292 struct cam_et *target,
293 lun_id_t lun_id);
294static xpt_devicefunc_t xptsetasyncfunc;
295static xpt_busfunc_t xptsetasyncbusfunc;
296static cam_status xptregister(struct cam_periph *periph,
297 void *arg);
298static __inline int periph_is_queued(struct cam_periph *periph);
299static __inline int device_is_queued(struct cam_ed *device);
300
301static __inline int
302xpt_schedule_devq(struct cam_devq *devq, struct cam_ed *dev)
303{
304 int retval;
305
306 if ((dev->ccbq.queue.entries > 0) &&
307 (dev->ccbq.dev_openings > 0) &&
308 (dev->ccbq.queue.qfrozen_cnt == 0)) {
309 /*
310 * The priority of a device waiting for controller
311 * resources is that of the highest priority CCB
312 * enqueued.
313 */
314 retval =
315 xpt_schedule_dev(&devq->send_queue,
316 &dev->devq_entry.pinfo,
317 CAMQ_GET_PRIO(&dev->ccbq.queue));
318 } else {
319 retval = 0;
320 }
321 return (retval);
322}
323
324static __inline int
325periph_is_queued(struct cam_periph *periph)
326{
327 return (periph->pinfo.index != CAM_UNQUEUED_INDEX);
328}
329
330static __inline int
331device_is_queued(struct cam_ed *device)
332{
333 return (device->devq_entry.pinfo.index != CAM_UNQUEUED_INDEX);
334}
335
336static void
337xpt_periph_init()
338{
339 make_dev(&xpt_cdevsw, 0, UID_ROOT, GID_OPERATOR, 0600, "xpt0");
340}
341
342static void
343xptdone(struct cam_periph *periph, union ccb *done_ccb)
344{
345 /* Caller will release the CCB */
346 wakeup(&done_ccb->ccb_h.cbfcnp);
347}
348
349static int
350xptopen(struct cdev *dev, int flags, int fmt, struct thread *td)
351{
352
353 /*
354 * Only allow read-write access.
355 */
356 if (((flags & FWRITE) == 0) || ((flags & FREAD) == 0))
357 return(EPERM);
358
359 /*
360 * We don't allow nonblocking access.
361 */
362 if ((flags & O_NONBLOCK) != 0) {
363 printf("%s: can't do nonblocking access\n", devtoname(dev));
364 return(ENODEV);
365 }
366
367 /* Mark ourselves open */
368 mtx_lock(&xsoftc.xpt_lock);
369 xsoftc.flags |= XPT_FLAG_OPEN;
370 mtx_unlock(&xsoftc.xpt_lock);
371
372 return(0);
373}
374
375static int
376xptclose(struct cdev *dev, int flag, int fmt, struct thread *td)
377{
378
379 /* Mark ourselves closed */
380 mtx_lock(&xsoftc.xpt_lock);
381 xsoftc.flags &= ~XPT_FLAG_OPEN;
382 mtx_unlock(&xsoftc.xpt_lock);
383
384 return(0);
385}
386
387/*
388 * Don't automatically grab the xpt softc lock here even though this is going
389 * through the xpt device. The xpt device is really just a back door for
390 * accessing other devices and SIMs, so the right thing to do is to grab
391 * the appropriate SIM lock once the bus/SIM is located.
392 */
393static int
394xptioctl(struct cdev *dev, u_long cmd, caddr_t addr, int flag, struct thread *td)
395{
396 int error;
397
398 error = 0;
399
400 switch(cmd) {
401 /*
402 * For the transport layer CAMIOCOMMAND ioctl, we really only want
403 * to accept CCB types that don't quite make sense to send through a
404 * passthrough driver. XPT_PATH_INQ is an exception to this, as stated
405 * in the CAM spec.
406 */
407 case CAMIOCOMMAND: {
408 union ccb *ccb;
409 union ccb *inccb;
410 struct cam_eb *bus;
411
412 inccb = (union ccb *)addr;
413
414 bus = xpt_find_bus(inccb->ccb_h.path_id);
415 if (bus == NULL)
416 return (EINVAL);
417
418 switch (inccb->ccb_h.func_code) {
419 case XPT_SCAN_BUS:
420 case XPT_RESET_BUS:
421 if (inccb->ccb_h.target_id != CAM_TARGET_WILDCARD ||
422 inccb->ccb_h.target_lun != CAM_LUN_WILDCARD) {
423 xpt_release_bus(bus);
424 return (EINVAL);
425 }
426 break;
427 case XPT_SCAN_TGT:
428 if (inccb->ccb_h.target_id == CAM_TARGET_WILDCARD ||
429 inccb->ccb_h.target_lun != CAM_LUN_WILDCARD) {
430 xpt_release_bus(bus);
431 return (EINVAL);
432 }
433 break;
434 default:
435 break;
436 }
437
438 switch(inccb->ccb_h.func_code) {
439 case XPT_SCAN_BUS:
440 case XPT_RESET_BUS:
441 case XPT_PATH_INQ:
442 case XPT_ENG_INQ:
443 case XPT_SCAN_LUN:
444 case XPT_SCAN_TGT:
445
446 ccb = xpt_alloc_ccb();
447
448 CAM_SIM_LOCK(bus->sim);
449
450 /*
451 * Create a path using the bus, target, and lun the
452 * user passed in.
453 */
454 if (xpt_create_path(&ccb->ccb_h.path, xpt_periph,
454 if (xpt_create_path(&ccb->ccb_h.path, NULL,
455 inccb->ccb_h.path_id,
456 inccb->ccb_h.target_id,
457 inccb->ccb_h.target_lun) !=
458 CAM_REQ_CMP){
459 error = EINVAL;
460 CAM_SIM_UNLOCK(bus->sim);
461 xpt_free_ccb(ccb);
462 break;
463 }
464 /* Ensure all of our fields are correct */
465 xpt_setup_ccb(&ccb->ccb_h, ccb->ccb_h.path,
466 inccb->ccb_h.pinfo.priority);
467 xpt_merge_ccb(ccb, inccb);
468 ccb->ccb_h.cbfcnp = xptdone;
469 cam_periph_runccb(ccb, NULL, 0, 0, NULL);
470 bcopy(ccb, inccb, sizeof(union ccb));
471 xpt_free_path(ccb->ccb_h.path);
472 xpt_free_ccb(ccb);
473 CAM_SIM_UNLOCK(bus->sim);
474 break;
475
476 case XPT_DEBUG: {
477 union ccb ccb;
478
479 /*
480 * This is an immediate CCB, so it's okay to
481 * allocate it on the stack.
482 */
483
484 CAM_SIM_LOCK(bus->sim);
485
486 /*
487 * Create a path using the bus, target, and lun the
488 * user passed in.
489 */
455 inccb->ccb_h.path_id,
456 inccb->ccb_h.target_id,
457 inccb->ccb_h.target_lun) !=
458 CAM_REQ_CMP){
459 error = EINVAL;
460 CAM_SIM_UNLOCK(bus->sim);
461 xpt_free_ccb(ccb);
462 break;
463 }
464 /* Ensure all of our fields are correct */
465 xpt_setup_ccb(&ccb->ccb_h, ccb->ccb_h.path,
466 inccb->ccb_h.pinfo.priority);
467 xpt_merge_ccb(ccb, inccb);
468 ccb->ccb_h.cbfcnp = xptdone;
469 cam_periph_runccb(ccb, NULL, 0, 0, NULL);
470 bcopy(ccb, inccb, sizeof(union ccb));
471 xpt_free_path(ccb->ccb_h.path);
472 xpt_free_ccb(ccb);
473 CAM_SIM_UNLOCK(bus->sim);
474 break;
475
476 case XPT_DEBUG: {
477 union ccb ccb;
478
479 /*
480 * This is an immediate CCB, so it's okay to
481 * allocate it on the stack.
482 */
483
484 CAM_SIM_LOCK(bus->sim);
485
486 /*
487 * Create a path using the bus, target, and lun the
488 * user passed in.
489 */
490 if (xpt_create_path(&ccb.ccb_h.path, xpt_periph,
490 if (xpt_create_path(&ccb.ccb_h.path, NULL,
491 inccb->ccb_h.path_id,
492 inccb->ccb_h.target_id,
493 inccb->ccb_h.target_lun) !=
494 CAM_REQ_CMP){
495 error = EINVAL;
496 CAM_SIM_UNLOCK(bus->sim);
497 break;
498 }
499 /* Ensure all of our fields are correct */
500 xpt_setup_ccb(&ccb.ccb_h, ccb.ccb_h.path,
501 inccb->ccb_h.pinfo.priority);
502 xpt_merge_ccb(&ccb, inccb);
503 ccb.ccb_h.cbfcnp = xptdone;
504 xpt_action(&ccb);
505 bcopy(&ccb, inccb, sizeof(union ccb));
506 xpt_free_path(ccb.ccb_h.path);
507 CAM_SIM_UNLOCK(bus->sim);
508 break;
509
510 }
511 case XPT_DEV_MATCH: {
512 struct cam_periph_map_info mapinfo;
513 struct cam_path *old_path;
514
515 /*
516 * We can't deal with physical addresses for this
517 * type of transaction.
518 */
519 if ((inccb->ccb_h.flags & CAM_DATA_MASK) !=
520 CAM_DATA_VADDR) {
521 error = EINVAL;
522 break;
523 }
524
525 /*
526 * Save this in case the caller had it set to
527 * something in particular.
528 */
529 old_path = inccb->ccb_h.path;
530
531 /*
532 * We really don't need a path for the matching
533 * code. The path is needed because of the
534 * debugging statements in xpt_action(). They
535 * assume that the CCB has a valid path.
536 */
537 inccb->ccb_h.path = xpt_periph->path;
538
539 bzero(&mapinfo, sizeof(mapinfo));
540
541 /*
542 * Map the pattern and match buffers into kernel
543 * virtual address space.
544 */
545 error = cam_periph_mapmem(inccb, &mapinfo);
546
547 if (error) {
548 inccb->ccb_h.path = old_path;
549 break;
550 }
551
552 /*
553 * This is an immediate CCB, we can send it on directly.
554 */
555 CAM_SIM_LOCK(xpt_path_sim(xpt_periph->path));
556 xpt_action(inccb);
557 CAM_SIM_UNLOCK(xpt_path_sim(xpt_periph->path));
558
559 /*
560 * Map the buffers back into user space.
561 */
562 cam_periph_unmapmem(inccb, &mapinfo);
563
564 inccb->ccb_h.path = old_path;
565
566 error = 0;
567 break;
568 }
569 default:
570 error = ENOTSUP;
571 break;
572 }
573 xpt_release_bus(bus);
574 break;
575 }
576 /*
577 * This is the getpassthru ioctl. It takes a XPT_GDEVLIST ccb as input,
578 * with the periphal driver name and unit name filled in. The other
579 * fields don't really matter as input. The passthrough driver name
580 * ("pass"), and unit number are passed back in the ccb. The current
581 * device generation number, and the index into the device peripheral
582 * driver list, and the status are also passed back. Note that
583 * since we do everything in one pass, unlike the XPT_GDEVLIST ccb,
584 * we never return a status of CAM_GDEVLIST_LIST_CHANGED. It is
585 * (or rather should be) impossible for the device peripheral driver
586 * list to change since we look at the whole thing in one pass, and
587 * we do it with lock protection.
588 *
589 */
590 case CAMGETPASSTHRU: {
591 union ccb *ccb;
592 struct cam_periph *periph;
593 struct periph_driver **p_drv;
594 char *name;
595 u_int unit;
596 u_int cur_generation;
597 int base_periph_found;
598 int splbreaknum;
599
600 ccb = (union ccb *)addr;
601 unit = ccb->cgdl.unit_number;
602 name = ccb->cgdl.periph_name;
603 /*
604 * Every 100 devices, we want to drop our lock protection to
605 * give the software interrupt handler a chance to run.
606 * Most systems won't run into this check, but this should
607 * avoid starvation in the software interrupt handler in
608 * large systems.
609 */
610 splbreaknum = 100;
611
612 ccb = (union ccb *)addr;
613
614 base_periph_found = 0;
615
616 /*
617 * Sanity check -- make sure we don't get a null peripheral
618 * driver name.
619 */
620 if (*ccb->cgdl.periph_name == '\0') {
621 error = EINVAL;
622 break;
623 }
624
625 /* Keep the list from changing while we traverse it */
626 xpt_lock_buses();
627ptstartover:
628 cur_generation = xsoftc.xpt_generation;
629
630 /* first find our driver in the list of drivers */
631 for (p_drv = periph_drivers; *p_drv != NULL; p_drv++)
632 if (strcmp((*p_drv)->driver_name, name) == 0)
633 break;
634
635 if (*p_drv == NULL) {
636 xpt_unlock_buses();
637 ccb->ccb_h.status = CAM_REQ_CMP_ERR;
638 ccb->cgdl.status = CAM_GDEVLIST_ERROR;
639 *ccb->cgdl.periph_name = '\0';
640 ccb->cgdl.unit_number = 0;
641 error = ENOENT;
642 break;
643 }
644
645 /*
646 * Run through every peripheral instance of this driver
647 * and check to see whether it matches the unit passed
648 * in by the user. If it does, get out of the loops and
649 * find the passthrough driver associated with that
650 * peripheral driver.
651 */
652 for (periph = TAILQ_FIRST(&(*p_drv)->units); periph != NULL;
653 periph = TAILQ_NEXT(periph, unit_links)) {
654
655 if (periph->unit_number == unit) {
656 break;
657 } else if (--splbreaknum == 0) {
658 xpt_unlock_buses();
659 xpt_lock_buses();
660 splbreaknum = 100;
661 if (cur_generation != xsoftc.xpt_generation)
662 goto ptstartover;
663 }
664 }
665 /*
666 * If we found the peripheral driver that the user passed
667 * in, go through all of the peripheral drivers for that
668 * particular device and look for a passthrough driver.
669 */
670 if (periph != NULL) {
671 struct cam_ed *device;
672 int i;
673
674 base_periph_found = 1;
675 device = periph->path->device;
676 for (i = 0, periph = SLIST_FIRST(&device->periphs);
677 periph != NULL;
678 periph = SLIST_NEXT(periph, periph_links), i++) {
679 /*
680 * Check to see whether we have a
681 * passthrough device or not.
682 */
683 if (strcmp(periph->periph_name, "pass") == 0) {
684 /*
685 * Fill in the getdevlist fields.
686 */
687 strcpy(ccb->cgdl.periph_name,
688 periph->periph_name);
689 ccb->cgdl.unit_number =
690 periph->unit_number;
691 if (SLIST_NEXT(periph, periph_links))
692 ccb->cgdl.status =
693 CAM_GDEVLIST_MORE_DEVS;
694 else
695 ccb->cgdl.status =
696 CAM_GDEVLIST_LAST_DEVICE;
697 ccb->cgdl.generation =
698 device->generation;
699 ccb->cgdl.index = i;
700 /*
701 * Fill in some CCB header fields
702 * that the user may want.
703 */
704 ccb->ccb_h.path_id =
705 periph->path->bus->path_id;
706 ccb->ccb_h.target_id =
707 periph->path->target->target_id;
708 ccb->ccb_h.target_lun =
709 periph->path->device->lun_id;
710 ccb->ccb_h.status = CAM_REQ_CMP;
711 break;
712 }
713 }
714 }
715
716 /*
717 * If the periph is null here, one of two things has
718 * happened. The first possibility is that we couldn't
719 * find the unit number of the particular peripheral driver
720 * that the user is asking about. e.g. the user asks for
721 * the passthrough driver for "da11". We find the list of
722 * "da" peripherals all right, but there is no unit 11.
723 * The other possibility is that we went through the list
724 * of peripheral drivers attached to the device structure,
725 * but didn't find one with the name "pass". Either way,
726 * we return ENOENT, since we couldn't find something.
727 */
728 if (periph == NULL) {
729 ccb->ccb_h.status = CAM_REQ_CMP_ERR;
730 ccb->cgdl.status = CAM_GDEVLIST_ERROR;
731 *ccb->cgdl.periph_name = '\0';
732 ccb->cgdl.unit_number = 0;
733 error = ENOENT;
734 /*
735 * It is unfortunate that this is even necessary,
736 * but there are many, many clueless users out there.
737 * If this is true, the user is looking for the
738 * passthrough driver, but doesn't have one in his
739 * kernel.
740 */
741 if (base_periph_found == 1) {
742 printf("xptioctl: pass driver is not in the "
743 "kernel\n");
744 printf("xptioctl: put \"device pass\" in "
745 "your kernel config file\n");
746 }
747 }
748 xpt_unlock_buses();
749 break;
750 }
751 default:
752 error = ENOTTY;
753 break;
754 }
755
756 return(error);
757}
758
759static int
760cam_module_event_handler(module_t mod, int what, void *arg)
761{
762 int error;
763
764 switch (what) {
765 case MOD_LOAD:
766 if ((error = xpt_init(NULL)) != 0)
767 return (error);
768 break;
769 case MOD_UNLOAD:
770 return EBUSY;
771 default:
772 return EOPNOTSUPP;
773 }
774
775 return 0;
776}
777
778static void
779xpt_rescan_done(struct cam_periph *periph, union ccb *done_ccb)
780{
781
782 if (done_ccb->ccb_h.ppriv_ptr1 == NULL) {
783 xpt_free_path(done_ccb->ccb_h.path);
784 xpt_free_ccb(done_ccb);
785 } else {
786 done_ccb->ccb_h.cbfcnp = done_ccb->ccb_h.ppriv_ptr1;
787 (*done_ccb->ccb_h.cbfcnp)(periph, done_ccb);
788 }
789 xpt_release_boot();
790}
791
792/* thread to handle bus rescans */
793static void
794xpt_scanner_thread(void *dummy)
795{
796 union ccb *ccb;
797 struct cam_sim *sim;
798
799 xpt_lock_buses();
800 for (;;) {
801 if (TAILQ_EMPTY(&xsoftc.ccb_scanq))
802 msleep(&xsoftc.ccb_scanq, &xsoftc.xpt_topo_lock, PRIBIO,
803 "ccb_scanq", 0);
804 if ((ccb = (union ccb *)TAILQ_FIRST(&xsoftc.ccb_scanq)) != NULL) {
805 TAILQ_REMOVE(&xsoftc.ccb_scanq, &ccb->ccb_h, sim_links.tqe);
806 xpt_unlock_buses();
807
808 sim = ccb->ccb_h.path->bus->sim;
809 CAM_SIM_LOCK(sim);
810 xpt_action(ccb);
811 CAM_SIM_UNLOCK(sim);
812
813 xpt_lock_buses();
814 }
815 }
816}
817
818void
819xpt_rescan(union ccb *ccb)
820{
821 struct ccb_hdr *hdr;
822
823 /* Prepare request */
824 if (ccb->ccb_h.path->target->target_id == CAM_TARGET_WILDCARD &&
825 ccb->ccb_h.path->device->lun_id == CAM_LUN_WILDCARD)
826 ccb->ccb_h.func_code = XPT_SCAN_BUS;
827 else if (ccb->ccb_h.path->target->target_id != CAM_TARGET_WILDCARD &&
828 ccb->ccb_h.path->device->lun_id == CAM_LUN_WILDCARD)
829 ccb->ccb_h.func_code = XPT_SCAN_TGT;
830 else if (ccb->ccb_h.path->target->target_id != CAM_TARGET_WILDCARD &&
831 ccb->ccb_h.path->device->lun_id != CAM_LUN_WILDCARD)
832 ccb->ccb_h.func_code = XPT_SCAN_LUN;
833 else {
834 xpt_print(ccb->ccb_h.path, "illegal scan path\n");
835 xpt_free_path(ccb->ccb_h.path);
836 xpt_free_ccb(ccb);
837 return;
838 }
839 ccb->ccb_h.ppriv_ptr1 = ccb->ccb_h.cbfcnp;
840 ccb->ccb_h.cbfcnp = xpt_rescan_done;
841 xpt_setup_ccb(&ccb->ccb_h, ccb->ccb_h.path, CAM_PRIORITY_XPT);
842 /* Don't make duplicate entries for the same paths. */
843 xpt_lock_buses();
844 if (ccb->ccb_h.ppriv_ptr1 == NULL) {
845 TAILQ_FOREACH(hdr, &xsoftc.ccb_scanq, sim_links.tqe) {
846 if (xpt_path_comp(hdr->path, ccb->ccb_h.path) == 0) {
847 wakeup(&xsoftc.ccb_scanq);
848 xpt_unlock_buses();
849 xpt_print(ccb->ccb_h.path, "rescan already queued\n");
850 xpt_free_path(ccb->ccb_h.path);
851 xpt_free_ccb(ccb);
852 return;
853 }
854 }
855 }
856 TAILQ_INSERT_TAIL(&xsoftc.ccb_scanq, &ccb->ccb_h, sim_links.tqe);
857 xsoftc.buses_to_config++;
858 wakeup(&xsoftc.ccb_scanq);
859 xpt_unlock_buses();
860}
861
862/* Functions accessed by the peripheral drivers */
863static int
864xpt_init(void *dummy)
865{
866 struct cam_sim *xpt_sim;
867 struct cam_path *path;
868 struct cam_devq *devq;
869 cam_status status;
870
871 TAILQ_INIT(&xsoftc.xpt_busses);
872 TAILQ_INIT(&cam_simq);
873 TAILQ_INIT(&xsoftc.ccb_scanq);
874 STAILQ_INIT(&xsoftc.highpowerq);
875 xsoftc.num_highpower = CAM_MAX_HIGHPOWER;
876
877 mtx_init(&cam_simq_lock, "CAM SIMQ lock", NULL, MTX_DEF);
878 mtx_init(&xsoftc.xpt_lock, "XPT lock", NULL, MTX_DEF);
879 mtx_init(&xsoftc.xpt_topo_lock, "XPT topology lock", NULL, MTX_DEF);
880
881 /*
882 * The xpt layer is, itself, the equivelent of a SIM.
883 * Allow 16 ccbs in the ccb pool for it. This should
884 * give decent parallelism when we probe busses and
885 * perform other XPT functions.
886 */
887 devq = cam_simq_alloc(16);
888 xpt_sim = cam_sim_alloc(xptaction,
889 xptpoll,
890 "xpt",
891 /*softc*/NULL,
892 /*unit*/0,
893 /*mtx*/&xsoftc.xpt_lock,
894 /*max_dev_transactions*/0,
895 /*max_tagged_dev_transactions*/0,
896 devq);
897 if (xpt_sim == NULL)
898 return (ENOMEM);
899
900 mtx_lock(&xsoftc.xpt_lock);
901 if ((status = xpt_bus_register(xpt_sim, NULL, 0)) != CAM_SUCCESS) {
902 mtx_unlock(&xsoftc.xpt_lock);
903 printf("xpt_init: xpt_bus_register failed with status %#x,"
904 " failing attach\n", status);
905 return (EINVAL);
906 }
907
908 /*
909 * Looking at the XPT from the SIM layer, the XPT is
910 * the equivelent of a peripheral driver. Allocate
911 * a peripheral driver entry for us.
912 */
913 if ((status = xpt_create_path(&path, NULL, CAM_XPT_PATH_ID,
914 CAM_TARGET_WILDCARD,
915 CAM_LUN_WILDCARD)) != CAM_REQ_CMP) {
916 mtx_unlock(&xsoftc.xpt_lock);
917 printf("xpt_init: xpt_create_path failed with status %#x,"
918 " failing attach\n", status);
919 return (EINVAL);
920 }
921
922 cam_periph_alloc(xptregister, NULL, NULL, NULL, "xpt", CAM_PERIPH_BIO,
923 path, NULL, 0, xpt_sim);
924 xpt_free_path(path);
925 mtx_unlock(&xsoftc.xpt_lock);
926 /* Install our software interrupt handlers */
927 swi_add(NULL, "cambio", camisr, NULL, SWI_CAMBIO, INTR_MPSAFE, &cambio_ih);
928 /*
929 * Register a callback for when interrupts are enabled.
930 */
931 xsoftc.xpt_config_hook =
932 (struct intr_config_hook *)malloc(sizeof(struct intr_config_hook),
933 M_CAMXPT, M_NOWAIT | M_ZERO);
934 if (xsoftc.xpt_config_hook == NULL) {
935 printf("xpt_init: Cannot malloc config hook "
936 "- failing attach\n");
937 return (ENOMEM);
938 }
939 xsoftc.xpt_config_hook->ich_func = xpt_config;
940 if (config_intrhook_establish(xsoftc.xpt_config_hook) != 0) {
941 free (xsoftc.xpt_config_hook, M_CAMXPT);
942 printf("xpt_init: config_intrhook_establish failed "
943 "- failing attach\n");
944 }
945
946 return (0);
947}
948
949static cam_status
950xptregister(struct cam_periph *periph, void *arg)
951{
952 struct cam_sim *xpt_sim;
953
954 if (periph == NULL) {
955 printf("xptregister: periph was NULL!!\n");
956 return(CAM_REQ_CMP_ERR);
957 }
958
959 xpt_sim = (struct cam_sim *)arg;
960 xpt_sim->softc = periph;
961 xpt_periph = periph;
962 periph->softc = NULL;
963
964 return(CAM_REQ_CMP);
965}
966
967int32_t
968xpt_add_periph(struct cam_periph *periph)
969{
970 struct cam_ed *device;
971 int32_t status;
972 struct periph_list *periph_head;
973
974 mtx_assert(periph->sim->mtx, MA_OWNED);
975
976 device = periph->path->device;
977
978 periph_head = &device->periphs;
979
980 status = CAM_REQ_CMP;
981
982 if (device != NULL) {
983 /*
984 * Make room for this peripheral
985 * so it will fit in the queue
986 * when it's scheduled to run
987 */
988 status = camq_resize(&device->drvq,
989 device->drvq.array_size + 1);
990
991 device->generation++;
992
993 SLIST_INSERT_HEAD(periph_head, periph, periph_links);
994 }
995
996 xpt_lock_buses();
997 xsoftc.xpt_generation++;
998 xpt_unlock_buses();
999
1000 return (status);
1001}
1002
1003void
1004xpt_remove_periph(struct cam_periph *periph, int topology_lock_held)
1005{
1006 struct cam_ed *device;
1007
1008 mtx_assert(periph->sim->mtx, MA_OWNED);
1009
1010 device = periph->path->device;
1011
1012 if (device != NULL) {
1013 struct periph_list *periph_head;
1014
1015 periph_head = &device->periphs;
1016
1017 /* Release the slot for this peripheral */
1018 camq_resize(&device->drvq, device->drvq.array_size - 1);
1019
1020 device->generation++;
1021
1022 SLIST_REMOVE(periph_head, periph, cam_periph, periph_links);
1023 }
1024
1025 if (topology_lock_held == 0)
1026 xpt_lock_buses();
1027
1028 xsoftc.xpt_generation++;
1029
1030 if (topology_lock_held == 0)
1031 xpt_unlock_buses();
1032}
1033
1034
1035void
1036xpt_announce_periph(struct cam_periph *periph, char *announce_string)
1037{
1038 struct cam_path *path = periph->path;
1039
1040 mtx_assert(periph->sim->mtx, MA_OWNED);
1041
1042 printf("%s%d at %s%d bus %d scbus%d target %d lun %d\n",
1043 periph->periph_name, periph->unit_number,
1044 path->bus->sim->sim_name,
1045 path->bus->sim->unit_number,
1046 path->bus->sim->bus_id,
1047 path->bus->path_id,
1048 path->target->target_id,
1049 path->device->lun_id);
1050 printf("%s%d: ", periph->periph_name, periph->unit_number);
1051 if (path->device->protocol == PROTO_SCSI)
1052 scsi_print_inquiry(&path->device->inq_data);
1053 else if (path->device->protocol == PROTO_ATA ||
1054 path->device->protocol == PROTO_SATAPM)
1055 ata_print_ident(&path->device->ident_data);
1056 else if (path->device->protocol == PROTO_SEMB)
1057 semb_print_ident(
1058 (struct sep_identify_data *)&path->device->ident_data);
1059 else
1060 printf("Unknown protocol device\n");
1061 if (bootverbose && path->device->serial_num_len > 0) {
1062 /* Don't wrap the screen - print only the first 60 chars */
1063 printf("%s%d: Serial Number %.60s\n", periph->periph_name,
1064 periph->unit_number, path->device->serial_num);
1065 }
1066 /* Announce transport details. */
1067 (*(path->bus->xport->announce))(periph);
1068 /* Announce command queueing. */
1069 if (path->device->inq_flags & SID_CmdQue
1070 || path->device->flags & CAM_DEV_TAG_AFTER_COUNT) {
1071 printf("%s%d: Command Queueing enabled\n",
1072 periph->periph_name, periph->unit_number);
1073 }
1074 /* Announce caller's details if they've passed in. */
1075 if (announce_string != NULL)
1076 printf("%s%d: %s\n", periph->periph_name,
1077 periph->unit_number, announce_string);
1078}
1079
1080int
1081xpt_getattr(char *buf, size_t len, const char *attr, struct cam_path *path)
1082{
1083 int ret = -1;
1084 struct ccb_dev_advinfo cdai;
1085
1086 mtx_assert(path->bus->sim->mtx, MA_OWNED);
1087
1088 memset(&cdai, 0, sizeof(cdai));
1089 xpt_setup_ccb(&cdai.ccb_h, path, CAM_PRIORITY_NORMAL);
1090 cdai.ccb_h.func_code = XPT_DEV_ADVINFO;
1091 cdai.bufsiz = len;
1092
1093 if (!strcmp(attr, "GEOM::ident"))
1094 cdai.buftype = CDAI_TYPE_SERIAL_NUM;
1095 else if (!strcmp(attr, "GEOM::physpath"))
1096 cdai.buftype = CDAI_TYPE_PHYS_PATH;
1097 else
1098 goto out;
1099
1100 cdai.buf = malloc(cdai.bufsiz, M_CAMXPT, M_NOWAIT|M_ZERO);
1101 if (cdai.buf == NULL) {
1102 ret = ENOMEM;
1103 goto out;
1104 }
1105 xpt_action((union ccb *)&cdai); /* can only be synchronous */
1106 if ((cdai.ccb_h.status & CAM_DEV_QFRZN) != 0)
1107 cam_release_devq(cdai.ccb_h.path, 0, 0, 0, FALSE);
1108 if (cdai.provsiz == 0)
1109 goto out;
1110 ret = 0;
1111 if (strlcpy(buf, cdai.buf, len) >= len)
1112 ret = EFAULT;
1113
1114out:
1115 if (cdai.buf != NULL)
1116 free(cdai.buf, M_CAMXPT);
1117 return ret;
1118}
1119
1120static dev_match_ret
1121xptbusmatch(struct dev_match_pattern *patterns, u_int num_patterns,
1122 struct cam_eb *bus)
1123{
1124 dev_match_ret retval;
1125 int i;
1126
1127 retval = DM_RET_NONE;
1128
1129 /*
1130 * If we aren't given something to match against, that's an error.
1131 */
1132 if (bus == NULL)
1133 return(DM_RET_ERROR);
1134
1135 /*
1136 * If there are no match entries, then this bus matches no
1137 * matter what.
1138 */
1139 if ((patterns == NULL) || (num_patterns == 0))
1140 return(DM_RET_DESCEND | DM_RET_COPY);
1141
1142 for (i = 0; i < num_patterns; i++) {
1143 struct bus_match_pattern *cur_pattern;
1144
1145 /*
1146 * If the pattern in question isn't for a bus node, we
1147 * aren't interested. However, we do indicate to the
1148 * calling routine that we should continue descending the
1149 * tree, since the user wants to match against lower-level
1150 * EDT elements.
1151 */
1152 if (patterns[i].type != DEV_MATCH_BUS) {
1153 if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)
1154 retval |= DM_RET_DESCEND;
1155 continue;
1156 }
1157
1158 cur_pattern = &patterns[i].pattern.bus_pattern;
1159
1160 /*
1161 * If they want to match any bus node, we give them any
1162 * device node.
1163 */
1164 if (cur_pattern->flags == BUS_MATCH_ANY) {
1165 /* set the copy flag */
1166 retval |= DM_RET_COPY;
1167
1168 /*
1169 * If we've already decided on an action, go ahead
1170 * and return.
1171 */
1172 if ((retval & DM_RET_ACTION_MASK) != DM_RET_NONE)
1173 return(retval);
1174 }
1175
1176 /*
1177 * Not sure why someone would do this...
1178 */
1179 if (cur_pattern->flags == BUS_MATCH_NONE)
1180 continue;
1181
1182 if (((cur_pattern->flags & BUS_MATCH_PATH) != 0)
1183 && (cur_pattern->path_id != bus->path_id))
1184 continue;
1185
1186 if (((cur_pattern->flags & BUS_MATCH_BUS_ID) != 0)
1187 && (cur_pattern->bus_id != bus->sim->bus_id))
1188 continue;
1189
1190 if (((cur_pattern->flags & BUS_MATCH_UNIT) != 0)
1191 && (cur_pattern->unit_number != bus->sim->unit_number))
1192 continue;
1193
1194 if (((cur_pattern->flags & BUS_MATCH_NAME) != 0)
1195 && (strncmp(cur_pattern->dev_name, bus->sim->sim_name,
1196 DEV_IDLEN) != 0))
1197 continue;
1198
1199 /*
1200 * If we get to this point, the user definitely wants
1201 * information on this bus. So tell the caller to copy the
1202 * data out.
1203 */
1204 retval |= DM_RET_COPY;
1205
1206 /*
1207 * If the return action has been set to descend, then we
1208 * know that we've already seen a non-bus matching
1209 * expression, therefore we need to further descend the tree.
1210 * This won't change by continuing around the loop, so we
1211 * go ahead and return. If we haven't seen a non-bus
1212 * matching expression, we keep going around the loop until
1213 * we exhaust the matching expressions. We'll set the stop
1214 * flag once we fall out of the loop.
1215 */
1216 if ((retval & DM_RET_ACTION_MASK) == DM_RET_DESCEND)
1217 return(retval);
1218 }
1219
1220 /*
1221 * If the return action hasn't been set to descend yet, that means
1222 * we haven't seen anything other than bus matching patterns. So
1223 * tell the caller to stop descending the tree -- the user doesn't
1224 * want to match against lower level tree elements.
1225 */
1226 if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)
1227 retval |= DM_RET_STOP;
1228
1229 return(retval);
1230}
1231
1232static dev_match_ret
1233xptdevicematch(struct dev_match_pattern *patterns, u_int num_patterns,
1234 struct cam_ed *device)
1235{
1236 dev_match_ret retval;
1237 int i;
1238
1239 retval = DM_RET_NONE;
1240
1241 /*
1242 * If we aren't given something to match against, that's an error.
1243 */
1244 if (device == NULL)
1245 return(DM_RET_ERROR);
1246
1247 /*
1248 * If there are no match entries, then this device matches no
1249 * matter what.
1250 */
1251 if ((patterns == NULL) || (num_patterns == 0))
1252 return(DM_RET_DESCEND | DM_RET_COPY);
1253
1254 for (i = 0; i < num_patterns; i++) {
1255 struct device_match_pattern *cur_pattern;
1256 struct scsi_vpd_device_id *device_id_page;
1257
1258 /*
1259 * If the pattern in question isn't for a device node, we
1260 * aren't interested.
1261 */
1262 if (patterns[i].type != DEV_MATCH_DEVICE) {
1263 if ((patterns[i].type == DEV_MATCH_PERIPH)
1264 && ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE))
1265 retval |= DM_RET_DESCEND;
1266 continue;
1267 }
1268
1269 cur_pattern = &patterns[i].pattern.device_pattern;
1270
1271 /* Error out if mutually exclusive options are specified. */
1272 if ((cur_pattern->flags & (DEV_MATCH_INQUIRY|DEV_MATCH_DEVID))
1273 == (DEV_MATCH_INQUIRY|DEV_MATCH_DEVID))
1274 return(DM_RET_ERROR);
1275
1276 /*
1277 * If they want to match any device node, we give them any
1278 * device node.
1279 */
1280 if (cur_pattern->flags == DEV_MATCH_ANY)
1281 goto copy_dev_node;
1282
1283 /*
1284 * Not sure why someone would do this...
1285 */
1286 if (cur_pattern->flags == DEV_MATCH_NONE)
1287 continue;
1288
1289 if (((cur_pattern->flags & DEV_MATCH_PATH) != 0)
1290 && (cur_pattern->path_id != device->target->bus->path_id))
1291 continue;
1292
1293 if (((cur_pattern->flags & DEV_MATCH_TARGET) != 0)
1294 && (cur_pattern->target_id != device->target->target_id))
1295 continue;
1296
1297 if (((cur_pattern->flags & DEV_MATCH_LUN) != 0)
1298 && (cur_pattern->target_lun != device->lun_id))
1299 continue;
1300
1301 if (((cur_pattern->flags & DEV_MATCH_INQUIRY) != 0)
1302 && (cam_quirkmatch((caddr_t)&device->inq_data,
1303 (caddr_t)&cur_pattern->data.inq_pat,
1304 1, sizeof(cur_pattern->data.inq_pat),
1305 scsi_static_inquiry_match) == NULL))
1306 continue;
1307
1308 device_id_page = (struct scsi_vpd_device_id *)device->device_id;
1309 if (((cur_pattern->flags & DEV_MATCH_DEVID) != 0)
1310 && (device->device_id_len < SVPD_DEVICE_ID_HDR_LEN
1311 || scsi_devid_match((uint8_t *)device_id_page->desc_list,
1312 device->device_id_len
1313 - SVPD_DEVICE_ID_HDR_LEN,
1314 cur_pattern->data.devid_pat.id,
1315 cur_pattern->data.devid_pat.id_len) != 0))
1316 continue;
1317
1318copy_dev_node:
1319 /*
1320 * If we get to this point, the user definitely wants
1321 * information on this device. So tell the caller to copy
1322 * the data out.
1323 */
1324 retval |= DM_RET_COPY;
1325
1326 /*
1327 * If the return action has been set to descend, then we
1328 * know that we've already seen a peripheral matching
1329 * expression, therefore we need to further descend the tree.
1330 * This won't change by continuing around the loop, so we
1331 * go ahead and return. If we haven't seen a peripheral
1332 * matching expression, we keep going around the loop until
1333 * we exhaust the matching expressions. We'll set the stop
1334 * flag once we fall out of the loop.
1335 */
1336 if ((retval & DM_RET_ACTION_MASK) == DM_RET_DESCEND)
1337 return(retval);
1338 }
1339
1340 /*
1341 * If the return action hasn't been set to descend yet, that means
1342 * we haven't seen any peripheral matching patterns. So tell the
1343 * caller to stop descending the tree -- the user doesn't want to
1344 * match against lower level tree elements.
1345 */
1346 if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)
1347 retval |= DM_RET_STOP;
1348
1349 return(retval);
1350}
1351
1352/*
1353 * Match a single peripheral against any number of match patterns.
1354 */
1355static dev_match_ret
1356xptperiphmatch(struct dev_match_pattern *patterns, u_int num_patterns,
1357 struct cam_periph *periph)
1358{
1359 dev_match_ret retval;
1360 int i;
1361
1362 /*
1363 * If we aren't given something to match against, that's an error.
1364 */
1365 if (periph == NULL)
1366 return(DM_RET_ERROR);
1367
1368 /*
1369 * If there are no match entries, then this peripheral matches no
1370 * matter what.
1371 */
1372 if ((patterns == NULL) || (num_patterns == 0))
1373 return(DM_RET_STOP | DM_RET_COPY);
1374
1375 /*
1376 * There aren't any nodes below a peripheral node, so there's no
1377 * reason to descend the tree any further.
1378 */
1379 retval = DM_RET_STOP;
1380
1381 for (i = 0; i < num_patterns; i++) {
1382 struct periph_match_pattern *cur_pattern;
1383
1384 /*
1385 * If the pattern in question isn't for a peripheral, we
1386 * aren't interested.
1387 */
1388 if (patterns[i].type != DEV_MATCH_PERIPH)
1389 continue;
1390
1391 cur_pattern = &patterns[i].pattern.periph_pattern;
1392
1393 /*
1394 * If they want to match on anything, then we will do so.
1395 */
1396 if (cur_pattern->flags == PERIPH_MATCH_ANY) {
1397 /* set the copy flag */
1398 retval |= DM_RET_COPY;
1399
1400 /*
1401 * We've already set the return action to stop,
1402 * since there are no nodes below peripherals in
1403 * the tree.
1404 */
1405 return(retval);
1406 }
1407
1408 /*
1409 * Not sure why someone would do this...
1410 */
1411 if (cur_pattern->flags == PERIPH_MATCH_NONE)
1412 continue;
1413
1414 if (((cur_pattern->flags & PERIPH_MATCH_PATH) != 0)
1415 && (cur_pattern->path_id != periph->path->bus->path_id))
1416 continue;
1417
1418 /*
1419 * For the target and lun id's, we have to make sure the
1420 * target and lun pointers aren't NULL. The xpt peripheral
1421 * has a wildcard target and device.
1422 */
1423 if (((cur_pattern->flags & PERIPH_MATCH_TARGET) != 0)
1424 && ((periph->path->target == NULL)
1425 ||(cur_pattern->target_id != periph->path->target->target_id)))
1426 continue;
1427
1428 if (((cur_pattern->flags & PERIPH_MATCH_LUN) != 0)
1429 && ((periph->path->device == NULL)
1430 || (cur_pattern->target_lun != periph->path->device->lun_id)))
1431 continue;
1432
1433 if (((cur_pattern->flags & PERIPH_MATCH_UNIT) != 0)
1434 && (cur_pattern->unit_number != periph->unit_number))
1435 continue;
1436
1437 if (((cur_pattern->flags & PERIPH_MATCH_NAME) != 0)
1438 && (strncmp(cur_pattern->periph_name, periph->periph_name,
1439 DEV_IDLEN) != 0))
1440 continue;
1441
1442 /*
1443 * If we get to this point, the user definitely wants
1444 * information on this peripheral. So tell the caller to
1445 * copy the data out.
1446 */
1447 retval |= DM_RET_COPY;
1448
1449 /*
1450 * The return action has already been set to stop, since
1451 * peripherals don't have any nodes below them in the EDT.
1452 */
1453 return(retval);
1454 }
1455
1456 /*
1457 * If we get to this point, the peripheral that was passed in
1458 * doesn't match any of the patterns.
1459 */
1460 return(retval);
1461}
1462
1463static int
1464xptedtbusfunc(struct cam_eb *bus, void *arg)
1465{
1466 struct ccb_dev_match *cdm;
1467 dev_match_ret retval;
1468
1469 cdm = (struct ccb_dev_match *)arg;
1470
1471 /*
1472 * If our position is for something deeper in the tree, that means
1473 * that we've already seen this node. So, we keep going down.
1474 */
1475 if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1476 && (cdm->pos.cookie.bus == bus)
1477 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
1478 && (cdm->pos.cookie.target != NULL))
1479 retval = DM_RET_DESCEND;
1480 else
1481 retval = xptbusmatch(cdm->patterns, cdm->num_patterns, bus);
1482
1483 /*
1484 * If we got an error, bail out of the search.
1485 */
1486 if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
1487 cdm->status = CAM_DEV_MATCH_ERROR;
1488 return(0);
1489 }
1490
1491 /*
1492 * If the copy flag is set, copy this bus out.
1493 */
1494 if (retval & DM_RET_COPY) {
1495 int spaceleft, j;
1496
1497 spaceleft = cdm->match_buf_len - (cdm->num_matches *
1498 sizeof(struct dev_match_result));
1499
1500 /*
1501 * If we don't have enough space to put in another
1502 * match result, save our position and tell the
1503 * user there are more devices to check.
1504 */
1505 if (spaceleft < sizeof(struct dev_match_result)) {
1506 bzero(&cdm->pos, sizeof(cdm->pos));
1507 cdm->pos.position_type =
1508 CAM_DEV_POS_EDT | CAM_DEV_POS_BUS;
1509
1510 cdm->pos.cookie.bus = bus;
1511 cdm->pos.generations[CAM_BUS_GENERATION]=
1512 xsoftc.bus_generation;
1513 cdm->status = CAM_DEV_MATCH_MORE;
1514 return(0);
1515 }
1516 j = cdm->num_matches;
1517 cdm->num_matches++;
1518 cdm->matches[j].type = DEV_MATCH_BUS;
1519 cdm->matches[j].result.bus_result.path_id = bus->path_id;
1520 cdm->matches[j].result.bus_result.bus_id = bus->sim->bus_id;
1521 cdm->matches[j].result.bus_result.unit_number =
1522 bus->sim->unit_number;
1523 strncpy(cdm->matches[j].result.bus_result.dev_name,
1524 bus->sim->sim_name, DEV_IDLEN);
1525 }
1526
1527 /*
1528 * If the user is only interested in busses, there's no
1529 * reason to descend to the next level in the tree.
1530 */
1531 if ((retval & DM_RET_ACTION_MASK) == DM_RET_STOP)
1532 return(1);
1533
1534 /*
1535 * If there is a target generation recorded, check it to
1536 * make sure the target list hasn't changed.
1537 */
1538 if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1539 && (bus == cdm->pos.cookie.bus)
1540 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
1541 && (cdm->pos.generations[CAM_TARGET_GENERATION] != 0)
1542 && (cdm->pos.generations[CAM_TARGET_GENERATION] !=
1543 bus->generation)) {
1544 cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
1545 return(0);
1546 }
1547
1548 if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1549 && (cdm->pos.cookie.bus == bus)
1550 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
1551 && (cdm->pos.cookie.target != NULL))
1552 return(xpttargettraverse(bus,
1553 (struct cam_et *)cdm->pos.cookie.target,
1554 xptedttargetfunc, arg));
1555 else
1556 return(xpttargettraverse(bus, NULL, xptedttargetfunc, arg));
1557}
1558
1559static int
1560xptedttargetfunc(struct cam_et *target, void *arg)
1561{
1562 struct ccb_dev_match *cdm;
1563
1564 cdm = (struct ccb_dev_match *)arg;
1565
1566 /*
1567 * If there is a device list generation recorded, check it to
1568 * make sure the device list hasn't changed.
1569 */
1570 if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1571 && (cdm->pos.cookie.bus == target->bus)
1572 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
1573 && (cdm->pos.cookie.target == target)
1574 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE)
1575 && (cdm->pos.generations[CAM_DEV_GENERATION] != 0)
1576 && (cdm->pos.generations[CAM_DEV_GENERATION] !=
1577 target->generation)) {
1578 cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
1579 return(0);
1580 }
1581
1582 if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1583 && (cdm->pos.cookie.bus == target->bus)
1584 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
1585 && (cdm->pos.cookie.target == target)
1586 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE)
1587 && (cdm->pos.cookie.device != NULL))
1588 return(xptdevicetraverse(target,
1589 (struct cam_ed *)cdm->pos.cookie.device,
1590 xptedtdevicefunc, arg));
1591 else
1592 return(xptdevicetraverse(target, NULL, xptedtdevicefunc, arg));
1593}
1594
1595static int
1596xptedtdevicefunc(struct cam_ed *device, void *arg)
1597{
1598
1599 struct ccb_dev_match *cdm;
1600 dev_match_ret retval;
1601
1602 cdm = (struct ccb_dev_match *)arg;
1603
1604 /*
1605 * If our position is for something deeper in the tree, that means
1606 * that we've already seen this node. So, we keep going down.
1607 */
1608 if ((cdm->pos.position_type & CAM_DEV_POS_DEVICE)
1609 && (cdm->pos.cookie.device == device)
1610 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
1611 && (cdm->pos.cookie.periph != NULL))
1612 retval = DM_RET_DESCEND;
1613 else
1614 retval = xptdevicematch(cdm->patterns, cdm->num_patterns,
1615 device);
1616
1617 if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
1618 cdm->status = CAM_DEV_MATCH_ERROR;
1619 return(0);
1620 }
1621
1622 /*
1623 * If the copy flag is set, copy this device out.
1624 */
1625 if (retval & DM_RET_COPY) {
1626 int spaceleft, j;
1627
1628 spaceleft = cdm->match_buf_len - (cdm->num_matches *
1629 sizeof(struct dev_match_result));
1630
1631 /*
1632 * If we don't have enough space to put in another
1633 * match result, save our position and tell the
1634 * user there are more devices to check.
1635 */
1636 if (spaceleft < sizeof(struct dev_match_result)) {
1637 bzero(&cdm->pos, sizeof(cdm->pos));
1638 cdm->pos.position_type =
1639 CAM_DEV_POS_EDT | CAM_DEV_POS_BUS |
1640 CAM_DEV_POS_TARGET | CAM_DEV_POS_DEVICE;
1641
1642 cdm->pos.cookie.bus = device->target->bus;
1643 cdm->pos.generations[CAM_BUS_GENERATION]=
1644 xsoftc.bus_generation;
1645 cdm->pos.cookie.target = device->target;
1646 cdm->pos.generations[CAM_TARGET_GENERATION] =
1647 device->target->bus->generation;
1648 cdm->pos.cookie.device = device;
1649 cdm->pos.generations[CAM_DEV_GENERATION] =
1650 device->target->generation;
1651 cdm->status = CAM_DEV_MATCH_MORE;
1652 return(0);
1653 }
1654 j = cdm->num_matches;
1655 cdm->num_matches++;
1656 cdm->matches[j].type = DEV_MATCH_DEVICE;
1657 cdm->matches[j].result.device_result.path_id =
1658 device->target->bus->path_id;
1659 cdm->matches[j].result.device_result.target_id =
1660 device->target->target_id;
1661 cdm->matches[j].result.device_result.target_lun =
1662 device->lun_id;
1663 cdm->matches[j].result.device_result.protocol =
1664 device->protocol;
1665 bcopy(&device->inq_data,
1666 &cdm->matches[j].result.device_result.inq_data,
1667 sizeof(struct scsi_inquiry_data));
1668 bcopy(&device->ident_data,
1669 &cdm->matches[j].result.device_result.ident_data,
1670 sizeof(struct ata_params));
1671
1672 /* Let the user know whether this device is unconfigured */
1673 if (device->flags & CAM_DEV_UNCONFIGURED)
1674 cdm->matches[j].result.device_result.flags =
1675 DEV_RESULT_UNCONFIGURED;
1676 else
1677 cdm->matches[j].result.device_result.flags =
1678 DEV_RESULT_NOFLAG;
1679 }
1680
1681 /*
1682 * If the user isn't interested in peripherals, don't descend
1683 * the tree any further.
1684 */
1685 if ((retval & DM_RET_ACTION_MASK) == DM_RET_STOP)
1686 return(1);
1687
1688 /*
1689 * If there is a peripheral list generation recorded, make sure
1690 * it hasn't changed.
1691 */
1692 if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1693 && (device->target->bus == cdm->pos.cookie.bus)
1694 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
1695 && (device->target == cdm->pos.cookie.target)
1696 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE)
1697 && (device == cdm->pos.cookie.device)
1698 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
1699 && (cdm->pos.generations[CAM_PERIPH_GENERATION] != 0)
1700 && (cdm->pos.generations[CAM_PERIPH_GENERATION] !=
1701 device->generation)){
1702 cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
1703 return(0);
1704 }
1705
1706 if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1707 && (cdm->pos.cookie.bus == device->target->bus)
1708 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
1709 && (cdm->pos.cookie.target == device->target)
1710 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE)
1711 && (cdm->pos.cookie.device == device)
1712 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
1713 && (cdm->pos.cookie.periph != NULL))
1714 return(xptperiphtraverse(device,
1715 (struct cam_periph *)cdm->pos.cookie.periph,
1716 xptedtperiphfunc, arg));
1717 else
1718 return(xptperiphtraverse(device, NULL, xptedtperiphfunc, arg));
1719}
1720
1721static int
1722xptedtperiphfunc(struct cam_periph *periph, void *arg)
1723{
1724 struct ccb_dev_match *cdm;
1725 dev_match_ret retval;
1726
1727 cdm = (struct ccb_dev_match *)arg;
1728
1729 retval = xptperiphmatch(cdm->patterns, cdm->num_patterns, periph);
1730
1731 if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
1732 cdm->status = CAM_DEV_MATCH_ERROR;
1733 return(0);
1734 }
1735
1736 /*
1737 * If the copy flag is set, copy this peripheral out.
1738 */
1739 if (retval & DM_RET_COPY) {
1740 int spaceleft, j;
1741
1742 spaceleft = cdm->match_buf_len - (cdm->num_matches *
1743 sizeof(struct dev_match_result));
1744
1745 /*
1746 * If we don't have enough space to put in another
1747 * match result, save our position and tell the
1748 * user there are more devices to check.
1749 */
1750 if (spaceleft < sizeof(struct dev_match_result)) {
1751 bzero(&cdm->pos, sizeof(cdm->pos));
1752 cdm->pos.position_type =
1753 CAM_DEV_POS_EDT | CAM_DEV_POS_BUS |
1754 CAM_DEV_POS_TARGET | CAM_DEV_POS_DEVICE |
1755 CAM_DEV_POS_PERIPH;
1756
1757 cdm->pos.cookie.bus = periph->path->bus;
1758 cdm->pos.generations[CAM_BUS_GENERATION]=
1759 xsoftc.bus_generation;
1760 cdm->pos.cookie.target = periph->path->target;
1761 cdm->pos.generations[CAM_TARGET_GENERATION] =
1762 periph->path->bus->generation;
1763 cdm->pos.cookie.device = periph->path->device;
1764 cdm->pos.generations[CAM_DEV_GENERATION] =
1765 periph->path->target->generation;
1766 cdm->pos.cookie.periph = periph;
1767 cdm->pos.generations[CAM_PERIPH_GENERATION] =
1768 periph->path->device->generation;
1769 cdm->status = CAM_DEV_MATCH_MORE;
1770 return(0);
1771 }
1772
1773 j = cdm->num_matches;
1774 cdm->num_matches++;
1775 cdm->matches[j].type = DEV_MATCH_PERIPH;
1776 cdm->matches[j].result.periph_result.path_id =
1777 periph->path->bus->path_id;
1778 cdm->matches[j].result.periph_result.target_id =
1779 periph->path->target->target_id;
1780 cdm->matches[j].result.periph_result.target_lun =
1781 periph->path->device->lun_id;
1782 cdm->matches[j].result.periph_result.unit_number =
1783 periph->unit_number;
1784 strncpy(cdm->matches[j].result.periph_result.periph_name,
1785 periph->periph_name, DEV_IDLEN);
1786 }
1787
1788 return(1);
1789}
1790
1791static int
1792xptedtmatch(struct ccb_dev_match *cdm)
1793{
1794 int ret;
1795
1796 cdm->num_matches = 0;
1797
1798 /*
1799 * Check the bus list generation. If it has changed, the user
1800 * needs to reset everything and start over.
1801 */
1802 if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1803 && (cdm->pos.generations[CAM_BUS_GENERATION] != 0)
1804 && (cdm->pos.generations[CAM_BUS_GENERATION] != xsoftc.bus_generation)) {
1805 cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
1806 return(0);
1807 }
1808
1809 if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1810 && (cdm->pos.cookie.bus != NULL))
1811 ret = xptbustraverse((struct cam_eb *)cdm->pos.cookie.bus,
1812 xptedtbusfunc, cdm);
1813 else
1814 ret = xptbustraverse(NULL, xptedtbusfunc, cdm);
1815
1816 /*
1817 * If we get back 0, that means that we had to stop before fully
1818 * traversing the EDT. It also means that one of the subroutines
1819 * has set the status field to the proper value. If we get back 1,
1820 * we've fully traversed the EDT and copied out any matching entries.
1821 */
1822 if (ret == 1)
1823 cdm->status = CAM_DEV_MATCH_LAST;
1824
1825 return(ret);
1826}
1827
1828static int
1829xptplistpdrvfunc(struct periph_driver **pdrv, void *arg)
1830{
1831 struct ccb_dev_match *cdm;
1832
1833 cdm = (struct ccb_dev_match *)arg;
1834
1835 if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR)
1836 && (cdm->pos.cookie.pdrv == pdrv)
1837 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
1838 && (cdm->pos.generations[CAM_PERIPH_GENERATION] != 0)
1839 && (cdm->pos.generations[CAM_PERIPH_GENERATION] !=
1840 (*pdrv)->generation)) {
1841 cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
1842 return(0);
1843 }
1844
1845 if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR)
1846 && (cdm->pos.cookie.pdrv == pdrv)
1847 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
1848 && (cdm->pos.cookie.periph != NULL))
1849 return(xptpdperiphtraverse(pdrv,
1850 (struct cam_periph *)cdm->pos.cookie.periph,
1851 xptplistperiphfunc, arg));
1852 else
1853 return(xptpdperiphtraverse(pdrv, NULL,xptplistperiphfunc, arg));
1854}
1855
1856static int
1857xptplistperiphfunc(struct cam_periph *periph, void *arg)
1858{
1859 struct ccb_dev_match *cdm;
1860 dev_match_ret retval;
1861
1862 cdm = (struct ccb_dev_match *)arg;
1863
1864 retval = xptperiphmatch(cdm->patterns, cdm->num_patterns, periph);
1865
1866 if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
1867 cdm->status = CAM_DEV_MATCH_ERROR;
1868 return(0);
1869 }
1870
1871 /*
1872 * If the copy flag is set, copy this peripheral out.
1873 */
1874 if (retval & DM_RET_COPY) {
1875 int spaceleft, j;
1876
1877 spaceleft = cdm->match_buf_len - (cdm->num_matches *
1878 sizeof(struct dev_match_result));
1879
1880 /*
1881 * If we don't have enough space to put in another
1882 * match result, save our position and tell the
1883 * user there are more devices to check.
1884 */
1885 if (spaceleft < sizeof(struct dev_match_result)) {
1886 struct periph_driver **pdrv;
1887
1888 pdrv = NULL;
1889 bzero(&cdm->pos, sizeof(cdm->pos));
1890 cdm->pos.position_type =
1891 CAM_DEV_POS_PDRV | CAM_DEV_POS_PDPTR |
1892 CAM_DEV_POS_PERIPH;
1893
1894 /*
1895 * This may look a bit non-sensical, but it is
1896 * actually quite logical. There are very few
1897 * peripheral drivers, and bloating every peripheral
1898 * structure with a pointer back to its parent
1899 * peripheral driver linker set entry would cost
1900 * more in the long run than doing this quick lookup.
1901 */
1902 for (pdrv = periph_drivers; *pdrv != NULL; pdrv++) {
1903 if (strcmp((*pdrv)->driver_name,
1904 periph->periph_name) == 0)
1905 break;
1906 }
1907
1908 if (*pdrv == NULL) {
1909 cdm->status = CAM_DEV_MATCH_ERROR;
1910 return(0);
1911 }
1912
1913 cdm->pos.cookie.pdrv = pdrv;
1914 /*
1915 * The periph generation slot does double duty, as
1916 * does the periph pointer slot. They are used for
1917 * both edt and pdrv lookups and positioning.
1918 */
1919 cdm->pos.cookie.periph = periph;
1920 cdm->pos.generations[CAM_PERIPH_GENERATION] =
1921 (*pdrv)->generation;
1922 cdm->status = CAM_DEV_MATCH_MORE;
1923 return(0);
1924 }
1925
1926 j = cdm->num_matches;
1927 cdm->num_matches++;
1928 cdm->matches[j].type = DEV_MATCH_PERIPH;
1929 cdm->matches[j].result.periph_result.path_id =
1930 periph->path->bus->path_id;
1931
1932 /*
1933 * The transport layer peripheral doesn't have a target or
1934 * lun.
1935 */
1936 if (periph->path->target)
1937 cdm->matches[j].result.periph_result.target_id =
1938 periph->path->target->target_id;
1939 else
1940 cdm->matches[j].result.periph_result.target_id = -1;
1941
1942 if (periph->path->device)
1943 cdm->matches[j].result.periph_result.target_lun =
1944 periph->path->device->lun_id;
1945 else
1946 cdm->matches[j].result.periph_result.target_lun = -1;
1947
1948 cdm->matches[j].result.periph_result.unit_number =
1949 periph->unit_number;
1950 strncpy(cdm->matches[j].result.periph_result.periph_name,
1951 periph->periph_name, DEV_IDLEN);
1952 }
1953
1954 return(1);
1955}
1956
1957static int
1958xptperiphlistmatch(struct ccb_dev_match *cdm)
1959{
1960 int ret;
1961
1962 cdm->num_matches = 0;
1963
1964 /*
1965 * At this point in the edt traversal function, we check the bus
1966 * list generation to make sure that no busses have been added or
1967 * removed since the user last sent a XPT_DEV_MATCH ccb through.
1968 * For the peripheral driver list traversal function, however, we
1969 * don't have to worry about new peripheral driver types coming or
1970 * going; they're in a linker set, and therefore can't change
1971 * without a recompile.
1972 */
1973
1974 if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR)
1975 && (cdm->pos.cookie.pdrv != NULL))
1976 ret = xptpdrvtraverse(
1977 (struct periph_driver **)cdm->pos.cookie.pdrv,
1978 xptplistpdrvfunc, cdm);
1979 else
1980 ret = xptpdrvtraverse(NULL, xptplistpdrvfunc, cdm);
1981
1982 /*
1983 * If we get back 0, that means that we had to stop before fully
1984 * traversing the peripheral driver tree. It also means that one of
1985 * the subroutines has set the status field to the proper value. If
1986 * we get back 1, we've fully traversed the EDT and copied out any
1987 * matching entries.
1988 */
1989 if (ret == 1)
1990 cdm->status = CAM_DEV_MATCH_LAST;
1991
1992 return(ret);
1993}
1994
1995static int
1996xptbustraverse(struct cam_eb *start_bus, xpt_busfunc_t *tr_func, void *arg)
1997{
1998 struct cam_eb *bus, *next_bus;
1999 int retval;
2000
2001 retval = 1;
2002
2003 xpt_lock_buses();
2004 for (bus = (start_bus ? start_bus : TAILQ_FIRST(&xsoftc.xpt_busses));
2005 bus != NULL;
2006 bus = next_bus) {
2007
2008 bus->refcount++;
2009
2010 /*
2011 * XXX The locking here is obviously very complex. We
2012 * should work to simplify it.
2013 */
2014 xpt_unlock_buses();
2015 CAM_SIM_LOCK(bus->sim);
2016 retval = tr_func(bus, arg);
2017 CAM_SIM_UNLOCK(bus->sim);
2018
2019 xpt_lock_buses();
2020 next_bus = TAILQ_NEXT(bus, links);
2021 xpt_unlock_buses();
2022
2023 xpt_release_bus(bus);
2024
2025 if (retval == 0)
2026 return(retval);
2027 xpt_lock_buses();
2028 }
2029 xpt_unlock_buses();
2030
2031 return(retval);
2032}
2033
2034static int
2035xpttargettraverse(struct cam_eb *bus, struct cam_et *start_target,
2036 xpt_targetfunc_t *tr_func, void *arg)
2037{
2038 struct cam_et *target, *next_target;
2039 int retval;
2040
2041 mtx_assert(bus->sim->mtx, MA_OWNED);
2042 retval = 1;
2043 for (target = (start_target ? start_target :
2044 TAILQ_FIRST(&bus->et_entries));
2045 target != NULL; target = next_target) {
2046
2047 target->refcount++;
2048
2049 retval = tr_func(target, arg);
2050
2051 next_target = TAILQ_NEXT(target, links);
2052
2053 xpt_release_target(target);
2054
2055 if (retval == 0)
2056 return(retval);
2057 }
2058
2059 return(retval);
2060}
2061
2062static int
2063xptdevicetraverse(struct cam_et *target, struct cam_ed *start_device,
2064 xpt_devicefunc_t *tr_func, void *arg)
2065{
2066 struct cam_ed *device, *next_device;
2067 int retval;
2068
2069 mtx_assert(target->bus->sim->mtx, MA_OWNED);
2070 retval = 1;
2071 for (device = (start_device ? start_device :
2072 TAILQ_FIRST(&target->ed_entries));
2073 device != NULL;
2074 device = next_device) {
2075
2076 /*
2077 * Hold a reference so the current device does not go away
2078 * on us.
2079 */
2080 device->refcount++;
2081
2082 retval = tr_func(device, arg);
2083
2084 /*
2085 * Grab our next pointer before we release the current
2086 * device.
2087 */
2088 next_device = TAILQ_NEXT(device, links);
2089
2090 xpt_release_device(device);
2091
2092 if (retval == 0)
2093 return(retval);
2094 }
2095
2096 return(retval);
2097}
2098
2099static int
2100xptperiphtraverse(struct cam_ed *device, struct cam_periph *start_periph,
2101 xpt_periphfunc_t *tr_func, void *arg)
2102{
2103 struct cam_periph *periph, *next_periph;
2104 int retval;
2105
2106 retval = 1;
2107
2108 mtx_assert(device->sim->mtx, MA_OWNED);
2109 xpt_lock_buses();
2110 for (periph = (start_periph ? start_periph :
2111 SLIST_FIRST(&device->periphs));
2112 periph != NULL;
2113 periph = next_periph) {
2114
2115
2116 /*
2117 * In this case, we want to show peripherals that have been
2118 * invalidated, but not peripherals that are scheduled to
2119 * be freed. So instead of calling cam_periph_acquire(),
2120 * which will fail if the periph has been invalidated, we
2121 * just check for the free flag here. If it is in the
2122 * process of being freed, we skip to the next periph.
2123 */
2124 if (periph->flags & CAM_PERIPH_FREE) {
2125 next_periph = SLIST_NEXT(periph, periph_links);
2126 continue;
2127 }
2128
2129 /*
2130 * Acquire a reference to this periph while we call the
2131 * traversal function, so it can't go away.
2132 */
2133 periph->refcount++;
2134
2135 retval = tr_func(periph, arg);
2136
2137 /*
2138 * Grab the next peripheral before we release this one, so
2139 * our next pointer is still valid.
2140 */
2141 next_periph = SLIST_NEXT(periph, periph_links);
2142
2143 cam_periph_release_locked_buses(periph);
2144
2145 if (retval == 0)
2146 goto bailout_done;
2147 }
2148
2149bailout_done:
2150
2151 xpt_unlock_buses();
2152
2153 return(retval);
2154}
2155
2156static int
2157xptpdrvtraverse(struct periph_driver **start_pdrv,
2158 xpt_pdrvfunc_t *tr_func, void *arg)
2159{
2160 struct periph_driver **pdrv;
2161 int retval;
2162
2163 retval = 1;
2164
2165 /*
2166 * We don't traverse the peripheral driver list like we do the
2167 * other lists, because it is a linker set, and therefore cannot be
2168 * changed during runtime. If the peripheral driver list is ever
2169 * re-done to be something other than a linker set (i.e. it can
2170 * change while the system is running), the list traversal should
2171 * be modified to work like the other traversal functions.
2172 */
2173 for (pdrv = (start_pdrv ? start_pdrv : periph_drivers);
2174 *pdrv != NULL; pdrv++) {
2175 retval = tr_func(pdrv, arg);
2176
2177 if (retval == 0)
2178 return(retval);
2179 }
2180
2181 return(retval);
2182}
2183
2184static int
2185xptpdperiphtraverse(struct periph_driver **pdrv,
2186 struct cam_periph *start_periph,
2187 xpt_periphfunc_t *tr_func, void *arg)
2188{
2189 struct cam_periph *periph, *next_periph;
2190 struct cam_sim *sim;
2191 int retval;
2192
2193 retval = 1;
2194
2195 xpt_lock_buses();
2196 for (periph = (start_periph ? start_periph :
2197 TAILQ_FIRST(&(*pdrv)->units)); periph != NULL;
2198 periph = next_periph) {
2199
2200
2201 /*
2202 * In this case, we want to show peripherals that have been
2203 * invalidated, but not peripherals that are scheduled to
2204 * be freed. So instead of calling cam_periph_acquire(),
2205 * which will fail if the periph has been invalidated, we
2206 * just check for the free flag here. If it is free, we
2207 * skip to the next periph.
2208 */
2209 if (periph->flags & CAM_PERIPH_FREE) {
2210 next_periph = TAILQ_NEXT(periph, unit_links);
2211 continue;
2212 }
2213
2214 /*
2215 * Acquire a reference to this periph while we call the
2216 * traversal function, so it can't go away.
2217 */
2218 periph->refcount++;
2219 sim = periph->sim;
2220 xpt_unlock_buses();
2221 CAM_SIM_LOCK(sim);
2222 xpt_lock_buses();
2223 retval = tr_func(periph, arg);
2224
2225 /*
2226 * Grab the next peripheral before we release this one, so
2227 * our next pointer is still valid.
2228 */
2229 next_periph = TAILQ_NEXT(periph, unit_links);
2230
2231 cam_periph_release_locked_buses(periph);
2232 CAM_SIM_UNLOCK(sim);
2233
2234 if (retval == 0)
2235 goto bailout_done;
2236 }
2237bailout_done:
2238
2239 xpt_unlock_buses();
2240
2241 return(retval);
2242}
2243
2244static int
2245xptdefbusfunc(struct cam_eb *bus, void *arg)
2246{
2247 struct xpt_traverse_config *tr_config;
2248
2249 tr_config = (struct xpt_traverse_config *)arg;
2250
2251 if (tr_config->depth == XPT_DEPTH_BUS) {
2252 xpt_busfunc_t *tr_func;
2253
2254 tr_func = (xpt_busfunc_t *)tr_config->tr_func;
2255
2256 return(tr_func(bus, tr_config->tr_arg));
2257 } else
2258 return(xpttargettraverse(bus, NULL, xptdeftargetfunc, arg));
2259}
2260
2261static int
2262xptdeftargetfunc(struct cam_et *target, void *arg)
2263{
2264 struct xpt_traverse_config *tr_config;
2265
2266 tr_config = (struct xpt_traverse_config *)arg;
2267
2268 if (tr_config->depth == XPT_DEPTH_TARGET) {
2269 xpt_targetfunc_t *tr_func;
2270
2271 tr_func = (xpt_targetfunc_t *)tr_config->tr_func;
2272
2273 return(tr_func(target, tr_config->tr_arg));
2274 } else
2275 return(xptdevicetraverse(target, NULL, xptdefdevicefunc, arg));
2276}
2277
2278static int
2279xptdefdevicefunc(struct cam_ed *device, void *arg)
2280{
2281 struct xpt_traverse_config *tr_config;
2282
2283 tr_config = (struct xpt_traverse_config *)arg;
2284
2285 if (tr_config->depth == XPT_DEPTH_DEVICE) {
2286 xpt_devicefunc_t *tr_func;
2287
2288 tr_func = (xpt_devicefunc_t *)tr_config->tr_func;
2289
2290 return(tr_func(device, tr_config->tr_arg));
2291 } else
2292 return(xptperiphtraverse(device, NULL, xptdefperiphfunc, arg));
2293}
2294
2295static int
2296xptdefperiphfunc(struct cam_periph *periph, void *arg)
2297{
2298 struct xpt_traverse_config *tr_config;
2299 xpt_periphfunc_t *tr_func;
2300
2301 tr_config = (struct xpt_traverse_config *)arg;
2302
2303 tr_func = (xpt_periphfunc_t *)tr_config->tr_func;
2304
2305 /*
2306 * Unlike the other default functions, we don't check for depth
2307 * here. The peripheral driver level is the last level in the EDT,
2308 * so if we're here, we should execute the function in question.
2309 */
2310 return(tr_func(periph, tr_config->tr_arg));
2311}
2312
2313/*
2314 * Execute the given function for every bus in the EDT.
2315 */
2316static int
2317xpt_for_all_busses(xpt_busfunc_t *tr_func, void *arg)
2318{
2319 struct xpt_traverse_config tr_config;
2320
2321 tr_config.depth = XPT_DEPTH_BUS;
2322 tr_config.tr_func = tr_func;
2323 tr_config.tr_arg = arg;
2324
2325 return(xptbustraverse(NULL, xptdefbusfunc, &tr_config));
2326}
2327
2328/*
2329 * Execute the given function for every device in the EDT.
2330 */
2331static int
2332xpt_for_all_devices(xpt_devicefunc_t *tr_func, void *arg)
2333{
2334 struct xpt_traverse_config tr_config;
2335
2336 tr_config.depth = XPT_DEPTH_DEVICE;
2337 tr_config.tr_func = tr_func;
2338 tr_config.tr_arg = arg;
2339
2340 return(xptbustraverse(NULL, xptdefbusfunc, &tr_config));
2341}
2342
2343static int
2344xptsetasyncfunc(struct cam_ed *device, void *arg)
2345{
2346 struct cam_path path;
2347 struct ccb_getdev cgd;
2348 struct ccb_setasync *csa = (struct ccb_setasync *)arg;
2349
2350 /*
2351 * Don't report unconfigured devices (Wildcard devs,
2352 * devices only for target mode, device instances
2353 * that have been invalidated but are waiting for
2354 * their last reference count to be released).
2355 */
2356 if ((device->flags & CAM_DEV_UNCONFIGURED) != 0)
2357 return (1);
2358
2359 xpt_compile_path(&path,
2360 NULL,
2361 device->target->bus->path_id,
2362 device->target->target_id,
2363 device->lun_id);
2364 xpt_setup_ccb(&cgd.ccb_h, &path, CAM_PRIORITY_NORMAL);
2365 cgd.ccb_h.func_code = XPT_GDEV_TYPE;
2366 xpt_action((union ccb *)&cgd);
2367 csa->callback(csa->callback_arg,
2368 AC_FOUND_DEVICE,
2369 &path, &cgd);
2370 xpt_release_path(&path);
2371
2372 return(1);
2373}
2374
2375static int
2376xptsetasyncbusfunc(struct cam_eb *bus, void *arg)
2377{
2378 struct cam_path path;
2379 struct ccb_pathinq cpi;
2380 struct ccb_setasync *csa = (struct ccb_setasync *)arg;
2381
2382 xpt_compile_path(&path, /*periph*/NULL,
2383 bus->sim->path_id,
2384 CAM_TARGET_WILDCARD,
2385 CAM_LUN_WILDCARD);
2386 xpt_setup_ccb(&cpi.ccb_h, &path, CAM_PRIORITY_NORMAL);
2387 cpi.ccb_h.func_code = XPT_PATH_INQ;
2388 xpt_action((union ccb *)&cpi);
2389 csa->callback(csa->callback_arg,
2390 AC_PATH_REGISTERED,
2391 &path, &cpi);
2392 xpt_release_path(&path);
2393
2394 return(1);
2395}
2396
2397void
2398xpt_action(union ccb *start_ccb)
2399{
2400
2401 CAM_DEBUG(start_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xpt_action\n"));
2402
2403 start_ccb->ccb_h.status = CAM_REQ_INPROG;
2404 (*(start_ccb->ccb_h.path->bus->xport->action))(start_ccb);
2405}
2406
2407void
2408xpt_action_default(union ccb *start_ccb)
2409{
2410 struct cam_path *path;
2411
2412 path = start_ccb->ccb_h.path;
2413 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_action_default\n"));
2414
2415 switch (start_ccb->ccb_h.func_code) {
2416 case XPT_SCSI_IO:
2417 {
2418 struct cam_ed *device;
2419
2420 /*
2421 * For the sake of compatibility with SCSI-1
2422 * devices that may not understand the identify
2423 * message, we include lun information in the
2424 * second byte of all commands. SCSI-1 specifies
2425 * that luns are a 3 bit value and reserves only 3
2426 * bits for lun information in the CDB. Later
2427 * revisions of the SCSI spec allow for more than 8
2428 * luns, but have deprecated lun information in the
2429 * CDB. So, if the lun won't fit, we must omit.
2430 *
2431 * Also be aware that during initial probing for devices,
2432 * the inquiry information is unknown but initialized to 0.
2433 * This means that this code will be exercised while probing
2434 * devices with an ANSI revision greater than 2.
2435 */
2436 device = path->device;
2437 if (device->protocol_version <= SCSI_REV_2
2438 && start_ccb->ccb_h.target_lun < 8
2439 && (start_ccb->ccb_h.flags & CAM_CDB_POINTER) == 0) {
2440
2441 start_ccb->csio.cdb_io.cdb_bytes[1] |=
2442 start_ccb->ccb_h.target_lun << 5;
2443 }
2444 start_ccb->csio.scsi_status = SCSI_STATUS_OK;
2445 }
2446 /* FALLTHROUGH */
2447 case XPT_TARGET_IO:
2448 case XPT_CONT_TARGET_IO:
2449 start_ccb->csio.sense_resid = 0;
2450 start_ccb->csio.resid = 0;
2451 /* FALLTHROUGH */
2452 case XPT_ATA_IO:
2453 if (start_ccb->ccb_h.func_code == XPT_ATA_IO)
2454 start_ccb->ataio.resid = 0;
2455 /* FALLTHROUGH */
2456 case XPT_RESET_DEV:
2457 case XPT_ENG_EXEC:
2458 case XPT_SMP_IO:
2459 cam_ccbq_insert_ccb(&path->device->ccbq, start_ccb);
2460 if (xpt_schedule_devq(path->bus->sim->devq, path->device))
2461 xpt_run_devq(path->bus->sim->devq);
2462 break;
2463 case XPT_CALC_GEOMETRY:
2464 {
2465 struct cam_sim *sim;
2466
2467 /* Filter out garbage */
2468 if (start_ccb->ccg.block_size == 0
2469 || start_ccb->ccg.volume_size == 0) {
2470 start_ccb->ccg.cylinders = 0;
2471 start_ccb->ccg.heads = 0;
2472 start_ccb->ccg.secs_per_track = 0;
2473 start_ccb->ccb_h.status = CAM_REQ_CMP;
2474 break;
2475 }
2476#if defined(PC98) || defined(__sparc64__)
2477 /*
2478 * In a PC-98 system, geometry translation depens on
2479 * the "real" device geometry obtained from mode page 4.
2480 * SCSI geometry translation is performed in the
2481 * initialization routine of the SCSI BIOS and the result
2482 * stored in host memory. If the translation is available
2483 * in host memory, use it. If not, rely on the default
2484 * translation the device driver performs.
2485 * For sparc64, we may need adjust the geometry of large
2486 * disks in order to fit the limitations of the 16-bit
2487 * fields of the VTOC8 disk label.
2488 */
2489 if (scsi_da_bios_params(&start_ccb->ccg) != 0) {
2490 start_ccb->ccb_h.status = CAM_REQ_CMP;
2491 break;
2492 }
2493#endif
2494 sim = path->bus->sim;
2495 (*(sim->sim_action))(sim, start_ccb);
2496 break;
2497 }
2498 case XPT_ABORT:
2499 {
2500 union ccb* abort_ccb;
2501
2502 abort_ccb = start_ccb->cab.abort_ccb;
2503 if (XPT_FC_IS_DEV_QUEUED(abort_ccb)) {
2504
2505 if (abort_ccb->ccb_h.pinfo.index >= 0) {
2506 struct cam_ccbq *ccbq;
2507 struct cam_ed *device;
2508
2509 device = abort_ccb->ccb_h.path->device;
2510 ccbq = &device->ccbq;
2511 cam_ccbq_remove_ccb(ccbq, abort_ccb);
2512 abort_ccb->ccb_h.status =
2513 CAM_REQ_ABORTED|CAM_DEV_QFRZN;
2514 xpt_freeze_devq(abort_ccb->ccb_h.path, 1);
2515 xpt_done(abort_ccb);
2516 start_ccb->ccb_h.status = CAM_REQ_CMP;
2517 break;
2518 }
2519 if (abort_ccb->ccb_h.pinfo.index == CAM_UNQUEUED_INDEX
2520 && (abort_ccb->ccb_h.status & CAM_SIM_QUEUED) == 0) {
2521 /*
2522 * We've caught this ccb en route to
2523 * the SIM. Flag it for abort and the
2524 * SIM will do so just before starting
2525 * real work on the CCB.
2526 */
2527 abort_ccb->ccb_h.status =
2528 CAM_REQ_ABORTED|CAM_DEV_QFRZN;
2529 xpt_freeze_devq(abort_ccb->ccb_h.path, 1);
2530 start_ccb->ccb_h.status = CAM_REQ_CMP;
2531 break;
2532 }
2533 }
2534 if (XPT_FC_IS_QUEUED(abort_ccb)
2535 && (abort_ccb->ccb_h.pinfo.index == CAM_DONEQ_INDEX)) {
2536 /*
2537 * It's already completed but waiting
2538 * for our SWI to get to it.
2539 */
2540 start_ccb->ccb_h.status = CAM_UA_ABORT;
2541 break;
2542 }
2543 /*
2544 * If we weren't able to take care of the abort request
2545 * in the XPT, pass the request down to the SIM for processing.
2546 */
2547 }
2548 /* FALLTHROUGH */
2549 case XPT_ACCEPT_TARGET_IO:
2550 case XPT_EN_LUN:
2551 case XPT_IMMED_NOTIFY:
2552 case XPT_NOTIFY_ACK:
2553 case XPT_RESET_BUS:
2554 case XPT_IMMEDIATE_NOTIFY:
2555 case XPT_NOTIFY_ACKNOWLEDGE:
2556 case XPT_GET_SIM_KNOB:
2557 case XPT_SET_SIM_KNOB:
2558 {
2559 struct cam_sim *sim;
2560
2561 sim = path->bus->sim;
2562 (*(sim->sim_action))(sim, start_ccb);
2563 break;
2564 }
2565 case XPT_PATH_INQ:
2566 {
2567 struct cam_sim *sim;
2568
2569 sim = path->bus->sim;
2570 (*(sim->sim_action))(sim, start_ccb);
2571 break;
2572 }
2573 case XPT_PATH_STATS:
2574 start_ccb->cpis.last_reset = path->bus->last_reset;
2575 start_ccb->ccb_h.status = CAM_REQ_CMP;
2576 break;
2577 case XPT_GDEV_TYPE:
2578 {
2579 struct cam_ed *dev;
2580
2581 dev = path->device;
2582 if ((dev->flags & CAM_DEV_UNCONFIGURED) != 0) {
2583 start_ccb->ccb_h.status = CAM_DEV_NOT_THERE;
2584 } else {
2585 struct ccb_getdev *cgd;
2586
2587 cgd = &start_ccb->cgd;
2588 cgd->protocol = dev->protocol;
2589 cgd->inq_data = dev->inq_data;
2590 cgd->ident_data = dev->ident_data;
2591 cgd->inq_flags = dev->inq_flags;
2592 cgd->ccb_h.status = CAM_REQ_CMP;
2593 cgd->serial_num_len = dev->serial_num_len;
2594 if ((dev->serial_num_len > 0)
2595 && (dev->serial_num != NULL))
2596 bcopy(dev->serial_num, cgd->serial_num,
2597 dev->serial_num_len);
2598 }
2599 break;
2600 }
2601 case XPT_GDEV_STATS:
2602 {
2603 struct cam_ed *dev;
2604
2605 dev = path->device;
2606 if ((dev->flags & CAM_DEV_UNCONFIGURED) != 0) {
2607 start_ccb->ccb_h.status = CAM_DEV_NOT_THERE;
2608 } else {
2609 struct ccb_getdevstats *cgds;
2610 struct cam_eb *bus;
2611 struct cam_et *tar;
2612
2613 cgds = &start_ccb->cgds;
2614 bus = path->bus;
2615 tar = path->target;
2616 cgds->dev_openings = dev->ccbq.dev_openings;
2617 cgds->dev_active = dev->ccbq.dev_active;
2618 cgds->devq_openings = dev->ccbq.devq_openings;
2619 cgds->devq_queued = dev->ccbq.queue.entries;
2620 cgds->held = dev->ccbq.held;
2621 cgds->last_reset = tar->last_reset;
2622 cgds->maxtags = dev->maxtags;
2623 cgds->mintags = dev->mintags;
2624 if (timevalcmp(&tar->last_reset, &bus->last_reset, <))
2625 cgds->last_reset = bus->last_reset;
2626 cgds->ccb_h.status = CAM_REQ_CMP;
2627 }
2628 break;
2629 }
2630 case XPT_GDEVLIST:
2631 {
2632 struct cam_periph *nperiph;
2633 struct periph_list *periph_head;
2634 struct ccb_getdevlist *cgdl;
2635 u_int i;
2636 struct cam_ed *device;
2637 int found;
2638
2639
2640 found = 0;
2641
2642 /*
2643 * Don't want anyone mucking with our data.
2644 */
2645 device = path->device;
2646 periph_head = &device->periphs;
2647 cgdl = &start_ccb->cgdl;
2648
2649 /*
2650 * Check and see if the list has changed since the user
2651 * last requested a list member. If so, tell them that the
2652 * list has changed, and therefore they need to start over
2653 * from the beginning.
2654 */
2655 if ((cgdl->index != 0) &&
2656 (cgdl->generation != device->generation)) {
2657 cgdl->status = CAM_GDEVLIST_LIST_CHANGED;
2658 break;
2659 }
2660
2661 /*
2662 * Traverse the list of peripherals and attempt to find
2663 * the requested peripheral.
2664 */
2665 for (nperiph = SLIST_FIRST(periph_head), i = 0;
2666 (nperiph != NULL) && (i <= cgdl->index);
2667 nperiph = SLIST_NEXT(nperiph, periph_links), i++) {
2668 if (i == cgdl->index) {
2669 strncpy(cgdl->periph_name,
2670 nperiph->periph_name,
2671 DEV_IDLEN);
2672 cgdl->unit_number = nperiph->unit_number;
2673 found = 1;
2674 }
2675 }
2676 if (found == 0) {
2677 cgdl->status = CAM_GDEVLIST_ERROR;
2678 break;
2679 }
2680
2681 if (nperiph == NULL)
2682 cgdl->status = CAM_GDEVLIST_LAST_DEVICE;
2683 else
2684 cgdl->status = CAM_GDEVLIST_MORE_DEVS;
2685
2686 cgdl->index++;
2687 cgdl->generation = device->generation;
2688
2689 cgdl->ccb_h.status = CAM_REQ_CMP;
2690 break;
2691 }
2692 case XPT_DEV_MATCH:
2693 {
2694 dev_pos_type position_type;
2695 struct ccb_dev_match *cdm;
2696
2697 cdm = &start_ccb->cdm;
2698
2699 /*
2700 * There are two ways of getting at information in the EDT.
2701 * The first way is via the primary EDT tree. It starts
2702 * with a list of busses, then a list of targets on a bus,
2703 * then devices/luns on a target, and then peripherals on a
2704 * device/lun. The "other" way is by the peripheral driver
2705 * lists. The peripheral driver lists are organized by
2706 * peripheral driver. (obviously) So it makes sense to
2707 * use the peripheral driver list if the user is looking
2708 * for something like "da1", or all "da" devices. If the
2709 * user is looking for something on a particular bus/target
2710 * or lun, it's generally better to go through the EDT tree.
2711 */
2712
2713 if (cdm->pos.position_type != CAM_DEV_POS_NONE)
2714 position_type = cdm->pos.position_type;
2715 else {
2716 u_int i;
2717
2718 position_type = CAM_DEV_POS_NONE;
2719
2720 for (i = 0; i < cdm->num_patterns; i++) {
2721 if ((cdm->patterns[i].type == DEV_MATCH_BUS)
2722 ||(cdm->patterns[i].type == DEV_MATCH_DEVICE)){
2723 position_type = CAM_DEV_POS_EDT;
2724 break;
2725 }
2726 }
2727
2728 if (cdm->num_patterns == 0)
2729 position_type = CAM_DEV_POS_EDT;
2730 else if (position_type == CAM_DEV_POS_NONE)
2731 position_type = CAM_DEV_POS_PDRV;
2732 }
2733
2734 /*
2735 * Note that we drop the SIM lock here, because the EDT
2736 * traversal code needs to do its own locking.
2737 */
2738 CAM_SIM_UNLOCK(xpt_path_sim(cdm->ccb_h.path));
2739 switch(position_type & CAM_DEV_POS_TYPEMASK) {
2740 case CAM_DEV_POS_EDT:
2741 xptedtmatch(cdm);
2742 break;
2743 case CAM_DEV_POS_PDRV:
2744 xptperiphlistmatch(cdm);
2745 break;
2746 default:
2747 cdm->status = CAM_DEV_MATCH_ERROR;
2748 break;
2749 }
2750 CAM_SIM_LOCK(xpt_path_sim(cdm->ccb_h.path));
2751
2752 if (cdm->status == CAM_DEV_MATCH_ERROR)
2753 start_ccb->ccb_h.status = CAM_REQ_CMP_ERR;
2754 else
2755 start_ccb->ccb_h.status = CAM_REQ_CMP;
2756
2757 break;
2758 }
2759 case XPT_SASYNC_CB:
2760 {
2761 struct ccb_setasync *csa;
2762 struct async_node *cur_entry;
2763 struct async_list *async_head;
2764 u_int32_t added;
2765
2766 csa = &start_ccb->csa;
2767 added = csa->event_enable;
2768 async_head = &path->device->asyncs;
2769
2770 /*
2771 * If there is already an entry for us, simply
2772 * update it.
2773 */
2774 cur_entry = SLIST_FIRST(async_head);
2775 while (cur_entry != NULL) {
2776 if ((cur_entry->callback_arg == csa->callback_arg)
2777 && (cur_entry->callback == csa->callback))
2778 break;
2779 cur_entry = SLIST_NEXT(cur_entry, links);
2780 }
2781
2782 if (cur_entry != NULL) {
2783 /*
2784 * If the request has no flags set,
2785 * remove the entry.
2786 */
2787 added &= ~cur_entry->event_enable;
2788 if (csa->event_enable == 0) {
2789 SLIST_REMOVE(async_head, cur_entry,
2790 async_node, links);
2791 xpt_release_device(path->device);
2792 free(cur_entry, M_CAMXPT);
2793 } else {
2794 cur_entry->event_enable = csa->event_enable;
2795 }
2796 csa->event_enable = added;
2797 } else {
2798 cur_entry = malloc(sizeof(*cur_entry), M_CAMXPT,
2799 M_NOWAIT);
2800 if (cur_entry == NULL) {
2801 csa->ccb_h.status = CAM_RESRC_UNAVAIL;
2802 break;
2803 }
2804 cur_entry->event_enable = csa->event_enable;
2805 cur_entry->callback_arg = csa->callback_arg;
2806 cur_entry->callback = csa->callback;
2807 SLIST_INSERT_HEAD(async_head, cur_entry, links);
2808 xpt_acquire_device(path->device);
2809 }
2810 start_ccb->ccb_h.status = CAM_REQ_CMP;
2811 break;
2812 }
2813 case XPT_REL_SIMQ:
2814 {
2815 struct ccb_relsim *crs;
2816 struct cam_ed *dev;
2817
2818 crs = &start_ccb->crs;
2819 dev = path->device;
2820 if (dev == NULL) {
2821
2822 crs->ccb_h.status = CAM_DEV_NOT_THERE;
2823 break;
2824 }
2825
2826 if ((crs->release_flags & RELSIM_ADJUST_OPENINGS) != 0) {
2827
2828 /* Don't ever go below one opening */
2829 if (crs->openings > 0) {
2830 xpt_dev_ccbq_resize(path, crs->openings);
2831 if (bootverbose) {
2832 xpt_print(path,
2833 "number of openings is now %d\n",
2834 crs->openings);
2835 }
2836 }
2837 }
2838
2839 if ((crs->release_flags & RELSIM_RELEASE_AFTER_TIMEOUT) != 0) {
2840
2841 if ((dev->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) {
2842
2843 /*
2844 * Just extend the old timeout and decrement
2845 * the freeze count so that a single timeout
2846 * is sufficient for releasing the queue.
2847 */
2848 start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE;
2849 callout_stop(&dev->callout);
2850 } else {
2851
2852 start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE;
2853 }
2854
2855 callout_reset(&dev->callout,
2856 (crs->release_timeout * hz) / 1000,
2857 xpt_release_devq_timeout, dev);
2858
2859 dev->flags |= CAM_DEV_REL_TIMEOUT_PENDING;
2860
2861 }
2862
2863 if ((crs->release_flags & RELSIM_RELEASE_AFTER_CMDCMPLT) != 0) {
2864
2865 if ((dev->flags & CAM_DEV_REL_ON_COMPLETE) != 0) {
2866 /*
2867 * Decrement the freeze count so that a single
2868 * completion is still sufficient to unfreeze
2869 * the queue.
2870 */
2871 start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE;
2872 } else {
2873
2874 dev->flags |= CAM_DEV_REL_ON_COMPLETE;
2875 start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE;
2876 }
2877 }
2878
2879 if ((crs->release_flags & RELSIM_RELEASE_AFTER_QEMPTY) != 0) {
2880
2881 if ((dev->flags & CAM_DEV_REL_ON_QUEUE_EMPTY) != 0
2882 || (dev->ccbq.dev_active == 0)) {
2883
2884 start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE;
2885 } else {
2886
2887 dev->flags |= CAM_DEV_REL_ON_QUEUE_EMPTY;
2888 start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE;
2889 }
2890 }
2891
2892 if ((start_ccb->ccb_h.flags & CAM_DEV_QFREEZE) == 0)
2893 xpt_release_devq(path, /*count*/1, /*run_queue*/TRUE);
2894 start_ccb->crs.qfrozen_cnt = dev->ccbq.queue.qfrozen_cnt;
2895 start_ccb->ccb_h.status = CAM_REQ_CMP;
2896 break;
2897 }
2898 case XPT_DEBUG: {
2899 struct cam_path *oldpath;
2900 struct cam_sim *oldsim;
2901
2902 /* Check that all request bits are supported. */
2903 if (start_ccb->cdbg.flags & ~(CAM_DEBUG_COMPILE)) {
2904 start_ccb->ccb_h.status = CAM_FUNC_NOTAVAIL;
2905 break;
2906 }
2907
2908 cam_dflags = CAM_DEBUG_NONE;
2909 if (cam_dpath != NULL) {
2910 /* To release the old path we must hold proper lock. */
2911 oldpath = cam_dpath;
2912 cam_dpath = NULL;
2913 oldsim = xpt_path_sim(oldpath);
2914 CAM_SIM_UNLOCK(xpt_path_sim(start_ccb->ccb_h.path));
2915 CAM_SIM_LOCK(oldsim);
2916 xpt_free_path(oldpath);
2917 CAM_SIM_UNLOCK(oldsim);
2918 CAM_SIM_LOCK(xpt_path_sim(start_ccb->ccb_h.path));
2919 }
2920 if (start_ccb->cdbg.flags != CAM_DEBUG_NONE) {
491 inccb->ccb_h.path_id,
492 inccb->ccb_h.target_id,
493 inccb->ccb_h.target_lun) !=
494 CAM_REQ_CMP){
495 error = EINVAL;
496 CAM_SIM_UNLOCK(bus->sim);
497 break;
498 }
499 /* Ensure all of our fields are correct */
500 xpt_setup_ccb(&ccb.ccb_h, ccb.ccb_h.path,
501 inccb->ccb_h.pinfo.priority);
502 xpt_merge_ccb(&ccb, inccb);
503 ccb.ccb_h.cbfcnp = xptdone;
504 xpt_action(&ccb);
505 bcopy(&ccb, inccb, sizeof(union ccb));
506 xpt_free_path(ccb.ccb_h.path);
507 CAM_SIM_UNLOCK(bus->sim);
508 break;
509
510 }
511 case XPT_DEV_MATCH: {
512 struct cam_periph_map_info mapinfo;
513 struct cam_path *old_path;
514
515 /*
516 * We can't deal with physical addresses for this
517 * type of transaction.
518 */
519 if ((inccb->ccb_h.flags & CAM_DATA_MASK) !=
520 CAM_DATA_VADDR) {
521 error = EINVAL;
522 break;
523 }
524
525 /*
526 * Save this in case the caller had it set to
527 * something in particular.
528 */
529 old_path = inccb->ccb_h.path;
530
531 /*
532 * We really don't need a path for the matching
533 * code. The path is needed because of the
534 * debugging statements in xpt_action(). They
535 * assume that the CCB has a valid path.
536 */
537 inccb->ccb_h.path = xpt_periph->path;
538
539 bzero(&mapinfo, sizeof(mapinfo));
540
541 /*
542 * Map the pattern and match buffers into kernel
543 * virtual address space.
544 */
545 error = cam_periph_mapmem(inccb, &mapinfo);
546
547 if (error) {
548 inccb->ccb_h.path = old_path;
549 break;
550 }
551
552 /*
553 * This is an immediate CCB, we can send it on directly.
554 */
555 CAM_SIM_LOCK(xpt_path_sim(xpt_periph->path));
556 xpt_action(inccb);
557 CAM_SIM_UNLOCK(xpt_path_sim(xpt_periph->path));
558
559 /*
560 * Map the buffers back into user space.
561 */
562 cam_periph_unmapmem(inccb, &mapinfo);
563
564 inccb->ccb_h.path = old_path;
565
566 error = 0;
567 break;
568 }
569 default:
570 error = ENOTSUP;
571 break;
572 }
573 xpt_release_bus(bus);
574 break;
575 }
576 /*
577 * This is the getpassthru ioctl. It takes a XPT_GDEVLIST ccb as input,
578 * with the periphal driver name and unit name filled in. The other
579 * fields don't really matter as input. The passthrough driver name
580 * ("pass"), and unit number are passed back in the ccb. The current
581 * device generation number, and the index into the device peripheral
582 * driver list, and the status are also passed back. Note that
583 * since we do everything in one pass, unlike the XPT_GDEVLIST ccb,
584 * we never return a status of CAM_GDEVLIST_LIST_CHANGED. It is
585 * (or rather should be) impossible for the device peripheral driver
586 * list to change since we look at the whole thing in one pass, and
587 * we do it with lock protection.
588 *
589 */
590 case CAMGETPASSTHRU: {
591 union ccb *ccb;
592 struct cam_periph *periph;
593 struct periph_driver **p_drv;
594 char *name;
595 u_int unit;
596 u_int cur_generation;
597 int base_periph_found;
598 int splbreaknum;
599
600 ccb = (union ccb *)addr;
601 unit = ccb->cgdl.unit_number;
602 name = ccb->cgdl.periph_name;
603 /*
604 * Every 100 devices, we want to drop our lock protection to
605 * give the software interrupt handler a chance to run.
606 * Most systems won't run into this check, but this should
607 * avoid starvation in the software interrupt handler in
608 * large systems.
609 */
610 splbreaknum = 100;
611
612 ccb = (union ccb *)addr;
613
614 base_periph_found = 0;
615
616 /*
617 * Sanity check -- make sure we don't get a null peripheral
618 * driver name.
619 */
620 if (*ccb->cgdl.periph_name == '\0') {
621 error = EINVAL;
622 break;
623 }
624
625 /* Keep the list from changing while we traverse it */
626 xpt_lock_buses();
627ptstartover:
628 cur_generation = xsoftc.xpt_generation;
629
630 /* first find our driver in the list of drivers */
631 for (p_drv = periph_drivers; *p_drv != NULL; p_drv++)
632 if (strcmp((*p_drv)->driver_name, name) == 0)
633 break;
634
635 if (*p_drv == NULL) {
636 xpt_unlock_buses();
637 ccb->ccb_h.status = CAM_REQ_CMP_ERR;
638 ccb->cgdl.status = CAM_GDEVLIST_ERROR;
639 *ccb->cgdl.periph_name = '\0';
640 ccb->cgdl.unit_number = 0;
641 error = ENOENT;
642 break;
643 }
644
645 /*
646 * Run through every peripheral instance of this driver
647 * and check to see whether it matches the unit passed
648 * in by the user. If it does, get out of the loops and
649 * find the passthrough driver associated with that
650 * peripheral driver.
651 */
652 for (periph = TAILQ_FIRST(&(*p_drv)->units); periph != NULL;
653 periph = TAILQ_NEXT(periph, unit_links)) {
654
655 if (periph->unit_number == unit) {
656 break;
657 } else if (--splbreaknum == 0) {
658 xpt_unlock_buses();
659 xpt_lock_buses();
660 splbreaknum = 100;
661 if (cur_generation != xsoftc.xpt_generation)
662 goto ptstartover;
663 }
664 }
665 /*
666 * If we found the peripheral driver that the user passed
667 * in, go through all of the peripheral drivers for that
668 * particular device and look for a passthrough driver.
669 */
670 if (periph != NULL) {
671 struct cam_ed *device;
672 int i;
673
674 base_periph_found = 1;
675 device = periph->path->device;
676 for (i = 0, periph = SLIST_FIRST(&device->periphs);
677 periph != NULL;
678 periph = SLIST_NEXT(periph, periph_links), i++) {
679 /*
680 * Check to see whether we have a
681 * passthrough device or not.
682 */
683 if (strcmp(periph->periph_name, "pass") == 0) {
684 /*
685 * Fill in the getdevlist fields.
686 */
687 strcpy(ccb->cgdl.periph_name,
688 periph->periph_name);
689 ccb->cgdl.unit_number =
690 periph->unit_number;
691 if (SLIST_NEXT(periph, periph_links))
692 ccb->cgdl.status =
693 CAM_GDEVLIST_MORE_DEVS;
694 else
695 ccb->cgdl.status =
696 CAM_GDEVLIST_LAST_DEVICE;
697 ccb->cgdl.generation =
698 device->generation;
699 ccb->cgdl.index = i;
700 /*
701 * Fill in some CCB header fields
702 * that the user may want.
703 */
704 ccb->ccb_h.path_id =
705 periph->path->bus->path_id;
706 ccb->ccb_h.target_id =
707 periph->path->target->target_id;
708 ccb->ccb_h.target_lun =
709 periph->path->device->lun_id;
710 ccb->ccb_h.status = CAM_REQ_CMP;
711 break;
712 }
713 }
714 }
715
716 /*
717 * If the periph is null here, one of two things has
718 * happened. The first possibility is that we couldn't
719 * find the unit number of the particular peripheral driver
720 * that the user is asking about. e.g. the user asks for
721 * the passthrough driver for "da11". We find the list of
722 * "da" peripherals all right, but there is no unit 11.
723 * The other possibility is that we went through the list
724 * of peripheral drivers attached to the device structure,
725 * but didn't find one with the name "pass". Either way,
726 * we return ENOENT, since we couldn't find something.
727 */
728 if (periph == NULL) {
729 ccb->ccb_h.status = CAM_REQ_CMP_ERR;
730 ccb->cgdl.status = CAM_GDEVLIST_ERROR;
731 *ccb->cgdl.periph_name = '\0';
732 ccb->cgdl.unit_number = 0;
733 error = ENOENT;
734 /*
735 * It is unfortunate that this is even necessary,
736 * but there are many, many clueless users out there.
737 * If this is true, the user is looking for the
738 * passthrough driver, but doesn't have one in his
739 * kernel.
740 */
741 if (base_periph_found == 1) {
742 printf("xptioctl: pass driver is not in the "
743 "kernel\n");
744 printf("xptioctl: put \"device pass\" in "
745 "your kernel config file\n");
746 }
747 }
748 xpt_unlock_buses();
749 break;
750 }
751 default:
752 error = ENOTTY;
753 break;
754 }
755
756 return(error);
757}
758
759static int
760cam_module_event_handler(module_t mod, int what, void *arg)
761{
762 int error;
763
764 switch (what) {
765 case MOD_LOAD:
766 if ((error = xpt_init(NULL)) != 0)
767 return (error);
768 break;
769 case MOD_UNLOAD:
770 return EBUSY;
771 default:
772 return EOPNOTSUPP;
773 }
774
775 return 0;
776}
777
778static void
779xpt_rescan_done(struct cam_periph *periph, union ccb *done_ccb)
780{
781
782 if (done_ccb->ccb_h.ppriv_ptr1 == NULL) {
783 xpt_free_path(done_ccb->ccb_h.path);
784 xpt_free_ccb(done_ccb);
785 } else {
786 done_ccb->ccb_h.cbfcnp = done_ccb->ccb_h.ppriv_ptr1;
787 (*done_ccb->ccb_h.cbfcnp)(periph, done_ccb);
788 }
789 xpt_release_boot();
790}
791
792/* thread to handle bus rescans */
793static void
794xpt_scanner_thread(void *dummy)
795{
796 union ccb *ccb;
797 struct cam_sim *sim;
798
799 xpt_lock_buses();
800 for (;;) {
801 if (TAILQ_EMPTY(&xsoftc.ccb_scanq))
802 msleep(&xsoftc.ccb_scanq, &xsoftc.xpt_topo_lock, PRIBIO,
803 "ccb_scanq", 0);
804 if ((ccb = (union ccb *)TAILQ_FIRST(&xsoftc.ccb_scanq)) != NULL) {
805 TAILQ_REMOVE(&xsoftc.ccb_scanq, &ccb->ccb_h, sim_links.tqe);
806 xpt_unlock_buses();
807
808 sim = ccb->ccb_h.path->bus->sim;
809 CAM_SIM_LOCK(sim);
810 xpt_action(ccb);
811 CAM_SIM_UNLOCK(sim);
812
813 xpt_lock_buses();
814 }
815 }
816}
817
818void
819xpt_rescan(union ccb *ccb)
820{
821 struct ccb_hdr *hdr;
822
823 /* Prepare request */
824 if (ccb->ccb_h.path->target->target_id == CAM_TARGET_WILDCARD &&
825 ccb->ccb_h.path->device->lun_id == CAM_LUN_WILDCARD)
826 ccb->ccb_h.func_code = XPT_SCAN_BUS;
827 else if (ccb->ccb_h.path->target->target_id != CAM_TARGET_WILDCARD &&
828 ccb->ccb_h.path->device->lun_id == CAM_LUN_WILDCARD)
829 ccb->ccb_h.func_code = XPT_SCAN_TGT;
830 else if (ccb->ccb_h.path->target->target_id != CAM_TARGET_WILDCARD &&
831 ccb->ccb_h.path->device->lun_id != CAM_LUN_WILDCARD)
832 ccb->ccb_h.func_code = XPT_SCAN_LUN;
833 else {
834 xpt_print(ccb->ccb_h.path, "illegal scan path\n");
835 xpt_free_path(ccb->ccb_h.path);
836 xpt_free_ccb(ccb);
837 return;
838 }
839 ccb->ccb_h.ppriv_ptr1 = ccb->ccb_h.cbfcnp;
840 ccb->ccb_h.cbfcnp = xpt_rescan_done;
841 xpt_setup_ccb(&ccb->ccb_h, ccb->ccb_h.path, CAM_PRIORITY_XPT);
842 /* Don't make duplicate entries for the same paths. */
843 xpt_lock_buses();
844 if (ccb->ccb_h.ppriv_ptr1 == NULL) {
845 TAILQ_FOREACH(hdr, &xsoftc.ccb_scanq, sim_links.tqe) {
846 if (xpt_path_comp(hdr->path, ccb->ccb_h.path) == 0) {
847 wakeup(&xsoftc.ccb_scanq);
848 xpt_unlock_buses();
849 xpt_print(ccb->ccb_h.path, "rescan already queued\n");
850 xpt_free_path(ccb->ccb_h.path);
851 xpt_free_ccb(ccb);
852 return;
853 }
854 }
855 }
856 TAILQ_INSERT_TAIL(&xsoftc.ccb_scanq, &ccb->ccb_h, sim_links.tqe);
857 xsoftc.buses_to_config++;
858 wakeup(&xsoftc.ccb_scanq);
859 xpt_unlock_buses();
860}
861
862/* Functions accessed by the peripheral drivers */
863static int
864xpt_init(void *dummy)
865{
866 struct cam_sim *xpt_sim;
867 struct cam_path *path;
868 struct cam_devq *devq;
869 cam_status status;
870
871 TAILQ_INIT(&xsoftc.xpt_busses);
872 TAILQ_INIT(&cam_simq);
873 TAILQ_INIT(&xsoftc.ccb_scanq);
874 STAILQ_INIT(&xsoftc.highpowerq);
875 xsoftc.num_highpower = CAM_MAX_HIGHPOWER;
876
877 mtx_init(&cam_simq_lock, "CAM SIMQ lock", NULL, MTX_DEF);
878 mtx_init(&xsoftc.xpt_lock, "XPT lock", NULL, MTX_DEF);
879 mtx_init(&xsoftc.xpt_topo_lock, "XPT topology lock", NULL, MTX_DEF);
880
881 /*
882 * The xpt layer is, itself, the equivelent of a SIM.
883 * Allow 16 ccbs in the ccb pool for it. This should
884 * give decent parallelism when we probe busses and
885 * perform other XPT functions.
886 */
887 devq = cam_simq_alloc(16);
888 xpt_sim = cam_sim_alloc(xptaction,
889 xptpoll,
890 "xpt",
891 /*softc*/NULL,
892 /*unit*/0,
893 /*mtx*/&xsoftc.xpt_lock,
894 /*max_dev_transactions*/0,
895 /*max_tagged_dev_transactions*/0,
896 devq);
897 if (xpt_sim == NULL)
898 return (ENOMEM);
899
900 mtx_lock(&xsoftc.xpt_lock);
901 if ((status = xpt_bus_register(xpt_sim, NULL, 0)) != CAM_SUCCESS) {
902 mtx_unlock(&xsoftc.xpt_lock);
903 printf("xpt_init: xpt_bus_register failed with status %#x,"
904 " failing attach\n", status);
905 return (EINVAL);
906 }
907
908 /*
909 * Looking at the XPT from the SIM layer, the XPT is
910 * the equivelent of a peripheral driver. Allocate
911 * a peripheral driver entry for us.
912 */
913 if ((status = xpt_create_path(&path, NULL, CAM_XPT_PATH_ID,
914 CAM_TARGET_WILDCARD,
915 CAM_LUN_WILDCARD)) != CAM_REQ_CMP) {
916 mtx_unlock(&xsoftc.xpt_lock);
917 printf("xpt_init: xpt_create_path failed with status %#x,"
918 " failing attach\n", status);
919 return (EINVAL);
920 }
921
922 cam_periph_alloc(xptregister, NULL, NULL, NULL, "xpt", CAM_PERIPH_BIO,
923 path, NULL, 0, xpt_sim);
924 xpt_free_path(path);
925 mtx_unlock(&xsoftc.xpt_lock);
926 /* Install our software interrupt handlers */
927 swi_add(NULL, "cambio", camisr, NULL, SWI_CAMBIO, INTR_MPSAFE, &cambio_ih);
928 /*
929 * Register a callback for when interrupts are enabled.
930 */
931 xsoftc.xpt_config_hook =
932 (struct intr_config_hook *)malloc(sizeof(struct intr_config_hook),
933 M_CAMXPT, M_NOWAIT | M_ZERO);
934 if (xsoftc.xpt_config_hook == NULL) {
935 printf("xpt_init: Cannot malloc config hook "
936 "- failing attach\n");
937 return (ENOMEM);
938 }
939 xsoftc.xpt_config_hook->ich_func = xpt_config;
940 if (config_intrhook_establish(xsoftc.xpt_config_hook) != 0) {
941 free (xsoftc.xpt_config_hook, M_CAMXPT);
942 printf("xpt_init: config_intrhook_establish failed "
943 "- failing attach\n");
944 }
945
946 return (0);
947}
948
949static cam_status
950xptregister(struct cam_periph *periph, void *arg)
951{
952 struct cam_sim *xpt_sim;
953
954 if (periph == NULL) {
955 printf("xptregister: periph was NULL!!\n");
956 return(CAM_REQ_CMP_ERR);
957 }
958
959 xpt_sim = (struct cam_sim *)arg;
960 xpt_sim->softc = periph;
961 xpt_periph = periph;
962 periph->softc = NULL;
963
964 return(CAM_REQ_CMP);
965}
966
967int32_t
968xpt_add_periph(struct cam_periph *periph)
969{
970 struct cam_ed *device;
971 int32_t status;
972 struct periph_list *periph_head;
973
974 mtx_assert(periph->sim->mtx, MA_OWNED);
975
976 device = periph->path->device;
977
978 periph_head = &device->periphs;
979
980 status = CAM_REQ_CMP;
981
982 if (device != NULL) {
983 /*
984 * Make room for this peripheral
985 * so it will fit in the queue
986 * when it's scheduled to run
987 */
988 status = camq_resize(&device->drvq,
989 device->drvq.array_size + 1);
990
991 device->generation++;
992
993 SLIST_INSERT_HEAD(periph_head, periph, periph_links);
994 }
995
996 xpt_lock_buses();
997 xsoftc.xpt_generation++;
998 xpt_unlock_buses();
999
1000 return (status);
1001}
1002
1003void
1004xpt_remove_periph(struct cam_periph *periph, int topology_lock_held)
1005{
1006 struct cam_ed *device;
1007
1008 mtx_assert(periph->sim->mtx, MA_OWNED);
1009
1010 device = periph->path->device;
1011
1012 if (device != NULL) {
1013 struct periph_list *periph_head;
1014
1015 periph_head = &device->periphs;
1016
1017 /* Release the slot for this peripheral */
1018 camq_resize(&device->drvq, device->drvq.array_size - 1);
1019
1020 device->generation++;
1021
1022 SLIST_REMOVE(periph_head, periph, cam_periph, periph_links);
1023 }
1024
1025 if (topology_lock_held == 0)
1026 xpt_lock_buses();
1027
1028 xsoftc.xpt_generation++;
1029
1030 if (topology_lock_held == 0)
1031 xpt_unlock_buses();
1032}
1033
1034
1035void
1036xpt_announce_periph(struct cam_periph *periph, char *announce_string)
1037{
1038 struct cam_path *path = periph->path;
1039
1040 mtx_assert(periph->sim->mtx, MA_OWNED);
1041
1042 printf("%s%d at %s%d bus %d scbus%d target %d lun %d\n",
1043 periph->periph_name, periph->unit_number,
1044 path->bus->sim->sim_name,
1045 path->bus->sim->unit_number,
1046 path->bus->sim->bus_id,
1047 path->bus->path_id,
1048 path->target->target_id,
1049 path->device->lun_id);
1050 printf("%s%d: ", periph->periph_name, periph->unit_number);
1051 if (path->device->protocol == PROTO_SCSI)
1052 scsi_print_inquiry(&path->device->inq_data);
1053 else if (path->device->protocol == PROTO_ATA ||
1054 path->device->protocol == PROTO_SATAPM)
1055 ata_print_ident(&path->device->ident_data);
1056 else if (path->device->protocol == PROTO_SEMB)
1057 semb_print_ident(
1058 (struct sep_identify_data *)&path->device->ident_data);
1059 else
1060 printf("Unknown protocol device\n");
1061 if (bootverbose && path->device->serial_num_len > 0) {
1062 /* Don't wrap the screen - print only the first 60 chars */
1063 printf("%s%d: Serial Number %.60s\n", periph->periph_name,
1064 periph->unit_number, path->device->serial_num);
1065 }
1066 /* Announce transport details. */
1067 (*(path->bus->xport->announce))(periph);
1068 /* Announce command queueing. */
1069 if (path->device->inq_flags & SID_CmdQue
1070 || path->device->flags & CAM_DEV_TAG_AFTER_COUNT) {
1071 printf("%s%d: Command Queueing enabled\n",
1072 periph->periph_name, periph->unit_number);
1073 }
1074 /* Announce caller's details if they've passed in. */
1075 if (announce_string != NULL)
1076 printf("%s%d: %s\n", periph->periph_name,
1077 periph->unit_number, announce_string);
1078}
1079
1080int
1081xpt_getattr(char *buf, size_t len, const char *attr, struct cam_path *path)
1082{
1083 int ret = -1;
1084 struct ccb_dev_advinfo cdai;
1085
1086 mtx_assert(path->bus->sim->mtx, MA_OWNED);
1087
1088 memset(&cdai, 0, sizeof(cdai));
1089 xpt_setup_ccb(&cdai.ccb_h, path, CAM_PRIORITY_NORMAL);
1090 cdai.ccb_h.func_code = XPT_DEV_ADVINFO;
1091 cdai.bufsiz = len;
1092
1093 if (!strcmp(attr, "GEOM::ident"))
1094 cdai.buftype = CDAI_TYPE_SERIAL_NUM;
1095 else if (!strcmp(attr, "GEOM::physpath"))
1096 cdai.buftype = CDAI_TYPE_PHYS_PATH;
1097 else
1098 goto out;
1099
1100 cdai.buf = malloc(cdai.bufsiz, M_CAMXPT, M_NOWAIT|M_ZERO);
1101 if (cdai.buf == NULL) {
1102 ret = ENOMEM;
1103 goto out;
1104 }
1105 xpt_action((union ccb *)&cdai); /* can only be synchronous */
1106 if ((cdai.ccb_h.status & CAM_DEV_QFRZN) != 0)
1107 cam_release_devq(cdai.ccb_h.path, 0, 0, 0, FALSE);
1108 if (cdai.provsiz == 0)
1109 goto out;
1110 ret = 0;
1111 if (strlcpy(buf, cdai.buf, len) >= len)
1112 ret = EFAULT;
1113
1114out:
1115 if (cdai.buf != NULL)
1116 free(cdai.buf, M_CAMXPT);
1117 return ret;
1118}
1119
1120static dev_match_ret
1121xptbusmatch(struct dev_match_pattern *patterns, u_int num_patterns,
1122 struct cam_eb *bus)
1123{
1124 dev_match_ret retval;
1125 int i;
1126
1127 retval = DM_RET_NONE;
1128
1129 /*
1130 * If we aren't given something to match against, that's an error.
1131 */
1132 if (bus == NULL)
1133 return(DM_RET_ERROR);
1134
1135 /*
1136 * If there are no match entries, then this bus matches no
1137 * matter what.
1138 */
1139 if ((patterns == NULL) || (num_patterns == 0))
1140 return(DM_RET_DESCEND | DM_RET_COPY);
1141
1142 for (i = 0; i < num_patterns; i++) {
1143 struct bus_match_pattern *cur_pattern;
1144
1145 /*
1146 * If the pattern in question isn't for a bus node, we
1147 * aren't interested. However, we do indicate to the
1148 * calling routine that we should continue descending the
1149 * tree, since the user wants to match against lower-level
1150 * EDT elements.
1151 */
1152 if (patterns[i].type != DEV_MATCH_BUS) {
1153 if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)
1154 retval |= DM_RET_DESCEND;
1155 continue;
1156 }
1157
1158 cur_pattern = &patterns[i].pattern.bus_pattern;
1159
1160 /*
1161 * If they want to match any bus node, we give them any
1162 * device node.
1163 */
1164 if (cur_pattern->flags == BUS_MATCH_ANY) {
1165 /* set the copy flag */
1166 retval |= DM_RET_COPY;
1167
1168 /*
1169 * If we've already decided on an action, go ahead
1170 * and return.
1171 */
1172 if ((retval & DM_RET_ACTION_MASK) != DM_RET_NONE)
1173 return(retval);
1174 }
1175
1176 /*
1177 * Not sure why someone would do this...
1178 */
1179 if (cur_pattern->flags == BUS_MATCH_NONE)
1180 continue;
1181
1182 if (((cur_pattern->flags & BUS_MATCH_PATH) != 0)
1183 && (cur_pattern->path_id != bus->path_id))
1184 continue;
1185
1186 if (((cur_pattern->flags & BUS_MATCH_BUS_ID) != 0)
1187 && (cur_pattern->bus_id != bus->sim->bus_id))
1188 continue;
1189
1190 if (((cur_pattern->flags & BUS_MATCH_UNIT) != 0)
1191 && (cur_pattern->unit_number != bus->sim->unit_number))
1192 continue;
1193
1194 if (((cur_pattern->flags & BUS_MATCH_NAME) != 0)
1195 && (strncmp(cur_pattern->dev_name, bus->sim->sim_name,
1196 DEV_IDLEN) != 0))
1197 continue;
1198
1199 /*
1200 * If we get to this point, the user definitely wants
1201 * information on this bus. So tell the caller to copy the
1202 * data out.
1203 */
1204 retval |= DM_RET_COPY;
1205
1206 /*
1207 * If the return action has been set to descend, then we
1208 * know that we've already seen a non-bus matching
1209 * expression, therefore we need to further descend the tree.
1210 * This won't change by continuing around the loop, so we
1211 * go ahead and return. If we haven't seen a non-bus
1212 * matching expression, we keep going around the loop until
1213 * we exhaust the matching expressions. We'll set the stop
1214 * flag once we fall out of the loop.
1215 */
1216 if ((retval & DM_RET_ACTION_MASK) == DM_RET_DESCEND)
1217 return(retval);
1218 }
1219
1220 /*
1221 * If the return action hasn't been set to descend yet, that means
1222 * we haven't seen anything other than bus matching patterns. So
1223 * tell the caller to stop descending the tree -- the user doesn't
1224 * want to match against lower level tree elements.
1225 */
1226 if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)
1227 retval |= DM_RET_STOP;
1228
1229 return(retval);
1230}
1231
1232static dev_match_ret
1233xptdevicematch(struct dev_match_pattern *patterns, u_int num_patterns,
1234 struct cam_ed *device)
1235{
1236 dev_match_ret retval;
1237 int i;
1238
1239 retval = DM_RET_NONE;
1240
1241 /*
1242 * If we aren't given something to match against, that's an error.
1243 */
1244 if (device == NULL)
1245 return(DM_RET_ERROR);
1246
1247 /*
1248 * If there are no match entries, then this device matches no
1249 * matter what.
1250 */
1251 if ((patterns == NULL) || (num_patterns == 0))
1252 return(DM_RET_DESCEND | DM_RET_COPY);
1253
1254 for (i = 0; i < num_patterns; i++) {
1255 struct device_match_pattern *cur_pattern;
1256 struct scsi_vpd_device_id *device_id_page;
1257
1258 /*
1259 * If the pattern in question isn't for a device node, we
1260 * aren't interested.
1261 */
1262 if (patterns[i].type != DEV_MATCH_DEVICE) {
1263 if ((patterns[i].type == DEV_MATCH_PERIPH)
1264 && ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE))
1265 retval |= DM_RET_DESCEND;
1266 continue;
1267 }
1268
1269 cur_pattern = &patterns[i].pattern.device_pattern;
1270
1271 /* Error out if mutually exclusive options are specified. */
1272 if ((cur_pattern->flags & (DEV_MATCH_INQUIRY|DEV_MATCH_DEVID))
1273 == (DEV_MATCH_INQUIRY|DEV_MATCH_DEVID))
1274 return(DM_RET_ERROR);
1275
1276 /*
1277 * If they want to match any device node, we give them any
1278 * device node.
1279 */
1280 if (cur_pattern->flags == DEV_MATCH_ANY)
1281 goto copy_dev_node;
1282
1283 /*
1284 * Not sure why someone would do this...
1285 */
1286 if (cur_pattern->flags == DEV_MATCH_NONE)
1287 continue;
1288
1289 if (((cur_pattern->flags & DEV_MATCH_PATH) != 0)
1290 && (cur_pattern->path_id != device->target->bus->path_id))
1291 continue;
1292
1293 if (((cur_pattern->flags & DEV_MATCH_TARGET) != 0)
1294 && (cur_pattern->target_id != device->target->target_id))
1295 continue;
1296
1297 if (((cur_pattern->flags & DEV_MATCH_LUN) != 0)
1298 && (cur_pattern->target_lun != device->lun_id))
1299 continue;
1300
1301 if (((cur_pattern->flags & DEV_MATCH_INQUIRY) != 0)
1302 && (cam_quirkmatch((caddr_t)&device->inq_data,
1303 (caddr_t)&cur_pattern->data.inq_pat,
1304 1, sizeof(cur_pattern->data.inq_pat),
1305 scsi_static_inquiry_match) == NULL))
1306 continue;
1307
1308 device_id_page = (struct scsi_vpd_device_id *)device->device_id;
1309 if (((cur_pattern->flags & DEV_MATCH_DEVID) != 0)
1310 && (device->device_id_len < SVPD_DEVICE_ID_HDR_LEN
1311 || scsi_devid_match((uint8_t *)device_id_page->desc_list,
1312 device->device_id_len
1313 - SVPD_DEVICE_ID_HDR_LEN,
1314 cur_pattern->data.devid_pat.id,
1315 cur_pattern->data.devid_pat.id_len) != 0))
1316 continue;
1317
1318copy_dev_node:
1319 /*
1320 * If we get to this point, the user definitely wants
1321 * information on this device. So tell the caller to copy
1322 * the data out.
1323 */
1324 retval |= DM_RET_COPY;
1325
1326 /*
1327 * If the return action has been set to descend, then we
1328 * know that we've already seen a peripheral matching
1329 * expression, therefore we need to further descend the tree.
1330 * This won't change by continuing around the loop, so we
1331 * go ahead and return. If we haven't seen a peripheral
1332 * matching expression, we keep going around the loop until
1333 * we exhaust the matching expressions. We'll set the stop
1334 * flag once we fall out of the loop.
1335 */
1336 if ((retval & DM_RET_ACTION_MASK) == DM_RET_DESCEND)
1337 return(retval);
1338 }
1339
1340 /*
1341 * If the return action hasn't been set to descend yet, that means
1342 * we haven't seen any peripheral matching patterns. So tell the
1343 * caller to stop descending the tree -- the user doesn't want to
1344 * match against lower level tree elements.
1345 */
1346 if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)
1347 retval |= DM_RET_STOP;
1348
1349 return(retval);
1350}
1351
1352/*
1353 * Match a single peripheral against any number of match patterns.
1354 */
1355static dev_match_ret
1356xptperiphmatch(struct dev_match_pattern *patterns, u_int num_patterns,
1357 struct cam_periph *periph)
1358{
1359 dev_match_ret retval;
1360 int i;
1361
1362 /*
1363 * If we aren't given something to match against, that's an error.
1364 */
1365 if (periph == NULL)
1366 return(DM_RET_ERROR);
1367
1368 /*
1369 * If there are no match entries, then this peripheral matches no
1370 * matter what.
1371 */
1372 if ((patterns == NULL) || (num_patterns == 0))
1373 return(DM_RET_STOP | DM_RET_COPY);
1374
1375 /*
1376 * There aren't any nodes below a peripheral node, so there's no
1377 * reason to descend the tree any further.
1378 */
1379 retval = DM_RET_STOP;
1380
1381 for (i = 0; i < num_patterns; i++) {
1382 struct periph_match_pattern *cur_pattern;
1383
1384 /*
1385 * If the pattern in question isn't for a peripheral, we
1386 * aren't interested.
1387 */
1388 if (patterns[i].type != DEV_MATCH_PERIPH)
1389 continue;
1390
1391 cur_pattern = &patterns[i].pattern.periph_pattern;
1392
1393 /*
1394 * If they want to match on anything, then we will do so.
1395 */
1396 if (cur_pattern->flags == PERIPH_MATCH_ANY) {
1397 /* set the copy flag */
1398 retval |= DM_RET_COPY;
1399
1400 /*
1401 * We've already set the return action to stop,
1402 * since there are no nodes below peripherals in
1403 * the tree.
1404 */
1405 return(retval);
1406 }
1407
1408 /*
1409 * Not sure why someone would do this...
1410 */
1411 if (cur_pattern->flags == PERIPH_MATCH_NONE)
1412 continue;
1413
1414 if (((cur_pattern->flags & PERIPH_MATCH_PATH) != 0)
1415 && (cur_pattern->path_id != periph->path->bus->path_id))
1416 continue;
1417
1418 /*
1419 * For the target and lun id's, we have to make sure the
1420 * target and lun pointers aren't NULL. The xpt peripheral
1421 * has a wildcard target and device.
1422 */
1423 if (((cur_pattern->flags & PERIPH_MATCH_TARGET) != 0)
1424 && ((periph->path->target == NULL)
1425 ||(cur_pattern->target_id != periph->path->target->target_id)))
1426 continue;
1427
1428 if (((cur_pattern->flags & PERIPH_MATCH_LUN) != 0)
1429 && ((periph->path->device == NULL)
1430 || (cur_pattern->target_lun != periph->path->device->lun_id)))
1431 continue;
1432
1433 if (((cur_pattern->flags & PERIPH_MATCH_UNIT) != 0)
1434 && (cur_pattern->unit_number != periph->unit_number))
1435 continue;
1436
1437 if (((cur_pattern->flags & PERIPH_MATCH_NAME) != 0)
1438 && (strncmp(cur_pattern->periph_name, periph->periph_name,
1439 DEV_IDLEN) != 0))
1440 continue;
1441
1442 /*
1443 * If we get to this point, the user definitely wants
1444 * information on this peripheral. So tell the caller to
1445 * copy the data out.
1446 */
1447 retval |= DM_RET_COPY;
1448
1449 /*
1450 * The return action has already been set to stop, since
1451 * peripherals don't have any nodes below them in the EDT.
1452 */
1453 return(retval);
1454 }
1455
1456 /*
1457 * If we get to this point, the peripheral that was passed in
1458 * doesn't match any of the patterns.
1459 */
1460 return(retval);
1461}
1462
1463static int
1464xptedtbusfunc(struct cam_eb *bus, void *arg)
1465{
1466 struct ccb_dev_match *cdm;
1467 dev_match_ret retval;
1468
1469 cdm = (struct ccb_dev_match *)arg;
1470
1471 /*
1472 * If our position is for something deeper in the tree, that means
1473 * that we've already seen this node. So, we keep going down.
1474 */
1475 if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1476 && (cdm->pos.cookie.bus == bus)
1477 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
1478 && (cdm->pos.cookie.target != NULL))
1479 retval = DM_RET_DESCEND;
1480 else
1481 retval = xptbusmatch(cdm->patterns, cdm->num_patterns, bus);
1482
1483 /*
1484 * If we got an error, bail out of the search.
1485 */
1486 if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
1487 cdm->status = CAM_DEV_MATCH_ERROR;
1488 return(0);
1489 }
1490
1491 /*
1492 * If the copy flag is set, copy this bus out.
1493 */
1494 if (retval & DM_RET_COPY) {
1495 int spaceleft, j;
1496
1497 spaceleft = cdm->match_buf_len - (cdm->num_matches *
1498 sizeof(struct dev_match_result));
1499
1500 /*
1501 * If we don't have enough space to put in another
1502 * match result, save our position and tell the
1503 * user there are more devices to check.
1504 */
1505 if (spaceleft < sizeof(struct dev_match_result)) {
1506 bzero(&cdm->pos, sizeof(cdm->pos));
1507 cdm->pos.position_type =
1508 CAM_DEV_POS_EDT | CAM_DEV_POS_BUS;
1509
1510 cdm->pos.cookie.bus = bus;
1511 cdm->pos.generations[CAM_BUS_GENERATION]=
1512 xsoftc.bus_generation;
1513 cdm->status = CAM_DEV_MATCH_MORE;
1514 return(0);
1515 }
1516 j = cdm->num_matches;
1517 cdm->num_matches++;
1518 cdm->matches[j].type = DEV_MATCH_BUS;
1519 cdm->matches[j].result.bus_result.path_id = bus->path_id;
1520 cdm->matches[j].result.bus_result.bus_id = bus->sim->bus_id;
1521 cdm->matches[j].result.bus_result.unit_number =
1522 bus->sim->unit_number;
1523 strncpy(cdm->matches[j].result.bus_result.dev_name,
1524 bus->sim->sim_name, DEV_IDLEN);
1525 }
1526
1527 /*
1528 * If the user is only interested in busses, there's no
1529 * reason to descend to the next level in the tree.
1530 */
1531 if ((retval & DM_RET_ACTION_MASK) == DM_RET_STOP)
1532 return(1);
1533
1534 /*
1535 * If there is a target generation recorded, check it to
1536 * make sure the target list hasn't changed.
1537 */
1538 if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1539 && (bus == cdm->pos.cookie.bus)
1540 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
1541 && (cdm->pos.generations[CAM_TARGET_GENERATION] != 0)
1542 && (cdm->pos.generations[CAM_TARGET_GENERATION] !=
1543 bus->generation)) {
1544 cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
1545 return(0);
1546 }
1547
1548 if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1549 && (cdm->pos.cookie.bus == bus)
1550 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
1551 && (cdm->pos.cookie.target != NULL))
1552 return(xpttargettraverse(bus,
1553 (struct cam_et *)cdm->pos.cookie.target,
1554 xptedttargetfunc, arg));
1555 else
1556 return(xpttargettraverse(bus, NULL, xptedttargetfunc, arg));
1557}
1558
1559static int
1560xptedttargetfunc(struct cam_et *target, void *arg)
1561{
1562 struct ccb_dev_match *cdm;
1563
1564 cdm = (struct ccb_dev_match *)arg;
1565
1566 /*
1567 * If there is a device list generation recorded, check it to
1568 * make sure the device list hasn't changed.
1569 */
1570 if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1571 && (cdm->pos.cookie.bus == target->bus)
1572 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
1573 && (cdm->pos.cookie.target == target)
1574 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE)
1575 && (cdm->pos.generations[CAM_DEV_GENERATION] != 0)
1576 && (cdm->pos.generations[CAM_DEV_GENERATION] !=
1577 target->generation)) {
1578 cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
1579 return(0);
1580 }
1581
1582 if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1583 && (cdm->pos.cookie.bus == target->bus)
1584 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
1585 && (cdm->pos.cookie.target == target)
1586 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE)
1587 && (cdm->pos.cookie.device != NULL))
1588 return(xptdevicetraverse(target,
1589 (struct cam_ed *)cdm->pos.cookie.device,
1590 xptedtdevicefunc, arg));
1591 else
1592 return(xptdevicetraverse(target, NULL, xptedtdevicefunc, arg));
1593}
1594
1595static int
1596xptedtdevicefunc(struct cam_ed *device, void *arg)
1597{
1598
1599 struct ccb_dev_match *cdm;
1600 dev_match_ret retval;
1601
1602 cdm = (struct ccb_dev_match *)arg;
1603
1604 /*
1605 * If our position is for something deeper in the tree, that means
1606 * that we've already seen this node. So, we keep going down.
1607 */
1608 if ((cdm->pos.position_type & CAM_DEV_POS_DEVICE)
1609 && (cdm->pos.cookie.device == device)
1610 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
1611 && (cdm->pos.cookie.periph != NULL))
1612 retval = DM_RET_DESCEND;
1613 else
1614 retval = xptdevicematch(cdm->patterns, cdm->num_patterns,
1615 device);
1616
1617 if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
1618 cdm->status = CAM_DEV_MATCH_ERROR;
1619 return(0);
1620 }
1621
1622 /*
1623 * If the copy flag is set, copy this device out.
1624 */
1625 if (retval & DM_RET_COPY) {
1626 int spaceleft, j;
1627
1628 spaceleft = cdm->match_buf_len - (cdm->num_matches *
1629 sizeof(struct dev_match_result));
1630
1631 /*
1632 * If we don't have enough space to put in another
1633 * match result, save our position and tell the
1634 * user there are more devices to check.
1635 */
1636 if (spaceleft < sizeof(struct dev_match_result)) {
1637 bzero(&cdm->pos, sizeof(cdm->pos));
1638 cdm->pos.position_type =
1639 CAM_DEV_POS_EDT | CAM_DEV_POS_BUS |
1640 CAM_DEV_POS_TARGET | CAM_DEV_POS_DEVICE;
1641
1642 cdm->pos.cookie.bus = device->target->bus;
1643 cdm->pos.generations[CAM_BUS_GENERATION]=
1644 xsoftc.bus_generation;
1645 cdm->pos.cookie.target = device->target;
1646 cdm->pos.generations[CAM_TARGET_GENERATION] =
1647 device->target->bus->generation;
1648 cdm->pos.cookie.device = device;
1649 cdm->pos.generations[CAM_DEV_GENERATION] =
1650 device->target->generation;
1651 cdm->status = CAM_DEV_MATCH_MORE;
1652 return(0);
1653 }
1654 j = cdm->num_matches;
1655 cdm->num_matches++;
1656 cdm->matches[j].type = DEV_MATCH_DEVICE;
1657 cdm->matches[j].result.device_result.path_id =
1658 device->target->bus->path_id;
1659 cdm->matches[j].result.device_result.target_id =
1660 device->target->target_id;
1661 cdm->matches[j].result.device_result.target_lun =
1662 device->lun_id;
1663 cdm->matches[j].result.device_result.protocol =
1664 device->protocol;
1665 bcopy(&device->inq_data,
1666 &cdm->matches[j].result.device_result.inq_data,
1667 sizeof(struct scsi_inquiry_data));
1668 bcopy(&device->ident_data,
1669 &cdm->matches[j].result.device_result.ident_data,
1670 sizeof(struct ata_params));
1671
1672 /* Let the user know whether this device is unconfigured */
1673 if (device->flags & CAM_DEV_UNCONFIGURED)
1674 cdm->matches[j].result.device_result.flags =
1675 DEV_RESULT_UNCONFIGURED;
1676 else
1677 cdm->matches[j].result.device_result.flags =
1678 DEV_RESULT_NOFLAG;
1679 }
1680
1681 /*
1682 * If the user isn't interested in peripherals, don't descend
1683 * the tree any further.
1684 */
1685 if ((retval & DM_RET_ACTION_MASK) == DM_RET_STOP)
1686 return(1);
1687
1688 /*
1689 * If there is a peripheral list generation recorded, make sure
1690 * it hasn't changed.
1691 */
1692 if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1693 && (device->target->bus == cdm->pos.cookie.bus)
1694 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
1695 && (device->target == cdm->pos.cookie.target)
1696 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE)
1697 && (device == cdm->pos.cookie.device)
1698 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
1699 && (cdm->pos.generations[CAM_PERIPH_GENERATION] != 0)
1700 && (cdm->pos.generations[CAM_PERIPH_GENERATION] !=
1701 device->generation)){
1702 cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
1703 return(0);
1704 }
1705
1706 if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1707 && (cdm->pos.cookie.bus == device->target->bus)
1708 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
1709 && (cdm->pos.cookie.target == device->target)
1710 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE)
1711 && (cdm->pos.cookie.device == device)
1712 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
1713 && (cdm->pos.cookie.periph != NULL))
1714 return(xptperiphtraverse(device,
1715 (struct cam_periph *)cdm->pos.cookie.periph,
1716 xptedtperiphfunc, arg));
1717 else
1718 return(xptperiphtraverse(device, NULL, xptedtperiphfunc, arg));
1719}
1720
1721static int
1722xptedtperiphfunc(struct cam_periph *periph, void *arg)
1723{
1724 struct ccb_dev_match *cdm;
1725 dev_match_ret retval;
1726
1727 cdm = (struct ccb_dev_match *)arg;
1728
1729 retval = xptperiphmatch(cdm->patterns, cdm->num_patterns, periph);
1730
1731 if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
1732 cdm->status = CAM_DEV_MATCH_ERROR;
1733 return(0);
1734 }
1735
1736 /*
1737 * If the copy flag is set, copy this peripheral out.
1738 */
1739 if (retval & DM_RET_COPY) {
1740 int spaceleft, j;
1741
1742 spaceleft = cdm->match_buf_len - (cdm->num_matches *
1743 sizeof(struct dev_match_result));
1744
1745 /*
1746 * If we don't have enough space to put in another
1747 * match result, save our position and tell the
1748 * user there are more devices to check.
1749 */
1750 if (spaceleft < sizeof(struct dev_match_result)) {
1751 bzero(&cdm->pos, sizeof(cdm->pos));
1752 cdm->pos.position_type =
1753 CAM_DEV_POS_EDT | CAM_DEV_POS_BUS |
1754 CAM_DEV_POS_TARGET | CAM_DEV_POS_DEVICE |
1755 CAM_DEV_POS_PERIPH;
1756
1757 cdm->pos.cookie.bus = periph->path->bus;
1758 cdm->pos.generations[CAM_BUS_GENERATION]=
1759 xsoftc.bus_generation;
1760 cdm->pos.cookie.target = periph->path->target;
1761 cdm->pos.generations[CAM_TARGET_GENERATION] =
1762 periph->path->bus->generation;
1763 cdm->pos.cookie.device = periph->path->device;
1764 cdm->pos.generations[CAM_DEV_GENERATION] =
1765 periph->path->target->generation;
1766 cdm->pos.cookie.periph = periph;
1767 cdm->pos.generations[CAM_PERIPH_GENERATION] =
1768 periph->path->device->generation;
1769 cdm->status = CAM_DEV_MATCH_MORE;
1770 return(0);
1771 }
1772
1773 j = cdm->num_matches;
1774 cdm->num_matches++;
1775 cdm->matches[j].type = DEV_MATCH_PERIPH;
1776 cdm->matches[j].result.periph_result.path_id =
1777 periph->path->bus->path_id;
1778 cdm->matches[j].result.periph_result.target_id =
1779 periph->path->target->target_id;
1780 cdm->matches[j].result.periph_result.target_lun =
1781 periph->path->device->lun_id;
1782 cdm->matches[j].result.periph_result.unit_number =
1783 periph->unit_number;
1784 strncpy(cdm->matches[j].result.periph_result.periph_name,
1785 periph->periph_name, DEV_IDLEN);
1786 }
1787
1788 return(1);
1789}
1790
1791static int
1792xptedtmatch(struct ccb_dev_match *cdm)
1793{
1794 int ret;
1795
1796 cdm->num_matches = 0;
1797
1798 /*
1799 * Check the bus list generation. If it has changed, the user
1800 * needs to reset everything and start over.
1801 */
1802 if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1803 && (cdm->pos.generations[CAM_BUS_GENERATION] != 0)
1804 && (cdm->pos.generations[CAM_BUS_GENERATION] != xsoftc.bus_generation)) {
1805 cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
1806 return(0);
1807 }
1808
1809 if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1810 && (cdm->pos.cookie.bus != NULL))
1811 ret = xptbustraverse((struct cam_eb *)cdm->pos.cookie.bus,
1812 xptedtbusfunc, cdm);
1813 else
1814 ret = xptbustraverse(NULL, xptedtbusfunc, cdm);
1815
1816 /*
1817 * If we get back 0, that means that we had to stop before fully
1818 * traversing the EDT. It also means that one of the subroutines
1819 * has set the status field to the proper value. If we get back 1,
1820 * we've fully traversed the EDT and copied out any matching entries.
1821 */
1822 if (ret == 1)
1823 cdm->status = CAM_DEV_MATCH_LAST;
1824
1825 return(ret);
1826}
1827
1828static int
1829xptplistpdrvfunc(struct periph_driver **pdrv, void *arg)
1830{
1831 struct ccb_dev_match *cdm;
1832
1833 cdm = (struct ccb_dev_match *)arg;
1834
1835 if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR)
1836 && (cdm->pos.cookie.pdrv == pdrv)
1837 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
1838 && (cdm->pos.generations[CAM_PERIPH_GENERATION] != 0)
1839 && (cdm->pos.generations[CAM_PERIPH_GENERATION] !=
1840 (*pdrv)->generation)) {
1841 cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
1842 return(0);
1843 }
1844
1845 if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR)
1846 && (cdm->pos.cookie.pdrv == pdrv)
1847 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
1848 && (cdm->pos.cookie.periph != NULL))
1849 return(xptpdperiphtraverse(pdrv,
1850 (struct cam_periph *)cdm->pos.cookie.periph,
1851 xptplistperiphfunc, arg));
1852 else
1853 return(xptpdperiphtraverse(pdrv, NULL,xptplistperiphfunc, arg));
1854}
1855
1856static int
1857xptplistperiphfunc(struct cam_periph *periph, void *arg)
1858{
1859 struct ccb_dev_match *cdm;
1860 dev_match_ret retval;
1861
1862 cdm = (struct ccb_dev_match *)arg;
1863
1864 retval = xptperiphmatch(cdm->patterns, cdm->num_patterns, periph);
1865
1866 if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
1867 cdm->status = CAM_DEV_MATCH_ERROR;
1868 return(0);
1869 }
1870
1871 /*
1872 * If the copy flag is set, copy this peripheral out.
1873 */
1874 if (retval & DM_RET_COPY) {
1875 int spaceleft, j;
1876
1877 spaceleft = cdm->match_buf_len - (cdm->num_matches *
1878 sizeof(struct dev_match_result));
1879
1880 /*
1881 * If we don't have enough space to put in another
1882 * match result, save our position and tell the
1883 * user there are more devices to check.
1884 */
1885 if (spaceleft < sizeof(struct dev_match_result)) {
1886 struct periph_driver **pdrv;
1887
1888 pdrv = NULL;
1889 bzero(&cdm->pos, sizeof(cdm->pos));
1890 cdm->pos.position_type =
1891 CAM_DEV_POS_PDRV | CAM_DEV_POS_PDPTR |
1892 CAM_DEV_POS_PERIPH;
1893
1894 /*
1895 * This may look a bit non-sensical, but it is
1896 * actually quite logical. There are very few
1897 * peripheral drivers, and bloating every peripheral
1898 * structure with a pointer back to its parent
1899 * peripheral driver linker set entry would cost
1900 * more in the long run than doing this quick lookup.
1901 */
1902 for (pdrv = periph_drivers; *pdrv != NULL; pdrv++) {
1903 if (strcmp((*pdrv)->driver_name,
1904 periph->periph_name) == 0)
1905 break;
1906 }
1907
1908 if (*pdrv == NULL) {
1909 cdm->status = CAM_DEV_MATCH_ERROR;
1910 return(0);
1911 }
1912
1913 cdm->pos.cookie.pdrv = pdrv;
1914 /*
1915 * The periph generation slot does double duty, as
1916 * does the periph pointer slot. They are used for
1917 * both edt and pdrv lookups and positioning.
1918 */
1919 cdm->pos.cookie.periph = periph;
1920 cdm->pos.generations[CAM_PERIPH_GENERATION] =
1921 (*pdrv)->generation;
1922 cdm->status = CAM_DEV_MATCH_MORE;
1923 return(0);
1924 }
1925
1926 j = cdm->num_matches;
1927 cdm->num_matches++;
1928 cdm->matches[j].type = DEV_MATCH_PERIPH;
1929 cdm->matches[j].result.periph_result.path_id =
1930 periph->path->bus->path_id;
1931
1932 /*
1933 * The transport layer peripheral doesn't have a target or
1934 * lun.
1935 */
1936 if (periph->path->target)
1937 cdm->matches[j].result.periph_result.target_id =
1938 periph->path->target->target_id;
1939 else
1940 cdm->matches[j].result.periph_result.target_id = -1;
1941
1942 if (periph->path->device)
1943 cdm->matches[j].result.periph_result.target_lun =
1944 periph->path->device->lun_id;
1945 else
1946 cdm->matches[j].result.periph_result.target_lun = -1;
1947
1948 cdm->matches[j].result.periph_result.unit_number =
1949 periph->unit_number;
1950 strncpy(cdm->matches[j].result.periph_result.periph_name,
1951 periph->periph_name, DEV_IDLEN);
1952 }
1953
1954 return(1);
1955}
1956
1957static int
1958xptperiphlistmatch(struct ccb_dev_match *cdm)
1959{
1960 int ret;
1961
1962 cdm->num_matches = 0;
1963
1964 /*
1965 * At this point in the edt traversal function, we check the bus
1966 * list generation to make sure that no busses have been added or
1967 * removed since the user last sent a XPT_DEV_MATCH ccb through.
1968 * For the peripheral driver list traversal function, however, we
1969 * don't have to worry about new peripheral driver types coming or
1970 * going; they're in a linker set, and therefore can't change
1971 * without a recompile.
1972 */
1973
1974 if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR)
1975 && (cdm->pos.cookie.pdrv != NULL))
1976 ret = xptpdrvtraverse(
1977 (struct periph_driver **)cdm->pos.cookie.pdrv,
1978 xptplistpdrvfunc, cdm);
1979 else
1980 ret = xptpdrvtraverse(NULL, xptplistpdrvfunc, cdm);
1981
1982 /*
1983 * If we get back 0, that means that we had to stop before fully
1984 * traversing the peripheral driver tree. It also means that one of
1985 * the subroutines has set the status field to the proper value. If
1986 * we get back 1, we've fully traversed the EDT and copied out any
1987 * matching entries.
1988 */
1989 if (ret == 1)
1990 cdm->status = CAM_DEV_MATCH_LAST;
1991
1992 return(ret);
1993}
1994
1995static int
1996xptbustraverse(struct cam_eb *start_bus, xpt_busfunc_t *tr_func, void *arg)
1997{
1998 struct cam_eb *bus, *next_bus;
1999 int retval;
2000
2001 retval = 1;
2002
2003 xpt_lock_buses();
2004 for (bus = (start_bus ? start_bus : TAILQ_FIRST(&xsoftc.xpt_busses));
2005 bus != NULL;
2006 bus = next_bus) {
2007
2008 bus->refcount++;
2009
2010 /*
2011 * XXX The locking here is obviously very complex. We
2012 * should work to simplify it.
2013 */
2014 xpt_unlock_buses();
2015 CAM_SIM_LOCK(bus->sim);
2016 retval = tr_func(bus, arg);
2017 CAM_SIM_UNLOCK(bus->sim);
2018
2019 xpt_lock_buses();
2020 next_bus = TAILQ_NEXT(bus, links);
2021 xpt_unlock_buses();
2022
2023 xpt_release_bus(bus);
2024
2025 if (retval == 0)
2026 return(retval);
2027 xpt_lock_buses();
2028 }
2029 xpt_unlock_buses();
2030
2031 return(retval);
2032}
2033
2034static int
2035xpttargettraverse(struct cam_eb *bus, struct cam_et *start_target,
2036 xpt_targetfunc_t *tr_func, void *arg)
2037{
2038 struct cam_et *target, *next_target;
2039 int retval;
2040
2041 mtx_assert(bus->sim->mtx, MA_OWNED);
2042 retval = 1;
2043 for (target = (start_target ? start_target :
2044 TAILQ_FIRST(&bus->et_entries));
2045 target != NULL; target = next_target) {
2046
2047 target->refcount++;
2048
2049 retval = tr_func(target, arg);
2050
2051 next_target = TAILQ_NEXT(target, links);
2052
2053 xpt_release_target(target);
2054
2055 if (retval == 0)
2056 return(retval);
2057 }
2058
2059 return(retval);
2060}
2061
2062static int
2063xptdevicetraverse(struct cam_et *target, struct cam_ed *start_device,
2064 xpt_devicefunc_t *tr_func, void *arg)
2065{
2066 struct cam_ed *device, *next_device;
2067 int retval;
2068
2069 mtx_assert(target->bus->sim->mtx, MA_OWNED);
2070 retval = 1;
2071 for (device = (start_device ? start_device :
2072 TAILQ_FIRST(&target->ed_entries));
2073 device != NULL;
2074 device = next_device) {
2075
2076 /*
2077 * Hold a reference so the current device does not go away
2078 * on us.
2079 */
2080 device->refcount++;
2081
2082 retval = tr_func(device, arg);
2083
2084 /*
2085 * Grab our next pointer before we release the current
2086 * device.
2087 */
2088 next_device = TAILQ_NEXT(device, links);
2089
2090 xpt_release_device(device);
2091
2092 if (retval == 0)
2093 return(retval);
2094 }
2095
2096 return(retval);
2097}
2098
2099static int
2100xptperiphtraverse(struct cam_ed *device, struct cam_periph *start_periph,
2101 xpt_periphfunc_t *tr_func, void *arg)
2102{
2103 struct cam_periph *periph, *next_periph;
2104 int retval;
2105
2106 retval = 1;
2107
2108 mtx_assert(device->sim->mtx, MA_OWNED);
2109 xpt_lock_buses();
2110 for (periph = (start_periph ? start_periph :
2111 SLIST_FIRST(&device->periphs));
2112 periph != NULL;
2113 periph = next_periph) {
2114
2115
2116 /*
2117 * In this case, we want to show peripherals that have been
2118 * invalidated, but not peripherals that are scheduled to
2119 * be freed. So instead of calling cam_periph_acquire(),
2120 * which will fail if the periph has been invalidated, we
2121 * just check for the free flag here. If it is in the
2122 * process of being freed, we skip to the next periph.
2123 */
2124 if (periph->flags & CAM_PERIPH_FREE) {
2125 next_periph = SLIST_NEXT(periph, periph_links);
2126 continue;
2127 }
2128
2129 /*
2130 * Acquire a reference to this periph while we call the
2131 * traversal function, so it can't go away.
2132 */
2133 periph->refcount++;
2134
2135 retval = tr_func(periph, arg);
2136
2137 /*
2138 * Grab the next peripheral before we release this one, so
2139 * our next pointer is still valid.
2140 */
2141 next_periph = SLIST_NEXT(periph, periph_links);
2142
2143 cam_periph_release_locked_buses(periph);
2144
2145 if (retval == 0)
2146 goto bailout_done;
2147 }
2148
2149bailout_done:
2150
2151 xpt_unlock_buses();
2152
2153 return(retval);
2154}
2155
2156static int
2157xptpdrvtraverse(struct periph_driver **start_pdrv,
2158 xpt_pdrvfunc_t *tr_func, void *arg)
2159{
2160 struct periph_driver **pdrv;
2161 int retval;
2162
2163 retval = 1;
2164
2165 /*
2166 * We don't traverse the peripheral driver list like we do the
2167 * other lists, because it is a linker set, and therefore cannot be
2168 * changed during runtime. If the peripheral driver list is ever
2169 * re-done to be something other than a linker set (i.e. it can
2170 * change while the system is running), the list traversal should
2171 * be modified to work like the other traversal functions.
2172 */
2173 for (pdrv = (start_pdrv ? start_pdrv : periph_drivers);
2174 *pdrv != NULL; pdrv++) {
2175 retval = tr_func(pdrv, arg);
2176
2177 if (retval == 0)
2178 return(retval);
2179 }
2180
2181 return(retval);
2182}
2183
2184static int
2185xptpdperiphtraverse(struct periph_driver **pdrv,
2186 struct cam_periph *start_periph,
2187 xpt_periphfunc_t *tr_func, void *arg)
2188{
2189 struct cam_periph *periph, *next_periph;
2190 struct cam_sim *sim;
2191 int retval;
2192
2193 retval = 1;
2194
2195 xpt_lock_buses();
2196 for (periph = (start_periph ? start_periph :
2197 TAILQ_FIRST(&(*pdrv)->units)); periph != NULL;
2198 periph = next_periph) {
2199
2200
2201 /*
2202 * In this case, we want to show peripherals that have been
2203 * invalidated, but not peripherals that are scheduled to
2204 * be freed. So instead of calling cam_periph_acquire(),
2205 * which will fail if the periph has been invalidated, we
2206 * just check for the free flag here. If it is free, we
2207 * skip to the next periph.
2208 */
2209 if (periph->flags & CAM_PERIPH_FREE) {
2210 next_periph = TAILQ_NEXT(periph, unit_links);
2211 continue;
2212 }
2213
2214 /*
2215 * Acquire a reference to this periph while we call the
2216 * traversal function, so it can't go away.
2217 */
2218 periph->refcount++;
2219 sim = periph->sim;
2220 xpt_unlock_buses();
2221 CAM_SIM_LOCK(sim);
2222 xpt_lock_buses();
2223 retval = tr_func(periph, arg);
2224
2225 /*
2226 * Grab the next peripheral before we release this one, so
2227 * our next pointer is still valid.
2228 */
2229 next_periph = TAILQ_NEXT(periph, unit_links);
2230
2231 cam_periph_release_locked_buses(periph);
2232 CAM_SIM_UNLOCK(sim);
2233
2234 if (retval == 0)
2235 goto bailout_done;
2236 }
2237bailout_done:
2238
2239 xpt_unlock_buses();
2240
2241 return(retval);
2242}
2243
2244static int
2245xptdefbusfunc(struct cam_eb *bus, void *arg)
2246{
2247 struct xpt_traverse_config *tr_config;
2248
2249 tr_config = (struct xpt_traverse_config *)arg;
2250
2251 if (tr_config->depth == XPT_DEPTH_BUS) {
2252 xpt_busfunc_t *tr_func;
2253
2254 tr_func = (xpt_busfunc_t *)tr_config->tr_func;
2255
2256 return(tr_func(bus, tr_config->tr_arg));
2257 } else
2258 return(xpttargettraverse(bus, NULL, xptdeftargetfunc, arg));
2259}
2260
2261static int
2262xptdeftargetfunc(struct cam_et *target, void *arg)
2263{
2264 struct xpt_traverse_config *tr_config;
2265
2266 tr_config = (struct xpt_traverse_config *)arg;
2267
2268 if (tr_config->depth == XPT_DEPTH_TARGET) {
2269 xpt_targetfunc_t *tr_func;
2270
2271 tr_func = (xpt_targetfunc_t *)tr_config->tr_func;
2272
2273 return(tr_func(target, tr_config->tr_arg));
2274 } else
2275 return(xptdevicetraverse(target, NULL, xptdefdevicefunc, arg));
2276}
2277
2278static int
2279xptdefdevicefunc(struct cam_ed *device, void *arg)
2280{
2281 struct xpt_traverse_config *tr_config;
2282
2283 tr_config = (struct xpt_traverse_config *)arg;
2284
2285 if (tr_config->depth == XPT_DEPTH_DEVICE) {
2286 xpt_devicefunc_t *tr_func;
2287
2288 tr_func = (xpt_devicefunc_t *)tr_config->tr_func;
2289
2290 return(tr_func(device, tr_config->tr_arg));
2291 } else
2292 return(xptperiphtraverse(device, NULL, xptdefperiphfunc, arg));
2293}
2294
2295static int
2296xptdefperiphfunc(struct cam_periph *periph, void *arg)
2297{
2298 struct xpt_traverse_config *tr_config;
2299 xpt_periphfunc_t *tr_func;
2300
2301 tr_config = (struct xpt_traverse_config *)arg;
2302
2303 tr_func = (xpt_periphfunc_t *)tr_config->tr_func;
2304
2305 /*
2306 * Unlike the other default functions, we don't check for depth
2307 * here. The peripheral driver level is the last level in the EDT,
2308 * so if we're here, we should execute the function in question.
2309 */
2310 return(tr_func(periph, tr_config->tr_arg));
2311}
2312
2313/*
2314 * Execute the given function for every bus in the EDT.
2315 */
2316static int
2317xpt_for_all_busses(xpt_busfunc_t *tr_func, void *arg)
2318{
2319 struct xpt_traverse_config tr_config;
2320
2321 tr_config.depth = XPT_DEPTH_BUS;
2322 tr_config.tr_func = tr_func;
2323 tr_config.tr_arg = arg;
2324
2325 return(xptbustraverse(NULL, xptdefbusfunc, &tr_config));
2326}
2327
2328/*
2329 * Execute the given function for every device in the EDT.
2330 */
2331static int
2332xpt_for_all_devices(xpt_devicefunc_t *tr_func, void *arg)
2333{
2334 struct xpt_traverse_config tr_config;
2335
2336 tr_config.depth = XPT_DEPTH_DEVICE;
2337 tr_config.tr_func = tr_func;
2338 tr_config.tr_arg = arg;
2339
2340 return(xptbustraverse(NULL, xptdefbusfunc, &tr_config));
2341}
2342
2343static int
2344xptsetasyncfunc(struct cam_ed *device, void *arg)
2345{
2346 struct cam_path path;
2347 struct ccb_getdev cgd;
2348 struct ccb_setasync *csa = (struct ccb_setasync *)arg;
2349
2350 /*
2351 * Don't report unconfigured devices (Wildcard devs,
2352 * devices only for target mode, device instances
2353 * that have been invalidated but are waiting for
2354 * their last reference count to be released).
2355 */
2356 if ((device->flags & CAM_DEV_UNCONFIGURED) != 0)
2357 return (1);
2358
2359 xpt_compile_path(&path,
2360 NULL,
2361 device->target->bus->path_id,
2362 device->target->target_id,
2363 device->lun_id);
2364 xpt_setup_ccb(&cgd.ccb_h, &path, CAM_PRIORITY_NORMAL);
2365 cgd.ccb_h.func_code = XPT_GDEV_TYPE;
2366 xpt_action((union ccb *)&cgd);
2367 csa->callback(csa->callback_arg,
2368 AC_FOUND_DEVICE,
2369 &path, &cgd);
2370 xpt_release_path(&path);
2371
2372 return(1);
2373}
2374
2375static int
2376xptsetasyncbusfunc(struct cam_eb *bus, void *arg)
2377{
2378 struct cam_path path;
2379 struct ccb_pathinq cpi;
2380 struct ccb_setasync *csa = (struct ccb_setasync *)arg;
2381
2382 xpt_compile_path(&path, /*periph*/NULL,
2383 bus->sim->path_id,
2384 CAM_TARGET_WILDCARD,
2385 CAM_LUN_WILDCARD);
2386 xpt_setup_ccb(&cpi.ccb_h, &path, CAM_PRIORITY_NORMAL);
2387 cpi.ccb_h.func_code = XPT_PATH_INQ;
2388 xpt_action((union ccb *)&cpi);
2389 csa->callback(csa->callback_arg,
2390 AC_PATH_REGISTERED,
2391 &path, &cpi);
2392 xpt_release_path(&path);
2393
2394 return(1);
2395}
2396
2397void
2398xpt_action(union ccb *start_ccb)
2399{
2400
2401 CAM_DEBUG(start_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xpt_action\n"));
2402
2403 start_ccb->ccb_h.status = CAM_REQ_INPROG;
2404 (*(start_ccb->ccb_h.path->bus->xport->action))(start_ccb);
2405}
2406
2407void
2408xpt_action_default(union ccb *start_ccb)
2409{
2410 struct cam_path *path;
2411
2412 path = start_ccb->ccb_h.path;
2413 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_action_default\n"));
2414
2415 switch (start_ccb->ccb_h.func_code) {
2416 case XPT_SCSI_IO:
2417 {
2418 struct cam_ed *device;
2419
2420 /*
2421 * For the sake of compatibility with SCSI-1
2422 * devices that may not understand the identify
2423 * message, we include lun information in the
2424 * second byte of all commands. SCSI-1 specifies
2425 * that luns are a 3 bit value and reserves only 3
2426 * bits for lun information in the CDB. Later
2427 * revisions of the SCSI spec allow for more than 8
2428 * luns, but have deprecated lun information in the
2429 * CDB. So, if the lun won't fit, we must omit.
2430 *
2431 * Also be aware that during initial probing for devices,
2432 * the inquiry information is unknown but initialized to 0.
2433 * This means that this code will be exercised while probing
2434 * devices with an ANSI revision greater than 2.
2435 */
2436 device = path->device;
2437 if (device->protocol_version <= SCSI_REV_2
2438 && start_ccb->ccb_h.target_lun < 8
2439 && (start_ccb->ccb_h.flags & CAM_CDB_POINTER) == 0) {
2440
2441 start_ccb->csio.cdb_io.cdb_bytes[1] |=
2442 start_ccb->ccb_h.target_lun << 5;
2443 }
2444 start_ccb->csio.scsi_status = SCSI_STATUS_OK;
2445 }
2446 /* FALLTHROUGH */
2447 case XPT_TARGET_IO:
2448 case XPT_CONT_TARGET_IO:
2449 start_ccb->csio.sense_resid = 0;
2450 start_ccb->csio.resid = 0;
2451 /* FALLTHROUGH */
2452 case XPT_ATA_IO:
2453 if (start_ccb->ccb_h.func_code == XPT_ATA_IO)
2454 start_ccb->ataio.resid = 0;
2455 /* FALLTHROUGH */
2456 case XPT_RESET_DEV:
2457 case XPT_ENG_EXEC:
2458 case XPT_SMP_IO:
2459 cam_ccbq_insert_ccb(&path->device->ccbq, start_ccb);
2460 if (xpt_schedule_devq(path->bus->sim->devq, path->device))
2461 xpt_run_devq(path->bus->sim->devq);
2462 break;
2463 case XPT_CALC_GEOMETRY:
2464 {
2465 struct cam_sim *sim;
2466
2467 /* Filter out garbage */
2468 if (start_ccb->ccg.block_size == 0
2469 || start_ccb->ccg.volume_size == 0) {
2470 start_ccb->ccg.cylinders = 0;
2471 start_ccb->ccg.heads = 0;
2472 start_ccb->ccg.secs_per_track = 0;
2473 start_ccb->ccb_h.status = CAM_REQ_CMP;
2474 break;
2475 }
2476#if defined(PC98) || defined(__sparc64__)
2477 /*
2478 * In a PC-98 system, geometry translation depens on
2479 * the "real" device geometry obtained from mode page 4.
2480 * SCSI geometry translation is performed in the
2481 * initialization routine of the SCSI BIOS and the result
2482 * stored in host memory. If the translation is available
2483 * in host memory, use it. If not, rely on the default
2484 * translation the device driver performs.
2485 * For sparc64, we may need adjust the geometry of large
2486 * disks in order to fit the limitations of the 16-bit
2487 * fields of the VTOC8 disk label.
2488 */
2489 if (scsi_da_bios_params(&start_ccb->ccg) != 0) {
2490 start_ccb->ccb_h.status = CAM_REQ_CMP;
2491 break;
2492 }
2493#endif
2494 sim = path->bus->sim;
2495 (*(sim->sim_action))(sim, start_ccb);
2496 break;
2497 }
2498 case XPT_ABORT:
2499 {
2500 union ccb* abort_ccb;
2501
2502 abort_ccb = start_ccb->cab.abort_ccb;
2503 if (XPT_FC_IS_DEV_QUEUED(abort_ccb)) {
2504
2505 if (abort_ccb->ccb_h.pinfo.index >= 0) {
2506 struct cam_ccbq *ccbq;
2507 struct cam_ed *device;
2508
2509 device = abort_ccb->ccb_h.path->device;
2510 ccbq = &device->ccbq;
2511 cam_ccbq_remove_ccb(ccbq, abort_ccb);
2512 abort_ccb->ccb_h.status =
2513 CAM_REQ_ABORTED|CAM_DEV_QFRZN;
2514 xpt_freeze_devq(abort_ccb->ccb_h.path, 1);
2515 xpt_done(abort_ccb);
2516 start_ccb->ccb_h.status = CAM_REQ_CMP;
2517 break;
2518 }
2519 if (abort_ccb->ccb_h.pinfo.index == CAM_UNQUEUED_INDEX
2520 && (abort_ccb->ccb_h.status & CAM_SIM_QUEUED) == 0) {
2521 /*
2522 * We've caught this ccb en route to
2523 * the SIM. Flag it for abort and the
2524 * SIM will do so just before starting
2525 * real work on the CCB.
2526 */
2527 abort_ccb->ccb_h.status =
2528 CAM_REQ_ABORTED|CAM_DEV_QFRZN;
2529 xpt_freeze_devq(abort_ccb->ccb_h.path, 1);
2530 start_ccb->ccb_h.status = CAM_REQ_CMP;
2531 break;
2532 }
2533 }
2534 if (XPT_FC_IS_QUEUED(abort_ccb)
2535 && (abort_ccb->ccb_h.pinfo.index == CAM_DONEQ_INDEX)) {
2536 /*
2537 * It's already completed but waiting
2538 * for our SWI to get to it.
2539 */
2540 start_ccb->ccb_h.status = CAM_UA_ABORT;
2541 break;
2542 }
2543 /*
2544 * If we weren't able to take care of the abort request
2545 * in the XPT, pass the request down to the SIM for processing.
2546 */
2547 }
2548 /* FALLTHROUGH */
2549 case XPT_ACCEPT_TARGET_IO:
2550 case XPT_EN_LUN:
2551 case XPT_IMMED_NOTIFY:
2552 case XPT_NOTIFY_ACK:
2553 case XPT_RESET_BUS:
2554 case XPT_IMMEDIATE_NOTIFY:
2555 case XPT_NOTIFY_ACKNOWLEDGE:
2556 case XPT_GET_SIM_KNOB:
2557 case XPT_SET_SIM_KNOB:
2558 {
2559 struct cam_sim *sim;
2560
2561 sim = path->bus->sim;
2562 (*(sim->sim_action))(sim, start_ccb);
2563 break;
2564 }
2565 case XPT_PATH_INQ:
2566 {
2567 struct cam_sim *sim;
2568
2569 sim = path->bus->sim;
2570 (*(sim->sim_action))(sim, start_ccb);
2571 break;
2572 }
2573 case XPT_PATH_STATS:
2574 start_ccb->cpis.last_reset = path->bus->last_reset;
2575 start_ccb->ccb_h.status = CAM_REQ_CMP;
2576 break;
2577 case XPT_GDEV_TYPE:
2578 {
2579 struct cam_ed *dev;
2580
2581 dev = path->device;
2582 if ((dev->flags & CAM_DEV_UNCONFIGURED) != 0) {
2583 start_ccb->ccb_h.status = CAM_DEV_NOT_THERE;
2584 } else {
2585 struct ccb_getdev *cgd;
2586
2587 cgd = &start_ccb->cgd;
2588 cgd->protocol = dev->protocol;
2589 cgd->inq_data = dev->inq_data;
2590 cgd->ident_data = dev->ident_data;
2591 cgd->inq_flags = dev->inq_flags;
2592 cgd->ccb_h.status = CAM_REQ_CMP;
2593 cgd->serial_num_len = dev->serial_num_len;
2594 if ((dev->serial_num_len > 0)
2595 && (dev->serial_num != NULL))
2596 bcopy(dev->serial_num, cgd->serial_num,
2597 dev->serial_num_len);
2598 }
2599 break;
2600 }
2601 case XPT_GDEV_STATS:
2602 {
2603 struct cam_ed *dev;
2604
2605 dev = path->device;
2606 if ((dev->flags & CAM_DEV_UNCONFIGURED) != 0) {
2607 start_ccb->ccb_h.status = CAM_DEV_NOT_THERE;
2608 } else {
2609 struct ccb_getdevstats *cgds;
2610 struct cam_eb *bus;
2611 struct cam_et *tar;
2612
2613 cgds = &start_ccb->cgds;
2614 bus = path->bus;
2615 tar = path->target;
2616 cgds->dev_openings = dev->ccbq.dev_openings;
2617 cgds->dev_active = dev->ccbq.dev_active;
2618 cgds->devq_openings = dev->ccbq.devq_openings;
2619 cgds->devq_queued = dev->ccbq.queue.entries;
2620 cgds->held = dev->ccbq.held;
2621 cgds->last_reset = tar->last_reset;
2622 cgds->maxtags = dev->maxtags;
2623 cgds->mintags = dev->mintags;
2624 if (timevalcmp(&tar->last_reset, &bus->last_reset, <))
2625 cgds->last_reset = bus->last_reset;
2626 cgds->ccb_h.status = CAM_REQ_CMP;
2627 }
2628 break;
2629 }
2630 case XPT_GDEVLIST:
2631 {
2632 struct cam_periph *nperiph;
2633 struct periph_list *periph_head;
2634 struct ccb_getdevlist *cgdl;
2635 u_int i;
2636 struct cam_ed *device;
2637 int found;
2638
2639
2640 found = 0;
2641
2642 /*
2643 * Don't want anyone mucking with our data.
2644 */
2645 device = path->device;
2646 periph_head = &device->periphs;
2647 cgdl = &start_ccb->cgdl;
2648
2649 /*
2650 * Check and see if the list has changed since the user
2651 * last requested a list member. If so, tell them that the
2652 * list has changed, and therefore they need to start over
2653 * from the beginning.
2654 */
2655 if ((cgdl->index != 0) &&
2656 (cgdl->generation != device->generation)) {
2657 cgdl->status = CAM_GDEVLIST_LIST_CHANGED;
2658 break;
2659 }
2660
2661 /*
2662 * Traverse the list of peripherals and attempt to find
2663 * the requested peripheral.
2664 */
2665 for (nperiph = SLIST_FIRST(periph_head), i = 0;
2666 (nperiph != NULL) && (i <= cgdl->index);
2667 nperiph = SLIST_NEXT(nperiph, periph_links), i++) {
2668 if (i == cgdl->index) {
2669 strncpy(cgdl->periph_name,
2670 nperiph->periph_name,
2671 DEV_IDLEN);
2672 cgdl->unit_number = nperiph->unit_number;
2673 found = 1;
2674 }
2675 }
2676 if (found == 0) {
2677 cgdl->status = CAM_GDEVLIST_ERROR;
2678 break;
2679 }
2680
2681 if (nperiph == NULL)
2682 cgdl->status = CAM_GDEVLIST_LAST_DEVICE;
2683 else
2684 cgdl->status = CAM_GDEVLIST_MORE_DEVS;
2685
2686 cgdl->index++;
2687 cgdl->generation = device->generation;
2688
2689 cgdl->ccb_h.status = CAM_REQ_CMP;
2690 break;
2691 }
2692 case XPT_DEV_MATCH:
2693 {
2694 dev_pos_type position_type;
2695 struct ccb_dev_match *cdm;
2696
2697 cdm = &start_ccb->cdm;
2698
2699 /*
2700 * There are two ways of getting at information in the EDT.
2701 * The first way is via the primary EDT tree. It starts
2702 * with a list of busses, then a list of targets on a bus,
2703 * then devices/luns on a target, and then peripherals on a
2704 * device/lun. The "other" way is by the peripheral driver
2705 * lists. The peripheral driver lists are organized by
2706 * peripheral driver. (obviously) So it makes sense to
2707 * use the peripheral driver list if the user is looking
2708 * for something like "da1", or all "da" devices. If the
2709 * user is looking for something on a particular bus/target
2710 * or lun, it's generally better to go through the EDT tree.
2711 */
2712
2713 if (cdm->pos.position_type != CAM_DEV_POS_NONE)
2714 position_type = cdm->pos.position_type;
2715 else {
2716 u_int i;
2717
2718 position_type = CAM_DEV_POS_NONE;
2719
2720 for (i = 0; i < cdm->num_patterns; i++) {
2721 if ((cdm->patterns[i].type == DEV_MATCH_BUS)
2722 ||(cdm->patterns[i].type == DEV_MATCH_DEVICE)){
2723 position_type = CAM_DEV_POS_EDT;
2724 break;
2725 }
2726 }
2727
2728 if (cdm->num_patterns == 0)
2729 position_type = CAM_DEV_POS_EDT;
2730 else if (position_type == CAM_DEV_POS_NONE)
2731 position_type = CAM_DEV_POS_PDRV;
2732 }
2733
2734 /*
2735 * Note that we drop the SIM lock here, because the EDT
2736 * traversal code needs to do its own locking.
2737 */
2738 CAM_SIM_UNLOCK(xpt_path_sim(cdm->ccb_h.path));
2739 switch(position_type & CAM_DEV_POS_TYPEMASK) {
2740 case CAM_DEV_POS_EDT:
2741 xptedtmatch(cdm);
2742 break;
2743 case CAM_DEV_POS_PDRV:
2744 xptperiphlistmatch(cdm);
2745 break;
2746 default:
2747 cdm->status = CAM_DEV_MATCH_ERROR;
2748 break;
2749 }
2750 CAM_SIM_LOCK(xpt_path_sim(cdm->ccb_h.path));
2751
2752 if (cdm->status == CAM_DEV_MATCH_ERROR)
2753 start_ccb->ccb_h.status = CAM_REQ_CMP_ERR;
2754 else
2755 start_ccb->ccb_h.status = CAM_REQ_CMP;
2756
2757 break;
2758 }
2759 case XPT_SASYNC_CB:
2760 {
2761 struct ccb_setasync *csa;
2762 struct async_node *cur_entry;
2763 struct async_list *async_head;
2764 u_int32_t added;
2765
2766 csa = &start_ccb->csa;
2767 added = csa->event_enable;
2768 async_head = &path->device->asyncs;
2769
2770 /*
2771 * If there is already an entry for us, simply
2772 * update it.
2773 */
2774 cur_entry = SLIST_FIRST(async_head);
2775 while (cur_entry != NULL) {
2776 if ((cur_entry->callback_arg == csa->callback_arg)
2777 && (cur_entry->callback == csa->callback))
2778 break;
2779 cur_entry = SLIST_NEXT(cur_entry, links);
2780 }
2781
2782 if (cur_entry != NULL) {
2783 /*
2784 * If the request has no flags set,
2785 * remove the entry.
2786 */
2787 added &= ~cur_entry->event_enable;
2788 if (csa->event_enable == 0) {
2789 SLIST_REMOVE(async_head, cur_entry,
2790 async_node, links);
2791 xpt_release_device(path->device);
2792 free(cur_entry, M_CAMXPT);
2793 } else {
2794 cur_entry->event_enable = csa->event_enable;
2795 }
2796 csa->event_enable = added;
2797 } else {
2798 cur_entry = malloc(sizeof(*cur_entry), M_CAMXPT,
2799 M_NOWAIT);
2800 if (cur_entry == NULL) {
2801 csa->ccb_h.status = CAM_RESRC_UNAVAIL;
2802 break;
2803 }
2804 cur_entry->event_enable = csa->event_enable;
2805 cur_entry->callback_arg = csa->callback_arg;
2806 cur_entry->callback = csa->callback;
2807 SLIST_INSERT_HEAD(async_head, cur_entry, links);
2808 xpt_acquire_device(path->device);
2809 }
2810 start_ccb->ccb_h.status = CAM_REQ_CMP;
2811 break;
2812 }
2813 case XPT_REL_SIMQ:
2814 {
2815 struct ccb_relsim *crs;
2816 struct cam_ed *dev;
2817
2818 crs = &start_ccb->crs;
2819 dev = path->device;
2820 if (dev == NULL) {
2821
2822 crs->ccb_h.status = CAM_DEV_NOT_THERE;
2823 break;
2824 }
2825
2826 if ((crs->release_flags & RELSIM_ADJUST_OPENINGS) != 0) {
2827
2828 /* Don't ever go below one opening */
2829 if (crs->openings > 0) {
2830 xpt_dev_ccbq_resize(path, crs->openings);
2831 if (bootverbose) {
2832 xpt_print(path,
2833 "number of openings is now %d\n",
2834 crs->openings);
2835 }
2836 }
2837 }
2838
2839 if ((crs->release_flags & RELSIM_RELEASE_AFTER_TIMEOUT) != 0) {
2840
2841 if ((dev->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) {
2842
2843 /*
2844 * Just extend the old timeout and decrement
2845 * the freeze count so that a single timeout
2846 * is sufficient for releasing the queue.
2847 */
2848 start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE;
2849 callout_stop(&dev->callout);
2850 } else {
2851
2852 start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE;
2853 }
2854
2855 callout_reset(&dev->callout,
2856 (crs->release_timeout * hz) / 1000,
2857 xpt_release_devq_timeout, dev);
2858
2859 dev->flags |= CAM_DEV_REL_TIMEOUT_PENDING;
2860
2861 }
2862
2863 if ((crs->release_flags & RELSIM_RELEASE_AFTER_CMDCMPLT) != 0) {
2864
2865 if ((dev->flags & CAM_DEV_REL_ON_COMPLETE) != 0) {
2866 /*
2867 * Decrement the freeze count so that a single
2868 * completion is still sufficient to unfreeze
2869 * the queue.
2870 */
2871 start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE;
2872 } else {
2873
2874 dev->flags |= CAM_DEV_REL_ON_COMPLETE;
2875 start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE;
2876 }
2877 }
2878
2879 if ((crs->release_flags & RELSIM_RELEASE_AFTER_QEMPTY) != 0) {
2880
2881 if ((dev->flags & CAM_DEV_REL_ON_QUEUE_EMPTY) != 0
2882 || (dev->ccbq.dev_active == 0)) {
2883
2884 start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE;
2885 } else {
2886
2887 dev->flags |= CAM_DEV_REL_ON_QUEUE_EMPTY;
2888 start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE;
2889 }
2890 }
2891
2892 if ((start_ccb->ccb_h.flags & CAM_DEV_QFREEZE) == 0)
2893 xpt_release_devq(path, /*count*/1, /*run_queue*/TRUE);
2894 start_ccb->crs.qfrozen_cnt = dev->ccbq.queue.qfrozen_cnt;
2895 start_ccb->ccb_h.status = CAM_REQ_CMP;
2896 break;
2897 }
2898 case XPT_DEBUG: {
2899 struct cam_path *oldpath;
2900 struct cam_sim *oldsim;
2901
2902 /* Check that all request bits are supported. */
2903 if (start_ccb->cdbg.flags & ~(CAM_DEBUG_COMPILE)) {
2904 start_ccb->ccb_h.status = CAM_FUNC_NOTAVAIL;
2905 break;
2906 }
2907
2908 cam_dflags = CAM_DEBUG_NONE;
2909 if (cam_dpath != NULL) {
2910 /* To release the old path we must hold proper lock. */
2911 oldpath = cam_dpath;
2912 cam_dpath = NULL;
2913 oldsim = xpt_path_sim(oldpath);
2914 CAM_SIM_UNLOCK(xpt_path_sim(start_ccb->ccb_h.path));
2915 CAM_SIM_LOCK(oldsim);
2916 xpt_free_path(oldpath);
2917 CAM_SIM_UNLOCK(oldsim);
2918 CAM_SIM_LOCK(xpt_path_sim(start_ccb->ccb_h.path));
2919 }
2920 if (start_ccb->cdbg.flags != CAM_DEBUG_NONE) {
2921 if (xpt_create_path(&cam_dpath, xpt_periph,
2921 if (xpt_create_path(&cam_dpath, NULL,
2922 start_ccb->ccb_h.path_id,
2923 start_ccb->ccb_h.target_id,
2924 start_ccb->ccb_h.target_lun) !=
2925 CAM_REQ_CMP) {
2926 start_ccb->ccb_h.status = CAM_RESRC_UNAVAIL;
2927 } else {
2928 cam_dflags = start_ccb->cdbg.flags;
2929 start_ccb->ccb_h.status = CAM_REQ_CMP;
2930 xpt_print(cam_dpath, "debugging flags now %x\n",
2931 cam_dflags);
2932 }
2933 } else
2934 start_ccb->ccb_h.status = CAM_REQ_CMP;
2935 break;
2936 }
2937 case XPT_NOOP:
2938 if ((start_ccb->ccb_h.flags & CAM_DEV_QFREEZE) != 0)
2939 xpt_freeze_devq(path, 1);
2940 start_ccb->ccb_h.status = CAM_REQ_CMP;
2941 break;
2942 default:
2943 case XPT_SDEV_TYPE:
2944 case XPT_TERM_IO:
2945 case XPT_ENG_INQ:
2946 /* XXX Implement */
2947 printf("%s: CCB type %#x not supported\n", __func__,
2948 start_ccb->ccb_h.func_code);
2949 start_ccb->ccb_h.status = CAM_PROVIDE_FAIL;
2950 if (start_ccb->ccb_h.func_code & XPT_FC_DEV_QUEUED) {
2951 xpt_done(start_ccb);
2952 }
2953 break;
2954 }
2955}
2956
2957void
2958xpt_polled_action(union ccb *start_ccb)
2959{
2960 u_int32_t timeout;
2961 struct cam_sim *sim;
2962 struct cam_devq *devq;
2963 struct cam_ed *dev;
2964
2965
2966 timeout = start_ccb->ccb_h.timeout * 10;
2967 sim = start_ccb->ccb_h.path->bus->sim;
2968 devq = sim->devq;
2969 dev = start_ccb->ccb_h.path->device;
2970
2971 mtx_assert(sim->mtx, MA_OWNED);
2972
2973 /* Don't use ISR for this SIM while polling. */
2974 sim->flags |= CAM_SIM_POLLED;
2975
2976 /*
2977 * Steal an opening so that no other queued requests
2978 * can get it before us while we simulate interrupts.
2979 */
2980 dev->ccbq.devq_openings--;
2981 dev->ccbq.dev_openings--;
2982
2983 while(((devq != NULL && devq->send_openings <= 0) ||
2984 dev->ccbq.dev_openings < 0) && (--timeout > 0)) {
2985 DELAY(100);
2986 (*(sim->sim_poll))(sim);
2987 camisr_runqueue(&sim->sim_doneq);
2988 }
2989
2990 dev->ccbq.devq_openings++;
2991 dev->ccbq.dev_openings++;
2992
2993 if (timeout != 0) {
2994 xpt_action(start_ccb);
2995 while(--timeout > 0) {
2996 (*(sim->sim_poll))(sim);
2997 camisr_runqueue(&sim->sim_doneq);
2998 if ((start_ccb->ccb_h.status & CAM_STATUS_MASK)
2999 != CAM_REQ_INPROG)
3000 break;
3001 DELAY(100);
3002 }
3003 if (timeout == 0) {
3004 /*
3005 * XXX Is it worth adding a sim_timeout entry
3006 * point so we can attempt recovery? If
3007 * this is only used for dumps, I don't think
3008 * it is.
3009 */
3010 start_ccb->ccb_h.status = CAM_CMD_TIMEOUT;
3011 }
3012 } else {
3013 start_ccb->ccb_h.status = CAM_RESRC_UNAVAIL;
3014 }
3015
3016 /* We will use CAM ISR for this SIM again. */
3017 sim->flags &= ~CAM_SIM_POLLED;
3018}
3019
3020/*
3021 * Schedule a peripheral driver to receive a ccb when it's
3022 * target device has space for more transactions.
3023 */
3024void
3025xpt_schedule(struct cam_periph *perph, u_int32_t new_priority)
3026{
3027 struct cam_ed *device;
3028 int runq = 0;
3029
3030 mtx_assert(perph->sim->mtx, MA_OWNED);
3031
3032 CAM_DEBUG(perph->path, CAM_DEBUG_TRACE, ("xpt_schedule\n"));
3033 device = perph->path->device;
3034 if (periph_is_queued(perph)) {
3035 /* Simply reorder based on new priority */
3036 CAM_DEBUG(perph->path, CAM_DEBUG_SUBTRACE,
3037 (" change priority to %d\n", new_priority));
3038 if (new_priority < perph->pinfo.priority) {
3039 camq_change_priority(&device->drvq,
3040 perph->pinfo.index,
3041 new_priority);
3042 runq = 1;
3043 }
3044 } else {
3045 /* New entry on the queue */
3046 CAM_DEBUG(perph->path, CAM_DEBUG_SUBTRACE,
3047 (" added periph to queue\n"));
3048 perph->pinfo.priority = new_priority;
3049 perph->pinfo.generation = ++device->drvq.generation;
3050 camq_insert(&device->drvq, &perph->pinfo);
3051 runq = 1;
3052 }
3053 if (runq != 0) {
3054 CAM_DEBUG(perph->path, CAM_DEBUG_SUBTRACE,
3055 (" calling xpt_run_dev_allocq\n"));
3056 xpt_run_dev_allocq(device);
3057 }
3058}
3059
3060
3061/*
3062 * Schedule a device to run on a given queue.
3063 * If the device was inserted as a new entry on the queue,
3064 * return 1 meaning the device queue should be run. If we
3065 * were already queued, implying someone else has already
3066 * started the queue, return 0 so the caller doesn't attempt
3067 * to run the queue.
3068 */
3069int
3070xpt_schedule_dev(struct camq *queue, cam_pinfo *pinfo,
3071 u_int32_t new_priority)
3072{
3073 int retval;
3074 u_int32_t old_priority;
3075
3076 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_schedule_dev\n"));
3077
3078 old_priority = pinfo->priority;
3079
3080 /*
3081 * Are we already queued?
3082 */
3083 if (pinfo->index != CAM_UNQUEUED_INDEX) {
3084 /* Simply reorder based on new priority */
3085 if (new_priority < old_priority) {
3086 camq_change_priority(queue, pinfo->index,
3087 new_priority);
3088 CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3089 ("changed priority to %d\n",
3090 new_priority));
3091 retval = 1;
3092 } else
3093 retval = 0;
3094 } else {
3095 /* New entry on the queue */
3096 if (new_priority < old_priority)
3097 pinfo->priority = new_priority;
3098
3099 CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3100 ("Inserting onto queue\n"));
3101 pinfo->generation = ++queue->generation;
3102 camq_insert(queue, pinfo);
3103 retval = 1;
3104 }
3105 return (retval);
3106}
3107
3108static void
3109xpt_run_dev_allocq(struct cam_ed *device)
3110{
3111 struct camq *drvq;
3112
3113 if (device->ccbq.devq_allocating)
3114 return;
3115 device->ccbq.devq_allocating = 1;
3116 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_dev_allocq(%p)\n", device));
3117 drvq = &device->drvq;
3118 while ((drvq->entries > 0) &&
3119 (device->ccbq.devq_openings > 0 ||
3120 CAMQ_GET_PRIO(drvq) <= CAM_PRIORITY_OOB) &&
3121 (device->ccbq.queue.qfrozen_cnt == 0)) {
3122 union ccb *work_ccb;
3123 struct cam_periph *drv;
3124
3125 KASSERT(drvq->entries > 0, ("xpt_run_dev_allocq: "
3126 "Device on queue without any work to do"));
3127 if ((work_ccb = xpt_get_ccb(device)) != NULL) {
3128 drv = (struct cam_periph*)camq_remove(drvq, CAMQ_HEAD);
3129 xpt_setup_ccb(&work_ccb->ccb_h, drv->path,
3130 drv->pinfo.priority);
3131 CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3132 ("calling periph start\n"));
3133 drv->periph_start(drv, work_ccb);
3134 } else {
3135 /*
3136 * Malloc failure in alloc_ccb
3137 */
3138 /*
3139 * XXX add us to a list to be run from free_ccb
3140 * if we don't have any ccbs active on this
3141 * device queue otherwise we may never get run
3142 * again.
3143 */
3144 break;
3145 }
3146 }
3147 device->ccbq.devq_allocating = 0;
3148}
3149
3150static void
3151xpt_run_devq(struct cam_devq *devq)
3152{
3153 char cdb_str[(SCSI_MAX_CDBLEN * 3) + 1];
3154
3155 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_devq\n"));
3156
3157 devq->send_queue.qfrozen_cnt++;
3158 while ((devq->send_queue.entries > 0)
3159 && (devq->send_openings > 0)
3160 && (devq->send_queue.qfrozen_cnt <= 1)) {
3161 struct cam_ed_qinfo *qinfo;
3162 struct cam_ed *device;
3163 union ccb *work_ccb;
3164 struct cam_sim *sim;
3165
3166 qinfo = (struct cam_ed_qinfo *)camq_remove(&devq->send_queue,
3167 CAMQ_HEAD);
3168 device = qinfo->device;
3169 CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3170 ("running device %p\n", device));
3171
3172 work_ccb = cam_ccbq_peek_ccb(&device->ccbq, CAMQ_HEAD);
3173 if (work_ccb == NULL) {
3174 printf("device on run queue with no ccbs???\n");
3175 continue;
3176 }
3177
3178 if ((work_ccb->ccb_h.flags & CAM_HIGH_POWER) != 0) {
3179
3180 mtx_lock(&xsoftc.xpt_lock);
3181 if (xsoftc.num_highpower <= 0) {
3182 /*
3183 * We got a high power command, but we
3184 * don't have any available slots. Freeze
3185 * the device queue until we have a slot
3186 * available.
3187 */
3188 xpt_freeze_devq(work_ccb->ccb_h.path, 1);
3189 STAILQ_INSERT_TAIL(&xsoftc.highpowerq,
3190 &work_ccb->ccb_h,
3191 xpt_links.stqe);
3192
3193 mtx_unlock(&xsoftc.xpt_lock);
3194 continue;
3195 } else {
3196 /*
3197 * Consume a high power slot while
3198 * this ccb runs.
3199 */
3200 xsoftc.num_highpower--;
3201 }
3202 mtx_unlock(&xsoftc.xpt_lock);
3203 }
3204 cam_ccbq_remove_ccb(&device->ccbq, work_ccb);
3205 cam_ccbq_send_ccb(&device->ccbq, work_ccb);
3206
3207 devq->send_openings--;
3208 devq->send_active++;
3209
3210 xpt_schedule_devq(devq, device);
3211
3212 if ((work_ccb->ccb_h.flags & CAM_DEV_QFREEZE) != 0) {
3213 /*
3214 * The client wants to freeze the queue
3215 * after this CCB is sent.
3216 */
3217 xpt_freeze_devq(work_ccb->ccb_h.path, 1);
3218 }
3219
3220 /* In Target mode, the peripheral driver knows best... */
3221 if (work_ccb->ccb_h.func_code == XPT_SCSI_IO) {
3222 if ((device->inq_flags & SID_CmdQue) != 0
3223 && work_ccb->csio.tag_action != CAM_TAG_ACTION_NONE)
3224 work_ccb->ccb_h.flags |= CAM_TAG_ACTION_VALID;
3225 else
3226 /*
3227 * Clear this in case of a retried CCB that
3228 * failed due to a rejected tag.
3229 */
3230 work_ccb->ccb_h.flags &= ~CAM_TAG_ACTION_VALID;
3231 }
3232
3233 switch (work_ccb->ccb_h.func_code) {
3234 case XPT_SCSI_IO:
3235 CAM_DEBUG(work_ccb->ccb_h.path,
3236 CAM_DEBUG_CDB,("%s. CDB: %s\n",
3237 scsi_op_desc(work_ccb->csio.cdb_io.cdb_bytes[0],
3238 &device->inq_data),
3239 scsi_cdb_string(work_ccb->csio.cdb_io.cdb_bytes,
3240 cdb_str, sizeof(cdb_str))));
3241 break;
3242 case XPT_ATA_IO:
3243 CAM_DEBUG(work_ccb->ccb_h.path,
3244 CAM_DEBUG_CDB,("%s. ACB: %s\n",
3245 ata_op_string(&work_ccb->ataio.cmd),
3246 ata_cmd_string(&work_ccb->ataio.cmd,
3247 cdb_str, sizeof(cdb_str))));
3248 break;
3249 default:
3250 break;
3251 }
3252
3253 /*
3254 * Device queues can be shared among multiple sim instances
3255 * that reside on different busses. Use the SIM in the queue
3256 * CCB's path, rather than the one in the bus that was passed
3257 * into this function.
3258 */
3259 sim = work_ccb->ccb_h.path->bus->sim;
3260 (*(sim->sim_action))(sim, work_ccb);
3261 }
3262 devq->send_queue.qfrozen_cnt--;
3263}
3264
3265/*
3266 * This function merges stuff from the slave ccb into the master ccb, while
3267 * keeping important fields in the master ccb constant.
3268 */
3269void
3270xpt_merge_ccb(union ccb *master_ccb, union ccb *slave_ccb)
3271{
3272
3273 /*
3274 * Pull fields that are valid for peripheral drivers to set
3275 * into the master CCB along with the CCB "payload".
3276 */
3277 master_ccb->ccb_h.retry_count = slave_ccb->ccb_h.retry_count;
3278 master_ccb->ccb_h.func_code = slave_ccb->ccb_h.func_code;
3279 master_ccb->ccb_h.timeout = slave_ccb->ccb_h.timeout;
3280 master_ccb->ccb_h.flags = slave_ccb->ccb_h.flags;
3281 bcopy(&(&slave_ccb->ccb_h)[1], &(&master_ccb->ccb_h)[1],
3282 sizeof(union ccb) - sizeof(struct ccb_hdr));
3283}
3284
3285void
3286xpt_setup_ccb(struct ccb_hdr *ccb_h, struct cam_path *path, u_int32_t priority)
3287{
3288
3289 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_setup_ccb\n"));
3290 ccb_h->pinfo.priority = priority;
3291 ccb_h->path = path;
3292 ccb_h->path_id = path->bus->path_id;
3293 if (path->target)
3294 ccb_h->target_id = path->target->target_id;
3295 else
3296 ccb_h->target_id = CAM_TARGET_WILDCARD;
3297 if (path->device) {
3298 ccb_h->target_lun = path->device->lun_id;
3299 ccb_h->pinfo.generation = ++path->device->ccbq.queue.generation;
3300 } else {
3301 ccb_h->target_lun = CAM_TARGET_WILDCARD;
3302 }
3303 ccb_h->pinfo.index = CAM_UNQUEUED_INDEX;
3304 ccb_h->flags = 0;
3305}
3306
3307/* Path manipulation functions */
3308cam_status
3309xpt_create_path(struct cam_path **new_path_ptr, struct cam_periph *perph,
3310 path_id_t path_id, target_id_t target_id, lun_id_t lun_id)
3311{
3312 struct cam_path *path;
3313 cam_status status;
3314
3315 path = (struct cam_path *)malloc(sizeof(*path), M_CAMPATH, M_NOWAIT);
3316
3317 if (path == NULL) {
3318 status = CAM_RESRC_UNAVAIL;
3319 return(status);
3320 }
3321 status = xpt_compile_path(path, perph, path_id, target_id, lun_id);
3322 if (status != CAM_REQ_CMP) {
3323 free(path, M_CAMPATH);
3324 path = NULL;
3325 }
3326 *new_path_ptr = path;
3327 return (status);
3328}
3329
3330cam_status
3331xpt_create_path_unlocked(struct cam_path **new_path_ptr,
3332 struct cam_periph *periph, path_id_t path_id,
3333 target_id_t target_id, lun_id_t lun_id)
3334{
3335 struct cam_path *path;
3336 struct cam_eb *bus = NULL;
3337 cam_status status;
3338
3339 path = (struct cam_path *)malloc(sizeof(*path), M_CAMPATH, M_WAITOK);
3340
3341 bus = xpt_find_bus(path_id);
3342 if (bus != NULL)
3343 CAM_SIM_LOCK(bus->sim);
3344 status = xpt_compile_path(path, periph, path_id, target_id, lun_id);
3345 if (bus != NULL) {
3346 CAM_SIM_UNLOCK(bus->sim);
3347 xpt_release_bus(bus);
3348 }
3349 if (status != CAM_REQ_CMP) {
3350 free(path, M_CAMPATH);
3351 path = NULL;
3352 }
3353 *new_path_ptr = path;
3354 return (status);
3355}
3356
3357cam_status
3358xpt_compile_path(struct cam_path *new_path, struct cam_periph *perph,
3359 path_id_t path_id, target_id_t target_id, lun_id_t lun_id)
3360{
3361 struct cam_eb *bus;
3362 struct cam_et *target;
3363 struct cam_ed *device;
3364 cam_status status;
3365
3366 status = CAM_REQ_CMP; /* Completed without error */
3367 target = NULL; /* Wildcarded */
3368 device = NULL; /* Wildcarded */
3369
3370 /*
3371 * We will potentially modify the EDT, so block interrupts
3372 * that may attempt to create cam paths.
3373 */
3374 bus = xpt_find_bus(path_id);
3375 if (bus == NULL) {
3376 status = CAM_PATH_INVALID;
3377 } else {
3378 target = xpt_find_target(bus, target_id);
3379 if (target == NULL) {
3380 /* Create one */
3381 struct cam_et *new_target;
3382
3383 new_target = xpt_alloc_target(bus, target_id);
3384 if (new_target == NULL) {
3385 status = CAM_RESRC_UNAVAIL;
3386 } else {
3387 target = new_target;
3388 }
3389 }
3390 if (target != NULL) {
3391 device = xpt_find_device(target, lun_id);
3392 if (device == NULL) {
3393 /* Create one */
3394 struct cam_ed *new_device;
3395
3396 new_device =
3397 (*(bus->xport->alloc_device))(bus,
3398 target,
3399 lun_id);
3400 if (new_device == NULL) {
3401 status = CAM_RESRC_UNAVAIL;
3402 } else {
3403 device = new_device;
3404 }
3405 }
3406 }
3407 }
3408
3409 /*
3410 * Only touch the user's data if we are successful.
3411 */
3412 if (status == CAM_REQ_CMP) {
3413 new_path->periph = perph;
3414 new_path->bus = bus;
3415 new_path->target = target;
3416 new_path->device = device;
3417 CAM_DEBUG(new_path, CAM_DEBUG_TRACE, ("xpt_compile_path\n"));
3418 } else {
3419 if (device != NULL)
3420 xpt_release_device(device);
3421 if (target != NULL)
3422 xpt_release_target(target);
3423 if (bus != NULL)
3424 xpt_release_bus(bus);
3425 }
3426 return (status);
3427}
3428
3429void
3430xpt_release_path(struct cam_path *path)
3431{
3432 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_release_path\n"));
3433 if (path->device != NULL) {
3434 xpt_release_device(path->device);
3435 path->device = NULL;
3436 }
3437 if (path->target != NULL) {
3438 xpt_release_target(path->target);
3439 path->target = NULL;
3440 }
3441 if (path->bus != NULL) {
3442 xpt_release_bus(path->bus);
3443 path->bus = NULL;
3444 }
3445}
3446
3447void
3448xpt_free_path(struct cam_path *path)
3449{
3450
3451 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_free_path\n"));
3452 xpt_release_path(path);
3453 free(path, M_CAMPATH);
3454}
3455
3456void
3457xpt_path_counts(struct cam_path *path, uint32_t *bus_ref,
3458 uint32_t *periph_ref, uint32_t *target_ref, uint32_t *device_ref)
3459{
3460
3461 xpt_lock_buses();
3462 if (bus_ref) {
3463 if (path->bus)
3464 *bus_ref = path->bus->refcount;
3465 else
3466 *bus_ref = 0;
3467 }
3468 if (periph_ref) {
3469 if (path->periph)
3470 *periph_ref = path->periph->refcount;
3471 else
3472 *periph_ref = 0;
3473 }
3474 xpt_unlock_buses();
3475 if (target_ref) {
3476 if (path->target)
3477 *target_ref = path->target->refcount;
3478 else
3479 *target_ref = 0;
3480 }
3481 if (device_ref) {
3482 if (path->device)
3483 *device_ref = path->device->refcount;
3484 else
3485 *device_ref = 0;
3486 }
3487}
3488
3489/*
3490 * Return -1 for failure, 0 for exact match, 1 for match with wildcards
3491 * in path1, 2 for match with wildcards in path2.
3492 */
3493int
3494xpt_path_comp(struct cam_path *path1, struct cam_path *path2)
3495{
3496 int retval = 0;
3497
3498 if (path1->bus != path2->bus) {
3499 if (path1->bus->path_id == CAM_BUS_WILDCARD)
3500 retval = 1;
3501 else if (path2->bus->path_id == CAM_BUS_WILDCARD)
3502 retval = 2;
3503 else
3504 return (-1);
3505 }
3506 if (path1->target != path2->target) {
3507 if (path1->target->target_id == CAM_TARGET_WILDCARD) {
3508 if (retval == 0)
3509 retval = 1;
3510 } else if (path2->target->target_id == CAM_TARGET_WILDCARD)
3511 retval = 2;
3512 else
3513 return (-1);
3514 }
3515 if (path1->device != path2->device) {
3516 if (path1->device->lun_id == CAM_LUN_WILDCARD) {
3517 if (retval == 0)
3518 retval = 1;
3519 } else if (path2->device->lun_id == CAM_LUN_WILDCARD)
3520 retval = 2;
3521 else
3522 return (-1);
3523 }
3524 return (retval);
3525}
3526
3527void
3528xpt_print_path(struct cam_path *path)
3529{
3530
3531 if (path == NULL)
3532 printf("(nopath): ");
3533 else {
3534 if (path->periph != NULL)
3535 printf("(%s%d:", path->periph->periph_name,
3536 path->periph->unit_number);
3537 else
3538 printf("(noperiph:");
3539
3540 if (path->bus != NULL)
3541 printf("%s%d:%d:", path->bus->sim->sim_name,
3542 path->bus->sim->unit_number,
3543 path->bus->sim->bus_id);
3544 else
3545 printf("nobus:");
3546
3547 if (path->target != NULL)
3548 printf("%d:", path->target->target_id);
3549 else
3550 printf("X:");
3551
3552 if (path->device != NULL)
3553 printf("%d): ", path->device->lun_id);
3554 else
3555 printf("X): ");
3556 }
3557}
3558
3559void
3560xpt_print(struct cam_path *path, const char *fmt, ...)
3561{
3562 va_list ap;
3563 xpt_print_path(path);
3564 va_start(ap, fmt);
3565 vprintf(fmt, ap);
3566 va_end(ap);
3567}
3568
3569int
3570xpt_path_string(struct cam_path *path, char *str, size_t str_len)
3571{
3572 struct sbuf sb;
3573
3574#ifdef INVARIANTS
3575 if (path != NULL && path->bus != NULL)
3576 mtx_assert(path->bus->sim->mtx, MA_OWNED);
3577#endif
3578
3579 sbuf_new(&sb, str, str_len, 0);
3580
3581 if (path == NULL)
3582 sbuf_printf(&sb, "(nopath): ");
3583 else {
3584 if (path->periph != NULL)
3585 sbuf_printf(&sb, "(%s%d:", path->periph->periph_name,
3586 path->periph->unit_number);
3587 else
3588 sbuf_printf(&sb, "(noperiph:");
3589
3590 if (path->bus != NULL)
3591 sbuf_printf(&sb, "%s%d:%d:", path->bus->sim->sim_name,
3592 path->bus->sim->unit_number,
3593 path->bus->sim->bus_id);
3594 else
3595 sbuf_printf(&sb, "nobus:");
3596
3597 if (path->target != NULL)
3598 sbuf_printf(&sb, "%d:", path->target->target_id);
3599 else
3600 sbuf_printf(&sb, "X:");
3601
3602 if (path->device != NULL)
3603 sbuf_printf(&sb, "%d): ", path->device->lun_id);
3604 else
3605 sbuf_printf(&sb, "X): ");
3606 }
3607 sbuf_finish(&sb);
3608
3609 return(sbuf_len(&sb));
3610}
3611
3612path_id_t
3613xpt_path_path_id(struct cam_path *path)
3614{
3615 return(path->bus->path_id);
3616}
3617
3618target_id_t
3619xpt_path_target_id(struct cam_path *path)
3620{
3621 if (path->target != NULL)
3622 return (path->target->target_id);
3623 else
3624 return (CAM_TARGET_WILDCARD);
3625}
3626
3627lun_id_t
3628xpt_path_lun_id(struct cam_path *path)
3629{
3630 if (path->device != NULL)
3631 return (path->device->lun_id);
3632 else
3633 return (CAM_LUN_WILDCARD);
3634}
3635
3636struct cam_sim *
3637xpt_path_sim(struct cam_path *path)
3638{
3639
3640 return (path->bus->sim);
3641}
3642
3643struct cam_periph*
3644xpt_path_periph(struct cam_path *path)
3645{
3646 mtx_assert(path->bus->sim->mtx, MA_OWNED);
3647
3648 return (path->periph);
3649}
3650
3651int
3652xpt_path_legacy_ata_id(struct cam_path *path)
3653{
3654 struct cam_eb *bus;
3655 int bus_id;
3656
3657 if ((strcmp(path->bus->sim->sim_name, "ata") != 0) &&
3658 strcmp(path->bus->sim->sim_name, "ahcich") != 0 &&
3659 strcmp(path->bus->sim->sim_name, "mvsch") != 0 &&
3660 strcmp(path->bus->sim->sim_name, "siisch") != 0)
3661 return (-1);
3662
3663 if (strcmp(path->bus->sim->sim_name, "ata") == 0 &&
3664 path->bus->sim->unit_number < 2) {
3665 bus_id = path->bus->sim->unit_number;
3666 } else {
3667 bus_id = 2;
3668 xpt_lock_buses();
3669 TAILQ_FOREACH(bus, &xsoftc.xpt_busses, links) {
3670 if (bus == path->bus)
3671 break;
3672 if ((strcmp(bus->sim->sim_name, "ata") == 0 &&
3673 bus->sim->unit_number >= 2) ||
3674 strcmp(bus->sim->sim_name, "ahcich") == 0 ||
3675 strcmp(bus->sim->sim_name, "mvsch") == 0 ||
3676 strcmp(bus->sim->sim_name, "siisch") == 0)
3677 bus_id++;
3678 }
3679 xpt_unlock_buses();
3680 }
3681 if (path->target != NULL) {
3682 if (path->target->target_id < 2)
3683 return (bus_id * 2 + path->target->target_id);
3684 else
3685 return (-1);
3686 } else
3687 return (bus_id * 2);
3688}
3689
3690/*
3691 * Release a CAM control block for the caller. Remit the cost of the structure
3692 * to the device referenced by the path. If the this device had no 'credits'
3693 * and peripheral drivers have registered async callbacks for this notification
3694 * call them now.
3695 */
3696void
3697xpt_release_ccb(union ccb *free_ccb)
3698{
3699 struct cam_path *path;
3700 struct cam_ed *device;
3701 struct cam_eb *bus;
3702 struct cam_sim *sim;
3703
3704 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_release_ccb\n"));
3705 path = free_ccb->ccb_h.path;
3706 device = path->device;
3707 bus = path->bus;
3708 sim = bus->sim;
3709
3710 mtx_assert(sim->mtx, MA_OWNED);
3711
3712 cam_ccbq_release_opening(&device->ccbq);
3713 if (device->flags & CAM_DEV_RESIZE_QUEUE_NEEDED) {
3714 device->flags &= ~CAM_DEV_RESIZE_QUEUE_NEEDED;
3715 cam_ccbq_resize(&device->ccbq,
3716 device->ccbq.dev_openings + device->ccbq.dev_active);
3717 }
3718 if (sim->ccb_count > sim->max_ccbs) {
3719 xpt_free_ccb(free_ccb);
3720 sim->ccb_count--;
3721 } else {
3722 SLIST_INSERT_HEAD(&sim->ccb_freeq, &free_ccb->ccb_h,
3723 xpt_links.sle);
3724 }
3725 xpt_run_dev_allocq(device);
3726}
3727
3728/* Functions accessed by SIM drivers */
3729
3730static struct xpt_xport xport_default = {
3731 .alloc_device = xpt_alloc_device_default,
3732 .action = xpt_action_default,
3733 .async = xpt_dev_async_default,
3734};
3735
3736/*
3737 * A sim structure, listing the SIM entry points and instance
3738 * identification info is passed to xpt_bus_register to hook the SIM
3739 * into the CAM framework. xpt_bus_register creates a cam_eb entry
3740 * for this new bus and places it in the array of busses and assigns
3741 * it a path_id. The path_id may be influenced by "hard wiring"
3742 * information specified by the user. Once interrupt services are
3743 * available, the bus will be probed.
3744 */
3745int32_t
3746xpt_bus_register(struct cam_sim *sim, device_t parent, u_int32_t bus)
3747{
3748 struct cam_eb *new_bus;
3749 struct cam_eb *old_bus;
3750 struct ccb_pathinq cpi;
3751 struct cam_path *path;
3752 cam_status status;
3753
3754 mtx_assert(sim->mtx, MA_OWNED);
3755
3756 sim->bus_id = bus;
3757 new_bus = (struct cam_eb *)malloc(sizeof(*new_bus),
3758 M_CAMXPT, M_NOWAIT);
3759 if (new_bus == NULL) {
3760 /* Couldn't satisfy request */
3761 return (CAM_RESRC_UNAVAIL);
3762 }
3763 if (strcmp(sim->sim_name, "xpt") != 0) {
3764 sim->path_id =
3765 xptpathid(sim->sim_name, sim->unit_number, sim->bus_id);
3766 }
3767
3768 TAILQ_INIT(&new_bus->et_entries);
3769 new_bus->path_id = sim->path_id;
3770 cam_sim_hold(sim);
3771 new_bus->sim = sim;
3772 timevalclear(&new_bus->last_reset);
3773 new_bus->flags = 0;
3774 new_bus->refcount = 1; /* Held until a bus_deregister event */
3775 new_bus->generation = 0;
3776
3777 xpt_lock_buses();
3778 old_bus = TAILQ_FIRST(&xsoftc.xpt_busses);
3779 while (old_bus != NULL
3780 && old_bus->path_id < new_bus->path_id)
3781 old_bus = TAILQ_NEXT(old_bus, links);
3782 if (old_bus != NULL)
3783 TAILQ_INSERT_BEFORE(old_bus, new_bus, links);
3784 else
3785 TAILQ_INSERT_TAIL(&xsoftc.xpt_busses, new_bus, links);
3786 xsoftc.bus_generation++;
3787 xpt_unlock_buses();
3788
3789 /*
3790 * Set a default transport so that a PATH_INQ can be issued to
3791 * the SIM. This will then allow for probing and attaching of
3792 * a more appropriate transport.
3793 */
3794 new_bus->xport = &xport_default;
3795
3796 status = xpt_create_path(&path, /*periph*/NULL, sim->path_id,
3797 CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD);
3798 if (status != CAM_REQ_CMP) {
3799 xpt_release_bus(new_bus);
3800 free(path, M_CAMXPT);
3801 return (CAM_RESRC_UNAVAIL);
3802 }
3803
3804 xpt_setup_ccb(&cpi.ccb_h, path, CAM_PRIORITY_NORMAL);
3805 cpi.ccb_h.func_code = XPT_PATH_INQ;
3806 xpt_action((union ccb *)&cpi);
3807
3808 if (cpi.ccb_h.status == CAM_REQ_CMP) {
3809 switch (cpi.transport) {
3810 case XPORT_SPI:
3811 case XPORT_SAS:
3812 case XPORT_FC:
3813 case XPORT_USB:
3814 case XPORT_ISCSI:
3815 case XPORT_PPB:
3816 new_bus->xport = scsi_get_xport();
3817 break;
3818 case XPORT_ATA:
3819 case XPORT_SATA:
3820 new_bus->xport = ata_get_xport();
3821 break;
3822 default:
3823 new_bus->xport = &xport_default;
3824 break;
3825 }
3826 }
3827
3828 /* Notify interested parties */
3829 if (sim->path_id != CAM_XPT_PATH_ID) {
3830 union ccb *scan_ccb;
3831
3832 xpt_async(AC_PATH_REGISTERED, path, &cpi);
3833 /* Initiate bus rescan. */
3834 scan_ccb = xpt_alloc_ccb_nowait();
3835 scan_ccb->ccb_h.path = path;
3836 scan_ccb->ccb_h.func_code = XPT_SCAN_BUS;
3837 scan_ccb->crcn.flags = 0;
3838 xpt_rescan(scan_ccb);
3839 } else
3840 xpt_free_path(path);
3841 return (CAM_SUCCESS);
3842}
3843
3844int32_t
3845xpt_bus_deregister(path_id_t pathid)
3846{
3847 struct cam_path bus_path;
3848 cam_status status;
3849
3850 status = xpt_compile_path(&bus_path, NULL, pathid,
3851 CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD);
3852 if (status != CAM_REQ_CMP)
3853 return (status);
3854
3855 xpt_async(AC_LOST_DEVICE, &bus_path, NULL);
3856 xpt_async(AC_PATH_DEREGISTERED, &bus_path, NULL);
3857
3858 /* Release the reference count held while registered. */
3859 xpt_release_bus(bus_path.bus);
3860 xpt_release_path(&bus_path);
3861
3862 return (CAM_REQ_CMP);
3863}
3864
3865static path_id_t
3866xptnextfreepathid(void)
3867{
3868 struct cam_eb *bus;
3869 path_id_t pathid;
3870 const char *strval;
3871
3872 pathid = 0;
3873 xpt_lock_buses();
3874 bus = TAILQ_FIRST(&xsoftc.xpt_busses);
3875retry:
3876 /* Find an unoccupied pathid */
3877 while (bus != NULL && bus->path_id <= pathid) {
3878 if (bus->path_id == pathid)
3879 pathid++;
3880 bus = TAILQ_NEXT(bus, links);
3881 }
3882 xpt_unlock_buses();
3883
3884 /*
3885 * Ensure that this pathid is not reserved for
3886 * a bus that may be registered in the future.
3887 */
3888 if (resource_string_value("scbus", pathid, "at", &strval) == 0) {
3889 ++pathid;
3890 /* Start the search over */
3891 xpt_lock_buses();
3892 goto retry;
3893 }
3894 return (pathid);
3895}
3896
3897static path_id_t
3898xptpathid(const char *sim_name, int sim_unit, int sim_bus)
3899{
3900 path_id_t pathid;
3901 int i, dunit, val;
3902 char buf[32];
3903 const char *dname;
3904
3905 pathid = CAM_XPT_PATH_ID;
3906 snprintf(buf, sizeof(buf), "%s%d", sim_name, sim_unit);
3907 i = 0;
3908 while ((resource_find_match(&i, &dname, &dunit, "at", buf)) == 0) {
3909 if (strcmp(dname, "scbus")) {
3910 /* Avoid a bit of foot shooting. */
3911 continue;
3912 }
3913 if (dunit < 0) /* unwired?! */
3914 continue;
3915 if (resource_int_value("scbus", dunit, "bus", &val) == 0) {
3916 if (sim_bus == val) {
3917 pathid = dunit;
3918 break;
3919 }
3920 } else if (sim_bus == 0) {
3921 /* Unspecified matches bus 0 */
3922 pathid = dunit;
3923 break;
3924 } else {
3925 printf("Ambiguous scbus configuration for %s%d "
3926 "bus %d, cannot wire down. The kernel "
3927 "config entry for scbus%d should "
3928 "specify a controller bus.\n"
3929 "Scbus will be assigned dynamically.\n",
3930 sim_name, sim_unit, sim_bus, dunit);
3931 break;
3932 }
3933 }
3934
3935 if (pathid == CAM_XPT_PATH_ID)
3936 pathid = xptnextfreepathid();
3937 return (pathid);
3938}
3939
3940static const char *
3941xpt_async_string(u_int32_t async_code)
3942{
3943
3944 switch (async_code) {
3945 case AC_BUS_RESET: return ("AC_BUS_RESET");
3946 case AC_UNSOL_RESEL: return ("AC_UNSOL_RESEL");
3947 case AC_SCSI_AEN: return ("AC_SCSI_AEN");
3948 case AC_SENT_BDR: return ("AC_SENT_BDR");
3949 case AC_PATH_REGISTERED: return ("AC_PATH_REGISTERED");
3950 case AC_PATH_DEREGISTERED: return ("AC_PATH_DEREGISTERED");
3951 case AC_FOUND_DEVICE: return ("AC_FOUND_DEVICE");
3952 case AC_LOST_DEVICE: return ("AC_LOST_DEVICE");
3953 case AC_TRANSFER_NEG: return ("AC_TRANSFER_NEG");
3954 case AC_INQ_CHANGED: return ("AC_INQ_CHANGED");
3955 case AC_GETDEV_CHANGED: return ("AC_GETDEV_CHANGED");
3956 case AC_CONTRACT: return ("AC_CONTRACT");
3957 case AC_ADVINFO_CHANGED: return ("AC_ADVINFO_CHANGED");
3958 case AC_UNIT_ATTENTION: return ("AC_UNIT_ATTENTION");
3959 }
3960 return ("AC_UNKNOWN");
3961}
3962
3963void
3964xpt_async(u_int32_t async_code, struct cam_path *path, void *async_arg)
3965{
3966 struct cam_eb *bus;
3967 struct cam_et *target, *next_target;
3968 struct cam_ed *device, *next_device;
3969
3970 mtx_assert(path->bus->sim->mtx, MA_OWNED);
3971 CAM_DEBUG(path, CAM_DEBUG_TRACE | CAM_DEBUG_INFO,
3972 ("xpt_async(%s)\n", xpt_async_string(async_code)));
3973
3974 /*
3975 * Most async events come from a CAM interrupt context. In
3976 * a few cases, the error recovery code at the peripheral layer,
3977 * which may run from our SWI or a process context, may signal
3978 * deferred events with a call to xpt_async.
3979 */
3980
3981 bus = path->bus;
3982
3983 if (async_code == AC_BUS_RESET) {
3984 /* Update our notion of when the last reset occurred */
3985 microtime(&bus->last_reset);
3986 }
3987
3988 for (target = TAILQ_FIRST(&bus->et_entries);
3989 target != NULL;
3990 target = next_target) {
3991
3992 next_target = TAILQ_NEXT(target, links);
3993
3994 if (path->target != target
3995 && path->target->target_id != CAM_TARGET_WILDCARD
3996 && target->target_id != CAM_TARGET_WILDCARD)
3997 continue;
3998
3999 if (async_code == AC_SENT_BDR) {
4000 /* Update our notion of when the last reset occurred */
4001 microtime(&path->target->last_reset);
4002 }
4003
4004 for (device = TAILQ_FIRST(&target->ed_entries);
4005 device != NULL;
4006 device = next_device) {
4007
4008 next_device = TAILQ_NEXT(device, links);
4009
4010 if (path->device != device
4011 && path->device->lun_id != CAM_LUN_WILDCARD
4012 && device->lun_id != CAM_LUN_WILDCARD)
4013 continue;
4014 /*
4015 * The async callback could free the device.
4016 * If it is a broadcast async, it doesn't hold
4017 * device reference, so take our own reference.
4018 */
4019 xpt_acquire_device(device);
4020 (*(bus->xport->async))(async_code, bus,
4021 target, device,
4022 async_arg);
4023
4024 xpt_async_bcast(&device->asyncs, async_code,
4025 path, async_arg);
4026 xpt_release_device(device);
4027 }
4028 }
4029
4030 /*
4031 * If this wasn't a fully wildcarded async, tell all
4032 * clients that want all async events.
4033 */
4034 if (bus != xpt_periph->path->bus)
4035 xpt_async_bcast(&xpt_periph->path->device->asyncs, async_code,
4036 path, async_arg);
4037}
4038
4039static void
4040xpt_async_bcast(struct async_list *async_head,
4041 u_int32_t async_code,
4042 struct cam_path *path, void *async_arg)
4043{
4044 struct async_node *cur_entry;
4045
4046 cur_entry = SLIST_FIRST(async_head);
4047 while (cur_entry != NULL) {
4048 struct async_node *next_entry;
4049 /*
4050 * Grab the next list entry before we call the current
4051 * entry's callback. This is because the callback function
4052 * can delete its async callback entry.
4053 */
4054 next_entry = SLIST_NEXT(cur_entry, links);
4055 if ((cur_entry->event_enable & async_code) != 0)
4056 cur_entry->callback(cur_entry->callback_arg,
4057 async_code, path,
4058 async_arg);
4059 cur_entry = next_entry;
4060 }
4061}
4062
4063static void
4064xpt_dev_async_default(u_int32_t async_code, struct cam_eb *bus,
4065 struct cam_et *target, struct cam_ed *device,
4066 void *async_arg)
4067{
4068 printf("%s called\n", __func__);
4069}
4070
4071u_int32_t
4072xpt_freeze_devq(struct cam_path *path, u_int count)
4073{
4074 struct cam_ed *dev = path->device;
4075
4076 mtx_assert(path->bus->sim->mtx, MA_OWNED);
4077 dev->ccbq.queue.qfrozen_cnt += count;
4078 /* Remove frozen device from sendq. */
4079 if (device_is_queued(dev)) {
4080 camq_remove(&dev->sim->devq->send_queue,
4081 dev->devq_entry.pinfo.index);
4082 }
4083 return (dev->ccbq.queue.qfrozen_cnt);
4084}
4085
4086u_int32_t
4087xpt_freeze_simq(struct cam_sim *sim, u_int count)
4088{
4089
4090 mtx_assert(sim->mtx, MA_OWNED);
4091 sim->devq->send_queue.qfrozen_cnt += count;
4092 return (sim->devq->send_queue.qfrozen_cnt);
4093}
4094
4095static void
4096xpt_release_devq_timeout(void *arg)
4097{
4098 struct cam_ed *device;
4099
4100 device = (struct cam_ed *)arg;
4101 xpt_release_devq_device(device, /*count*/1, /*run_queue*/TRUE);
4102}
4103
4104void
4105xpt_release_devq(struct cam_path *path, u_int count, int run_queue)
4106{
4107
4108 mtx_assert(path->bus->sim->mtx, MA_OWNED);
4109 xpt_release_devq_device(path->device, count, run_queue);
4110}
4111
4112void
4113xpt_release_devq_device(struct cam_ed *dev, u_int count, int run_queue)
4114{
4115
4116 if (count > dev->ccbq.queue.qfrozen_cnt) {
4117#ifdef INVARIANTS
4118 printf("xpt_release_devq(): requested %u > present %u\n",
4119 count, dev->ccbq.queue.qfrozen_cnt);
4120#endif
4121 count = dev->ccbq.queue.qfrozen_cnt;
4122 }
4123 dev->ccbq.queue.qfrozen_cnt -= count;
4124 if (dev->ccbq.queue.qfrozen_cnt == 0) {
4125 /*
4126 * No longer need to wait for a successful
4127 * command completion.
4128 */
4129 dev->flags &= ~CAM_DEV_REL_ON_COMPLETE;
4130 /*
4131 * Remove any timeouts that might be scheduled
4132 * to release this queue.
4133 */
4134 if ((dev->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) {
4135 callout_stop(&dev->callout);
4136 dev->flags &= ~CAM_DEV_REL_TIMEOUT_PENDING;
4137 }
4138 xpt_run_dev_allocq(dev);
4139 if (run_queue == 0)
4140 return;
4141 /*
4142 * Now that we are unfrozen schedule the
4143 * device so any pending transactions are
4144 * run.
4145 */
4146 if (xpt_schedule_devq(dev->sim->devq, dev))
4147 xpt_run_devq(dev->sim->devq);
4148 }
4149}
4150
4151void
4152xpt_release_simq(struct cam_sim *sim, int run_queue)
4153{
4154 struct camq *sendq;
4155
4156 mtx_assert(sim->mtx, MA_OWNED);
4157 sendq = &(sim->devq->send_queue);
4158 if (sendq->qfrozen_cnt <= 0) {
4159#ifdef INVARIANTS
4160 printf("xpt_release_simq: requested 1 > present %u\n",
4161 sendq->qfrozen_cnt);
4162#endif
4163 } else
4164 sendq->qfrozen_cnt--;
4165 if (sendq->qfrozen_cnt == 0) {
4166 /*
4167 * If there is a timeout scheduled to release this
4168 * sim queue, remove it. The queue frozen count is
4169 * already at 0.
4170 */
4171 if ((sim->flags & CAM_SIM_REL_TIMEOUT_PENDING) != 0){
4172 callout_stop(&sim->callout);
4173 sim->flags &= ~CAM_SIM_REL_TIMEOUT_PENDING;
4174 }
4175 if (run_queue) {
4176 /*
4177 * Now that we are unfrozen run the send queue.
4178 */
4179 xpt_run_devq(sim->devq);
4180 }
4181 }
4182}
4183
4184/*
4185 * XXX Appears to be unused.
4186 */
4187static void
4188xpt_release_simq_timeout(void *arg)
4189{
4190 struct cam_sim *sim;
4191
4192 sim = (struct cam_sim *)arg;
4193 xpt_release_simq(sim, /* run_queue */ TRUE);
4194}
4195
4196void
4197xpt_done(union ccb *done_ccb)
4198{
4199 struct cam_sim *sim;
4200 int first;
4201
4202 CAM_DEBUG(done_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xpt_done\n"));
4203 if ((done_ccb->ccb_h.func_code & XPT_FC_QUEUED) != 0) {
4204 /*
4205 * Queue up the request for handling by our SWI handler
4206 * any of the "non-immediate" type of ccbs.
4207 */
4208 sim = done_ccb->ccb_h.path->bus->sim;
4209 TAILQ_INSERT_TAIL(&sim->sim_doneq, &done_ccb->ccb_h,
4210 sim_links.tqe);
4211 done_ccb->ccb_h.pinfo.index = CAM_DONEQ_INDEX;
4212 if ((sim->flags & (CAM_SIM_ON_DONEQ | CAM_SIM_POLLED |
4213 CAM_SIM_BATCH)) == 0) {
4214 mtx_lock(&cam_simq_lock);
4215 first = TAILQ_EMPTY(&cam_simq);
4216 TAILQ_INSERT_TAIL(&cam_simq, sim, links);
4217 mtx_unlock(&cam_simq_lock);
4218 sim->flags |= CAM_SIM_ON_DONEQ;
4219 if (first)
4220 swi_sched(cambio_ih, 0);
4221 }
4222 }
4223}
4224
4225void
4226xpt_batch_start(struct cam_sim *sim)
4227{
4228
4229 KASSERT((sim->flags & CAM_SIM_BATCH) == 0, ("Batch flag already set"));
4230 sim->flags |= CAM_SIM_BATCH;
4231}
4232
4233void
4234xpt_batch_done(struct cam_sim *sim)
4235{
4236
4237 KASSERT((sim->flags & CAM_SIM_BATCH) != 0, ("Batch flag was not set"));
4238 sim->flags &= ~CAM_SIM_BATCH;
4239 if (!TAILQ_EMPTY(&sim->sim_doneq) &&
4240 (sim->flags & CAM_SIM_ON_DONEQ) == 0)
4241 camisr_runqueue(&sim->sim_doneq);
4242}
4243
4244union ccb *
4245xpt_alloc_ccb()
4246{
4247 union ccb *new_ccb;
4248
4249 new_ccb = malloc(sizeof(*new_ccb), M_CAMCCB, M_ZERO|M_WAITOK);
4250 return (new_ccb);
4251}
4252
4253union ccb *
4254xpt_alloc_ccb_nowait()
4255{
4256 union ccb *new_ccb;
4257
4258 new_ccb = malloc(sizeof(*new_ccb), M_CAMCCB, M_ZERO|M_NOWAIT);
4259 return (new_ccb);
4260}
4261
4262void
4263xpt_free_ccb(union ccb *free_ccb)
4264{
4265 free(free_ccb, M_CAMCCB);
4266}
4267
4268
4269
4270/* Private XPT functions */
4271
4272/*
4273 * Get a CAM control block for the caller. Charge the structure to the device
4274 * referenced by the path. If the this device has no 'credits' then the
4275 * device already has the maximum number of outstanding operations under way
4276 * and we return NULL. If we don't have sufficient resources to allocate more
4277 * ccbs, we also return NULL.
4278 */
4279static union ccb *
4280xpt_get_ccb(struct cam_ed *device)
4281{
4282 union ccb *new_ccb;
4283 struct cam_sim *sim;
4284
4285 sim = device->sim;
4286 if ((new_ccb = (union ccb *)SLIST_FIRST(&sim->ccb_freeq)) == NULL) {
4287 new_ccb = xpt_alloc_ccb_nowait();
4288 if (new_ccb == NULL) {
4289 return (NULL);
4290 }
4291 if ((sim->flags & CAM_SIM_MPSAFE) == 0)
4292 callout_handle_init(&new_ccb->ccb_h.timeout_ch);
4293 SLIST_INSERT_HEAD(&sim->ccb_freeq, &new_ccb->ccb_h,
4294 xpt_links.sle);
4295 sim->ccb_count++;
4296 }
4297 cam_ccbq_take_opening(&device->ccbq);
4298 SLIST_REMOVE_HEAD(&sim->ccb_freeq, xpt_links.sle);
4299 return (new_ccb);
4300}
4301
4302static void
4303xpt_release_bus(struct cam_eb *bus)
4304{
4305
4306 xpt_lock_buses();
4307 KASSERT(bus->refcount >= 1, ("bus->refcount >= 1"));
4308 if (--bus->refcount > 0) {
4309 xpt_unlock_buses();
4310 return;
4311 }
4312 KASSERT(TAILQ_EMPTY(&bus->et_entries),
4313 ("refcount is zero, but target list is not empty"));
4314 TAILQ_REMOVE(&xsoftc.xpt_busses, bus, links);
4315 xsoftc.bus_generation++;
4316 xpt_unlock_buses();
4317 cam_sim_release(bus->sim);
4318 free(bus, M_CAMXPT);
4319}
4320
4321static struct cam_et *
4322xpt_alloc_target(struct cam_eb *bus, target_id_t target_id)
4323{
4324 struct cam_et *cur_target, *target;
4325
4326 mtx_assert(bus->sim->mtx, MA_OWNED);
4327 target = (struct cam_et *)malloc(sizeof(*target), M_CAMXPT,
4328 M_NOWAIT|M_ZERO);
4329 if (target == NULL)
4330 return (NULL);
4331
4332 TAILQ_INIT(&target->ed_entries);
4333 target->bus = bus;
4334 target->target_id = target_id;
4335 target->refcount = 1;
4336 target->generation = 0;
4337 target->luns = NULL;
4338 timevalclear(&target->last_reset);
4339 /*
4340 * Hold a reference to our parent bus so it
4341 * will not go away before we do.
4342 */
4343 xpt_lock_buses();
4344 bus->refcount++;
4345 xpt_unlock_buses();
4346
4347 /* Insertion sort into our bus's target list */
4348 cur_target = TAILQ_FIRST(&bus->et_entries);
4349 while (cur_target != NULL && cur_target->target_id < target_id)
4350 cur_target = TAILQ_NEXT(cur_target, links);
4351 if (cur_target != NULL) {
4352 TAILQ_INSERT_BEFORE(cur_target, target, links);
4353 } else {
4354 TAILQ_INSERT_TAIL(&bus->et_entries, target, links);
4355 }
4356 bus->generation++;
4357 return (target);
4358}
4359
4360static void
4361xpt_release_target(struct cam_et *target)
4362{
4363
4364 mtx_assert(target->bus->sim->mtx, MA_OWNED);
4365 if (--target->refcount > 0)
4366 return;
4367 KASSERT(TAILQ_EMPTY(&target->ed_entries),
4368 ("refcount is zero, but device list is not empty"));
4369 TAILQ_REMOVE(&target->bus->et_entries, target, links);
4370 target->bus->generation++;
4371 xpt_release_bus(target->bus);
4372 if (target->luns)
4373 free(target->luns, M_CAMXPT);
4374 free(target, M_CAMXPT);
4375}
4376
4377static struct cam_ed *
4378xpt_alloc_device_default(struct cam_eb *bus, struct cam_et *target,
4379 lun_id_t lun_id)
4380{
4381 struct cam_ed *device;
4382
4383 device = xpt_alloc_device(bus, target, lun_id);
4384 if (device == NULL)
4385 return (NULL);
4386
4387 device->mintags = 1;
4388 device->maxtags = 1;
4389 bus->sim->max_ccbs += device->ccbq.devq_openings;
4390 return (device);
4391}
4392
4393struct cam_ed *
4394xpt_alloc_device(struct cam_eb *bus, struct cam_et *target, lun_id_t lun_id)
4395{
4396 struct cam_ed *cur_device, *device;
4397 struct cam_devq *devq;
4398 cam_status status;
4399
4400 mtx_assert(target->bus->sim->mtx, MA_OWNED);
4401 /* Make space for us in the device queue on our bus */
4402 devq = bus->sim->devq;
4403 status = cam_devq_resize(devq, devq->send_queue.array_size + 1);
4404 if (status != CAM_REQ_CMP)
4405 return (NULL);
4406
4407 device = (struct cam_ed *)malloc(sizeof(*device),
4408 M_CAMDEV, M_NOWAIT|M_ZERO);
4409 if (device == NULL)
4410 return (NULL);
4411
4412 cam_init_pinfo(&device->devq_entry.pinfo);
4413 device->devq_entry.device = device;
4414 device->target = target;
4415 device->lun_id = lun_id;
4416 device->sim = bus->sim;
4417 /* Initialize our queues */
4418 if (camq_init(&device->drvq, 0) != 0) {
4419 free(device, M_CAMDEV);
4420 return (NULL);
4421 }
4422 if (cam_ccbq_init(&device->ccbq,
4423 bus->sim->max_dev_openings) != 0) {
4424 camq_fini(&device->drvq);
4425 free(device, M_CAMDEV);
4426 return (NULL);
4427 }
4428 SLIST_INIT(&device->asyncs);
4429 SLIST_INIT(&device->periphs);
4430 device->generation = 0;
4431 device->owner = NULL;
4432 device->flags = CAM_DEV_UNCONFIGURED;
4433 device->tag_delay_count = 0;
4434 device->tag_saved_openings = 0;
4435 device->refcount = 1;
4436 callout_init_mtx(&device->callout, bus->sim->mtx, 0);
4437
4438 cur_device = TAILQ_FIRST(&target->ed_entries);
4439 while (cur_device != NULL && cur_device->lun_id < lun_id)
4440 cur_device = TAILQ_NEXT(cur_device, links);
4441 if (cur_device != NULL)
4442 TAILQ_INSERT_BEFORE(cur_device, device, links);
4443 else
4444 TAILQ_INSERT_TAIL(&target->ed_entries, device, links);
4445 target->refcount++;
4446 target->generation++;
4447 return (device);
4448}
4449
4450void
4451xpt_acquire_device(struct cam_ed *device)
4452{
4453
4454 mtx_assert(device->sim->mtx, MA_OWNED);
4455 device->refcount++;
4456}
4457
4458void
4459xpt_release_device(struct cam_ed *device)
4460{
4461 struct cam_devq *devq;
4462
4463 mtx_assert(device->sim->mtx, MA_OWNED);
4464 if (--device->refcount > 0)
4465 return;
4466
4467 KASSERT(SLIST_EMPTY(&device->periphs),
4468 ("refcount is zero, but periphs list is not empty"));
4469 if (device->devq_entry.pinfo.index != CAM_UNQUEUED_INDEX)
4470 panic("Removing device while still queued for ccbs");
4471
4472 if ((device->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0)
4473 callout_stop(&device->callout);
4474
4475 TAILQ_REMOVE(&device->target->ed_entries, device,links);
4476 device->target->generation++;
4477 device->target->bus->sim->max_ccbs -= device->ccbq.devq_openings;
4478 /* Release our slot in the devq */
4479 devq = device->target->bus->sim->devq;
4480 cam_devq_resize(devq, devq->send_queue.array_size - 1);
4481 camq_fini(&device->drvq);
4482 cam_ccbq_fini(&device->ccbq);
4483 /*
4484 * Free allocated memory. free(9) does nothing if the
4485 * supplied pointer is NULL, so it is safe to call without
4486 * checking.
4487 */
4488 free(device->supported_vpds, M_CAMXPT);
4489 free(device->device_id, M_CAMXPT);
4490 free(device->physpath, M_CAMXPT);
4491 free(device->rcap_buf, M_CAMXPT);
4492 free(device->serial_num, M_CAMXPT);
4493
4494 xpt_release_target(device->target);
4495 free(device, M_CAMDEV);
4496}
4497
4498u_int32_t
4499xpt_dev_ccbq_resize(struct cam_path *path, int newopenings)
4500{
4501 int diff;
4502 int result;
4503 struct cam_ed *dev;
4504
4505 dev = path->device;
4506
4507 diff = newopenings - (dev->ccbq.dev_active + dev->ccbq.dev_openings);
4508 result = cam_ccbq_resize(&dev->ccbq, newopenings);
4509 if (result == CAM_REQ_CMP && (diff < 0)) {
4510 dev->flags |= CAM_DEV_RESIZE_QUEUE_NEEDED;
4511 }
4512 if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0
4513 || (dev->inq_flags & SID_CmdQue) != 0)
4514 dev->tag_saved_openings = newopenings;
4515 /* Adjust the global limit */
4516 dev->sim->max_ccbs += diff;
4517 return (result);
4518}
4519
4520static struct cam_eb *
4521xpt_find_bus(path_id_t path_id)
4522{
4523 struct cam_eb *bus;
4524
4525 xpt_lock_buses();
4526 for (bus = TAILQ_FIRST(&xsoftc.xpt_busses);
4527 bus != NULL;
4528 bus = TAILQ_NEXT(bus, links)) {
4529 if (bus->path_id == path_id) {
4530 bus->refcount++;
4531 break;
4532 }
4533 }
4534 xpt_unlock_buses();
4535 return (bus);
4536}
4537
4538static struct cam_et *
4539xpt_find_target(struct cam_eb *bus, target_id_t target_id)
4540{
4541 struct cam_et *target;
4542
4543 mtx_assert(bus->sim->mtx, MA_OWNED);
4544 for (target = TAILQ_FIRST(&bus->et_entries);
4545 target != NULL;
4546 target = TAILQ_NEXT(target, links)) {
4547 if (target->target_id == target_id) {
4548 target->refcount++;
4549 break;
4550 }
4551 }
4552 return (target);
4553}
4554
4555static struct cam_ed *
4556xpt_find_device(struct cam_et *target, lun_id_t lun_id)
4557{
4558 struct cam_ed *device;
4559
4560 mtx_assert(target->bus->sim->mtx, MA_OWNED);
4561 for (device = TAILQ_FIRST(&target->ed_entries);
4562 device != NULL;
4563 device = TAILQ_NEXT(device, links)) {
4564 if (device->lun_id == lun_id) {
4565 device->refcount++;
4566 break;
4567 }
4568 }
4569 return (device);
4570}
4571
4572void
4573xpt_start_tags(struct cam_path *path)
4574{
4575 struct ccb_relsim crs;
4576 struct cam_ed *device;
4577 struct cam_sim *sim;
4578 int newopenings;
4579
4580 device = path->device;
4581 sim = path->bus->sim;
4582 device->flags &= ~CAM_DEV_TAG_AFTER_COUNT;
4583 xpt_freeze_devq(path, /*count*/1);
4584 device->inq_flags |= SID_CmdQue;
4585 if (device->tag_saved_openings != 0)
4586 newopenings = device->tag_saved_openings;
4587 else
4588 newopenings = min(device->maxtags,
4589 sim->max_tagged_dev_openings);
4590 xpt_dev_ccbq_resize(path, newopenings);
4591 xpt_async(AC_GETDEV_CHANGED, path, NULL);
4592 xpt_setup_ccb(&crs.ccb_h, path, CAM_PRIORITY_NORMAL);
4593 crs.ccb_h.func_code = XPT_REL_SIMQ;
4594 crs.release_flags = RELSIM_RELEASE_AFTER_QEMPTY;
4595 crs.openings
4596 = crs.release_timeout
4597 = crs.qfrozen_cnt
4598 = 0;
4599 xpt_action((union ccb *)&crs);
4600}
4601
4602void
4603xpt_stop_tags(struct cam_path *path)
4604{
4605 struct ccb_relsim crs;
4606 struct cam_ed *device;
4607 struct cam_sim *sim;
4608
4609 device = path->device;
4610 sim = path->bus->sim;
4611 device->flags &= ~CAM_DEV_TAG_AFTER_COUNT;
4612 device->tag_delay_count = 0;
4613 xpt_freeze_devq(path, /*count*/1);
4614 device->inq_flags &= ~SID_CmdQue;
4615 xpt_dev_ccbq_resize(path, sim->max_dev_openings);
4616 xpt_async(AC_GETDEV_CHANGED, path, NULL);
4617 xpt_setup_ccb(&crs.ccb_h, path, CAM_PRIORITY_NORMAL);
4618 crs.ccb_h.func_code = XPT_REL_SIMQ;
4619 crs.release_flags = RELSIM_RELEASE_AFTER_QEMPTY;
4620 crs.openings
4621 = crs.release_timeout
4622 = crs.qfrozen_cnt
4623 = 0;
4624 xpt_action((union ccb *)&crs);
4625}
4626
4627static void
4628xpt_boot_delay(void *arg)
4629{
4630
4631 xpt_release_boot();
4632}
4633
4634static void
4635xpt_config(void *arg)
4636{
4637 /*
4638 * Now that interrupts are enabled, go find our devices
4639 */
4640
4641 /* Setup debugging path */
4642 if (cam_dflags != CAM_DEBUG_NONE) {
2922 start_ccb->ccb_h.path_id,
2923 start_ccb->ccb_h.target_id,
2924 start_ccb->ccb_h.target_lun) !=
2925 CAM_REQ_CMP) {
2926 start_ccb->ccb_h.status = CAM_RESRC_UNAVAIL;
2927 } else {
2928 cam_dflags = start_ccb->cdbg.flags;
2929 start_ccb->ccb_h.status = CAM_REQ_CMP;
2930 xpt_print(cam_dpath, "debugging flags now %x\n",
2931 cam_dflags);
2932 }
2933 } else
2934 start_ccb->ccb_h.status = CAM_REQ_CMP;
2935 break;
2936 }
2937 case XPT_NOOP:
2938 if ((start_ccb->ccb_h.flags & CAM_DEV_QFREEZE) != 0)
2939 xpt_freeze_devq(path, 1);
2940 start_ccb->ccb_h.status = CAM_REQ_CMP;
2941 break;
2942 default:
2943 case XPT_SDEV_TYPE:
2944 case XPT_TERM_IO:
2945 case XPT_ENG_INQ:
2946 /* XXX Implement */
2947 printf("%s: CCB type %#x not supported\n", __func__,
2948 start_ccb->ccb_h.func_code);
2949 start_ccb->ccb_h.status = CAM_PROVIDE_FAIL;
2950 if (start_ccb->ccb_h.func_code & XPT_FC_DEV_QUEUED) {
2951 xpt_done(start_ccb);
2952 }
2953 break;
2954 }
2955}
2956
2957void
2958xpt_polled_action(union ccb *start_ccb)
2959{
2960 u_int32_t timeout;
2961 struct cam_sim *sim;
2962 struct cam_devq *devq;
2963 struct cam_ed *dev;
2964
2965
2966 timeout = start_ccb->ccb_h.timeout * 10;
2967 sim = start_ccb->ccb_h.path->bus->sim;
2968 devq = sim->devq;
2969 dev = start_ccb->ccb_h.path->device;
2970
2971 mtx_assert(sim->mtx, MA_OWNED);
2972
2973 /* Don't use ISR for this SIM while polling. */
2974 sim->flags |= CAM_SIM_POLLED;
2975
2976 /*
2977 * Steal an opening so that no other queued requests
2978 * can get it before us while we simulate interrupts.
2979 */
2980 dev->ccbq.devq_openings--;
2981 dev->ccbq.dev_openings--;
2982
2983 while(((devq != NULL && devq->send_openings <= 0) ||
2984 dev->ccbq.dev_openings < 0) && (--timeout > 0)) {
2985 DELAY(100);
2986 (*(sim->sim_poll))(sim);
2987 camisr_runqueue(&sim->sim_doneq);
2988 }
2989
2990 dev->ccbq.devq_openings++;
2991 dev->ccbq.dev_openings++;
2992
2993 if (timeout != 0) {
2994 xpt_action(start_ccb);
2995 while(--timeout > 0) {
2996 (*(sim->sim_poll))(sim);
2997 camisr_runqueue(&sim->sim_doneq);
2998 if ((start_ccb->ccb_h.status & CAM_STATUS_MASK)
2999 != CAM_REQ_INPROG)
3000 break;
3001 DELAY(100);
3002 }
3003 if (timeout == 0) {
3004 /*
3005 * XXX Is it worth adding a sim_timeout entry
3006 * point so we can attempt recovery? If
3007 * this is only used for dumps, I don't think
3008 * it is.
3009 */
3010 start_ccb->ccb_h.status = CAM_CMD_TIMEOUT;
3011 }
3012 } else {
3013 start_ccb->ccb_h.status = CAM_RESRC_UNAVAIL;
3014 }
3015
3016 /* We will use CAM ISR for this SIM again. */
3017 sim->flags &= ~CAM_SIM_POLLED;
3018}
3019
3020/*
3021 * Schedule a peripheral driver to receive a ccb when it's
3022 * target device has space for more transactions.
3023 */
3024void
3025xpt_schedule(struct cam_periph *perph, u_int32_t new_priority)
3026{
3027 struct cam_ed *device;
3028 int runq = 0;
3029
3030 mtx_assert(perph->sim->mtx, MA_OWNED);
3031
3032 CAM_DEBUG(perph->path, CAM_DEBUG_TRACE, ("xpt_schedule\n"));
3033 device = perph->path->device;
3034 if (periph_is_queued(perph)) {
3035 /* Simply reorder based on new priority */
3036 CAM_DEBUG(perph->path, CAM_DEBUG_SUBTRACE,
3037 (" change priority to %d\n", new_priority));
3038 if (new_priority < perph->pinfo.priority) {
3039 camq_change_priority(&device->drvq,
3040 perph->pinfo.index,
3041 new_priority);
3042 runq = 1;
3043 }
3044 } else {
3045 /* New entry on the queue */
3046 CAM_DEBUG(perph->path, CAM_DEBUG_SUBTRACE,
3047 (" added periph to queue\n"));
3048 perph->pinfo.priority = new_priority;
3049 perph->pinfo.generation = ++device->drvq.generation;
3050 camq_insert(&device->drvq, &perph->pinfo);
3051 runq = 1;
3052 }
3053 if (runq != 0) {
3054 CAM_DEBUG(perph->path, CAM_DEBUG_SUBTRACE,
3055 (" calling xpt_run_dev_allocq\n"));
3056 xpt_run_dev_allocq(device);
3057 }
3058}
3059
3060
3061/*
3062 * Schedule a device to run on a given queue.
3063 * If the device was inserted as a new entry on the queue,
3064 * return 1 meaning the device queue should be run. If we
3065 * were already queued, implying someone else has already
3066 * started the queue, return 0 so the caller doesn't attempt
3067 * to run the queue.
3068 */
3069int
3070xpt_schedule_dev(struct camq *queue, cam_pinfo *pinfo,
3071 u_int32_t new_priority)
3072{
3073 int retval;
3074 u_int32_t old_priority;
3075
3076 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_schedule_dev\n"));
3077
3078 old_priority = pinfo->priority;
3079
3080 /*
3081 * Are we already queued?
3082 */
3083 if (pinfo->index != CAM_UNQUEUED_INDEX) {
3084 /* Simply reorder based on new priority */
3085 if (new_priority < old_priority) {
3086 camq_change_priority(queue, pinfo->index,
3087 new_priority);
3088 CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3089 ("changed priority to %d\n",
3090 new_priority));
3091 retval = 1;
3092 } else
3093 retval = 0;
3094 } else {
3095 /* New entry on the queue */
3096 if (new_priority < old_priority)
3097 pinfo->priority = new_priority;
3098
3099 CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3100 ("Inserting onto queue\n"));
3101 pinfo->generation = ++queue->generation;
3102 camq_insert(queue, pinfo);
3103 retval = 1;
3104 }
3105 return (retval);
3106}
3107
3108static void
3109xpt_run_dev_allocq(struct cam_ed *device)
3110{
3111 struct camq *drvq;
3112
3113 if (device->ccbq.devq_allocating)
3114 return;
3115 device->ccbq.devq_allocating = 1;
3116 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_dev_allocq(%p)\n", device));
3117 drvq = &device->drvq;
3118 while ((drvq->entries > 0) &&
3119 (device->ccbq.devq_openings > 0 ||
3120 CAMQ_GET_PRIO(drvq) <= CAM_PRIORITY_OOB) &&
3121 (device->ccbq.queue.qfrozen_cnt == 0)) {
3122 union ccb *work_ccb;
3123 struct cam_periph *drv;
3124
3125 KASSERT(drvq->entries > 0, ("xpt_run_dev_allocq: "
3126 "Device on queue without any work to do"));
3127 if ((work_ccb = xpt_get_ccb(device)) != NULL) {
3128 drv = (struct cam_periph*)camq_remove(drvq, CAMQ_HEAD);
3129 xpt_setup_ccb(&work_ccb->ccb_h, drv->path,
3130 drv->pinfo.priority);
3131 CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3132 ("calling periph start\n"));
3133 drv->periph_start(drv, work_ccb);
3134 } else {
3135 /*
3136 * Malloc failure in alloc_ccb
3137 */
3138 /*
3139 * XXX add us to a list to be run from free_ccb
3140 * if we don't have any ccbs active on this
3141 * device queue otherwise we may never get run
3142 * again.
3143 */
3144 break;
3145 }
3146 }
3147 device->ccbq.devq_allocating = 0;
3148}
3149
3150static void
3151xpt_run_devq(struct cam_devq *devq)
3152{
3153 char cdb_str[(SCSI_MAX_CDBLEN * 3) + 1];
3154
3155 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_devq\n"));
3156
3157 devq->send_queue.qfrozen_cnt++;
3158 while ((devq->send_queue.entries > 0)
3159 && (devq->send_openings > 0)
3160 && (devq->send_queue.qfrozen_cnt <= 1)) {
3161 struct cam_ed_qinfo *qinfo;
3162 struct cam_ed *device;
3163 union ccb *work_ccb;
3164 struct cam_sim *sim;
3165
3166 qinfo = (struct cam_ed_qinfo *)camq_remove(&devq->send_queue,
3167 CAMQ_HEAD);
3168 device = qinfo->device;
3169 CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3170 ("running device %p\n", device));
3171
3172 work_ccb = cam_ccbq_peek_ccb(&device->ccbq, CAMQ_HEAD);
3173 if (work_ccb == NULL) {
3174 printf("device on run queue with no ccbs???\n");
3175 continue;
3176 }
3177
3178 if ((work_ccb->ccb_h.flags & CAM_HIGH_POWER) != 0) {
3179
3180 mtx_lock(&xsoftc.xpt_lock);
3181 if (xsoftc.num_highpower <= 0) {
3182 /*
3183 * We got a high power command, but we
3184 * don't have any available slots. Freeze
3185 * the device queue until we have a slot
3186 * available.
3187 */
3188 xpt_freeze_devq(work_ccb->ccb_h.path, 1);
3189 STAILQ_INSERT_TAIL(&xsoftc.highpowerq,
3190 &work_ccb->ccb_h,
3191 xpt_links.stqe);
3192
3193 mtx_unlock(&xsoftc.xpt_lock);
3194 continue;
3195 } else {
3196 /*
3197 * Consume a high power slot while
3198 * this ccb runs.
3199 */
3200 xsoftc.num_highpower--;
3201 }
3202 mtx_unlock(&xsoftc.xpt_lock);
3203 }
3204 cam_ccbq_remove_ccb(&device->ccbq, work_ccb);
3205 cam_ccbq_send_ccb(&device->ccbq, work_ccb);
3206
3207 devq->send_openings--;
3208 devq->send_active++;
3209
3210 xpt_schedule_devq(devq, device);
3211
3212 if ((work_ccb->ccb_h.flags & CAM_DEV_QFREEZE) != 0) {
3213 /*
3214 * The client wants to freeze the queue
3215 * after this CCB is sent.
3216 */
3217 xpt_freeze_devq(work_ccb->ccb_h.path, 1);
3218 }
3219
3220 /* In Target mode, the peripheral driver knows best... */
3221 if (work_ccb->ccb_h.func_code == XPT_SCSI_IO) {
3222 if ((device->inq_flags & SID_CmdQue) != 0
3223 && work_ccb->csio.tag_action != CAM_TAG_ACTION_NONE)
3224 work_ccb->ccb_h.flags |= CAM_TAG_ACTION_VALID;
3225 else
3226 /*
3227 * Clear this in case of a retried CCB that
3228 * failed due to a rejected tag.
3229 */
3230 work_ccb->ccb_h.flags &= ~CAM_TAG_ACTION_VALID;
3231 }
3232
3233 switch (work_ccb->ccb_h.func_code) {
3234 case XPT_SCSI_IO:
3235 CAM_DEBUG(work_ccb->ccb_h.path,
3236 CAM_DEBUG_CDB,("%s. CDB: %s\n",
3237 scsi_op_desc(work_ccb->csio.cdb_io.cdb_bytes[0],
3238 &device->inq_data),
3239 scsi_cdb_string(work_ccb->csio.cdb_io.cdb_bytes,
3240 cdb_str, sizeof(cdb_str))));
3241 break;
3242 case XPT_ATA_IO:
3243 CAM_DEBUG(work_ccb->ccb_h.path,
3244 CAM_DEBUG_CDB,("%s. ACB: %s\n",
3245 ata_op_string(&work_ccb->ataio.cmd),
3246 ata_cmd_string(&work_ccb->ataio.cmd,
3247 cdb_str, sizeof(cdb_str))));
3248 break;
3249 default:
3250 break;
3251 }
3252
3253 /*
3254 * Device queues can be shared among multiple sim instances
3255 * that reside on different busses. Use the SIM in the queue
3256 * CCB's path, rather than the one in the bus that was passed
3257 * into this function.
3258 */
3259 sim = work_ccb->ccb_h.path->bus->sim;
3260 (*(sim->sim_action))(sim, work_ccb);
3261 }
3262 devq->send_queue.qfrozen_cnt--;
3263}
3264
3265/*
3266 * This function merges stuff from the slave ccb into the master ccb, while
3267 * keeping important fields in the master ccb constant.
3268 */
3269void
3270xpt_merge_ccb(union ccb *master_ccb, union ccb *slave_ccb)
3271{
3272
3273 /*
3274 * Pull fields that are valid for peripheral drivers to set
3275 * into the master CCB along with the CCB "payload".
3276 */
3277 master_ccb->ccb_h.retry_count = slave_ccb->ccb_h.retry_count;
3278 master_ccb->ccb_h.func_code = slave_ccb->ccb_h.func_code;
3279 master_ccb->ccb_h.timeout = slave_ccb->ccb_h.timeout;
3280 master_ccb->ccb_h.flags = slave_ccb->ccb_h.flags;
3281 bcopy(&(&slave_ccb->ccb_h)[1], &(&master_ccb->ccb_h)[1],
3282 sizeof(union ccb) - sizeof(struct ccb_hdr));
3283}
3284
3285void
3286xpt_setup_ccb(struct ccb_hdr *ccb_h, struct cam_path *path, u_int32_t priority)
3287{
3288
3289 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_setup_ccb\n"));
3290 ccb_h->pinfo.priority = priority;
3291 ccb_h->path = path;
3292 ccb_h->path_id = path->bus->path_id;
3293 if (path->target)
3294 ccb_h->target_id = path->target->target_id;
3295 else
3296 ccb_h->target_id = CAM_TARGET_WILDCARD;
3297 if (path->device) {
3298 ccb_h->target_lun = path->device->lun_id;
3299 ccb_h->pinfo.generation = ++path->device->ccbq.queue.generation;
3300 } else {
3301 ccb_h->target_lun = CAM_TARGET_WILDCARD;
3302 }
3303 ccb_h->pinfo.index = CAM_UNQUEUED_INDEX;
3304 ccb_h->flags = 0;
3305}
3306
3307/* Path manipulation functions */
3308cam_status
3309xpt_create_path(struct cam_path **new_path_ptr, struct cam_periph *perph,
3310 path_id_t path_id, target_id_t target_id, lun_id_t lun_id)
3311{
3312 struct cam_path *path;
3313 cam_status status;
3314
3315 path = (struct cam_path *)malloc(sizeof(*path), M_CAMPATH, M_NOWAIT);
3316
3317 if (path == NULL) {
3318 status = CAM_RESRC_UNAVAIL;
3319 return(status);
3320 }
3321 status = xpt_compile_path(path, perph, path_id, target_id, lun_id);
3322 if (status != CAM_REQ_CMP) {
3323 free(path, M_CAMPATH);
3324 path = NULL;
3325 }
3326 *new_path_ptr = path;
3327 return (status);
3328}
3329
3330cam_status
3331xpt_create_path_unlocked(struct cam_path **new_path_ptr,
3332 struct cam_periph *periph, path_id_t path_id,
3333 target_id_t target_id, lun_id_t lun_id)
3334{
3335 struct cam_path *path;
3336 struct cam_eb *bus = NULL;
3337 cam_status status;
3338
3339 path = (struct cam_path *)malloc(sizeof(*path), M_CAMPATH, M_WAITOK);
3340
3341 bus = xpt_find_bus(path_id);
3342 if (bus != NULL)
3343 CAM_SIM_LOCK(bus->sim);
3344 status = xpt_compile_path(path, periph, path_id, target_id, lun_id);
3345 if (bus != NULL) {
3346 CAM_SIM_UNLOCK(bus->sim);
3347 xpt_release_bus(bus);
3348 }
3349 if (status != CAM_REQ_CMP) {
3350 free(path, M_CAMPATH);
3351 path = NULL;
3352 }
3353 *new_path_ptr = path;
3354 return (status);
3355}
3356
3357cam_status
3358xpt_compile_path(struct cam_path *new_path, struct cam_periph *perph,
3359 path_id_t path_id, target_id_t target_id, lun_id_t lun_id)
3360{
3361 struct cam_eb *bus;
3362 struct cam_et *target;
3363 struct cam_ed *device;
3364 cam_status status;
3365
3366 status = CAM_REQ_CMP; /* Completed without error */
3367 target = NULL; /* Wildcarded */
3368 device = NULL; /* Wildcarded */
3369
3370 /*
3371 * We will potentially modify the EDT, so block interrupts
3372 * that may attempt to create cam paths.
3373 */
3374 bus = xpt_find_bus(path_id);
3375 if (bus == NULL) {
3376 status = CAM_PATH_INVALID;
3377 } else {
3378 target = xpt_find_target(bus, target_id);
3379 if (target == NULL) {
3380 /* Create one */
3381 struct cam_et *new_target;
3382
3383 new_target = xpt_alloc_target(bus, target_id);
3384 if (new_target == NULL) {
3385 status = CAM_RESRC_UNAVAIL;
3386 } else {
3387 target = new_target;
3388 }
3389 }
3390 if (target != NULL) {
3391 device = xpt_find_device(target, lun_id);
3392 if (device == NULL) {
3393 /* Create one */
3394 struct cam_ed *new_device;
3395
3396 new_device =
3397 (*(bus->xport->alloc_device))(bus,
3398 target,
3399 lun_id);
3400 if (new_device == NULL) {
3401 status = CAM_RESRC_UNAVAIL;
3402 } else {
3403 device = new_device;
3404 }
3405 }
3406 }
3407 }
3408
3409 /*
3410 * Only touch the user's data if we are successful.
3411 */
3412 if (status == CAM_REQ_CMP) {
3413 new_path->periph = perph;
3414 new_path->bus = bus;
3415 new_path->target = target;
3416 new_path->device = device;
3417 CAM_DEBUG(new_path, CAM_DEBUG_TRACE, ("xpt_compile_path\n"));
3418 } else {
3419 if (device != NULL)
3420 xpt_release_device(device);
3421 if (target != NULL)
3422 xpt_release_target(target);
3423 if (bus != NULL)
3424 xpt_release_bus(bus);
3425 }
3426 return (status);
3427}
3428
3429void
3430xpt_release_path(struct cam_path *path)
3431{
3432 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_release_path\n"));
3433 if (path->device != NULL) {
3434 xpt_release_device(path->device);
3435 path->device = NULL;
3436 }
3437 if (path->target != NULL) {
3438 xpt_release_target(path->target);
3439 path->target = NULL;
3440 }
3441 if (path->bus != NULL) {
3442 xpt_release_bus(path->bus);
3443 path->bus = NULL;
3444 }
3445}
3446
3447void
3448xpt_free_path(struct cam_path *path)
3449{
3450
3451 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_free_path\n"));
3452 xpt_release_path(path);
3453 free(path, M_CAMPATH);
3454}
3455
3456void
3457xpt_path_counts(struct cam_path *path, uint32_t *bus_ref,
3458 uint32_t *periph_ref, uint32_t *target_ref, uint32_t *device_ref)
3459{
3460
3461 xpt_lock_buses();
3462 if (bus_ref) {
3463 if (path->bus)
3464 *bus_ref = path->bus->refcount;
3465 else
3466 *bus_ref = 0;
3467 }
3468 if (periph_ref) {
3469 if (path->periph)
3470 *periph_ref = path->periph->refcount;
3471 else
3472 *periph_ref = 0;
3473 }
3474 xpt_unlock_buses();
3475 if (target_ref) {
3476 if (path->target)
3477 *target_ref = path->target->refcount;
3478 else
3479 *target_ref = 0;
3480 }
3481 if (device_ref) {
3482 if (path->device)
3483 *device_ref = path->device->refcount;
3484 else
3485 *device_ref = 0;
3486 }
3487}
3488
3489/*
3490 * Return -1 for failure, 0 for exact match, 1 for match with wildcards
3491 * in path1, 2 for match with wildcards in path2.
3492 */
3493int
3494xpt_path_comp(struct cam_path *path1, struct cam_path *path2)
3495{
3496 int retval = 0;
3497
3498 if (path1->bus != path2->bus) {
3499 if (path1->bus->path_id == CAM_BUS_WILDCARD)
3500 retval = 1;
3501 else if (path2->bus->path_id == CAM_BUS_WILDCARD)
3502 retval = 2;
3503 else
3504 return (-1);
3505 }
3506 if (path1->target != path2->target) {
3507 if (path1->target->target_id == CAM_TARGET_WILDCARD) {
3508 if (retval == 0)
3509 retval = 1;
3510 } else if (path2->target->target_id == CAM_TARGET_WILDCARD)
3511 retval = 2;
3512 else
3513 return (-1);
3514 }
3515 if (path1->device != path2->device) {
3516 if (path1->device->lun_id == CAM_LUN_WILDCARD) {
3517 if (retval == 0)
3518 retval = 1;
3519 } else if (path2->device->lun_id == CAM_LUN_WILDCARD)
3520 retval = 2;
3521 else
3522 return (-1);
3523 }
3524 return (retval);
3525}
3526
3527void
3528xpt_print_path(struct cam_path *path)
3529{
3530
3531 if (path == NULL)
3532 printf("(nopath): ");
3533 else {
3534 if (path->periph != NULL)
3535 printf("(%s%d:", path->periph->periph_name,
3536 path->periph->unit_number);
3537 else
3538 printf("(noperiph:");
3539
3540 if (path->bus != NULL)
3541 printf("%s%d:%d:", path->bus->sim->sim_name,
3542 path->bus->sim->unit_number,
3543 path->bus->sim->bus_id);
3544 else
3545 printf("nobus:");
3546
3547 if (path->target != NULL)
3548 printf("%d:", path->target->target_id);
3549 else
3550 printf("X:");
3551
3552 if (path->device != NULL)
3553 printf("%d): ", path->device->lun_id);
3554 else
3555 printf("X): ");
3556 }
3557}
3558
3559void
3560xpt_print(struct cam_path *path, const char *fmt, ...)
3561{
3562 va_list ap;
3563 xpt_print_path(path);
3564 va_start(ap, fmt);
3565 vprintf(fmt, ap);
3566 va_end(ap);
3567}
3568
3569int
3570xpt_path_string(struct cam_path *path, char *str, size_t str_len)
3571{
3572 struct sbuf sb;
3573
3574#ifdef INVARIANTS
3575 if (path != NULL && path->bus != NULL)
3576 mtx_assert(path->bus->sim->mtx, MA_OWNED);
3577#endif
3578
3579 sbuf_new(&sb, str, str_len, 0);
3580
3581 if (path == NULL)
3582 sbuf_printf(&sb, "(nopath): ");
3583 else {
3584 if (path->periph != NULL)
3585 sbuf_printf(&sb, "(%s%d:", path->periph->periph_name,
3586 path->periph->unit_number);
3587 else
3588 sbuf_printf(&sb, "(noperiph:");
3589
3590 if (path->bus != NULL)
3591 sbuf_printf(&sb, "%s%d:%d:", path->bus->sim->sim_name,
3592 path->bus->sim->unit_number,
3593 path->bus->sim->bus_id);
3594 else
3595 sbuf_printf(&sb, "nobus:");
3596
3597 if (path->target != NULL)
3598 sbuf_printf(&sb, "%d:", path->target->target_id);
3599 else
3600 sbuf_printf(&sb, "X:");
3601
3602 if (path->device != NULL)
3603 sbuf_printf(&sb, "%d): ", path->device->lun_id);
3604 else
3605 sbuf_printf(&sb, "X): ");
3606 }
3607 sbuf_finish(&sb);
3608
3609 return(sbuf_len(&sb));
3610}
3611
3612path_id_t
3613xpt_path_path_id(struct cam_path *path)
3614{
3615 return(path->bus->path_id);
3616}
3617
3618target_id_t
3619xpt_path_target_id(struct cam_path *path)
3620{
3621 if (path->target != NULL)
3622 return (path->target->target_id);
3623 else
3624 return (CAM_TARGET_WILDCARD);
3625}
3626
3627lun_id_t
3628xpt_path_lun_id(struct cam_path *path)
3629{
3630 if (path->device != NULL)
3631 return (path->device->lun_id);
3632 else
3633 return (CAM_LUN_WILDCARD);
3634}
3635
3636struct cam_sim *
3637xpt_path_sim(struct cam_path *path)
3638{
3639
3640 return (path->bus->sim);
3641}
3642
3643struct cam_periph*
3644xpt_path_periph(struct cam_path *path)
3645{
3646 mtx_assert(path->bus->sim->mtx, MA_OWNED);
3647
3648 return (path->periph);
3649}
3650
3651int
3652xpt_path_legacy_ata_id(struct cam_path *path)
3653{
3654 struct cam_eb *bus;
3655 int bus_id;
3656
3657 if ((strcmp(path->bus->sim->sim_name, "ata") != 0) &&
3658 strcmp(path->bus->sim->sim_name, "ahcich") != 0 &&
3659 strcmp(path->bus->sim->sim_name, "mvsch") != 0 &&
3660 strcmp(path->bus->sim->sim_name, "siisch") != 0)
3661 return (-1);
3662
3663 if (strcmp(path->bus->sim->sim_name, "ata") == 0 &&
3664 path->bus->sim->unit_number < 2) {
3665 bus_id = path->bus->sim->unit_number;
3666 } else {
3667 bus_id = 2;
3668 xpt_lock_buses();
3669 TAILQ_FOREACH(bus, &xsoftc.xpt_busses, links) {
3670 if (bus == path->bus)
3671 break;
3672 if ((strcmp(bus->sim->sim_name, "ata") == 0 &&
3673 bus->sim->unit_number >= 2) ||
3674 strcmp(bus->sim->sim_name, "ahcich") == 0 ||
3675 strcmp(bus->sim->sim_name, "mvsch") == 0 ||
3676 strcmp(bus->sim->sim_name, "siisch") == 0)
3677 bus_id++;
3678 }
3679 xpt_unlock_buses();
3680 }
3681 if (path->target != NULL) {
3682 if (path->target->target_id < 2)
3683 return (bus_id * 2 + path->target->target_id);
3684 else
3685 return (-1);
3686 } else
3687 return (bus_id * 2);
3688}
3689
3690/*
3691 * Release a CAM control block for the caller. Remit the cost of the structure
3692 * to the device referenced by the path. If the this device had no 'credits'
3693 * and peripheral drivers have registered async callbacks for this notification
3694 * call them now.
3695 */
3696void
3697xpt_release_ccb(union ccb *free_ccb)
3698{
3699 struct cam_path *path;
3700 struct cam_ed *device;
3701 struct cam_eb *bus;
3702 struct cam_sim *sim;
3703
3704 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_release_ccb\n"));
3705 path = free_ccb->ccb_h.path;
3706 device = path->device;
3707 bus = path->bus;
3708 sim = bus->sim;
3709
3710 mtx_assert(sim->mtx, MA_OWNED);
3711
3712 cam_ccbq_release_opening(&device->ccbq);
3713 if (device->flags & CAM_DEV_RESIZE_QUEUE_NEEDED) {
3714 device->flags &= ~CAM_DEV_RESIZE_QUEUE_NEEDED;
3715 cam_ccbq_resize(&device->ccbq,
3716 device->ccbq.dev_openings + device->ccbq.dev_active);
3717 }
3718 if (sim->ccb_count > sim->max_ccbs) {
3719 xpt_free_ccb(free_ccb);
3720 sim->ccb_count--;
3721 } else {
3722 SLIST_INSERT_HEAD(&sim->ccb_freeq, &free_ccb->ccb_h,
3723 xpt_links.sle);
3724 }
3725 xpt_run_dev_allocq(device);
3726}
3727
3728/* Functions accessed by SIM drivers */
3729
3730static struct xpt_xport xport_default = {
3731 .alloc_device = xpt_alloc_device_default,
3732 .action = xpt_action_default,
3733 .async = xpt_dev_async_default,
3734};
3735
3736/*
3737 * A sim structure, listing the SIM entry points and instance
3738 * identification info is passed to xpt_bus_register to hook the SIM
3739 * into the CAM framework. xpt_bus_register creates a cam_eb entry
3740 * for this new bus and places it in the array of busses and assigns
3741 * it a path_id. The path_id may be influenced by "hard wiring"
3742 * information specified by the user. Once interrupt services are
3743 * available, the bus will be probed.
3744 */
3745int32_t
3746xpt_bus_register(struct cam_sim *sim, device_t parent, u_int32_t bus)
3747{
3748 struct cam_eb *new_bus;
3749 struct cam_eb *old_bus;
3750 struct ccb_pathinq cpi;
3751 struct cam_path *path;
3752 cam_status status;
3753
3754 mtx_assert(sim->mtx, MA_OWNED);
3755
3756 sim->bus_id = bus;
3757 new_bus = (struct cam_eb *)malloc(sizeof(*new_bus),
3758 M_CAMXPT, M_NOWAIT);
3759 if (new_bus == NULL) {
3760 /* Couldn't satisfy request */
3761 return (CAM_RESRC_UNAVAIL);
3762 }
3763 if (strcmp(sim->sim_name, "xpt") != 0) {
3764 sim->path_id =
3765 xptpathid(sim->sim_name, sim->unit_number, sim->bus_id);
3766 }
3767
3768 TAILQ_INIT(&new_bus->et_entries);
3769 new_bus->path_id = sim->path_id;
3770 cam_sim_hold(sim);
3771 new_bus->sim = sim;
3772 timevalclear(&new_bus->last_reset);
3773 new_bus->flags = 0;
3774 new_bus->refcount = 1; /* Held until a bus_deregister event */
3775 new_bus->generation = 0;
3776
3777 xpt_lock_buses();
3778 old_bus = TAILQ_FIRST(&xsoftc.xpt_busses);
3779 while (old_bus != NULL
3780 && old_bus->path_id < new_bus->path_id)
3781 old_bus = TAILQ_NEXT(old_bus, links);
3782 if (old_bus != NULL)
3783 TAILQ_INSERT_BEFORE(old_bus, new_bus, links);
3784 else
3785 TAILQ_INSERT_TAIL(&xsoftc.xpt_busses, new_bus, links);
3786 xsoftc.bus_generation++;
3787 xpt_unlock_buses();
3788
3789 /*
3790 * Set a default transport so that a PATH_INQ can be issued to
3791 * the SIM. This will then allow for probing and attaching of
3792 * a more appropriate transport.
3793 */
3794 new_bus->xport = &xport_default;
3795
3796 status = xpt_create_path(&path, /*periph*/NULL, sim->path_id,
3797 CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD);
3798 if (status != CAM_REQ_CMP) {
3799 xpt_release_bus(new_bus);
3800 free(path, M_CAMXPT);
3801 return (CAM_RESRC_UNAVAIL);
3802 }
3803
3804 xpt_setup_ccb(&cpi.ccb_h, path, CAM_PRIORITY_NORMAL);
3805 cpi.ccb_h.func_code = XPT_PATH_INQ;
3806 xpt_action((union ccb *)&cpi);
3807
3808 if (cpi.ccb_h.status == CAM_REQ_CMP) {
3809 switch (cpi.transport) {
3810 case XPORT_SPI:
3811 case XPORT_SAS:
3812 case XPORT_FC:
3813 case XPORT_USB:
3814 case XPORT_ISCSI:
3815 case XPORT_PPB:
3816 new_bus->xport = scsi_get_xport();
3817 break;
3818 case XPORT_ATA:
3819 case XPORT_SATA:
3820 new_bus->xport = ata_get_xport();
3821 break;
3822 default:
3823 new_bus->xport = &xport_default;
3824 break;
3825 }
3826 }
3827
3828 /* Notify interested parties */
3829 if (sim->path_id != CAM_XPT_PATH_ID) {
3830 union ccb *scan_ccb;
3831
3832 xpt_async(AC_PATH_REGISTERED, path, &cpi);
3833 /* Initiate bus rescan. */
3834 scan_ccb = xpt_alloc_ccb_nowait();
3835 scan_ccb->ccb_h.path = path;
3836 scan_ccb->ccb_h.func_code = XPT_SCAN_BUS;
3837 scan_ccb->crcn.flags = 0;
3838 xpt_rescan(scan_ccb);
3839 } else
3840 xpt_free_path(path);
3841 return (CAM_SUCCESS);
3842}
3843
3844int32_t
3845xpt_bus_deregister(path_id_t pathid)
3846{
3847 struct cam_path bus_path;
3848 cam_status status;
3849
3850 status = xpt_compile_path(&bus_path, NULL, pathid,
3851 CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD);
3852 if (status != CAM_REQ_CMP)
3853 return (status);
3854
3855 xpt_async(AC_LOST_DEVICE, &bus_path, NULL);
3856 xpt_async(AC_PATH_DEREGISTERED, &bus_path, NULL);
3857
3858 /* Release the reference count held while registered. */
3859 xpt_release_bus(bus_path.bus);
3860 xpt_release_path(&bus_path);
3861
3862 return (CAM_REQ_CMP);
3863}
3864
3865static path_id_t
3866xptnextfreepathid(void)
3867{
3868 struct cam_eb *bus;
3869 path_id_t pathid;
3870 const char *strval;
3871
3872 pathid = 0;
3873 xpt_lock_buses();
3874 bus = TAILQ_FIRST(&xsoftc.xpt_busses);
3875retry:
3876 /* Find an unoccupied pathid */
3877 while (bus != NULL && bus->path_id <= pathid) {
3878 if (bus->path_id == pathid)
3879 pathid++;
3880 bus = TAILQ_NEXT(bus, links);
3881 }
3882 xpt_unlock_buses();
3883
3884 /*
3885 * Ensure that this pathid is not reserved for
3886 * a bus that may be registered in the future.
3887 */
3888 if (resource_string_value("scbus", pathid, "at", &strval) == 0) {
3889 ++pathid;
3890 /* Start the search over */
3891 xpt_lock_buses();
3892 goto retry;
3893 }
3894 return (pathid);
3895}
3896
3897static path_id_t
3898xptpathid(const char *sim_name, int sim_unit, int sim_bus)
3899{
3900 path_id_t pathid;
3901 int i, dunit, val;
3902 char buf[32];
3903 const char *dname;
3904
3905 pathid = CAM_XPT_PATH_ID;
3906 snprintf(buf, sizeof(buf), "%s%d", sim_name, sim_unit);
3907 i = 0;
3908 while ((resource_find_match(&i, &dname, &dunit, "at", buf)) == 0) {
3909 if (strcmp(dname, "scbus")) {
3910 /* Avoid a bit of foot shooting. */
3911 continue;
3912 }
3913 if (dunit < 0) /* unwired?! */
3914 continue;
3915 if (resource_int_value("scbus", dunit, "bus", &val) == 0) {
3916 if (sim_bus == val) {
3917 pathid = dunit;
3918 break;
3919 }
3920 } else if (sim_bus == 0) {
3921 /* Unspecified matches bus 0 */
3922 pathid = dunit;
3923 break;
3924 } else {
3925 printf("Ambiguous scbus configuration for %s%d "
3926 "bus %d, cannot wire down. The kernel "
3927 "config entry for scbus%d should "
3928 "specify a controller bus.\n"
3929 "Scbus will be assigned dynamically.\n",
3930 sim_name, sim_unit, sim_bus, dunit);
3931 break;
3932 }
3933 }
3934
3935 if (pathid == CAM_XPT_PATH_ID)
3936 pathid = xptnextfreepathid();
3937 return (pathid);
3938}
3939
3940static const char *
3941xpt_async_string(u_int32_t async_code)
3942{
3943
3944 switch (async_code) {
3945 case AC_BUS_RESET: return ("AC_BUS_RESET");
3946 case AC_UNSOL_RESEL: return ("AC_UNSOL_RESEL");
3947 case AC_SCSI_AEN: return ("AC_SCSI_AEN");
3948 case AC_SENT_BDR: return ("AC_SENT_BDR");
3949 case AC_PATH_REGISTERED: return ("AC_PATH_REGISTERED");
3950 case AC_PATH_DEREGISTERED: return ("AC_PATH_DEREGISTERED");
3951 case AC_FOUND_DEVICE: return ("AC_FOUND_DEVICE");
3952 case AC_LOST_DEVICE: return ("AC_LOST_DEVICE");
3953 case AC_TRANSFER_NEG: return ("AC_TRANSFER_NEG");
3954 case AC_INQ_CHANGED: return ("AC_INQ_CHANGED");
3955 case AC_GETDEV_CHANGED: return ("AC_GETDEV_CHANGED");
3956 case AC_CONTRACT: return ("AC_CONTRACT");
3957 case AC_ADVINFO_CHANGED: return ("AC_ADVINFO_CHANGED");
3958 case AC_UNIT_ATTENTION: return ("AC_UNIT_ATTENTION");
3959 }
3960 return ("AC_UNKNOWN");
3961}
3962
3963void
3964xpt_async(u_int32_t async_code, struct cam_path *path, void *async_arg)
3965{
3966 struct cam_eb *bus;
3967 struct cam_et *target, *next_target;
3968 struct cam_ed *device, *next_device;
3969
3970 mtx_assert(path->bus->sim->mtx, MA_OWNED);
3971 CAM_DEBUG(path, CAM_DEBUG_TRACE | CAM_DEBUG_INFO,
3972 ("xpt_async(%s)\n", xpt_async_string(async_code)));
3973
3974 /*
3975 * Most async events come from a CAM interrupt context. In
3976 * a few cases, the error recovery code at the peripheral layer,
3977 * which may run from our SWI or a process context, may signal
3978 * deferred events with a call to xpt_async.
3979 */
3980
3981 bus = path->bus;
3982
3983 if (async_code == AC_BUS_RESET) {
3984 /* Update our notion of when the last reset occurred */
3985 microtime(&bus->last_reset);
3986 }
3987
3988 for (target = TAILQ_FIRST(&bus->et_entries);
3989 target != NULL;
3990 target = next_target) {
3991
3992 next_target = TAILQ_NEXT(target, links);
3993
3994 if (path->target != target
3995 && path->target->target_id != CAM_TARGET_WILDCARD
3996 && target->target_id != CAM_TARGET_WILDCARD)
3997 continue;
3998
3999 if (async_code == AC_SENT_BDR) {
4000 /* Update our notion of when the last reset occurred */
4001 microtime(&path->target->last_reset);
4002 }
4003
4004 for (device = TAILQ_FIRST(&target->ed_entries);
4005 device != NULL;
4006 device = next_device) {
4007
4008 next_device = TAILQ_NEXT(device, links);
4009
4010 if (path->device != device
4011 && path->device->lun_id != CAM_LUN_WILDCARD
4012 && device->lun_id != CAM_LUN_WILDCARD)
4013 continue;
4014 /*
4015 * The async callback could free the device.
4016 * If it is a broadcast async, it doesn't hold
4017 * device reference, so take our own reference.
4018 */
4019 xpt_acquire_device(device);
4020 (*(bus->xport->async))(async_code, bus,
4021 target, device,
4022 async_arg);
4023
4024 xpt_async_bcast(&device->asyncs, async_code,
4025 path, async_arg);
4026 xpt_release_device(device);
4027 }
4028 }
4029
4030 /*
4031 * If this wasn't a fully wildcarded async, tell all
4032 * clients that want all async events.
4033 */
4034 if (bus != xpt_periph->path->bus)
4035 xpt_async_bcast(&xpt_periph->path->device->asyncs, async_code,
4036 path, async_arg);
4037}
4038
4039static void
4040xpt_async_bcast(struct async_list *async_head,
4041 u_int32_t async_code,
4042 struct cam_path *path, void *async_arg)
4043{
4044 struct async_node *cur_entry;
4045
4046 cur_entry = SLIST_FIRST(async_head);
4047 while (cur_entry != NULL) {
4048 struct async_node *next_entry;
4049 /*
4050 * Grab the next list entry before we call the current
4051 * entry's callback. This is because the callback function
4052 * can delete its async callback entry.
4053 */
4054 next_entry = SLIST_NEXT(cur_entry, links);
4055 if ((cur_entry->event_enable & async_code) != 0)
4056 cur_entry->callback(cur_entry->callback_arg,
4057 async_code, path,
4058 async_arg);
4059 cur_entry = next_entry;
4060 }
4061}
4062
4063static void
4064xpt_dev_async_default(u_int32_t async_code, struct cam_eb *bus,
4065 struct cam_et *target, struct cam_ed *device,
4066 void *async_arg)
4067{
4068 printf("%s called\n", __func__);
4069}
4070
4071u_int32_t
4072xpt_freeze_devq(struct cam_path *path, u_int count)
4073{
4074 struct cam_ed *dev = path->device;
4075
4076 mtx_assert(path->bus->sim->mtx, MA_OWNED);
4077 dev->ccbq.queue.qfrozen_cnt += count;
4078 /* Remove frozen device from sendq. */
4079 if (device_is_queued(dev)) {
4080 camq_remove(&dev->sim->devq->send_queue,
4081 dev->devq_entry.pinfo.index);
4082 }
4083 return (dev->ccbq.queue.qfrozen_cnt);
4084}
4085
4086u_int32_t
4087xpt_freeze_simq(struct cam_sim *sim, u_int count)
4088{
4089
4090 mtx_assert(sim->mtx, MA_OWNED);
4091 sim->devq->send_queue.qfrozen_cnt += count;
4092 return (sim->devq->send_queue.qfrozen_cnt);
4093}
4094
4095static void
4096xpt_release_devq_timeout(void *arg)
4097{
4098 struct cam_ed *device;
4099
4100 device = (struct cam_ed *)arg;
4101 xpt_release_devq_device(device, /*count*/1, /*run_queue*/TRUE);
4102}
4103
4104void
4105xpt_release_devq(struct cam_path *path, u_int count, int run_queue)
4106{
4107
4108 mtx_assert(path->bus->sim->mtx, MA_OWNED);
4109 xpt_release_devq_device(path->device, count, run_queue);
4110}
4111
4112void
4113xpt_release_devq_device(struct cam_ed *dev, u_int count, int run_queue)
4114{
4115
4116 if (count > dev->ccbq.queue.qfrozen_cnt) {
4117#ifdef INVARIANTS
4118 printf("xpt_release_devq(): requested %u > present %u\n",
4119 count, dev->ccbq.queue.qfrozen_cnt);
4120#endif
4121 count = dev->ccbq.queue.qfrozen_cnt;
4122 }
4123 dev->ccbq.queue.qfrozen_cnt -= count;
4124 if (dev->ccbq.queue.qfrozen_cnt == 0) {
4125 /*
4126 * No longer need to wait for a successful
4127 * command completion.
4128 */
4129 dev->flags &= ~CAM_DEV_REL_ON_COMPLETE;
4130 /*
4131 * Remove any timeouts that might be scheduled
4132 * to release this queue.
4133 */
4134 if ((dev->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) {
4135 callout_stop(&dev->callout);
4136 dev->flags &= ~CAM_DEV_REL_TIMEOUT_PENDING;
4137 }
4138 xpt_run_dev_allocq(dev);
4139 if (run_queue == 0)
4140 return;
4141 /*
4142 * Now that we are unfrozen schedule the
4143 * device so any pending transactions are
4144 * run.
4145 */
4146 if (xpt_schedule_devq(dev->sim->devq, dev))
4147 xpt_run_devq(dev->sim->devq);
4148 }
4149}
4150
4151void
4152xpt_release_simq(struct cam_sim *sim, int run_queue)
4153{
4154 struct camq *sendq;
4155
4156 mtx_assert(sim->mtx, MA_OWNED);
4157 sendq = &(sim->devq->send_queue);
4158 if (sendq->qfrozen_cnt <= 0) {
4159#ifdef INVARIANTS
4160 printf("xpt_release_simq: requested 1 > present %u\n",
4161 sendq->qfrozen_cnt);
4162#endif
4163 } else
4164 sendq->qfrozen_cnt--;
4165 if (sendq->qfrozen_cnt == 0) {
4166 /*
4167 * If there is a timeout scheduled to release this
4168 * sim queue, remove it. The queue frozen count is
4169 * already at 0.
4170 */
4171 if ((sim->flags & CAM_SIM_REL_TIMEOUT_PENDING) != 0){
4172 callout_stop(&sim->callout);
4173 sim->flags &= ~CAM_SIM_REL_TIMEOUT_PENDING;
4174 }
4175 if (run_queue) {
4176 /*
4177 * Now that we are unfrozen run the send queue.
4178 */
4179 xpt_run_devq(sim->devq);
4180 }
4181 }
4182}
4183
4184/*
4185 * XXX Appears to be unused.
4186 */
4187static void
4188xpt_release_simq_timeout(void *arg)
4189{
4190 struct cam_sim *sim;
4191
4192 sim = (struct cam_sim *)arg;
4193 xpt_release_simq(sim, /* run_queue */ TRUE);
4194}
4195
4196void
4197xpt_done(union ccb *done_ccb)
4198{
4199 struct cam_sim *sim;
4200 int first;
4201
4202 CAM_DEBUG(done_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xpt_done\n"));
4203 if ((done_ccb->ccb_h.func_code & XPT_FC_QUEUED) != 0) {
4204 /*
4205 * Queue up the request for handling by our SWI handler
4206 * any of the "non-immediate" type of ccbs.
4207 */
4208 sim = done_ccb->ccb_h.path->bus->sim;
4209 TAILQ_INSERT_TAIL(&sim->sim_doneq, &done_ccb->ccb_h,
4210 sim_links.tqe);
4211 done_ccb->ccb_h.pinfo.index = CAM_DONEQ_INDEX;
4212 if ((sim->flags & (CAM_SIM_ON_DONEQ | CAM_SIM_POLLED |
4213 CAM_SIM_BATCH)) == 0) {
4214 mtx_lock(&cam_simq_lock);
4215 first = TAILQ_EMPTY(&cam_simq);
4216 TAILQ_INSERT_TAIL(&cam_simq, sim, links);
4217 mtx_unlock(&cam_simq_lock);
4218 sim->flags |= CAM_SIM_ON_DONEQ;
4219 if (first)
4220 swi_sched(cambio_ih, 0);
4221 }
4222 }
4223}
4224
4225void
4226xpt_batch_start(struct cam_sim *sim)
4227{
4228
4229 KASSERT((sim->flags & CAM_SIM_BATCH) == 0, ("Batch flag already set"));
4230 sim->flags |= CAM_SIM_BATCH;
4231}
4232
4233void
4234xpt_batch_done(struct cam_sim *sim)
4235{
4236
4237 KASSERT((sim->flags & CAM_SIM_BATCH) != 0, ("Batch flag was not set"));
4238 sim->flags &= ~CAM_SIM_BATCH;
4239 if (!TAILQ_EMPTY(&sim->sim_doneq) &&
4240 (sim->flags & CAM_SIM_ON_DONEQ) == 0)
4241 camisr_runqueue(&sim->sim_doneq);
4242}
4243
4244union ccb *
4245xpt_alloc_ccb()
4246{
4247 union ccb *new_ccb;
4248
4249 new_ccb = malloc(sizeof(*new_ccb), M_CAMCCB, M_ZERO|M_WAITOK);
4250 return (new_ccb);
4251}
4252
4253union ccb *
4254xpt_alloc_ccb_nowait()
4255{
4256 union ccb *new_ccb;
4257
4258 new_ccb = malloc(sizeof(*new_ccb), M_CAMCCB, M_ZERO|M_NOWAIT);
4259 return (new_ccb);
4260}
4261
4262void
4263xpt_free_ccb(union ccb *free_ccb)
4264{
4265 free(free_ccb, M_CAMCCB);
4266}
4267
4268
4269
4270/* Private XPT functions */
4271
4272/*
4273 * Get a CAM control block for the caller. Charge the structure to the device
4274 * referenced by the path. If the this device has no 'credits' then the
4275 * device already has the maximum number of outstanding operations under way
4276 * and we return NULL. If we don't have sufficient resources to allocate more
4277 * ccbs, we also return NULL.
4278 */
4279static union ccb *
4280xpt_get_ccb(struct cam_ed *device)
4281{
4282 union ccb *new_ccb;
4283 struct cam_sim *sim;
4284
4285 sim = device->sim;
4286 if ((new_ccb = (union ccb *)SLIST_FIRST(&sim->ccb_freeq)) == NULL) {
4287 new_ccb = xpt_alloc_ccb_nowait();
4288 if (new_ccb == NULL) {
4289 return (NULL);
4290 }
4291 if ((sim->flags & CAM_SIM_MPSAFE) == 0)
4292 callout_handle_init(&new_ccb->ccb_h.timeout_ch);
4293 SLIST_INSERT_HEAD(&sim->ccb_freeq, &new_ccb->ccb_h,
4294 xpt_links.sle);
4295 sim->ccb_count++;
4296 }
4297 cam_ccbq_take_opening(&device->ccbq);
4298 SLIST_REMOVE_HEAD(&sim->ccb_freeq, xpt_links.sle);
4299 return (new_ccb);
4300}
4301
4302static void
4303xpt_release_bus(struct cam_eb *bus)
4304{
4305
4306 xpt_lock_buses();
4307 KASSERT(bus->refcount >= 1, ("bus->refcount >= 1"));
4308 if (--bus->refcount > 0) {
4309 xpt_unlock_buses();
4310 return;
4311 }
4312 KASSERT(TAILQ_EMPTY(&bus->et_entries),
4313 ("refcount is zero, but target list is not empty"));
4314 TAILQ_REMOVE(&xsoftc.xpt_busses, bus, links);
4315 xsoftc.bus_generation++;
4316 xpt_unlock_buses();
4317 cam_sim_release(bus->sim);
4318 free(bus, M_CAMXPT);
4319}
4320
4321static struct cam_et *
4322xpt_alloc_target(struct cam_eb *bus, target_id_t target_id)
4323{
4324 struct cam_et *cur_target, *target;
4325
4326 mtx_assert(bus->sim->mtx, MA_OWNED);
4327 target = (struct cam_et *)malloc(sizeof(*target), M_CAMXPT,
4328 M_NOWAIT|M_ZERO);
4329 if (target == NULL)
4330 return (NULL);
4331
4332 TAILQ_INIT(&target->ed_entries);
4333 target->bus = bus;
4334 target->target_id = target_id;
4335 target->refcount = 1;
4336 target->generation = 0;
4337 target->luns = NULL;
4338 timevalclear(&target->last_reset);
4339 /*
4340 * Hold a reference to our parent bus so it
4341 * will not go away before we do.
4342 */
4343 xpt_lock_buses();
4344 bus->refcount++;
4345 xpt_unlock_buses();
4346
4347 /* Insertion sort into our bus's target list */
4348 cur_target = TAILQ_FIRST(&bus->et_entries);
4349 while (cur_target != NULL && cur_target->target_id < target_id)
4350 cur_target = TAILQ_NEXT(cur_target, links);
4351 if (cur_target != NULL) {
4352 TAILQ_INSERT_BEFORE(cur_target, target, links);
4353 } else {
4354 TAILQ_INSERT_TAIL(&bus->et_entries, target, links);
4355 }
4356 bus->generation++;
4357 return (target);
4358}
4359
4360static void
4361xpt_release_target(struct cam_et *target)
4362{
4363
4364 mtx_assert(target->bus->sim->mtx, MA_OWNED);
4365 if (--target->refcount > 0)
4366 return;
4367 KASSERT(TAILQ_EMPTY(&target->ed_entries),
4368 ("refcount is zero, but device list is not empty"));
4369 TAILQ_REMOVE(&target->bus->et_entries, target, links);
4370 target->bus->generation++;
4371 xpt_release_bus(target->bus);
4372 if (target->luns)
4373 free(target->luns, M_CAMXPT);
4374 free(target, M_CAMXPT);
4375}
4376
4377static struct cam_ed *
4378xpt_alloc_device_default(struct cam_eb *bus, struct cam_et *target,
4379 lun_id_t lun_id)
4380{
4381 struct cam_ed *device;
4382
4383 device = xpt_alloc_device(bus, target, lun_id);
4384 if (device == NULL)
4385 return (NULL);
4386
4387 device->mintags = 1;
4388 device->maxtags = 1;
4389 bus->sim->max_ccbs += device->ccbq.devq_openings;
4390 return (device);
4391}
4392
4393struct cam_ed *
4394xpt_alloc_device(struct cam_eb *bus, struct cam_et *target, lun_id_t lun_id)
4395{
4396 struct cam_ed *cur_device, *device;
4397 struct cam_devq *devq;
4398 cam_status status;
4399
4400 mtx_assert(target->bus->sim->mtx, MA_OWNED);
4401 /* Make space for us in the device queue on our bus */
4402 devq = bus->sim->devq;
4403 status = cam_devq_resize(devq, devq->send_queue.array_size + 1);
4404 if (status != CAM_REQ_CMP)
4405 return (NULL);
4406
4407 device = (struct cam_ed *)malloc(sizeof(*device),
4408 M_CAMDEV, M_NOWAIT|M_ZERO);
4409 if (device == NULL)
4410 return (NULL);
4411
4412 cam_init_pinfo(&device->devq_entry.pinfo);
4413 device->devq_entry.device = device;
4414 device->target = target;
4415 device->lun_id = lun_id;
4416 device->sim = bus->sim;
4417 /* Initialize our queues */
4418 if (camq_init(&device->drvq, 0) != 0) {
4419 free(device, M_CAMDEV);
4420 return (NULL);
4421 }
4422 if (cam_ccbq_init(&device->ccbq,
4423 bus->sim->max_dev_openings) != 0) {
4424 camq_fini(&device->drvq);
4425 free(device, M_CAMDEV);
4426 return (NULL);
4427 }
4428 SLIST_INIT(&device->asyncs);
4429 SLIST_INIT(&device->periphs);
4430 device->generation = 0;
4431 device->owner = NULL;
4432 device->flags = CAM_DEV_UNCONFIGURED;
4433 device->tag_delay_count = 0;
4434 device->tag_saved_openings = 0;
4435 device->refcount = 1;
4436 callout_init_mtx(&device->callout, bus->sim->mtx, 0);
4437
4438 cur_device = TAILQ_FIRST(&target->ed_entries);
4439 while (cur_device != NULL && cur_device->lun_id < lun_id)
4440 cur_device = TAILQ_NEXT(cur_device, links);
4441 if (cur_device != NULL)
4442 TAILQ_INSERT_BEFORE(cur_device, device, links);
4443 else
4444 TAILQ_INSERT_TAIL(&target->ed_entries, device, links);
4445 target->refcount++;
4446 target->generation++;
4447 return (device);
4448}
4449
4450void
4451xpt_acquire_device(struct cam_ed *device)
4452{
4453
4454 mtx_assert(device->sim->mtx, MA_OWNED);
4455 device->refcount++;
4456}
4457
4458void
4459xpt_release_device(struct cam_ed *device)
4460{
4461 struct cam_devq *devq;
4462
4463 mtx_assert(device->sim->mtx, MA_OWNED);
4464 if (--device->refcount > 0)
4465 return;
4466
4467 KASSERT(SLIST_EMPTY(&device->periphs),
4468 ("refcount is zero, but periphs list is not empty"));
4469 if (device->devq_entry.pinfo.index != CAM_UNQUEUED_INDEX)
4470 panic("Removing device while still queued for ccbs");
4471
4472 if ((device->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0)
4473 callout_stop(&device->callout);
4474
4475 TAILQ_REMOVE(&device->target->ed_entries, device,links);
4476 device->target->generation++;
4477 device->target->bus->sim->max_ccbs -= device->ccbq.devq_openings;
4478 /* Release our slot in the devq */
4479 devq = device->target->bus->sim->devq;
4480 cam_devq_resize(devq, devq->send_queue.array_size - 1);
4481 camq_fini(&device->drvq);
4482 cam_ccbq_fini(&device->ccbq);
4483 /*
4484 * Free allocated memory. free(9) does nothing if the
4485 * supplied pointer is NULL, so it is safe to call without
4486 * checking.
4487 */
4488 free(device->supported_vpds, M_CAMXPT);
4489 free(device->device_id, M_CAMXPT);
4490 free(device->physpath, M_CAMXPT);
4491 free(device->rcap_buf, M_CAMXPT);
4492 free(device->serial_num, M_CAMXPT);
4493
4494 xpt_release_target(device->target);
4495 free(device, M_CAMDEV);
4496}
4497
4498u_int32_t
4499xpt_dev_ccbq_resize(struct cam_path *path, int newopenings)
4500{
4501 int diff;
4502 int result;
4503 struct cam_ed *dev;
4504
4505 dev = path->device;
4506
4507 diff = newopenings - (dev->ccbq.dev_active + dev->ccbq.dev_openings);
4508 result = cam_ccbq_resize(&dev->ccbq, newopenings);
4509 if (result == CAM_REQ_CMP && (diff < 0)) {
4510 dev->flags |= CAM_DEV_RESIZE_QUEUE_NEEDED;
4511 }
4512 if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0
4513 || (dev->inq_flags & SID_CmdQue) != 0)
4514 dev->tag_saved_openings = newopenings;
4515 /* Adjust the global limit */
4516 dev->sim->max_ccbs += diff;
4517 return (result);
4518}
4519
4520static struct cam_eb *
4521xpt_find_bus(path_id_t path_id)
4522{
4523 struct cam_eb *bus;
4524
4525 xpt_lock_buses();
4526 for (bus = TAILQ_FIRST(&xsoftc.xpt_busses);
4527 bus != NULL;
4528 bus = TAILQ_NEXT(bus, links)) {
4529 if (bus->path_id == path_id) {
4530 bus->refcount++;
4531 break;
4532 }
4533 }
4534 xpt_unlock_buses();
4535 return (bus);
4536}
4537
4538static struct cam_et *
4539xpt_find_target(struct cam_eb *bus, target_id_t target_id)
4540{
4541 struct cam_et *target;
4542
4543 mtx_assert(bus->sim->mtx, MA_OWNED);
4544 for (target = TAILQ_FIRST(&bus->et_entries);
4545 target != NULL;
4546 target = TAILQ_NEXT(target, links)) {
4547 if (target->target_id == target_id) {
4548 target->refcount++;
4549 break;
4550 }
4551 }
4552 return (target);
4553}
4554
4555static struct cam_ed *
4556xpt_find_device(struct cam_et *target, lun_id_t lun_id)
4557{
4558 struct cam_ed *device;
4559
4560 mtx_assert(target->bus->sim->mtx, MA_OWNED);
4561 for (device = TAILQ_FIRST(&target->ed_entries);
4562 device != NULL;
4563 device = TAILQ_NEXT(device, links)) {
4564 if (device->lun_id == lun_id) {
4565 device->refcount++;
4566 break;
4567 }
4568 }
4569 return (device);
4570}
4571
4572void
4573xpt_start_tags(struct cam_path *path)
4574{
4575 struct ccb_relsim crs;
4576 struct cam_ed *device;
4577 struct cam_sim *sim;
4578 int newopenings;
4579
4580 device = path->device;
4581 sim = path->bus->sim;
4582 device->flags &= ~CAM_DEV_TAG_AFTER_COUNT;
4583 xpt_freeze_devq(path, /*count*/1);
4584 device->inq_flags |= SID_CmdQue;
4585 if (device->tag_saved_openings != 0)
4586 newopenings = device->tag_saved_openings;
4587 else
4588 newopenings = min(device->maxtags,
4589 sim->max_tagged_dev_openings);
4590 xpt_dev_ccbq_resize(path, newopenings);
4591 xpt_async(AC_GETDEV_CHANGED, path, NULL);
4592 xpt_setup_ccb(&crs.ccb_h, path, CAM_PRIORITY_NORMAL);
4593 crs.ccb_h.func_code = XPT_REL_SIMQ;
4594 crs.release_flags = RELSIM_RELEASE_AFTER_QEMPTY;
4595 crs.openings
4596 = crs.release_timeout
4597 = crs.qfrozen_cnt
4598 = 0;
4599 xpt_action((union ccb *)&crs);
4600}
4601
4602void
4603xpt_stop_tags(struct cam_path *path)
4604{
4605 struct ccb_relsim crs;
4606 struct cam_ed *device;
4607 struct cam_sim *sim;
4608
4609 device = path->device;
4610 sim = path->bus->sim;
4611 device->flags &= ~CAM_DEV_TAG_AFTER_COUNT;
4612 device->tag_delay_count = 0;
4613 xpt_freeze_devq(path, /*count*/1);
4614 device->inq_flags &= ~SID_CmdQue;
4615 xpt_dev_ccbq_resize(path, sim->max_dev_openings);
4616 xpt_async(AC_GETDEV_CHANGED, path, NULL);
4617 xpt_setup_ccb(&crs.ccb_h, path, CAM_PRIORITY_NORMAL);
4618 crs.ccb_h.func_code = XPT_REL_SIMQ;
4619 crs.release_flags = RELSIM_RELEASE_AFTER_QEMPTY;
4620 crs.openings
4621 = crs.release_timeout
4622 = crs.qfrozen_cnt
4623 = 0;
4624 xpt_action((union ccb *)&crs);
4625}
4626
4627static void
4628xpt_boot_delay(void *arg)
4629{
4630
4631 xpt_release_boot();
4632}
4633
4634static void
4635xpt_config(void *arg)
4636{
4637 /*
4638 * Now that interrupts are enabled, go find our devices
4639 */
4640
4641 /* Setup debugging path */
4642 if (cam_dflags != CAM_DEBUG_NONE) {
4643 if (xpt_create_path_unlocked(&cam_dpath, xpt_periph,
4643 if (xpt_create_path_unlocked(&cam_dpath, NULL,
4644 CAM_DEBUG_BUS, CAM_DEBUG_TARGET,
4645 CAM_DEBUG_LUN) != CAM_REQ_CMP) {
4646 printf("xpt_config: xpt_create_path() failed for debug"
4647 " target %d:%d:%d, debugging disabled\n",
4648 CAM_DEBUG_BUS, CAM_DEBUG_TARGET, CAM_DEBUG_LUN);
4649 cam_dflags = CAM_DEBUG_NONE;
4650 }
4651 } else
4652 cam_dpath = NULL;
4653
4654 periphdriver_init(1);
4655 xpt_hold_boot();
4656 callout_init(&xsoftc.boot_callout, 1);
4657 callout_reset(&xsoftc.boot_callout, hz * xsoftc.boot_delay / 1000,
4658 xpt_boot_delay, NULL);
4659 /* Fire up rescan thread. */
4660 if (kproc_create(xpt_scanner_thread, NULL, NULL, 0, 0, "xpt_thrd")) {
4661 printf("xpt_config: failed to create rescan thread.\n");
4662 }
4663}
4664
4665void
4666xpt_hold_boot(void)
4667{
4668 xpt_lock_buses();
4669 xsoftc.buses_to_config++;
4670 xpt_unlock_buses();
4671}
4672
4673void
4674xpt_release_boot(void)
4675{
4676 xpt_lock_buses();
4677 xsoftc.buses_to_config--;
4678 if (xsoftc.buses_to_config == 0 && xsoftc.buses_config_done == 0) {
4679 struct xpt_task *task;
4680
4681 xsoftc.buses_config_done = 1;
4682 xpt_unlock_buses();
4683 /* Call manually because we don't have any busses */
4684 task = malloc(sizeof(struct xpt_task), M_CAMXPT, M_NOWAIT);
4685 if (task != NULL) {
4686 TASK_INIT(&task->task, 0, xpt_finishconfig_task, task);
4687 taskqueue_enqueue(taskqueue_thread, &task->task);
4688 }
4689 } else
4690 xpt_unlock_buses();
4691}
4692
4693/*
4694 * If the given device only has one peripheral attached to it, and if that
4695 * peripheral is the passthrough driver, announce it. This insures that the
4696 * user sees some sort of announcement for every peripheral in their system.
4697 */
4698static int
4699xptpassannouncefunc(struct cam_ed *device, void *arg)
4700{
4701 struct cam_periph *periph;
4702 int i;
4703
4704 for (periph = SLIST_FIRST(&device->periphs), i = 0; periph != NULL;
4705 periph = SLIST_NEXT(periph, periph_links), i++);
4706
4707 periph = SLIST_FIRST(&device->periphs);
4708 if ((i == 1)
4709 && (strncmp(periph->periph_name, "pass", 4) == 0))
4710 xpt_announce_periph(periph, NULL);
4711
4712 return(1);
4713}
4714
4715static void
4716xpt_finishconfig_task(void *context, int pending)
4717{
4718
4719 periphdriver_init(2);
4720 /*
4721 * Check for devices with no "standard" peripheral driver
4722 * attached. For any devices like that, announce the
4723 * passthrough driver so the user will see something.
4724 */
4725 if (!bootverbose)
4726 xpt_for_all_devices(xptpassannouncefunc, NULL);
4727
4728 /* Release our hook so that the boot can continue. */
4729 config_intrhook_disestablish(xsoftc.xpt_config_hook);
4730 free(xsoftc.xpt_config_hook, M_CAMXPT);
4731 xsoftc.xpt_config_hook = NULL;
4732
4733 free(context, M_CAMXPT);
4734}
4735
4736cam_status
4737xpt_register_async(int event, ac_callback_t *cbfunc, void *cbarg,
4738 struct cam_path *path)
4739{
4740 struct ccb_setasync csa;
4741 cam_status status;
4742 int xptpath = 0;
4743
4744 if (path == NULL) {
4745 mtx_lock(&xsoftc.xpt_lock);
4746 status = xpt_create_path(&path, /*periph*/NULL, CAM_XPT_PATH_ID,
4747 CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD);
4748 if (status != CAM_REQ_CMP) {
4749 mtx_unlock(&xsoftc.xpt_lock);
4750 return (status);
4751 }
4752 xptpath = 1;
4753 }
4754
4755 xpt_setup_ccb(&csa.ccb_h, path, CAM_PRIORITY_NORMAL);
4756 csa.ccb_h.func_code = XPT_SASYNC_CB;
4757 csa.event_enable = event;
4758 csa.callback = cbfunc;
4759 csa.callback_arg = cbarg;
4760 xpt_action((union ccb *)&csa);
4761 status = csa.ccb_h.status;
4762
4763 if (xptpath) {
4764 xpt_free_path(path);
4765 mtx_unlock(&xsoftc.xpt_lock);
4766 }
4767
4768 if ((status == CAM_REQ_CMP) &&
4769 (csa.event_enable & AC_FOUND_DEVICE)) {
4770 /*
4771 * Get this peripheral up to date with all
4772 * the currently existing devices.
4773 */
4774 xpt_for_all_devices(xptsetasyncfunc, &csa);
4775 }
4776 if ((status == CAM_REQ_CMP) &&
4777 (csa.event_enable & AC_PATH_REGISTERED)) {
4778 /*
4779 * Get this peripheral up to date with all
4780 * the currently existing busses.
4781 */
4782 xpt_for_all_busses(xptsetasyncbusfunc, &csa);
4783 }
4784
4785 return (status);
4786}
4787
4788static void
4789xptaction(struct cam_sim *sim, union ccb *work_ccb)
4790{
4791 CAM_DEBUG(work_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xptaction\n"));
4792
4793 switch (work_ccb->ccb_h.func_code) {
4794 /* Common cases first */
4795 case XPT_PATH_INQ: /* Path routing inquiry */
4796 {
4797 struct ccb_pathinq *cpi;
4798
4799 cpi = &work_ccb->cpi;
4800 cpi->version_num = 1; /* XXX??? */
4801 cpi->hba_inquiry = 0;
4802 cpi->target_sprt = 0;
4803 cpi->hba_misc = 0;
4804 cpi->hba_eng_cnt = 0;
4805 cpi->max_target = 0;
4806 cpi->max_lun = 0;
4807 cpi->initiator_id = 0;
4808 strncpy(cpi->sim_vid, "FreeBSD", SIM_IDLEN);
4809 strncpy(cpi->hba_vid, "", HBA_IDLEN);
4810 strncpy(cpi->dev_name, sim->sim_name, DEV_IDLEN);
4811 cpi->unit_number = sim->unit_number;
4812 cpi->bus_id = sim->bus_id;
4813 cpi->base_transfer_speed = 0;
4814 cpi->protocol = PROTO_UNSPECIFIED;
4815 cpi->protocol_version = PROTO_VERSION_UNSPECIFIED;
4816 cpi->transport = XPORT_UNSPECIFIED;
4817 cpi->transport_version = XPORT_VERSION_UNSPECIFIED;
4818 cpi->ccb_h.status = CAM_REQ_CMP;
4819 xpt_done(work_ccb);
4820 break;
4821 }
4822 default:
4823 work_ccb->ccb_h.status = CAM_REQ_INVALID;
4824 xpt_done(work_ccb);
4825 break;
4826 }
4827}
4828
4829/*
4830 * The xpt as a "controller" has no interrupt sources, so polling
4831 * is a no-op.
4832 */
4833static void
4834xptpoll(struct cam_sim *sim)
4835{
4836}
4837
4838void
4839xpt_lock_buses(void)
4840{
4841 mtx_lock(&xsoftc.xpt_topo_lock);
4842}
4843
4844void
4845xpt_unlock_buses(void)
4846{
4847 mtx_unlock(&xsoftc.xpt_topo_lock);
4848}
4849
4850static void
4851camisr(void *dummy)
4852{
4853 cam_simq_t queue;
4854 struct cam_sim *sim;
4855
4856 mtx_lock(&cam_simq_lock);
4857 TAILQ_INIT(&queue);
4858 while (!TAILQ_EMPTY(&cam_simq)) {
4859 TAILQ_CONCAT(&queue, &cam_simq, links);
4860 mtx_unlock(&cam_simq_lock);
4861
4862 while ((sim = TAILQ_FIRST(&queue)) != NULL) {
4863 TAILQ_REMOVE(&queue, sim, links);
4864 CAM_SIM_LOCK(sim);
4865 camisr_runqueue(&sim->sim_doneq);
4866 sim->flags &= ~CAM_SIM_ON_DONEQ;
4867 CAM_SIM_UNLOCK(sim);
4868 }
4869 mtx_lock(&cam_simq_lock);
4870 }
4871 mtx_unlock(&cam_simq_lock);
4872}
4873
4874static void
4875camisr_runqueue(void *V_queue)
4876{
4877 cam_isrq_t *queue = V_queue;
4878 struct ccb_hdr *ccb_h;
4879
4880 while ((ccb_h = TAILQ_FIRST(queue)) != NULL) {
4881 int runq;
4882
4883 TAILQ_REMOVE(queue, ccb_h, sim_links.tqe);
4884 ccb_h->pinfo.index = CAM_UNQUEUED_INDEX;
4885
4886 CAM_DEBUG(ccb_h->path, CAM_DEBUG_TRACE,
4887 ("camisr\n"));
4888
4889 runq = FALSE;
4890
4891 if (ccb_h->flags & CAM_HIGH_POWER) {
4892 struct highpowerlist *hphead;
4893 union ccb *send_ccb;
4894
4895 mtx_lock(&xsoftc.xpt_lock);
4896 hphead = &xsoftc.highpowerq;
4897
4898 send_ccb = (union ccb *)STAILQ_FIRST(hphead);
4899
4900 /*
4901 * Increment the count since this command is done.
4902 */
4903 xsoftc.num_highpower++;
4904
4905 /*
4906 * Any high powered commands queued up?
4907 */
4908 if (send_ccb != NULL) {
4909
4910 STAILQ_REMOVE_HEAD(hphead, xpt_links.stqe);
4911 mtx_unlock(&xsoftc.xpt_lock);
4912
4913 xpt_release_devq(send_ccb->ccb_h.path,
4914 /*count*/1, /*runqueue*/TRUE);
4915 } else
4916 mtx_unlock(&xsoftc.xpt_lock);
4917 }
4918
4919 if ((ccb_h->func_code & XPT_FC_USER_CCB) == 0) {
4920 struct cam_ed *dev;
4921
4922 dev = ccb_h->path->device;
4923
4924 cam_ccbq_ccb_done(&dev->ccbq, (union ccb *)ccb_h);
4925 ccb_h->path->bus->sim->devq->send_active--;
4926 ccb_h->path->bus->sim->devq->send_openings++;
4927 runq = TRUE;
4928
4929 if (((dev->flags & CAM_DEV_REL_ON_QUEUE_EMPTY) != 0
4930 && (dev->ccbq.dev_active == 0))) {
4931 dev->flags &= ~CAM_DEV_REL_ON_QUEUE_EMPTY;
4932 xpt_release_devq(ccb_h->path, /*count*/1,
4933 /*run_queue*/FALSE);
4934 }
4935
4936 if (((dev->flags & CAM_DEV_REL_ON_COMPLETE) != 0
4937 && (ccb_h->status&CAM_STATUS_MASK) != CAM_REQUEUE_REQ)) {
4938 dev->flags &= ~CAM_DEV_REL_ON_COMPLETE;
4939 xpt_release_devq(ccb_h->path, /*count*/1,
4940 /*run_queue*/FALSE);
4941 }
4942
4943 if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0
4944 && (--dev->tag_delay_count == 0))
4945 xpt_start_tags(ccb_h->path);
4946 if (!device_is_queued(dev)) {
4947 (void)xpt_schedule_devq(
4948 ccb_h->path->bus->sim->devq, dev);
4949 }
4950 }
4951
4952 if (ccb_h->status & CAM_RELEASE_SIMQ) {
4953 xpt_release_simq(ccb_h->path->bus->sim,
4954 /*run_queue*/TRUE);
4955 ccb_h->status &= ~CAM_RELEASE_SIMQ;
4956 runq = FALSE;
4957 }
4958
4959 if ((ccb_h->flags & CAM_DEV_QFRZDIS)
4960 && (ccb_h->status & CAM_DEV_QFRZN)) {
4961 xpt_release_devq(ccb_h->path, /*count*/1,
4962 /*run_queue*/TRUE);
4963 ccb_h->status &= ~CAM_DEV_QFRZN;
4964 } else if (runq) {
4965 xpt_run_devq(ccb_h->path->bus->sim->devq);
4966 }
4967
4968 /* Call the peripheral driver's callback */
4969 (*ccb_h->cbfcnp)(ccb_h->path->periph, (union ccb *)ccb_h);
4970 }
4971}
4644 CAM_DEBUG_BUS, CAM_DEBUG_TARGET,
4645 CAM_DEBUG_LUN) != CAM_REQ_CMP) {
4646 printf("xpt_config: xpt_create_path() failed for debug"
4647 " target %d:%d:%d, debugging disabled\n",
4648 CAM_DEBUG_BUS, CAM_DEBUG_TARGET, CAM_DEBUG_LUN);
4649 cam_dflags = CAM_DEBUG_NONE;
4650 }
4651 } else
4652 cam_dpath = NULL;
4653
4654 periphdriver_init(1);
4655 xpt_hold_boot();
4656 callout_init(&xsoftc.boot_callout, 1);
4657 callout_reset(&xsoftc.boot_callout, hz * xsoftc.boot_delay / 1000,
4658 xpt_boot_delay, NULL);
4659 /* Fire up rescan thread. */
4660 if (kproc_create(xpt_scanner_thread, NULL, NULL, 0, 0, "xpt_thrd")) {
4661 printf("xpt_config: failed to create rescan thread.\n");
4662 }
4663}
4664
4665void
4666xpt_hold_boot(void)
4667{
4668 xpt_lock_buses();
4669 xsoftc.buses_to_config++;
4670 xpt_unlock_buses();
4671}
4672
4673void
4674xpt_release_boot(void)
4675{
4676 xpt_lock_buses();
4677 xsoftc.buses_to_config--;
4678 if (xsoftc.buses_to_config == 0 && xsoftc.buses_config_done == 0) {
4679 struct xpt_task *task;
4680
4681 xsoftc.buses_config_done = 1;
4682 xpt_unlock_buses();
4683 /* Call manually because we don't have any busses */
4684 task = malloc(sizeof(struct xpt_task), M_CAMXPT, M_NOWAIT);
4685 if (task != NULL) {
4686 TASK_INIT(&task->task, 0, xpt_finishconfig_task, task);
4687 taskqueue_enqueue(taskqueue_thread, &task->task);
4688 }
4689 } else
4690 xpt_unlock_buses();
4691}
4692
4693/*
4694 * If the given device only has one peripheral attached to it, and if that
4695 * peripheral is the passthrough driver, announce it. This insures that the
4696 * user sees some sort of announcement for every peripheral in their system.
4697 */
4698static int
4699xptpassannouncefunc(struct cam_ed *device, void *arg)
4700{
4701 struct cam_periph *periph;
4702 int i;
4703
4704 for (periph = SLIST_FIRST(&device->periphs), i = 0; periph != NULL;
4705 periph = SLIST_NEXT(periph, periph_links), i++);
4706
4707 periph = SLIST_FIRST(&device->periphs);
4708 if ((i == 1)
4709 && (strncmp(periph->periph_name, "pass", 4) == 0))
4710 xpt_announce_periph(periph, NULL);
4711
4712 return(1);
4713}
4714
4715static void
4716xpt_finishconfig_task(void *context, int pending)
4717{
4718
4719 periphdriver_init(2);
4720 /*
4721 * Check for devices with no "standard" peripheral driver
4722 * attached. For any devices like that, announce the
4723 * passthrough driver so the user will see something.
4724 */
4725 if (!bootverbose)
4726 xpt_for_all_devices(xptpassannouncefunc, NULL);
4727
4728 /* Release our hook so that the boot can continue. */
4729 config_intrhook_disestablish(xsoftc.xpt_config_hook);
4730 free(xsoftc.xpt_config_hook, M_CAMXPT);
4731 xsoftc.xpt_config_hook = NULL;
4732
4733 free(context, M_CAMXPT);
4734}
4735
4736cam_status
4737xpt_register_async(int event, ac_callback_t *cbfunc, void *cbarg,
4738 struct cam_path *path)
4739{
4740 struct ccb_setasync csa;
4741 cam_status status;
4742 int xptpath = 0;
4743
4744 if (path == NULL) {
4745 mtx_lock(&xsoftc.xpt_lock);
4746 status = xpt_create_path(&path, /*periph*/NULL, CAM_XPT_PATH_ID,
4747 CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD);
4748 if (status != CAM_REQ_CMP) {
4749 mtx_unlock(&xsoftc.xpt_lock);
4750 return (status);
4751 }
4752 xptpath = 1;
4753 }
4754
4755 xpt_setup_ccb(&csa.ccb_h, path, CAM_PRIORITY_NORMAL);
4756 csa.ccb_h.func_code = XPT_SASYNC_CB;
4757 csa.event_enable = event;
4758 csa.callback = cbfunc;
4759 csa.callback_arg = cbarg;
4760 xpt_action((union ccb *)&csa);
4761 status = csa.ccb_h.status;
4762
4763 if (xptpath) {
4764 xpt_free_path(path);
4765 mtx_unlock(&xsoftc.xpt_lock);
4766 }
4767
4768 if ((status == CAM_REQ_CMP) &&
4769 (csa.event_enable & AC_FOUND_DEVICE)) {
4770 /*
4771 * Get this peripheral up to date with all
4772 * the currently existing devices.
4773 */
4774 xpt_for_all_devices(xptsetasyncfunc, &csa);
4775 }
4776 if ((status == CAM_REQ_CMP) &&
4777 (csa.event_enable & AC_PATH_REGISTERED)) {
4778 /*
4779 * Get this peripheral up to date with all
4780 * the currently existing busses.
4781 */
4782 xpt_for_all_busses(xptsetasyncbusfunc, &csa);
4783 }
4784
4785 return (status);
4786}
4787
4788static void
4789xptaction(struct cam_sim *sim, union ccb *work_ccb)
4790{
4791 CAM_DEBUG(work_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xptaction\n"));
4792
4793 switch (work_ccb->ccb_h.func_code) {
4794 /* Common cases first */
4795 case XPT_PATH_INQ: /* Path routing inquiry */
4796 {
4797 struct ccb_pathinq *cpi;
4798
4799 cpi = &work_ccb->cpi;
4800 cpi->version_num = 1; /* XXX??? */
4801 cpi->hba_inquiry = 0;
4802 cpi->target_sprt = 0;
4803 cpi->hba_misc = 0;
4804 cpi->hba_eng_cnt = 0;
4805 cpi->max_target = 0;
4806 cpi->max_lun = 0;
4807 cpi->initiator_id = 0;
4808 strncpy(cpi->sim_vid, "FreeBSD", SIM_IDLEN);
4809 strncpy(cpi->hba_vid, "", HBA_IDLEN);
4810 strncpy(cpi->dev_name, sim->sim_name, DEV_IDLEN);
4811 cpi->unit_number = sim->unit_number;
4812 cpi->bus_id = sim->bus_id;
4813 cpi->base_transfer_speed = 0;
4814 cpi->protocol = PROTO_UNSPECIFIED;
4815 cpi->protocol_version = PROTO_VERSION_UNSPECIFIED;
4816 cpi->transport = XPORT_UNSPECIFIED;
4817 cpi->transport_version = XPORT_VERSION_UNSPECIFIED;
4818 cpi->ccb_h.status = CAM_REQ_CMP;
4819 xpt_done(work_ccb);
4820 break;
4821 }
4822 default:
4823 work_ccb->ccb_h.status = CAM_REQ_INVALID;
4824 xpt_done(work_ccb);
4825 break;
4826 }
4827}
4828
4829/*
4830 * The xpt as a "controller" has no interrupt sources, so polling
4831 * is a no-op.
4832 */
4833static void
4834xptpoll(struct cam_sim *sim)
4835{
4836}
4837
4838void
4839xpt_lock_buses(void)
4840{
4841 mtx_lock(&xsoftc.xpt_topo_lock);
4842}
4843
4844void
4845xpt_unlock_buses(void)
4846{
4847 mtx_unlock(&xsoftc.xpt_topo_lock);
4848}
4849
4850static void
4851camisr(void *dummy)
4852{
4853 cam_simq_t queue;
4854 struct cam_sim *sim;
4855
4856 mtx_lock(&cam_simq_lock);
4857 TAILQ_INIT(&queue);
4858 while (!TAILQ_EMPTY(&cam_simq)) {
4859 TAILQ_CONCAT(&queue, &cam_simq, links);
4860 mtx_unlock(&cam_simq_lock);
4861
4862 while ((sim = TAILQ_FIRST(&queue)) != NULL) {
4863 TAILQ_REMOVE(&queue, sim, links);
4864 CAM_SIM_LOCK(sim);
4865 camisr_runqueue(&sim->sim_doneq);
4866 sim->flags &= ~CAM_SIM_ON_DONEQ;
4867 CAM_SIM_UNLOCK(sim);
4868 }
4869 mtx_lock(&cam_simq_lock);
4870 }
4871 mtx_unlock(&cam_simq_lock);
4872}
4873
4874static void
4875camisr_runqueue(void *V_queue)
4876{
4877 cam_isrq_t *queue = V_queue;
4878 struct ccb_hdr *ccb_h;
4879
4880 while ((ccb_h = TAILQ_FIRST(queue)) != NULL) {
4881 int runq;
4882
4883 TAILQ_REMOVE(queue, ccb_h, sim_links.tqe);
4884 ccb_h->pinfo.index = CAM_UNQUEUED_INDEX;
4885
4886 CAM_DEBUG(ccb_h->path, CAM_DEBUG_TRACE,
4887 ("camisr\n"));
4888
4889 runq = FALSE;
4890
4891 if (ccb_h->flags & CAM_HIGH_POWER) {
4892 struct highpowerlist *hphead;
4893 union ccb *send_ccb;
4894
4895 mtx_lock(&xsoftc.xpt_lock);
4896 hphead = &xsoftc.highpowerq;
4897
4898 send_ccb = (union ccb *)STAILQ_FIRST(hphead);
4899
4900 /*
4901 * Increment the count since this command is done.
4902 */
4903 xsoftc.num_highpower++;
4904
4905 /*
4906 * Any high powered commands queued up?
4907 */
4908 if (send_ccb != NULL) {
4909
4910 STAILQ_REMOVE_HEAD(hphead, xpt_links.stqe);
4911 mtx_unlock(&xsoftc.xpt_lock);
4912
4913 xpt_release_devq(send_ccb->ccb_h.path,
4914 /*count*/1, /*runqueue*/TRUE);
4915 } else
4916 mtx_unlock(&xsoftc.xpt_lock);
4917 }
4918
4919 if ((ccb_h->func_code & XPT_FC_USER_CCB) == 0) {
4920 struct cam_ed *dev;
4921
4922 dev = ccb_h->path->device;
4923
4924 cam_ccbq_ccb_done(&dev->ccbq, (union ccb *)ccb_h);
4925 ccb_h->path->bus->sim->devq->send_active--;
4926 ccb_h->path->bus->sim->devq->send_openings++;
4927 runq = TRUE;
4928
4929 if (((dev->flags & CAM_DEV_REL_ON_QUEUE_EMPTY) != 0
4930 && (dev->ccbq.dev_active == 0))) {
4931 dev->flags &= ~CAM_DEV_REL_ON_QUEUE_EMPTY;
4932 xpt_release_devq(ccb_h->path, /*count*/1,
4933 /*run_queue*/FALSE);
4934 }
4935
4936 if (((dev->flags & CAM_DEV_REL_ON_COMPLETE) != 0
4937 && (ccb_h->status&CAM_STATUS_MASK) != CAM_REQUEUE_REQ)) {
4938 dev->flags &= ~CAM_DEV_REL_ON_COMPLETE;
4939 xpt_release_devq(ccb_h->path, /*count*/1,
4940 /*run_queue*/FALSE);
4941 }
4942
4943 if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0
4944 && (--dev->tag_delay_count == 0))
4945 xpt_start_tags(ccb_h->path);
4946 if (!device_is_queued(dev)) {
4947 (void)xpt_schedule_devq(
4948 ccb_h->path->bus->sim->devq, dev);
4949 }
4950 }
4951
4952 if (ccb_h->status & CAM_RELEASE_SIMQ) {
4953 xpt_release_simq(ccb_h->path->bus->sim,
4954 /*run_queue*/TRUE);
4955 ccb_h->status &= ~CAM_RELEASE_SIMQ;
4956 runq = FALSE;
4957 }
4958
4959 if ((ccb_h->flags & CAM_DEV_QFRZDIS)
4960 && (ccb_h->status & CAM_DEV_QFRZN)) {
4961 xpt_release_devq(ccb_h->path, /*count*/1,
4962 /*run_queue*/TRUE);
4963 ccb_h->status &= ~CAM_DEV_QFRZN;
4964 } else if (runq) {
4965 xpt_run_devq(ccb_h->path->bus->sim->devq);
4966 }
4967
4968 /* Call the peripheral driver's callback */
4969 (*ccb_h->cbfcnp)(ccb_h->path->periph, (union ccb *)ccb_h);
4970 }
4971}