Deleted Added
full compact
X86DisassemblerDecoder.c (263508) X86DisassemblerDecoder.c (266715)
1/*===-- X86DisassemblerDecoder.c - Disassembler decoder ------------*- C -*-===*
2 *
3 * The LLVM Compiler Infrastructure
4 *
5 * This file is distributed under the University of Illinois Open Source
6 * License. See LICENSE.TXT for details.
7 *
8 *===----------------------------------------------------------------------===*
9 *
10 * This file is part of the X86 Disassembler.
11 * It contains the implementation of the instruction decoder.
12 * Documentation for the disassembler can be found in X86Disassembler.h.
13 *
14 *===----------------------------------------------------------------------===*/
15
16#include <stdarg.h> /* for va_*() */
17#include <stdio.h> /* for vsnprintf() */
18#include <stdlib.h> /* for exit() */
19#include <string.h> /* for memset() */
20
21#include "X86DisassemblerDecoder.h"
22
23#include "X86GenDisassemblerTables.inc"
24
25#define TRUE 1
26#define FALSE 0
27
28#ifndef NDEBUG
29#define debug(s) do { x86DisassemblerDebug(__FILE__, __LINE__, s); } while (0)
30#else
31#define debug(s) do { } while (0)
32#endif
33
34
35/*
36 * contextForAttrs - Client for the instruction context table. Takes a set of
37 * attributes and returns the appropriate decode context.
38 *
39 * @param attrMask - Attributes, from the enumeration attributeBits.
40 * @return - The InstructionContext to use when looking up an
41 * an instruction with these attributes.
42 */
43static InstructionContext contextForAttrs(uint8_t attrMask) {
44 return CONTEXTS_SYM[attrMask];
45}
46
47/*
48 * modRMRequired - Reads the appropriate instruction table to determine whether
49 * the ModR/M byte is required to decode a particular instruction.
50 *
51 * @param type - The opcode type (i.e., how many bytes it has).
52 * @param insnContext - The context for the instruction, as returned by
53 * contextForAttrs.
54 * @param opcode - The last byte of the instruction's opcode, not counting
55 * ModR/M extensions and escapes.
56 * @return - TRUE if the ModR/M byte is required, FALSE otherwise.
57 */
58static int modRMRequired(OpcodeType type,
59 InstructionContext insnContext,
60 uint8_t opcode) {
61 const struct ContextDecision* decision = 0;
62
63 switch (type) {
64 case ONEBYTE:
65 decision = &ONEBYTE_SYM;
66 break;
67 case TWOBYTE:
68 decision = &TWOBYTE_SYM;
69 break;
70 case THREEBYTE_38:
71 decision = &THREEBYTE38_SYM;
72 break;
73 case THREEBYTE_3A:
74 decision = &THREEBYTE3A_SYM;
75 break;
76 case THREEBYTE_A6:
77 decision = &THREEBYTEA6_SYM;
78 break;
79 case THREEBYTE_A7:
80 decision = &THREEBYTEA7_SYM;
81 break;
82 case XOP8_MAP:
83 decision = &XOP8_MAP_SYM;
84 break;
85 case XOP9_MAP:
86 decision = &XOP9_MAP_SYM;
87 break;
88 case XOPA_MAP:
89 decision = &XOPA_MAP_SYM;
90 break;
91 }
92
93 return decision->opcodeDecisions[insnContext].modRMDecisions[opcode].
94 modrm_type != MODRM_ONEENTRY;
95}
96
97/*
98 * decode - Reads the appropriate instruction table to obtain the unique ID of
99 * an instruction.
100 *
101 * @param type - See modRMRequired().
102 * @param insnContext - See modRMRequired().
103 * @param opcode - See modRMRequired().
104 * @param modRM - The ModR/M byte if required, or any value if not.
105 * @return - The UID of the instruction, or 0 on failure.
106 */
107static InstrUID decode(OpcodeType type,
108 InstructionContext insnContext,
109 uint8_t opcode,
110 uint8_t modRM) {
111 const struct ModRMDecision* dec = 0;
112
113 switch (type) {
114 case ONEBYTE:
115 dec = &ONEBYTE_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
116 break;
117 case TWOBYTE:
118 dec = &TWOBYTE_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
119 break;
120 case THREEBYTE_38:
121 dec = &THREEBYTE38_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
122 break;
123 case THREEBYTE_3A:
124 dec = &THREEBYTE3A_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
125 break;
126 case THREEBYTE_A6:
127 dec = &THREEBYTEA6_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
128 break;
129 case THREEBYTE_A7:
130 dec = &THREEBYTEA7_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
131 break;
132 case XOP8_MAP:
133 dec = &XOP8_MAP_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
134 break;
135 case XOP9_MAP:
136 dec = &XOP9_MAP_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
137 break;
138 case XOPA_MAP:
139 dec = &XOPA_MAP_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
140 break;
141 }
142
143 switch (dec->modrm_type) {
144 default:
145 debug("Corrupt table! Unknown modrm_type");
146 return 0;
147 case MODRM_ONEENTRY:
148 return modRMTable[dec->instructionIDs];
149 case MODRM_SPLITRM:
150 if (modFromModRM(modRM) == 0x3)
151 return modRMTable[dec->instructionIDs+1];
152 return modRMTable[dec->instructionIDs];
153 case MODRM_SPLITREG:
154 if (modFromModRM(modRM) == 0x3)
155 return modRMTable[dec->instructionIDs+((modRM & 0x38) >> 3)+8];
156 return modRMTable[dec->instructionIDs+((modRM & 0x38) >> 3)];
157 case MODRM_SPLITMISC:
158 if (modFromModRM(modRM) == 0x3)
159 return modRMTable[dec->instructionIDs+(modRM & 0x3f)+8];
160 return modRMTable[dec->instructionIDs+((modRM & 0x38) >> 3)];
161 case MODRM_FULL:
162 return modRMTable[dec->instructionIDs+modRM];
163 }
164}
165
166/*
167 * specifierForUID - Given a UID, returns the name and operand specification for
168 * that instruction.
169 *
170 * @param uid - The unique ID for the instruction. This should be returned by
171 * decode(); specifierForUID will not check bounds.
172 * @return - A pointer to the specification for that instruction.
173 */
174static const struct InstructionSpecifier *specifierForUID(InstrUID uid) {
175 return &INSTRUCTIONS_SYM[uid];
176}
177
178/*
179 * consumeByte - Uses the reader function provided by the user to consume one
180 * byte from the instruction's memory and advance the cursor.
181 *
182 * @param insn - The instruction with the reader function to use. The cursor
183 * for this instruction is advanced.
184 * @param byte - A pointer to a pre-allocated memory buffer to be populated
185 * with the data read.
186 * @return - 0 if the read was successful; nonzero otherwise.
187 */
188static int consumeByte(struct InternalInstruction* insn, uint8_t* byte) {
189 int ret = insn->reader(insn->readerArg, byte, insn->readerCursor);
190
191 if (!ret)
192 ++(insn->readerCursor);
193
194 return ret;
195}
196
197/*
198 * lookAtByte - Like consumeByte, but does not advance the cursor.
199 *
200 * @param insn - See consumeByte().
201 * @param byte - See consumeByte().
202 * @return - See consumeByte().
203 */
204static int lookAtByte(struct InternalInstruction* insn, uint8_t* byte) {
205 return insn->reader(insn->readerArg, byte, insn->readerCursor);
206}
207
208static void unconsumeByte(struct InternalInstruction* insn) {
209 insn->readerCursor--;
210}
211
212#define CONSUME_FUNC(name, type) \
213 static int name(struct InternalInstruction* insn, type* ptr) { \
214 type combined = 0; \
215 unsigned offset; \
216 for (offset = 0; offset < sizeof(type); ++offset) { \
217 uint8_t byte; \
218 int ret = insn->reader(insn->readerArg, \
219 &byte, \
220 insn->readerCursor + offset); \
221 if (ret) \
222 return ret; \
223 combined = combined | ((uint64_t)byte << (offset * 8)); \
224 } \
225 *ptr = combined; \
226 insn->readerCursor += sizeof(type); \
227 return 0; \
228 }
229
230/*
231 * consume* - Use the reader function provided by the user to consume data
232 * values of various sizes from the instruction's memory and advance the
233 * cursor appropriately. These readers perform endian conversion.
234 *
235 * @param insn - See consumeByte().
236 * @param ptr - A pointer to a pre-allocated memory of appropriate size to
237 * be populated with the data read.
238 * @return - See consumeByte().
239 */
240CONSUME_FUNC(consumeInt8, int8_t)
241CONSUME_FUNC(consumeInt16, int16_t)
242CONSUME_FUNC(consumeInt32, int32_t)
243CONSUME_FUNC(consumeUInt16, uint16_t)
244CONSUME_FUNC(consumeUInt32, uint32_t)
245CONSUME_FUNC(consumeUInt64, uint64_t)
246
247/*
248 * dbgprintf - Uses the logging function provided by the user to log a single
249 * message, typically without a carriage-return.
250 *
251 * @param insn - The instruction containing the logging function.
252 * @param format - See printf().
253 * @param ... - See printf().
254 */
255static void dbgprintf(struct InternalInstruction* insn,
256 const char* format,
257 ...) {
258 char buffer[256];
259 va_list ap;
260
261 if (!insn->dlog)
262 return;
263
264 va_start(ap, format);
265 (void)vsnprintf(buffer, sizeof(buffer), format, ap);
266 va_end(ap);
267
268 insn->dlog(insn->dlogArg, buffer);
269
270 return;
271}
272
273/*
274 * setPrefixPresent - Marks that a particular prefix is present at a particular
275 * location.
276 *
277 * @param insn - The instruction to be marked as having the prefix.
278 * @param prefix - The prefix that is present.
279 * @param location - The location where the prefix is located (in the address
280 * space of the instruction's reader).
281 */
282static void setPrefixPresent(struct InternalInstruction* insn,
283 uint8_t prefix,
284 uint64_t location)
285{
286 insn->prefixPresent[prefix] = 1;
287 insn->prefixLocations[prefix] = location;
288}
289
290/*
291 * isPrefixAtLocation - Queries an instruction to determine whether a prefix is
292 * present at a given location.
293 *
294 * @param insn - The instruction to be queried.
295 * @param prefix - The prefix.
296 * @param location - The location to query.
297 * @return - Whether the prefix is at that location.
298 */
299static BOOL isPrefixAtLocation(struct InternalInstruction* insn,
300 uint8_t prefix,
301 uint64_t location)
302{
303 if (insn->prefixPresent[prefix] == 1 &&
304 insn->prefixLocations[prefix] == location)
305 return TRUE;
306 else
307 return FALSE;
308}
309
310/*
311 * readPrefixes - Consumes all of an instruction's prefix bytes, and marks the
312 * instruction as having them. Also sets the instruction's default operand,
313 * address, and other relevant data sizes to report operands correctly.
314 *
315 * @param insn - The instruction whose prefixes are to be read.
316 * @return - 0 if the instruction could be read until the end of the prefix
317 * bytes, and no prefixes conflicted; nonzero otherwise.
318 */
319static int readPrefixes(struct InternalInstruction* insn) {
320 BOOL isPrefix = TRUE;
321 BOOL prefixGroups[4] = { FALSE };
322 uint64_t prefixLocation;
323 uint8_t byte = 0;
324 uint8_t nextByte;
325
326 BOOL hasAdSize = FALSE;
327 BOOL hasOpSize = FALSE;
328
329 dbgprintf(insn, "readPrefixes()");
330
331 while (isPrefix) {
332 prefixLocation = insn->readerCursor;
333
334 /* If we fail reading prefixes, just stop here and let the opcode reader deal with it */
335 if (consumeByte(insn, &byte))
336 break;
337
338 /*
339 * If the byte is a LOCK/REP/REPNE prefix and not a part of the opcode, then
340 * break and let it be disassembled as a normal "instruction".
341 */
342 if (insn->readerCursor - 1 == insn->startLocation && byte == 0xf0)
343 break;
344
345 if (insn->readerCursor - 1 == insn->startLocation
346 && (byte == 0xf2 || byte == 0xf3)
347 && !lookAtByte(insn, &nextByte))
348 {
349 /*
350 * If the byte is 0xf2 or 0xf3, and any of the following conditions are
351 * met:
352 * - it is followed by a LOCK (0xf0) prefix
353 * - it is followed by an xchg instruction
354 * then it should be disassembled as a xacquire/xrelease not repne/rep.
355 */
356 if ((byte == 0xf2 || byte == 0xf3) &&
357 ((nextByte == 0xf0) |
358 ((nextByte & 0xfe) == 0x86 || (nextByte & 0xf8) == 0x90)))
359 insn->xAcquireRelease = TRUE;
360 /*
361 * Also if the byte is 0xf3, and the following condition is met:
362 * - it is followed by a "mov mem, reg" (opcode 0x88/0x89) or
363 * "mov mem, imm" (opcode 0xc6/0xc7) instructions.
364 * then it should be disassembled as an xrelease not rep.
365 */
366 if (byte == 0xf3 &&
367 (nextByte == 0x88 || nextByte == 0x89 ||
368 nextByte == 0xc6 || nextByte == 0xc7))
369 insn->xAcquireRelease = TRUE;
370 if (insn->mode == MODE_64BIT && (nextByte & 0xf0) == 0x40) {
371 if (consumeByte(insn, &nextByte))
372 return -1;
373 if (lookAtByte(insn, &nextByte))
374 return -1;
375 unconsumeByte(insn);
376 }
377 if (nextByte != 0x0f && nextByte != 0x90)
378 break;
379 }
380
381 switch (byte) {
382 case 0xf0: /* LOCK */
383 case 0xf2: /* REPNE/REPNZ */
384 case 0xf3: /* REP or REPE/REPZ */
385 if (prefixGroups[0])
386 dbgprintf(insn, "Redundant Group 1 prefix");
387 prefixGroups[0] = TRUE;
388 setPrefixPresent(insn, byte, prefixLocation);
389 break;
390 case 0x2e: /* CS segment override -OR- Branch not taken */
391 case 0x36: /* SS segment override -OR- Branch taken */
392 case 0x3e: /* DS segment override */
393 case 0x26: /* ES segment override */
394 case 0x64: /* FS segment override */
395 case 0x65: /* GS segment override */
396 switch (byte) {
397 case 0x2e:
398 insn->segmentOverride = SEG_OVERRIDE_CS;
399 break;
400 case 0x36:
401 insn->segmentOverride = SEG_OVERRIDE_SS;
402 break;
403 case 0x3e:
404 insn->segmentOverride = SEG_OVERRIDE_DS;
405 break;
406 case 0x26:
407 insn->segmentOverride = SEG_OVERRIDE_ES;
408 break;
409 case 0x64:
410 insn->segmentOverride = SEG_OVERRIDE_FS;
411 break;
412 case 0x65:
413 insn->segmentOverride = SEG_OVERRIDE_GS;
414 break;
415 default:
416 debug("Unhandled override");
417 return -1;
418 }
419 if (prefixGroups[1])
420 dbgprintf(insn, "Redundant Group 2 prefix");
421 prefixGroups[1] = TRUE;
422 setPrefixPresent(insn, byte, prefixLocation);
423 break;
424 case 0x66: /* Operand-size override */
425 if (prefixGroups[2])
426 dbgprintf(insn, "Redundant Group 3 prefix");
427 prefixGroups[2] = TRUE;
428 hasOpSize = TRUE;
429 setPrefixPresent(insn, byte, prefixLocation);
430 break;
431 case 0x67: /* Address-size override */
432 if (prefixGroups[3])
433 dbgprintf(insn, "Redundant Group 4 prefix");
434 prefixGroups[3] = TRUE;
435 hasAdSize = TRUE;
436 setPrefixPresent(insn, byte, prefixLocation);
437 break;
438 default: /* Not a prefix byte */
439 isPrefix = FALSE;
440 break;
441 }
442
443 if (isPrefix)
444 dbgprintf(insn, "Found prefix 0x%hhx", byte);
445 }
446
447 insn->vexXopType = TYPE_NO_VEX_XOP;
448
449 if (byte == 0xc4) {
450 uint8_t byte1;
451
452 if (lookAtByte(insn, &byte1)) {
453 dbgprintf(insn, "Couldn't read second byte of VEX");
454 return -1;
455 }
456
457 if (insn->mode == MODE_64BIT || (byte1 & 0xc0) == 0xc0) {
458 insn->vexXopType = TYPE_VEX_3B;
459 insn->necessaryPrefixLocation = insn->readerCursor - 1;
460 }
461 else {
462 unconsumeByte(insn);
463 insn->necessaryPrefixLocation = insn->readerCursor - 1;
464 }
465
466 if (insn->vexXopType == TYPE_VEX_3B) {
467 insn->vexXopPrefix[0] = byte;
468 consumeByte(insn, &insn->vexXopPrefix[1]);
469 consumeByte(insn, &insn->vexXopPrefix[2]);
470
471 /* We simulate the REX prefix for simplicity's sake */
472
473 if (insn->mode == MODE_64BIT) {
474 insn->rexPrefix = 0x40
475 | (wFromVEX3of3(insn->vexXopPrefix[2]) << 3)
476 | (rFromVEX2of3(insn->vexXopPrefix[1]) << 2)
477 | (xFromVEX2of3(insn->vexXopPrefix[1]) << 1)
478 | (bFromVEX2of3(insn->vexXopPrefix[1]) << 0);
479 }
480
481 switch (ppFromVEX3of3(insn->vexXopPrefix[2]))
482 {
483 default:
484 break;
485 case VEX_PREFIX_66:
486 hasOpSize = TRUE;
487 break;
488 }
489
490 dbgprintf(insn, "Found VEX prefix 0x%hhx 0x%hhx 0x%hhx",
491 insn->vexXopPrefix[0], insn->vexXopPrefix[1],
492 insn->vexXopPrefix[2]);
493 }
494 }
495 else if (byte == 0xc5) {
496 uint8_t byte1;
497
498 if (lookAtByte(insn, &byte1)) {
499 dbgprintf(insn, "Couldn't read second byte of VEX");
500 return -1;
501 }
502
503 if (insn->mode == MODE_64BIT || (byte1 & 0xc0) == 0xc0) {
504 insn->vexXopType = TYPE_VEX_2B;
505 }
506 else {
507 unconsumeByte(insn);
508 }
509
510 if (insn->vexXopType == TYPE_VEX_2B) {
511 insn->vexXopPrefix[0] = byte;
512 consumeByte(insn, &insn->vexXopPrefix[1]);
513
514 if (insn->mode == MODE_64BIT) {
515 insn->rexPrefix = 0x40
516 | (rFromVEX2of2(insn->vexXopPrefix[1]) << 2);
517 }
518
519 switch (ppFromVEX2of2(insn->vexXopPrefix[1]))
520 {
521 default:
522 break;
523 case VEX_PREFIX_66:
524 hasOpSize = TRUE;
525 break;
526 }
527
528 dbgprintf(insn, "Found VEX prefix 0x%hhx 0x%hhx", insn->vexXopPrefix[0], insn->vexXopPrefix[1]);
529 }
530 }
531 else if (byte == 0x8f) {
532 uint8_t byte1;
533
534 if (lookAtByte(insn, &byte1)) {
535 dbgprintf(insn, "Couldn't read second byte of XOP");
536 return -1;
537 }
538
539 if ((byte1 & 0x38) != 0x0) { /* 0 in these 3 bits is a POP instruction. */
540 insn->vexXopType = TYPE_XOP;
541 insn->necessaryPrefixLocation = insn->readerCursor - 1;
542 }
543 else {
544 unconsumeByte(insn);
545 insn->necessaryPrefixLocation = insn->readerCursor - 1;
546 }
547
548 if (insn->vexXopType == TYPE_XOP) {
549 insn->vexXopPrefix[0] = byte;
550 consumeByte(insn, &insn->vexXopPrefix[1]);
551 consumeByte(insn, &insn->vexXopPrefix[2]);
552
553 /* We simulate the REX prefix for simplicity's sake */
554
555 if (insn->mode == MODE_64BIT) {
556 insn->rexPrefix = 0x40
557 | (wFromXOP3of3(insn->vexXopPrefix[2]) << 3)
558 | (rFromXOP2of3(insn->vexXopPrefix[1]) << 2)
559 | (xFromXOP2of3(insn->vexXopPrefix[1]) << 1)
560 | (bFromXOP2of3(insn->vexXopPrefix[1]) << 0);
561 }
562
563 switch (ppFromXOP3of3(insn->vexXopPrefix[2]))
564 {
565 default:
566 break;
567 case VEX_PREFIX_66:
568 hasOpSize = TRUE;
569 break;
570 }
571
572 dbgprintf(insn, "Found XOP prefix 0x%hhx 0x%hhx 0x%hhx",
573 insn->vexXopPrefix[0], insn->vexXopPrefix[1],
574 insn->vexXopPrefix[2]);
575 }
576 }
577 else {
578 if (insn->mode == MODE_64BIT) {
579 if ((byte & 0xf0) == 0x40) {
580 uint8_t opcodeByte;
581
582 if (lookAtByte(insn, &opcodeByte) || ((opcodeByte & 0xf0) == 0x40)) {
583 dbgprintf(insn, "Redundant REX prefix");
584 return -1;
585 }
586
587 insn->rexPrefix = byte;
588 insn->necessaryPrefixLocation = insn->readerCursor - 2;
589
590 dbgprintf(insn, "Found REX prefix 0x%hhx", byte);
591 } else {
592 unconsumeByte(insn);
593 insn->necessaryPrefixLocation = insn->readerCursor - 1;
594 }
595 } else {
596 unconsumeByte(insn);
597 insn->necessaryPrefixLocation = insn->readerCursor - 1;
598 }
599 }
600
601 if (insn->mode == MODE_16BIT) {
602 insn->registerSize = (hasOpSize ? 4 : 2);
603 insn->addressSize = (hasAdSize ? 4 : 2);
604 insn->displacementSize = (hasAdSize ? 4 : 2);
605 insn->immediateSize = (hasOpSize ? 4 : 2);
606 } else if (insn->mode == MODE_32BIT) {
607 insn->registerSize = (hasOpSize ? 2 : 4);
608 insn->addressSize = (hasAdSize ? 2 : 4);
609 insn->displacementSize = (hasAdSize ? 2 : 4);
610 insn->immediateSize = (hasOpSize ? 2 : 4);
611 } else if (insn->mode == MODE_64BIT) {
612 if (insn->rexPrefix && wFromREX(insn->rexPrefix)) {
613 insn->registerSize = 8;
614 insn->addressSize = (hasAdSize ? 4 : 8);
615 insn->displacementSize = 4;
616 insn->immediateSize = 4;
617 } else if (insn->rexPrefix) {
618 insn->registerSize = (hasOpSize ? 2 : 4);
619 insn->addressSize = (hasAdSize ? 4 : 8);
620 insn->displacementSize = (hasOpSize ? 2 : 4);
621 insn->immediateSize = (hasOpSize ? 2 : 4);
622 } else {
623 insn->registerSize = (hasOpSize ? 2 : 4);
624 insn->addressSize = (hasAdSize ? 4 : 8);
625 insn->displacementSize = (hasOpSize ? 2 : 4);
626 insn->immediateSize = (hasOpSize ? 2 : 4);
627 }
628 }
629
630 return 0;
631}
632
633/*
634 * readOpcode - Reads the opcode (excepting the ModR/M byte in the case of
635 * extended or escape opcodes).
636 *
637 * @param insn - The instruction whose opcode is to be read.
638 * @return - 0 if the opcode could be read successfully; nonzero otherwise.
639 */
640static int readOpcode(struct InternalInstruction* insn) {
641 /* Determine the length of the primary opcode */
642
643 uint8_t current;
644
645 dbgprintf(insn, "readOpcode()");
646
647 insn->opcodeType = ONEBYTE;
648
649 if (insn->vexXopType == TYPE_VEX_3B)
650 {
651 switch (mmmmmFromVEX2of3(insn->vexXopPrefix[1]))
652 {
653 default:
654 dbgprintf(insn, "Unhandled m-mmmm field for instruction (0x%hhx)",
655 mmmmmFromVEX2of3(insn->vexXopPrefix[1]));
656 return -1;
657 case VEX_LOB_0F:
658 insn->opcodeType = TWOBYTE;
659 return consumeByte(insn, &insn->opcode);
660 case VEX_LOB_0F38:
661 insn->opcodeType = THREEBYTE_38;
662 return consumeByte(insn, &insn->opcode);
663 case VEX_LOB_0F3A:
664 insn->opcodeType = THREEBYTE_3A;
665 return consumeByte(insn, &insn->opcode);
666 }
667 }
668 else if (insn->vexXopType == TYPE_VEX_2B)
669 {
670 insn->opcodeType = TWOBYTE;
671 return consumeByte(insn, &insn->opcode);
672 }
673 else if (insn->vexXopType == TYPE_XOP)
674 {
675 switch (mmmmmFromXOP2of3(insn->vexXopPrefix[1]))
676 {
677 default:
678 dbgprintf(insn, "Unhandled m-mmmm field for instruction (0x%hhx)",
679 mmmmmFromVEX2of3(insn->vexXopPrefix[1]));
680 return -1;
681 case XOP_MAP_SELECT_8:
682 insn->opcodeType = XOP8_MAP;
683 return consumeByte(insn, &insn->opcode);
684 case XOP_MAP_SELECT_9:
685 insn->opcodeType = XOP9_MAP;
686 return consumeByte(insn, &insn->opcode);
687 case XOP_MAP_SELECT_A:
688 insn->opcodeType = XOPA_MAP;
689 return consumeByte(insn, &insn->opcode);
690 }
691 }
692
693 if (consumeByte(insn, &current))
694 return -1;
695
696 if (current == 0x0f) {
697 dbgprintf(insn, "Found a two-byte escape prefix (0x%hhx)", current);
698
699 if (consumeByte(insn, &current))
700 return -1;
701
702 if (current == 0x38) {
703 dbgprintf(insn, "Found a three-byte escape prefix (0x%hhx)", current);
704
705 if (consumeByte(insn, &current))
706 return -1;
707
708 insn->opcodeType = THREEBYTE_38;
709 } else if (current == 0x3a) {
710 dbgprintf(insn, "Found a three-byte escape prefix (0x%hhx)", current);
711
712 if (consumeByte(insn, &current))
713 return -1;
714
715 insn->opcodeType = THREEBYTE_3A;
716 } else if (current == 0xa6) {
717 dbgprintf(insn, "Found a three-byte escape prefix (0x%hhx)", current);
718
719 if (consumeByte(insn, &current))
720 return -1;
721
722 insn->opcodeType = THREEBYTE_A6;
723 } else if (current == 0xa7) {
724 dbgprintf(insn, "Found a three-byte escape prefix (0x%hhx)", current);
725
726 if (consumeByte(insn, &current))
727 return -1;
728
729 insn->opcodeType = THREEBYTE_A7;
730 } else {
731 dbgprintf(insn, "Didn't find a three-byte escape prefix");
732
733 insn->opcodeType = TWOBYTE;
734 }
735 }
736
737 /*
738 * At this point we have consumed the full opcode.
739 * Anything we consume from here on must be unconsumed.
740 */
741
742 insn->opcode = current;
743
744 return 0;
745}
746
747static int readModRM(struct InternalInstruction* insn);
748
749/*
750 * getIDWithAttrMask - Determines the ID of an instruction, consuming
751 * the ModR/M byte as appropriate for extended and escape opcodes,
752 * and using a supplied attribute mask.
753 *
754 * @param instructionID - A pointer whose target is filled in with the ID of the
755 * instruction.
756 * @param insn - The instruction whose ID is to be determined.
757 * @param attrMask - The attribute mask to search.
758 * @return - 0 if the ModR/M could be read when needed or was not
759 * needed; nonzero otherwise.
760 */
761static int getIDWithAttrMask(uint16_t* instructionID,
762 struct InternalInstruction* insn,
763 uint8_t attrMask) {
764 BOOL hasModRMExtension;
765
766 uint8_t instructionClass;
767
768 instructionClass = contextForAttrs(attrMask);
769
770 hasModRMExtension = modRMRequired(insn->opcodeType,
771 instructionClass,
772 insn->opcode);
773
774 if (hasModRMExtension) {
775 if (readModRM(insn))
776 return -1;
777
778 *instructionID = decode(insn->opcodeType,
779 instructionClass,
780 insn->opcode,
781 insn->modRM);
782 } else {
783 *instructionID = decode(insn->opcodeType,
784 instructionClass,
785 insn->opcode,
786 0);
787 }
788
789 return 0;
790}
791
792/*
793 * is16BitEquivalent - Determines whether two instruction names refer to
794 * equivalent instructions but one is 16-bit whereas the other is not.
795 *
796 * @param orig - The instruction that is not 16-bit
797 * @param equiv - The instruction that is 16-bit
798 */
799static BOOL is16BitEquivalent(const char* orig, const char* equiv) {
800 off_t i;
801
802 for (i = 0;; i++) {
803 if (orig[i] == '\0' && equiv[i] == '\0')
804 return TRUE;
805 if (orig[i] == '\0' || equiv[i] == '\0')
806 return FALSE;
807 if (orig[i] != equiv[i]) {
808 if ((orig[i] == 'Q' || orig[i] == 'L') && equiv[i] == 'W')
809 continue;
810 if ((orig[i] == '6' || orig[i] == '3') && equiv[i] == '1')
811 continue;
812 if ((orig[i] == '4' || orig[i] == '2') && equiv[i] == '6')
813 continue;
814 return FALSE;
815 }
816 }
817}
818
819/*
820 * getID - Determines the ID of an instruction, consuming the ModR/M byte as
821 * appropriate for extended and escape opcodes. Determines the attributes and
822 * context for the instruction before doing so.
823 *
824 * @param insn - The instruction whose ID is to be determined.
825 * @return - 0 if the ModR/M could be read when needed or was not needed;
826 * nonzero otherwise.
827 */
828static int getID(struct InternalInstruction* insn, const void *miiArg) {
829 uint8_t attrMask;
830 uint16_t instructionID;
831
832 dbgprintf(insn, "getID()");
833
834 attrMask = ATTR_NONE;
835
836 if (insn->mode == MODE_64BIT)
837 attrMask |= ATTR_64BIT;
838
839 if (insn->vexXopType != TYPE_NO_VEX_XOP) {
840 attrMask |= ATTR_VEX;
841
842 if (insn->vexXopType == TYPE_VEX_3B) {
843 switch (ppFromVEX3of3(insn->vexXopPrefix[2])) {
844 case VEX_PREFIX_66:
845 attrMask |= ATTR_OPSIZE;
846 break;
847 case VEX_PREFIX_F3:
848 attrMask |= ATTR_XS;
849 break;
850 case VEX_PREFIX_F2:
851 attrMask |= ATTR_XD;
852 break;
853 }
854
855 if (lFromVEX3of3(insn->vexXopPrefix[2]))
856 attrMask |= ATTR_VEXL;
857 }
858 else if (insn->vexXopType == TYPE_VEX_2B) {
859 switch (ppFromVEX2of2(insn->vexXopPrefix[1])) {
860 case VEX_PREFIX_66:
861 attrMask |= ATTR_OPSIZE;
862 break;
863 case VEX_PREFIX_F3:
864 attrMask |= ATTR_XS;
865 break;
866 case VEX_PREFIX_F2:
867 attrMask |= ATTR_XD;
868 break;
869 }
870
871 if (lFromVEX2of2(insn->vexXopPrefix[1]))
872 attrMask |= ATTR_VEXL;
873 }
874 else if (insn->vexXopType == TYPE_XOP) {
875 switch (ppFromXOP3of3(insn->vexXopPrefix[2])) {
876 case VEX_PREFIX_66:
877 attrMask |= ATTR_OPSIZE;
878 break;
879 case VEX_PREFIX_F3:
880 attrMask |= ATTR_XS;
881 break;
882 case VEX_PREFIX_F2:
883 attrMask |= ATTR_XD;
884 break;
885 }
886
887 if (lFromXOP3of3(insn->vexXopPrefix[2]))
888 attrMask |= ATTR_VEXL;
889 }
890 else {
891 return -1;
892 }
893 }
894 else {
895 if (isPrefixAtLocation(insn, 0x66, insn->necessaryPrefixLocation))
896 attrMask |= ATTR_OPSIZE;
897 else if (isPrefixAtLocation(insn, 0x67, insn->necessaryPrefixLocation))
898 attrMask |= ATTR_ADSIZE;
899 else if (isPrefixAtLocation(insn, 0xf3, insn->necessaryPrefixLocation))
900 attrMask |= ATTR_XS;
901 else if (isPrefixAtLocation(insn, 0xf2, insn->necessaryPrefixLocation))
902 attrMask |= ATTR_XD;
903 }
904
905 if (insn->rexPrefix & 0x08)
906 attrMask |= ATTR_REXW;
907
908 if (getIDWithAttrMask(&instructionID, insn, attrMask))
909 return -1;
910
911 /* The following clauses compensate for limitations of the tables. */
912
913 if (insn->prefixPresent[0x66] && !(attrMask & ATTR_OPSIZE)) {
914 /*
915 * The instruction tables make no distinction between instructions that
916 * allow OpSize anywhere (i.e., 16-bit operations) and that need it in a
917 * particular spot (i.e., many MMX operations). In general we're
918 * conservative, but in the specific case where OpSize is present but not
919 * in the right place we check if there's a 16-bit operation.
920 */
921
922 const struct InstructionSpecifier *spec;
923 uint16_t instructionIDWithOpsize;
924 const char *specName, *specWithOpSizeName;
925
926 spec = specifierForUID(instructionID);
927
928 if (getIDWithAttrMask(&instructionIDWithOpsize,
929 insn,
930 attrMask | ATTR_OPSIZE)) {
931 /*
932 * ModRM required with OpSize but not present; give up and return version
933 * without OpSize set
934 */
935
936 insn->instructionID = instructionID;
937 insn->spec = spec;
938 return 0;
939 }
940
941 specName = x86DisassemblerGetInstrName(instructionID, miiArg);
942 specWithOpSizeName =
943 x86DisassemblerGetInstrName(instructionIDWithOpsize, miiArg);
944
945 if (is16BitEquivalent(specName, specWithOpSizeName)) {
946 insn->instructionID = instructionIDWithOpsize;
947 insn->spec = specifierForUID(instructionIDWithOpsize);
948 } else {
949 insn->instructionID = instructionID;
950 insn->spec = spec;
951 }
952 return 0;
953 }
954
955 if (insn->opcodeType == ONEBYTE && insn->opcode == 0x90 &&
956 insn->rexPrefix & 0x01) {
957 /*
958 * NOOP shouldn't decode as NOOP if REX.b is set. Instead
959 * it should decode as XCHG %r8, %eax.
960 */
961
962 const struct InstructionSpecifier *spec;
963 uint16_t instructionIDWithNewOpcode;
964 const struct InstructionSpecifier *specWithNewOpcode;
965
966 spec = specifierForUID(instructionID);
967
968 /* Borrow opcode from one of the other XCHGar opcodes */
969 insn->opcode = 0x91;
970
971 if (getIDWithAttrMask(&instructionIDWithNewOpcode,
972 insn,
973 attrMask)) {
974 insn->opcode = 0x90;
975
976 insn->instructionID = instructionID;
977 insn->spec = spec;
978 return 0;
979 }
980
981 specWithNewOpcode = specifierForUID(instructionIDWithNewOpcode);
982
983 /* Change back */
984 insn->opcode = 0x90;
985
986 insn->instructionID = instructionIDWithNewOpcode;
987 insn->spec = specWithNewOpcode;
988
989 return 0;
990 }
991
992 insn->instructionID = instructionID;
993 insn->spec = specifierForUID(insn->instructionID);
994
995 return 0;
996}
997
998/*
999 * readSIB - Consumes the SIB byte to determine addressing information for an
1000 * instruction.
1001 *
1002 * @param insn - The instruction whose SIB byte is to be read.
1003 * @return - 0 if the SIB byte was successfully read; nonzero otherwise.
1004 */
1005static int readSIB(struct InternalInstruction* insn) {
1006 SIBIndex sibIndexBase = 0;
1007 SIBBase sibBaseBase = 0;
1008 uint8_t index, base;
1009
1010 dbgprintf(insn, "readSIB()");
1011
1012 if (insn->consumedSIB)
1013 return 0;
1014
1015 insn->consumedSIB = TRUE;
1016
1017 switch (insn->addressSize) {
1018 case 2:
1019 dbgprintf(insn, "SIB-based addressing doesn't work in 16-bit mode");
1020 return -1;
1021 break;
1022 case 4:
1023 sibIndexBase = SIB_INDEX_EAX;
1024 sibBaseBase = SIB_BASE_EAX;
1025 break;
1026 case 8:
1027 sibIndexBase = SIB_INDEX_RAX;
1028 sibBaseBase = SIB_BASE_RAX;
1029 break;
1030 }
1031
1032 if (consumeByte(insn, &insn->sib))
1033 return -1;
1034
1035 index = indexFromSIB(insn->sib) | (xFromREX(insn->rexPrefix) << 3);
1036
1037 switch (index) {
1038 case 0x4:
1039 insn->sibIndex = SIB_INDEX_NONE;
1040 break;
1041 default:
1042 insn->sibIndex = (SIBIndex)(sibIndexBase + index);
1043 if (insn->sibIndex == SIB_INDEX_sib ||
1044 insn->sibIndex == SIB_INDEX_sib64)
1045 insn->sibIndex = SIB_INDEX_NONE;
1046 break;
1047 }
1048
1049 switch (scaleFromSIB(insn->sib)) {
1050 case 0:
1051 insn->sibScale = 1;
1052 break;
1053 case 1:
1054 insn->sibScale = 2;
1055 break;
1056 case 2:
1057 insn->sibScale = 4;
1058 break;
1059 case 3:
1060 insn->sibScale = 8;
1061 break;
1062 }
1063
1064 base = baseFromSIB(insn->sib) | (bFromREX(insn->rexPrefix) << 3);
1065
1066 switch (base) {
1067 case 0x5:
1/*===-- X86DisassemblerDecoder.c - Disassembler decoder ------------*- C -*-===*
2 *
3 * The LLVM Compiler Infrastructure
4 *
5 * This file is distributed under the University of Illinois Open Source
6 * License. See LICENSE.TXT for details.
7 *
8 *===----------------------------------------------------------------------===*
9 *
10 * This file is part of the X86 Disassembler.
11 * It contains the implementation of the instruction decoder.
12 * Documentation for the disassembler can be found in X86Disassembler.h.
13 *
14 *===----------------------------------------------------------------------===*/
15
16#include <stdarg.h> /* for va_*() */
17#include <stdio.h> /* for vsnprintf() */
18#include <stdlib.h> /* for exit() */
19#include <string.h> /* for memset() */
20
21#include "X86DisassemblerDecoder.h"
22
23#include "X86GenDisassemblerTables.inc"
24
25#define TRUE 1
26#define FALSE 0
27
28#ifndef NDEBUG
29#define debug(s) do { x86DisassemblerDebug(__FILE__, __LINE__, s); } while (0)
30#else
31#define debug(s) do { } while (0)
32#endif
33
34
35/*
36 * contextForAttrs - Client for the instruction context table. Takes a set of
37 * attributes and returns the appropriate decode context.
38 *
39 * @param attrMask - Attributes, from the enumeration attributeBits.
40 * @return - The InstructionContext to use when looking up an
41 * an instruction with these attributes.
42 */
43static InstructionContext contextForAttrs(uint8_t attrMask) {
44 return CONTEXTS_SYM[attrMask];
45}
46
47/*
48 * modRMRequired - Reads the appropriate instruction table to determine whether
49 * the ModR/M byte is required to decode a particular instruction.
50 *
51 * @param type - The opcode type (i.e., how many bytes it has).
52 * @param insnContext - The context for the instruction, as returned by
53 * contextForAttrs.
54 * @param opcode - The last byte of the instruction's opcode, not counting
55 * ModR/M extensions and escapes.
56 * @return - TRUE if the ModR/M byte is required, FALSE otherwise.
57 */
58static int modRMRequired(OpcodeType type,
59 InstructionContext insnContext,
60 uint8_t opcode) {
61 const struct ContextDecision* decision = 0;
62
63 switch (type) {
64 case ONEBYTE:
65 decision = &ONEBYTE_SYM;
66 break;
67 case TWOBYTE:
68 decision = &TWOBYTE_SYM;
69 break;
70 case THREEBYTE_38:
71 decision = &THREEBYTE38_SYM;
72 break;
73 case THREEBYTE_3A:
74 decision = &THREEBYTE3A_SYM;
75 break;
76 case THREEBYTE_A6:
77 decision = &THREEBYTEA6_SYM;
78 break;
79 case THREEBYTE_A7:
80 decision = &THREEBYTEA7_SYM;
81 break;
82 case XOP8_MAP:
83 decision = &XOP8_MAP_SYM;
84 break;
85 case XOP9_MAP:
86 decision = &XOP9_MAP_SYM;
87 break;
88 case XOPA_MAP:
89 decision = &XOPA_MAP_SYM;
90 break;
91 }
92
93 return decision->opcodeDecisions[insnContext].modRMDecisions[opcode].
94 modrm_type != MODRM_ONEENTRY;
95}
96
97/*
98 * decode - Reads the appropriate instruction table to obtain the unique ID of
99 * an instruction.
100 *
101 * @param type - See modRMRequired().
102 * @param insnContext - See modRMRequired().
103 * @param opcode - See modRMRequired().
104 * @param modRM - The ModR/M byte if required, or any value if not.
105 * @return - The UID of the instruction, or 0 on failure.
106 */
107static InstrUID decode(OpcodeType type,
108 InstructionContext insnContext,
109 uint8_t opcode,
110 uint8_t modRM) {
111 const struct ModRMDecision* dec = 0;
112
113 switch (type) {
114 case ONEBYTE:
115 dec = &ONEBYTE_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
116 break;
117 case TWOBYTE:
118 dec = &TWOBYTE_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
119 break;
120 case THREEBYTE_38:
121 dec = &THREEBYTE38_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
122 break;
123 case THREEBYTE_3A:
124 dec = &THREEBYTE3A_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
125 break;
126 case THREEBYTE_A6:
127 dec = &THREEBYTEA6_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
128 break;
129 case THREEBYTE_A7:
130 dec = &THREEBYTEA7_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
131 break;
132 case XOP8_MAP:
133 dec = &XOP8_MAP_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
134 break;
135 case XOP9_MAP:
136 dec = &XOP9_MAP_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
137 break;
138 case XOPA_MAP:
139 dec = &XOPA_MAP_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
140 break;
141 }
142
143 switch (dec->modrm_type) {
144 default:
145 debug("Corrupt table! Unknown modrm_type");
146 return 0;
147 case MODRM_ONEENTRY:
148 return modRMTable[dec->instructionIDs];
149 case MODRM_SPLITRM:
150 if (modFromModRM(modRM) == 0x3)
151 return modRMTable[dec->instructionIDs+1];
152 return modRMTable[dec->instructionIDs];
153 case MODRM_SPLITREG:
154 if (modFromModRM(modRM) == 0x3)
155 return modRMTable[dec->instructionIDs+((modRM & 0x38) >> 3)+8];
156 return modRMTable[dec->instructionIDs+((modRM & 0x38) >> 3)];
157 case MODRM_SPLITMISC:
158 if (modFromModRM(modRM) == 0x3)
159 return modRMTable[dec->instructionIDs+(modRM & 0x3f)+8];
160 return modRMTable[dec->instructionIDs+((modRM & 0x38) >> 3)];
161 case MODRM_FULL:
162 return modRMTable[dec->instructionIDs+modRM];
163 }
164}
165
166/*
167 * specifierForUID - Given a UID, returns the name and operand specification for
168 * that instruction.
169 *
170 * @param uid - The unique ID for the instruction. This should be returned by
171 * decode(); specifierForUID will not check bounds.
172 * @return - A pointer to the specification for that instruction.
173 */
174static const struct InstructionSpecifier *specifierForUID(InstrUID uid) {
175 return &INSTRUCTIONS_SYM[uid];
176}
177
178/*
179 * consumeByte - Uses the reader function provided by the user to consume one
180 * byte from the instruction's memory and advance the cursor.
181 *
182 * @param insn - The instruction with the reader function to use. The cursor
183 * for this instruction is advanced.
184 * @param byte - A pointer to a pre-allocated memory buffer to be populated
185 * with the data read.
186 * @return - 0 if the read was successful; nonzero otherwise.
187 */
188static int consumeByte(struct InternalInstruction* insn, uint8_t* byte) {
189 int ret = insn->reader(insn->readerArg, byte, insn->readerCursor);
190
191 if (!ret)
192 ++(insn->readerCursor);
193
194 return ret;
195}
196
197/*
198 * lookAtByte - Like consumeByte, but does not advance the cursor.
199 *
200 * @param insn - See consumeByte().
201 * @param byte - See consumeByte().
202 * @return - See consumeByte().
203 */
204static int lookAtByte(struct InternalInstruction* insn, uint8_t* byte) {
205 return insn->reader(insn->readerArg, byte, insn->readerCursor);
206}
207
208static void unconsumeByte(struct InternalInstruction* insn) {
209 insn->readerCursor--;
210}
211
212#define CONSUME_FUNC(name, type) \
213 static int name(struct InternalInstruction* insn, type* ptr) { \
214 type combined = 0; \
215 unsigned offset; \
216 for (offset = 0; offset < sizeof(type); ++offset) { \
217 uint8_t byte; \
218 int ret = insn->reader(insn->readerArg, \
219 &byte, \
220 insn->readerCursor + offset); \
221 if (ret) \
222 return ret; \
223 combined = combined | ((uint64_t)byte << (offset * 8)); \
224 } \
225 *ptr = combined; \
226 insn->readerCursor += sizeof(type); \
227 return 0; \
228 }
229
230/*
231 * consume* - Use the reader function provided by the user to consume data
232 * values of various sizes from the instruction's memory and advance the
233 * cursor appropriately. These readers perform endian conversion.
234 *
235 * @param insn - See consumeByte().
236 * @param ptr - A pointer to a pre-allocated memory of appropriate size to
237 * be populated with the data read.
238 * @return - See consumeByte().
239 */
240CONSUME_FUNC(consumeInt8, int8_t)
241CONSUME_FUNC(consumeInt16, int16_t)
242CONSUME_FUNC(consumeInt32, int32_t)
243CONSUME_FUNC(consumeUInt16, uint16_t)
244CONSUME_FUNC(consumeUInt32, uint32_t)
245CONSUME_FUNC(consumeUInt64, uint64_t)
246
247/*
248 * dbgprintf - Uses the logging function provided by the user to log a single
249 * message, typically without a carriage-return.
250 *
251 * @param insn - The instruction containing the logging function.
252 * @param format - See printf().
253 * @param ... - See printf().
254 */
255static void dbgprintf(struct InternalInstruction* insn,
256 const char* format,
257 ...) {
258 char buffer[256];
259 va_list ap;
260
261 if (!insn->dlog)
262 return;
263
264 va_start(ap, format);
265 (void)vsnprintf(buffer, sizeof(buffer), format, ap);
266 va_end(ap);
267
268 insn->dlog(insn->dlogArg, buffer);
269
270 return;
271}
272
273/*
274 * setPrefixPresent - Marks that a particular prefix is present at a particular
275 * location.
276 *
277 * @param insn - The instruction to be marked as having the prefix.
278 * @param prefix - The prefix that is present.
279 * @param location - The location where the prefix is located (in the address
280 * space of the instruction's reader).
281 */
282static void setPrefixPresent(struct InternalInstruction* insn,
283 uint8_t prefix,
284 uint64_t location)
285{
286 insn->prefixPresent[prefix] = 1;
287 insn->prefixLocations[prefix] = location;
288}
289
290/*
291 * isPrefixAtLocation - Queries an instruction to determine whether a prefix is
292 * present at a given location.
293 *
294 * @param insn - The instruction to be queried.
295 * @param prefix - The prefix.
296 * @param location - The location to query.
297 * @return - Whether the prefix is at that location.
298 */
299static BOOL isPrefixAtLocation(struct InternalInstruction* insn,
300 uint8_t prefix,
301 uint64_t location)
302{
303 if (insn->prefixPresent[prefix] == 1 &&
304 insn->prefixLocations[prefix] == location)
305 return TRUE;
306 else
307 return FALSE;
308}
309
310/*
311 * readPrefixes - Consumes all of an instruction's prefix bytes, and marks the
312 * instruction as having them. Also sets the instruction's default operand,
313 * address, and other relevant data sizes to report operands correctly.
314 *
315 * @param insn - The instruction whose prefixes are to be read.
316 * @return - 0 if the instruction could be read until the end of the prefix
317 * bytes, and no prefixes conflicted; nonzero otherwise.
318 */
319static int readPrefixes(struct InternalInstruction* insn) {
320 BOOL isPrefix = TRUE;
321 BOOL prefixGroups[4] = { FALSE };
322 uint64_t prefixLocation;
323 uint8_t byte = 0;
324 uint8_t nextByte;
325
326 BOOL hasAdSize = FALSE;
327 BOOL hasOpSize = FALSE;
328
329 dbgprintf(insn, "readPrefixes()");
330
331 while (isPrefix) {
332 prefixLocation = insn->readerCursor;
333
334 /* If we fail reading prefixes, just stop here and let the opcode reader deal with it */
335 if (consumeByte(insn, &byte))
336 break;
337
338 /*
339 * If the byte is a LOCK/REP/REPNE prefix and not a part of the opcode, then
340 * break and let it be disassembled as a normal "instruction".
341 */
342 if (insn->readerCursor - 1 == insn->startLocation && byte == 0xf0)
343 break;
344
345 if (insn->readerCursor - 1 == insn->startLocation
346 && (byte == 0xf2 || byte == 0xf3)
347 && !lookAtByte(insn, &nextByte))
348 {
349 /*
350 * If the byte is 0xf2 or 0xf3, and any of the following conditions are
351 * met:
352 * - it is followed by a LOCK (0xf0) prefix
353 * - it is followed by an xchg instruction
354 * then it should be disassembled as a xacquire/xrelease not repne/rep.
355 */
356 if ((byte == 0xf2 || byte == 0xf3) &&
357 ((nextByte == 0xf0) |
358 ((nextByte & 0xfe) == 0x86 || (nextByte & 0xf8) == 0x90)))
359 insn->xAcquireRelease = TRUE;
360 /*
361 * Also if the byte is 0xf3, and the following condition is met:
362 * - it is followed by a "mov mem, reg" (opcode 0x88/0x89) or
363 * "mov mem, imm" (opcode 0xc6/0xc7) instructions.
364 * then it should be disassembled as an xrelease not rep.
365 */
366 if (byte == 0xf3 &&
367 (nextByte == 0x88 || nextByte == 0x89 ||
368 nextByte == 0xc6 || nextByte == 0xc7))
369 insn->xAcquireRelease = TRUE;
370 if (insn->mode == MODE_64BIT && (nextByte & 0xf0) == 0x40) {
371 if (consumeByte(insn, &nextByte))
372 return -1;
373 if (lookAtByte(insn, &nextByte))
374 return -1;
375 unconsumeByte(insn);
376 }
377 if (nextByte != 0x0f && nextByte != 0x90)
378 break;
379 }
380
381 switch (byte) {
382 case 0xf0: /* LOCK */
383 case 0xf2: /* REPNE/REPNZ */
384 case 0xf3: /* REP or REPE/REPZ */
385 if (prefixGroups[0])
386 dbgprintf(insn, "Redundant Group 1 prefix");
387 prefixGroups[0] = TRUE;
388 setPrefixPresent(insn, byte, prefixLocation);
389 break;
390 case 0x2e: /* CS segment override -OR- Branch not taken */
391 case 0x36: /* SS segment override -OR- Branch taken */
392 case 0x3e: /* DS segment override */
393 case 0x26: /* ES segment override */
394 case 0x64: /* FS segment override */
395 case 0x65: /* GS segment override */
396 switch (byte) {
397 case 0x2e:
398 insn->segmentOverride = SEG_OVERRIDE_CS;
399 break;
400 case 0x36:
401 insn->segmentOverride = SEG_OVERRIDE_SS;
402 break;
403 case 0x3e:
404 insn->segmentOverride = SEG_OVERRIDE_DS;
405 break;
406 case 0x26:
407 insn->segmentOverride = SEG_OVERRIDE_ES;
408 break;
409 case 0x64:
410 insn->segmentOverride = SEG_OVERRIDE_FS;
411 break;
412 case 0x65:
413 insn->segmentOverride = SEG_OVERRIDE_GS;
414 break;
415 default:
416 debug("Unhandled override");
417 return -1;
418 }
419 if (prefixGroups[1])
420 dbgprintf(insn, "Redundant Group 2 prefix");
421 prefixGroups[1] = TRUE;
422 setPrefixPresent(insn, byte, prefixLocation);
423 break;
424 case 0x66: /* Operand-size override */
425 if (prefixGroups[2])
426 dbgprintf(insn, "Redundant Group 3 prefix");
427 prefixGroups[2] = TRUE;
428 hasOpSize = TRUE;
429 setPrefixPresent(insn, byte, prefixLocation);
430 break;
431 case 0x67: /* Address-size override */
432 if (prefixGroups[3])
433 dbgprintf(insn, "Redundant Group 4 prefix");
434 prefixGroups[3] = TRUE;
435 hasAdSize = TRUE;
436 setPrefixPresent(insn, byte, prefixLocation);
437 break;
438 default: /* Not a prefix byte */
439 isPrefix = FALSE;
440 break;
441 }
442
443 if (isPrefix)
444 dbgprintf(insn, "Found prefix 0x%hhx", byte);
445 }
446
447 insn->vexXopType = TYPE_NO_VEX_XOP;
448
449 if (byte == 0xc4) {
450 uint8_t byte1;
451
452 if (lookAtByte(insn, &byte1)) {
453 dbgprintf(insn, "Couldn't read second byte of VEX");
454 return -1;
455 }
456
457 if (insn->mode == MODE_64BIT || (byte1 & 0xc0) == 0xc0) {
458 insn->vexXopType = TYPE_VEX_3B;
459 insn->necessaryPrefixLocation = insn->readerCursor - 1;
460 }
461 else {
462 unconsumeByte(insn);
463 insn->necessaryPrefixLocation = insn->readerCursor - 1;
464 }
465
466 if (insn->vexXopType == TYPE_VEX_3B) {
467 insn->vexXopPrefix[0] = byte;
468 consumeByte(insn, &insn->vexXopPrefix[1]);
469 consumeByte(insn, &insn->vexXopPrefix[2]);
470
471 /* We simulate the REX prefix for simplicity's sake */
472
473 if (insn->mode == MODE_64BIT) {
474 insn->rexPrefix = 0x40
475 | (wFromVEX3of3(insn->vexXopPrefix[2]) << 3)
476 | (rFromVEX2of3(insn->vexXopPrefix[1]) << 2)
477 | (xFromVEX2of3(insn->vexXopPrefix[1]) << 1)
478 | (bFromVEX2of3(insn->vexXopPrefix[1]) << 0);
479 }
480
481 switch (ppFromVEX3of3(insn->vexXopPrefix[2]))
482 {
483 default:
484 break;
485 case VEX_PREFIX_66:
486 hasOpSize = TRUE;
487 break;
488 }
489
490 dbgprintf(insn, "Found VEX prefix 0x%hhx 0x%hhx 0x%hhx",
491 insn->vexXopPrefix[0], insn->vexXopPrefix[1],
492 insn->vexXopPrefix[2]);
493 }
494 }
495 else if (byte == 0xc5) {
496 uint8_t byte1;
497
498 if (lookAtByte(insn, &byte1)) {
499 dbgprintf(insn, "Couldn't read second byte of VEX");
500 return -1;
501 }
502
503 if (insn->mode == MODE_64BIT || (byte1 & 0xc0) == 0xc0) {
504 insn->vexXopType = TYPE_VEX_2B;
505 }
506 else {
507 unconsumeByte(insn);
508 }
509
510 if (insn->vexXopType == TYPE_VEX_2B) {
511 insn->vexXopPrefix[0] = byte;
512 consumeByte(insn, &insn->vexXopPrefix[1]);
513
514 if (insn->mode == MODE_64BIT) {
515 insn->rexPrefix = 0x40
516 | (rFromVEX2of2(insn->vexXopPrefix[1]) << 2);
517 }
518
519 switch (ppFromVEX2of2(insn->vexXopPrefix[1]))
520 {
521 default:
522 break;
523 case VEX_PREFIX_66:
524 hasOpSize = TRUE;
525 break;
526 }
527
528 dbgprintf(insn, "Found VEX prefix 0x%hhx 0x%hhx", insn->vexXopPrefix[0], insn->vexXopPrefix[1]);
529 }
530 }
531 else if (byte == 0x8f) {
532 uint8_t byte1;
533
534 if (lookAtByte(insn, &byte1)) {
535 dbgprintf(insn, "Couldn't read second byte of XOP");
536 return -1;
537 }
538
539 if ((byte1 & 0x38) != 0x0) { /* 0 in these 3 bits is a POP instruction. */
540 insn->vexXopType = TYPE_XOP;
541 insn->necessaryPrefixLocation = insn->readerCursor - 1;
542 }
543 else {
544 unconsumeByte(insn);
545 insn->necessaryPrefixLocation = insn->readerCursor - 1;
546 }
547
548 if (insn->vexXopType == TYPE_XOP) {
549 insn->vexXopPrefix[0] = byte;
550 consumeByte(insn, &insn->vexXopPrefix[1]);
551 consumeByte(insn, &insn->vexXopPrefix[2]);
552
553 /* We simulate the REX prefix for simplicity's sake */
554
555 if (insn->mode == MODE_64BIT) {
556 insn->rexPrefix = 0x40
557 | (wFromXOP3of3(insn->vexXopPrefix[2]) << 3)
558 | (rFromXOP2of3(insn->vexXopPrefix[1]) << 2)
559 | (xFromXOP2of3(insn->vexXopPrefix[1]) << 1)
560 | (bFromXOP2of3(insn->vexXopPrefix[1]) << 0);
561 }
562
563 switch (ppFromXOP3of3(insn->vexXopPrefix[2]))
564 {
565 default:
566 break;
567 case VEX_PREFIX_66:
568 hasOpSize = TRUE;
569 break;
570 }
571
572 dbgprintf(insn, "Found XOP prefix 0x%hhx 0x%hhx 0x%hhx",
573 insn->vexXopPrefix[0], insn->vexXopPrefix[1],
574 insn->vexXopPrefix[2]);
575 }
576 }
577 else {
578 if (insn->mode == MODE_64BIT) {
579 if ((byte & 0xf0) == 0x40) {
580 uint8_t opcodeByte;
581
582 if (lookAtByte(insn, &opcodeByte) || ((opcodeByte & 0xf0) == 0x40)) {
583 dbgprintf(insn, "Redundant REX prefix");
584 return -1;
585 }
586
587 insn->rexPrefix = byte;
588 insn->necessaryPrefixLocation = insn->readerCursor - 2;
589
590 dbgprintf(insn, "Found REX prefix 0x%hhx", byte);
591 } else {
592 unconsumeByte(insn);
593 insn->necessaryPrefixLocation = insn->readerCursor - 1;
594 }
595 } else {
596 unconsumeByte(insn);
597 insn->necessaryPrefixLocation = insn->readerCursor - 1;
598 }
599 }
600
601 if (insn->mode == MODE_16BIT) {
602 insn->registerSize = (hasOpSize ? 4 : 2);
603 insn->addressSize = (hasAdSize ? 4 : 2);
604 insn->displacementSize = (hasAdSize ? 4 : 2);
605 insn->immediateSize = (hasOpSize ? 4 : 2);
606 } else if (insn->mode == MODE_32BIT) {
607 insn->registerSize = (hasOpSize ? 2 : 4);
608 insn->addressSize = (hasAdSize ? 2 : 4);
609 insn->displacementSize = (hasAdSize ? 2 : 4);
610 insn->immediateSize = (hasOpSize ? 2 : 4);
611 } else if (insn->mode == MODE_64BIT) {
612 if (insn->rexPrefix && wFromREX(insn->rexPrefix)) {
613 insn->registerSize = 8;
614 insn->addressSize = (hasAdSize ? 4 : 8);
615 insn->displacementSize = 4;
616 insn->immediateSize = 4;
617 } else if (insn->rexPrefix) {
618 insn->registerSize = (hasOpSize ? 2 : 4);
619 insn->addressSize = (hasAdSize ? 4 : 8);
620 insn->displacementSize = (hasOpSize ? 2 : 4);
621 insn->immediateSize = (hasOpSize ? 2 : 4);
622 } else {
623 insn->registerSize = (hasOpSize ? 2 : 4);
624 insn->addressSize = (hasAdSize ? 4 : 8);
625 insn->displacementSize = (hasOpSize ? 2 : 4);
626 insn->immediateSize = (hasOpSize ? 2 : 4);
627 }
628 }
629
630 return 0;
631}
632
633/*
634 * readOpcode - Reads the opcode (excepting the ModR/M byte in the case of
635 * extended or escape opcodes).
636 *
637 * @param insn - The instruction whose opcode is to be read.
638 * @return - 0 if the opcode could be read successfully; nonzero otherwise.
639 */
640static int readOpcode(struct InternalInstruction* insn) {
641 /* Determine the length of the primary opcode */
642
643 uint8_t current;
644
645 dbgprintf(insn, "readOpcode()");
646
647 insn->opcodeType = ONEBYTE;
648
649 if (insn->vexXopType == TYPE_VEX_3B)
650 {
651 switch (mmmmmFromVEX2of3(insn->vexXopPrefix[1]))
652 {
653 default:
654 dbgprintf(insn, "Unhandled m-mmmm field for instruction (0x%hhx)",
655 mmmmmFromVEX2of3(insn->vexXopPrefix[1]));
656 return -1;
657 case VEX_LOB_0F:
658 insn->opcodeType = TWOBYTE;
659 return consumeByte(insn, &insn->opcode);
660 case VEX_LOB_0F38:
661 insn->opcodeType = THREEBYTE_38;
662 return consumeByte(insn, &insn->opcode);
663 case VEX_LOB_0F3A:
664 insn->opcodeType = THREEBYTE_3A;
665 return consumeByte(insn, &insn->opcode);
666 }
667 }
668 else if (insn->vexXopType == TYPE_VEX_2B)
669 {
670 insn->opcodeType = TWOBYTE;
671 return consumeByte(insn, &insn->opcode);
672 }
673 else if (insn->vexXopType == TYPE_XOP)
674 {
675 switch (mmmmmFromXOP2of3(insn->vexXopPrefix[1]))
676 {
677 default:
678 dbgprintf(insn, "Unhandled m-mmmm field for instruction (0x%hhx)",
679 mmmmmFromVEX2of3(insn->vexXopPrefix[1]));
680 return -1;
681 case XOP_MAP_SELECT_8:
682 insn->opcodeType = XOP8_MAP;
683 return consumeByte(insn, &insn->opcode);
684 case XOP_MAP_SELECT_9:
685 insn->opcodeType = XOP9_MAP;
686 return consumeByte(insn, &insn->opcode);
687 case XOP_MAP_SELECT_A:
688 insn->opcodeType = XOPA_MAP;
689 return consumeByte(insn, &insn->opcode);
690 }
691 }
692
693 if (consumeByte(insn, &current))
694 return -1;
695
696 if (current == 0x0f) {
697 dbgprintf(insn, "Found a two-byte escape prefix (0x%hhx)", current);
698
699 if (consumeByte(insn, &current))
700 return -1;
701
702 if (current == 0x38) {
703 dbgprintf(insn, "Found a three-byte escape prefix (0x%hhx)", current);
704
705 if (consumeByte(insn, &current))
706 return -1;
707
708 insn->opcodeType = THREEBYTE_38;
709 } else if (current == 0x3a) {
710 dbgprintf(insn, "Found a three-byte escape prefix (0x%hhx)", current);
711
712 if (consumeByte(insn, &current))
713 return -1;
714
715 insn->opcodeType = THREEBYTE_3A;
716 } else if (current == 0xa6) {
717 dbgprintf(insn, "Found a three-byte escape prefix (0x%hhx)", current);
718
719 if (consumeByte(insn, &current))
720 return -1;
721
722 insn->opcodeType = THREEBYTE_A6;
723 } else if (current == 0xa7) {
724 dbgprintf(insn, "Found a three-byte escape prefix (0x%hhx)", current);
725
726 if (consumeByte(insn, &current))
727 return -1;
728
729 insn->opcodeType = THREEBYTE_A7;
730 } else {
731 dbgprintf(insn, "Didn't find a three-byte escape prefix");
732
733 insn->opcodeType = TWOBYTE;
734 }
735 }
736
737 /*
738 * At this point we have consumed the full opcode.
739 * Anything we consume from here on must be unconsumed.
740 */
741
742 insn->opcode = current;
743
744 return 0;
745}
746
747static int readModRM(struct InternalInstruction* insn);
748
749/*
750 * getIDWithAttrMask - Determines the ID of an instruction, consuming
751 * the ModR/M byte as appropriate for extended and escape opcodes,
752 * and using a supplied attribute mask.
753 *
754 * @param instructionID - A pointer whose target is filled in with the ID of the
755 * instruction.
756 * @param insn - The instruction whose ID is to be determined.
757 * @param attrMask - The attribute mask to search.
758 * @return - 0 if the ModR/M could be read when needed or was not
759 * needed; nonzero otherwise.
760 */
761static int getIDWithAttrMask(uint16_t* instructionID,
762 struct InternalInstruction* insn,
763 uint8_t attrMask) {
764 BOOL hasModRMExtension;
765
766 uint8_t instructionClass;
767
768 instructionClass = contextForAttrs(attrMask);
769
770 hasModRMExtension = modRMRequired(insn->opcodeType,
771 instructionClass,
772 insn->opcode);
773
774 if (hasModRMExtension) {
775 if (readModRM(insn))
776 return -1;
777
778 *instructionID = decode(insn->opcodeType,
779 instructionClass,
780 insn->opcode,
781 insn->modRM);
782 } else {
783 *instructionID = decode(insn->opcodeType,
784 instructionClass,
785 insn->opcode,
786 0);
787 }
788
789 return 0;
790}
791
792/*
793 * is16BitEquivalent - Determines whether two instruction names refer to
794 * equivalent instructions but one is 16-bit whereas the other is not.
795 *
796 * @param orig - The instruction that is not 16-bit
797 * @param equiv - The instruction that is 16-bit
798 */
799static BOOL is16BitEquivalent(const char* orig, const char* equiv) {
800 off_t i;
801
802 for (i = 0;; i++) {
803 if (orig[i] == '\0' && equiv[i] == '\0')
804 return TRUE;
805 if (orig[i] == '\0' || equiv[i] == '\0')
806 return FALSE;
807 if (orig[i] != equiv[i]) {
808 if ((orig[i] == 'Q' || orig[i] == 'L') && equiv[i] == 'W')
809 continue;
810 if ((orig[i] == '6' || orig[i] == '3') && equiv[i] == '1')
811 continue;
812 if ((orig[i] == '4' || orig[i] == '2') && equiv[i] == '6')
813 continue;
814 return FALSE;
815 }
816 }
817}
818
819/*
820 * getID - Determines the ID of an instruction, consuming the ModR/M byte as
821 * appropriate for extended and escape opcodes. Determines the attributes and
822 * context for the instruction before doing so.
823 *
824 * @param insn - The instruction whose ID is to be determined.
825 * @return - 0 if the ModR/M could be read when needed or was not needed;
826 * nonzero otherwise.
827 */
828static int getID(struct InternalInstruction* insn, const void *miiArg) {
829 uint8_t attrMask;
830 uint16_t instructionID;
831
832 dbgprintf(insn, "getID()");
833
834 attrMask = ATTR_NONE;
835
836 if (insn->mode == MODE_64BIT)
837 attrMask |= ATTR_64BIT;
838
839 if (insn->vexXopType != TYPE_NO_VEX_XOP) {
840 attrMask |= ATTR_VEX;
841
842 if (insn->vexXopType == TYPE_VEX_3B) {
843 switch (ppFromVEX3of3(insn->vexXopPrefix[2])) {
844 case VEX_PREFIX_66:
845 attrMask |= ATTR_OPSIZE;
846 break;
847 case VEX_PREFIX_F3:
848 attrMask |= ATTR_XS;
849 break;
850 case VEX_PREFIX_F2:
851 attrMask |= ATTR_XD;
852 break;
853 }
854
855 if (lFromVEX3of3(insn->vexXopPrefix[2]))
856 attrMask |= ATTR_VEXL;
857 }
858 else if (insn->vexXopType == TYPE_VEX_2B) {
859 switch (ppFromVEX2of2(insn->vexXopPrefix[1])) {
860 case VEX_PREFIX_66:
861 attrMask |= ATTR_OPSIZE;
862 break;
863 case VEX_PREFIX_F3:
864 attrMask |= ATTR_XS;
865 break;
866 case VEX_PREFIX_F2:
867 attrMask |= ATTR_XD;
868 break;
869 }
870
871 if (lFromVEX2of2(insn->vexXopPrefix[1]))
872 attrMask |= ATTR_VEXL;
873 }
874 else if (insn->vexXopType == TYPE_XOP) {
875 switch (ppFromXOP3of3(insn->vexXopPrefix[2])) {
876 case VEX_PREFIX_66:
877 attrMask |= ATTR_OPSIZE;
878 break;
879 case VEX_PREFIX_F3:
880 attrMask |= ATTR_XS;
881 break;
882 case VEX_PREFIX_F2:
883 attrMask |= ATTR_XD;
884 break;
885 }
886
887 if (lFromXOP3of3(insn->vexXopPrefix[2]))
888 attrMask |= ATTR_VEXL;
889 }
890 else {
891 return -1;
892 }
893 }
894 else {
895 if (isPrefixAtLocation(insn, 0x66, insn->necessaryPrefixLocation))
896 attrMask |= ATTR_OPSIZE;
897 else if (isPrefixAtLocation(insn, 0x67, insn->necessaryPrefixLocation))
898 attrMask |= ATTR_ADSIZE;
899 else if (isPrefixAtLocation(insn, 0xf3, insn->necessaryPrefixLocation))
900 attrMask |= ATTR_XS;
901 else if (isPrefixAtLocation(insn, 0xf2, insn->necessaryPrefixLocation))
902 attrMask |= ATTR_XD;
903 }
904
905 if (insn->rexPrefix & 0x08)
906 attrMask |= ATTR_REXW;
907
908 if (getIDWithAttrMask(&instructionID, insn, attrMask))
909 return -1;
910
911 /* The following clauses compensate for limitations of the tables. */
912
913 if (insn->prefixPresent[0x66] && !(attrMask & ATTR_OPSIZE)) {
914 /*
915 * The instruction tables make no distinction between instructions that
916 * allow OpSize anywhere (i.e., 16-bit operations) and that need it in a
917 * particular spot (i.e., many MMX operations). In general we're
918 * conservative, but in the specific case where OpSize is present but not
919 * in the right place we check if there's a 16-bit operation.
920 */
921
922 const struct InstructionSpecifier *spec;
923 uint16_t instructionIDWithOpsize;
924 const char *specName, *specWithOpSizeName;
925
926 spec = specifierForUID(instructionID);
927
928 if (getIDWithAttrMask(&instructionIDWithOpsize,
929 insn,
930 attrMask | ATTR_OPSIZE)) {
931 /*
932 * ModRM required with OpSize but not present; give up and return version
933 * without OpSize set
934 */
935
936 insn->instructionID = instructionID;
937 insn->spec = spec;
938 return 0;
939 }
940
941 specName = x86DisassemblerGetInstrName(instructionID, miiArg);
942 specWithOpSizeName =
943 x86DisassemblerGetInstrName(instructionIDWithOpsize, miiArg);
944
945 if (is16BitEquivalent(specName, specWithOpSizeName)) {
946 insn->instructionID = instructionIDWithOpsize;
947 insn->spec = specifierForUID(instructionIDWithOpsize);
948 } else {
949 insn->instructionID = instructionID;
950 insn->spec = spec;
951 }
952 return 0;
953 }
954
955 if (insn->opcodeType == ONEBYTE && insn->opcode == 0x90 &&
956 insn->rexPrefix & 0x01) {
957 /*
958 * NOOP shouldn't decode as NOOP if REX.b is set. Instead
959 * it should decode as XCHG %r8, %eax.
960 */
961
962 const struct InstructionSpecifier *spec;
963 uint16_t instructionIDWithNewOpcode;
964 const struct InstructionSpecifier *specWithNewOpcode;
965
966 spec = specifierForUID(instructionID);
967
968 /* Borrow opcode from one of the other XCHGar opcodes */
969 insn->opcode = 0x91;
970
971 if (getIDWithAttrMask(&instructionIDWithNewOpcode,
972 insn,
973 attrMask)) {
974 insn->opcode = 0x90;
975
976 insn->instructionID = instructionID;
977 insn->spec = spec;
978 return 0;
979 }
980
981 specWithNewOpcode = specifierForUID(instructionIDWithNewOpcode);
982
983 /* Change back */
984 insn->opcode = 0x90;
985
986 insn->instructionID = instructionIDWithNewOpcode;
987 insn->spec = specWithNewOpcode;
988
989 return 0;
990 }
991
992 insn->instructionID = instructionID;
993 insn->spec = specifierForUID(insn->instructionID);
994
995 return 0;
996}
997
998/*
999 * readSIB - Consumes the SIB byte to determine addressing information for an
1000 * instruction.
1001 *
1002 * @param insn - The instruction whose SIB byte is to be read.
1003 * @return - 0 if the SIB byte was successfully read; nonzero otherwise.
1004 */
1005static int readSIB(struct InternalInstruction* insn) {
1006 SIBIndex sibIndexBase = 0;
1007 SIBBase sibBaseBase = 0;
1008 uint8_t index, base;
1009
1010 dbgprintf(insn, "readSIB()");
1011
1012 if (insn->consumedSIB)
1013 return 0;
1014
1015 insn->consumedSIB = TRUE;
1016
1017 switch (insn->addressSize) {
1018 case 2:
1019 dbgprintf(insn, "SIB-based addressing doesn't work in 16-bit mode");
1020 return -1;
1021 break;
1022 case 4:
1023 sibIndexBase = SIB_INDEX_EAX;
1024 sibBaseBase = SIB_BASE_EAX;
1025 break;
1026 case 8:
1027 sibIndexBase = SIB_INDEX_RAX;
1028 sibBaseBase = SIB_BASE_RAX;
1029 break;
1030 }
1031
1032 if (consumeByte(insn, &insn->sib))
1033 return -1;
1034
1035 index = indexFromSIB(insn->sib) | (xFromREX(insn->rexPrefix) << 3);
1036
1037 switch (index) {
1038 case 0x4:
1039 insn->sibIndex = SIB_INDEX_NONE;
1040 break;
1041 default:
1042 insn->sibIndex = (SIBIndex)(sibIndexBase + index);
1043 if (insn->sibIndex == SIB_INDEX_sib ||
1044 insn->sibIndex == SIB_INDEX_sib64)
1045 insn->sibIndex = SIB_INDEX_NONE;
1046 break;
1047 }
1048
1049 switch (scaleFromSIB(insn->sib)) {
1050 case 0:
1051 insn->sibScale = 1;
1052 break;
1053 case 1:
1054 insn->sibScale = 2;
1055 break;
1056 case 2:
1057 insn->sibScale = 4;
1058 break;
1059 case 3:
1060 insn->sibScale = 8;
1061 break;
1062 }
1063
1064 base = baseFromSIB(insn->sib) | (bFromREX(insn->rexPrefix) << 3);
1065
1066 switch (base) {
1067 case 0x5:
1068 case 0xd:
1068 switch (modFromModRM(insn->modRM)) {
1069 case 0x0:
1070 insn->eaDisplacement = EA_DISP_32;
1071 insn->sibBase = SIB_BASE_NONE;
1072 break;
1073 case 0x1:
1074 insn->eaDisplacement = EA_DISP_8;
1069 switch (modFromModRM(insn->modRM)) {
1070 case 0x0:
1071 insn->eaDisplacement = EA_DISP_32;
1072 insn->sibBase = SIB_BASE_NONE;
1073 break;
1074 case 0x1:
1075 insn->eaDisplacement = EA_DISP_8;
1075 insn->sibBase = (insn->addressSize == 4 ?
1076 SIB_BASE_EBP : SIB_BASE_RBP);
1076 insn->sibBase = (SIBBase)(sibBaseBase + base);
1077 break;
1078 case 0x2:
1079 insn->eaDisplacement = EA_DISP_32;
1077 break;
1078 case 0x2:
1079 insn->eaDisplacement = EA_DISP_32;
1080 insn->sibBase = (insn->addressSize == 4 ?
1081 SIB_BASE_EBP : SIB_BASE_RBP);
1080 insn->sibBase = (SIBBase)(sibBaseBase + base);
1082 break;
1083 case 0x3:
1084 debug("Cannot have Mod = 0b11 and a SIB byte");
1085 return -1;
1086 }
1087 break;
1088 default:
1089 insn->sibBase = (SIBBase)(sibBaseBase + base);
1090 break;
1091 }
1092
1093 return 0;
1094}
1095
1096/*
1097 * readDisplacement - Consumes the displacement of an instruction.
1098 *
1099 * @param insn - The instruction whose displacement is to be read.
1100 * @return - 0 if the displacement byte was successfully read; nonzero
1101 * otherwise.
1102 */
1103static int readDisplacement(struct InternalInstruction* insn) {
1104 int8_t d8;
1105 int16_t d16;
1106 int32_t d32;
1107
1108 dbgprintf(insn, "readDisplacement()");
1109
1110 if (insn->consumedDisplacement)
1111 return 0;
1112
1113 insn->consumedDisplacement = TRUE;
1114 insn->displacementOffset = insn->readerCursor - insn->startLocation;
1115
1116 switch (insn->eaDisplacement) {
1117 case EA_DISP_NONE:
1118 insn->consumedDisplacement = FALSE;
1119 break;
1120 case EA_DISP_8:
1121 if (consumeInt8(insn, &d8))
1122 return -1;
1123 insn->displacement = d8;
1124 break;
1125 case EA_DISP_16:
1126 if (consumeInt16(insn, &d16))
1127 return -1;
1128 insn->displacement = d16;
1129 break;
1130 case EA_DISP_32:
1131 if (consumeInt32(insn, &d32))
1132 return -1;
1133 insn->displacement = d32;
1134 break;
1135 }
1136
1137 insn->consumedDisplacement = TRUE;
1138 return 0;
1139}
1140
1141/*
1142 * readModRM - Consumes all addressing information (ModR/M byte, SIB byte, and
1143 * displacement) for an instruction and interprets it.
1144 *
1145 * @param insn - The instruction whose addressing information is to be read.
1146 * @return - 0 if the information was successfully read; nonzero otherwise.
1147 */
1148static int readModRM(struct InternalInstruction* insn) {
1149 uint8_t mod, rm, reg;
1150
1151 dbgprintf(insn, "readModRM()");
1152
1153 if (insn->consumedModRM)
1154 return 0;
1155
1156 if (consumeByte(insn, &insn->modRM))
1157 return -1;
1158 insn->consumedModRM = TRUE;
1159
1160 mod = modFromModRM(insn->modRM);
1161 rm = rmFromModRM(insn->modRM);
1162 reg = regFromModRM(insn->modRM);
1163
1164 /*
1165 * This goes by insn->registerSize to pick the correct register, which messes
1166 * up if we're using (say) XMM or 8-bit register operands. That gets fixed in
1167 * fixupReg().
1168 */
1169 switch (insn->registerSize) {
1170 case 2:
1171 insn->regBase = MODRM_REG_AX;
1172 insn->eaRegBase = EA_REG_AX;
1173 break;
1174 case 4:
1175 insn->regBase = MODRM_REG_EAX;
1176 insn->eaRegBase = EA_REG_EAX;
1177 break;
1178 case 8:
1179 insn->regBase = MODRM_REG_RAX;
1180 insn->eaRegBase = EA_REG_RAX;
1181 break;
1182 }
1183
1184 reg |= rFromREX(insn->rexPrefix) << 3;
1185 rm |= bFromREX(insn->rexPrefix) << 3;
1186
1187 insn->reg = (Reg)(insn->regBase + reg);
1188
1189 switch (insn->addressSize) {
1190 case 2:
1191 insn->eaBaseBase = EA_BASE_BX_SI;
1192
1193 switch (mod) {
1194 case 0x0:
1195 if (rm == 0x6) {
1196 insn->eaBase = EA_BASE_NONE;
1197 insn->eaDisplacement = EA_DISP_16;
1198 if (readDisplacement(insn))
1199 return -1;
1200 } else {
1201 insn->eaBase = (EABase)(insn->eaBaseBase + rm);
1202 insn->eaDisplacement = EA_DISP_NONE;
1203 }
1204 break;
1205 case 0x1:
1206 insn->eaBase = (EABase)(insn->eaBaseBase + rm);
1207 insn->eaDisplacement = EA_DISP_8;
1208 if (readDisplacement(insn))
1209 return -1;
1210 break;
1211 case 0x2:
1212 insn->eaBase = (EABase)(insn->eaBaseBase + rm);
1213 insn->eaDisplacement = EA_DISP_16;
1214 if (readDisplacement(insn))
1215 return -1;
1216 break;
1217 case 0x3:
1218 insn->eaBase = (EABase)(insn->eaRegBase + rm);
1219 if (readDisplacement(insn))
1220 return -1;
1221 break;
1222 }
1223 break;
1224 case 4:
1225 case 8:
1226 insn->eaBaseBase = (insn->addressSize == 4 ? EA_BASE_EAX : EA_BASE_RAX);
1227
1228 switch (mod) {
1229 case 0x0:
1230 insn->eaDisplacement = EA_DISP_NONE; /* readSIB may override this */
1231 switch (rm) {
1232 case 0x4:
1233 case 0xc: /* in case REXW.b is set */
1234 insn->eaBase = (insn->addressSize == 4 ?
1235 EA_BASE_sib : EA_BASE_sib64);
1236 readSIB(insn);
1237 if (readDisplacement(insn))
1238 return -1;
1239 break;
1240 case 0x5:
1241 insn->eaBase = EA_BASE_NONE;
1242 insn->eaDisplacement = EA_DISP_32;
1243 if (readDisplacement(insn))
1244 return -1;
1245 break;
1246 default:
1247 insn->eaBase = (EABase)(insn->eaBaseBase + rm);
1248 break;
1249 }
1250 break;
1251 case 0x1:
1252 case 0x2:
1253 insn->eaDisplacement = (mod == 0x1 ? EA_DISP_8 : EA_DISP_32);
1254 switch (rm) {
1255 case 0x4:
1256 case 0xc: /* in case REXW.b is set */
1257 insn->eaBase = EA_BASE_sib;
1258 readSIB(insn);
1259 if (readDisplacement(insn))
1260 return -1;
1261 break;
1262 default:
1263 insn->eaBase = (EABase)(insn->eaBaseBase + rm);
1264 if (readDisplacement(insn))
1265 return -1;
1266 break;
1267 }
1268 break;
1269 case 0x3:
1270 insn->eaDisplacement = EA_DISP_NONE;
1271 insn->eaBase = (EABase)(insn->eaRegBase + rm);
1272 break;
1273 }
1274 break;
1275 } /* switch (insn->addressSize) */
1276
1277 return 0;
1278}
1279
1280#define GENERIC_FIXUP_FUNC(name, base, prefix) \
1281 static uint8_t name(struct InternalInstruction *insn, \
1282 OperandType type, \
1283 uint8_t index, \
1284 uint8_t *valid) { \
1285 *valid = 1; \
1286 switch (type) { \
1287 default: \
1288 debug("Unhandled register type"); \
1289 *valid = 0; \
1290 return 0; \
1291 case TYPE_Rv: \
1292 return base + index; \
1293 case TYPE_R8: \
1294 if (insn->rexPrefix && \
1295 index >= 4 && index <= 7) { \
1296 return prefix##_SPL + (index - 4); \
1297 } else { \
1298 return prefix##_AL + index; \
1299 } \
1300 case TYPE_R16: \
1301 return prefix##_AX + index; \
1302 case TYPE_R32: \
1303 return prefix##_EAX + index; \
1304 case TYPE_R64: \
1305 return prefix##_RAX + index; \
1306 case TYPE_XMM512: \
1307 return prefix##_ZMM0 + index; \
1308 case TYPE_XMM256: \
1309 return prefix##_YMM0 + index; \
1310 case TYPE_XMM128: \
1311 case TYPE_XMM64: \
1312 case TYPE_XMM32: \
1313 case TYPE_XMM: \
1314 return prefix##_XMM0 + index; \
1315 case TYPE_MM64: \
1316 case TYPE_MM32: \
1317 case TYPE_MM: \
1318 if (index > 7) \
1319 *valid = 0; \
1320 return prefix##_MM0 + index; \
1321 case TYPE_SEGMENTREG: \
1322 if (index > 5) \
1323 *valid = 0; \
1324 return prefix##_ES + index; \
1325 case TYPE_DEBUGREG: \
1326 if (index > 7) \
1327 *valid = 0; \
1328 return prefix##_DR0 + index; \
1329 case TYPE_CONTROLREG: \
1330 if (index > 8) \
1331 *valid = 0; \
1332 return prefix##_CR0 + index; \
1333 } \
1334 }
1335
1336/*
1337 * fixup*Value - Consults an operand type to determine the meaning of the
1338 * reg or R/M field. If the operand is an XMM operand, for example, an
1339 * operand would be XMM0 instead of AX, which readModRM() would otherwise
1340 * misinterpret it as.
1341 *
1342 * @param insn - The instruction containing the operand.
1343 * @param type - The operand type.
1344 * @param index - The existing value of the field as reported by readModRM().
1345 * @param valid - The address of a uint8_t. The target is set to 1 if the
1346 * field is valid for the register class; 0 if not.
1347 * @return - The proper value.
1348 */
1349GENERIC_FIXUP_FUNC(fixupRegValue, insn->regBase, MODRM_REG)
1350GENERIC_FIXUP_FUNC(fixupRMValue, insn->eaRegBase, EA_REG)
1351
1352/*
1353 * fixupReg - Consults an operand specifier to determine which of the
1354 * fixup*Value functions to use in correcting readModRM()'ss interpretation.
1355 *
1356 * @param insn - See fixup*Value().
1357 * @param op - The operand specifier.
1358 * @return - 0 if fixup was successful; -1 if the register returned was
1359 * invalid for its class.
1360 */
1361static int fixupReg(struct InternalInstruction *insn,
1362 const struct OperandSpecifier *op) {
1363 uint8_t valid;
1364
1365 dbgprintf(insn, "fixupReg()");
1366
1367 switch ((OperandEncoding)op->encoding) {
1368 default:
1369 debug("Expected a REG or R/M encoding in fixupReg");
1370 return -1;
1371 case ENCODING_VVVV:
1372 insn->vvvv = (Reg)fixupRegValue(insn,
1373 (OperandType)op->type,
1374 insn->vvvv,
1375 &valid);
1376 if (!valid)
1377 return -1;
1378 break;
1379 case ENCODING_REG:
1380 insn->reg = (Reg)fixupRegValue(insn,
1381 (OperandType)op->type,
1382 insn->reg - insn->regBase,
1383 &valid);
1384 if (!valid)
1385 return -1;
1386 break;
1387 case ENCODING_RM:
1388 if (insn->eaBase >= insn->eaRegBase) {
1389 insn->eaBase = (EABase)fixupRMValue(insn,
1390 (OperandType)op->type,
1391 insn->eaBase - insn->eaRegBase,
1392 &valid);
1393 if (!valid)
1394 return -1;
1395 }
1396 break;
1397 }
1398
1399 return 0;
1400}
1401
1402/*
1403 * readOpcodeModifier - Reads an operand from the opcode field of an
1404 * instruction. Handles AddRegFrm instructions.
1405 *
1406 * @param insn - The instruction whose opcode field is to be read.
1407 * @param inModRM - Indicates that the opcode field is to be read from the
1408 * ModR/M extension; useful for escape opcodes
1409 * @return - 0 on success; nonzero otherwise.
1410 */
1411static int readOpcodeModifier(struct InternalInstruction* insn) {
1412 dbgprintf(insn, "readOpcodeModifier()");
1413
1414 if (insn->consumedOpcodeModifier)
1415 return 0;
1416
1417 insn->consumedOpcodeModifier = TRUE;
1418
1419 switch (insn->spec->modifierType) {
1420 default:
1421 debug("Unknown modifier type.");
1422 return -1;
1423 case MODIFIER_NONE:
1424 debug("No modifier but an operand expects one.");
1425 return -1;
1426 case MODIFIER_OPCODE:
1427 insn->opcodeModifier = insn->opcode - insn->spec->modifierBase;
1428 return 0;
1429 case MODIFIER_MODRM:
1430 insn->opcodeModifier = insn->modRM - insn->spec->modifierBase;
1431 return 0;
1432 }
1433}
1434
1435/*
1436 * readOpcodeRegister - Reads an operand from the opcode field of an
1437 * instruction and interprets it appropriately given the operand width.
1438 * Handles AddRegFrm instructions.
1439 *
1440 * @param insn - See readOpcodeModifier().
1441 * @param size - The width (in bytes) of the register being specified.
1442 * 1 means AL and friends, 2 means AX, 4 means EAX, and 8 means
1443 * RAX.
1444 * @return - 0 on success; nonzero otherwise.
1445 */
1446static int readOpcodeRegister(struct InternalInstruction* insn, uint8_t size) {
1447 dbgprintf(insn, "readOpcodeRegister()");
1448
1449 if (readOpcodeModifier(insn))
1450 return -1;
1451
1452 if (size == 0)
1453 size = insn->registerSize;
1454
1455 switch (size) {
1456 case 1:
1457 insn->opcodeRegister = (Reg)(MODRM_REG_AL + ((bFromREX(insn->rexPrefix) << 3)
1458 | insn->opcodeModifier));
1459 if (insn->rexPrefix &&
1460 insn->opcodeRegister >= MODRM_REG_AL + 0x4 &&
1461 insn->opcodeRegister < MODRM_REG_AL + 0x8) {
1462 insn->opcodeRegister = (Reg)(MODRM_REG_SPL
1463 + (insn->opcodeRegister - MODRM_REG_AL - 4));
1464 }
1465
1466 break;
1467 case 2:
1468 insn->opcodeRegister = (Reg)(MODRM_REG_AX
1469 + ((bFromREX(insn->rexPrefix) << 3)
1470 | insn->opcodeModifier));
1471 break;
1472 case 4:
1473 insn->opcodeRegister = (Reg)(MODRM_REG_EAX
1474 + ((bFromREX(insn->rexPrefix) << 3)
1475 | insn->opcodeModifier));
1476 break;
1477 case 8:
1478 insn->opcodeRegister = (Reg)(MODRM_REG_RAX
1479 + ((bFromREX(insn->rexPrefix) << 3)
1480 | insn->opcodeModifier));
1481 break;
1482 }
1483
1484 return 0;
1485}
1486
1487/*
1488 * readImmediate - Consumes an immediate operand from an instruction, given the
1489 * desired operand size.
1490 *
1491 * @param insn - The instruction whose operand is to be read.
1492 * @param size - The width (in bytes) of the operand.
1493 * @return - 0 if the immediate was successfully consumed; nonzero
1494 * otherwise.
1495 */
1496static int readImmediate(struct InternalInstruction* insn, uint8_t size) {
1497 uint8_t imm8;
1498 uint16_t imm16;
1499 uint32_t imm32;
1500 uint64_t imm64;
1501
1502 dbgprintf(insn, "readImmediate()");
1503
1504 if (insn->numImmediatesConsumed == 2) {
1505 debug("Already consumed two immediates");
1506 return -1;
1507 }
1508
1509 if (size == 0)
1510 size = insn->immediateSize;
1511 else
1512 insn->immediateSize = size;
1513 insn->immediateOffset = insn->readerCursor - insn->startLocation;
1514
1515 switch (size) {
1516 case 1:
1517 if (consumeByte(insn, &imm8))
1518 return -1;
1519 insn->immediates[insn->numImmediatesConsumed] = imm8;
1520 break;
1521 case 2:
1522 if (consumeUInt16(insn, &imm16))
1523 return -1;
1524 insn->immediates[insn->numImmediatesConsumed] = imm16;
1525 break;
1526 case 4:
1527 if (consumeUInt32(insn, &imm32))
1528 return -1;
1529 insn->immediates[insn->numImmediatesConsumed] = imm32;
1530 break;
1531 case 8:
1532 if (consumeUInt64(insn, &imm64))
1533 return -1;
1534 insn->immediates[insn->numImmediatesConsumed] = imm64;
1535 break;
1536 }
1537
1538 insn->numImmediatesConsumed++;
1539
1540 return 0;
1541}
1542
1543/*
1544 * readVVVV - Consumes vvvv from an instruction if it has a VEX prefix.
1545 *
1546 * @param insn - The instruction whose operand is to be read.
1547 * @return - 0 if the vvvv was successfully consumed; nonzero
1548 * otherwise.
1549 */
1550static int readVVVV(struct InternalInstruction* insn) {
1551 dbgprintf(insn, "readVVVV()");
1552
1553 if (insn->vexXopType == TYPE_VEX_3B)
1554 insn->vvvv = vvvvFromVEX3of3(insn->vexXopPrefix[2]);
1555 else if (insn->vexXopType == TYPE_VEX_2B)
1556 insn->vvvv = vvvvFromVEX2of2(insn->vexXopPrefix[1]);
1557 else if (insn->vexXopType == TYPE_XOP)
1558 insn->vvvv = vvvvFromXOP3of3(insn->vexXopPrefix[2]);
1559 else
1560 return -1;
1561
1562 if (insn->mode != MODE_64BIT)
1563 insn->vvvv &= 0x7;
1564
1565 return 0;
1566}
1567
1568/*
1569 * readOperands - Consults the specifier for an instruction and consumes all
1570 * operands for that instruction, interpreting them as it goes.
1571 *
1572 * @param insn - The instruction whose operands are to be read and interpreted.
1573 * @return - 0 if all operands could be read; nonzero otherwise.
1574 */
1575static int readOperands(struct InternalInstruction* insn) {
1576 int index;
1577 int hasVVVV, needVVVV;
1578 int sawRegImm = 0;
1579
1580 dbgprintf(insn, "readOperands()");
1581
1582 /* If non-zero vvvv specified, need to make sure one of the operands
1583 uses it. */
1584 hasVVVV = !readVVVV(insn);
1585 needVVVV = hasVVVV && (insn->vvvv != 0);
1586
1587 for (index = 0; index < X86_MAX_OPERANDS; ++index) {
1588 switch (x86OperandSets[insn->spec->operands][index].encoding) {
1589 case ENCODING_NONE:
1590 break;
1591 case ENCODING_REG:
1592 case ENCODING_RM:
1593 if (readModRM(insn))
1594 return -1;
1595 if (fixupReg(insn, &x86OperandSets[insn->spec->operands][index]))
1596 return -1;
1597 break;
1598 case ENCODING_CB:
1599 case ENCODING_CW:
1600 case ENCODING_CD:
1601 case ENCODING_CP:
1602 case ENCODING_CO:
1603 case ENCODING_CT:
1604 dbgprintf(insn, "We currently don't hande code-offset encodings");
1605 return -1;
1606 case ENCODING_IB:
1607 if (sawRegImm) {
1608 /* Saw a register immediate so don't read again and instead split the
1609 previous immediate. FIXME: This is a hack. */
1610 insn->immediates[insn->numImmediatesConsumed] =
1611 insn->immediates[insn->numImmediatesConsumed - 1] & 0xf;
1612 ++insn->numImmediatesConsumed;
1613 break;
1614 }
1615 if (readImmediate(insn, 1))
1616 return -1;
1617 if (x86OperandSets[insn->spec->operands][index].type == TYPE_IMM3 &&
1618 insn->immediates[insn->numImmediatesConsumed - 1] > 7)
1619 return -1;
1620 if (x86OperandSets[insn->spec->operands][index].type == TYPE_IMM5 &&
1621 insn->immediates[insn->numImmediatesConsumed - 1] > 31)
1622 return -1;
1623 if (x86OperandSets[insn->spec->operands][index].type == TYPE_XMM128 ||
1624 x86OperandSets[insn->spec->operands][index].type == TYPE_XMM256)
1625 sawRegImm = 1;
1626 break;
1627 case ENCODING_IW:
1628 if (readImmediate(insn, 2))
1629 return -1;
1630 break;
1631 case ENCODING_ID:
1632 if (readImmediate(insn, 4))
1633 return -1;
1634 break;
1635 case ENCODING_IO:
1636 if (readImmediate(insn, 8))
1637 return -1;
1638 break;
1639 case ENCODING_Iv:
1640 if (readImmediate(insn, insn->immediateSize))
1641 return -1;
1642 break;
1643 case ENCODING_Ia:
1644 if (readImmediate(insn, insn->addressSize))
1645 return -1;
1646 break;
1647 case ENCODING_RB:
1648 if (readOpcodeRegister(insn, 1))
1649 return -1;
1650 break;
1651 case ENCODING_RW:
1652 if (readOpcodeRegister(insn, 2))
1653 return -1;
1654 break;
1655 case ENCODING_RD:
1656 if (readOpcodeRegister(insn, 4))
1657 return -1;
1658 break;
1659 case ENCODING_RO:
1660 if (readOpcodeRegister(insn, 8))
1661 return -1;
1662 break;
1663 case ENCODING_Rv:
1664 if (readOpcodeRegister(insn, 0))
1665 return -1;
1666 break;
1667 case ENCODING_I:
1668 if (readOpcodeModifier(insn))
1669 return -1;
1670 break;
1671 case ENCODING_VVVV:
1672 needVVVV = 0; /* Mark that we have found a VVVV operand. */
1673 if (!hasVVVV)
1674 return -1;
1675 if (fixupReg(insn, &x86OperandSets[insn->spec->operands][index]))
1676 return -1;
1677 break;
1678 case ENCODING_DUP:
1679 break;
1680 default:
1681 dbgprintf(insn, "Encountered an operand with an unknown encoding.");
1682 return -1;
1683 }
1684 }
1685
1686 /* If we didn't find ENCODING_VVVV operand, but non-zero vvvv present, fail */
1687 if (needVVVV) return -1;
1688
1689 return 0;
1690}
1691
1692/*
1693 * decodeInstruction - Reads and interprets a full instruction provided by the
1694 * user.
1695 *
1696 * @param insn - A pointer to the instruction to be populated. Must be
1697 * pre-allocated.
1698 * @param reader - The function to be used to read the instruction's bytes.
1699 * @param readerArg - A generic argument to be passed to the reader to store
1700 * any internal state.
1701 * @param logger - If non-NULL, the function to be used to write log messages
1702 * and warnings.
1703 * @param loggerArg - A generic argument to be passed to the logger to store
1704 * any internal state.
1705 * @param startLoc - The address (in the reader's address space) of the first
1706 * byte in the instruction.
1707 * @param mode - The mode (real mode, IA-32e, or IA-32e in 64-bit mode) to
1708 * decode the instruction in.
1709 * @return - 0 if the instruction's memory could be read; nonzero if
1710 * not.
1711 */
1712int decodeInstruction(struct InternalInstruction* insn,
1713 byteReader_t reader,
1714 const void* readerArg,
1715 dlog_t logger,
1716 void* loggerArg,
1717 const void* miiArg,
1718 uint64_t startLoc,
1719 DisassemblerMode mode) {
1720 memset(insn, 0, sizeof(struct InternalInstruction));
1721
1722 insn->reader = reader;
1723 insn->readerArg = readerArg;
1724 insn->dlog = logger;
1725 insn->dlogArg = loggerArg;
1726 insn->startLocation = startLoc;
1727 insn->readerCursor = startLoc;
1728 insn->mode = mode;
1729 insn->numImmediatesConsumed = 0;
1730
1731 if (readPrefixes(insn) ||
1732 readOpcode(insn) ||
1733 getID(insn, miiArg) ||
1734 insn->instructionID == 0 ||
1735 readOperands(insn))
1736 return -1;
1737
1738 insn->operands = &x86OperandSets[insn->spec->operands][0];
1739
1740 insn->length = insn->readerCursor - insn->startLocation;
1741
1742 dbgprintf(insn, "Read from 0x%llx to 0x%llx: length %zu",
1743 startLoc, insn->readerCursor, insn->length);
1744
1745 if (insn->length > 15)
1746 dbgprintf(insn, "Instruction exceeds 15-byte limit");
1747
1748 return 0;
1749}
1081 break;
1082 case 0x3:
1083 debug("Cannot have Mod = 0b11 and a SIB byte");
1084 return -1;
1085 }
1086 break;
1087 default:
1088 insn->sibBase = (SIBBase)(sibBaseBase + base);
1089 break;
1090 }
1091
1092 return 0;
1093}
1094
1095/*
1096 * readDisplacement - Consumes the displacement of an instruction.
1097 *
1098 * @param insn - The instruction whose displacement is to be read.
1099 * @return - 0 if the displacement byte was successfully read; nonzero
1100 * otherwise.
1101 */
1102static int readDisplacement(struct InternalInstruction* insn) {
1103 int8_t d8;
1104 int16_t d16;
1105 int32_t d32;
1106
1107 dbgprintf(insn, "readDisplacement()");
1108
1109 if (insn->consumedDisplacement)
1110 return 0;
1111
1112 insn->consumedDisplacement = TRUE;
1113 insn->displacementOffset = insn->readerCursor - insn->startLocation;
1114
1115 switch (insn->eaDisplacement) {
1116 case EA_DISP_NONE:
1117 insn->consumedDisplacement = FALSE;
1118 break;
1119 case EA_DISP_8:
1120 if (consumeInt8(insn, &d8))
1121 return -1;
1122 insn->displacement = d8;
1123 break;
1124 case EA_DISP_16:
1125 if (consumeInt16(insn, &d16))
1126 return -1;
1127 insn->displacement = d16;
1128 break;
1129 case EA_DISP_32:
1130 if (consumeInt32(insn, &d32))
1131 return -1;
1132 insn->displacement = d32;
1133 break;
1134 }
1135
1136 insn->consumedDisplacement = TRUE;
1137 return 0;
1138}
1139
1140/*
1141 * readModRM - Consumes all addressing information (ModR/M byte, SIB byte, and
1142 * displacement) for an instruction and interprets it.
1143 *
1144 * @param insn - The instruction whose addressing information is to be read.
1145 * @return - 0 if the information was successfully read; nonzero otherwise.
1146 */
1147static int readModRM(struct InternalInstruction* insn) {
1148 uint8_t mod, rm, reg;
1149
1150 dbgprintf(insn, "readModRM()");
1151
1152 if (insn->consumedModRM)
1153 return 0;
1154
1155 if (consumeByte(insn, &insn->modRM))
1156 return -1;
1157 insn->consumedModRM = TRUE;
1158
1159 mod = modFromModRM(insn->modRM);
1160 rm = rmFromModRM(insn->modRM);
1161 reg = regFromModRM(insn->modRM);
1162
1163 /*
1164 * This goes by insn->registerSize to pick the correct register, which messes
1165 * up if we're using (say) XMM or 8-bit register operands. That gets fixed in
1166 * fixupReg().
1167 */
1168 switch (insn->registerSize) {
1169 case 2:
1170 insn->regBase = MODRM_REG_AX;
1171 insn->eaRegBase = EA_REG_AX;
1172 break;
1173 case 4:
1174 insn->regBase = MODRM_REG_EAX;
1175 insn->eaRegBase = EA_REG_EAX;
1176 break;
1177 case 8:
1178 insn->regBase = MODRM_REG_RAX;
1179 insn->eaRegBase = EA_REG_RAX;
1180 break;
1181 }
1182
1183 reg |= rFromREX(insn->rexPrefix) << 3;
1184 rm |= bFromREX(insn->rexPrefix) << 3;
1185
1186 insn->reg = (Reg)(insn->regBase + reg);
1187
1188 switch (insn->addressSize) {
1189 case 2:
1190 insn->eaBaseBase = EA_BASE_BX_SI;
1191
1192 switch (mod) {
1193 case 0x0:
1194 if (rm == 0x6) {
1195 insn->eaBase = EA_BASE_NONE;
1196 insn->eaDisplacement = EA_DISP_16;
1197 if (readDisplacement(insn))
1198 return -1;
1199 } else {
1200 insn->eaBase = (EABase)(insn->eaBaseBase + rm);
1201 insn->eaDisplacement = EA_DISP_NONE;
1202 }
1203 break;
1204 case 0x1:
1205 insn->eaBase = (EABase)(insn->eaBaseBase + rm);
1206 insn->eaDisplacement = EA_DISP_8;
1207 if (readDisplacement(insn))
1208 return -1;
1209 break;
1210 case 0x2:
1211 insn->eaBase = (EABase)(insn->eaBaseBase + rm);
1212 insn->eaDisplacement = EA_DISP_16;
1213 if (readDisplacement(insn))
1214 return -1;
1215 break;
1216 case 0x3:
1217 insn->eaBase = (EABase)(insn->eaRegBase + rm);
1218 if (readDisplacement(insn))
1219 return -1;
1220 break;
1221 }
1222 break;
1223 case 4:
1224 case 8:
1225 insn->eaBaseBase = (insn->addressSize == 4 ? EA_BASE_EAX : EA_BASE_RAX);
1226
1227 switch (mod) {
1228 case 0x0:
1229 insn->eaDisplacement = EA_DISP_NONE; /* readSIB may override this */
1230 switch (rm) {
1231 case 0x4:
1232 case 0xc: /* in case REXW.b is set */
1233 insn->eaBase = (insn->addressSize == 4 ?
1234 EA_BASE_sib : EA_BASE_sib64);
1235 readSIB(insn);
1236 if (readDisplacement(insn))
1237 return -1;
1238 break;
1239 case 0x5:
1240 insn->eaBase = EA_BASE_NONE;
1241 insn->eaDisplacement = EA_DISP_32;
1242 if (readDisplacement(insn))
1243 return -1;
1244 break;
1245 default:
1246 insn->eaBase = (EABase)(insn->eaBaseBase + rm);
1247 break;
1248 }
1249 break;
1250 case 0x1:
1251 case 0x2:
1252 insn->eaDisplacement = (mod == 0x1 ? EA_DISP_8 : EA_DISP_32);
1253 switch (rm) {
1254 case 0x4:
1255 case 0xc: /* in case REXW.b is set */
1256 insn->eaBase = EA_BASE_sib;
1257 readSIB(insn);
1258 if (readDisplacement(insn))
1259 return -1;
1260 break;
1261 default:
1262 insn->eaBase = (EABase)(insn->eaBaseBase + rm);
1263 if (readDisplacement(insn))
1264 return -1;
1265 break;
1266 }
1267 break;
1268 case 0x3:
1269 insn->eaDisplacement = EA_DISP_NONE;
1270 insn->eaBase = (EABase)(insn->eaRegBase + rm);
1271 break;
1272 }
1273 break;
1274 } /* switch (insn->addressSize) */
1275
1276 return 0;
1277}
1278
1279#define GENERIC_FIXUP_FUNC(name, base, prefix) \
1280 static uint8_t name(struct InternalInstruction *insn, \
1281 OperandType type, \
1282 uint8_t index, \
1283 uint8_t *valid) { \
1284 *valid = 1; \
1285 switch (type) { \
1286 default: \
1287 debug("Unhandled register type"); \
1288 *valid = 0; \
1289 return 0; \
1290 case TYPE_Rv: \
1291 return base + index; \
1292 case TYPE_R8: \
1293 if (insn->rexPrefix && \
1294 index >= 4 && index <= 7) { \
1295 return prefix##_SPL + (index - 4); \
1296 } else { \
1297 return prefix##_AL + index; \
1298 } \
1299 case TYPE_R16: \
1300 return prefix##_AX + index; \
1301 case TYPE_R32: \
1302 return prefix##_EAX + index; \
1303 case TYPE_R64: \
1304 return prefix##_RAX + index; \
1305 case TYPE_XMM512: \
1306 return prefix##_ZMM0 + index; \
1307 case TYPE_XMM256: \
1308 return prefix##_YMM0 + index; \
1309 case TYPE_XMM128: \
1310 case TYPE_XMM64: \
1311 case TYPE_XMM32: \
1312 case TYPE_XMM: \
1313 return prefix##_XMM0 + index; \
1314 case TYPE_MM64: \
1315 case TYPE_MM32: \
1316 case TYPE_MM: \
1317 if (index > 7) \
1318 *valid = 0; \
1319 return prefix##_MM0 + index; \
1320 case TYPE_SEGMENTREG: \
1321 if (index > 5) \
1322 *valid = 0; \
1323 return prefix##_ES + index; \
1324 case TYPE_DEBUGREG: \
1325 if (index > 7) \
1326 *valid = 0; \
1327 return prefix##_DR0 + index; \
1328 case TYPE_CONTROLREG: \
1329 if (index > 8) \
1330 *valid = 0; \
1331 return prefix##_CR0 + index; \
1332 } \
1333 }
1334
1335/*
1336 * fixup*Value - Consults an operand type to determine the meaning of the
1337 * reg or R/M field. If the operand is an XMM operand, for example, an
1338 * operand would be XMM0 instead of AX, which readModRM() would otherwise
1339 * misinterpret it as.
1340 *
1341 * @param insn - The instruction containing the operand.
1342 * @param type - The operand type.
1343 * @param index - The existing value of the field as reported by readModRM().
1344 * @param valid - The address of a uint8_t. The target is set to 1 if the
1345 * field is valid for the register class; 0 if not.
1346 * @return - The proper value.
1347 */
1348GENERIC_FIXUP_FUNC(fixupRegValue, insn->regBase, MODRM_REG)
1349GENERIC_FIXUP_FUNC(fixupRMValue, insn->eaRegBase, EA_REG)
1350
1351/*
1352 * fixupReg - Consults an operand specifier to determine which of the
1353 * fixup*Value functions to use in correcting readModRM()'ss interpretation.
1354 *
1355 * @param insn - See fixup*Value().
1356 * @param op - The operand specifier.
1357 * @return - 0 if fixup was successful; -1 if the register returned was
1358 * invalid for its class.
1359 */
1360static int fixupReg(struct InternalInstruction *insn,
1361 const struct OperandSpecifier *op) {
1362 uint8_t valid;
1363
1364 dbgprintf(insn, "fixupReg()");
1365
1366 switch ((OperandEncoding)op->encoding) {
1367 default:
1368 debug("Expected a REG or R/M encoding in fixupReg");
1369 return -1;
1370 case ENCODING_VVVV:
1371 insn->vvvv = (Reg)fixupRegValue(insn,
1372 (OperandType)op->type,
1373 insn->vvvv,
1374 &valid);
1375 if (!valid)
1376 return -1;
1377 break;
1378 case ENCODING_REG:
1379 insn->reg = (Reg)fixupRegValue(insn,
1380 (OperandType)op->type,
1381 insn->reg - insn->regBase,
1382 &valid);
1383 if (!valid)
1384 return -1;
1385 break;
1386 case ENCODING_RM:
1387 if (insn->eaBase >= insn->eaRegBase) {
1388 insn->eaBase = (EABase)fixupRMValue(insn,
1389 (OperandType)op->type,
1390 insn->eaBase - insn->eaRegBase,
1391 &valid);
1392 if (!valid)
1393 return -1;
1394 }
1395 break;
1396 }
1397
1398 return 0;
1399}
1400
1401/*
1402 * readOpcodeModifier - Reads an operand from the opcode field of an
1403 * instruction. Handles AddRegFrm instructions.
1404 *
1405 * @param insn - The instruction whose opcode field is to be read.
1406 * @param inModRM - Indicates that the opcode field is to be read from the
1407 * ModR/M extension; useful for escape opcodes
1408 * @return - 0 on success; nonzero otherwise.
1409 */
1410static int readOpcodeModifier(struct InternalInstruction* insn) {
1411 dbgprintf(insn, "readOpcodeModifier()");
1412
1413 if (insn->consumedOpcodeModifier)
1414 return 0;
1415
1416 insn->consumedOpcodeModifier = TRUE;
1417
1418 switch (insn->spec->modifierType) {
1419 default:
1420 debug("Unknown modifier type.");
1421 return -1;
1422 case MODIFIER_NONE:
1423 debug("No modifier but an operand expects one.");
1424 return -1;
1425 case MODIFIER_OPCODE:
1426 insn->opcodeModifier = insn->opcode - insn->spec->modifierBase;
1427 return 0;
1428 case MODIFIER_MODRM:
1429 insn->opcodeModifier = insn->modRM - insn->spec->modifierBase;
1430 return 0;
1431 }
1432}
1433
1434/*
1435 * readOpcodeRegister - Reads an operand from the opcode field of an
1436 * instruction and interprets it appropriately given the operand width.
1437 * Handles AddRegFrm instructions.
1438 *
1439 * @param insn - See readOpcodeModifier().
1440 * @param size - The width (in bytes) of the register being specified.
1441 * 1 means AL and friends, 2 means AX, 4 means EAX, and 8 means
1442 * RAX.
1443 * @return - 0 on success; nonzero otherwise.
1444 */
1445static int readOpcodeRegister(struct InternalInstruction* insn, uint8_t size) {
1446 dbgprintf(insn, "readOpcodeRegister()");
1447
1448 if (readOpcodeModifier(insn))
1449 return -1;
1450
1451 if (size == 0)
1452 size = insn->registerSize;
1453
1454 switch (size) {
1455 case 1:
1456 insn->opcodeRegister = (Reg)(MODRM_REG_AL + ((bFromREX(insn->rexPrefix) << 3)
1457 | insn->opcodeModifier));
1458 if (insn->rexPrefix &&
1459 insn->opcodeRegister >= MODRM_REG_AL + 0x4 &&
1460 insn->opcodeRegister < MODRM_REG_AL + 0x8) {
1461 insn->opcodeRegister = (Reg)(MODRM_REG_SPL
1462 + (insn->opcodeRegister - MODRM_REG_AL - 4));
1463 }
1464
1465 break;
1466 case 2:
1467 insn->opcodeRegister = (Reg)(MODRM_REG_AX
1468 + ((bFromREX(insn->rexPrefix) << 3)
1469 | insn->opcodeModifier));
1470 break;
1471 case 4:
1472 insn->opcodeRegister = (Reg)(MODRM_REG_EAX
1473 + ((bFromREX(insn->rexPrefix) << 3)
1474 | insn->opcodeModifier));
1475 break;
1476 case 8:
1477 insn->opcodeRegister = (Reg)(MODRM_REG_RAX
1478 + ((bFromREX(insn->rexPrefix) << 3)
1479 | insn->opcodeModifier));
1480 break;
1481 }
1482
1483 return 0;
1484}
1485
1486/*
1487 * readImmediate - Consumes an immediate operand from an instruction, given the
1488 * desired operand size.
1489 *
1490 * @param insn - The instruction whose operand is to be read.
1491 * @param size - The width (in bytes) of the operand.
1492 * @return - 0 if the immediate was successfully consumed; nonzero
1493 * otherwise.
1494 */
1495static int readImmediate(struct InternalInstruction* insn, uint8_t size) {
1496 uint8_t imm8;
1497 uint16_t imm16;
1498 uint32_t imm32;
1499 uint64_t imm64;
1500
1501 dbgprintf(insn, "readImmediate()");
1502
1503 if (insn->numImmediatesConsumed == 2) {
1504 debug("Already consumed two immediates");
1505 return -1;
1506 }
1507
1508 if (size == 0)
1509 size = insn->immediateSize;
1510 else
1511 insn->immediateSize = size;
1512 insn->immediateOffset = insn->readerCursor - insn->startLocation;
1513
1514 switch (size) {
1515 case 1:
1516 if (consumeByte(insn, &imm8))
1517 return -1;
1518 insn->immediates[insn->numImmediatesConsumed] = imm8;
1519 break;
1520 case 2:
1521 if (consumeUInt16(insn, &imm16))
1522 return -1;
1523 insn->immediates[insn->numImmediatesConsumed] = imm16;
1524 break;
1525 case 4:
1526 if (consumeUInt32(insn, &imm32))
1527 return -1;
1528 insn->immediates[insn->numImmediatesConsumed] = imm32;
1529 break;
1530 case 8:
1531 if (consumeUInt64(insn, &imm64))
1532 return -1;
1533 insn->immediates[insn->numImmediatesConsumed] = imm64;
1534 break;
1535 }
1536
1537 insn->numImmediatesConsumed++;
1538
1539 return 0;
1540}
1541
1542/*
1543 * readVVVV - Consumes vvvv from an instruction if it has a VEX prefix.
1544 *
1545 * @param insn - The instruction whose operand is to be read.
1546 * @return - 0 if the vvvv was successfully consumed; nonzero
1547 * otherwise.
1548 */
1549static int readVVVV(struct InternalInstruction* insn) {
1550 dbgprintf(insn, "readVVVV()");
1551
1552 if (insn->vexXopType == TYPE_VEX_3B)
1553 insn->vvvv = vvvvFromVEX3of3(insn->vexXopPrefix[2]);
1554 else if (insn->vexXopType == TYPE_VEX_2B)
1555 insn->vvvv = vvvvFromVEX2of2(insn->vexXopPrefix[1]);
1556 else if (insn->vexXopType == TYPE_XOP)
1557 insn->vvvv = vvvvFromXOP3of3(insn->vexXopPrefix[2]);
1558 else
1559 return -1;
1560
1561 if (insn->mode != MODE_64BIT)
1562 insn->vvvv &= 0x7;
1563
1564 return 0;
1565}
1566
1567/*
1568 * readOperands - Consults the specifier for an instruction and consumes all
1569 * operands for that instruction, interpreting them as it goes.
1570 *
1571 * @param insn - The instruction whose operands are to be read and interpreted.
1572 * @return - 0 if all operands could be read; nonzero otherwise.
1573 */
1574static int readOperands(struct InternalInstruction* insn) {
1575 int index;
1576 int hasVVVV, needVVVV;
1577 int sawRegImm = 0;
1578
1579 dbgprintf(insn, "readOperands()");
1580
1581 /* If non-zero vvvv specified, need to make sure one of the operands
1582 uses it. */
1583 hasVVVV = !readVVVV(insn);
1584 needVVVV = hasVVVV && (insn->vvvv != 0);
1585
1586 for (index = 0; index < X86_MAX_OPERANDS; ++index) {
1587 switch (x86OperandSets[insn->spec->operands][index].encoding) {
1588 case ENCODING_NONE:
1589 break;
1590 case ENCODING_REG:
1591 case ENCODING_RM:
1592 if (readModRM(insn))
1593 return -1;
1594 if (fixupReg(insn, &x86OperandSets[insn->spec->operands][index]))
1595 return -1;
1596 break;
1597 case ENCODING_CB:
1598 case ENCODING_CW:
1599 case ENCODING_CD:
1600 case ENCODING_CP:
1601 case ENCODING_CO:
1602 case ENCODING_CT:
1603 dbgprintf(insn, "We currently don't hande code-offset encodings");
1604 return -1;
1605 case ENCODING_IB:
1606 if (sawRegImm) {
1607 /* Saw a register immediate so don't read again and instead split the
1608 previous immediate. FIXME: This is a hack. */
1609 insn->immediates[insn->numImmediatesConsumed] =
1610 insn->immediates[insn->numImmediatesConsumed - 1] & 0xf;
1611 ++insn->numImmediatesConsumed;
1612 break;
1613 }
1614 if (readImmediate(insn, 1))
1615 return -1;
1616 if (x86OperandSets[insn->spec->operands][index].type == TYPE_IMM3 &&
1617 insn->immediates[insn->numImmediatesConsumed - 1] > 7)
1618 return -1;
1619 if (x86OperandSets[insn->spec->operands][index].type == TYPE_IMM5 &&
1620 insn->immediates[insn->numImmediatesConsumed - 1] > 31)
1621 return -1;
1622 if (x86OperandSets[insn->spec->operands][index].type == TYPE_XMM128 ||
1623 x86OperandSets[insn->spec->operands][index].type == TYPE_XMM256)
1624 sawRegImm = 1;
1625 break;
1626 case ENCODING_IW:
1627 if (readImmediate(insn, 2))
1628 return -1;
1629 break;
1630 case ENCODING_ID:
1631 if (readImmediate(insn, 4))
1632 return -1;
1633 break;
1634 case ENCODING_IO:
1635 if (readImmediate(insn, 8))
1636 return -1;
1637 break;
1638 case ENCODING_Iv:
1639 if (readImmediate(insn, insn->immediateSize))
1640 return -1;
1641 break;
1642 case ENCODING_Ia:
1643 if (readImmediate(insn, insn->addressSize))
1644 return -1;
1645 break;
1646 case ENCODING_RB:
1647 if (readOpcodeRegister(insn, 1))
1648 return -1;
1649 break;
1650 case ENCODING_RW:
1651 if (readOpcodeRegister(insn, 2))
1652 return -1;
1653 break;
1654 case ENCODING_RD:
1655 if (readOpcodeRegister(insn, 4))
1656 return -1;
1657 break;
1658 case ENCODING_RO:
1659 if (readOpcodeRegister(insn, 8))
1660 return -1;
1661 break;
1662 case ENCODING_Rv:
1663 if (readOpcodeRegister(insn, 0))
1664 return -1;
1665 break;
1666 case ENCODING_I:
1667 if (readOpcodeModifier(insn))
1668 return -1;
1669 break;
1670 case ENCODING_VVVV:
1671 needVVVV = 0; /* Mark that we have found a VVVV operand. */
1672 if (!hasVVVV)
1673 return -1;
1674 if (fixupReg(insn, &x86OperandSets[insn->spec->operands][index]))
1675 return -1;
1676 break;
1677 case ENCODING_DUP:
1678 break;
1679 default:
1680 dbgprintf(insn, "Encountered an operand with an unknown encoding.");
1681 return -1;
1682 }
1683 }
1684
1685 /* If we didn't find ENCODING_VVVV operand, but non-zero vvvv present, fail */
1686 if (needVVVV) return -1;
1687
1688 return 0;
1689}
1690
1691/*
1692 * decodeInstruction - Reads and interprets a full instruction provided by the
1693 * user.
1694 *
1695 * @param insn - A pointer to the instruction to be populated. Must be
1696 * pre-allocated.
1697 * @param reader - The function to be used to read the instruction's bytes.
1698 * @param readerArg - A generic argument to be passed to the reader to store
1699 * any internal state.
1700 * @param logger - If non-NULL, the function to be used to write log messages
1701 * and warnings.
1702 * @param loggerArg - A generic argument to be passed to the logger to store
1703 * any internal state.
1704 * @param startLoc - The address (in the reader's address space) of the first
1705 * byte in the instruction.
1706 * @param mode - The mode (real mode, IA-32e, or IA-32e in 64-bit mode) to
1707 * decode the instruction in.
1708 * @return - 0 if the instruction's memory could be read; nonzero if
1709 * not.
1710 */
1711int decodeInstruction(struct InternalInstruction* insn,
1712 byteReader_t reader,
1713 const void* readerArg,
1714 dlog_t logger,
1715 void* loggerArg,
1716 const void* miiArg,
1717 uint64_t startLoc,
1718 DisassemblerMode mode) {
1719 memset(insn, 0, sizeof(struct InternalInstruction));
1720
1721 insn->reader = reader;
1722 insn->readerArg = readerArg;
1723 insn->dlog = logger;
1724 insn->dlogArg = loggerArg;
1725 insn->startLocation = startLoc;
1726 insn->readerCursor = startLoc;
1727 insn->mode = mode;
1728 insn->numImmediatesConsumed = 0;
1729
1730 if (readPrefixes(insn) ||
1731 readOpcode(insn) ||
1732 getID(insn, miiArg) ||
1733 insn->instructionID == 0 ||
1734 readOperands(insn))
1735 return -1;
1736
1737 insn->operands = &x86OperandSets[insn->spec->operands][0];
1738
1739 insn->length = insn->readerCursor - insn->startLocation;
1740
1741 dbgprintf(insn, "Read from 0x%llx to 0x%llx: length %zu",
1742 startLoc, insn->readerCursor, insn->length);
1743
1744 if (insn->length > 15)
1745 dbgprintf(insn, "Instruction exceeds 15-byte limit");
1746
1747 return 0;
1748}