Deleted Added
full compact
ScheduleDAGSDNodes.cpp (263508) ScheduleDAGSDNodes.cpp (266715)
1//===--- ScheduleDAGSDNodes.cpp - Implement the ScheduleDAGSDNodes class --===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the ScheduleDAG class, which is a base class used by
11// scheduling implementation classes.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "pre-RA-sched"
16#include "ScheduleDAGSDNodes.h"
17#include "InstrEmitter.h"
18#include "SDNodeDbgValue.h"
19#include "llvm/ADT/DenseMap.h"
20#include "llvm/ADT/SmallPtrSet.h"
21#include "llvm/ADT/SmallSet.h"
22#include "llvm/ADT/SmallVector.h"
23#include "llvm/ADT/Statistic.h"
24#include "llvm/CodeGen/MachineInstrBuilder.h"
25#include "llvm/CodeGen/MachineRegisterInfo.h"
26#include "llvm/CodeGen/SelectionDAG.h"
27#include "llvm/MC/MCInstrItineraries.h"
28#include "llvm/Support/CommandLine.h"
29#include "llvm/Support/Debug.h"
30#include "llvm/Support/raw_ostream.h"
31#include "llvm/Target/TargetInstrInfo.h"
32#include "llvm/Target/TargetLowering.h"
33#include "llvm/Target/TargetMachine.h"
34#include "llvm/Target/TargetRegisterInfo.h"
35#include "llvm/Target/TargetSubtargetInfo.h"
36using namespace llvm;
37
38STATISTIC(LoadsClustered, "Number of loads clustered together");
39
40// This allows latency based scheduler to notice high latency instructions
41// without a target itinerary. The choise if number here has more to do with
42// balancing scheduler heursitics than with the actual machine latency.
43static cl::opt<int> HighLatencyCycles(
44 "sched-high-latency-cycles", cl::Hidden, cl::init(10),
45 cl::desc("Roughly estimate the number of cycles that 'long latency'"
46 "instructions take for targets with no itinerary"));
47
48ScheduleDAGSDNodes::ScheduleDAGSDNodes(MachineFunction &mf)
49 : ScheduleDAG(mf), BB(0), DAG(0),
50 InstrItins(mf.getTarget().getInstrItineraryData()) {}
51
52/// Run - perform scheduling.
53///
54void ScheduleDAGSDNodes::Run(SelectionDAG *dag, MachineBasicBlock *bb) {
55 BB = bb;
56 DAG = dag;
57
58 // Clear the scheduler's SUnit DAG.
59 ScheduleDAG::clearDAG();
60 Sequence.clear();
61
62 // Invoke the target's selection of scheduler.
63 Schedule();
64}
65
66/// NewSUnit - Creates a new SUnit and return a ptr to it.
67///
68SUnit *ScheduleDAGSDNodes::newSUnit(SDNode *N) {
69#ifndef NDEBUG
70 const SUnit *Addr = 0;
71 if (!SUnits.empty())
72 Addr = &SUnits[0];
73#endif
74 SUnits.push_back(SUnit(N, (unsigned)SUnits.size()));
75 assert((Addr == 0 || Addr == &SUnits[0]) &&
76 "SUnits std::vector reallocated on the fly!");
77 SUnits.back().OrigNode = &SUnits.back();
78 SUnit *SU = &SUnits.back();
79 const TargetLowering &TLI = DAG->getTargetLoweringInfo();
80 if (!N ||
81 (N->isMachineOpcode() &&
82 N->getMachineOpcode() == TargetOpcode::IMPLICIT_DEF))
83 SU->SchedulingPref = Sched::None;
84 else
85 SU->SchedulingPref = TLI.getSchedulingPreference(N);
86 return SU;
87}
88
89SUnit *ScheduleDAGSDNodes::Clone(SUnit *Old) {
90 SUnit *SU = newSUnit(Old->getNode());
91 SU->OrigNode = Old->OrigNode;
92 SU->Latency = Old->Latency;
93 SU->isVRegCycle = Old->isVRegCycle;
94 SU->isCall = Old->isCall;
95 SU->isCallOp = Old->isCallOp;
96 SU->isTwoAddress = Old->isTwoAddress;
97 SU->isCommutable = Old->isCommutable;
98 SU->hasPhysRegDefs = Old->hasPhysRegDefs;
99 SU->hasPhysRegClobbers = Old->hasPhysRegClobbers;
100 SU->isScheduleHigh = Old->isScheduleHigh;
101 SU->isScheduleLow = Old->isScheduleLow;
102 SU->SchedulingPref = Old->SchedulingPref;
103 Old->isCloned = true;
104 return SU;
105}
106
107/// CheckForPhysRegDependency - Check if the dependency between def and use of
108/// a specified operand is a physical register dependency. If so, returns the
109/// register and the cost of copying the register.
110static void CheckForPhysRegDependency(SDNode *Def, SDNode *User, unsigned Op,
111 const TargetRegisterInfo *TRI,
112 const TargetInstrInfo *TII,
113 unsigned &PhysReg, int &Cost) {
114 if (Op != 2 || User->getOpcode() != ISD::CopyToReg)
115 return;
116
117 unsigned Reg = cast<RegisterSDNode>(User->getOperand(1))->getReg();
118 if (TargetRegisterInfo::isVirtualRegister(Reg))
119 return;
120
121 unsigned ResNo = User->getOperand(2).getResNo();
122 if (Def->isMachineOpcode()) {
123 const MCInstrDesc &II = TII->get(Def->getMachineOpcode());
124 if (ResNo >= II.getNumDefs() &&
125 II.ImplicitDefs[ResNo - II.getNumDefs()] == Reg) {
126 PhysReg = Reg;
127 const TargetRegisterClass *RC =
128 TRI->getMinimalPhysRegClass(Reg, Def->getValueType(ResNo));
129 Cost = RC->getCopyCost();
130 }
131 }
132}
133
134// Helper for AddGlue to clone node operands.
135static void CloneNodeWithValues(SDNode *N, SelectionDAG *DAG,
136 SmallVectorImpl<EVT> &VTs,
137 SDValue ExtraOper = SDValue()) {
138 SmallVector<SDValue, 4> Ops;
139 for (unsigned I = 0, E = N->getNumOperands(); I != E; ++I)
140 Ops.push_back(N->getOperand(I));
141
142 if (ExtraOper.getNode())
143 Ops.push_back(ExtraOper);
144
145 SDVTList VTList = DAG->getVTList(&VTs[0], VTs.size());
146 MachineSDNode::mmo_iterator Begin = 0, End = 0;
147 MachineSDNode *MN = dyn_cast<MachineSDNode>(N);
148
149 // Store memory references.
150 if (MN) {
151 Begin = MN->memoperands_begin();
152 End = MN->memoperands_end();
153 }
154
155 DAG->MorphNodeTo(N, N->getOpcode(), VTList, &Ops[0], Ops.size());
156
157 // Reset the memory references
158 if (MN)
159 MN->setMemRefs(Begin, End);
160}
161
162static bool AddGlue(SDNode *N, SDValue Glue, bool AddGlue, SelectionDAG *DAG) {
163 SmallVector<EVT, 4> VTs;
164 SDNode *GlueDestNode = Glue.getNode();
165
166 // Don't add glue from a node to itself.
167 if (GlueDestNode == N) return false;
168
169 // Don't add a glue operand to something that already uses glue.
170 if (GlueDestNode &&
171 N->getOperand(N->getNumOperands()-1).getValueType() == MVT::Glue) {
172 return false;
173 }
174 // Don't add glue to something that already has a glue value.
175 if (N->getValueType(N->getNumValues() - 1) == MVT::Glue) return false;
176
177 for (unsigned I = 0, E = N->getNumValues(); I != E; ++I)
178 VTs.push_back(N->getValueType(I));
179
180 if (AddGlue)
181 VTs.push_back(MVT::Glue);
182
183 CloneNodeWithValues(N, DAG, VTs, Glue);
184
185 return true;
186}
187
188// Cleanup after unsuccessful AddGlue. Use the standard method of morphing the
189// node even though simply shrinking the value list is sufficient.
190static void RemoveUnusedGlue(SDNode *N, SelectionDAG *DAG) {
191 assert((N->getValueType(N->getNumValues() - 1) == MVT::Glue &&
192 !N->hasAnyUseOfValue(N->getNumValues() - 1)) &&
193 "expected an unused glue value");
194
195 SmallVector<EVT, 4> VTs;
196 for (unsigned I = 0, E = N->getNumValues()-1; I != E; ++I)
197 VTs.push_back(N->getValueType(I));
198
199 CloneNodeWithValues(N, DAG, VTs);
200}
201
202/// ClusterNeighboringLoads - Force nearby loads together by "gluing" them.
203/// This function finds loads of the same base and different offsets. If the
204/// offsets are not far apart (target specific), it add MVT::Glue inputs and
205/// outputs to ensure they are scheduled together and in order. This
206/// optimization may benefit some targets by improving cache locality.
207void ScheduleDAGSDNodes::ClusterNeighboringLoads(SDNode *Node) {
208 SDNode *Chain = 0;
209 unsigned NumOps = Node->getNumOperands();
210 if (Node->getOperand(NumOps-1).getValueType() == MVT::Other)
211 Chain = Node->getOperand(NumOps-1).getNode();
212 if (!Chain)
213 return;
214
215 // Look for other loads of the same chain. Find loads that are loading from
216 // the same base pointer and different offsets.
217 SmallPtrSet<SDNode*, 16> Visited;
218 SmallVector<int64_t, 4> Offsets;
219 DenseMap<long long, SDNode*> O2SMap; // Map from offset to SDNode.
220 bool Cluster = false;
221 SDNode *Base = Node;
1//===--- ScheduleDAGSDNodes.cpp - Implement the ScheduleDAGSDNodes class --===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the ScheduleDAG class, which is a base class used by
11// scheduling implementation classes.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "pre-RA-sched"
16#include "ScheduleDAGSDNodes.h"
17#include "InstrEmitter.h"
18#include "SDNodeDbgValue.h"
19#include "llvm/ADT/DenseMap.h"
20#include "llvm/ADT/SmallPtrSet.h"
21#include "llvm/ADT/SmallSet.h"
22#include "llvm/ADT/SmallVector.h"
23#include "llvm/ADT/Statistic.h"
24#include "llvm/CodeGen/MachineInstrBuilder.h"
25#include "llvm/CodeGen/MachineRegisterInfo.h"
26#include "llvm/CodeGen/SelectionDAG.h"
27#include "llvm/MC/MCInstrItineraries.h"
28#include "llvm/Support/CommandLine.h"
29#include "llvm/Support/Debug.h"
30#include "llvm/Support/raw_ostream.h"
31#include "llvm/Target/TargetInstrInfo.h"
32#include "llvm/Target/TargetLowering.h"
33#include "llvm/Target/TargetMachine.h"
34#include "llvm/Target/TargetRegisterInfo.h"
35#include "llvm/Target/TargetSubtargetInfo.h"
36using namespace llvm;
37
38STATISTIC(LoadsClustered, "Number of loads clustered together");
39
40// This allows latency based scheduler to notice high latency instructions
41// without a target itinerary. The choise if number here has more to do with
42// balancing scheduler heursitics than with the actual machine latency.
43static cl::opt<int> HighLatencyCycles(
44 "sched-high-latency-cycles", cl::Hidden, cl::init(10),
45 cl::desc("Roughly estimate the number of cycles that 'long latency'"
46 "instructions take for targets with no itinerary"));
47
48ScheduleDAGSDNodes::ScheduleDAGSDNodes(MachineFunction &mf)
49 : ScheduleDAG(mf), BB(0), DAG(0),
50 InstrItins(mf.getTarget().getInstrItineraryData()) {}
51
52/// Run - perform scheduling.
53///
54void ScheduleDAGSDNodes::Run(SelectionDAG *dag, MachineBasicBlock *bb) {
55 BB = bb;
56 DAG = dag;
57
58 // Clear the scheduler's SUnit DAG.
59 ScheduleDAG::clearDAG();
60 Sequence.clear();
61
62 // Invoke the target's selection of scheduler.
63 Schedule();
64}
65
66/// NewSUnit - Creates a new SUnit and return a ptr to it.
67///
68SUnit *ScheduleDAGSDNodes::newSUnit(SDNode *N) {
69#ifndef NDEBUG
70 const SUnit *Addr = 0;
71 if (!SUnits.empty())
72 Addr = &SUnits[0];
73#endif
74 SUnits.push_back(SUnit(N, (unsigned)SUnits.size()));
75 assert((Addr == 0 || Addr == &SUnits[0]) &&
76 "SUnits std::vector reallocated on the fly!");
77 SUnits.back().OrigNode = &SUnits.back();
78 SUnit *SU = &SUnits.back();
79 const TargetLowering &TLI = DAG->getTargetLoweringInfo();
80 if (!N ||
81 (N->isMachineOpcode() &&
82 N->getMachineOpcode() == TargetOpcode::IMPLICIT_DEF))
83 SU->SchedulingPref = Sched::None;
84 else
85 SU->SchedulingPref = TLI.getSchedulingPreference(N);
86 return SU;
87}
88
89SUnit *ScheduleDAGSDNodes::Clone(SUnit *Old) {
90 SUnit *SU = newSUnit(Old->getNode());
91 SU->OrigNode = Old->OrigNode;
92 SU->Latency = Old->Latency;
93 SU->isVRegCycle = Old->isVRegCycle;
94 SU->isCall = Old->isCall;
95 SU->isCallOp = Old->isCallOp;
96 SU->isTwoAddress = Old->isTwoAddress;
97 SU->isCommutable = Old->isCommutable;
98 SU->hasPhysRegDefs = Old->hasPhysRegDefs;
99 SU->hasPhysRegClobbers = Old->hasPhysRegClobbers;
100 SU->isScheduleHigh = Old->isScheduleHigh;
101 SU->isScheduleLow = Old->isScheduleLow;
102 SU->SchedulingPref = Old->SchedulingPref;
103 Old->isCloned = true;
104 return SU;
105}
106
107/// CheckForPhysRegDependency - Check if the dependency between def and use of
108/// a specified operand is a physical register dependency. If so, returns the
109/// register and the cost of copying the register.
110static void CheckForPhysRegDependency(SDNode *Def, SDNode *User, unsigned Op,
111 const TargetRegisterInfo *TRI,
112 const TargetInstrInfo *TII,
113 unsigned &PhysReg, int &Cost) {
114 if (Op != 2 || User->getOpcode() != ISD::CopyToReg)
115 return;
116
117 unsigned Reg = cast<RegisterSDNode>(User->getOperand(1))->getReg();
118 if (TargetRegisterInfo::isVirtualRegister(Reg))
119 return;
120
121 unsigned ResNo = User->getOperand(2).getResNo();
122 if (Def->isMachineOpcode()) {
123 const MCInstrDesc &II = TII->get(Def->getMachineOpcode());
124 if (ResNo >= II.getNumDefs() &&
125 II.ImplicitDefs[ResNo - II.getNumDefs()] == Reg) {
126 PhysReg = Reg;
127 const TargetRegisterClass *RC =
128 TRI->getMinimalPhysRegClass(Reg, Def->getValueType(ResNo));
129 Cost = RC->getCopyCost();
130 }
131 }
132}
133
134// Helper for AddGlue to clone node operands.
135static void CloneNodeWithValues(SDNode *N, SelectionDAG *DAG,
136 SmallVectorImpl<EVT> &VTs,
137 SDValue ExtraOper = SDValue()) {
138 SmallVector<SDValue, 4> Ops;
139 for (unsigned I = 0, E = N->getNumOperands(); I != E; ++I)
140 Ops.push_back(N->getOperand(I));
141
142 if (ExtraOper.getNode())
143 Ops.push_back(ExtraOper);
144
145 SDVTList VTList = DAG->getVTList(&VTs[0], VTs.size());
146 MachineSDNode::mmo_iterator Begin = 0, End = 0;
147 MachineSDNode *MN = dyn_cast<MachineSDNode>(N);
148
149 // Store memory references.
150 if (MN) {
151 Begin = MN->memoperands_begin();
152 End = MN->memoperands_end();
153 }
154
155 DAG->MorphNodeTo(N, N->getOpcode(), VTList, &Ops[0], Ops.size());
156
157 // Reset the memory references
158 if (MN)
159 MN->setMemRefs(Begin, End);
160}
161
162static bool AddGlue(SDNode *N, SDValue Glue, bool AddGlue, SelectionDAG *DAG) {
163 SmallVector<EVT, 4> VTs;
164 SDNode *GlueDestNode = Glue.getNode();
165
166 // Don't add glue from a node to itself.
167 if (GlueDestNode == N) return false;
168
169 // Don't add a glue operand to something that already uses glue.
170 if (GlueDestNode &&
171 N->getOperand(N->getNumOperands()-1).getValueType() == MVT::Glue) {
172 return false;
173 }
174 // Don't add glue to something that already has a glue value.
175 if (N->getValueType(N->getNumValues() - 1) == MVT::Glue) return false;
176
177 for (unsigned I = 0, E = N->getNumValues(); I != E; ++I)
178 VTs.push_back(N->getValueType(I));
179
180 if (AddGlue)
181 VTs.push_back(MVT::Glue);
182
183 CloneNodeWithValues(N, DAG, VTs, Glue);
184
185 return true;
186}
187
188// Cleanup after unsuccessful AddGlue. Use the standard method of morphing the
189// node even though simply shrinking the value list is sufficient.
190static void RemoveUnusedGlue(SDNode *N, SelectionDAG *DAG) {
191 assert((N->getValueType(N->getNumValues() - 1) == MVT::Glue &&
192 !N->hasAnyUseOfValue(N->getNumValues() - 1)) &&
193 "expected an unused glue value");
194
195 SmallVector<EVT, 4> VTs;
196 for (unsigned I = 0, E = N->getNumValues()-1; I != E; ++I)
197 VTs.push_back(N->getValueType(I));
198
199 CloneNodeWithValues(N, DAG, VTs);
200}
201
202/// ClusterNeighboringLoads - Force nearby loads together by "gluing" them.
203/// This function finds loads of the same base and different offsets. If the
204/// offsets are not far apart (target specific), it add MVT::Glue inputs and
205/// outputs to ensure they are scheduled together and in order. This
206/// optimization may benefit some targets by improving cache locality.
207void ScheduleDAGSDNodes::ClusterNeighboringLoads(SDNode *Node) {
208 SDNode *Chain = 0;
209 unsigned NumOps = Node->getNumOperands();
210 if (Node->getOperand(NumOps-1).getValueType() == MVT::Other)
211 Chain = Node->getOperand(NumOps-1).getNode();
212 if (!Chain)
213 return;
214
215 // Look for other loads of the same chain. Find loads that are loading from
216 // the same base pointer and different offsets.
217 SmallPtrSet<SDNode*, 16> Visited;
218 SmallVector<int64_t, 4> Offsets;
219 DenseMap<long long, SDNode*> O2SMap; // Map from offset to SDNode.
220 bool Cluster = false;
221 SDNode *Base = Node;
222 // This algorithm requires a reasonably low use count before finding a match
223 // to avoid uselessly blowing up compile time in large blocks.
224 unsigned UseCount = 0;
222 for (SDNode::use_iterator I = Chain->use_begin(), E = Chain->use_end();
225 for (SDNode::use_iterator I = Chain->use_begin(), E = Chain->use_end();
223 I != E; ++I) {
226 I != E && UseCount < 100; ++I, ++UseCount) {
224 SDNode *User = *I;
225 if (User == Node || !Visited.insert(User))
226 continue;
227 int64_t Offset1, Offset2;
228 if (!TII->areLoadsFromSameBasePtr(Base, User, Offset1, Offset2) ||
229 Offset1 == Offset2)
230 // FIXME: Should be ok if they addresses are identical. But earlier
231 // optimizations really should have eliminated one of the loads.
232 continue;
233 if (O2SMap.insert(std::make_pair(Offset1, Base)).second)
234 Offsets.push_back(Offset1);
235 O2SMap.insert(std::make_pair(Offset2, User));
236 Offsets.push_back(Offset2);
237 if (Offset2 < Offset1)
238 Base = User;
239 Cluster = true;
227 SDNode *User = *I;
228 if (User == Node || !Visited.insert(User))
229 continue;
230 int64_t Offset1, Offset2;
231 if (!TII->areLoadsFromSameBasePtr(Base, User, Offset1, Offset2) ||
232 Offset1 == Offset2)
233 // FIXME: Should be ok if they addresses are identical. But earlier
234 // optimizations really should have eliminated one of the loads.
235 continue;
236 if (O2SMap.insert(std::make_pair(Offset1, Base)).second)
237 Offsets.push_back(Offset1);
238 O2SMap.insert(std::make_pair(Offset2, User));
239 Offsets.push_back(Offset2);
240 if (Offset2 < Offset1)
241 Base = User;
242 Cluster = true;
243 // Reset UseCount to allow more matches.
244 UseCount = 0;
240 }
241
242 if (!Cluster)
243 return;
244
245 // Sort them in increasing order.
246 std::sort(Offsets.begin(), Offsets.end());
247
248 // Check if the loads are close enough.
249 SmallVector<SDNode*, 4> Loads;
250 unsigned NumLoads = 0;
251 int64_t BaseOff = Offsets[0];
252 SDNode *BaseLoad = O2SMap[BaseOff];
253 Loads.push_back(BaseLoad);
254 for (unsigned i = 1, e = Offsets.size(); i != e; ++i) {
255 int64_t Offset = Offsets[i];
256 SDNode *Load = O2SMap[Offset];
257 if (!TII->shouldScheduleLoadsNear(BaseLoad, Load, BaseOff, Offset,NumLoads))
258 break; // Stop right here. Ignore loads that are further away.
259 Loads.push_back(Load);
260 ++NumLoads;
261 }
262
263 if (NumLoads == 0)
264 return;
265
266 // Cluster loads by adding MVT::Glue outputs and inputs. This also
267 // ensure they are scheduled in order of increasing addresses.
268 SDNode *Lead = Loads[0];
269 SDValue InGlue = SDValue(0, 0);
270 if (AddGlue(Lead, InGlue, true, DAG))
271 InGlue = SDValue(Lead, Lead->getNumValues() - 1);
272 for (unsigned I = 1, E = Loads.size(); I != E; ++I) {
273 bool OutGlue = I < E - 1;
274 SDNode *Load = Loads[I];
275
276 // If AddGlue fails, we could leave an unsused glue value. This should not
277 // cause any
278 if (AddGlue(Load, InGlue, OutGlue, DAG)) {
279 if (OutGlue)
280 InGlue = SDValue(Load, Load->getNumValues() - 1);
281
282 ++LoadsClustered;
283 }
284 else if (!OutGlue && InGlue.getNode())
285 RemoveUnusedGlue(InGlue.getNode(), DAG);
286 }
287}
288
289/// ClusterNodes - Cluster certain nodes which should be scheduled together.
290///
291void ScheduleDAGSDNodes::ClusterNodes() {
292 for (SelectionDAG::allnodes_iterator NI = DAG->allnodes_begin(),
293 E = DAG->allnodes_end(); NI != E; ++NI) {
294 SDNode *Node = &*NI;
295 if (!Node || !Node->isMachineOpcode())
296 continue;
297
298 unsigned Opc = Node->getMachineOpcode();
299 const MCInstrDesc &MCID = TII->get(Opc);
300 if (MCID.mayLoad())
301 // Cluster loads from "near" addresses into combined SUnits.
302 ClusterNeighboringLoads(Node);
303 }
304}
305
306void ScheduleDAGSDNodes::BuildSchedUnits() {
307 // During scheduling, the NodeId field of SDNode is used to map SDNodes
308 // to their associated SUnits by holding SUnits table indices. A value
309 // of -1 means the SDNode does not yet have an associated SUnit.
310 unsigned NumNodes = 0;
311 for (SelectionDAG::allnodes_iterator NI = DAG->allnodes_begin(),
312 E = DAG->allnodes_end(); NI != E; ++NI) {
313 NI->setNodeId(-1);
314 ++NumNodes;
315 }
316
317 // Reserve entries in the vector for each of the SUnits we are creating. This
318 // ensure that reallocation of the vector won't happen, so SUnit*'s won't get
319 // invalidated.
320 // FIXME: Multiply by 2 because we may clone nodes during scheduling.
321 // This is a temporary workaround.
322 SUnits.reserve(NumNodes * 2);
323
324 // Add all nodes in depth first order.
325 SmallVector<SDNode*, 64> Worklist;
326 SmallPtrSet<SDNode*, 64> Visited;
327 Worklist.push_back(DAG->getRoot().getNode());
328 Visited.insert(DAG->getRoot().getNode());
329
330 SmallVector<SUnit*, 8> CallSUnits;
331 while (!Worklist.empty()) {
332 SDNode *NI = Worklist.pop_back_val();
333
334 // Add all operands to the worklist unless they've already been added.
335 for (unsigned i = 0, e = NI->getNumOperands(); i != e; ++i)
336 if (Visited.insert(NI->getOperand(i).getNode()))
337 Worklist.push_back(NI->getOperand(i).getNode());
338
339 if (isPassiveNode(NI)) // Leaf node, e.g. a TargetImmediate.
340 continue;
341
342 // If this node has already been processed, stop now.
343 if (NI->getNodeId() != -1) continue;
344
345 SUnit *NodeSUnit = newSUnit(NI);
346
347 // See if anything is glued to this node, if so, add them to glued
348 // nodes. Nodes can have at most one glue input and one glue output. Glue
349 // is required to be the last operand and result of a node.
350
351 // Scan up to find glued preds.
352 SDNode *N = NI;
353 while (N->getNumOperands() &&
354 N->getOperand(N->getNumOperands()-1).getValueType() == MVT::Glue) {
355 N = N->getOperand(N->getNumOperands()-1).getNode();
356 assert(N->getNodeId() == -1 && "Node already inserted!");
357 N->setNodeId(NodeSUnit->NodeNum);
358 if (N->isMachineOpcode() && TII->get(N->getMachineOpcode()).isCall())
359 NodeSUnit->isCall = true;
360 }
361
362 // Scan down to find any glued succs.
363 N = NI;
364 while (N->getValueType(N->getNumValues()-1) == MVT::Glue) {
365 SDValue GlueVal(N, N->getNumValues()-1);
366
367 // There are either zero or one users of the Glue result.
368 bool HasGlueUse = false;
369 for (SDNode::use_iterator UI = N->use_begin(), E = N->use_end();
370 UI != E; ++UI)
371 if (GlueVal.isOperandOf(*UI)) {
372 HasGlueUse = true;
373 assert(N->getNodeId() == -1 && "Node already inserted!");
374 N->setNodeId(NodeSUnit->NodeNum);
375 N = *UI;
376 if (N->isMachineOpcode() && TII->get(N->getMachineOpcode()).isCall())
377 NodeSUnit->isCall = true;
378 break;
379 }
380 if (!HasGlueUse) break;
381 }
382
383 if (NodeSUnit->isCall)
384 CallSUnits.push_back(NodeSUnit);
385
386 // Schedule zero-latency TokenFactor below any nodes that may increase the
387 // schedule height. Otherwise, ancestors of the TokenFactor may appear to
388 // have false stalls.
389 if (NI->getOpcode() == ISD::TokenFactor)
390 NodeSUnit->isScheduleLow = true;
391
392 // If there are glue operands involved, N is now the bottom-most node
393 // of the sequence of nodes that are glued together.
394 // Update the SUnit.
395 NodeSUnit->setNode(N);
396 assert(N->getNodeId() == -1 && "Node already inserted!");
397 N->setNodeId(NodeSUnit->NodeNum);
398
399 // Compute NumRegDefsLeft. This must be done before AddSchedEdges.
400 InitNumRegDefsLeft(NodeSUnit);
401
402 // Assign the Latency field of NodeSUnit using target-provided information.
403 computeLatency(NodeSUnit);
404 }
405
406 // Find all call operands.
407 while (!CallSUnits.empty()) {
408 SUnit *SU = CallSUnits.pop_back_val();
409 for (const SDNode *SUNode = SU->getNode(); SUNode;
410 SUNode = SUNode->getGluedNode()) {
411 if (SUNode->getOpcode() != ISD::CopyToReg)
412 continue;
413 SDNode *SrcN = SUNode->getOperand(2).getNode();
414 if (isPassiveNode(SrcN)) continue; // Not scheduled.
415 SUnit *SrcSU = &SUnits[SrcN->getNodeId()];
416 SrcSU->isCallOp = true;
417 }
418 }
419}
420
421void ScheduleDAGSDNodes::AddSchedEdges() {
422 const TargetSubtargetInfo &ST = TM.getSubtarget<TargetSubtargetInfo>();
423
424 // Check to see if the scheduler cares about latencies.
425 bool UnitLatencies = forceUnitLatencies();
426
427 // Pass 2: add the preds, succs, etc.
428 for (unsigned su = 0, e = SUnits.size(); su != e; ++su) {
429 SUnit *SU = &SUnits[su];
430 SDNode *MainNode = SU->getNode();
431
432 if (MainNode->isMachineOpcode()) {
433 unsigned Opc = MainNode->getMachineOpcode();
434 const MCInstrDesc &MCID = TII->get(Opc);
435 for (unsigned i = 0; i != MCID.getNumOperands(); ++i) {
436 if (MCID.getOperandConstraint(i, MCOI::TIED_TO) != -1) {
437 SU->isTwoAddress = true;
438 break;
439 }
440 }
441 if (MCID.isCommutable())
442 SU->isCommutable = true;
443 }
444
445 // Find all predecessors and successors of the group.
446 for (SDNode *N = SU->getNode(); N; N = N->getGluedNode()) {
447 if (N->isMachineOpcode() &&
448 TII->get(N->getMachineOpcode()).getImplicitDefs()) {
449 SU->hasPhysRegClobbers = true;
450 unsigned NumUsed = InstrEmitter::CountResults(N);
451 while (NumUsed != 0 && !N->hasAnyUseOfValue(NumUsed - 1))
452 --NumUsed; // Skip over unused values at the end.
453 if (NumUsed > TII->get(N->getMachineOpcode()).getNumDefs())
454 SU->hasPhysRegDefs = true;
455 }
456
457 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
458 SDNode *OpN = N->getOperand(i).getNode();
459 if (isPassiveNode(OpN)) continue; // Not scheduled.
460 SUnit *OpSU = &SUnits[OpN->getNodeId()];
461 assert(OpSU && "Node has no SUnit!");
462 if (OpSU == SU) continue; // In the same group.
463
464 EVT OpVT = N->getOperand(i).getValueType();
465 assert(OpVT != MVT::Glue && "Glued nodes should be in same sunit!");
466 bool isChain = OpVT == MVT::Other;
467
468 unsigned PhysReg = 0;
469 int Cost = 1;
470 // Determine if this is a physical register dependency.
471 CheckForPhysRegDependency(OpN, N, i, TRI, TII, PhysReg, Cost);
472 assert((PhysReg == 0 || !isChain) &&
473 "Chain dependence via physreg data?");
474 // FIXME: See ScheduleDAGSDNodes::EmitCopyFromReg. For now, scheduler
475 // emits a copy from the physical register to a virtual register unless
476 // it requires a cross class copy (cost < 0). That means we are only
477 // treating "expensive to copy" register dependency as physical register
478 // dependency. This may change in the future though.
479 if (Cost >= 0 && !StressSched)
480 PhysReg = 0;
481
482 // If this is a ctrl dep, latency is 1.
483 unsigned OpLatency = isChain ? 1 : OpSU->Latency;
484 // Special-case TokenFactor chains as zero-latency.
485 if(isChain && OpN->getOpcode() == ISD::TokenFactor)
486 OpLatency = 0;
487
488 SDep Dep = isChain ? SDep(OpSU, SDep::Barrier)
489 : SDep(OpSU, SDep::Data, PhysReg);
490 Dep.setLatency(OpLatency);
491 if (!isChain && !UnitLatencies) {
492 computeOperandLatency(OpN, N, i, Dep);
493 ST.adjustSchedDependency(OpSU, SU, Dep);
494 }
495
496 if (!SU->addPred(Dep) && !Dep.isCtrl() && OpSU->NumRegDefsLeft > 1) {
497 // Multiple register uses are combined in the same SUnit. For example,
498 // we could have a set of glued nodes with all their defs consumed by
499 // another set of glued nodes. Register pressure tracking sees this as
500 // a single use, so to keep pressure balanced we reduce the defs.
501 //
502 // We can't tell (without more book-keeping) if this results from
503 // glued nodes or duplicate operands. As long as we don't reduce
504 // NumRegDefsLeft to zero, we handle the common cases well.
505 --OpSU->NumRegDefsLeft;
506 }
507 }
508 }
509 }
510}
511
512/// BuildSchedGraph - Build the SUnit graph from the selection dag that we
513/// are input. This SUnit graph is similar to the SelectionDAG, but
514/// excludes nodes that aren't interesting to scheduling, and represents
515/// glued together nodes with a single SUnit.
516void ScheduleDAGSDNodes::BuildSchedGraph(AliasAnalysis *AA) {
517 // Cluster certain nodes which should be scheduled together.
518 ClusterNodes();
519 // Populate the SUnits array.
520 BuildSchedUnits();
521 // Compute all the scheduling dependencies between nodes.
522 AddSchedEdges();
523}
524
525// Initialize NumNodeDefs for the current Node's opcode.
526void ScheduleDAGSDNodes::RegDefIter::InitNodeNumDefs() {
527 // Check for phys reg copy.
528 if (!Node)
529 return;
530
531 if (!Node->isMachineOpcode()) {
532 if (Node->getOpcode() == ISD::CopyFromReg)
533 NodeNumDefs = 1;
534 else
535 NodeNumDefs = 0;
536 return;
537 }
538 unsigned POpc = Node->getMachineOpcode();
539 if (POpc == TargetOpcode::IMPLICIT_DEF) {
540 // No register need be allocated for this.
541 NodeNumDefs = 0;
542 return;
543 }
544 unsigned NRegDefs = SchedDAG->TII->get(Node->getMachineOpcode()).getNumDefs();
545 // Some instructions define regs that are not represented in the selection DAG
546 // (e.g. unused flags). See tMOVi8. Make sure we don't access past NumValues.
547 NodeNumDefs = std::min(Node->getNumValues(), NRegDefs);
548 DefIdx = 0;
549}
550
551// Construct a RegDefIter for this SUnit and find the first valid value.
552ScheduleDAGSDNodes::RegDefIter::RegDefIter(const SUnit *SU,
553 const ScheduleDAGSDNodes *SD)
554 : SchedDAG(SD), Node(SU->getNode()), DefIdx(0), NodeNumDefs(0) {
555 InitNodeNumDefs();
556 Advance();
557}
558
559// Advance to the next valid value defined by the SUnit.
560void ScheduleDAGSDNodes::RegDefIter::Advance() {
561 for (;Node;) { // Visit all glued nodes.
562 for (;DefIdx < NodeNumDefs; ++DefIdx) {
563 if (!Node->hasAnyUseOfValue(DefIdx))
564 continue;
565 ValueType = Node->getSimpleValueType(DefIdx);
566 ++DefIdx;
567 return; // Found a normal regdef.
568 }
569 Node = Node->getGluedNode();
570 if (Node == NULL) {
571 return; // No values left to visit.
572 }
573 InitNodeNumDefs();
574 }
575}
576
577void ScheduleDAGSDNodes::InitNumRegDefsLeft(SUnit *SU) {
578 assert(SU->NumRegDefsLeft == 0 && "expect a new node");
579 for (RegDefIter I(SU, this); I.IsValid(); I.Advance()) {
580 assert(SU->NumRegDefsLeft < USHRT_MAX && "overflow is ok but unexpected");
581 ++SU->NumRegDefsLeft;
582 }
583}
584
585void ScheduleDAGSDNodes::computeLatency(SUnit *SU) {
586 SDNode *N = SU->getNode();
587
588 // TokenFactor operands are considered zero latency, and some schedulers
589 // (e.g. Top-Down list) may rely on the fact that operand latency is nonzero
590 // whenever node latency is nonzero.
591 if (N && N->getOpcode() == ISD::TokenFactor) {
592 SU->Latency = 0;
593 return;
594 }
595
596 // Check to see if the scheduler cares about latencies.
597 if (forceUnitLatencies()) {
598 SU->Latency = 1;
599 return;
600 }
601
602 if (!InstrItins || InstrItins->isEmpty()) {
603 if (N && N->isMachineOpcode() &&
604 TII->isHighLatencyDef(N->getMachineOpcode()))
605 SU->Latency = HighLatencyCycles;
606 else
607 SU->Latency = 1;
608 return;
609 }
610
611 // Compute the latency for the node. We use the sum of the latencies for
612 // all nodes glued together into this SUnit.
613 SU->Latency = 0;
614 for (SDNode *N = SU->getNode(); N; N = N->getGluedNode())
615 if (N->isMachineOpcode())
616 SU->Latency += TII->getInstrLatency(InstrItins, N);
617}
618
619void ScheduleDAGSDNodes::computeOperandLatency(SDNode *Def, SDNode *Use,
620 unsigned OpIdx, SDep& dep) const{
621 // Check to see if the scheduler cares about latencies.
622 if (forceUnitLatencies())
623 return;
624
625 if (dep.getKind() != SDep::Data)
626 return;
627
628 unsigned DefIdx = Use->getOperand(OpIdx).getResNo();
629 if (Use->isMachineOpcode())
630 // Adjust the use operand index by num of defs.
631 OpIdx += TII->get(Use->getMachineOpcode()).getNumDefs();
632 int Latency = TII->getOperandLatency(InstrItins, Def, DefIdx, Use, OpIdx);
633 if (Latency > 1 && Use->getOpcode() == ISD::CopyToReg &&
634 !BB->succ_empty()) {
635 unsigned Reg = cast<RegisterSDNode>(Use->getOperand(1))->getReg();
636 if (TargetRegisterInfo::isVirtualRegister(Reg))
637 // This copy is a liveout value. It is likely coalesced, so reduce the
638 // latency so not to penalize the def.
639 // FIXME: need target specific adjustment here?
640 Latency = (Latency > 1) ? Latency - 1 : 1;
641 }
642 if (Latency >= 0)
643 dep.setLatency(Latency);
644}
645
646void ScheduleDAGSDNodes::dumpNode(const SUnit *SU) const {
647#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
648 if (!SU->getNode()) {
649 dbgs() << "PHYS REG COPY\n";
650 return;
651 }
652
653 SU->getNode()->dump(DAG);
654 dbgs() << "\n";
655 SmallVector<SDNode *, 4> GluedNodes;
656 for (SDNode *N = SU->getNode()->getGluedNode(); N; N = N->getGluedNode())
657 GluedNodes.push_back(N);
658 while (!GluedNodes.empty()) {
659 dbgs() << " ";
660 GluedNodes.back()->dump(DAG);
661 dbgs() << "\n";
662 GluedNodes.pop_back();
663 }
664#endif
665}
666
667#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
668void ScheduleDAGSDNodes::dumpSchedule() const {
669 for (unsigned i = 0, e = Sequence.size(); i != e; i++) {
670 if (SUnit *SU = Sequence[i])
671 SU->dump(this);
672 else
673 dbgs() << "**** NOOP ****\n";
674 }
675}
676#endif
677
678#ifndef NDEBUG
679/// VerifyScheduledSequence - Verify that all SUnits were scheduled and that
680/// their state is consistent with the nodes listed in Sequence.
681///
682void ScheduleDAGSDNodes::VerifyScheduledSequence(bool isBottomUp) {
683 unsigned ScheduledNodes = ScheduleDAG::VerifyScheduledDAG(isBottomUp);
684 unsigned Noops = 0;
685 for (unsigned i = 0, e = Sequence.size(); i != e; ++i)
686 if (!Sequence[i])
687 ++Noops;
688 assert(Sequence.size() - Noops == ScheduledNodes &&
689 "The number of nodes scheduled doesn't match the expected number!");
690}
691#endif // NDEBUG
692
693/// ProcessSDDbgValues - Process SDDbgValues associated with this node.
694static void
695ProcessSDDbgValues(SDNode *N, SelectionDAG *DAG, InstrEmitter &Emitter,
696 SmallVectorImpl<std::pair<unsigned, MachineInstr*> > &Orders,
697 DenseMap<SDValue, unsigned> &VRBaseMap, unsigned Order) {
698 if (!N->getHasDebugValue())
699 return;
700
701 // Opportunistically insert immediate dbg_value uses, i.e. those with source
702 // order number right after the N.
703 MachineBasicBlock *BB = Emitter.getBlock();
704 MachineBasicBlock::iterator InsertPos = Emitter.getInsertPos();
705 ArrayRef<SDDbgValue*> DVs = DAG->GetDbgValues(N);
706 for (unsigned i = 0, e = DVs.size(); i != e; ++i) {
707 if (DVs[i]->isInvalidated())
708 continue;
709 unsigned DVOrder = DVs[i]->getOrder();
710 if (!Order || DVOrder == ++Order) {
711 MachineInstr *DbgMI = Emitter.EmitDbgValue(DVs[i], VRBaseMap);
712 if (DbgMI) {
713 Orders.push_back(std::make_pair(DVOrder, DbgMI));
714 BB->insert(InsertPos, DbgMI);
715 }
716 DVs[i]->setIsInvalidated();
717 }
718 }
719}
720
721// ProcessSourceNode - Process nodes with source order numbers. These are added
722// to a vector which EmitSchedule uses to determine how to insert dbg_value
723// instructions in the right order.
724static void
725ProcessSourceNode(SDNode *N, SelectionDAG *DAG, InstrEmitter &Emitter,
726 DenseMap<SDValue, unsigned> &VRBaseMap,
727 SmallVectorImpl<std::pair<unsigned, MachineInstr*> > &Orders,
728 SmallSet<unsigned, 8> &Seen) {
729 unsigned Order = N->getIROrder();
730 if (!Order || !Seen.insert(Order)) {
731 // Process any valid SDDbgValues even if node does not have any order
732 // assigned.
733 ProcessSDDbgValues(N, DAG, Emitter, Orders, VRBaseMap, 0);
734 return;
735 }
736
737 MachineBasicBlock *BB = Emitter.getBlock();
738 if (Emitter.getInsertPos() == BB->begin() || BB->back().isPHI() ||
739 // Fast-isel may have inserted some instructions, in which case the
740 // BB->back().isPHI() test will not fire when we want it to.
741 prior(Emitter.getInsertPos())->isPHI()) {
742 // Did not insert any instruction.
743 Orders.push_back(std::make_pair(Order, (MachineInstr*)0));
744 return;
745 }
746
747 Orders.push_back(std::make_pair(Order, prior(Emitter.getInsertPos())));
748 ProcessSDDbgValues(N, DAG, Emitter, Orders, VRBaseMap, Order);
749}
750
751void ScheduleDAGSDNodes::
752EmitPhysRegCopy(SUnit *SU, DenseMap<SUnit*, unsigned> &VRBaseMap,
753 MachineBasicBlock::iterator InsertPos) {
754 for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
755 I != E; ++I) {
756 if (I->isCtrl()) continue; // ignore chain preds
757 if (I->getSUnit()->CopyDstRC) {
758 // Copy to physical register.
759 DenseMap<SUnit*, unsigned>::iterator VRI = VRBaseMap.find(I->getSUnit());
760 assert(VRI != VRBaseMap.end() && "Node emitted out of order - late");
761 // Find the destination physical register.
762 unsigned Reg = 0;
763 for (SUnit::const_succ_iterator II = SU->Succs.begin(),
764 EE = SU->Succs.end(); II != EE; ++II) {
765 if (II->isCtrl()) continue; // ignore chain preds
766 if (II->getReg()) {
767 Reg = II->getReg();
768 break;
769 }
770 }
771 BuildMI(*BB, InsertPos, DebugLoc(), TII->get(TargetOpcode::COPY), Reg)
772 .addReg(VRI->second);
773 } else {
774 // Copy from physical register.
775 assert(I->getReg() && "Unknown physical register!");
776 unsigned VRBase = MRI.createVirtualRegister(SU->CopyDstRC);
777 bool isNew = VRBaseMap.insert(std::make_pair(SU, VRBase)).second;
778 (void)isNew; // Silence compiler warning.
779 assert(isNew && "Node emitted out of order - early");
780 BuildMI(*BB, InsertPos, DebugLoc(), TII->get(TargetOpcode::COPY), VRBase)
781 .addReg(I->getReg());
782 }
783 break;
784 }
785}
786
787/// EmitSchedule - Emit the machine code in scheduled order. Return the new
788/// InsertPos and MachineBasicBlock that contains this insertion
789/// point. ScheduleDAGSDNodes holds a BB pointer for convenience, but this does
790/// not necessarily refer to returned BB. The emitter may split blocks.
791MachineBasicBlock *ScheduleDAGSDNodes::
792EmitSchedule(MachineBasicBlock::iterator &InsertPos) {
793 InstrEmitter Emitter(BB, InsertPos);
794 DenseMap<SDValue, unsigned> VRBaseMap;
795 DenseMap<SUnit*, unsigned> CopyVRBaseMap;
796 SmallVector<std::pair<unsigned, MachineInstr*>, 32> Orders;
797 SmallSet<unsigned, 8> Seen;
798 bool HasDbg = DAG->hasDebugValues();
799
800 // If this is the first BB, emit byval parameter dbg_value's.
801 if (HasDbg && BB->getParent()->begin() == MachineFunction::iterator(BB)) {
802 SDDbgInfo::DbgIterator PDI = DAG->ByvalParmDbgBegin();
803 SDDbgInfo::DbgIterator PDE = DAG->ByvalParmDbgEnd();
804 for (; PDI != PDE; ++PDI) {
805 MachineInstr *DbgMI= Emitter.EmitDbgValue(*PDI, VRBaseMap);
806 if (DbgMI)
807 BB->insert(InsertPos, DbgMI);
808 }
809 }
810
811 for (unsigned i = 0, e = Sequence.size(); i != e; i++) {
812 SUnit *SU = Sequence[i];
813 if (!SU) {
814 // Null SUnit* is a noop.
815 TII->insertNoop(*Emitter.getBlock(), InsertPos);
816 continue;
817 }
818
819 // For pre-regalloc scheduling, create instructions corresponding to the
820 // SDNode and any glued SDNodes and append them to the block.
821 if (!SU->getNode()) {
822 // Emit a copy.
823 EmitPhysRegCopy(SU, CopyVRBaseMap, InsertPos);
824 continue;
825 }
826
827 SmallVector<SDNode *, 4> GluedNodes;
828 for (SDNode *N = SU->getNode()->getGluedNode(); N; N = N->getGluedNode())
829 GluedNodes.push_back(N);
830 while (!GluedNodes.empty()) {
831 SDNode *N = GluedNodes.back();
832 Emitter.EmitNode(GluedNodes.back(), SU->OrigNode != SU, SU->isCloned,
833 VRBaseMap);
834 // Remember the source order of the inserted instruction.
835 if (HasDbg)
836 ProcessSourceNode(N, DAG, Emitter, VRBaseMap, Orders, Seen);
837 GluedNodes.pop_back();
838 }
839 Emitter.EmitNode(SU->getNode(), SU->OrigNode != SU, SU->isCloned,
840 VRBaseMap);
841 // Remember the source order of the inserted instruction.
842 if (HasDbg)
843 ProcessSourceNode(SU->getNode(), DAG, Emitter, VRBaseMap, Orders,
844 Seen);
845 }
846
847 // Insert all the dbg_values which have not already been inserted in source
848 // order sequence.
849 if (HasDbg) {
850 MachineBasicBlock::iterator BBBegin = BB->getFirstNonPHI();
851
852 // Sort the source order instructions and use the order to insert debug
853 // values.
854 std::sort(Orders.begin(), Orders.end(), less_first());
855
856 SDDbgInfo::DbgIterator DI = DAG->DbgBegin();
857 SDDbgInfo::DbgIterator DE = DAG->DbgEnd();
858 // Now emit the rest according to source order.
859 unsigned LastOrder = 0;
860 for (unsigned i = 0, e = Orders.size(); i != e && DI != DE; ++i) {
861 unsigned Order = Orders[i].first;
862 MachineInstr *MI = Orders[i].second;
863 // Insert all SDDbgValue's whose order(s) are before "Order".
864 if (!MI)
865 continue;
866 for (; DI != DE &&
867 (*DI)->getOrder() >= LastOrder && (*DI)->getOrder() < Order; ++DI) {
868 if ((*DI)->isInvalidated())
869 continue;
870 MachineInstr *DbgMI = Emitter.EmitDbgValue(*DI, VRBaseMap);
871 if (DbgMI) {
872 if (!LastOrder)
873 // Insert to start of the BB (after PHIs).
874 BB->insert(BBBegin, DbgMI);
875 else {
876 // Insert at the instruction, which may be in a different
877 // block, if the block was split by a custom inserter.
878 MachineBasicBlock::iterator Pos = MI;
879 MI->getParent()->insert(Pos, DbgMI);
880 }
881 }
882 }
883 LastOrder = Order;
884 }
885 // Add trailing DbgValue's before the terminator. FIXME: May want to add
886 // some of them before one or more conditional branches?
887 SmallVector<MachineInstr*, 8> DbgMIs;
888 while (DI != DE) {
889 if (!(*DI)->isInvalidated())
890 if (MachineInstr *DbgMI = Emitter.EmitDbgValue(*DI, VRBaseMap))
891 DbgMIs.push_back(DbgMI);
892 ++DI;
893 }
894
895 MachineBasicBlock *InsertBB = Emitter.getBlock();
896 MachineBasicBlock::iterator Pos = InsertBB->getFirstTerminator();
897 InsertBB->insert(Pos, DbgMIs.begin(), DbgMIs.end());
898 }
899
900 InsertPos = Emitter.getInsertPos();
901 return Emitter.getBlock();
902}
903
904/// Return the basic block label.
905std::string ScheduleDAGSDNodes::getDAGName() const {
906 return "sunit-dag." + BB->getFullName();
907}
245 }
246
247 if (!Cluster)
248 return;
249
250 // Sort them in increasing order.
251 std::sort(Offsets.begin(), Offsets.end());
252
253 // Check if the loads are close enough.
254 SmallVector<SDNode*, 4> Loads;
255 unsigned NumLoads = 0;
256 int64_t BaseOff = Offsets[0];
257 SDNode *BaseLoad = O2SMap[BaseOff];
258 Loads.push_back(BaseLoad);
259 for (unsigned i = 1, e = Offsets.size(); i != e; ++i) {
260 int64_t Offset = Offsets[i];
261 SDNode *Load = O2SMap[Offset];
262 if (!TII->shouldScheduleLoadsNear(BaseLoad, Load, BaseOff, Offset,NumLoads))
263 break; // Stop right here. Ignore loads that are further away.
264 Loads.push_back(Load);
265 ++NumLoads;
266 }
267
268 if (NumLoads == 0)
269 return;
270
271 // Cluster loads by adding MVT::Glue outputs and inputs. This also
272 // ensure they are scheduled in order of increasing addresses.
273 SDNode *Lead = Loads[0];
274 SDValue InGlue = SDValue(0, 0);
275 if (AddGlue(Lead, InGlue, true, DAG))
276 InGlue = SDValue(Lead, Lead->getNumValues() - 1);
277 for (unsigned I = 1, E = Loads.size(); I != E; ++I) {
278 bool OutGlue = I < E - 1;
279 SDNode *Load = Loads[I];
280
281 // If AddGlue fails, we could leave an unsused glue value. This should not
282 // cause any
283 if (AddGlue(Load, InGlue, OutGlue, DAG)) {
284 if (OutGlue)
285 InGlue = SDValue(Load, Load->getNumValues() - 1);
286
287 ++LoadsClustered;
288 }
289 else if (!OutGlue && InGlue.getNode())
290 RemoveUnusedGlue(InGlue.getNode(), DAG);
291 }
292}
293
294/// ClusterNodes - Cluster certain nodes which should be scheduled together.
295///
296void ScheduleDAGSDNodes::ClusterNodes() {
297 for (SelectionDAG::allnodes_iterator NI = DAG->allnodes_begin(),
298 E = DAG->allnodes_end(); NI != E; ++NI) {
299 SDNode *Node = &*NI;
300 if (!Node || !Node->isMachineOpcode())
301 continue;
302
303 unsigned Opc = Node->getMachineOpcode();
304 const MCInstrDesc &MCID = TII->get(Opc);
305 if (MCID.mayLoad())
306 // Cluster loads from "near" addresses into combined SUnits.
307 ClusterNeighboringLoads(Node);
308 }
309}
310
311void ScheduleDAGSDNodes::BuildSchedUnits() {
312 // During scheduling, the NodeId field of SDNode is used to map SDNodes
313 // to their associated SUnits by holding SUnits table indices. A value
314 // of -1 means the SDNode does not yet have an associated SUnit.
315 unsigned NumNodes = 0;
316 for (SelectionDAG::allnodes_iterator NI = DAG->allnodes_begin(),
317 E = DAG->allnodes_end(); NI != E; ++NI) {
318 NI->setNodeId(-1);
319 ++NumNodes;
320 }
321
322 // Reserve entries in the vector for each of the SUnits we are creating. This
323 // ensure that reallocation of the vector won't happen, so SUnit*'s won't get
324 // invalidated.
325 // FIXME: Multiply by 2 because we may clone nodes during scheduling.
326 // This is a temporary workaround.
327 SUnits.reserve(NumNodes * 2);
328
329 // Add all nodes in depth first order.
330 SmallVector<SDNode*, 64> Worklist;
331 SmallPtrSet<SDNode*, 64> Visited;
332 Worklist.push_back(DAG->getRoot().getNode());
333 Visited.insert(DAG->getRoot().getNode());
334
335 SmallVector<SUnit*, 8> CallSUnits;
336 while (!Worklist.empty()) {
337 SDNode *NI = Worklist.pop_back_val();
338
339 // Add all operands to the worklist unless they've already been added.
340 for (unsigned i = 0, e = NI->getNumOperands(); i != e; ++i)
341 if (Visited.insert(NI->getOperand(i).getNode()))
342 Worklist.push_back(NI->getOperand(i).getNode());
343
344 if (isPassiveNode(NI)) // Leaf node, e.g. a TargetImmediate.
345 continue;
346
347 // If this node has already been processed, stop now.
348 if (NI->getNodeId() != -1) continue;
349
350 SUnit *NodeSUnit = newSUnit(NI);
351
352 // See if anything is glued to this node, if so, add them to glued
353 // nodes. Nodes can have at most one glue input and one glue output. Glue
354 // is required to be the last operand and result of a node.
355
356 // Scan up to find glued preds.
357 SDNode *N = NI;
358 while (N->getNumOperands() &&
359 N->getOperand(N->getNumOperands()-1).getValueType() == MVT::Glue) {
360 N = N->getOperand(N->getNumOperands()-1).getNode();
361 assert(N->getNodeId() == -1 && "Node already inserted!");
362 N->setNodeId(NodeSUnit->NodeNum);
363 if (N->isMachineOpcode() && TII->get(N->getMachineOpcode()).isCall())
364 NodeSUnit->isCall = true;
365 }
366
367 // Scan down to find any glued succs.
368 N = NI;
369 while (N->getValueType(N->getNumValues()-1) == MVT::Glue) {
370 SDValue GlueVal(N, N->getNumValues()-1);
371
372 // There are either zero or one users of the Glue result.
373 bool HasGlueUse = false;
374 for (SDNode::use_iterator UI = N->use_begin(), E = N->use_end();
375 UI != E; ++UI)
376 if (GlueVal.isOperandOf(*UI)) {
377 HasGlueUse = true;
378 assert(N->getNodeId() == -1 && "Node already inserted!");
379 N->setNodeId(NodeSUnit->NodeNum);
380 N = *UI;
381 if (N->isMachineOpcode() && TII->get(N->getMachineOpcode()).isCall())
382 NodeSUnit->isCall = true;
383 break;
384 }
385 if (!HasGlueUse) break;
386 }
387
388 if (NodeSUnit->isCall)
389 CallSUnits.push_back(NodeSUnit);
390
391 // Schedule zero-latency TokenFactor below any nodes that may increase the
392 // schedule height. Otherwise, ancestors of the TokenFactor may appear to
393 // have false stalls.
394 if (NI->getOpcode() == ISD::TokenFactor)
395 NodeSUnit->isScheduleLow = true;
396
397 // If there are glue operands involved, N is now the bottom-most node
398 // of the sequence of nodes that are glued together.
399 // Update the SUnit.
400 NodeSUnit->setNode(N);
401 assert(N->getNodeId() == -1 && "Node already inserted!");
402 N->setNodeId(NodeSUnit->NodeNum);
403
404 // Compute NumRegDefsLeft. This must be done before AddSchedEdges.
405 InitNumRegDefsLeft(NodeSUnit);
406
407 // Assign the Latency field of NodeSUnit using target-provided information.
408 computeLatency(NodeSUnit);
409 }
410
411 // Find all call operands.
412 while (!CallSUnits.empty()) {
413 SUnit *SU = CallSUnits.pop_back_val();
414 for (const SDNode *SUNode = SU->getNode(); SUNode;
415 SUNode = SUNode->getGluedNode()) {
416 if (SUNode->getOpcode() != ISD::CopyToReg)
417 continue;
418 SDNode *SrcN = SUNode->getOperand(2).getNode();
419 if (isPassiveNode(SrcN)) continue; // Not scheduled.
420 SUnit *SrcSU = &SUnits[SrcN->getNodeId()];
421 SrcSU->isCallOp = true;
422 }
423 }
424}
425
426void ScheduleDAGSDNodes::AddSchedEdges() {
427 const TargetSubtargetInfo &ST = TM.getSubtarget<TargetSubtargetInfo>();
428
429 // Check to see if the scheduler cares about latencies.
430 bool UnitLatencies = forceUnitLatencies();
431
432 // Pass 2: add the preds, succs, etc.
433 for (unsigned su = 0, e = SUnits.size(); su != e; ++su) {
434 SUnit *SU = &SUnits[su];
435 SDNode *MainNode = SU->getNode();
436
437 if (MainNode->isMachineOpcode()) {
438 unsigned Opc = MainNode->getMachineOpcode();
439 const MCInstrDesc &MCID = TII->get(Opc);
440 for (unsigned i = 0; i != MCID.getNumOperands(); ++i) {
441 if (MCID.getOperandConstraint(i, MCOI::TIED_TO) != -1) {
442 SU->isTwoAddress = true;
443 break;
444 }
445 }
446 if (MCID.isCommutable())
447 SU->isCommutable = true;
448 }
449
450 // Find all predecessors and successors of the group.
451 for (SDNode *N = SU->getNode(); N; N = N->getGluedNode()) {
452 if (N->isMachineOpcode() &&
453 TII->get(N->getMachineOpcode()).getImplicitDefs()) {
454 SU->hasPhysRegClobbers = true;
455 unsigned NumUsed = InstrEmitter::CountResults(N);
456 while (NumUsed != 0 && !N->hasAnyUseOfValue(NumUsed - 1))
457 --NumUsed; // Skip over unused values at the end.
458 if (NumUsed > TII->get(N->getMachineOpcode()).getNumDefs())
459 SU->hasPhysRegDefs = true;
460 }
461
462 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
463 SDNode *OpN = N->getOperand(i).getNode();
464 if (isPassiveNode(OpN)) continue; // Not scheduled.
465 SUnit *OpSU = &SUnits[OpN->getNodeId()];
466 assert(OpSU && "Node has no SUnit!");
467 if (OpSU == SU) continue; // In the same group.
468
469 EVT OpVT = N->getOperand(i).getValueType();
470 assert(OpVT != MVT::Glue && "Glued nodes should be in same sunit!");
471 bool isChain = OpVT == MVT::Other;
472
473 unsigned PhysReg = 0;
474 int Cost = 1;
475 // Determine if this is a physical register dependency.
476 CheckForPhysRegDependency(OpN, N, i, TRI, TII, PhysReg, Cost);
477 assert((PhysReg == 0 || !isChain) &&
478 "Chain dependence via physreg data?");
479 // FIXME: See ScheduleDAGSDNodes::EmitCopyFromReg. For now, scheduler
480 // emits a copy from the physical register to a virtual register unless
481 // it requires a cross class copy (cost < 0). That means we are only
482 // treating "expensive to copy" register dependency as physical register
483 // dependency. This may change in the future though.
484 if (Cost >= 0 && !StressSched)
485 PhysReg = 0;
486
487 // If this is a ctrl dep, latency is 1.
488 unsigned OpLatency = isChain ? 1 : OpSU->Latency;
489 // Special-case TokenFactor chains as zero-latency.
490 if(isChain && OpN->getOpcode() == ISD::TokenFactor)
491 OpLatency = 0;
492
493 SDep Dep = isChain ? SDep(OpSU, SDep::Barrier)
494 : SDep(OpSU, SDep::Data, PhysReg);
495 Dep.setLatency(OpLatency);
496 if (!isChain && !UnitLatencies) {
497 computeOperandLatency(OpN, N, i, Dep);
498 ST.adjustSchedDependency(OpSU, SU, Dep);
499 }
500
501 if (!SU->addPred(Dep) && !Dep.isCtrl() && OpSU->NumRegDefsLeft > 1) {
502 // Multiple register uses are combined in the same SUnit. For example,
503 // we could have a set of glued nodes with all their defs consumed by
504 // another set of glued nodes. Register pressure tracking sees this as
505 // a single use, so to keep pressure balanced we reduce the defs.
506 //
507 // We can't tell (without more book-keeping) if this results from
508 // glued nodes or duplicate operands. As long as we don't reduce
509 // NumRegDefsLeft to zero, we handle the common cases well.
510 --OpSU->NumRegDefsLeft;
511 }
512 }
513 }
514 }
515}
516
517/// BuildSchedGraph - Build the SUnit graph from the selection dag that we
518/// are input. This SUnit graph is similar to the SelectionDAG, but
519/// excludes nodes that aren't interesting to scheduling, and represents
520/// glued together nodes with a single SUnit.
521void ScheduleDAGSDNodes::BuildSchedGraph(AliasAnalysis *AA) {
522 // Cluster certain nodes which should be scheduled together.
523 ClusterNodes();
524 // Populate the SUnits array.
525 BuildSchedUnits();
526 // Compute all the scheduling dependencies between nodes.
527 AddSchedEdges();
528}
529
530// Initialize NumNodeDefs for the current Node's opcode.
531void ScheduleDAGSDNodes::RegDefIter::InitNodeNumDefs() {
532 // Check for phys reg copy.
533 if (!Node)
534 return;
535
536 if (!Node->isMachineOpcode()) {
537 if (Node->getOpcode() == ISD::CopyFromReg)
538 NodeNumDefs = 1;
539 else
540 NodeNumDefs = 0;
541 return;
542 }
543 unsigned POpc = Node->getMachineOpcode();
544 if (POpc == TargetOpcode::IMPLICIT_DEF) {
545 // No register need be allocated for this.
546 NodeNumDefs = 0;
547 return;
548 }
549 unsigned NRegDefs = SchedDAG->TII->get(Node->getMachineOpcode()).getNumDefs();
550 // Some instructions define regs that are not represented in the selection DAG
551 // (e.g. unused flags). See tMOVi8. Make sure we don't access past NumValues.
552 NodeNumDefs = std::min(Node->getNumValues(), NRegDefs);
553 DefIdx = 0;
554}
555
556// Construct a RegDefIter for this SUnit and find the first valid value.
557ScheduleDAGSDNodes::RegDefIter::RegDefIter(const SUnit *SU,
558 const ScheduleDAGSDNodes *SD)
559 : SchedDAG(SD), Node(SU->getNode()), DefIdx(0), NodeNumDefs(0) {
560 InitNodeNumDefs();
561 Advance();
562}
563
564// Advance to the next valid value defined by the SUnit.
565void ScheduleDAGSDNodes::RegDefIter::Advance() {
566 for (;Node;) { // Visit all glued nodes.
567 for (;DefIdx < NodeNumDefs; ++DefIdx) {
568 if (!Node->hasAnyUseOfValue(DefIdx))
569 continue;
570 ValueType = Node->getSimpleValueType(DefIdx);
571 ++DefIdx;
572 return; // Found a normal regdef.
573 }
574 Node = Node->getGluedNode();
575 if (Node == NULL) {
576 return; // No values left to visit.
577 }
578 InitNodeNumDefs();
579 }
580}
581
582void ScheduleDAGSDNodes::InitNumRegDefsLeft(SUnit *SU) {
583 assert(SU->NumRegDefsLeft == 0 && "expect a new node");
584 for (RegDefIter I(SU, this); I.IsValid(); I.Advance()) {
585 assert(SU->NumRegDefsLeft < USHRT_MAX && "overflow is ok but unexpected");
586 ++SU->NumRegDefsLeft;
587 }
588}
589
590void ScheduleDAGSDNodes::computeLatency(SUnit *SU) {
591 SDNode *N = SU->getNode();
592
593 // TokenFactor operands are considered zero latency, and some schedulers
594 // (e.g. Top-Down list) may rely on the fact that operand latency is nonzero
595 // whenever node latency is nonzero.
596 if (N && N->getOpcode() == ISD::TokenFactor) {
597 SU->Latency = 0;
598 return;
599 }
600
601 // Check to see if the scheduler cares about latencies.
602 if (forceUnitLatencies()) {
603 SU->Latency = 1;
604 return;
605 }
606
607 if (!InstrItins || InstrItins->isEmpty()) {
608 if (N && N->isMachineOpcode() &&
609 TII->isHighLatencyDef(N->getMachineOpcode()))
610 SU->Latency = HighLatencyCycles;
611 else
612 SU->Latency = 1;
613 return;
614 }
615
616 // Compute the latency for the node. We use the sum of the latencies for
617 // all nodes glued together into this SUnit.
618 SU->Latency = 0;
619 for (SDNode *N = SU->getNode(); N; N = N->getGluedNode())
620 if (N->isMachineOpcode())
621 SU->Latency += TII->getInstrLatency(InstrItins, N);
622}
623
624void ScheduleDAGSDNodes::computeOperandLatency(SDNode *Def, SDNode *Use,
625 unsigned OpIdx, SDep& dep) const{
626 // Check to see if the scheduler cares about latencies.
627 if (forceUnitLatencies())
628 return;
629
630 if (dep.getKind() != SDep::Data)
631 return;
632
633 unsigned DefIdx = Use->getOperand(OpIdx).getResNo();
634 if (Use->isMachineOpcode())
635 // Adjust the use operand index by num of defs.
636 OpIdx += TII->get(Use->getMachineOpcode()).getNumDefs();
637 int Latency = TII->getOperandLatency(InstrItins, Def, DefIdx, Use, OpIdx);
638 if (Latency > 1 && Use->getOpcode() == ISD::CopyToReg &&
639 !BB->succ_empty()) {
640 unsigned Reg = cast<RegisterSDNode>(Use->getOperand(1))->getReg();
641 if (TargetRegisterInfo::isVirtualRegister(Reg))
642 // This copy is a liveout value. It is likely coalesced, so reduce the
643 // latency so not to penalize the def.
644 // FIXME: need target specific adjustment here?
645 Latency = (Latency > 1) ? Latency - 1 : 1;
646 }
647 if (Latency >= 0)
648 dep.setLatency(Latency);
649}
650
651void ScheduleDAGSDNodes::dumpNode(const SUnit *SU) const {
652#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
653 if (!SU->getNode()) {
654 dbgs() << "PHYS REG COPY\n";
655 return;
656 }
657
658 SU->getNode()->dump(DAG);
659 dbgs() << "\n";
660 SmallVector<SDNode *, 4> GluedNodes;
661 for (SDNode *N = SU->getNode()->getGluedNode(); N; N = N->getGluedNode())
662 GluedNodes.push_back(N);
663 while (!GluedNodes.empty()) {
664 dbgs() << " ";
665 GluedNodes.back()->dump(DAG);
666 dbgs() << "\n";
667 GluedNodes.pop_back();
668 }
669#endif
670}
671
672#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
673void ScheduleDAGSDNodes::dumpSchedule() const {
674 for (unsigned i = 0, e = Sequence.size(); i != e; i++) {
675 if (SUnit *SU = Sequence[i])
676 SU->dump(this);
677 else
678 dbgs() << "**** NOOP ****\n";
679 }
680}
681#endif
682
683#ifndef NDEBUG
684/// VerifyScheduledSequence - Verify that all SUnits were scheduled and that
685/// their state is consistent with the nodes listed in Sequence.
686///
687void ScheduleDAGSDNodes::VerifyScheduledSequence(bool isBottomUp) {
688 unsigned ScheduledNodes = ScheduleDAG::VerifyScheduledDAG(isBottomUp);
689 unsigned Noops = 0;
690 for (unsigned i = 0, e = Sequence.size(); i != e; ++i)
691 if (!Sequence[i])
692 ++Noops;
693 assert(Sequence.size() - Noops == ScheduledNodes &&
694 "The number of nodes scheduled doesn't match the expected number!");
695}
696#endif // NDEBUG
697
698/// ProcessSDDbgValues - Process SDDbgValues associated with this node.
699static void
700ProcessSDDbgValues(SDNode *N, SelectionDAG *DAG, InstrEmitter &Emitter,
701 SmallVectorImpl<std::pair<unsigned, MachineInstr*> > &Orders,
702 DenseMap<SDValue, unsigned> &VRBaseMap, unsigned Order) {
703 if (!N->getHasDebugValue())
704 return;
705
706 // Opportunistically insert immediate dbg_value uses, i.e. those with source
707 // order number right after the N.
708 MachineBasicBlock *BB = Emitter.getBlock();
709 MachineBasicBlock::iterator InsertPos = Emitter.getInsertPos();
710 ArrayRef<SDDbgValue*> DVs = DAG->GetDbgValues(N);
711 for (unsigned i = 0, e = DVs.size(); i != e; ++i) {
712 if (DVs[i]->isInvalidated())
713 continue;
714 unsigned DVOrder = DVs[i]->getOrder();
715 if (!Order || DVOrder == ++Order) {
716 MachineInstr *DbgMI = Emitter.EmitDbgValue(DVs[i], VRBaseMap);
717 if (DbgMI) {
718 Orders.push_back(std::make_pair(DVOrder, DbgMI));
719 BB->insert(InsertPos, DbgMI);
720 }
721 DVs[i]->setIsInvalidated();
722 }
723 }
724}
725
726// ProcessSourceNode - Process nodes with source order numbers. These are added
727// to a vector which EmitSchedule uses to determine how to insert dbg_value
728// instructions in the right order.
729static void
730ProcessSourceNode(SDNode *N, SelectionDAG *DAG, InstrEmitter &Emitter,
731 DenseMap<SDValue, unsigned> &VRBaseMap,
732 SmallVectorImpl<std::pair<unsigned, MachineInstr*> > &Orders,
733 SmallSet<unsigned, 8> &Seen) {
734 unsigned Order = N->getIROrder();
735 if (!Order || !Seen.insert(Order)) {
736 // Process any valid SDDbgValues even if node does not have any order
737 // assigned.
738 ProcessSDDbgValues(N, DAG, Emitter, Orders, VRBaseMap, 0);
739 return;
740 }
741
742 MachineBasicBlock *BB = Emitter.getBlock();
743 if (Emitter.getInsertPos() == BB->begin() || BB->back().isPHI() ||
744 // Fast-isel may have inserted some instructions, in which case the
745 // BB->back().isPHI() test will not fire when we want it to.
746 prior(Emitter.getInsertPos())->isPHI()) {
747 // Did not insert any instruction.
748 Orders.push_back(std::make_pair(Order, (MachineInstr*)0));
749 return;
750 }
751
752 Orders.push_back(std::make_pair(Order, prior(Emitter.getInsertPos())));
753 ProcessSDDbgValues(N, DAG, Emitter, Orders, VRBaseMap, Order);
754}
755
756void ScheduleDAGSDNodes::
757EmitPhysRegCopy(SUnit *SU, DenseMap<SUnit*, unsigned> &VRBaseMap,
758 MachineBasicBlock::iterator InsertPos) {
759 for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
760 I != E; ++I) {
761 if (I->isCtrl()) continue; // ignore chain preds
762 if (I->getSUnit()->CopyDstRC) {
763 // Copy to physical register.
764 DenseMap<SUnit*, unsigned>::iterator VRI = VRBaseMap.find(I->getSUnit());
765 assert(VRI != VRBaseMap.end() && "Node emitted out of order - late");
766 // Find the destination physical register.
767 unsigned Reg = 0;
768 for (SUnit::const_succ_iterator II = SU->Succs.begin(),
769 EE = SU->Succs.end(); II != EE; ++II) {
770 if (II->isCtrl()) continue; // ignore chain preds
771 if (II->getReg()) {
772 Reg = II->getReg();
773 break;
774 }
775 }
776 BuildMI(*BB, InsertPos, DebugLoc(), TII->get(TargetOpcode::COPY), Reg)
777 .addReg(VRI->second);
778 } else {
779 // Copy from physical register.
780 assert(I->getReg() && "Unknown physical register!");
781 unsigned VRBase = MRI.createVirtualRegister(SU->CopyDstRC);
782 bool isNew = VRBaseMap.insert(std::make_pair(SU, VRBase)).second;
783 (void)isNew; // Silence compiler warning.
784 assert(isNew && "Node emitted out of order - early");
785 BuildMI(*BB, InsertPos, DebugLoc(), TII->get(TargetOpcode::COPY), VRBase)
786 .addReg(I->getReg());
787 }
788 break;
789 }
790}
791
792/// EmitSchedule - Emit the machine code in scheduled order. Return the new
793/// InsertPos and MachineBasicBlock that contains this insertion
794/// point. ScheduleDAGSDNodes holds a BB pointer for convenience, but this does
795/// not necessarily refer to returned BB. The emitter may split blocks.
796MachineBasicBlock *ScheduleDAGSDNodes::
797EmitSchedule(MachineBasicBlock::iterator &InsertPos) {
798 InstrEmitter Emitter(BB, InsertPos);
799 DenseMap<SDValue, unsigned> VRBaseMap;
800 DenseMap<SUnit*, unsigned> CopyVRBaseMap;
801 SmallVector<std::pair<unsigned, MachineInstr*>, 32> Orders;
802 SmallSet<unsigned, 8> Seen;
803 bool HasDbg = DAG->hasDebugValues();
804
805 // If this is the first BB, emit byval parameter dbg_value's.
806 if (HasDbg && BB->getParent()->begin() == MachineFunction::iterator(BB)) {
807 SDDbgInfo::DbgIterator PDI = DAG->ByvalParmDbgBegin();
808 SDDbgInfo::DbgIterator PDE = DAG->ByvalParmDbgEnd();
809 for (; PDI != PDE; ++PDI) {
810 MachineInstr *DbgMI= Emitter.EmitDbgValue(*PDI, VRBaseMap);
811 if (DbgMI)
812 BB->insert(InsertPos, DbgMI);
813 }
814 }
815
816 for (unsigned i = 0, e = Sequence.size(); i != e; i++) {
817 SUnit *SU = Sequence[i];
818 if (!SU) {
819 // Null SUnit* is a noop.
820 TII->insertNoop(*Emitter.getBlock(), InsertPos);
821 continue;
822 }
823
824 // For pre-regalloc scheduling, create instructions corresponding to the
825 // SDNode and any glued SDNodes and append them to the block.
826 if (!SU->getNode()) {
827 // Emit a copy.
828 EmitPhysRegCopy(SU, CopyVRBaseMap, InsertPos);
829 continue;
830 }
831
832 SmallVector<SDNode *, 4> GluedNodes;
833 for (SDNode *N = SU->getNode()->getGluedNode(); N; N = N->getGluedNode())
834 GluedNodes.push_back(N);
835 while (!GluedNodes.empty()) {
836 SDNode *N = GluedNodes.back();
837 Emitter.EmitNode(GluedNodes.back(), SU->OrigNode != SU, SU->isCloned,
838 VRBaseMap);
839 // Remember the source order of the inserted instruction.
840 if (HasDbg)
841 ProcessSourceNode(N, DAG, Emitter, VRBaseMap, Orders, Seen);
842 GluedNodes.pop_back();
843 }
844 Emitter.EmitNode(SU->getNode(), SU->OrigNode != SU, SU->isCloned,
845 VRBaseMap);
846 // Remember the source order of the inserted instruction.
847 if (HasDbg)
848 ProcessSourceNode(SU->getNode(), DAG, Emitter, VRBaseMap, Orders,
849 Seen);
850 }
851
852 // Insert all the dbg_values which have not already been inserted in source
853 // order sequence.
854 if (HasDbg) {
855 MachineBasicBlock::iterator BBBegin = BB->getFirstNonPHI();
856
857 // Sort the source order instructions and use the order to insert debug
858 // values.
859 std::sort(Orders.begin(), Orders.end(), less_first());
860
861 SDDbgInfo::DbgIterator DI = DAG->DbgBegin();
862 SDDbgInfo::DbgIterator DE = DAG->DbgEnd();
863 // Now emit the rest according to source order.
864 unsigned LastOrder = 0;
865 for (unsigned i = 0, e = Orders.size(); i != e && DI != DE; ++i) {
866 unsigned Order = Orders[i].first;
867 MachineInstr *MI = Orders[i].second;
868 // Insert all SDDbgValue's whose order(s) are before "Order".
869 if (!MI)
870 continue;
871 for (; DI != DE &&
872 (*DI)->getOrder() >= LastOrder && (*DI)->getOrder() < Order; ++DI) {
873 if ((*DI)->isInvalidated())
874 continue;
875 MachineInstr *DbgMI = Emitter.EmitDbgValue(*DI, VRBaseMap);
876 if (DbgMI) {
877 if (!LastOrder)
878 // Insert to start of the BB (after PHIs).
879 BB->insert(BBBegin, DbgMI);
880 else {
881 // Insert at the instruction, which may be in a different
882 // block, if the block was split by a custom inserter.
883 MachineBasicBlock::iterator Pos = MI;
884 MI->getParent()->insert(Pos, DbgMI);
885 }
886 }
887 }
888 LastOrder = Order;
889 }
890 // Add trailing DbgValue's before the terminator. FIXME: May want to add
891 // some of them before one or more conditional branches?
892 SmallVector<MachineInstr*, 8> DbgMIs;
893 while (DI != DE) {
894 if (!(*DI)->isInvalidated())
895 if (MachineInstr *DbgMI = Emitter.EmitDbgValue(*DI, VRBaseMap))
896 DbgMIs.push_back(DbgMI);
897 ++DI;
898 }
899
900 MachineBasicBlock *InsertBB = Emitter.getBlock();
901 MachineBasicBlock::iterator Pos = InsertBB->getFirstTerminator();
902 InsertBB->insert(Pos, DbgMIs.begin(), DbgMIs.end());
903 }
904
905 InsertPos = Emitter.getInsertPos();
906 return Emitter.getBlock();
907}
908
909/// Return the basic block label.
910std::string ScheduleDAGSDNodes::getDAGName() const {
911 return "sunit-dag." + BB->getFullName();
912}