Deleted Added
full compact
TwoAddressInstructionPass.cpp (199481) TwoAddressInstructionPass.cpp (199511)
1//===-- TwoAddressInstructionPass.cpp - Two-Address instruction pass ------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the TwoAddress instruction pass which is used
11// by most register allocators. Two-Address instructions are rewritten
12// from:
13//
14// A = B op C
15//
16// to:
17//
18// A = B
19// A op= C
20//
21// Note that if a register allocator chooses to use this pass, that it
22// has to be capable of handling the non-SSA nature of these rewritten
23// virtual registers.
24//
25// It is also worth noting that the duplicate operand of the two
26// address instruction is removed.
27//
28//===----------------------------------------------------------------------===//
29
30#define DEBUG_TYPE "twoaddrinstr"
31#include "llvm/CodeGen/Passes.h"
32#include "llvm/Function.h"
33#include "llvm/CodeGen/LiveVariables.h"
34#include "llvm/CodeGen/MachineFunctionPass.h"
35#include "llvm/CodeGen/MachineInstr.h"
36#include "llvm/CodeGen/MachineRegisterInfo.h"
37#include "llvm/Analysis/AliasAnalysis.h"
38#include "llvm/Target/TargetRegisterInfo.h"
39#include "llvm/Target/TargetInstrInfo.h"
40#include "llvm/Target/TargetMachine.h"
41#include "llvm/Target/TargetOptions.h"
42#include "llvm/Support/Debug.h"
43#include "llvm/ADT/BitVector.h"
44#include "llvm/ADT/DenseMap.h"
45#include "llvm/ADT/SmallSet.h"
46#include "llvm/ADT/Statistic.h"
47#include "llvm/ADT/STLExtras.h"
48using namespace llvm;
49
50STATISTIC(NumTwoAddressInstrs, "Number of two-address instructions");
51STATISTIC(NumCommuted , "Number of instructions commuted to coalesce");
52STATISTIC(NumAggrCommuted , "Number of instructions aggressively commuted");
53STATISTIC(NumConvertedTo3Addr, "Number of instructions promoted to 3-address");
54STATISTIC(Num3AddrSunk, "Number of 3-address instructions sunk");
55STATISTIC(NumReMats, "Number of instructions re-materialized");
56STATISTIC(NumDeletes, "Number of dead instructions deleted");
57
58namespace {
59 class TwoAddressInstructionPass : public MachineFunctionPass {
60 const TargetInstrInfo *TII;
61 const TargetRegisterInfo *TRI;
62 MachineRegisterInfo *MRI;
63 LiveVariables *LV;
64 AliasAnalysis *AA;
65
66 // DistanceMap - Keep track the distance of a MI from the start of the
67 // current basic block.
68 DenseMap<MachineInstr*, unsigned> DistanceMap;
69
70 // SrcRegMap - A map from virtual registers to physical registers which
71 // are likely targets to be coalesced to due to copies from physical
72 // registers to virtual registers. e.g. v1024 = move r0.
73 DenseMap<unsigned, unsigned> SrcRegMap;
74
75 // DstRegMap - A map from virtual registers to physical registers which
76 // are likely targets to be coalesced to due to copies to physical
77 // registers from virtual registers. e.g. r1 = move v1024.
78 DenseMap<unsigned, unsigned> DstRegMap;
79
80 bool Sink3AddrInstruction(MachineBasicBlock *MBB, MachineInstr *MI,
81 unsigned Reg,
82 MachineBasicBlock::iterator OldPos);
83
84 bool isProfitableToReMat(unsigned Reg, const TargetRegisterClass *RC,
85 MachineInstr *MI, MachineInstr *DefMI,
86 MachineBasicBlock *MBB, unsigned Loc);
87
88 bool NoUseAfterLastDef(unsigned Reg, MachineBasicBlock *MBB, unsigned Dist,
89 unsigned &LastDef);
90
91 MachineInstr *FindLastUseInMBB(unsigned Reg, MachineBasicBlock *MBB,
92 unsigned Dist);
93
94 bool isProfitableToCommute(unsigned regB, unsigned regC,
95 MachineInstr *MI, MachineBasicBlock *MBB,
96 unsigned Dist);
97
98 bool CommuteInstruction(MachineBasicBlock::iterator &mi,
99 MachineFunction::iterator &mbbi,
100 unsigned RegB, unsigned RegC, unsigned Dist);
101
102 bool isProfitableToConv3Addr(unsigned RegA);
103
104 bool ConvertInstTo3Addr(MachineBasicBlock::iterator &mi,
105 MachineBasicBlock::iterator &nmi,
106 MachineFunction::iterator &mbbi,
107 unsigned RegB, unsigned Dist);
108
109 typedef std::pair<std::pair<unsigned, bool>, MachineInstr*> NewKill;
110 bool canUpdateDeletedKills(SmallVector<unsigned, 4> &Kills,
111 SmallVector<NewKill, 4> &NewKills,
112 MachineBasicBlock *MBB, unsigned Dist);
113 bool DeleteUnusedInstr(MachineBasicBlock::iterator &mi,
114 MachineBasicBlock::iterator &nmi,
1//===-- TwoAddressInstructionPass.cpp - Two-Address instruction pass ------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the TwoAddress instruction pass which is used
11// by most register allocators. Two-Address instructions are rewritten
12// from:
13//
14// A = B op C
15//
16// to:
17//
18// A = B
19// A op= C
20//
21// Note that if a register allocator chooses to use this pass, that it
22// has to be capable of handling the non-SSA nature of these rewritten
23// virtual registers.
24//
25// It is also worth noting that the duplicate operand of the two
26// address instruction is removed.
27//
28//===----------------------------------------------------------------------===//
29
30#define DEBUG_TYPE "twoaddrinstr"
31#include "llvm/CodeGen/Passes.h"
32#include "llvm/Function.h"
33#include "llvm/CodeGen/LiveVariables.h"
34#include "llvm/CodeGen/MachineFunctionPass.h"
35#include "llvm/CodeGen/MachineInstr.h"
36#include "llvm/CodeGen/MachineRegisterInfo.h"
37#include "llvm/Analysis/AliasAnalysis.h"
38#include "llvm/Target/TargetRegisterInfo.h"
39#include "llvm/Target/TargetInstrInfo.h"
40#include "llvm/Target/TargetMachine.h"
41#include "llvm/Target/TargetOptions.h"
42#include "llvm/Support/Debug.h"
43#include "llvm/ADT/BitVector.h"
44#include "llvm/ADT/DenseMap.h"
45#include "llvm/ADT/SmallSet.h"
46#include "llvm/ADT/Statistic.h"
47#include "llvm/ADT/STLExtras.h"
48using namespace llvm;
49
50STATISTIC(NumTwoAddressInstrs, "Number of two-address instructions");
51STATISTIC(NumCommuted , "Number of instructions commuted to coalesce");
52STATISTIC(NumAggrCommuted , "Number of instructions aggressively commuted");
53STATISTIC(NumConvertedTo3Addr, "Number of instructions promoted to 3-address");
54STATISTIC(Num3AddrSunk, "Number of 3-address instructions sunk");
55STATISTIC(NumReMats, "Number of instructions re-materialized");
56STATISTIC(NumDeletes, "Number of dead instructions deleted");
57
58namespace {
59 class TwoAddressInstructionPass : public MachineFunctionPass {
60 const TargetInstrInfo *TII;
61 const TargetRegisterInfo *TRI;
62 MachineRegisterInfo *MRI;
63 LiveVariables *LV;
64 AliasAnalysis *AA;
65
66 // DistanceMap - Keep track the distance of a MI from the start of the
67 // current basic block.
68 DenseMap<MachineInstr*, unsigned> DistanceMap;
69
70 // SrcRegMap - A map from virtual registers to physical registers which
71 // are likely targets to be coalesced to due to copies from physical
72 // registers to virtual registers. e.g. v1024 = move r0.
73 DenseMap<unsigned, unsigned> SrcRegMap;
74
75 // DstRegMap - A map from virtual registers to physical registers which
76 // are likely targets to be coalesced to due to copies to physical
77 // registers from virtual registers. e.g. r1 = move v1024.
78 DenseMap<unsigned, unsigned> DstRegMap;
79
80 bool Sink3AddrInstruction(MachineBasicBlock *MBB, MachineInstr *MI,
81 unsigned Reg,
82 MachineBasicBlock::iterator OldPos);
83
84 bool isProfitableToReMat(unsigned Reg, const TargetRegisterClass *RC,
85 MachineInstr *MI, MachineInstr *DefMI,
86 MachineBasicBlock *MBB, unsigned Loc);
87
88 bool NoUseAfterLastDef(unsigned Reg, MachineBasicBlock *MBB, unsigned Dist,
89 unsigned &LastDef);
90
91 MachineInstr *FindLastUseInMBB(unsigned Reg, MachineBasicBlock *MBB,
92 unsigned Dist);
93
94 bool isProfitableToCommute(unsigned regB, unsigned regC,
95 MachineInstr *MI, MachineBasicBlock *MBB,
96 unsigned Dist);
97
98 bool CommuteInstruction(MachineBasicBlock::iterator &mi,
99 MachineFunction::iterator &mbbi,
100 unsigned RegB, unsigned RegC, unsigned Dist);
101
102 bool isProfitableToConv3Addr(unsigned RegA);
103
104 bool ConvertInstTo3Addr(MachineBasicBlock::iterator &mi,
105 MachineBasicBlock::iterator &nmi,
106 MachineFunction::iterator &mbbi,
107 unsigned RegB, unsigned Dist);
108
109 typedef std::pair<std::pair<unsigned, bool>, MachineInstr*> NewKill;
110 bool canUpdateDeletedKills(SmallVector<unsigned, 4> &Kills,
111 SmallVector<NewKill, 4> &NewKills,
112 MachineBasicBlock *MBB, unsigned Dist);
113 bool DeleteUnusedInstr(MachineBasicBlock::iterator &mi,
114 MachineBasicBlock::iterator &nmi,
115 MachineFunction::iterator &mbbi,
116 unsigned regB, unsigned regBIdx, unsigned Dist);
115 MachineFunction::iterator &mbbi, unsigned Dist);
117
118 bool TryInstructionTransform(MachineBasicBlock::iterator &mi,
119 MachineBasicBlock::iterator &nmi,
120 MachineFunction::iterator &mbbi,
121 unsigned SrcIdx, unsigned DstIdx,
122 unsigned Dist);
123
124 void ProcessCopy(MachineInstr *MI, MachineBasicBlock *MBB,
125 SmallPtrSet<MachineInstr*, 8> &Processed);
126
127 public:
128 static char ID; // Pass identification, replacement for typeid
129 TwoAddressInstructionPass() : MachineFunctionPass(&ID) {}
130
131 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
132 AU.setPreservesCFG();
133 AU.addRequired<AliasAnalysis>();
134 AU.addPreserved<LiveVariables>();
135 AU.addPreservedID(MachineLoopInfoID);
136 AU.addPreservedID(MachineDominatorsID);
137 if (StrongPHIElim)
138 AU.addPreservedID(StrongPHIEliminationID);
139 else
140 AU.addPreservedID(PHIEliminationID);
141 MachineFunctionPass::getAnalysisUsage(AU);
142 }
143
144 /// runOnMachineFunction - Pass entry point.
145 bool runOnMachineFunction(MachineFunction&);
146 };
147}
148
149char TwoAddressInstructionPass::ID = 0;
150static RegisterPass<TwoAddressInstructionPass>
151X("twoaddressinstruction", "Two-Address instruction pass");
152
153const PassInfo *const llvm::TwoAddressInstructionPassID = &X;
154
155/// Sink3AddrInstruction - A two-address instruction has been converted to a
156/// three-address instruction to avoid clobbering a register. Try to sink it
157/// past the instruction that would kill the above mentioned register to reduce
158/// register pressure.
159bool TwoAddressInstructionPass::Sink3AddrInstruction(MachineBasicBlock *MBB,
160 MachineInstr *MI, unsigned SavedReg,
161 MachineBasicBlock::iterator OldPos) {
162 // Check if it's safe to move this instruction.
163 bool SeenStore = true; // Be conservative.
164 if (!MI->isSafeToMove(TII, SeenStore, AA))
165 return false;
166
167 unsigned DefReg = 0;
168 SmallSet<unsigned, 4> UseRegs;
169
170 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
171 const MachineOperand &MO = MI->getOperand(i);
172 if (!MO.isReg())
173 continue;
174 unsigned MOReg = MO.getReg();
175 if (!MOReg)
176 continue;
177 if (MO.isUse() && MOReg != SavedReg)
178 UseRegs.insert(MO.getReg());
179 if (!MO.isDef())
180 continue;
181 if (MO.isImplicit())
182 // Don't try to move it if it implicitly defines a register.
183 return false;
184 if (DefReg)
185 // For now, don't move any instructions that define multiple registers.
186 return false;
187 DefReg = MO.getReg();
188 }
189
190 // Find the instruction that kills SavedReg.
191 MachineInstr *KillMI = NULL;
192 for (MachineRegisterInfo::use_iterator UI = MRI->use_begin(SavedReg),
193 UE = MRI->use_end(); UI != UE; ++UI) {
194 MachineOperand &UseMO = UI.getOperand();
195 if (!UseMO.isKill())
196 continue;
197 KillMI = UseMO.getParent();
198 break;
199 }
200
201 if (!KillMI || KillMI->getParent() != MBB || KillMI == MI)
202 return false;
203
204 // If any of the definitions are used by another instruction between the
205 // position and the kill use, then it's not safe to sink it.
206 //
207 // FIXME: This can be sped up if there is an easy way to query whether an
208 // instruction is before or after another instruction. Then we can use
209 // MachineRegisterInfo def / use instead.
210 MachineOperand *KillMO = NULL;
211 MachineBasicBlock::iterator KillPos = KillMI;
212 ++KillPos;
213
214 unsigned NumVisited = 0;
215 for (MachineBasicBlock::iterator I = next(OldPos); I != KillPos; ++I) {
216 MachineInstr *OtherMI = I;
217 if (NumVisited > 30) // FIXME: Arbitrary limit to reduce compile time cost.
218 return false;
219 ++NumVisited;
220 for (unsigned i = 0, e = OtherMI->getNumOperands(); i != e; ++i) {
221 MachineOperand &MO = OtherMI->getOperand(i);
222 if (!MO.isReg())
223 continue;
224 unsigned MOReg = MO.getReg();
225 if (!MOReg)
226 continue;
227 if (DefReg == MOReg)
228 return false;
229
230 if (MO.isKill()) {
231 if (OtherMI == KillMI && MOReg == SavedReg)
232 // Save the operand that kills the register. We want to unset the kill
233 // marker if we can sink MI past it.
234 KillMO = &MO;
235 else if (UseRegs.count(MOReg))
236 // One of the uses is killed before the destination.
237 return false;
238 }
239 }
240 }
241
242 // Update kill and LV information.
243 KillMO->setIsKill(false);
244 KillMO = MI->findRegisterUseOperand(SavedReg, false, TRI);
245 KillMO->setIsKill(true);
246
247 if (LV)
248 LV->replaceKillInstruction(SavedReg, KillMI, MI);
249
250 // Move instruction to its destination.
251 MBB->remove(MI);
252 MBB->insert(KillPos, MI);
253
254 ++Num3AddrSunk;
255 return true;
256}
257
258/// isTwoAddrUse - Return true if the specified MI is using the specified
259/// register as a two-address operand.
260static bool isTwoAddrUse(MachineInstr *UseMI, unsigned Reg) {
261 const TargetInstrDesc &TID = UseMI->getDesc();
262 for (unsigned i = 0, e = TID.getNumOperands(); i != e; ++i) {
263 MachineOperand &MO = UseMI->getOperand(i);
264 if (MO.isReg() && MO.getReg() == Reg &&
265 (MO.isDef() || UseMI->isRegTiedToDefOperand(i)))
266 // Earlier use is a two-address one.
267 return true;
268 }
269 return false;
270}
271
272/// isProfitableToReMat - Return true if the heuristics determines it is likely
273/// to be profitable to re-materialize the definition of Reg rather than copy
274/// the register.
275bool
276TwoAddressInstructionPass::isProfitableToReMat(unsigned Reg,
277 const TargetRegisterClass *RC,
278 MachineInstr *MI, MachineInstr *DefMI,
279 MachineBasicBlock *MBB, unsigned Loc) {
280 bool OtherUse = false;
281 for (MachineRegisterInfo::use_iterator UI = MRI->use_begin(Reg),
282 UE = MRI->use_end(); UI != UE; ++UI) {
283 MachineOperand &UseMO = UI.getOperand();
284 MachineInstr *UseMI = UseMO.getParent();
285 MachineBasicBlock *UseMBB = UseMI->getParent();
286 if (UseMBB == MBB) {
287 DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(UseMI);
288 if (DI != DistanceMap.end() && DI->second == Loc)
289 continue; // Current use.
290 OtherUse = true;
291 // There is at least one other use in the MBB that will clobber the
292 // register.
293 if (isTwoAddrUse(UseMI, Reg))
294 return true;
295 }
296 }
297
298 // If other uses in MBB are not two-address uses, then don't remat.
299 if (OtherUse)
300 return false;
301
302 // No other uses in the same block, remat if it's defined in the same
303 // block so it does not unnecessarily extend the live range.
304 return MBB == DefMI->getParent();
305}
306
307/// NoUseAfterLastDef - Return true if there are no intervening uses between the
308/// last instruction in the MBB that defines the specified register and the
309/// two-address instruction which is being processed. It also returns the last
310/// def location by reference
311bool TwoAddressInstructionPass::NoUseAfterLastDef(unsigned Reg,
312 MachineBasicBlock *MBB, unsigned Dist,
313 unsigned &LastDef) {
314 LastDef = 0;
315 unsigned LastUse = Dist;
316 for (MachineRegisterInfo::reg_iterator I = MRI->reg_begin(Reg),
317 E = MRI->reg_end(); I != E; ++I) {
318 MachineOperand &MO = I.getOperand();
319 MachineInstr *MI = MO.getParent();
320 if (MI->getParent() != MBB)
321 continue;
322 DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(MI);
323 if (DI == DistanceMap.end())
324 continue;
325 if (MO.isUse() && DI->second < LastUse)
326 LastUse = DI->second;
327 if (MO.isDef() && DI->second > LastDef)
328 LastDef = DI->second;
329 }
330
331 return !(LastUse > LastDef && LastUse < Dist);
332}
333
334MachineInstr *TwoAddressInstructionPass::FindLastUseInMBB(unsigned Reg,
335 MachineBasicBlock *MBB,
336 unsigned Dist) {
337 unsigned LastUseDist = 0;
338 MachineInstr *LastUse = 0;
339 for (MachineRegisterInfo::reg_iterator I = MRI->reg_begin(Reg),
340 E = MRI->reg_end(); I != E; ++I) {
341 MachineOperand &MO = I.getOperand();
342 MachineInstr *MI = MO.getParent();
343 if (MI->getParent() != MBB)
344 continue;
345 DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(MI);
346 if (DI == DistanceMap.end())
347 continue;
348 if (DI->second >= Dist)
349 continue;
350
351 if (MO.isUse() && DI->second > LastUseDist) {
352 LastUse = DI->first;
353 LastUseDist = DI->second;
354 }
355 }
356 return LastUse;
357}
358
359/// isCopyToReg - Return true if the specified MI is a copy instruction or
360/// a extract_subreg instruction. It also returns the source and destination
361/// registers and whether they are physical registers by reference.
362static bool isCopyToReg(MachineInstr &MI, const TargetInstrInfo *TII,
363 unsigned &SrcReg, unsigned &DstReg,
364 bool &IsSrcPhys, bool &IsDstPhys) {
365 SrcReg = 0;
366 DstReg = 0;
367 unsigned SrcSubIdx, DstSubIdx;
368 if (!TII->isMoveInstr(MI, SrcReg, DstReg, SrcSubIdx, DstSubIdx)) {
369 if (MI.getOpcode() == TargetInstrInfo::EXTRACT_SUBREG) {
370 DstReg = MI.getOperand(0).getReg();
371 SrcReg = MI.getOperand(1).getReg();
372 } else if (MI.getOpcode() == TargetInstrInfo::INSERT_SUBREG) {
373 DstReg = MI.getOperand(0).getReg();
374 SrcReg = MI.getOperand(2).getReg();
375 } else if (MI.getOpcode() == TargetInstrInfo::SUBREG_TO_REG) {
376 DstReg = MI.getOperand(0).getReg();
377 SrcReg = MI.getOperand(2).getReg();
378 }
379 }
380
381 if (DstReg) {
382 IsSrcPhys = TargetRegisterInfo::isPhysicalRegister(SrcReg);
383 IsDstPhys = TargetRegisterInfo::isPhysicalRegister(DstReg);
384 return true;
385 }
386 return false;
387}
388
389/// isKilled - Test if the given register value, which is used by the given
390/// instruction, is killed by the given instruction. This looks through
391/// coalescable copies to see if the original value is potentially not killed.
392///
393/// For example, in this code:
394///
395/// %reg1034 = copy %reg1024
396/// %reg1035 = copy %reg1025<kill>
397/// %reg1036 = add %reg1034<kill>, %reg1035<kill>
398///
399/// %reg1034 is not considered to be killed, since it is copied from a
400/// register which is not killed. Treating it as not killed lets the
401/// normal heuristics commute the (two-address) add, which lets
402/// coalescing eliminate the extra copy.
403///
404static bool isKilled(MachineInstr &MI, unsigned Reg,
405 const MachineRegisterInfo *MRI,
406 const TargetInstrInfo *TII) {
407 MachineInstr *DefMI = &MI;
408 for (;;) {
409 if (!DefMI->killsRegister(Reg))
410 return false;
411 if (TargetRegisterInfo::isPhysicalRegister(Reg))
412 return true;
413 MachineRegisterInfo::def_iterator Begin = MRI->def_begin(Reg);
414 // If there are multiple defs, we can't do a simple analysis, so just
415 // go with what the kill flag says.
416 if (next(Begin) != MRI->def_end())
417 return true;
418 DefMI = &*Begin;
419 bool IsSrcPhys, IsDstPhys;
420 unsigned SrcReg, DstReg;
421 // If the def is something other than a copy, then it isn't going to
422 // be coalesced, so follow the kill flag.
423 if (!isCopyToReg(*DefMI, TII, SrcReg, DstReg, IsSrcPhys, IsDstPhys))
424 return true;
425 Reg = SrcReg;
426 }
427}
428
429/// isTwoAddrUse - Return true if the specified MI uses the specified register
430/// as a two-address use. If so, return the destination register by reference.
431static bool isTwoAddrUse(MachineInstr &MI, unsigned Reg, unsigned &DstReg) {
432 const TargetInstrDesc &TID = MI.getDesc();
433 unsigned NumOps = (MI.getOpcode() == TargetInstrInfo::INLINEASM)
434 ? MI.getNumOperands() : TID.getNumOperands();
435 for (unsigned i = 0; i != NumOps; ++i) {
436 const MachineOperand &MO = MI.getOperand(i);
437 if (!MO.isReg() || !MO.isUse() || MO.getReg() != Reg)
438 continue;
439 unsigned ti;
440 if (MI.isRegTiedToDefOperand(i, &ti)) {
441 DstReg = MI.getOperand(ti).getReg();
442 return true;
443 }
444 }
445 return false;
446}
447
448/// findOnlyInterestingUse - Given a register, if has a single in-basic block
449/// use, return the use instruction if it's a copy or a two-address use.
450static
451MachineInstr *findOnlyInterestingUse(unsigned Reg, MachineBasicBlock *MBB,
452 MachineRegisterInfo *MRI,
453 const TargetInstrInfo *TII,
454 bool &IsCopy,
455 unsigned &DstReg, bool &IsDstPhys) {
456 MachineRegisterInfo::use_iterator UI = MRI->use_begin(Reg);
457 if (UI == MRI->use_end())
458 return 0;
459 MachineInstr &UseMI = *UI;
460 if (++UI != MRI->use_end())
461 // More than one use.
462 return 0;
463 if (UseMI.getParent() != MBB)
464 return 0;
465 unsigned SrcReg;
466 bool IsSrcPhys;
467 if (isCopyToReg(UseMI, TII, SrcReg, DstReg, IsSrcPhys, IsDstPhys)) {
468 IsCopy = true;
469 return &UseMI;
470 }
471 IsDstPhys = false;
472 if (isTwoAddrUse(UseMI, Reg, DstReg)) {
473 IsDstPhys = TargetRegisterInfo::isPhysicalRegister(DstReg);
474 return &UseMI;
475 }
476 return 0;
477}
478
479/// getMappedReg - Return the physical register the specified virtual register
480/// might be mapped to.
481static unsigned
482getMappedReg(unsigned Reg, DenseMap<unsigned, unsigned> &RegMap) {
483 while (TargetRegisterInfo::isVirtualRegister(Reg)) {
484 DenseMap<unsigned, unsigned>::iterator SI = RegMap.find(Reg);
485 if (SI == RegMap.end())
486 return 0;
487 Reg = SI->second;
488 }
489 if (TargetRegisterInfo::isPhysicalRegister(Reg))
490 return Reg;
491 return 0;
492}
493
494/// regsAreCompatible - Return true if the two registers are equal or aliased.
495///
496static bool
497regsAreCompatible(unsigned RegA, unsigned RegB, const TargetRegisterInfo *TRI) {
498 if (RegA == RegB)
499 return true;
500 if (!RegA || !RegB)
501 return false;
502 return TRI->regsOverlap(RegA, RegB);
503}
504
505
506/// isProfitableToReMat - Return true if it's potentially profitable to commute
507/// the two-address instruction that's being processed.
508bool
509TwoAddressInstructionPass::isProfitableToCommute(unsigned regB, unsigned regC,
510 MachineInstr *MI, MachineBasicBlock *MBB,
511 unsigned Dist) {
512 // Determine if it's profitable to commute this two address instruction. In
513 // general, we want no uses between this instruction and the definition of
514 // the two-address register.
515 // e.g.
516 // %reg1028<def> = EXTRACT_SUBREG %reg1027<kill>, 1
517 // %reg1029<def> = MOV8rr %reg1028
518 // %reg1029<def> = SHR8ri %reg1029, 7, %EFLAGS<imp-def,dead>
519 // insert => %reg1030<def> = MOV8rr %reg1028
520 // %reg1030<def> = ADD8rr %reg1028<kill>, %reg1029<kill>, %EFLAGS<imp-def,dead>
521 // In this case, it might not be possible to coalesce the second MOV8rr
522 // instruction if the first one is coalesced. So it would be profitable to
523 // commute it:
524 // %reg1028<def> = EXTRACT_SUBREG %reg1027<kill>, 1
525 // %reg1029<def> = MOV8rr %reg1028
526 // %reg1029<def> = SHR8ri %reg1029, 7, %EFLAGS<imp-def,dead>
527 // insert => %reg1030<def> = MOV8rr %reg1029
528 // %reg1030<def> = ADD8rr %reg1029<kill>, %reg1028<kill>, %EFLAGS<imp-def,dead>
529
530 if (!MI->killsRegister(regC))
531 return false;
532
533 // Ok, we have something like:
534 // %reg1030<def> = ADD8rr %reg1028<kill>, %reg1029<kill>, %EFLAGS<imp-def,dead>
535 // let's see if it's worth commuting it.
536
537 // Look for situations like this:
538 // %reg1024<def> = MOV r1
539 // %reg1025<def> = MOV r0
540 // %reg1026<def> = ADD %reg1024, %reg1025
541 // r0 = MOV %reg1026
542 // Commute the ADD to hopefully eliminate an otherwise unavoidable copy.
543 unsigned FromRegB = getMappedReg(regB, SrcRegMap);
544 unsigned FromRegC = getMappedReg(regC, SrcRegMap);
545 unsigned ToRegB = getMappedReg(regB, DstRegMap);
546 unsigned ToRegC = getMappedReg(regC, DstRegMap);
547 if (!regsAreCompatible(FromRegB, ToRegB, TRI) &&
548 (regsAreCompatible(FromRegB, ToRegC, TRI) ||
549 regsAreCompatible(FromRegC, ToRegB, TRI)))
550 return true;
551
552 // If there is a use of regC between its last def (could be livein) and this
553 // instruction, then bail.
554 unsigned LastDefC = 0;
555 if (!NoUseAfterLastDef(regC, MBB, Dist, LastDefC))
556 return false;
557
558 // If there is a use of regB between its last def (could be livein) and this
559 // instruction, then go ahead and make this transformation.
560 unsigned LastDefB = 0;
561 if (!NoUseAfterLastDef(regB, MBB, Dist, LastDefB))
562 return true;
563
564 // Since there are no intervening uses for both registers, then commute
565 // if the def of regC is closer. Its live interval is shorter.
566 return LastDefB && LastDefC && LastDefC > LastDefB;
567}
568
569/// CommuteInstruction - Commute a two-address instruction and update the basic
570/// block, distance map, and live variables if needed. Return true if it is
571/// successful.
572bool
573TwoAddressInstructionPass::CommuteInstruction(MachineBasicBlock::iterator &mi,
574 MachineFunction::iterator &mbbi,
575 unsigned RegB, unsigned RegC, unsigned Dist) {
576 MachineInstr *MI = mi;
577 DEBUG(errs() << "2addr: COMMUTING : " << *MI);
578 MachineInstr *NewMI = TII->commuteInstruction(MI);
579
580 if (NewMI == 0) {
581 DEBUG(errs() << "2addr: COMMUTING FAILED!\n");
582 return false;
583 }
584
585 DEBUG(errs() << "2addr: COMMUTED TO: " << *NewMI);
586 // If the instruction changed to commute it, update livevar.
587 if (NewMI != MI) {
588 if (LV)
589 // Update live variables
590 LV->replaceKillInstruction(RegC, MI, NewMI);
591
592 mbbi->insert(mi, NewMI); // Insert the new inst
593 mbbi->erase(mi); // Nuke the old inst.
594 mi = NewMI;
595 DistanceMap.insert(std::make_pair(NewMI, Dist));
596 }
597
598 // Update source register map.
599 unsigned FromRegC = getMappedReg(RegC, SrcRegMap);
600 if (FromRegC) {
601 unsigned RegA = MI->getOperand(0).getReg();
602 SrcRegMap[RegA] = FromRegC;
603 }
604
605 return true;
606}
607
608/// isProfitableToConv3Addr - Return true if it is profitable to convert the
609/// given 2-address instruction to a 3-address one.
610bool
611TwoAddressInstructionPass::isProfitableToConv3Addr(unsigned RegA) {
612 // Look for situations like this:
613 // %reg1024<def> = MOV r1
614 // %reg1025<def> = MOV r0
615 // %reg1026<def> = ADD %reg1024, %reg1025
616 // r2 = MOV %reg1026
617 // Turn ADD into a 3-address instruction to avoid a copy.
618 unsigned FromRegA = getMappedReg(RegA, SrcRegMap);
619 unsigned ToRegA = getMappedReg(RegA, DstRegMap);
620 return (FromRegA && ToRegA && !regsAreCompatible(FromRegA, ToRegA, TRI));
621}
622
623/// ConvertInstTo3Addr - Convert the specified two-address instruction into a
624/// three address one. Return true if this transformation was successful.
625bool
626TwoAddressInstructionPass::ConvertInstTo3Addr(MachineBasicBlock::iterator &mi,
627 MachineBasicBlock::iterator &nmi,
628 MachineFunction::iterator &mbbi,
629 unsigned RegB, unsigned Dist) {
630 MachineInstr *NewMI = TII->convertToThreeAddress(mbbi, mi, LV);
631 if (NewMI) {
632 DEBUG(errs() << "2addr: CONVERTING 2-ADDR: " << *mi);
633 DEBUG(errs() << "2addr: TO 3-ADDR: " << *NewMI);
634 bool Sunk = false;
635
636 if (NewMI->findRegisterUseOperand(RegB, false, TRI))
637 // FIXME: Temporary workaround. If the new instruction doesn't
638 // uses RegB, convertToThreeAddress must have created more
639 // then one instruction.
640 Sunk = Sink3AddrInstruction(mbbi, NewMI, RegB, mi);
641
642 mbbi->erase(mi); // Nuke the old inst.
643
644 if (!Sunk) {
645 DistanceMap.insert(std::make_pair(NewMI, Dist));
646 mi = NewMI;
647 nmi = next(mi);
648 }
649 return true;
650 }
651
652 return false;
653}
654
655/// ProcessCopy - If the specified instruction is not yet processed, process it
656/// if it's a copy. For a copy instruction, we find the physical registers the
657/// source and destination registers might be mapped to. These are kept in
658/// point-to maps used to determine future optimizations. e.g.
659/// v1024 = mov r0
660/// v1025 = mov r1
661/// v1026 = add v1024, v1025
662/// r1 = mov r1026
663/// If 'add' is a two-address instruction, v1024, v1026 are both potentially
664/// coalesced to r0 (from the input side). v1025 is mapped to r1. v1026 is
665/// potentially joined with r1 on the output side. It's worthwhile to commute
666/// 'add' to eliminate a copy.
667void TwoAddressInstructionPass::ProcessCopy(MachineInstr *MI,
668 MachineBasicBlock *MBB,
669 SmallPtrSet<MachineInstr*, 8> &Processed) {
670 if (Processed.count(MI))
671 return;
672
673 bool IsSrcPhys, IsDstPhys;
674 unsigned SrcReg, DstReg;
675 if (!isCopyToReg(*MI, TII, SrcReg, DstReg, IsSrcPhys, IsDstPhys))
676 return;
677
678 if (IsDstPhys && !IsSrcPhys)
679 DstRegMap.insert(std::make_pair(SrcReg, DstReg));
680 else if (!IsDstPhys && IsSrcPhys) {
681 bool isNew = SrcRegMap.insert(std::make_pair(DstReg, SrcReg)).second;
682 if (!isNew)
683 assert(SrcRegMap[DstReg] == SrcReg &&
684 "Can't map to two src physical registers!");
685
686 SmallVector<unsigned, 4> VirtRegPairs;
687 bool IsCopy = false;
688 unsigned NewReg = 0;
689 while (MachineInstr *UseMI = findOnlyInterestingUse(DstReg, MBB, MRI,TII,
690 IsCopy, NewReg, IsDstPhys)) {
691 if (IsCopy) {
692 if (!Processed.insert(UseMI))
693 break;
694 }
695
696 DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(UseMI);
697 if (DI != DistanceMap.end())
698 // Earlier in the same MBB.Reached via a back edge.
699 break;
700
701 if (IsDstPhys) {
702 VirtRegPairs.push_back(NewReg);
703 break;
704 }
705 bool isNew = SrcRegMap.insert(std::make_pair(NewReg, DstReg)).second;
706 if (!isNew)
707 assert(SrcRegMap[NewReg] == DstReg &&
708 "Can't map to two src physical registers!");
709 VirtRegPairs.push_back(NewReg);
710 DstReg = NewReg;
711 }
712
713 if (!VirtRegPairs.empty()) {
714 unsigned ToReg = VirtRegPairs.back();
715 VirtRegPairs.pop_back();
716 while (!VirtRegPairs.empty()) {
717 unsigned FromReg = VirtRegPairs.back();
718 VirtRegPairs.pop_back();
719 bool isNew = DstRegMap.insert(std::make_pair(FromReg, ToReg)).second;
720 if (!isNew)
721 assert(DstRegMap[FromReg] == ToReg &&
722 "Can't map to two dst physical registers!");
723 ToReg = FromReg;
724 }
725 }
726 }
727
728 Processed.insert(MI);
729}
730
731/// isSafeToDelete - If the specified instruction does not produce any side
732/// effects and all of its defs are dead, then it's safe to delete.
116
117 bool TryInstructionTransform(MachineBasicBlock::iterator &mi,
118 MachineBasicBlock::iterator &nmi,
119 MachineFunction::iterator &mbbi,
120 unsigned SrcIdx, unsigned DstIdx,
121 unsigned Dist);
122
123 void ProcessCopy(MachineInstr *MI, MachineBasicBlock *MBB,
124 SmallPtrSet<MachineInstr*, 8> &Processed);
125
126 public:
127 static char ID; // Pass identification, replacement for typeid
128 TwoAddressInstructionPass() : MachineFunctionPass(&ID) {}
129
130 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
131 AU.setPreservesCFG();
132 AU.addRequired<AliasAnalysis>();
133 AU.addPreserved<LiveVariables>();
134 AU.addPreservedID(MachineLoopInfoID);
135 AU.addPreservedID(MachineDominatorsID);
136 if (StrongPHIElim)
137 AU.addPreservedID(StrongPHIEliminationID);
138 else
139 AU.addPreservedID(PHIEliminationID);
140 MachineFunctionPass::getAnalysisUsage(AU);
141 }
142
143 /// runOnMachineFunction - Pass entry point.
144 bool runOnMachineFunction(MachineFunction&);
145 };
146}
147
148char TwoAddressInstructionPass::ID = 0;
149static RegisterPass<TwoAddressInstructionPass>
150X("twoaddressinstruction", "Two-Address instruction pass");
151
152const PassInfo *const llvm::TwoAddressInstructionPassID = &X;
153
154/// Sink3AddrInstruction - A two-address instruction has been converted to a
155/// three-address instruction to avoid clobbering a register. Try to sink it
156/// past the instruction that would kill the above mentioned register to reduce
157/// register pressure.
158bool TwoAddressInstructionPass::Sink3AddrInstruction(MachineBasicBlock *MBB,
159 MachineInstr *MI, unsigned SavedReg,
160 MachineBasicBlock::iterator OldPos) {
161 // Check if it's safe to move this instruction.
162 bool SeenStore = true; // Be conservative.
163 if (!MI->isSafeToMove(TII, SeenStore, AA))
164 return false;
165
166 unsigned DefReg = 0;
167 SmallSet<unsigned, 4> UseRegs;
168
169 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
170 const MachineOperand &MO = MI->getOperand(i);
171 if (!MO.isReg())
172 continue;
173 unsigned MOReg = MO.getReg();
174 if (!MOReg)
175 continue;
176 if (MO.isUse() && MOReg != SavedReg)
177 UseRegs.insert(MO.getReg());
178 if (!MO.isDef())
179 continue;
180 if (MO.isImplicit())
181 // Don't try to move it if it implicitly defines a register.
182 return false;
183 if (DefReg)
184 // For now, don't move any instructions that define multiple registers.
185 return false;
186 DefReg = MO.getReg();
187 }
188
189 // Find the instruction that kills SavedReg.
190 MachineInstr *KillMI = NULL;
191 for (MachineRegisterInfo::use_iterator UI = MRI->use_begin(SavedReg),
192 UE = MRI->use_end(); UI != UE; ++UI) {
193 MachineOperand &UseMO = UI.getOperand();
194 if (!UseMO.isKill())
195 continue;
196 KillMI = UseMO.getParent();
197 break;
198 }
199
200 if (!KillMI || KillMI->getParent() != MBB || KillMI == MI)
201 return false;
202
203 // If any of the definitions are used by another instruction between the
204 // position and the kill use, then it's not safe to sink it.
205 //
206 // FIXME: This can be sped up if there is an easy way to query whether an
207 // instruction is before or after another instruction. Then we can use
208 // MachineRegisterInfo def / use instead.
209 MachineOperand *KillMO = NULL;
210 MachineBasicBlock::iterator KillPos = KillMI;
211 ++KillPos;
212
213 unsigned NumVisited = 0;
214 for (MachineBasicBlock::iterator I = next(OldPos); I != KillPos; ++I) {
215 MachineInstr *OtherMI = I;
216 if (NumVisited > 30) // FIXME: Arbitrary limit to reduce compile time cost.
217 return false;
218 ++NumVisited;
219 for (unsigned i = 0, e = OtherMI->getNumOperands(); i != e; ++i) {
220 MachineOperand &MO = OtherMI->getOperand(i);
221 if (!MO.isReg())
222 continue;
223 unsigned MOReg = MO.getReg();
224 if (!MOReg)
225 continue;
226 if (DefReg == MOReg)
227 return false;
228
229 if (MO.isKill()) {
230 if (OtherMI == KillMI && MOReg == SavedReg)
231 // Save the operand that kills the register. We want to unset the kill
232 // marker if we can sink MI past it.
233 KillMO = &MO;
234 else if (UseRegs.count(MOReg))
235 // One of the uses is killed before the destination.
236 return false;
237 }
238 }
239 }
240
241 // Update kill and LV information.
242 KillMO->setIsKill(false);
243 KillMO = MI->findRegisterUseOperand(SavedReg, false, TRI);
244 KillMO->setIsKill(true);
245
246 if (LV)
247 LV->replaceKillInstruction(SavedReg, KillMI, MI);
248
249 // Move instruction to its destination.
250 MBB->remove(MI);
251 MBB->insert(KillPos, MI);
252
253 ++Num3AddrSunk;
254 return true;
255}
256
257/// isTwoAddrUse - Return true if the specified MI is using the specified
258/// register as a two-address operand.
259static bool isTwoAddrUse(MachineInstr *UseMI, unsigned Reg) {
260 const TargetInstrDesc &TID = UseMI->getDesc();
261 for (unsigned i = 0, e = TID.getNumOperands(); i != e; ++i) {
262 MachineOperand &MO = UseMI->getOperand(i);
263 if (MO.isReg() && MO.getReg() == Reg &&
264 (MO.isDef() || UseMI->isRegTiedToDefOperand(i)))
265 // Earlier use is a two-address one.
266 return true;
267 }
268 return false;
269}
270
271/// isProfitableToReMat - Return true if the heuristics determines it is likely
272/// to be profitable to re-materialize the definition of Reg rather than copy
273/// the register.
274bool
275TwoAddressInstructionPass::isProfitableToReMat(unsigned Reg,
276 const TargetRegisterClass *RC,
277 MachineInstr *MI, MachineInstr *DefMI,
278 MachineBasicBlock *MBB, unsigned Loc) {
279 bool OtherUse = false;
280 for (MachineRegisterInfo::use_iterator UI = MRI->use_begin(Reg),
281 UE = MRI->use_end(); UI != UE; ++UI) {
282 MachineOperand &UseMO = UI.getOperand();
283 MachineInstr *UseMI = UseMO.getParent();
284 MachineBasicBlock *UseMBB = UseMI->getParent();
285 if (UseMBB == MBB) {
286 DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(UseMI);
287 if (DI != DistanceMap.end() && DI->second == Loc)
288 continue; // Current use.
289 OtherUse = true;
290 // There is at least one other use in the MBB that will clobber the
291 // register.
292 if (isTwoAddrUse(UseMI, Reg))
293 return true;
294 }
295 }
296
297 // If other uses in MBB are not two-address uses, then don't remat.
298 if (OtherUse)
299 return false;
300
301 // No other uses in the same block, remat if it's defined in the same
302 // block so it does not unnecessarily extend the live range.
303 return MBB == DefMI->getParent();
304}
305
306/// NoUseAfterLastDef - Return true if there are no intervening uses between the
307/// last instruction in the MBB that defines the specified register and the
308/// two-address instruction which is being processed. It also returns the last
309/// def location by reference
310bool TwoAddressInstructionPass::NoUseAfterLastDef(unsigned Reg,
311 MachineBasicBlock *MBB, unsigned Dist,
312 unsigned &LastDef) {
313 LastDef = 0;
314 unsigned LastUse = Dist;
315 for (MachineRegisterInfo::reg_iterator I = MRI->reg_begin(Reg),
316 E = MRI->reg_end(); I != E; ++I) {
317 MachineOperand &MO = I.getOperand();
318 MachineInstr *MI = MO.getParent();
319 if (MI->getParent() != MBB)
320 continue;
321 DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(MI);
322 if (DI == DistanceMap.end())
323 continue;
324 if (MO.isUse() && DI->second < LastUse)
325 LastUse = DI->second;
326 if (MO.isDef() && DI->second > LastDef)
327 LastDef = DI->second;
328 }
329
330 return !(LastUse > LastDef && LastUse < Dist);
331}
332
333MachineInstr *TwoAddressInstructionPass::FindLastUseInMBB(unsigned Reg,
334 MachineBasicBlock *MBB,
335 unsigned Dist) {
336 unsigned LastUseDist = 0;
337 MachineInstr *LastUse = 0;
338 for (MachineRegisterInfo::reg_iterator I = MRI->reg_begin(Reg),
339 E = MRI->reg_end(); I != E; ++I) {
340 MachineOperand &MO = I.getOperand();
341 MachineInstr *MI = MO.getParent();
342 if (MI->getParent() != MBB)
343 continue;
344 DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(MI);
345 if (DI == DistanceMap.end())
346 continue;
347 if (DI->second >= Dist)
348 continue;
349
350 if (MO.isUse() && DI->second > LastUseDist) {
351 LastUse = DI->first;
352 LastUseDist = DI->second;
353 }
354 }
355 return LastUse;
356}
357
358/// isCopyToReg - Return true if the specified MI is a copy instruction or
359/// a extract_subreg instruction. It also returns the source and destination
360/// registers and whether they are physical registers by reference.
361static bool isCopyToReg(MachineInstr &MI, const TargetInstrInfo *TII,
362 unsigned &SrcReg, unsigned &DstReg,
363 bool &IsSrcPhys, bool &IsDstPhys) {
364 SrcReg = 0;
365 DstReg = 0;
366 unsigned SrcSubIdx, DstSubIdx;
367 if (!TII->isMoveInstr(MI, SrcReg, DstReg, SrcSubIdx, DstSubIdx)) {
368 if (MI.getOpcode() == TargetInstrInfo::EXTRACT_SUBREG) {
369 DstReg = MI.getOperand(0).getReg();
370 SrcReg = MI.getOperand(1).getReg();
371 } else if (MI.getOpcode() == TargetInstrInfo::INSERT_SUBREG) {
372 DstReg = MI.getOperand(0).getReg();
373 SrcReg = MI.getOperand(2).getReg();
374 } else if (MI.getOpcode() == TargetInstrInfo::SUBREG_TO_REG) {
375 DstReg = MI.getOperand(0).getReg();
376 SrcReg = MI.getOperand(2).getReg();
377 }
378 }
379
380 if (DstReg) {
381 IsSrcPhys = TargetRegisterInfo::isPhysicalRegister(SrcReg);
382 IsDstPhys = TargetRegisterInfo::isPhysicalRegister(DstReg);
383 return true;
384 }
385 return false;
386}
387
388/// isKilled - Test if the given register value, which is used by the given
389/// instruction, is killed by the given instruction. This looks through
390/// coalescable copies to see if the original value is potentially not killed.
391///
392/// For example, in this code:
393///
394/// %reg1034 = copy %reg1024
395/// %reg1035 = copy %reg1025<kill>
396/// %reg1036 = add %reg1034<kill>, %reg1035<kill>
397///
398/// %reg1034 is not considered to be killed, since it is copied from a
399/// register which is not killed. Treating it as not killed lets the
400/// normal heuristics commute the (two-address) add, which lets
401/// coalescing eliminate the extra copy.
402///
403static bool isKilled(MachineInstr &MI, unsigned Reg,
404 const MachineRegisterInfo *MRI,
405 const TargetInstrInfo *TII) {
406 MachineInstr *DefMI = &MI;
407 for (;;) {
408 if (!DefMI->killsRegister(Reg))
409 return false;
410 if (TargetRegisterInfo::isPhysicalRegister(Reg))
411 return true;
412 MachineRegisterInfo::def_iterator Begin = MRI->def_begin(Reg);
413 // If there are multiple defs, we can't do a simple analysis, so just
414 // go with what the kill flag says.
415 if (next(Begin) != MRI->def_end())
416 return true;
417 DefMI = &*Begin;
418 bool IsSrcPhys, IsDstPhys;
419 unsigned SrcReg, DstReg;
420 // If the def is something other than a copy, then it isn't going to
421 // be coalesced, so follow the kill flag.
422 if (!isCopyToReg(*DefMI, TII, SrcReg, DstReg, IsSrcPhys, IsDstPhys))
423 return true;
424 Reg = SrcReg;
425 }
426}
427
428/// isTwoAddrUse - Return true if the specified MI uses the specified register
429/// as a two-address use. If so, return the destination register by reference.
430static bool isTwoAddrUse(MachineInstr &MI, unsigned Reg, unsigned &DstReg) {
431 const TargetInstrDesc &TID = MI.getDesc();
432 unsigned NumOps = (MI.getOpcode() == TargetInstrInfo::INLINEASM)
433 ? MI.getNumOperands() : TID.getNumOperands();
434 for (unsigned i = 0; i != NumOps; ++i) {
435 const MachineOperand &MO = MI.getOperand(i);
436 if (!MO.isReg() || !MO.isUse() || MO.getReg() != Reg)
437 continue;
438 unsigned ti;
439 if (MI.isRegTiedToDefOperand(i, &ti)) {
440 DstReg = MI.getOperand(ti).getReg();
441 return true;
442 }
443 }
444 return false;
445}
446
447/// findOnlyInterestingUse - Given a register, if has a single in-basic block
448/// use, return the use instruction if it's a copy or a two-address use.
449static
450MachineInstr *findOnlyInterestingUse(unsigned Reg, MachineBasicBlock *MBB,
451 MachineRegisterInfo *MRI,
452 const TargetInstrInfo *TII,
453 bool &IsCopy,
454 unsigned &DstReg, bool &IsDstPhys) {
455 MachineRegisterInfo::use_iterator UI = MRI->use_begin(Reg);
456 if (UI == MRI->use_end())
457 return 0;
458 MachineInstr &UseMI = *UI;
459 if (++UI != MRI->use_end())
460 // More than one use.
461 return 0;
462 if (UseMI.getParent() != MBB)
463 return 0;
464 unsigned SrcReg;
465 bool IsSrcPhys;
466 if (isCopyToReg(UseMI, TII, SrcReg, DstReg, IsSrcPhys, IsDstPhys)) {
467 IsCopy = true;
468 return &UseMI;
469 }
470 IsDstPhys = false;
471 if (isTwoAddrUse(UseMI, Reg, DstReg)) {
472 IsDstPhys = TargetRegisterInfo::isPhysicalRegister(DstReg);
473 return &UseMI;
474 }
475 return 0;
476}
477
478/// getMappedReg - Return the physical register the specified virtual register
479/// might be mapped to.
480static unsigned
481getMappedReg(unsigned Reg, DenseMap<unsigned, unsigned> &RegMap) {
482 while (TargetRegisterInfo::isVirtualRegister(Reg)) {
483 DenseMap<unsigned, unsigned>::iterator SI = RegMap.find(Reg);
484 if (SI == RegMap.end())
485 return 0;
486 Reg = SI->second;
487 }
488 if (TargetRegisterInfo::isPhysicalRegister(Reg))
489 return Reg;
490 return 0;
491}
492
493/// regsAreCompatible - Return true if the two registers are equal or aliased.
494///
495static bool
496regsAreCompatible(unsigned RegA, unsigned RegB, const TargetRegisterInfo *TRI) {
497 if (RegA == RegB)
498 return true;
499 if (!RegA || !RegB)
500 return false;
501 return TRI->regsOverlap(RegA, RegB);
502}
503
504
505/// isProfitableToReMat - Return true if it's potentially profitable to commute
506/// the two-address instruction that's being processed.
507bool
508TwoAddressInstructionPass::isProfitableToCommute(unsigned regB, unsigned regC,
509 MachineInstr *MI, MachineBasicBlock *MBB,
510 unsigned Dist) {
511 // Determine if it's profitable to commute this two address instruction. In
512 // general, we want no uses between this instruction and the definition of
513 // the two-address register.
514 // e.g.
515 // %reg1028<def> = EXTRACT_SUBREG %reg1027<kill>, 1
516 // %reg1029<def> = MOV8rr %reg1028
517 // %reg1029<def> = SHR8ri %reg1029, 7, %EFLAGS<imp-def,dead>
518 // insert => %reg1030<def> = MOV8rr %reg1028
519 // %reg1030<def> = ADD8rr %reg1028<kill>, %reg1029<kill>, %EFLAGS<imp-def,dead>
520 // In this case, it might not be possible to coalesce the second MOV8rr
521 // instruction if the first one is coalesced. So it would be profitable to
522 // commute it:
523 // %reg1028<def> = EXTRACT_SUBREG %reg1027<kill>, 1
524 // %reg1029<def> = MOV8rr %reg1028
525 // %reg1029<def> = SHR8ri %reg1029, 7, %EFLAGS<imp-def,dead>
526 // insert => %reg1030<def> = MOV8rr %reg1029
527 // %reg1030<def> = ADD8rr %reg1029<kill>, %reg1028<kill>, %EFLAGS<imp-def,dead>
528
529 if (!MI->killsRegister(regC))
530 return false;
531
532 // Ok, we have something like:
533 // %reg1030<def> = ADD8rr %reg1028<kill>, %reg1029<kill>, %EFLAGS<imp-def,dead>
534 // let's see if it's worth commuting it.
535
536 // Look for situations like this:
537 // %reg1024<def> = MOV r1
538 // %reg1025<def> = MOV r0
539 // %reg1026<def> = ADD %reg1024, %reg1025
540 // r0 = MOV %reg1026
541 // Commute the ADD to hopefully eliminate an otherwise unavoidable copy.
542 unsigned FromRegB = getMappedReg(regB, SrcRegMap);
543 unsigned FromRegC = getMappedReg(regC, SrcRegMap);
544 unsigned ToRegB = getMappedReg(regB, DstRegMap);
545 unsigned ToRegC = getMappedReg(regC, DstRegMap);
546 if (!regsAreCompatible(FromRegB, ToRegB, TRI) &&
547 (regsAreCompatible(FromRegB, ToRegC, TRI) ||
548 regsAreCompatible(FromRegC, ToRegB, TRI)))
549 return true;
550
551 // If there is a use of regC between its last def (could be livein) and this
552 // instruction, then bail.
553 unsigned LastDefC = 0;
554 if (!NoUseAfterLastDef(regC, MBB, Dist, LastDefC))
555 return false;
556
557 // If there is a use of regB between its last def (could be livein) and this
558 // instruction, then go ahead and make this transformation.
559 unsigned LastDefB = 0;
560 if (!NoUseAfterLastDef(regB, MBB, Dist, LastDefB))
561 return true;
562
563 // Since there are no intervening uses for both registers, then commute
564 // if the def of regC is closer. Its live interval is shorter.
565 return LastDefB && LastDefC && LastDefC > LastDefB;
566}
567
568/// CommuteInstruction - Commute a two-address instruction and update the basic
569/// block, distance map, and live variables if needed. Return true if it is
570/// successful.
571bool
572TwoAddressInstructionPass::CommuteInstruction(MachineBasicBlock::iterator &mi,
573 MachineFunction::iterator &mbbi,
574 unsigned RegB, unsigned RegC, unsigned Dist) {
575 MachineInstr *MI = mi;
576 DEBUG(errs() << "2addr: COMMUTING : " << *MI);
577 MachineInstr *NewMI = TII->commuteInstruction(MI);
578
579 if (NewMI == 0) {
580 DEBUG(errs() << "2addr: COMMUTING FAILED!\n");
581 return false;
582 }
583
584 DEBUG(errs() << "2addr: COMMUTED TO: " << *NewMI);
585 // If the instruction changed to commute it, update livevar.
586 if (NewMI != MI) {
587 if (LV)
588 // Update live variables
589 LV->replaceKillInstruction(RegC, MI, NewMI);
590
591 mbbi->insert(mi, NewMI); // Insert the new inst
592 mbbi->erase(mi); // Nuke the old inst.
593 mi = NewMI;
594 DistanceMap.insert(std::make_pair(NewMI, Dist));
595 }
596
597 // Update source register map.
598 unsigned FromRegC = getMappedReg(RegC, SrcRegMap);
599 if (FromRegC) {
600 unsigned RegA = MI->getOperand(0).getReg();
601 SrcRegMap[RegA] = FromRegC;
602 }
603
604 return true;
605}
606
607/// isProfitableToConv3Addr - Return true if it is profitable to convert the
608/// given 2-address instruction to a 3-address one.
609bool
610TwoAddressInstructionPass::isProfitableToConv3Addr(unsigned RegA) {
611 // Look for situations like this:
612 // %reg1024<def> = MOV r1
613 // %reg1025<def> = MOV r0
614 // %reg1026<def> = ADD %reg1024, %reg1025
615 // r2 = MOV %reg1026
616 // Turn ADD into a 3-address instruction to avoid a copy.
617 unsigned FromRegA = getMappedReg(RegA, SrcRegMap);
618 unsigned ToRegA = getMappedReg(RegA, DstRegMap);
619 return (FromRegA && ToRegA && !regsAreCompatible(FromRegA, ToRegA, TRI));
620}
621
622/// ConvertInstTo3Addr - Convert the specified two-address instruction into a
623/// three address one. Return true if this transformation was successful.
624bool
625TwoAddressInstructionPass::ConvertInstTo3Addr(MachineBasicBlock::iterator &mi,
626 MachineBasicBlock::iterator &nmi,
627 MachineFunction::iterator &mbbi,
628 unsigned RegB, unsigned Dist) {
629 MachineInstr *NewMI = TII->convertToThreeAddress(mbbi, mi, LV);
630 if (NewMI) {
631 DEBUG(errs() << "2addr: CONVERTING 2-ADDR: " << *mi);
632 DEBUG(errs() << "2addr: TO 3-ADDR: " << *NewMI);
633 bool Sunk = false;
634
635 if (NewMI->findRegisterUseOperand(RegB, false, TRI))
636 // FIXME: Temporary workaround. If the new instruction doesn't
637 // uses RegB, convertToThreeAddress must have created more
638 // then one instruction.
639 Sunk = Sink3AddrInstruction(mbbi, NewMI, RegB, mi);
640
641 mbbi->erase(mi); // Nuke the old inst.
642
643 if (!Sunk) {
644 DistanceMap.insert(std::make_pair(NewMI, Dist));
645 mi = NewMI;
646 nmi = next(mi);
647 }
648 return true;
649 }
650
651 return false;
652}
653
654/// ProcessCopy - If the specified instruction is not yet processed, process it
655/// if it's a copy. For a copy instruction, we find the physical registers the
656/// source and destination registers might be mapped to. These are kept in
657/// point-to maps used to determine future optimizations. e.g.
658/// v1024 = mov r0
659/// v1025 = mov r1
660/// v1026 = add v1024, v1025
661/// r1 = mov r1026
662/// If 'add' is a two-address instruction, v1024, v1026 are both potentially
663/// coalesced to r0 (from the input side). v1025 is mapped to r1. v1026 is
664/// potentially joined with r1 on the output side. It's worthwhile to commute
665/// 'add' to eliminate a copy.
666void TwoAddressInstructionPass::ProcessCopy(MachineInstr *MI,
667 MachineBasicBlock *MBB,
668 SmallPtrSet<MachineInstr*, 8> &Processed) {
669 if (Processed.count(MI))
670 return;
671
672 bool IsSrcPhys, IsDstPhys;
673 unsigned SrcReg, DstReg;
674 if (!isCopyToReg(*MI, TII, SrcReg, DstReg, IsSrcPhys, IsDstPhys))
675 return;
676
677 if (IsDstPhys && !IsSrcPhys)
678 DstRegMap.insert(std::make_pair(SrcReg, DstReg));
679 else if (!IsDstPhys && IsSrcPhys) {
680 bool isNew = SrcRegMap.insert(std::make_pair(DstReg, SrcReg)).second;
681 if (!isNew)
682 assert(SrcRegMap[DstReg] == SrcReg &&
683 "Can't map to two src physical registers!");
684
685 SmallVector<unsigned, 4> VirtRegPairs;
686 bool IsCopy = false;
687 unsigned NewReg = 0;
688 while (MachineInstr *UseMI = findOnlyInterestingUse(DstReg, MBB, MRI,TII,
689 IsCopy, NewReg, IsDstPhys)) {
690 if (IsCopy) {
691 if (!Processed.insert(UseMI))
692 break;
693 }
694
695 DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(UseMI);
696 if (DI != DistanceMap.end())
697 // Earlier in the same MBB.Reached via a back edge.
698 break;
699
700 if (IsDstPhys) {
701 VirtRegPairs.push_back(NewReg);
702 break;
703 }
704 bool isNew = SrcRegMap.insert(std::make_pair(NewReg, DstReg)).second;
705 if (!isNew)
706 assert(SrcRegMap[NewReg] == DstReg &&
707 "Can't map to two src physical registers!");
708 VirtRegPairs.push_back(NewReg);
709 DstReg = NewReg;
710 }
711
712 if (!VirtRegPairs.empty()) {
713 unsigned ToReg = VirtRegPairs.back();
714 VirtRegPairs.pop_back();
715 while (!VirtRegPairs.empty()) {
716 unsigned FromReg = VirtRegPairs.back();
717 VirtRegPairs.pop_back();
718 bool isNew = DstRegMap.insert(std::make_pair(FromReg, ToReg)).second;
719 if (!isNew)
720 assert(DstRegMap[FromReg] == ToReg &&
721 "Can't map to two dst physical registers!");
722 ToReg = FromReg;
723 }
724 }
725 }
726
727 Processed.insert(MI);
728}
729
730/// isSafeToDelete - If the specified instruction does not produce any side
731/// effects and all of its defs are dead, then it's safe to delete.
733static bool isSafeToDelete(MachineInstr *MI, unsigned Reg,
732static bool isSafeToDelete(MachineInstr *MI,
734 const TargetInstrInfo *TII,
735 SmallVector<unsigned, 4> &Kills) {
736 const TargetInstrDesc &TID = MI->getDesc();
737 if (TID.mayStore() || TID.isCall())
738 return false;
739 if (TID.isTerminator() || TID.hasUnmodeledSideEffects())
740 return false;
741
742 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
743 MachineOperand &MO = MI->getOperand(i);
744 if (!MO.isReg())
745 continue;
746 if (MO.isDef() && !MO.isDead())
747 return false;
733 const TargetInstrInfo *TII,
734 SmallVector<unsigned, 4> &Kills) {
735 const TargetInstrDesc &TID = MI->getDesc();
736 if (TID.mayStore() || TID.isCall())
737 return false;
738 if (TID.isTerminator() || TID.hasUnmodeledSideEffects())
739 return false;
740
741 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
742 MachineOperand &MO = MI->getOperand(i);
743 if (!MO.isReg())
744 continue;
745 if (MO.isDef() && !MO.isDead())
746 return false;
748 if (MO.isUse() && MO.getReg() != Reg && MO.isKill())
747 if (MO.isUse() && MO.isKill())
749 Kills.push_back(MO.getReg());
750 }
748 Kills.push_back(MO.getReg());
749 }
751
752 return true;
753}
754
755/// canUpdateDeletedKills - Check if all the registers listed in Kills are
756/// killed by instructions in MBB preceding the current instruction at
757/// position Dist. If so, return true and record information about the
758/// preceding kills in NewKills.
759bool TwoAddressInstructionPass::
760canUpdateDeletedKills(SmallVector<unsigned, 4> &Kills,
761 SmallVector<NewKill, 4> &NewKills,
762 MachineBasicBlock *MBB, unsigned Dist) {
763 while (!Kills.empty()) {
764 unsigned Kill = Kills.back();
765 Kills.pop_back();
766 if (TargetRegisterInfo::isPhysicalRegister(Kill))
767 return false;
768
769 MachineInstr *LastKill = FindLastUseInMBB(Kill, MBB, Dist);
770 if (!LastKill)
771 return false;
772
773 bool isModRef = LastKill->modifiesRegister(Kill);
774 NewKills.push_back(std::make_pair(std::make_pair(Kill, isModRef),
775 LastKill));
776 }
777 return true;
778}
779
780/// DeleteUnusedInstr - If an instruction with a tied register operand can
781/// be safely deleted, just delete it.
782bool
783TwoAddressInstructionPass::DeleteUnusedInstr(MachineBasicBlock::iterator &mi,
784 MachineBasicBlock::iterator &nmi,
785 MachineFunction::iterator &mbbi,
750 return true;
751}
752
753/// canUpdateDeletedKills - Check if all the registers listed in Kills are
754/// killed by instructions in MBB preceding the current instruction at
755/// position Dist. If so, return true and record information about the
756/// preceding kills in NewKills.
757bool TwoAddressInstructionPass::
758canUpdateDeletedKills(SmallVector<unsigned, 4> &Kills,
759 SmallVector<NewKill, 4> &NewKills,
760 MachineBasicBlock *MBB, unsigned Dist) {
761 while (!Kills.empty()) {
762 unsigned Kill = Kills.back();
763 Kills.pop_back();
764 if (TargetRegisterInfo::isPhysicalRegister(Kill))
765 return false;
766
767 MachineInstr *LastKill = FindLastUseInMBB(Kill, MBB, Dist);
768 if (!LastKill)
769 return false;
770
771 bool isModRef = LastKill->modifiesRegister(Kill);
772 NewKills.push_back(std::make_pair(std::make_pair(Kill, isModRef),
773 LastKill));
774 }
775 return true;
776}
777
778/// DeleteUnusedInstr - If an instruction with a tied register operand can
779/// be safely deleted, just delete it.
780bool
781TwoAddressInstructionPass::DeleteUnusedInstr(MachineBasicBlock::iterator &mi,
782 MachineBasicBlock::iterator &nmi,
783 MachineFunction::iterator &mbbi,
786 unsigned regB, unsigned regBIdx,
787 unsigned Dist) {
788 // Check if the instruction has no side effects and if all its defs are dead.
789 SmallVector<unsigned, 4> Kills;
784 unsigned Dist) {
785 // Check if the instruction has no side effects and if all its defs are dead.
786 SmallVector<unsigned, 4> Kills;
790 if (!isSafeToDelete(mi, regB, TII, Kills))
787 if (!isSafeToDelete(mi, TII, Kills))
791 return false;
792
793 // If this instruction kills some virtual registers, we need to
794 // update the kill information. If it's not possible to do so,
795 // then bail out.
796 SmallVector<NewKill, 4> NewKills;
797 if (!canUpdateDeletedKills(Kills, NewKills, &*mbbi, Dist))
798 return false;
799
800 if (LV) {
801 while (!NewKills.empty()) {
802 MachineInstr *NewKill = NewKills.back().second;
803 unsigned Kill = NewKills.back().first.first;
804 bool isDead = NewKills.back().first.second;
805 NewKills.pop_back();
806 if (LV->removeVirtualRegisterKilled(Kill, mi)) {
807 if (isDead)
808 LV->addVirtualRegisterDead(Kill, NewKill);
809 else
810 LV->addVirtualRegisterKilled(Kill, NewKill);
811 }
812 }
788 return false;
789
790 // If this instruction kills some virtual registers, we need to
791 // update the kill information. If it's not possible to do so,
792 // then bail out.
793 SmallVector<NewKill, 4> NewKills;
794 if (!canUpdateDeletedKills(Kills, NewKills, &*mbbi, Dist))
795 return false;
796
797 if (LV) {
798 while (!NewKills.empty()) {
799 MachineInstr *NewKill = NewKills.back().second;
800 unsigned Kill = NewKills.back().first.first;
801 bool isDead = NewKills.back().first.second;
802 NewKills.pop_back();
803 if (LV->removeVirtualRegisterKilled(Kill, mi)) {
804 if (isDead)
805 LV->addVirtualRegisterDead(Kill, NewKill);
806 else
807 LV->addVirtualRegisterKilled(Kill, NewKill);
808 }
809 }
813
814 // If regB was marked as a kill, update its Kills list.
815 if (mi->getOperand(regBIdx).isKill())
816 LV->removeVirtualRegisterKilled(regB, mi);
817 }
818
819 mbbi->erase(mi); // Nuke the old inst.
820 mi = nmi;
821 return true;
822}
823
824/// TryInstructionTransform - For the case where an instruction has a single
825/// pair of tied register operands, attempt some transformations that may
826/// either eliminate the tied operands or improve the opportunities for
827/// coalescing away the register copy. Returns true if the tied operands
828/// are eliminated altogether.
829bool TwoAddressInstructionPass::
830TryInstructionTransform(MachineBasicBlock::iterator &mi,
831 MachineBasicBlock::iterator &nmi,
832 MachineFunction::iterator &mbbi,
833 unsigned SrcIdx, unsigned DstIdx, unsigned Dist) {
834 const TargetInstrDesc &TID = mi->getDesc();
835 unsigned regA = mi->getOperand(DstIdx).getReg();
836 unsigned regB = mi->getOperand(SrcIdx).getReg();
837
838 assert(TargetRegisterInfo::isVirtualRegister(regB) &&
839 "cannot make instruction into two-address form");
840
841 // If regA is dead and the instruction can be deleted, just delete
842 // it so it doesn't clobber regB.
843 bool regBKilled = isKilled(*mi, regB, MRI, TII);
844 if (!regBKilled && mi->getOperand(DstIdx).isDead() &&
810 }
811
812 mbbi->erase(mi); // Nuke the old inst.
813 mi = nmi;
814 return true;
815}
816
817/// TryInstructionTransform - For the case where an instruction has a single
818/// pair of tied register operands, attempt some transformations that may
819/// either eliminate the tied operands or improve the opportunities for
820/// coalescing away the register copy. Returns true if the tied operands
821/// are eliminated altogether.
822bool TwoAddressInstructionPass::
823TryInstructionTransform(MachineBasicBlock::iterator &mi,
824 MachineBasicBlock::iterator &nmi,
825 MachineFunction::iterator &mbbi,
826 unsigned SrcIdx, unsigned DstIdx, unsigned Dist) {
827 const TargetInstrDesc &TID = mi->getDesc();
828 unsigned regA = mi->getOperand(DstIdx).getReg();
829 unsigned regB = mi->getOperand(SrcIdx).getReg();
830
831 assert(TargetRegisterInfo::isVirtualRegister(regB) &&
832 "cannot make instruction into two-address form");
833
834 // If regA is dead and the instruction can be deleted, just delete
835 // it so it doesn't clobber regB.
836 bool regBKilled = isKilled(*mi, regB, MRI, TII);
837 if (!regBKilled && mi->getOperand(DstIdx).isDead() &&
845 DeleteUnusedInstr(mi, nmi, mbbi, regB, SrcIdx, Dist)) {
838 DeleteUnusedInstr(mi, nmi, mbbi, Dist)) {
846 ++NumDeletes;
847 return true; // Done with this instruction.
848 }
849
850 // Check if it is profitable to commute the operands.
851 unsigned SrcOp1, SrcOp2;
852 unsigned regC = 0;
853 unsigned regCIdx = ~0U;
854 bool TryCommute = false;
855 bool AggressiveCommute = false;
856 if (TID.isCommutable() && mi->getNumOperands() >= 3 &&
857 TII->findCommutedOpIndices(mi, SrcOp1, SrcOp2)) {
858 if (SrcIdx == SrcOp1)
859 regCIdx = SrcOp2;
860 else if (SrcIdx == SrcOp2)
861 regCIdx = SrcOp1;
862
863 if (regCIdx != ~0U) {
864 regC = mi->getOperand(regCIdx).getReg();
865 if (!regBKilled && isKilled(*mi, regC, MRI, TII))
866 // If C dies but B does not, swap the B and C operands.
867 // This makes the live ranges of A and C joinable.
868 TryCommute = true;
869 else if (isProfitableToCommute(regB, regC, mi, mbbi, Dist)) {
870 TryCommute = true;
871 AggressiveCommute = true;
872 }
873 }
874 }
875
876 // If it's profitable to commute, try to do so.
877 if (TryCommute && CommuteInstruction(mi, mbbi, regB, regC, Dist)) {
878 ++NumCommuted;
879 if (AggressiveCommute)
880 ++NumAggrCommuted;
881 return false;
882 }
883
884 if (TID.isConvertibleTo3Addr()) {
885 // This instruction is potentially convertible to a true
886 // three-address instruction. Check if it is profitable.
887 if (!regBKilled || isProfitableToConv3Addr(regA)) {
888 // Try to convert it.
889 if (ConvertInstTo3Addr(mi, nmi, mbbi, regB, Dist)) {
890 ++NumConvertedTo3Addr;
891 return true; // Done with this instruction.
892 }
893 }
894 }
895 return false;
896}
897
898/// runOnMachineFunction - Reduce two-address instructions to two operands.
899///
900bool TwoAddressInstructionPass::runOnMachineFunction(MachineFunction &MF) {
901 DEBUG(errs() << "Machine Function\n");
902 const TargetMachine &TM = MF.getTarget();
903 MRI = &MF.getRegInfo();
904 TII = TM.getInstrInfo();
905 TRI = TM.getRegisterInfo();
906 LV = getAnalysisIfAvailable<LiveVariables>();
907 AA = &getAnalysis<AliasAnalysis>();
908
909 bool MadeChange = false;
910
911 DEBUG(errs() << "********** REWRITING TWO-ADDR INSTRS **********\n");
912 DEBUG(errs() << "********** Function: "
913 << MF.getFunction()->getName() << '\n');
914
915 // ReMatRegs - Keep track of the registers whose def's are remat'ed.
916 BitVector ReMatRegs;
917 ReMatRegs.resize(MRI->getLastVirtReg()+1);
918
919 typedef DenseMap<unsigned, SmallVector<std::pair<unsigned, unsigned>, 4> >
920 TiedOperandMap;
921 TiedOperandMap TiedOperands(4);
922
923 SmallPtrSet<MachineInstr*, 8> Processed;
924 for (MachineFunction::iterator mbbi = MF.begin(), mbbe = MF.end();
925 mbbi != mbbe; ++mbbi) {
926 unsigned Dist = 0;
927 DistanceMap.clear();
928 SrcRegMap.clear();
929 DstRegMap.clear();
930 Processed.clear();
931 for (MachineBasicBlock::iterator mi = mbbi->begin(), me = mbbi->end();
932 mi != me; ) {
933 MachineBasicBlock::iterator nmi = next(mi);
934 const TargetInstrDesc &TID = mi->getDesc();
935 bool FirstTied = true;
936
937 DistanceMap.insert(std::make_pair(mi, ++Dist));
938
939 ProcessCopy(&*mi, &*mbbi, Processed);
940
941 // First scan through all the tied register uses in this instruction
942 // and record a list of pairs of tied operands for each register.
943 unsigned NumOps = (mi->getOpcode() == TargetInstrInfo::INLINEASM)
944 ? mi->getNumOperands() : TID.getNumOperands();
945 for (unsigned SrcIdx = 0; SrcIdx < NumOps; ++SrcIdx) {
946 unsigned DstIdx = 0;
947 if (!mi->isRegTiedToDefOperand(SrcIdx, &DstIdx))
948 continue;
949
950 if (FirstTied) {
951 FirstTied = false;
952 ++NumTwoAddressInstrs;
953 DEBUG(errs() << '\t' << *mi);
954 }
955
956 assert(mi->getOperand(SrcIdx).isReg() &&
957 mi->getOperand(SrcIdx).getReg() &&
958 mi->getOperand(SrcIdx).isUse() &&
959 "two address instruction invalid");
960
961 unsigned regB = mi->getOperand(SrcIdx).getReg();
962 TiedOperandMap::iterator OI = TiedOperands.find(regB);
963 if (OI == TiedOperands.end()) {
964 SmallVector<std::pair<unsigned, unsigned>, 4> TiedPair;
965 OI = TiedOperands.insert(std::make_pair(regB, TiedPair)).first;
966 }
967 OI->second.push_back(std::make_pair(SrcIdx, DstIdx));
968 }
969
970 // Now iterate over the information collected above.
971 for (TiedOperandMap::iterator OI = TiedOperands.begin(),
972 OE = TiedOperands.end(); OI != OE; ++OI) {
973 SmallVector<std::pair<unsigned, unsigned>, 4> &TiedPairs = OI->second;
974
975 // If the instruction has a single pair of tied operands, try some
976 // transformations that may either eliminate the tied operands or
977 // improve the opportunities for coalescing away the register copy.
978 if (TiedOperands.size() == 1 && TiedPairs.size() == 1) {
979 unsigned SrcIdx = TiedPairs[0].first;
980 unsigned DstIdx = TiedPairs[0].second;
981
982 // If the registers are already equal, nothing needs to be done.
983 if (mi->getOperand(SrcIdx).getReg() ==
984 mi->getOperand(DstIdx).getReg())
985 break; // Done with this instruction.
986
987 if (TryInstructionTransform(mi, nmi, mbbi, SrcIdx, DstIdx, Dist))
988 break; // The tied operands have been eliminated.
989 }
990
991 bool RemovedKillFlag = false;
992 bool AllUsesCopied = true;
993 unsigned LastCopiedReg = 0;
994 unsigned regB = OI->first;
995 for (unsigned tpi = 0, tpe = TiedPairs.size(); tpi != tpe; ++tpi) {
996 unsigned SrcIdx = TiedPairs[tpi].first;
997 unsigned DstIdx = TiedPairs[tpi].second;
998 unsigned regA = mi->getOperand(DstIdx).getReg();
999 // Grab regB from the instruction because it may have changed if the
1000 // instruction was commuted.
1001 regB = mi->getOperand(SrcIdx).getReg();
1002
1003 if (regA == regB) {
1004 // The register is tied to multiple destinations (or else we would
1005 // not have continued this far), but this use of the register
1006 // already matches the tied destination. Leave it.
1007 AllUsesCopied = false;
1008 continue;
1009 }
1010 LastCopiedReg = regA;
1011
1012 assert(TargetRegisterInfo::isVirtualRegister(regB) &&
1013 "cannot make instruction into two-address form");
1014
1015#ifndef NDEBUG
1016 // First, verify that we don't have a use of "a" in the instruction
1017 // (a = b + a for example) because our transformation will not
1018 // work. This should never occur because we are in SSA form.
1019 for (unsigned i = 0; i != mi->getNumOperands(); ++i)
1020 assert(i == DstIdx ||
1021 !mi->getOperand(i).isReg() ||
1022 mi->getOperand(i).getReg() != regA);
1023#endif
1024
1025 // Emit a copy or rematerialize the definition.
1026 const TargetRegisterClass *rc = MRI->getRegClass(regB);
1027 MachineInstr *DefMI = MRI->getVRegDef(regB);
1028 // If it's safe and profitable, remat the definition instead of
1029 // copying it.
1030 if (DefMI &&
1031 DefMI->getDesc().isAsCheapAsAMove() &&
1032 DefMI->isSafeToReMat(TII, regB, AA) &&
1033 isProfitableToReMat(regB, rc, mi, DefMI, mbbi, Dist)){
1034 DEBUG(errs() << "2addr: REMATTING : " << *DefMI << "\n");
1035 unsigned regASubIdx = mi->getOperand(DstIdx).getSubReg();
1036 TII->reMaterialize(*mbbi, mi, regA, regASubIdx, DefMI, TRI);
1037 ReMatRegs.set(regB);
1038 ++NumReMats;
1039 } else {
1040 bool Emitted = TII->copyRegToReg(*mbbi, mi, regA, regB, rc, rc);
1041 (void)Emitted;
1042 assert(Emitted && "Unable to issue a copy instruction!\n");
1043 }
1044
1045 MachineBasicBlock::iterator prevMI = prior(mi);
1046 // Update DistanceMap.
1047 DistanceMap.insert(std::make_pair(prevMI, Dist));
1048 DistanceMap[mi] = ++Dist;
1049
1050 DEBUG(errs() << "\t\tprepend:\t" << *prevMI);
1051
1052 MachineOperand &MO = mi->getOperand(SrcIdx);
1053 assert(MO.isReg() && MO.getReg() == regB && MO.isUse() &&
1054 "inconsistent operand info for 2-reg pass");
1055 if (MO.isKill()) {
1056 MO.setIsKill(false);
1057 RemovedKillFlag = true;
1058 }
1059 MO.setReg(regA);
1060 }
1061
1062 if (AllUsesCopied) {
1063 // Replace other (un-tied) uses of regB with LastCopiedReg.
1064 for (unsigned i = 0, e = mi->getNumOperands(); i != e; ++i) {
1065 MachineOperand &MO = mi->getOperand(i);
1066 if (MO.isReg() && MO.getReg() == regB && MO.isUse()) {
1067 if (MO.isKill()) {
1068 MO.setIsKill(false);
1069 RemovedKillFlag = true;
1070 }
1071 MO.setReg(LastCopiedReg);
1072 }
1073 }
1074
1075 // Update live variables for regB.
1076 if (RemovedKillFlag && LV && LV->getVarInfo(regB).removeKill(mi))
1077 LV->addVirtualRegisterKilled(regB, prior(mi));
1078
1079 } else if (RemovedKillFlag) {
1080 // Some tied uses of regB matched their destination registers, so
1081 // regB is still used in this instruction, but a kill flag was
1082 // removed from a different tied use of regB, so now we need to add
1083 // a kill flag to one of the remaining uses of regB.
1084 for (unsigned i = 0, e = mi->getNumOperands(); i != e; ++i) {
1085 MachineOperand &MO = mi->getOperand(i);
1086 if (MO.isReg() && MO.getReg() == regB && MO.isUse()) {
1087 MO.setIsKill(true);
1088 break;
1089 }
1090 }
1091 }
1092
1093 MadeChange = true;
1094
1095 DEBUG(errs() << "\t\trewrite to:\t" << *mi);
1096 }
1097
1098 // Clear TiedOperands here instead of at the top of the loop
1099 // since most instructions do not have tied operands.
1100 TiedOperands.clear();
1101 mi = nmi;
1102 }
1103 }
1104
1105 // Some remat'ed instructions are dead.
1106 int VReg = ReMatRegs.find_first();
1107 while (VReg != -1) {
1108 if (MRI->use_empty(VReg)) {
1109 MachineInstr *DefMI = MRI->getVRegDef(VReg);
1110 DefMI->eraseFromParent();
1111 }
1112 VReg = ReMatRegs.find_next(VReg);
1113 }
1114
1115 return MadeChange;
1116}
839 ++NumDeletes;
840 return true; // Done with this instruction.
841 }
842
843 // Check if it is profitable to commute the operands.
844 unsigned SrcOp1, SrcOp2;
845 unsigned regC = 0;
846 unsigned regCIdx = ~0U;
847 bool TryCommute = false;
848 bool AggressiveCommute = false;
849 if (TID.isCommutable() && mi->getNumOperands() >= 3 &&
850 TII->findCommutedOpIndices(mi, SrcOp1, SrcOp2)) {
851 if (SrcIdx == SrcOp1)
852 regCIdx = SrcOp2;
853 else if (SrcIdx == SrcOp2)
854 regCIdx = SrcOp1;
855
856 if (regCIdx != ~0U) {
857 regC = mi->getOperand(regCIdx).getReg();
858 if (!regBKilled && isKilled(*mi, regC, MRI, TII))
859 // If C dies but B does not, swap the B and C operands.
860 // This makes the live ranges of A and C joinable.
861 TryCommute = true;
862 else if (isProfitableToCommute(regB, regC, mi, mbbi, Dist)) {
863 TryCommute = true;
864 AggressiveCommute = true;
865 }
866 }
867 }
868
869 // If it's profitable to commute, try to do so.
870 if (TryCommute && CommuteInstruction(mi, mbbi, regB, regC, Dist)) {
871 ++NumCommuted;
872 if (AggressiveCommute)
873 ++NumAggrCommuted;
874 return false;
875 }
876
877 if (TID.isConvertibleTo3Addr()) {
878 // This instruction is potentially convertible to a true
879 // three-address instruction. Check if it is profitable.
880 if (!regBKilled || isProfitableToConv3Addr(regA)) {
881 // Try to convert it.
882 if (ConvertInstTo3Addr(mi, nmi, mbbi, regB, Dist)) {
883 ++NumConvertedTo3Addr;
884 return true; // Done with this instruction.
885 }
886 }
887 }
888 return false;
889}
890
891/// runOnMachineFunction - Reduce two-address instructions to two operands.
892///
893bool TwoAddressInstructionPass::runOnMachineFunction(MachineFunction &MF) {
894 DEBUG(errs() << "Machine Function\n");
895 const TargetMachine &TM = MF.getTarget();
896 MRI = &MF.getRegInfo();
897 TII = TM.getInstrInfo();
898 TRI = TM.getRegisterInfo();
899 LV = getAnalysisIfAvailable<LiveVariables>();
900 AA = &getAnalysis<AliasAnalysis>();
901
902 bool MadeChange = false;
903
904 DEBUG(errs() << "********** REWRITING TWO-ADDR INSTRS **********\n");
905 DEBUG(errs() << "********** Function: "
906 << MF.getFunction()->getName() << '\n');
907
908 // ReMatRegs - Keep track of the registers whose def's are remat'ed.
909 BitVector ReMatRegs;
910 ReMatRegs.resize(MRI->getLastVirtReg()+1);
911
912 typedef DenseMap<unsigned, SmallVector<std::pair<unsigned, unsigned>, 4> >
913 TiedOperandMap;
914 TiedOperandMap TiedOperands(4);
915
916 SmallPtrSet<MachineInstr*, 8> Processed;
917 for (MachineFunction::iterator mbbi = MF.begin(), mbbe = MF.end();
918 mbbi != mbbe; ++mbbi) {
919 unsigned Dist = 0;
920 DistanceMap.clear();
921 SrcRegMap.clear();
922 DstRegMap.clear();
923 Processed.clear();
924 for (MachineBasicBlock::iterator mi = mbbi->begin(), me = mbbi->end();
925 mi != me; ) {
926 MachineBasicBlock::iterator nmi = next(mi);
927 const TargetInstrDesc &TID = mi->getDesc();
928 bool FirstTied = true;
929
930 DistanceMap.insert(std::make_pair(mi, ++Dist));
931
932 ProcessCopy(&*mi, &*mbbi, Processed);
933
934 // First scan through all the tied register uses in this instruction
935 // and record a list of pairs of tied operands for each register.
936 unsigned NumOps = (mi->getOpcode() == TargetInstrInfo::INLINEASM)
937 ? mi->getNumOperands() : TID.getNumOperands();
938 for (unsigned SrcIdx = 0; SrcIdx < NumOps; ++SrcIdx) {
939 unsigned DstIdx = 0;
940 if (!mi->isRegTiedToDefOperand(SrcIdx, &DstIdx))
941 continue;
942
943 if (FirstTied) {
944 FirstTied = false;
945 ++NumTwoAddressInstrs;
946 DEBUG(errs() << '\t' << *mi);
947 }
948
949 assert(mi->getOperand(SrcIdx).isReg() &&
950 mi->getOperand(SrcIdx).getReg() &&
951 mi->getOperand(SrcIdx).isUse() &&
952 "two address instruction invalid");
953
954 unsigned regB = mi->getOperand(SrcIdx).getReg();
955 TiedOperandMap::iterator OI = TiedOperands.find(regB);
956 if (OI == TiedOperands.end()) {
957 SmallVector<std::pair<unsigned, unsigned>, 4> TiedPair;
958 OI = TiedOperands.insert(std::make_pair(regB, TiedPair)).first;
959 }
960 OI->second.push_back(std::make_pair(SrcIdx, DstIdx));
961 }
962
963 // Now iterate over the information collected above.
964 for (TiedOperandMap::iterator OI = TiedOperands.begin(),
965 OE = TiedOperands.end(); OI != OE; ++OI) {
966 SmallVector<std::pair<unsigned, unsigned>, 4> &TiedPairs = OI->second;
967
968 // If the instruction has a single pair of tied operands, try some
969 // transformations that may either eliminate the tied operands or
970 // improve the opportunities for coalescing away the register copy.
971 if (TiedOperands.size() == 1 && TiedPairs.size() == 1) {
972 unsigned SrcIdx = TiedPairs[0].first;
973 unsigned DstIdx = TiedPairs[0].second;
974
975 // If the registers are already equal, nothing needs to be done.
976 if (mi->getOperand(SrcIdx).getReg() ==
977 mi->getOperand(DstIdx).getReg())
978 break; // Done with this instruction.
979
980 if (TryInstructionTransform(mi, nmi, mbbi, SrcIdx, DstIdx, Dist))
981 break; // The tied operands have been eliminated.
982 }
983
984 bool RemovedKillFlag = false;
985 bool AllUsesCopied = true;
986 unsigned LastCopiedReg = 0;
987 unsigned regB = OI->first;
988 for (unsigned tpi = 0, tpe = TiedPairs.size(); tpi != tpe; ++tpi) {
989 unsigned SrcIdx = TiedPairs[tpi].first;
990 unsigned DstIdx = TiedPairs[tpi].second;
991 unsigned regA = mi->getOperand(DstIdx).getReg();
992 // Grab regB from the instruction because it may have changed if the
993 // instruction was commuted.
994 regB = mi->getOperand(SrcIdx).getReg();
995
996 if (regA == regB) {
997 // The register is tied to multiple destinations (or else we would
998 // not have continued this far), but this use of the register
999 // already matches the tied destination. Leave it.
1000 AllUsesCopied = false;
1001 continue;
1002 }
1003 LastCopiedReg = regA;
1004
1005 assert(TargetRegisterInfo::isVirtualRegister(regB) &&
1006 "cannot make instruction into two-address form");
1007
1008#ifndef NDEBUG
1009 // First, verify that we don't have a use of "a" in the instruction
1010 // (a = b + a for example) because our transformation will not
1011 // work. This should never occur because we are in SSA form.
1012 for (unsigned i = 0; i != mi->getNumOperands(); ++i)
1013 assert(i == DstIdx ||
1014 !mi->getOperand(i).isReg() ||
1015 mi->getOperand(i).getReg() != regA);
1016#endif
1017
1018 // Emit a copy or rematerialize the definition.
1019 const TargetRegisterClass *rc = MRI->getRegClass(regB);
1020 MachineInstr *DefMI = MRI->getVRegDef(regB);
1021 // If it's safe and profitable, remat the definition instead of
1022 // copying it.
1023 if (DefMI &&
1024 DefMI->getDesc().isAsCheapAsAMove() &&
1025 DefMI->isSafeToReMat(TII, regB, AA) &&
1026 isProfitableToReMat(regB, rc, mi, DefMI, mbbi, Dist)){
1027 DEBUG(errs() << "2addr: REMATTING : " << *DefMI << "\n");
1028 unsigned regASubIdx = mi->getOperand(DstIdx).getSubReg();
1029 TII->reMaterialize(*mbbi, mi, regA, regASubIdx, DefMI, TRI);
1030 ReMatRegs.set(regB);
1031 ++NumReMats;
1032 } else {
1033 bool Emitted = TII->copyRegToReg(*mbbi, mi, regA, regB, rc, rc);
1034 (void)Emitted;
1035 assert(Emitted && "Unable to issue a copy instruction!\n");
1036 }
1037
1038 MachineBasicBlock::iterator prevMI = prior(mi);
1039 // Update DistanceMap.
1040 DistanceMap.insert(std::make_pair(prevMI, Dist));
1041 DistanceMap[mi] = ++Dist;
1042
1043 DEBUG(errs() << "\t\tprepend:\t" << *prevMI);
1044
1045 MachineOperand &MO = mi->getOperand(SrcIdx);
1046 assert(MO.isReg() && MO.getReg() == regB && MO.isUse() &&
1047 "inconsistent operand info for 2-reg pass");
1048 if (MO.isKill()) {
1049 MO.setIsKill(false);
1050 RemovedKillFlag = true;
1051 }
1052 MO.setReg(regA);
1053 }
1054
1055 if (AllUsesCopied) {
1056 // Replace other (un-tied) uses of regB with LastCopiedReg.
1057 for (unsigned i = 0, e = mi->getNumOperands(); i != e; ++i) {
1058 MachineOperand &MO = mi->getOperand(i);
1059 if (MO.isReg() && MO.getReg() == regB && MO.isUse()) {
1060 if (MO.isKill()) {
1061 MO.setIsKill(false);
1062 RemovedKillFlag = true;
1063 }
1064 MO.setReg(LastCopiedReg);
1065 }
1066 }
1067
1068 // Update live variables for regB.
1069 if (RemovedKillFlag && LV && LV->getVarInfo(regB).removeKill(mi))
1070 LV->addVirtualRegisterKilled(regB, prior(mi));
1071
1072 } else if (RemovedKillFlag) {
1073 // Some tied uses of regB matched their destination registers, so
1074 // regB is still used in this instruction, but a kill flag was
1075 // removed from a different tied use of regB, so now we need to add
1076 // a kill flag to one of the remaining uses of regB.
1077 for (unsigned i = 0, e = mi->getNumOperands(); i != e; ++i) {
1078 MachineOperand &MO = mi->getOperand(i);
1079 if (MO.isReg() && MO.getReg() == regB && MO.isUse()) {
1080 MO.setIsKill(true);
1081 break;
1082 }
1083 }
1084 }
1085
1086 MadeChange = true;
1087
1088 DEBUG(errs() << "\t\trewrite to:\t" << *mi);
1089 }
1090
1091 // Clear TiedOperands here instead of at the top of the loop
1092 // since most instructions do not have tied operands.
1093 TiedOperands.clear();
1094 mi = nmi;
1095 }
1096 }
1097
1098 // Some remat'ed instructions are dead.
1099 int VReg = ReMatRegs.find_first();
1100 while (VReg != -1) {
1101 if (MRI->use_empty(VReg)) {
1102 MachineInstr *DefMI = MRI->getVRegDef(VReg);
1103 DefMI->eraseFromParent();
1104 }
1105 VReg = ReMatRegs.find_next(VReg);
1106 }
1107
1108 return MadeChange;
1109}