Deleted Added
full compact
DAGCombiner.cpp (263508) DAGCombiner.cpp (266715)
1//===-- DAGCombiner.cpp - Implement a DAG node combiner -------------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass combines dag nodes to form fewer, simpler DAG nodes. It can be run
11// both before and after the DAG is legalized.
12//
13// This pass is not a substitute for the LLVM IR instcombine pass. This pass is
14// primarily intended to handle simplification opportunities that are implicit
15// in the LLVM IR and exposed by the various codegen lowering phases.
16//
17//===----------------------------------------------------------------------===//
18
19#define DEBUG_TYPE "dagcombine"
20#include "llvm/CodeGen/SelectionDAG.h"
21#include "llvm/ADT/SmallPtrSet.h"
22#include "llvm/ADT/Statistic.h"
23#include "llvm/Analysis/AliasAnalysis.h"
24#include "llvm/CodeGen/MachineFrameInfo.h"
25#include "llvm/CodeGen/MachineFunction.h"
26#include "llvm/IR/DataLayout.h"
27#include "llvm/IR/DerivedTypes.h"
28#include "llvm/IR/Function.h"
29#include "llvm/IR/LLVMContext.h"
30#include "llvm/Support/CommandLine.h"
31#include "llvm/Support/Debug.h"
32#include "llvm/Support/ErrorHandling.h"
33#include "llvm/Support/MathExtras.h"
34#include "llvm/Support/raw_ostream.h"
35#include "llvm/Target/TargetLowering.h"
36#include "llvm/Target/TargetMachine.h"
37#include "llvm/Target/TargetOptions.h"
38#include "llvm/Target/TargetRegisterInfo.h"
39#include "llvm/Target/TargetSubtargetInfo.h"
40#include <algorithm>
41using namespace llvm;
42
43STATISTIC(NodesCombined , "Number of dag nodes combined");
44STATISTIC(PreIndexedNodes , "Number of pre-indexed nodes created");
45STATISTIC(PostIndexedNodes, "Number of post-indexed nodes created");
46STATISTIC(OpsNarrowed , "Number of load/op/store narrowed");
47STATISTIC(LdStFP2Int , "Number of fp load/store pairs transformed to int");
48STATISTIC(SlicedLoads, "Number of load sliced");
49
50namespace {
51 static cl::opt<bool>
52 CombinerAA("combiner-alias-analysis", cl::Hidden,
53 cl::desc("Turn on alias analysis during testing"));
54
55 static cl::opt<bool>
56 CombinerGlobalAA("combiner-global-alias-analysis", cl::Hidden,
57 cl::desc("Include global information in alias analysis"));
58
59 /// Hidden option to stress test load slicing, i.e., when this option
60 /// is enabled, load slicing bypasses most of its profitability guards.
61 static cl::opt<bool>
62 StressLoadSlicing("combiner-stress-load-slicing", cl::Hidden,
63 cl::desc("Bypass the profitability model of load "
64 "slicing"),
65 cl::init(false));
66
67//------------------------------ DAGCombiner ---------------------------------//
68
69 class DAGCombiner {
70 SelectionDAG &DAG;
71 const TargetLowering &TLI;
72 CombineLevel Level;
73 CodeGenOpt::Level OptLevel;
74 bool LegalOperations;
75 bool LegalTypes;
76 bool ForCodeSize;
77
78 // Worklist of all of the nodes that need to be simplified.
79 //
80 // This has the semantics that when adding to the worklist,
81 // the item added must be next to be processed. It should
82 // also only appear once. The naive approach to this takes
83 // linear time.
84 //
85 // To reduce the insert/remove time to logarithmic, we use
86 // a set and a vector to maintain our worklist.
87 //
88 // The set contains the items on the worklist, but does not
89 // maintain the order they should be visited.
90 //
91 // The vector maintains the order nodes should be visited, but may
92 // contain duplicate or removed nodes. When choosing a node to
93 // visit, we pop off the order stack until we find an item that is
94 // also in the contents set. All operations are O(log N).
95 SmallPtrSet<SDNode*, 64> WorkListContents;
96 SmallVector<SDNode*, 64> WorkListOrder;
97
98 // AA - Used for DAG load/store alias analysis.
99 AliasAnalysis &AA;
100
101 /// AddUsersToWorkList - When an instruction is simplified, add all users of
102 /// the instruction to the work lists because they might get more simplified
103 /// now.
104 ///
105 void AddUsersToWorkList(SDNode *N) {
106 for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
107 UI != UE; ++UI)
108 AddToWorkList(*UI);
109 }
110
111 /// visit - call the node-specific routine that knows how to fold each
112 /// particular type of node.
113 SDValue visit(SDNode *N);
114
115 public:
116 /// AddToWorkList - Add to the work list making sure its instance is at the
117 /// back (next to be processed.)
118 void AddToWorkList(SDNode *N) {
119 WorkListContents.insert(N);
120 WorkListOrder.push_back(N);
121 }
122
123 /// removeFromWorkList - remove all instances of N from the worklist.
124 ///
125 void removeFromWorkList(SDNode *N) {
126 WorkListContents.erase(N);
127 }
128
129 SDValue CombineTo(SDNode *N, const SDValue *To, unsigned NumTo,
130 bool AddTo = true);
131
132 SDValue CombineTo(SDNode *N, SDValue Res, bool AddTo = true) {
133 return CombineTo(N, &Res, 1, AddTo);
134 }
135
136 SDValue CombineTo(SDNode *N, SDValue Res0, SDValue Res1,
137 bool AddTo = true) {
138 SDValue To[] = { Res0, Res1 };
139 return CombineTo(N, To, 2, AddTo);
140 }
141
142 void CommitTargetLoweringOpt(const TargetLowering::TargetLoweringOpt &TLO);
143
144 private:
145
146 /// SimplifyDemandedBits - Check the specified integer node value to see if
147 /// it can be simplified or if things it uses can be simplified by bit
148 /// propagation. If so, return true.
149 bool SimplifyDemandedBits(SDValue Op) {
150 unsigned BitWidth = Op.getValueType().getScalarType().getSizeInBits();
151 APInt Demanded = APInt::getAllOnesValue(BitWidth);
152 return SimplifyDemandedBits(Op, Demanded);
153 }
154
155 bool SimplifyDemandedBits(SDValue Op, const APInt &Demanded);
156
157 bool CombineToPreIndexedLoadStore(SDNode *N);
158 bool CombineToPostIndexedLoadStore(SDNode *N);
159 bool SliceUpLoad(SDNode *N);
160
161 void ReplaceLoadWithPromotedLoad(SDNode *Load, SDNode *ExtLoad);
162 SDValue PromoteOperand(SDValue Op, EVT PVT, bool &Replace);
163 SDValue SExtPromoteOperand(SDValue Op, EVT PVT);
164 SDValue ZExtPromoteOperand(SDValue Op, EVT PVT);
165 SDValue PromoteIntBinOp(SDValue Op);
166 SDValue PromoteIntShiftOp(SDValue Op);
167 SDValue PromoteExtend(SDValue Op);
168 bool PromoteLoad(SDValue Op);
169
170 void ExtendSetCCUses(const SmallVectorImpl<SDNode *> &SetCCs,
171 SDValue Trunc, SDValue ExtLoad, SDLoc DL,
172 ISD::NodeType ExtType);
173
174 /// combine - call the node-specific routine that knows how to fold each
175 /// particular type of node. If that doesn't do anything, try the
176 /// target-specific DAG combines.
177 SDValue combine(SDNode *N);
178
179 // Visitation implementation - Implement dag node combining for different
180 // node types. The semantics are as follows:
181 // Return Value:
182 // SDValue.getNode() == 0 - No change was made
183 // SDValue.getNode() == N - N was replaced, is dead and has been handled.
184 // otherwise - N should be replaced by the returned Operand.
185 //
186 SDValue visitTokenFactor(SDNode *N);
187 SDValue visitMERGE_VALUES(SDNode *N);
188 SDValue visitADD(SDNode *N);
189 SDValue visitSUB(SDNode *N);
190 SDValue visitADDC(SDNode *N);
191 SDValue visitSUBC(SDNode *N);
192 SDValue visitADDE(SDNode *N);
193 SDValue visitSUBE(SDNode *N);
194 SDValue visitMUL(SDNode *N);
195 SDValue visitSDIV(SDNode *N);
196 SDValue visitUDIV(SDNode *N);
197 SDValue visitSREM(SDNode *N);
198 SDValue visitUREM(SDNode *N);
199 SDValue visitMULHU(SDNode *N);
200 SDValue visitMULHS(SDNode *N);
201 SDValue visitSMUL_LOHI(SDNode *N);
202 SDValue visitUMUL_LOHI(SDNode *N);
203 SDValue visitSMULO(SDNode *N);
204 SDValue visitUMULO(SDNode *N);
205 SDValue visitSDIVREM(SDNode *N);
206 SDValue visitUDIVREM(SDNode *N);
207 SDValue visitAND(SDNode *N);
208 SDValue visitOR(SDNode *N);
209 SDValue visitXOR(SDNode *N);
210 SDValue SimplifyVBinOp(SDNode *N);
211 SDValue SimplifyVUnaryOp(SDNode *N);
212 SDValue visitSHL(SDNode *N);
213 SDValue visitSRA(SDNode *N);
214 SDValue visitSRL(SDNode *N);
215 SDValue visitCTLZ(SDNode *N);
216 SDValue visitCTLZ_ZERO_UNDEF(SDNode *N);
217 SDValue visitCTTZ(SDNode *N);
218 SDValue visitCTTZ_ZERO_UNDEF(SDNode *N);
219 SDValue visitCTPOP(SDNode *N);
220 SDValue visitSELECT(SDNode *N);
221 SDValue visitVSELECT(SDNode *N);
222 SDValue visitSELECT_CC(SDNode *N);
223 SDValue visitSETCC(SDNode *N);
224 SDValue visitSIGN_EXTEND(SDNode *N);
225 SDValue visitZERO_EXTEND(SDNode *N);
226 SDValue visitANY_EXTEND(SDNode *N);
227 SDValue visitSIGN_EXTEND_INREG(SDNode *N);
228 SDValue visitTRUNCATE(SDNode *N);
229 SDValue visitBITCAST(SDNode *N);
230 SDValue visitBUILD_PAIR(SDNode *N);
231 SDValue visitFADD(SDNode *N);
232 SDValue visitFSUB(SDNode *N);
233 SDValue visitFMUL(SDNode *N);
234 SDValue visitFMA(SDNode *N);
235 SDValue visitFDIV(SDNode *N);
236 SDValue visitFREM(SDNode *N);
237 SDValue visitFCOPYSIGN(SDNode *N);
238 SDValue visitSINT_TO_FP(SDNode *N);
239 SDValue visitUINT_TO_FP(SDNode *N);
240 SDValue visitFP_TO_SINT(SDNode *N);
241 SDValue visitFP_TO_UINT(SDNode *N);
242 SDValue visitFP_ROUND(SDNode *N);
243 SDValue visitFP_ROUND_INREG(SDNode *N);
244 SDValue visitFP_EXTEND(SDNode *N);
245 SDValue visitFNEG(SDNode *N);
246 SDValue visitFABS(SDNode *N);
247 SDValue visitFCEIL(SDNode *N);
248 SDValue visitFTRUNC(SDNode *N);
249 SDValue visitFFLOOR(SDNode *N);
250 SDValue visitBRCOND(SDNode *N);
251 SDValue visitBR_CC(SDNode *N);
252 SDValue visitLOAD(SDNode *N);
253 SDValue visitSTORE(SDNode *N);
254 SDValue visitINSERT_VECTOR_ELT(SDNode *N);
255 SDValue visitEXTRACT_VECTOR_ELT(SDNode *N);
256 SDValue visitBUILD_VECTOR(SDNode *N);
257 SDValue visitCONCAT_VECTORS(SDNode *N);
258 SDValue visitEXTRACT_SUBVECTOR(SDNode *N);
259 SDValue visitVECTOR_SHUFFLE(SDNode *N);
260
261 SDValue XformToShuffleWithZero(SDNode *N);
262 SDValue ReassociateOps(unsigned Opc, SDLoc DL, SDValue LHS, SDValue RHS);
263
264 SDValue visitShiftByConstant(SDNode *N, unsigned Amt);
265
266 bool SimplifySelectOps(SDNode *SELECT, SDValue LHS, SDValue RHS);
267 SDValue SimplifyBinOpWithSameOpcodeHands(SDNode *N);
268 SDValue SimplifySelect(SDLoc DL, SDValue N0, SDValue N1, SDValue N2);
269 SDValue SimplifySelectCC(SDLoc DL, SDValue N0, SDValue N1, SDValue N2,
270 SDValue N3, ISD::CondCode CC,
271 bool NotExtCompare = false);
272 SDValue SimplifySetCC(EVT VT, SDValue N0, SDValue N1, ISD::CondCode Cond,
273 SDLoc DL, bool foldBooleans = true);
274 SDValue SimplifyNodeWithTwoResults(SDNode *N, unsigned LoOp,
275 unsigned HiOp);
276 SDValue CombineConsecutiveLoads(SDNode *N, EVT VT);
277 SDValue ConstantFoldBITCASTofBUILD_VECTOR(SDNode *, EVT);
278 SDValue BuildSDIV(SDNode *N);
279 SDValue BuildUDIV(SDNode *N);
280 SDValue MatchBSwapHWordLow(SDNode *N, SDValue N0, SDValue N1,
281 bool DemandHighBits = true);
282 SDValue MatchBSwapHWord(SDNode *N, SDValue N0, SDValue N1);
283 SDNode *MatchRotate(SDValue LHS, SDValue RHS, SDLoc DL);
284 SDValue ReduceLoadWidth(SDNode *N);
285 SDValue ReduceLoadOpStoreWidth(SDNode *N);
286 SDValue TransformFPLoadStorePair(SDNode *N);
287 SDValue reduceBuildVecExtToExtBuildVec(SDNode *N);
288 SDValue reduceBuildVecConvertToConvertBuildVec(SDNode *N);
289
290 SDValue GetDemandedBits(SDValue V, const APInt &Mask);
291
292 /// GatherAllAliases - Walk up chain skipping non-aliasing memory nodes,
293 /// looking for aliasing nodes and adding them to the Aliases vector.
294 void GatherAllAliases(SDNode *N, SDValue OriginalChain,
295 SmallVectorImpl<SDValue> &Aliases);
296
297 /// isAlias - Return true if there is any possibility that the two addresses
298 /// overlap.
299 bool isAlias(SDValue Ptr1, int64_t Size1, bool IsVolatile1,
300 const Value *SrcValue1, int SrcValueOffset1,
301 unsigned SrcValueAlign1,
302 const MDNode *TBAAInfo1,
303 SDValue Ptr2, int64_t Size2, bool IsVolatile2,
304 const Value *SrcValue2, int SrcValueOffset2,
305 unsigned SrcValueAlign2,
306 const MDNode *TBAAInfo2) const;
307
308 /// isAlias - Return true if there is any possibility that the two addresses
309 /// overlap.
310 bool isAlias(LSBaseSDNode *Op0, LSBaseSDNode *Op1);
311
312 /// FindAliasInfo - Extracts the relevant alias information from the memory
313 /// node. Returns true if the operand was a load.
314 bool FindAliasInfo(SDNode *N,
315 SDValue &Ptr, int64_t &Size, bool &IsVolatile,
316 const Value *&SrcValue, int &SrcValueOffset,
317 unsigned &SrcValueAlignment,
318 const MDNode *&TBAAInfo) const;
319
320 /// FindBetterChain - Walk up chain skipping non-aliasing memory nodes,
321 /// looking for a better chain (aliasing node.)
322 SDValue FindBetterChain(SDNode *N, SDValue Chain);
323
324 /// Merge consecutive store operations into a wide store.
325 /// This optimization uses wide integers or vectors when possible.
326 /// \return True if some memory operations were changed.
327 bool MergeConsecutiveStores(StoreSDNode *N);
328
329 public:
330 DAGCombiner(SelectionDAG &D, AliasAnalysis &A, CodeGenOpt::Level OL)
331 : DAG(D), TLI(D.getTargetLoweringInfo()), Level(BeforeLegalizeTypes),
332 OptLevel(OL), LegalOperations(false), LegalTypes(false), AA(A) {
333 AttributeSet FnAttrs =
334 DAG.getMachineFunction().getFunction()->getAttributes();
335 ForCodeSize =
336 FnAttrs.hasAttribute(AttributeSet::FunctionIndex,
337 Attribute::OptimizeForSize) ||
338 FnAttrs.hasAttribute(AttributeSet::FunctionIndex, Attribute::MinSize);
339 }
340
341 /// Run - runs the dag combiner on all nodes in the work list
342 void Run(CombineLevel AtLevel);
343
344 SelectionDAG &getDAG() const { return DAG; }
345
346 /// getShiftAmountTy - Returns a type large enough to hold any valid
347 /// shift amount - before type legalization these can be huge.
348 EVT getShiftAmountTy(EVT LHSTy) {
349 assert(LHSTy.isInteger() && "Shift amount is not an integer type!");
350 if (LHSTy.isVector())
351 return LHSTy;
352 return LegalTypes ? TLI.getScalarShiftAmountTy(LHSTy)
353 : TLI.getPointerTy();
354 }
355
356 /// isTypeLegal - This method returns true if we are running before type
357 /// legalization or if the specified VT is legal.
358 bool isTypeLegal(const EVT &VT) {
359 if (!LegalTypes) return true;
360 return TLI.isTypeLegal(VT);
361 }
362
363 /// getSetCCResultType - Convenience wrapper around
364 /// TargetLowering::getSetCCResultType
365 EVT getSetCCResultType(EVT VT) const {
366 return TLI.getSetCCResultType(*DAG.getContext(), VT);
367 }
368 };
369}
370
371
372namespace {
373/// WorkListRemover - This class is a DAGUpdateListener that removes any deleted
374/// nodes from the worklist.
375class WorkListRemover : public SelectionDAG::DAGUpdateListener {
376 DAGCombiner &DC;
377public:
378 explicit WorkListRemover(DAGCombiner &dc)
379 : SelectionDAG::DAGUpdateListener(dc.getDAG()), DC(dc) {}
380
381 virtual void NodeDeleted(SDNode *N, SDNode *E) {
382 DC.removeFromWorkList(N);
383 }
384};
385}
386
387//===----------------------------------------------------------------------===//
388// TargetLowering::DAGCombinerInfo implementation
389//===----------------------------------------------------------------------===//
390
391void TargetLowering::DAGCombinerInfo::AddToWorklist(SDNode *N) {
392 ((DAGCombiner*)DC)->AddToWorkList(N);
393}
394
395void TargetLowering::DAGCombinerInfo::RemoveFromWorklist(SDNode *N) {
396 ((DAGCombiner*)DC)->removeFromWorkList(N);
397}
398
399SDValue TargetLowering::DAGCombinerInfo::
400CombineTo(SDNode *N, const std::vector<SDValue> &To, bool AddTo) {
401 return ((DAGCombiner*)DC)->CombineTo(N, &To[0], To.size(), AddTo);
402}
403
404SDValue TargetLowering::DAGCombinerInfo::
405CombineTo(SDNode *N, SDValue Res, bool AddTo) {
406 return ((DAGCombiner*)DC)->CombineTo(N, Res, AddTo);
407}
408
409
410SDValue TargetLowering::DAGCombinerInfo::
411CombineTo(SDNode *N, SDValue Res0, SDValue Res1, bool AddTo) {
412 return ((DAGCombiner*)DC)->CombineTo(N, Res0, Res1, AddTo);
413}
414
415void TargetLowering::DAGCombinerInfo::
416CommitTargetLoweringOpt(const TargetLowering::TargetLoweringOpt &TLO) {
417 return ((DAGCombiner*)DC)->CommitTargetLoweringOpt(TLO);
418}
419
420//===----------------------------------------------------------------------===//
421// Helper Functions
422//===----------------------------------------------------------------------===//
423
424/// isNegatibleForFree - Return 1 if we can compute the negated form of the
425/// specified expression for the same cost as the expression itself, or 2 if we
426/// can compute the negated form more cheaply than the expression itself.
427static char isNegatibleForFree(SDValue Op, bool LegalOperations,
428 const TargetLowering &TLI,
429 const TargetOptions *Options,
430 unsigned Depth = 0) {
431 // fneg is removable even if it has multiple uses.
432 if (Op.getOpcode() == ISD::FNEG) return 2;
433
434 // Don't allow anything with multiple uses.
435 if (!Op.hasOneUse()) return 0;
436
437 // Don't recurse exponentially.
438 if (Depth > 6) return 0;
439
440 switch (Op.getOpcode()) {
441 default: return false;
442 case ISD::ConstantFP:
443 // Don't invert constant FP values after legalize. The negated constant
444 // isn't necessarily legal.
445 return LegalOperations ? 0 : 1;
446 case ISD::FADD:
447 // FIXME: determine better conditions for this xform.
448 if (!Options->UnsafeFPMath) return 0;
449
450 // After operation legalization, it might not be legal to create new FSUBs.
451 if (LegalOperations &&
452 !TLI.isOperationLegalOrCustom(ISD::FSUB, Op.getValueType()))
453 return 0;
454
455 // fold (fneg (fadd A, B)) -> (fsub (fneg A), B)
456 if (char V = isNegatibleForFree(Op.getOperand(0), LegalOperations, TLI,
457 Options, Depth + 1))
458 return V;
459 // fold (fneg (fadd A, B)) -> (fsub (fneg B), A)
460 return isNegatibleForFree(Op.getOperand(1), LegalOperations, TLI, Options,
461 Depth + 1);
462 case ISD::FSUB:
463 // We can't turn -(A-B) into B-A when we honor signed zeros.
464 if (!Options->UnsafeFPMath) return 0;
465
466 // fold (fneg (fsub A, B)) -> (fsub B, A)
467 return 1;
468
469 case ISD::FMUL:
470 case ISD::FDIV:
471 if (Options->HonorSignDependentRoundingFPMath()) return 0;
472
473 // fold (fneg (fmul X, Y)) -> (fmul (fneg X), Y) or (fmul X, (fneg Y))
474 if (char V = isNegatibleForFree(Op.getOperand(0), LegalOperations, TLI,
475 Options, Depth + 1))
476 return V;
477
478 return isNegatibleForFree(Op.getOperand(1), LegalOperations, TLI, Options,
479 Depth + 1);
480
481 case ISD::FP_EXTEND:
482 case ISD::FP_ROUND:
483 case ISD::FSIN:
484 return isNegatibleForFree(Op.getOperand(0), LegalOperations, TLI, Options,
485 Depth + 1);
486 }
487}
488
489/// GetNegatedExpression - If isNegatibleForFree returns true, this function
490/// returns the newly negated expression.
491static SDValue GetNegatedExpression(SDValue Op, SelectionDAG &DAG,
492 bool LegalOperations, unsigned Depth = 0) {
493 // fneg is removable even if it has multiple uses.
494 if (Op.getOpcode() == ISD::FNEG) return Op.getOperand(0);
495
496 // Don't allow anything with multiple uses.
497 assert(Op.hasOneUse() && "Unknown reuse!");
498
499 assert(Depth <= 6 && "GetNegatedExpression doesn't match isNegatibleForFree");
500 switch (Op.getOpcode()) {
501 default: llvm_unreachable("Unknown code");
502 case ISD::ConstantFP: {
503 APFloat V = cast<ConstantFPSDNode>(Op)->getValueAPF();
504 V.changeSign();
505 return DAG.getConstantFP(V, Op.getValueType());
506 }
507 case ISD::FADD:
508 // FIXME: determine better conditions for this xform.
509 assert(DAG.getTarget().Options.UnsafeFPMath);
510
511 // fold (fneg (fadd A, B)) -> (fsub (fneg A), B)
512 if (isNegatibleForFree(Op.getOperand(0), LegalOperations,
513 DAG.getTargetLoweringInfo(),
514 &DAG.getTarget().Options, Depth+1))
515 return DAG.getNode(ISD::FSUB, SDLoc(Op), Op.getValueType(),
516 GetNegatedExpression(Op.getOperand(0), DAG,
517 LegalOperations, Depth+1),
518 Op.getOperand(1));
519 // fold (fneg (fadd A, B)) -> (fsub (fneg B), A)
520 return DAG.getNode(ISD::FSUB, SDLoc(Op), Op.getValueType(),
521 GetNegatedExpression(Op.getOperand(1), DAG,
522 LegalOperations, Depth+1),
523 Op.getOperand(0));
524 case ISD::FSUB:
525 // We can't turn -(A-B) into B-A when we honor signed zeros.
526 assert(DAG.getTarget().Options.UnsafeFPMath);
527
528 // fold (fneg (fsub 0, B)) -> B
529 if (ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(Op.getOperand(0)))
530 if (N0CFP->getValueAPF().isZero())
531 return Op.getOperand(1);
532
533 // fold (fneg (fsub A, B)) -> (fsub B, A)
534 return DAG.getNode(ISD::FSUB, SDLoc(Op), Op.getValueType(),
535 Op.getOperand(1), Op.getOperand(0));
536
537 case ISD::FMUL:
538 case ISD::FDIV:
539 assert(!DAG.getTarget().Options.HonorSignDependentRoundingFPMath());
540
541 // fold (fneg (fmul X, Y)) -> (fmul (fneg X), Y)
542 if (isNegatibleForFree(Op.getOperand(0), LegalOperations,
543 DAG.getTargetLoweringInfo(),
544 &DAG.getTarget().Options, Depth+1))
545 return DAG.getNode(Op.getOpcode(), SDLoc(Op), Op.getValueType(),
546 GetNegatedExpression(Op.getOperand(0), DAG,
547 LegalOperations, Depth+1),
548 Op.getOperand(1));
549
550 // fold (fneg (fmul X, Y)) -> (fmul X, (fneg Y))
551 return DAG.getNode(Op.getOpcode(), SDLoc(Op), Op.getValueType(),
552 Op.getOperand(0),
553 GetNegatedExpression(Op.getOperand(1), DAG,
554 LegalOperations, Depth+1));
555
556 case ISD::FP_EXTEND:
557 case ISD::FSIN:
558 return DAG.getNode(Op.getOpcode(), SDLoc(Op), Op.getValueType(),
559 GetNegatedExpression(Op.getOperand(0), DAG,
560 LegalOperations, Depth+1));
561 case ISD::FP_ROUND:
562 return DAG.getNode(ISD::FP_ROUND, SDLoc(Op), Op.getValueType(),
563 GetNegatedExpression(Op.getOperand(0), DAG,
564 LegalOperations, Depth+1),
565 Op.getOperand(1));
566 }
567}
568
569
570// isSetCCEquivalent - Return true if this node is a setcc, or is a select_cc
571// that selects between the values 1 and 0, making it equivalent to a setcc.
572// Also, set the incoming LHS, RHS, and CC references to the appropriate
573// nodes based on the type of node we are checking. This simplifies life a
574// bit for the callers.
575static bool isSetCCEquivalent(SDValue N, SDValue &LHS, SDValue &RHS,
576 SDValue &CC) {
577 if (N.getOpcode() == ISD::SETCC) {
578 LHS = N.getOperand(0);
579 RHS = N.getOperand(1);
580 CC = N.getOperand(2);
581 return true;
582 }
583 if (N.getOpcode() == ISD::SELECT_CC &&
584 N.getOperand(2).getOpcode() == ISD::Constant &&
585 N.getOperand(3).getOpcode() == ISD::Constant &&
586 cast<ConstantSDNode>(N.getOperand(2))->getAPIntValue() == 1 &&
587 cast<ConstantSDNode>(N.getOperand(3))->isNullValue()) {
588 LHS = N.getOperand(0);
589 RHS = N.getOperand(1);
590 CC = N.getOperand(4);
591 return true;
592 }
593 return false;
594}
595
596// isOneUseSetCC - Return true if this is a SetCC-equivalent operation with only
597// one use. If this is true, it allows the users to invert the operation for
598// free when it is profitable to do so.
599static bool isOneUseSetCC(SDValue N) {
600 SDValue N0, N1, N2;
601 if (isSetCCEquivalent(N, N0, N1, N2) && N.getNode()->hasOneUse())
602 return true;
603 return false;
604}
605
606SDValue DAGCombiner::ReassociateOps(unsigned Opc, SDLoc DL,
607 SDValue N0, SDValue N1) {
608 EVT VT = N0.getValueType();
609 if (N0.getOpcode() == Opc && isa<ConstantSDNode>(N0.getOperand(1))) {
610 if (isa<ConstantSDNode>(N1)) {
611 // reassoc. (op (op x, c1), c2) -> (op x, (op c1, c2))
612 SDValue OpNode =
613 DAG.FoldConstantArithmetic(Opc, VT,
614 cast<ConstantSDNode>(N0.getOperand(1)),
615 cast<ConstantSDNode>(N1));
616 return DAG.getNode(Opc, DL, VT, N0.getOperand(0), OpNode);
617 }
618 if (N0.hasOneUse()) {
619 // reassoc. (op (op x, c1), y) -> (op (op x, y), c1) iff x+c1 has one use
620 SDValue OpNode = DAG.getNode(Opc, SDLoc(N0), VT,
621 N0.getOperand(0), N1);
622 AddToWorkList(OpNode.getNode());
623 return DAG.getNode(Opc, DL, VT, OpNode, N0.getOperand(1));
624 }
625 }
626
627 if (N1.getOpcode() == Opc && isa<ConstantSDNode>(N1.getOperand(1))) {
628 if (isa<ConstantSDNode>(N0)) {
629 // reassoc. (op c2, (op x, c1)) -> (op x, (op c1, c2))
630 SDValue OpNode =
631 DAG.FoldConstantArithmetic(Opc, VT,
632 cast<ConstantSDNode>(N1.getOperand(1)),
633 cast<ConstantSDNode>(N0));
634 return DAG.getNode(Opc, DL, VT, N1.getOperand(0), OpNode);
635 }
636 if (N1.hasOneUse()) {
637 // reassoc. (op y, (op x, c1)) -> (op (op x, y), c1) iff x+c1 has one use
638 SDValue OpNode = DAG.getNode(Opc, SDLoc(N0), VT,
639 N1.getOperand(0), N0);
640 AddToWorkList(OpNode.getNode());
641 return DAG.getNode(Opc, DL, VT, OpNode, N1.getOperand(1));
642 }
643 }
644
645 return SDValue();
646}
647
648SDValue DAGCombiner::CombineTo(SDNode *N, const SDValue *To, unsigned NumTo,
649 bool AddTo) {
650 assert(N->getNumValues() == NumTo && "Broken CombineTo call!");
651 ++NodesCombined;
652 DEBUG(dbgs() << "\nReplacing.1 ";
653 N->dump(&DAG);
654 dbgs() << "\nWith: ";
655 To[0].getNode()->dump(&DAG);
656 dbgs() << " and " << NumTo-1 << " other values\n";
657 for (unsigned i = 0, e = NumTo; i != e; ++i)
658 assert((!To[i].getNode() ||
659 N->getValueType(i) == To[i].getValueType()) &&
660 "Cannot combine value to value of different type!"));
661 WorkListRemover DeadNodes(*this);
662 DAG.ReplaceAllUsesWith(N, To);
663 if (AddTo) {
664 // Push the new nodes and any users onto the worklist
665 for (unsigned i = 0, e = NumTo; i != e; ++i) {
666 if (To[i].getNode()) {
667 AddToWorkList(To[i].getNode());
668 AddUsersToWorkList(To[i].getNode());
669 }
670 }
671 }
672
673 // Finally, if the node is now dead, remove it from the graph. The node
674 // may not be dead if the replacement process recursively simplified to
675 // something else needing this node.
676 if (N->use_empty()) {
677 // Nodes can be reintroduced into the worklist. Make sure we do not
678 // process a node that has been replaced.
679 removeFromWorkList(N);
680
681 // Finally, since the node is now dead, remove it from the graph.
682 DAG.DeleteNode(N);
683 }
684 return SDValue(N, 0);
685}
686
687void DAGCombiner::
688CommitTargetLoweringOpt(const TargetLowering::TargetLoweringOpt &TLO) {
689 // Replace all uses. If any nodes become isomorphic to other nodes and
690 // are deleted, make sure to remove them from our worklist.
691 WorkListRemover DeadNodes(*this);
692 DAG.ReplaceAllUsesOfValueWith(TLO.Old, TLO.New);
693
694 // Push the new node and any (possibly new) users onto the worklist.
695 AddToWorkList(TLO.New.getNode());
696 AddUsersToWorkList(TLO.New.getNode());
697
698 // Finally, if the node is now dead, remove it from the graph. The node
699 // may not be dead if the replacement process recursively simplified to
700 // something else needing this node.
701 if (TLO.Old.getNode()->use_empty()) {
702 removeFromWorkList(TLO.Old.getNode());
703
704 // If the operands of this node are only used by the node, they will now
705 // be dead. Make sure to visit them first to delete dead nodes early.
706 for (unsigned i = 0, e = TLO.Old.getNode()->getNumOperands(); i != e; ++i)
707 if (TLO.Old.getNode()->getOperand(i).getNode()->hasOneUse())
708 AddToWorkList(TLO.Old.getNode()->getOperand(i).getNode());
709
710 DAG.DeleteNode(TLO.Old.getNode());
711 }
712}
713
714/// SimplifyDemandedBits - Check the specified integer node value to see if
715/// it can be simplified or if things it uses can be simplified by bit
716/// propagation. If so, return true.
717bool DAGCombiner::SimplifyDemandedBits(SDValue Op, const APInt &Demanded) {
718 TargetLowering::TargetLoweringOpt TLO(DAG, LegalTypes, LegalOperations);
719 APInt KnownZero, KnownOne;
720 if (!TLI.SimplifyDemandedBits(Op, Demanded, KnownZero, KnownOne, TLO))
721 return false;
722
723 // Revisit the node.
724 AddToWorkList(Op.getNode());
725
726 // Replace the old value with the new one.
727 ++NodesCombined;
728 DEBUG(dbgs() << "\nReplacing.2 ";
729 TLO.Old.getNode()->dump(&DAG);
730 dbgs() << "\nWith: ";
731 TLO.New.getNode()->dump(&DAG);
732 dbgs() << '\n');
733
734 CommitTargetLoweringOpt(TLO);
735 return true;
736}
737
738void DAGCombiner::ReplaceLoadWithPromotedLoad(SDNode *Load, SDNode *ExtLoad) {
739 SDLoc dl(Load);
740 EVT VT = Load->getValueType(0);
741 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, VT, SDValue(ExtLoad, 0));
742
743 DEBUG(dbgs() << "\nReplacing.9 ";
744 Load->dump(&DAG);
745 dbgs() << "\nWith: ";
746 Trunc.getNode()->dump(&DAG);
747 dbgs() << '\n');
748 WorkListRemover DeadNodes(*this);
749 DAG.ReplaceAllUsesOfValueWith(SDValue(Load, 0), Trunc);
750 DAG.ReplaceAllUsesOfValueWith(SDValue(Load, 1), SDValue(ExtLoad, 1));
751 removeFromWorkList(Load);
752 DAG.DeleteNode(Load);
753 AddToWorkList(Trunc.getNode());
754}
755
756SDValue DAGCombiner::PromoteOperand(SDValue Op, EVT PVT, bool &Replace) {
757 Replace = false;
758 SDLoc dl(Op);
759 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Op)) {
760 EVT MemVT = LD->getMemoryVT();
761 ISD::LoadExtType ExtType = ISD::isNON_EXTLoad(LD)
762 ? (TLI.isLoadExtLegal(ISD::ZEXTLOAD, MemVT) ? ISD::ZEXTLOAD
763 : ISD::EXTLOAD)
764 : LD->getExtensionType();
765 Replace = true;
766 return DAG.getExtLoad(ExtType, dl, PVT,
767 LD->getChain(), LD->getBasePtr(),
768 MemVT, LD->getMemOperand());
769 }
770
771 unsigned Opc = Op.getOpcode();
772 switch (Opc) {
773 default: break;
774 case ISD::AssertSext:
775 return DAG.getNode(ISD::AssertSext, dl, PVT,
776 SExtPromoteOperand(Op.getOperand(0), PVT),
777 Op.getOperand(1));
778 case ISD::AssertZext:
779 return DAG.getNode(ISD::AssertZext, dl, PVT,
780 ZExtPromoteOperand(Op.getOperand(0), PVT),
781 Op.getOperand(1));
782 case ISD::Constant: {
783 unsigned ExtOpc =
784 Op.getValueType().isByteSized() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
785 return DAG.getNode(ExtOpc, dl, PVT, Op);
786 }
787 }
788
789 if (!TLI.isOperationLegal(ISD::ANY_EXTEND, PVT))
790 return SDValue();
791 return DAG.getNode(ISD::ANY_EXTEND, dl, PVT, Op);
792}
793
794SDValue DAGCombiner::SExtPromoteOperand(SDValue Op, EVT PVT) {
795 if (!TLI.isOperationLegal(ISD::SIGN_EXTEND_INREG, PVT))
796 return SDValue();
797 EVT OldVT = Op.getValueType();
798 SDLoc dl(Op);
799 bool Replace = false;
800 SDValue NewOp = PromoteOperand(Op, PVT, Replace);
801 if (NewOp.getNode() == 0)
802 return SDValue();
803 AddToWorkList(NewOp.getNode());
804
805 if (Replace)
806 ReplaceLoadWithPromotedLoad(Op.getNode(), NewOp.getNode());
807 return DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, NewOp.getValueType(), NewOp,
808 DAG.getValueType(OldVT));
809}
810
811SDValue DAGCombiner::ZExtPromoteOperand(SDValue Op, EVT PVT) {
812 EVT OldVT = Op.getValueType();
813 SDLoc dl(Op);
814 bool Replace = false;
815 SDValue NewOp = PromoteOperand(Op, PVT, Replace);
816 if (NewOp.getNode() == 0)
817 return SDValue();
818 AddToWorkList(NewOp.getNode());
819
820 if (Replace)
821 ReplaceLoadWithPromotedLoad(Op.getNode(), NewOp.getNode());
822 return DAG.getZeroExtendInReg(NewOp, dl, OldVT);
823}
824
825/// PromoteIntBinOp - Promote the specified integer binary operation if the
826/// target indicates it is beneficial. e.g. On x86, it's usually better to
827/// promote i16 operations to i32 since i16 instructions are longer.
828SDValue DAGCombiner::PromoteIntBinOp(SDValue Op) {
829 if (!LegalOperations)
830 return SDValue();
831
832 EVT VT = Op.getValueType();
833 if (VT.isVector() || !VT.isInteger())
834 return SDValue();
835
836 // If operation type is 'undesirable', e.g. i16 on x86, consider
837 // promoting it.
838 unsigned Opc = Op.getOpcode();
839 if (TLI.isTypeDesirableForOp(Opc, VT))
840 return SDValue();
841
842 EVT PVT = VT;
843 // Consult target whether it is a good idea to promote this operation and
844 // what's the right type to promote it to.
845 if (TLI.IsDesirableToPromoteOp(Op, PVT)) {
846 assert(PVT != VT && "Don't know what type to promote to!");
847
848 bool Replace0 = false;
849 SDValue N0 = Op.getOperand(0);
850 SDValue NN0 = PromoteOperand(N0, PVT, Replace0);
851 if (NN0.getNode() == 0)
852 return SDValue();
853
854 bool Replace1 = false;
855 SDValue N1 = Op.getOperand(1);
856 SDValue NN1;
857 if (N0 == N1)
858 NN1 = NN0;
859 else {
860 NN1 = PromoteOperand(N1, PVT, Replace1);
861 if (NN1.getNode() == 0)
862 return SDValue();
863 }
864
865 AddToWorkList(NN0.getNode());
866 if (NN1.getNode())
867 AddToWorkList(NN1.getNode());
868
869 if (Replace0)
870 ReplaceLoadWithPromotedLoad(N0.getNode(), NN0.getNode());
871 if (Replace1)
872 ReplaceLoadWithPromotedLoad(N1.getNode(), NN1.getNode());
873
874 DEBUG(dbgs() << "\nPromoting ";
875 Op.getNode()->dump(&DAG));
876 SDLoc dl(Op);
877 return DAG.getNode(ISD::TRUNCATE, dl, VT,
878 DAG.getNode(Opc, dl, PVT, NN0, NN1));
879 }
880 return SDValue();
881}
882
883/// PromoteIntShiftOp - Promote the specified integer shift operation if the
884/// target indicates it is beneficial. e.g. On x86, it's usually better to
885/// promote i16 operations to i32 since i16 instructions are longer.
886SDValue DAGCombiner::PromoteIntShiftOp(SDValue Op) {
887 if (!LegalOperations)
888 return SDValue();
889
890 EVT VT = Op.getValueType();
891 if (VT.isVector() || !VT.isInteger())
892 return SDValue();
893
894 // If operation type is 'undesirable', e.g. i16 on x86, consider
895 // promoting it.
896 unsigned Opc = Op.getOpcode();
897 if (TLI.isTypeDesirableForOp(Opc, VT))
898 return SDValue();
899
900 EVT PVT = VT;
901 // Consult target whether it is a good idea to promote this operation and
902 // what's the right type to promote it to.
903 if (TLI.IsDesirableToPromoteOp(Op, PVT)) {
904 assert(PVT != VT && "Don't know what type to promote to!");
905
906 bool Replace = false;
907 SDValue N0 = Op.getOperand(0);
908 if (Opc == ISD::SRA)
909 N0 = SExtPromoteOperand(Op.getOperand(0), PVT);
910 else if (Opc == ISD::SRL)
911 N0 = ZExtPromoteOperand(Op.getOperand(0), PVT);
912 else
913 N0 = PromoteOperand(N0, PVT, Replace);
914 if (N0.getNode() == 0)
915 return SDValue();
916
917 AddToWorkList(N0.getNode());
918 if (Replace)
919 ReplaceLoadWithPromotedLoad(Op.getOperand(0).getNode(), N0.getNode());
920
921 DEBUG(dbgs() << "\nPromoting ";
922 Op.getNode()->dump(&DAG));
923 SDLoc dl(Op);
924 return DAG.getNode(ISD::TRUNCATE, dl, VT,
925 DAG.getNode(Opc, dl, PVT, N0, Op.getOperand(1)));
926 }
927 return SDValue();
928}
929
930SDValue DAGCombiner::PromoteExtend(SDValue Op) {
931 if (!LegalOperations)
932 return SDValue();
933
934 EVT VT = Op.getValueType();
935 if (VT.isVector() || !VT.isInteger())
936 return SDValue();
937
938 // If operation type is 'undesirable', e.g. i16 on x86, consider
939 // promoting it.
940 unsigned Opc = Op.getOpcode();
941 if (TLI.isTypeDesirableForOp(Opc, VT))
942 return SDValue();
943
944 EVT PVT = VT;
945 // Consult target whether it is a good idea to promote this operation and
946 // what's the right type to promote it to.
947 if (TLI.IsDesirableToPromoteOp(Op, PVT)) {
948 assert(PVT != VT && "Don't know what type to promote to!");
949 // fold (aext (aext x)) -> (aext x)
950 // fold (aext (zext x)) -> (zext x)
951 // fold (aext (sext x)) -> (sext x)
952 DEBUG(dbgs() << "\nPromoting ";
953 Op.getNode()->dump(&DAG));
954 return DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, Op.getOperand(0));
955 }
956 return SDValue();
957}
958
959bool DAGCombiner::PromoteLoad(SDValue Op) {
960 if (!LegalOperations)
961 return false;
962
963 EVT VT = Op.getValueType();
964 if (VT.isVector() || !VT.isInteger())
965 return false;
966
967 // If operation type is 'undesirable', e.g. i16 on x86, consider
968 // promoting it.
969 unsigned Opc = Op.getOpcode();
970 if (TLI.isTypeDesirableForOp(Opc, VT))
971 return false;
972
973 EVT PVT = VT;
974 // Consult target whether it is a good idea to promote this operation and
975 // what's the right type to promote it to.
976 if (TLI.IsDesirableToPromoteOp(Op, PVT)) {
977 assert(PVT != VT && "Don't know what type to promote to!");
978
979 SDLoc dl(Op);
980 SDNode *N = Op.getNode();
981 LoadSDNode *LD = cast<LoadSDNode>(N);
982 EVT MemVT = LD->getMemoryVT();
983 ISD::LoadExtType ExtType = ISD::isNON_EXTLoad(LD)
984 ? (TLI.isLoadExtLegal(ISD::ZEXTLOAD, MemVT) ? ISD::ZEXTLOAD
985 : ISD::EXTLOAD)
986 : LD->getExtensionType();
987 SDValue NewLD = DAG.getExtLoad(ExtType, dl, PVT,
988 LD->getChain(), LD->getBasePtr(),
989 MemVT, LD->getMemOperand());
990 SDValue Result = DAG.getNode(ISD::TRUNCATE, dl, VT, NewLD);
991
992 DEBUG(dbgs() << "\nPromoting ";
993 N->dump(&DAG);
994 dbgs() << "\nTo: ";
995 Result.getNode()->dump(&DAG);
996 dbgs() << '\n');
997 WorkListRemover DeadNodes(*this);
998 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result);
999 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), NewLD.getValue(1));
1000 removeFromWorkList(N);
1001 DAG.DeleteNode(N);
1002 AddToWorkList(Result.getNode());
1003 return true;
1004 }
1005 return false;
1006}
1007
1008
1009//===----------------------------------------------------------------------===//
1010// Main DAG Combiner implementation
1011//===----------------------------------------------------------------------===//
1012
1013void DAGCombiner::Run(CombineLevel AtLevel) {
1014 // set the instance variables, so that the various visit routines may use it.
1015 Level = AtLevel;
1016 LegalOperations = Level >= AfterLegalizeVectorOps;
1017 LegalTypes = Level >= AfterLegalizeTypes;
1018
1019 // Add all the dag nodes to the worklist.
1020 for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(),
1021 E = DAG.allnodes_end(); I != E; ++I)
1022 AddToWorkList(I);
1023
1024 // Create a dummy node (which is not added to allnodes), that adds a reference
1025 // to the root node, preventing it from being deleted, and tracking any
1026 // changes of the root.
1027 HandleSDNode Dummy(DAG.getRoot());
1028
1029 // The root of the dag may dangle to deleted nodes until the dag combiner is
1030 // done. Set it to null to avoid confusion.
1031 DAG.setRoot(SDValue());
1032
1033 // while the worklist isn't empty, find a node and
1034 // try and combine it.
1035 while (!WorkListContents.empty()) {
1036 SDNode *N;
1037 // The WorkListOrder holds the SDNodes in order, but it may contain
1038 // duplicates.
1039 // In order to avoid a linear scan, we use a set (O(log N)) to hold what the
1040 // worklist *should* contain, and check the node we want to visit is should
1041 // actually be visited.
1042 do {
1043 N = WorkListOrder.pop_back_val();
1044 } while (!WorkListContents.erase(N));
1045
1046 // If N has no uses, it is dead. Make sure to revisit all N's operands once
1047 // N is deleted from the DAG, since they too may now be dead or may have a
1048 // reduced number of uses, allowing other xforms.
1049 if (N->use_empty() && N != &Dummy) {
1050 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
1051 AddToWorkList(N->getOperand(i).getNode());
1052
1053 DAG.DeleteNode(N);
1054 continue;
1055 }
1056
1057 SDValue RV = combine(N);
1058
1059 if (RV.getNode() == 0)
1060 continue;
1061
1062 ++NodesCombined;
1063
1064 // If we get back the same node we passed in, rather than a new node or
1065 // zero, we know that the node must have defined multiple values and
1066 // CombineTo was used. Since CombineTo takes care of the worklist
1067 // mechanics for us, we have no work to do in this case.
1068 if (RV.getNode() == N)
1069 continue;
1070
1071 assert(N->getOpcode() != ISD::DELETED_NODE &&
1072 RV.getNode()->getOpcode() != ISD::DELETED_NODE &&
1073 "Node was deleted but visit returned new node!");
1074
1075 DEBUG(dbgs() << "\nReplacing.3 ";
1076 N->dump(&DAG);
1077 dbgs() << "\nWith: ";
1078 RV.getNode()->dump(&DAG);
1079 dbgs() << '\n');
1080
1081 // Transfer debug value.
1082 DAG.TransferDbgValues(SDValue(N, 0), RV);
1083 WorkListRemover DeadNodes(*this);
1084 if (N->getNumValues() == RV.getNode()->getNumValues())
1085 DAG.ReplaceAllUsesWith(N, RV.getNode());
1086 else {
1087 assert(N->getValueType(0) == RV.getValueType() &&
1088 N->getNumValues() == 1 && "Type mismatch");
1089 SDValue OpV = RV;
1090 DAG.ReplaceAllUsesWith(N, &OpV);
1091 }
1092
1093 // Push the new node and any users onto the worklist
1094 AddToWorkList(RV.getNode());
1095 AddUsersToWorkList(RV.getNode());
1096
1097 // Add any uses of the old node to the worklist in case this node is the
1098 // last one that uses them. They may become dead after this node is
1099 // deleted.
1100 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
1101 AddToWorkList(N->getOperand(i).getNode());
1102
1103 // Finally, if the node is now dead, remove it from the graph. The node
1104 // may not be dead if the replacement process recursively simplified to
1105 // something else needing this node.
1106 if (N->use_empty()) {
1107 // Nodes can be reintroduced into the worklist. Make sure we do not
1108 // process a node that has been replaced.
1109 removeFromWorkList(N);
1110
1111 // Finally, since the node is now dead, remove it from the graph.
1112 DAG.DeleteNode(N);
1113 }
1114 }
1115
1116 // If the root changed (e.g. it was a dead load, update the root).
1117 DAG.setRoot(Dummy.getValue());
1118 DAG.RemoveDeadNodes();
1119}
1120
1121SDValue DAGCombiner::visit(SDNode *N) {
1122 switch (N->getOpcode()) {
1123 default: break;
1124 case ISD::TokenFactor: return visitTokenFactor(N);
1125 case ISD::MERGE_VALUES: return visitMERGE_VALUES(N);
1126 case ISD::ADD: return visitADD(N);
1127 case ISD::SUB: return visitSUB(N);
1128 case ISD::ADDC: return visitADDC(N);
1129 case ISD::SUBC: return visitSUBC(N);
1130 case ISD::ADDE: return visitADDE(N);
1131 case ISD::SUBE: return visitSUBE(N);
1132 case ISD::MUL: return visitMUL(N);
1133 case ISD::SDIV: return visitSDIV(N);
1134 case ISD::UDIV: return visitUDIV(N);
1135 case ISD::SREM: return visitSREM(N);
1136 case ISD::UREM: return visitUREM(N);
1137 case ISD::MULHU: return visitMULHU(N);
1138 case ISD::MULHS: return visitMULHS(N);
1139 case ISD::SMUL_LOHI: return visitSMUL_LOHI(N);
1140 case ISD::UMUL_LOHI: return visitUMUL_LOHI(N);
1141 case ISD::SMULO: return visitSMULO(N);
1142 case ISD::UMULO: return visitUMULO(N);
1143 case ISD::SDIVREM: return visitSDIVREM(N);
1144 case ISD::UDIVREM: return visitUDIVREM(N);
1145 case ISD::AND: return visitAND(N);
1146 case ISD::OR: return visitOR(N);
1147 case ISD::XOR: return visitXOR(N);
1148 case ISD::SHL: return visitSHL(N);
1149 case ISD::SRA: return visitSRA(N);
1150 case ISD::SRL: return visitSRL(N);
1151 case ISD::CTLZ: return visitCTLZ(N);
1152 case ISD::CTLZ_ZERO_UNDEF: return visitCTLZ_ZERO_UNDEF(N);
1153 case ISD::CTTZ: return visitCTTZ(N);
1154 case ISD::CTTZ_ZERO_UNDEF: return visitCTTZ_ZERO_UNDEF(N);
1155 case ISD::CTPOP: return visitCTPOP(N);
1156 case ISD::SELECT: return visitSELECT(N);
1157 case ISD::VSELECT: return visitVSELECT(N);
1158 case ISD::SELECT_CC: return visitSELECT_CC(N);
1159 case ISD::SETCC: return visitSETCC(N);
1160 case ISD::SIGN_EXTEND: return visitSIGN_EXTEND(N);
1161 case ISD::ZERO_EXTEND: return visitZERO_EXTEND(N);
1162 case ISD::ANY_EXTEND: return visitANY_EXTEND(N);
1163 case ISD::SIGN_EXTEND_INREG: return visitSIGN_EXTEND_INREG(N);
1164 case ISD::TRUNCATE: return visitTRUNCATE(N);
1165 case ISD::BITCAST: return visitBITCAST(N);
1166 case ISD::BUILD_PAIR: return visitBUILD_PAIR(N);
1167 case ISD::FADD: return visitFADD(N);
1168 case ISD::FSUB: return visitFSUB(N);
1169 case ISD::FMUL: return visitFMUL(N);
1170 case ISD::FMA: return visitFMA(N);
1171 case ISD::FDIV: return visitFDIV(N);
1172 case ISD::FREM: return visitFREM(N);
1173 case ISD::FCOPYSIGN: return visitFCOPYSIGN(N);
1174 case ISD::SINT_TO_FP: return visitSINT_TO_FP(N);
1175 case ISD::UINT_TO_FP: return visitUINT_TO_FP(N);
1176 case ISD::FP_TO_SINT: return visitFP_TO_SINT(N);
1177 case ISD::FP_TO_UINT: return visitFP_TO_UINT(N);
1178 case ISD::FP_ROUND: return visitFP_ROUND(N);
1179 case ISD::FP_ROUND_INREG: return visitFP_ROUND_INREG(N);
1180 case ISD::FP_EXTEND: return visitFP_EXTEND(N);
1181 case ISD::FNEG: return visitFNEG(N);
1182 case ISD::FABS: return visitFABS(N);
1183 case ISD::FFLOOR: return visitFFLOOR(N);
1184 case ISD::FCEIL: return visitFCEIL(N);
1185 case ISD::FTRUNC: return visitFTRUNC(N);
1186 case ISD::BRCOND: return visitBRCOND(N);
1187 case ISD::BR_CC: return visitBR_CC(N);
1188 case ISD::LOAD: return visitLOAD(N);
1189 case ISD::STORE: return visitSTORE(N);
1190 case ISD::INSERT_VECTOR_ELT: return visitINSERT_VECTOR_ELT(N);
1191 case ISD::EXTRACT_VECTOR_ELT: return visitEXTRACT_VECTOR_ELT(N);
1192 case ISD::BUILD_VECTOR: return visitBUILD_VECTOR(N);
1193 case ISD::CONCAT_VECTORS: return visitCONCAT_VECTORS(N);
1194 case ISD::EXTRACT_SUBVECTOR: return visitEXTRACT_SUBVECTOR(N);
1195 case ISD::VECTOR_SHUFFLE: return visitVECTOR_SHUFFLE(N);
1196 }
1197 return SDValue();
1198}
1199
1200SDValue DAGCombiner::combine(SDNode *N) {
1201 SDValue RV = visit(N);
1202
1203 // If nothing happened, try a target-specific DAG combine.
1204 if (RV.getNode() == 0) {
1205 assert(N->getOpcode() != ISD::DELETED_NODE &&
1206 "Node was deleted but visit returned NULL!");
1207
1208 if (N->getOpcode() >= ISD::BUILTIN_OP_END ||
1209 TLI.hasTargetDAGCombine((ISD::NodeType)N->getOpcode())) {
1210
1211 // Expose the DAG combiner to the target combiner impls.
1212 TargetLowering::DAGCombinerInfo
1213 DagCombineInfo(DAG, Level, false, this);
1214
1215 RV = TLI.PerformDAGCombine(N, DagCombineInfo);
1216 }
1217 }
1218
1219 // If nothing happened still, try promoting the operation.
1220 if (RV.getNode() == 0) {
1221 switch (N->getOpcode()) {
1222 default: break;
1223 case ISD::ADD:
1224 case ISD::SUB:
1225 case ISD::MUL:
1226 case ISD::AND:
1227 case ISD::OR:
1228 case ISD::XOR:
1229 RV = PromoteIntBinOp(SDValue(N, 0));
1230 break;
1231 case ISD::SHL:
1232 case ISD::SRA:
1233 case ISD::SRL:
1234 RV = PromoteIntShiftOp(SDValue(N, 0));
1235 break;
1236 case ISD::SIGN_EXTEND:
1237 case ISD::ZERO_EXTEND:
1238 case ISD::ANY_EXTEND:
1239 RV = PromoteExtend(SDValue(N, 0));
1240 break;
1241 case ISD::LOAD:
1242 if (PromoteLoad(SDValue(N, 0)))
1243 RV = SDValue(N, 0);
1244 break;
1245 }
1246 }
1247
1248 // If N is a commutative binary node, try commuting it to enable more
1249 // sdisel CSE.
1250 if (RV.getNode() == 0 &&
1251 SelectionDAG::isCommutativeBinOp(N->getOpcode()) &&
1252 N->getNumValues() == 1) {
1253 SDValue N0 = N->getOperand(0);
1254 SDValue N1 = N->getOperand(1);
1255
1256 // Constant operands are canonicalized to RHS.
1257 if (isa<ConstantSDNode>(N0) || !isa<ConstantSDNode>(N1)) {
1258 SDValue Ops[] = { N1, N0 };
1259 SDNode *CSENode = DAG.getNodeIfExists(N->getOpcode(), N->getVTList(),
1260 Ops, 2);
1261 if (CSENode)
1262 return SDValue(CSENode, 0);
1263 }
1264 }
1265
1266 return RV;
1267}
1268
1269/// getInputChainForNode - Given a node, return its input chain if it has one,
1270/// otherwise return a null sd operand.
1271static SDValue getInputChainForNode(SDNode *N) {
1272 if (unsigned NumOps = N->getNumOperands()) {
1273 if (N->getOperand(0).getValueType() == MVT::Other)
1274 return N->getOperand(0);
1275 if (N->getOperand(NumOps-1).getValueType() == MVT::Other)
1276 return N->getOperand(NumOps-1);
1277 for (unsigned i = 1; i < NumOps-1; ++i)
1278 if (N->getOperand(i).getValueType() == MVT::Other)
1279 return N->getOperand(i);
1280 }
1281 return SDValue();
1282}
1283
1284SDValue DAGCombiner::visitTokenFactor(SDNode *N) {
1285 // If N has two operands, where one has an input chain equal to the other,
1286 // the 'other' chain is redundant.
1287 if (N->getNumOperands() == 2) {
1288 if (getInputChainForNode(N->getOperand(0).getNode()) == N->getOperand(1))
1289 return N->getOperand(0);
1290 if (getInputChainForNode(N->getOperand(1).getNode()) == N->getOperand(0))
1291 return N->getOperand(1);
1292 }
1293
1294 SmallVector<SDNode *, 8> TFs; // List of token factors to visit.
1295 SmallVector<SDValue, 8> Ops; // Ops for replacing token factor.
1296 SmallPtrSet<SDNode*, 16> SeenOps;
1297 bool Changed = false; // If we should replace this token factor.
1298
1299 // Start out with this token factor.
1300 TFs.push_back(N);
1301
1302 // Iterate through token factors. The TFs grows when new token factors are
1303 // encountered.
1304 for (unsigned i = 0; i < TFs.size(); ++i) {
1305 SDNode *TF = TFs[i];
1306
1307 // Check each of the operands.
1308 for (unsigned i = 0, ie = TF->getNumOperands(); i != ie; ++i) {
1309 SDValue Op = TF->getOperand(i);
1310
1311 switch (Op.getOpcode()) {
1312 case ISD::EntryToken:
1313 // Entry tokens don't need to be added to the list. They are
1314 // rededundant.
1315 Changed = true;
1316 break;
1317
1318 case ISD::TokenFactor:
1319 if (Op.hasOneUse() &&
1320 std::find(TFs.begin(), TFs.end(), Op.getNode()) == TFs.end()) {
1321 // Queue up for processing.
1322 TFs.push_back(Op.getNode());
1323 // Clean up in case the token factor is removed.
1324 AddToWorkList(Op.getNode());
1325 Changed = true;
1326 break;
1327 }
1328 // Fall thru
1329
1330 default:
1331 // Only add if it isn't already in the list.
1332 if (SeenOps.insert(Op.getNode()))
1333 Ops.push_back(Op);
1334 else
1335 Changed = true;
1336 break;
1337 }
1338 }
1339 }
1340
1341 SDValue Result;
1342
1343 // If we've change things around then replace token factor.
1344 if (Changed) {
1345 if (Ops.empty()) {
1346 // The entry token is the only possible outcome.
1347 Result = DAG.getEntryNode();
1348 } else {
1349 // New and improved token factor.
1350 Result = DAG.getNode(ISD::TokenFactor, SDLoc(N),
1351 MVT::Other, &Ops[0], Ops.size());
1352 }
1353
1354 // Don't add users to work list.
1355 return CombineTo(N, Result, false);
1356 }
1357
1358 return Result;
1359}
1360
1361/// MERGE_VALUES can always be eliminated.
1362SDValue DAGCombiner::visitMERGE_VALUES(SDNode *N) {
1363 WorkListRemover DeadNodes(*this);
1364 // Replacing results may cause a different MERGE_VALUES to suddenly
1365 // be CSE'd with N, and carry its uses with it. Iterate until no
1366 // uses remain, to ensure that the node can be safely deleted.
1367 // First add the users of this node to the work list so that they
1368 // can be tried again once they have new operands.
1369 AddUsersToWorkList(N);
1370 do {
1371 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
1372 DAG.ReplaceAllUsesOfValueWith(SDValue(N, i), N->getOperand(i));
1373 } while (!N->use_empty());
1374 removeFromWorkList(N);
1375 DAG.DeleteNode(N);
1376 return SDValue(N, 0); // Return N so it doesn't get rechecked!
1377}
1378
1379static
1380SDValue combineShlAddConstant(SDLoc DL, SDValue N0, SDValue N1,
1381 SelectionDAG &DAG) {
1382 EVT VT = N0.getValueType();
1383 SDValue N00 = N0.getOperand(0);
1384 SDValue N01 = N0.getOperand(1);
1385 ConstantSDNode *N01C = dyn_cast<ConstantSDNode>(N01);
1386
1387 if (N01C && N00.getOpcode() == ISD::ADD && N00.getNode()->hasOneUse() &&
1388 isa<ConstantSDNode>(N00.getOperand(1))) {
1389 // fold (add (shl (add x, c1), c2), ) -> (add (add (shl x, c2), c1<<c2), )
1390 N0 = DAG.getNode(ISD::ADD, SDLoc(N0), VT,
1391 DAG.getNode(ISD::SHL, SDLoc(N00), VT,
1392 N00.getOperand(0), N01),
1393 DAG.getNode(ISD::SHL, SDLoc(N01), VT,
1394 N00.getOperand(1), N01));
1395 return DAG.getNode(ISD::ADD, DL, VT, N0, N1);
1396 }
1397
1398 return SDValue();
1399}
1400
1401SDValue DAGCombiner::visitADD(SDNode *N) {
1402 SDValue N0 = N->getOperand(0);
1403 SDValue N1 = N->getOperand(1);
1404 ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1405 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1406 EVT VT = N0.getValueType();
1407
1408 // fold vector ops
1409 if (VT.isVector()) {
1410 SDValue FoldedVOp = SimplifyVBinOp(N);
1411 if (FoldedVOp.getNode()) return FoldedVOp;
1412
1413 // fold (add x, 0) -> x, vector edition
1414 if (ISD::isBuildVectorAllZeros(N1.getNode()))
1415 return N0;
1416 if (ISD::isBuildVectorAllZeros(N0.getNode()))
1417 return N1;
1418 }
1419
1420 // fold (add x, undef) -> undef
1421 if (N0.getOpcode() == ISD::UNDEF)
1422 return N0;
1423 if (N1.getOpcode() == ISD::UNDEF)
1424 return N1;
1425 // fold (add c1, c2) -> c1+c2
1426 if (N0C && N1C)
1427 return DAG.FoldConstantArithmetic(ISD::ADD, VT, N0C, N1C);
1428 // canonicalize constant to RHS
1429 if (N0C && !N1C)
1430 return DAG.getNode(ISD::ADD, SDLoc(N), VT, N1, N0);
1431 // fold (add x, 0) -> x
1432 if (N1C && N1C->isNullValue())
1433 return N0;
1434 // fold (add Sym, c) -> Sym+c
1435 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N0))
1436 if (!LegalOperations && TLI.isOffsetFoldingLegal(GA) && N1C &&
1437 GA->getOpcode() == ISD::GlobalAddress)
1438 return DAG.getGlobalAddress(GA->getGlobal(), SDLoc(N1C), VT,
1439 GA->getOffset() +
1440 (uint64_t)N1C->getSExtValue());
1441 // fold ((c1-A)+c2) -> (c1+c2)-A
1442 if (N1C && N0.getOpcode() == ISD::SUB)
1443 if (ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0.getOperand(0)))
1444 return DAG.getNode(ISD::SUB, SDLoc(N), VT,
1445 DAG.getConstant(N1C->getAPIntValue()+
1446 N0C->getAPIntValue(), VT),
1447 N0.getOperand(1));
1448 // reassociate add
1449 SDValue RADD = ReassociateOps(ISD::ADD, SDLoc(N), N0, N1);
1450 if (RADD.getNode() != 0)
1451 return RADD;
1452 // fold ((0-A) + B) -> B-A
1453 if (N0.getOpcode() == ISD::SUB && isa<ConstantSDNode>(N0.getOperand(0)) &&
1454 cast<ConstantSDNode>(N0.getOperand(0))->isNullValue())
1455 return DAG.getNode(ISD::SUB, SDLoc(N), VT, N1, N0.getOperand(1));
1456 // fold (A + (0-B)) -> A-B
1457 if (N1.getOpcode() == ISD::SUB && isa<ConstantSDNode>(N1.getOperand(0)) &&
1458 cast<ConstantSDNode>(N1.getOperand(0))->isNullValue())
1459 return DAG.getNode(ISD::SUB, SDLoc(N), VT, N0, N1.getOperand(1));
1460 // fold (A+(B-A)) -> B
1461 if (N1.getOpcode() == ISD::SUB && N0 == N1.getOperand(1))
1462 return N1.getOperand(0);
1463 // fold ((B-A)+A) -> B
1464 if (N0.getOpcode() == ISD::SUB && N1 == N0.getOperand(1))
1465 return N0.getOperand(0);
1466 // fold (A+(B-(A+C))) to (B-C)
1467 if (N1.getOpcode() == ISD::SUB && N1.getOperand(1).getOpcode() == ISD::ADD &&
1468 N0 == N1.getOperand(1).getOperand(0))
1469 return DAG.getNode(ISD::SUB, SDLoc(N), VT, N1.getOperand(0),
1470 N1.getOperand(1).getOperand(1));
1471 // fold (A+(B-(C+A))) to (B-C)
1472 if (N1.getOpcode() == ISD::SUB && N1.getOperand(1).getOpcode() == ISD::ADD &&
1473 N0 == N1.getOperand(1).getOperand(1))
1474 return DAG.getNode(ISD::SUB, SDLoc(N), VT, N1.getOperand(0),
1475 N1.getOperand(1).getOperand(0));
1476 // fold (A+((B-A)+or-C)) to (B+or-C)
1477 if ((N1.getOpcode() == ISD::SUB || N1.getOpcode() == ISD::ADD) &&
1478 N1.getOperand(0).getOpcode() == ISD::SUB &&
1479 N0 == N1.getOperand(0).getOperand(1))
1480 return DAG.getNode(N1.getOpcode(), SDLoc(N), VT,
1481 N1.getOperand(0).getOperand(0), N1.getOperand(1));
1482
1483 // fold (A-B)+(C-D) to (A+C)-(B+D) when A or C is constant
1484 if (N0.getOpcode() == ISD::SUB && N1.getOpcode() == ISD::SUB) {
1485 SDValue N00 = N0.getOperand(0);
1486 SDValue N01 = N0.getOperand(1);
1487 SDValue N10 = N1.getOperand(0);
1488 SDValue N11 = N1.getOperand(1);
1489
1490 if (isa<ConstantSDNode>(N00) || isa<ConstantSDNode>(N10))
1491 return DAG.getNode(ISD::SUB, SDLoc(N), VT,
1492 DAG.getNode(ISD::ADD, SDLoc(N0), VT, N00, N10),
1493 DAG.getNode(ISD::ADD, SDLoc(N1), VT, N01, N11));
1494 }
1495
1496 if (!VT.isVector() && SimplifyDemandedBits(SDValue(N, 0)))
1497 return SDValue(N, 0);
1498
1499 // fold (a+b) -> (a|b) iff a and b share no bits.
1500 if (VT.isInteger() && !VT.isVector()) {
1501 APInt LHSZero, LHSOne;
1502 APInt RHSZero, RHSOne;
1503 DAG.ComputeMaskedBits(N0, LHSZero, LHSOne);
1504
1505 if (LHSZero.getBoolValue()) {
1506 DAG.ComputeMaskedBits(N1, RHSZero, RHSOne);
1507
1508 // If all possibly-set bits on the LHS are clear on the RHS, return an OR.
1509 // If all possibly-set bits on the RHS are clear on the LHS, return an OR.
1510 if ((RHSZero & ~LHSZero) == ~LHSZero || (LHSZero & ~RHSZero) == ~RHSZero)
1511 return DAG.getNode(ISD::OR, SDLoc(N), VT, N0, N1);
1512 }
1513 }
1514
1515 // fold (add (shl (add x, c1), c2), ) -> (add (add (shl x, c2), c1<<c2), )
1516 if (N0.getOpcode() == ISD::SHL && N0.getNode()->hasOneUse()) {
1517 SDValue Result = combineShlAddConstant(SDLoc(N), N0, N1, DAG);
1518 if (Result.getNode()) return Result;
1519 }
1520 if (N1.getOpcode() == ISD::SHL && N1.getNode()->hasOneUse()) {
1521 SDValue Result = combineShlAddConstant(SDLoc(N), N1, N0, DAG);
1522 if (Result.getNode()) return Result;
1523 }
1524
1525 // fold (add x, shl(0 - y, n)) -> sub(x, shl(y, n))
1526 if (N1.getOpcode() == ISD::SHL &&
1527 N1.getOperand(0).getOpcode() == ISD::SUB)
1528 if (ConstantSDNode *C =
1529 dyn_cast<ConstantSDNode>(N1.getOperand(0).getOperand(0)))
1530 if (C->getAPIntValue() == 0)
1531 return DAG.getNode(ISD::SUB, SDLoc(N), VT, N0,
1532 DAG.getNode(ISD::SHL, SDLoc(N), VT,
1533 N1.getOperand(0).getOperand(1),
1534 N1.getOperand(1)));
1535 if (N0.getOpcode() == ISD::SHL &&
1536 N0.getOperand(0).getOpcode() == ISD::SUB)
1537 if (ConstantSDNode *C =
1538 dyn_cast<ConstantSDNode>(N0.getOperand(0).getOperand(0)))
1539 if (C->getAPIntValue() == 0)
1540 return DAG.getNode(ISD::SUB, SDLoc(N), VT, N1,
1541 DAG.getNode(ISD::SHL, SDLoc(N), VT,
1542 N0.getOperand(0).getOperand(1),
1543 N0.getOperand(1)));
1544
1545 if (N1.getOpcode() == ISD::AND) {
1546 SDValue AndOp0 = N1.getOperand(0);
1547 ConstantSDNode *AndOp1 = dyn_cast<ConstantSDNode>(N1->getOperand(1));
1548 unsigned NumSignBits = DAG.ComputeNumSignBits(AndOp0);
1549 unsigned DestBits = VT.getScalarType().getSizeInBits();
1550
1551 // (add z, (and (sbbl x, x), 1)) -> (sub z, (sbbl x, x))
1552 // and similar xforms where the inner op is either ~0 or 0.
1553 if (NumSignBits == DestBits && AndOp1 && AndOp1->isOne()) {
1554 SDLoc DL(N);
1555 return DAG.getNode(ISD::SUB, DL, VT, N->getOperand(0), AndOp0);
1556 }
1557 }
1558
1559 // add (sext i1), X -> sub X, (zext i1)
1560 if (N0.getOpcode() == ISD::SIGN_EXTEND &&
1561 N0.getOperand(0).getValueType() == MVT::i1 &&
1562 !TLI.isOperationLegal(ISD::SIGN_EXTEND, MVT::i1)) {
1563 SDLoc DL(N);
1564 SDValue ZExt = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, N0.getOperand(0));
1565 return DAG.getNode(ISD::SUB, DL, VT, N1, ZExt);
1566 }
1567
1568 return SDValue();
1569}
1570
1571SDValue DAGCombiner::visitADDC(SDNode *N) {
1572 SDValue N0 = N->getOperand(0);
1573 SDValue N1 = N->getOperand(1);
1574 ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1575 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1576 EVT VT = N0.getValueType();
1577
1578 // If the flag result is dead, turn this into an ADD.
1579 if (!N->hasAnyUseOfValue(1))
1580 return CombineTo(N, DAG.getNode(ISD::ADD, SDLoc(N), VT, N0, N1),
1581 DAG.getNode(ISD::CARRY_FALSE,
1582 SDLoc(N), MVT::Glue));
1583
1584 // canonicalize constant to RHS.
1585 if (N0C && !N1C)
1586 return DAG.getNode(ISD::ADDC, SDLoc(N), N->getVTList(), N1, N0);
1587
1588 // fold (addc x, 0) -> x + no carry out
1589 if (N1C && N1C->isNullValue())
1590 return CombineTo(N, N0, DAG.getNode(ISD::CARRY_FALSE,
1591 SDLoc(N), MVT::Glue));
1592
1593 // fold (addc a, b) -> (or a, b), CARRY_FALSE iff a and b share no bits.
1594 APInt LHSZero, LHSOne;
1595 APInt RHSZero, RHSOne;
1596 DAG.ComputeMaskedBits(N0, LHSZero, LHSOne);
1597
1598 if (LHSZero.getBoolValue()) {
1599 DAG.ComputeMaskedBits(N1, RHSZero, RHSOne);
1600
1601 // If all possibly-set bits on the LHS are clear on the RHS, return an OR.
1602 // If all possibly-set bits on the RHS are clear on the LHS, return an OR.
1603 if ((RHSZero & ~LHSZero) == ~LHSZero || (LHSZero & ~RHSZero) == ~RHSZero)
1604 return CombineTo(N, DAG.getNode(ISD::OR, SDLoc(N), VT, N0, N1),
1605 DAG.getNode(ISD::CARRY_FALSE,
1606 SDLoc(N), MVT::Glue));
1607 }
1608
1609 return SDValue();
1610}
1611
1612SDValue DAGCombiner::visitADDE(SDNode *N) {
1613 SDValue N0 = N->getOperand(0);
1614 SDValue N1 = N->getOperand(1);
1615 SDValue CarryIn = N->getOperand(2);
1616 ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1617 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1618
1619 // canonicalize constant to RHS
1620 if (N0C && !N1C)
1621 return DAG.getNode(ISD::ADDE, SDLoc(N), N->getVTList(),
1622 N1, N0, CarryIn);
1623
1624 // fold (adde x, y, false) -> (addc x, y)
1625 if (CarryIn.getOpcode() == ISD::CARRY_FALSE)
1626 return DAG.getNode(ISD::ADDC, SDLoc(N), N->getVTList(), N0, N1);
1627
1628 return SDValue();
1629}
1630
1631// Since it may not be valid to emit a fold to zero for vector initializers
1632// check if we can before folding.
1633static SDValue tryFoldToZero(SDLoc DL, const TargetLowering &TLI, EVT VT,
1634 SelectionDAG &DAG,
1635 bool LegalOperations, bool LegalTypes) {
1636 if (!VT.isVector())
1637 return DAG.getConstant(0, VT);
1638 if (!LegalOperations || TLI.isOperationLegal(ISD::BUILD_VECTOR, VT))
1639 return DAG.getConstant(0, VT);
1640 return SDValue();
1641}
1642
1643SDValue DAGCombiner::visitSUB(SDNode *N) {
1644 SDValue N0 = N->getOperand(0);
1645 SDValue N1 = N->getOperand(1);
1646 ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0.getNode());
1647 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
1648 ConstantSDNode *N1C1 = N1.getOpcode() != ISD::ADD ? 0 :
1649 dyn_cast<ConstantSDNode>(N1.getOperand(1).getNode());
1650 EVT VT = N0.getValueType();
1651
1652 // fold vector ops
1653 if (VT.isVector()) {
1654 SDValue FoldedVOp = SimplifyVBinOp(N);
1655 if (FoldedVOp.getNode()) return FoldedVOp;
1656
1657 // fold (sub x, 0) -> x, vector edition
1658 if (ISD::isBuildVectorAllZeros(N1.getNode()))
1659 return N0;
1660 }
1661
1662 // fold (sub x, x) -> 0
1663 // FIXME: Refactor this and xor and other similar operations together.
1664 if (N0 == N1)
1665 return tryFoldToZero(SDLoc(N), TLI, VT, DAG, LegalOperations, LegalTypes);
1666 // fold (sub c1, c2) -> c1-c2
1667 if (N0C && N1C)
1668 return DAG.FoldConstantArithmetic(ISD::SUB, VT, N0C, N1C);
1669 // fold (sub x, c) -> (add x, -c)
1670 if (N1C)
1671 return DAG.getNode(ISD::ADD, SDLoc(N), VT, N0,
1672 DAG.getConstant(-N1C->getAPIntValue(), VT));
1673 // Canonicalize (sub -1, x) -> ~x, i.e. (xor x, -1)
1674 if (N0C && N0C->isAllOnesValue())
1675 return DAG.getNode(ISD::XOR, SDLoc(N), VT, N1, N0);
1676 // fold A-(A-B) -> B
1677 if (N1.getOpcode() == ISD::SUB && N0 == N1.getOperand(0))
1678 return N1.getOperand(1);
1679 // fold (A+B)-A -> B
1680 if (N0.getOpcode() == ISD::ADD && N0.getOperand(0) == N1)
1681 return N0.getOperand(1);
1682 // fold (A+B)-B -> A
1683 if (N0.getOpcode() == ISD::ADD && N0.getOperand(1) == N1)
1684 return N0.getOperand(0);
1685 // fold C2-(A+C1) -> (C2-C1)-A
1686 if (N1.getOpcode() == ISD::ADD && N0C && N1C1) {
1687 SDValue NewC = DAG.getConstant(N0C->getAPIntValue() - N1C1->getAPIntValue(),
1688 VT);
1689 return DAG.getNode(ISD::SUB, SDLoc(N), VT, NewC,
1690 N1.getOperand(0));
1691 }
1692 // fold ((A+(B+or-C))-B) -> A+or-C
1693 if (N0.getOpcode() == ISD::ADD &&
1694 (N0.getOperand(1).getOpcode() == ISD::SUB ||
1695 N0.getOperand(1).getOpcode() == ISD::ADD) &&
1696 N0.getOperand(1).getOperand(0) == N1)
1697 return DAG.getNode(N0.getOperand(1).getOpcode(), SDLoc(N), VT,
1698 N0.getOperand(0), N0.getOperand(1).getOperand(1));
1699 // fold ((A+(C+B))-B) -> A+C
1700 if (N0.getOpcode() == ISD::ADD &&
1701 N0.getOperand(1).getOpcode() == ISD::ADD &&
1702 N0.getOperand(1).getOperand(1) == N1)
1703 return DAG.getNode(ISD::ADD, SDLoc(N), VT,
1704 N0.getOperand(0), N0.getOperand(1).getOperand(0));
1705 // fold ((A-(B-C))-C) -> A-B
1706 if (N0.getOpcode() == ISD::SUB &&
1707 N0.getOperand(1).getOpcode() == ISD::SUB &&
1708 N0.getOperand(1).getOperand(1) == N1)
1709 return DAG.getNode(ISD::SUB, SDLoc(N), VT,
1710 N0.getOperand(0), N0.getOperand(1).getOperand(0));
1711
1712 // If either operand of a sub is undef, the result is undef
1713 if (N0.getOpcode() == ISD::UNDEF)
1714 return N0;
1715 if (N1.getOpcode() == ISD::UNDEF)
1716 return N1;
1717
1718 // If the relocation model supports it, consider symbol offsets.
1719 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N0))
1720 if (!LegalOperations && TLI.isOffsetFoldingLegal(GA)) {
1721 // fold (sub Sym, c) -> Sym-c
1722 if (N1C && GA->getOpcode() == ISD::GlobalAddress)
1723 return DAG.getGlobalAddress(GA->getGlobal(), SDLoc(N1C), VT,
1724 GA->getOffset() -
1725 (uint64_t)N1C->getSExtValue());
1726 // fold (sub Sym+c1, Sym+c2) -> c1-c2
1727 if (GlobalAddressSDNode *GB = dyn_cast<GlobalAddressSDNode>(N1))
1728 if (GA->getGlobal() == GB->getGlobal())
1729 return DAG.getConstant((uint64_t)GA->getOffset() - GB->getOffset(),
1730 VT);
1731 }
1732
1733 return SDValue();
1734}
1735
1736SDValue DAGCombiner::visitSUBC(SDNode *N) {
1737 SDValue N0 = N->getOperand(0);
1738 SDValue N1 = N->getOperand(1);
1739 ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1740 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1741 EVT VT = N0.getValueType();
1742
1743 // If the flag result is dead, turn this into an SUB.
1744 if (!N->hasAnyUseOfValue(1))
1745 return CombineTo(N, DAG.getNode(ISD::SUB, SDLoc(N), VT, N0, N1),
1746 DAG.getNode(ISD::CARRY_FALSE, SDLoc(N),
1747 MVT::Glue));
1748
1749 // fold (subc x, x) -> 0 + no borrow
1750 if (N0 == N1)
1751 return CombineTo(N, DAG.getConstant(0, VT),
1752 DAG.getNode(ISD::CARRY_FALSE, SDLoc(N),
1753 MVT::Glue));
1754
1755 // fold (subc x, 0) -> x + no borrow
1756 if (N1C && N1C->isNullValue())
1757 return CombineTo(N, N0, DAG.getNode(ISD::CARRY_FALSE, SDLoc(N),
1758 MVT::Glue));
1759
1760 // Canonicalize (sub -1, x) -> ~x, i.e. (xor x, -1) + no borrow
1761 if (N0C && N0C->isAllOnesValue())
1762 return CombineTo(N, DAG.getNode(ISD::XOR, SDLoc(N), VT, N1, N0),
1763 DAG.getNode(ISD::CARRY_FALSE, SDLoc(N),
1764 MVT::Glue));
1765
1766 return SDValue();
1767}
1768
1769SDValue DAGCombiner::visitSUBE(SDNode *N) {
1770 SDValue N0 = N->getOperand(0);
1771 SDValue N1 = N->getOperand(1);
1772 SDValue CarryIn = N->getOperand(2);
1773
1774 // fold (sube x, y, false) -> (subc x, y)
1775 if (CarryIn.getOpcode() == ISD::CARRY_FALSE)
1776 return DAG.getNode(ISD::SUBC, SDLoc(N), N->getVTList(), N0, N1);
1777
1778 return SDValue();
1779}
1780
1781/// isConstantSplatVector - Returns true if N is a BUILD_VECTOR node whose
1782/// elements are all the same constant or undefined.
1783static bool isConstantSplatVector(SDNode *N, APInt& SplatValue) {
1784 BuildVectorSDNode *C = dyn_cast<BuildVectorSDNode>(N);
1785 if (!C)
1786 return false;
1787
1788 APInt SplatUndef;
1789 unsigned SplatBitSize;
1790 bool HasAnyUndefs;
1791 EVT EltVT = N->getValueType(0).getVectorElementType();
1792 return (C->isConstantSplat(SplatValue, SplatUndef, SplatBitSize,
1793 HasAnyUndefs) &&
1794 EltVT.getSizeInBits() >= SplatBitSize);
1795}
1796
1797SDValue DAGCombiner::visitMUL(SDNode *N) {
1798 SDValue N0 = N->getOperand(0);
1799 SDValue N1 = N->getOperand(1);
1800 EVT VT = N0.getValueType();
1801
1802 // fold (mul x, undef) -> 0
1803 if (N0.getOpcode() == ISD::UNDEF || N1.getOpcode() == ISD::UNDEF)
1804 return DAG.getConstant(0, VT);
1805
1806 bool N0IsConst = false;
1807 bool N1IsConst = false;
1808 APInt ConstValue0, ConstValue1;
1809 // fold vector ops
1810 if (VT.isVector()) {
1811 SDValue FoldedVOp = SimplifyVBinOp(N);
1812 if (FoldedVOp.getNode()) return FoldedVOp;
1813
1814 N0IsConst = isConstantSplatVector(N0.getNode(), ConstValue0);
1815 N1IsConst = isConstantSplatVector(N1.getNode(), ConstValue1);
1816 } else {
1817 N0IsConst = dyn_cast<ConstantSDNode>(N0) != 0;
1818 ConstValue0 = N0IsConst ? (dyn_cast<ConstantSDNode>(N0))->getAPIntValue()
1819 : APInt();
1820 N1IsConst = dyn_cast<ConstantSDNode>(N1) != 0;
1821 ConstValue1 = N1IsConst ? (dyn_cast<ConstantSDNode>(N1))->getAPIntValue()
1822 : APInt();
1823 }
1824
1825 // fold (mul c1, c2) -> c1*c2
1826 if (N0IsConst && N1IsConst)
1827 return DAG.FoldConstantArithmetic(ISD::MUL, VT, N0.getNode(), N1.getNode());
1828
1829 // canonicalize constant to RHS
1830 if (N0IsConst && !N1IsConst)
1831 return DAG.getNode(ISD::MUL, SDLoc(N), VT, N1, N0);
1832 // fold (mul x, 0) -> 0
1833 if (N1IsConst && ConstValue1 == 0)
1834 return N1;
1835 // We require a splat of the entire scalar bit width for non-contiguous
1836 // bit patterns.
1837 bool IsFullSplat =
1838 ConstValue1.getBitWidth() == VT.getScalarType().getSizeInBits();
1839 // fold (mul x, 1) -> x
1840 if (N1IsConst && ConstValue1 == 1 && IsFullSplat)
1841 return N0;
1842 // fold (mul x, -1) -> 0-x
1843 if (N1IsConst && ConstValue1.isAllOnesValue())
1844 return DAG.getNode(ISD::SUB, SDLoc(N), VT,
1845 DAG.getConstant(0, VT), N0);
1846 // fold (mul x, (1 << c)) -> x << c
1847 if (N1IsConst && ConstValue1.isPowerOf2() && IsFullSplat)
1848 return DAG.getNode(ISD::SHL, SDLoc(N), VT, N0,
1849 DAG.getConstant(ConstValue1.logBase2(),
1850 getShiftAmountTy(N0.getValueType())));
1851 // fold (mul x, -(1 << c)) -> -(x << c) or (-x) << c
1852 if (N1IsConst && (-ConstValue1).isPowerOf2() && IsFullSplat) {
1853 unsigned Log2Val = (-ConstValue1).logBase2();
1854 // FIXME: If the input is something that is easily negated (e.g. a
1855 // single-use add), we should put the negate there.
1856 return DAG.getNode(ISD::SUB, SDLoc(N), VT,
1857 DAG.getConstant(0, VT),
1858 DAG.getNode(ISD::SHL, SDLoc(N), VT, N0,
1859 DAG.getConstant(Log2Val,
1860 getShiftAmountTy(N0.getValueType()))));
1861 }
1862
1863 APInt Val;
1864 // (mul (shl X, c1), c2) -> (mul X, c2 << c1)
1865 if (N1IsConst && N0.getOpcode() == ISD::SHL &&
1866 (isConstantSplatVector(N0.getOperand(1).getNode(), Val) ||
1867 isa<ConstantSDNode>(N0.getOperand(1)))) {
1868 SDValue C3 = DAG.getNode(ISD::SHL, SDLoc(N), VT,
1869 N1, N0.getOperand(1));
1870 AddToWorkList(C3.getNode());
1871 return DAG.getNode(ISD::MUL, SDLoc(N), VT,
1872 N0.getOperand(0), C3);
1873 }
1874
1875 // Change (mul (shl X, C), Y) -> (shl (mul X, Y), C) when the shift has one
1876 // use.
1877 {
1878 SDValue Sh(0,0), Y(0,0);
1879 // Check for both (mul (shl X, C), Y) and (mul Y, (shl X, C)).
1880 if (N0.getOpcode() == ISD::SHL &&
1881 (isConstantSplatVector(N0.getOperand(1).getNode(), Val) ||
1882 isa<ConstantSDNode>(N0.getOperand(1))) &&
1883 N0.getNode()->hasOneUse()) {
1884 Sh = N0; Y = N1;
1885 } else if (N1.getOpcode() == ISD::SHL &&
1886 isa<ConstantSDNode>(N1.getOperand(1)) &&
1887 N1.getNode()->hasOneUse()) {
1888 Sh = N1; Y = N0;
1889 }
1890
1891 if (Sh.getNode()) {
1892 SDValue Mul = DAG.getNode(ISD::MUL, SDLoc(N), VT,
1893 Sh.getOperand(0), Y);
1894 return DAG.getNode(ISD::SHL, SDLoc(N), VT,
1895 Mul, Sh.getOperand(1));
1896 }
1897 }
1898
1899 // fold (mul (add x, c1), c2) -> (add (mul x, c2), c1*c2)
1900 if (N1IsConst && N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse() &&
1901 (isConstantSplatVector(N0.getOperand(1).getNode(), Val) ||
1902 isa<ConstantSDNode>(N0.getOperand(1))))
1903 return DAG.getNode(ISD::ADD, SDLoc(N), VT,
1904 DAG.getNode(ISD::MUL, SDLoc(N0), VT,
1905 N0.getOperand(0), N1),
1906 DAG.getNode(ISD::MUL, SDLoc(N1), VT,
1907 N0.getOperand(1), N1));
1908
1909 // reassociate mul
1910 SDValue RMUL = ReassociateOps(ISD::MUL, SDLoc(N), N0, N1);
1911 if (RMUL.getNode() != 0)
1912 return RMUL;
1913
1914 return SDValue();
1915}
1916
1917SDValue DAGCombiner::visitSDIV(SDNode *N) {
1918 SDValue N0 = N->getOperand(0);
1919 SDValue N1 = N->getOperand(1);
1920 ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0.getNode());
1921 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
1922 EVT VT = N->getValueType(0);
1923
1924 // fold vector ops
1925 if (VT.isVector()) {
1926 SDValue FoldedVOp = SimplifyVBinOp(N);
1927 if (FoldedVOp.getNode()) return FoldedVOp;
1928 }
1929
1930 // fold (sdiv c1, c2) -> c1/c2
1931 if (N0C && N1C && !N1C->isNullValue())
1932 return DAG.FoldConstantArithmetic(ISD::SDIV, VT, N0C, N1C);
1933 // fold (sdiv X, 1) -> X
1934 if (N1C && N1C->getAPIntValue() == 1LL)
1935 return N0;
1936 // fold (sdiv X, -1) -> 0-X
1937 if (N1C && N1C->isAllOnesValue())
1938 return DAG.getNode(ISD::SUB, SDLoc(N), VT,
1939 DAG.getConstant(0, VT), N0);
1940 // If we know the sign bits of both operands are zero, strength reduce to a
1941 // udiv instead. Handles (X&15) /s 4 -> X&15 >> 2
1942 if (!VT.isVector()) {
1943 if (DAG.SignBitIsZero(N1) && DAG.SignBitIsZero(N0))
1944 return DAG.getNode(ISD::UDIV, SDLoc(N), N1.getValueType(),
1945 N0, N1);
1946 }
1947 // fold (sdiv X, pow2) -> simple ops after legalize
1948 if (N1C && !N1C->isNullValue() &&
1949 (N1C->getAPIntValue().isPowerOf2() ||
1950 (-N1C->getAPIntValue()).isPowerOf2())) {
1951 // If dividing by powers of two is cheap, then don't perform the following
1952 // fold.
1953 if (TLI.isPow2DivCheap())
1954 return SDValue();
1955
1956 unsigned lg2 = N1C->getAPIntValue().countTrailingZeros();
1957
1958 // Splat the sign bit into the register
1959 SDValue SGN = DAG.getNode(ISD::SRA, SDLoc(N), VT, N0,
1960 DAG.getConstant(VT.getSizeInBits()-1,
1961 getShiftAmountTy(N0.getValueType())));
1962 AddToWorkList(SGN.getNode());
1963
1964 // Add (N0 < 0) ? abs2 - 1 : 0;
1965 SDValue SRL = DAG.getNode(ISD::SRL, SDLoc(N), VT, SGN,
1966 DAG.getConstant(VT.getSizeInBits() - lg2,
1967 getShiftAmountTy(SGN.getValueType())));
1968 SDValue ADD = DAG.getNode(ISD::ADD, SDLoc(N), VT, N0, SRL);
1969 AddToWorkList(SRL.getNode());
1970 AddToWorkList(ADD.getNode()); // Divide by pow2
1971 SDValue SRA = DAG.getNode(ISD::SRA, SDLoc(N), VT, ADD,
1972 DAG.getConstant(lg2, getShiftAmountTy(ADD.getValueType())));
1973
1974 // If we're dividing by a positive value, we're done. Otherwise, we must
1975 // negate the result.
1976 if (N1C->getAPIntValue().isNonNegative())
1977 return SRA;
1978
1979 AddToWorkList(SRA.getNode());
1980 return DAG.getNode(ISD::SUB, SDLoc(N), VT,
1981 DAG.getConstant(0, VT), SRA);
1982 }
1983
1984 // if integer divide is expensive and we satisfy the requirements, emit an
1985 // alternate sequence.
1986 if (N1C && !N1C->isNullValue() && !TLI.isIntDivCheap()) {
1987 SDValue Op = BuildSDIV(N);
1988 if (Op.getNode()) return Op;
1989 }
1990
1991 // undef / X -> 0
1992 if (N0.getOpcode() == ISD::UNDEF)
1993 return DAG.getConstant(0, VT);
1994 // X / undef -> undef
1995 if (N1.getOpcode() == ISD::UNDEF)
1996 return N1;
1997
1998 return SDValue();
1999}
2000
2001SDValue DAGCombiner::visitUDIV(SDNode *N) {
2002 SDValue N0 = N->getOperand(0);
2003 SDValue N1 = N->getOperand(1);
2004 ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0.getNode());
2005 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
2006 EVT VT = N->getValueType(0);
2007
2008 // fold vector ops
2009 if (VT.isVector()) {
2010 SDValue FoldedVOp = SimplifyVBinOp(N);
2011 if (FoldedVOp.getNode()) return FoldedVOp;
2012 }
2013
2014 // fold (udiv c1, c2) -> c1/c2
2015 if (N0C && N1C && !N1C->isNullValue())
2016 return DAG.FoldConstantArithmetic(ISD::UDIV, VT, N0C, N1C);
2017 // fold (udiv x, (1 << c)) -> x >>u c
2018 if (N1C && N1C->getAPIntValue().isPowerOf2())
2019 return DAG.getNode(ISD::SRL, SDLoc(N), VT, N0,
2020 DAG.getConstant(N1C->getAPIntValue().logBase2(),
2021 getShiftAmountTy(N0.getValueType())));
2022 // fold (udiv x, (shl c, y)) -> x >>u (log2(c)+y) iff c is power of 2
2023 if (N1.getOpcode() == ISD::SHL) {
2024 if (ConstantSDNode *SHC = dyn_cast<ConstantSDNode>(N1.getOperand(0))) {
2025 if (SHC->getAPIntValue().isPowerOf2()) {
2026 EVT ADDVT = N1.getOperand(1).getValueType();
2027 SDValue Add = DAG.getNode(ISD::ADD, SDLoc(N), ADDVT,
2028 N1.getOperand(1),
2029 DAG.getConstant(SHC->getAPIntValue()
2030 .logBase2(),
2031 ADDVT));
2032 AddToWorkList(Add.getNode());
2033 return DAG.getNode(ISD::SRL, SDLoc(N), VT, N0, Add);
2034 }
2035 }
2036 }
2037 // fold (udiv x, c) -> alternate
2038 if (N1C && !N1C->isNullValue() && !TLI.isIntDivCheap()) {
2039 SDValue Op = BuildUDIV(N);
2040 if (Op.getNode()) return Op;
2041 }
2042
2043 // undef / X -> 0
2044 if (N0.getOpcode() == ISD::UNDEF)
2045 return DAG.getConstant(0, VT);
2046 // X / undef -> undef
2047 if (N1.getOpcode() == ISD::UNDEF)
2048 return N1;
2049
2050 return SDValue();
2051}
2052
2053SDValue DAGCombiner::visitSREM(SDNode *N) {
2054 SDValue N0 = N->getOperand(0);
2055 SDValue N1 = N->getOperand(1);
2056 ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
2057 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
2058 EVT VT = N->getValueType(0);
2059
2060 // fold (srem c1, c2) -> c1%c2
2061 if (N0C && N1C && !N1C->isNullValue())
2062 return DAG.FoldConstantArithmetic(ISD::SREM, VT, N0C, N1C);
2063 // If we know the sign bits of both operands are zero, strength reduce to a
2064 // urem instead. Handles (X & 0x0FFFFFFF) %s 16 -> X&15
2065 if (!VT.isVector()) {
2066 if (DAG.SignBitIsZero(N1) && DAG.SignBitIsZero(N0))
2067 return DAG.getNode(ISD::UREM, SDLoc(N), VT, N0, N1);
2068 }
2069
2070 // If X/C can be simplified by the division-by-constant logic, lower
2071 // X%C to the equivalent of X-X/C*C.
2072 if (N1C && !N1C->isNullValue()) {
2073 SDValue Div = DAG.getNode(ISD::SDIV, SDLoc(N), VT, N0, N1);
2074 AddToWorkList(Div.getNode());
2075 SDValue OptimizedDiv = combine(Div.getNode());
2076 if (OptimizedDiv.getNode() && OptimizedDiv.getNode() != Div.getNode()) {
2077 SDValue Mul = DAG.getNode(ISD::MUL, SDLoc(N), VT,
2078 OptimizedDiv, N1);
2079 SDValue Sub = DAG.getNode(ISD::SUB, SDLoc(N), VT, N0, Mul);
2080 AddToWorkList(Mul.getNode());
2081 return Sub;
2082 }
2083 }
2084
2085 // undef % X -> 0
2086 if (N0.getOpcode() == ISD::UNDEF)
2087 return DAG.getConstant(0, VT);
2088 // X % undef -> undef
2089 if (N1.getOpcode() == ISD::UNDEF)
2090 return N1;
2091
2092 return SDValue();
2093}
2094
2095SDValue DAGCombiner::visitUREM(SDNode *N) {
2096 SDValue N0 = N->getOperand(0);
2097 SDValue N1 = N->getOperand(1);
2098 ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
2099 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
2100 EVT VT = N->getValueType(0);
2101
2102 // fold (urem c1, c2) -> c1%c2
2103 if (N0C && N1C && !N1C->isNullValue())
2104 return DAG.FoldConstantArithmetic(ISD::UREM, VT, N0C, N1C);
2105 // fold (urem x, pow2) -> (and x, pow2-1)
2106 if (N1C && !N1C->isNullValue() && N1C->getAPIntValue().isPowerOf2())
2107 return DAG.getNode(ISD::AND, SDLoc(N), VT, N0,
2108 DAG.getConstant(N1C->getAPIntValue()-1,VT));
2109 // fold (urem x, (shl pow2, y)) -> (and x, (add (shl pow2, y), -1))
2110 if (N1.getOpcode() == ISD::SHL) {
2111 if (ConstantSDNode *SHC = dyn_cast<ConstantSDNode>(N1.getOperand(0))) {
2112 if (SHC->getAPIntValue().isPowerOf2()) {
2113 SDValue Add =
2114 DAG.getNode(ISD::ADD, SDLoc(N), VT, N1,
2115 DAG.getConstant(APInt::getAllOnesValue(VT.getSizeInBits()),
2116 VT));
2117 AddToWorkList(Add.getNode());
2118 return DAG.getNode(ISD::AND, SDLoc(N), VT, N0, Add);
2119 }
2120 }
2121 }
2122
2123 // If X/C can be simplified by the division-by-constant logic, lower
2124 // X%C to the equivalent of X-X/C*C.
2125 if (N1C && !N1C->isNullValue()) {
2126 SDValue Div = DAG.getNode(ISD::UDIV, SDLoc(N), VT, N0, N1);
2127 AddToWorkList(Div.getNode());
2128 SDValue OptimizedDiv = combine(Div.getNode());
2129 if (OptimizedDiv.getNode() && OptimizedDiv.getNode() != Div.getNode()) {
2130 SDValue Mul = DAG.getNode(ISD::MUL, SDLoc(N), VT,
2131 OptimizedDiv, N1);
2132 SDValue Sub = DAG.getNode(ISD::SUB, SDLoc(N), VT, N0, Mul);
2133 AddToWorkList(Mul.getNode());
2134 return Sub;
2135 }
2136 }
2137
2138 // undef % X -> 0
2139 if (N0.getOpcode() == ISD::UNDEF)
2140 return DAG.getConstant(0, VT);
2141 // X % undef -> undef
2142 if (N1.getOpcode() == ISD::UNDEF)
2143 return N1;
2144
2145 return SDValue();
2146}
2147
2148SDValue DAGCombiner::visitMULHS(SDNode *N) {
2149 SDValue N0 = N->getOperand(0);
2150 SDValue N1 = N->getOperand(1);
2151 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
2152 EVT VT = N->getValueType(0);
2153 SDLoc DL(N);
2154
2155 // fold (mulhs x, 0) -> 0
2156 if (N1C && N1C->isNullValue())
2157 return N1;
2158 // fold (mulhs x, 1) -> (sra x, size(x)-1)
2159 if (N1C && N1C->getAPIntValue() == 1)
2160 return DAG.getNode(ISD::SRA, SDLoc(N), N0.getValueType(), N0,
2161 DAG.getConstant(N0.getValueType().getSizeInBits() - 1,
2162 getShiftAmountTy(N0.getValueType())));
2163 // fold (mulhs x, undef) -> 0
2164 if (N0.getOpcode() == ISD::UNDEF || N1.getOpcode() == ISD::UNDEF)
2165 return DAG.getConstant(0, VT);
2166
2167 // If the type twice as wide is legal, transform the mulhs to a wider multiply
2168 // plus a shift.
2169 if (VT.isSimple() && !VT.isVector()) {
2170 MVT Simple = VT.getSimpleVT();
2171 unsigned SimpleSize = Simple.getSizeInBits();
2172 EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), SimpleSize*2);
2173 if (TLI.isOperationLegal(ISD::MUL, NewVT)) {
2174 N0 = DAG.getNode(ISD::SIGN_EXTEND, DL, NewVT, N0);
2175 N1 = DAG.getNode(ISD::SIGN_EXTEND, DL, NewVT, N1);
2176 N1 = DAG.getNode(ISD::MUL, DL, NewVT, N0, N1);
2177 N1 = DAG.getNode(ISD::SRL, DL, NewVT, N1,
2178 DAG.getConstant(SimpleSize, getShiftAmountTy(N1.getValueType())));
2179 return DAG.getNode(ISD::TRUNCATE, DL, VT, N1);
2180 }
2181 }
2182
2183 return SDValue();
2184}
2185
2186SDValue DAGCombiner::visitMULHU(SDNode *N) {
2187 SDValue N0 = N->getOperand(0);
2188 SDValue N1 = N->getOperand(1);
2189 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
2190 EVT VT = N->getValueType(0);
2191 SDLoc DL(N);
2192
2193 // fold (mulhu x, 0) -> 0
2194 if (N1C && N1C->isNullValue())
2195 return N1;
2196 // fold (mulhu x, 1) -> 0
2197 if (N1C && N1C->getAPIntValue() == 1)
2198 return DAG.getConstant(0, N0.getValueType());
2199 // fold (mulhu x, undef) -> 0
2200 if (N0.getOpcode() == ISD::UNDEF || N1.getOpcode() == ISD::UNDEF)
2201 return DAG.getConstant(0, VT);
2202
2203 // If the type twice as wide is legal, transform the mulhu to a wider multiply
2204 // plus a shift.
2205 if (VT.isSimple() && !VT.isVector()) {
2206 MVT Simple = VT.getSimpleVT();
2207 unsigned SimpleSize = Simple.getSizeInBits();
2208 EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), SimpleSize*2);
2209 if (TLI.isOperationLegal(ISD::MUL, NewVT)) {
2210 N0 = DAG.getNode(ISD::ZERO_EXTEND, DL, NewVT, N0);
2211 N1 = DAG.getNode(ISD::ZERO_EXTEND, DL, NewVT, N1);
2212 N1 = DAG.getNode(ISD::MUL, DL, NewVT, N0, N1);
2213 N1 = DAG.getNode(ISD::SRL, DL, NewVT, N1,
2214 DAG.getConstant(SimpleSize, getShiftAmountTy(N1.getValueType())));
2215 return DAG.getNode(ISD::TRUNCATE, DL, VT, N1);
2216 }
2217 }
2218
2219 return SDValue();
2220}
2221
2222/// SimplifyNodeWithTwoResults - Perform optimizations common to nodes that
2223/// compute two values. LoOp and HiOp give the opcodes for the two computations
2224/// that are being performed. Return true if a simplification was made.
2225///
2226SDValue DAGCombiner::SimplifyNodeWithTwoResults(SDNode *N, unsigned LoOp,
2227 unsigned HiOp) {
2228 // If the high half is not needed, just compute the low half.
2229 bool HiExists = N->hasAnyUseOfValue(1);
2230 if (!HiExists &&
2231 (!LegalOperations ||
2232 TLI.isOperationLegal(LoOp, N->getValueType(0)))) {
2233 SDValue Res = DAG.getNode(LoOp, SDLoc(N), N->getValueType(0),
2234 N->op_begin(), N->getNumOperands());
2235 return CombineTo(N, Res, Res);
2236 }
2237
2238 // If the low half is not needed, just compute the high half.
2239 bool LoExists = N->hasAnyUseOfValue(0);
2240 if (!LoExists &&
2241 (!LegalOperations ||
2242 TLI.isOperationLegal(HiOp, N->getValueType(1)))) {
2243 SDValue Res = DAG.getNode(HiOp, SDLoc(N), N->getValueType(1),
2244 N->op_begin(), N->getNumOperands());
2245 return CombineTo(N, Res, Res);
2246 }
2247
2248 // If both halves are used, return as it is.
2249 if (LoExists && HiExists)
2250 return SDValue();
2251
2252 // If the two computed results can be simplified separately, separate them.
2253 if (LoExists) {
2254 SDValue Lo = DAG.getNode(LoOp, SDLoc(N), N->getValueType(0),
2255 N->op_begin(), N->getNumOperands());
2256 AddToWorkList(Lo.getNode());
2257 SDValue LoOpt = combine(Lo.getNode());
2258 if (LoOpt.getNode() && LoOpt.getNode() != Lo.getNode() &&
2259 (!LegalOperations ||
2260 TLI.isOperationLegal(LoOpt.getOpcode(), LoOpt.getValueType())))
2261 return CombineTo(N, LoOpt, LoOpt);
2262 }
2263
2264 if (HiExists) {
2265 SDValue Hi = DAG.getNode(HiOp, SDLoc(N), N->getValueType(1),
2266 N->op_begin(), N->getNumOperands());
2267 AddToWorkList(Hi.getNode());
2268 SDValue HiOpt = combine(Hi.getNode());
2269 if (HiOpt.getNode() && HiOpt != Hi &&
2270 (!LegalOperations ||
2271 TLI.isOperationLegal(HiOpt.getOpcode(), HiOpt.getValueType())))
2272 return CombineTo(N, HiOpt, HiOpt);
2273 }
2274
2275 return SDValue();
2276}
2277
2278SDValue DAGCombiner::visitSMUL_LOHI(SDNode *N) {
2279 SDValue Res = SimplifyNodeWithTwoResults(N, ISD::MUL, ISD::MULHS);
2280 if (Res.getNode()) return Res;
2281
2282 EVT VT = N->getValueType(0);
2283 SDLoc DL(N);
2284
2285 // If the type twice as wide is legal, transform the mulhu to a wider multiply
2286 // plus a shift.
2287 if (VT.isSimple() && !VT.isVector()) {
2288 MVT Simple = VT.getSimpleVT();
2289 unsigned SimpleSize = Simple.getSizeInBits();
2290 EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), SimpleSize*2);
2291 if (TLI.isOperationLegal(ISD::MUL, NewVT)) {
2292 SDValue Lo = DAG.getNode(ISD::SIGN_EXTEND, DL, NewVT, N->getOperand(0));
2293 SDValue Hi = DAG.getNode(ISD::SIGN_EXTEND, DL, NewVT, N->getOperand(1));
2294 Lo = DAG.getNode(ISD::MUL, DL, NewVT, Lo, Hi);
2295 // Compute the high part as N1.
2296 Hi = DAG.getNode(ISD::SRL, DL, NewVT, Lo,
2297 DAG.getConstant(SimpleSize, getShiftAmountTy(Lo.getValueType())));
2298 Hi = DAG.getNode(ISD::TRUNCATE, DL, VT, Hi);
2299 // Compute the low part as N0.
2300 Lo = DAG.getNode(ISD::TRUNCATE, DL, VT, Lo);
2301 return CombineTo(N, Lo, Hi);
2302 }
2303 }
2304
2305 return SDValue();
2306}
2307
2308SDValue DAGCombiner::visitUMUL_LOHI(SDNode *N) {
2309 SDValue Res = SimplifyNodeWithTwoResults(N, ISD::MUL, ISD::MULHU);
2310 if (Res.getNode()) return Res;
2311
2312 EVT VT = N->getValueType(0);
2313 SDLoc DL(N);
2314
2315 // If the type twice as wide is legal, transform the mulhu to a wider multiply
2316 // plus a shift.
2317 if (VT.isSimple() && !VT.isVector()) {
2318 MVT Simple = VT.getSimpleVT();
2319 unsigned SimpleSize = Simple.getSizeInBits();
2320 EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), SimpleSize*2);
2321 if (TLI.isOperationLegal(ISD::MUL, NewVT)) {
2322 SDValue Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, NewVT, N->getOperand(0));
2323 SDValue Hi = DAG.getNode(ISD::ZERO_EXTEND, DL, NewVT, N->getOperand(1));
2324 Lo = DAG.getNode(ISD::MUL, DL, NewVT, Lo, Hi);
2325 // Compute the high part as N1.
2326 Hi = DAG.getNode(ISD::SRL, DL, NewVT, Lo,
2327 DAG.getConstant(SimpleSize, getShiftAmountTy(Lo.getValueType())));
2328 Hi = DAG.getNode(ISD::TRUNCATE, DL, VT, Hi);
2329 // Compute the low part as N0.
2330 Lo = DAG.getNode(ISD::TRUNCATE, DL, VT, Lo);
2331 return CombineTo(N, Lo, Hi);
2332 }
2333 }
2334
2335 return SDValue();
2336}
2337
2338SDValue DAGCombiner::visitSMULO(SDNode *N) {
2339 // (smulo x, 2) -> (saddo x, x)
2340 if (ConstantSDNode *C2 = dyn_cast<ConstantSDNode>(N->getOperand(1)))
2341 if (C2->getAPIntValue() == 2)
2342 return DAG.getNode(ISD::SADDO, SDLoc(N), N->getVTList(),
2343 N->getOperand(0), N->getOperand(0));
2344
2345 return SDValue();
2346}
2347
2348SDValue DAGCombiner::visitUMULO(SDNode *N) {
2349 // (umulo x, 2) -> (uaddo x, x)
2350 if (ConstantSDNode *C2 = dyn_cast<ConstantSDNode>(N->getOperand(1)))
2351 if (C2->getAPIntValue() == 2)
2352 return DAG.getNode(ISD::UADDO, SDLoc(N), N->getVTList(),
2353 N->getOperand(0), N->getOperand(0));
2354
2355 return SDValue();
2356}
2357
2358SDValue DAGCombiner::visitSDIVREM(SDNode *N) {
2359 SDValue Res = SimplifyNodeWithTwoResults(N, ISD::SDIV, ISD::SREM);
2360 if (Res.getNode()) return Res;
2361
2362 return SDValue();
2363}
2364
2365SDValue DAGCombiner::visitUDIVREM(SDNode *N) {
2366 SDValue Res = SimplifyNodeWithTwoResults(N, ISD::UDIV, ISD::UREM);
2367 if (Res.getNode()) return Res;
2368
2369 return SDValue();
2370}
2371
2372/// SimplifyBinOpWithSameOpcodeHands - If this is a binary operator with
2373/// two operands of the same opcode, try to simplify it.
2374SDValue DAGCombiner::SimplifyBinOpWithSameOpcodeHands(SDNode *N) {
2375 SDValue N0 = N->getOperand(0), N1 = N->getOperand(1);
2376 EVT VT = N0.getValueType();
2377 assert(N0.getOpcode() == N1.getOpcode() && "Bad input!");
2378
2379 // Bail early if none of these transforms apply.
2380 if (N0.getNode()->getNumOperands() == 0) return SDValue();
2381
2382 // For each of OP in AND/OR/XOR:
2383 // fold (OP (zext x), (zext y)) -> (zext (OP x, y))
2384 // fold (OP (sext x), (sext y)) -> (sext (OP x, y))
2385 // fold (OP (aext x), (aext y)) -> (aext (OP x, y))
2386 // fold (OP (trunc x), (trunc y)) -> (trunc (OP x, y)) (if trunc isn't free)
2387 //
2388 // do not sink logical op inside of a vector extend, since it may combine
2389 // into a vsetcc.
2390 EVT Op0VT = N0.getOperand(0).getValueType();
2391 if ((N0.getOpcode() == ISD::ZERO_EXTEND ||
2392 N0.getOpcode() == ISD::SIGN_EXTEND ||
2393 // Avoid infinite looping with PromoteIntBinOp.
2394 (N0.getOpcode() == ISD::ANY_EXTEND &&
2395 (!LegalTypes || TLI.isTypeDesirableForOp(N->getOpcode(), Op0VT))) ||
2396 (N0.getOpcode() == ISD::TRUNCATE &&
2397 (!TLI.isZExtFree(VT, Op0VT) ||
2398 !TLI.isTruncateFree(Op0VT, VT)) &&
2399 TLI.isTypeLegal(Op0VT))) &&
2400 !VT.isVector() &&
2401 Op0VT == N1.getOperand(0).getValueType() &&
2402 (!LegalOperations || TLI.isOperationLegal(N->getOpcode(), Op0VT))) {
2403 SDValue ORNode = DAG.getNode(N->getOpcode(), SDLoc(N0),
2404 N0.getOperand(0).getValueType(),
2405 N0.getOperand(0), N1.getOperand(0));
2406 AddToWorkList(ORNode.getNode());
2407 return DAG.getNode(N0.getOpcode(), SDLoc(N), VT, ORNode);
2408 }
2409
2410 // For each of OP in SHL/SRL/SRA/AND...
2411 // fold (and (OP x, z), (OP y, z)) -> (OP (and x, y), z)
2412 // fold (or (OP x, z), (OP y, z)) -> (OP (or x, y), z)
2413 // fold (xor (OP x, z), (OP y, z)) -> (OP (xor x, y), z)
2414 if ((N0.getOpcode() == ISD::SHL || N0.getOpcode() == ISD::SRL ||
2415 N0.getOpcode() == ISD::SRA || N0.getOpcode() == ISD::AND) &&
2416 N0.getOperand(1) == N1.getOperand(1)) {
2417 SDValue ORNode = DAG.getNode(N->getOpcode(), SDLoc(N0),
2418 N0.getOperand(0).getValueType(),
2419 N0.getOperand(0), N1.getOperand(0));
2420 AddToWorkList(ORNode.getNode());
2421 return DAG.getNode(N0.getOpcode(), SDLoc(N), VT,
2422 ORNode, N0.getOperand(1));
2423 }
2424
2425 // Simplify xor/and/or (bitcast(A), bitcast(B)) -> bitcast(op (A,B))
2426 // Only perform this optimization after type legalization and before
2427 // LegalizeVectorOprs. LegalizeVectorOprs promotes vector operations by
2428 // adding bitcasts. For example (xor v4i32) is promoted to (v2i64), and
2429 // we don't want to undo this promotion.
2430 // We also handle SCALAR_TO_VECTOR because xor/or/and operations are cheaper
2431 // on scalars.
2432 if ((N0.getOpcode() == ISD::BITCAST ||
2433 N0.getOpcode() == ISD::SCALAR_TO_VECTOR) &&
2434 Level == AfterLegalizeTypes) {
2435 SDValue In0 = N0.getOperand(0);
2436 SDValue In1 = N1.getOperand(0);
2437 EVT In0Ty = In0.getValueType();
2438 EVT In1Ty = In1.getValueType();
2439 SDLoc DL(N);
2440 // If both incoming values are integers, and the original types are the
2441 // same.
2442 if (In0Ty.isInteger() && In1Ty.isInteger() && In0Ty == In1Ty) {
2443 SDValue Op = DAG.getNode(N->getOpcode(), DL, In0Ty, In0, In1);
2444 SDValue BC = DAG.getNode(N0.getOpcode(), DL, VT, Op);
2445 AddToWorkList(Op.getNode());
2446 return BC;
2447 }
2448 }
2449
2450 // Xor/and/or are indifferent to the swizzle operation (shuffle of one value).
2451 // Simplify xor/and/or (shuff(A), shuff(B)) -> shuff(op (A,B))
2452 // If both shuffles use the same mask, and both shuffle within a single
2453 // vector, then it is worthwhile to move the swizzle after the operation.
2454 // The type-legalizer generates this pattern when loading illegal
2455 // vector types from memory. In many cases this allows additional shuffle
2456 // optimizations.
2457 if (N0.getOpcode() == ISD::VECTOR_SHUFFLE && Level < AfterLegalizeDAG &&
2458 N0.getOperand(1).getOpcode() == ISD::UNDEF &&
2459 N1.getOperand(1).getOpcode() == ISD::UNDEF) {
2460 ShuffleVectorSDNode *SVN0 = cast<ShuffleVectorSDNode>(N0);
2461 ShuffleVectorSDNode *SVN1 = cast<ShuffleVectorSDNode>(N1);
2462
2463 assert(N0.getOperand(0).getValueType() == N1.getOperand(1).getValueType() &&
2464 "Inputs to shuffles are not the same type");
2465
2466 unsigned NumElts = VT.getVectorNumElements();
2467
2468 // Check that both shuffles use the same mask. The masks are known to be of
2469 // the same length because the result vector type is the same.
2470 bool SameMask = true;
2471 for (unsigned i = 0; i != NumElts; ++i) {
2472 int Idx0 = SVN0->getMaskElt(i);
2473 int Idx1 = SVN1->getMaskElt(i);
2474 if (Idx0 != Idx1) {
2475 SameMask = false;
2476 break;
2477 }
2478 }
2479
2480 if (SameMask) {
2481 SDValue Op = DAG.getNode(N->getOpcode(), SDLoc(N), VT,
2482 N0.getOperand(0), N1.getOperand(0));
2483 AddToWorkList(Op.getNode());
2484 return DAG.getVectorShuffle(VT, SDLoc(N), Op,
2485 DAG.getUNDEF(VT), &SVN0->getMask()[0]);
2486 }
2487 }
2488
2489 return SDValue();
2490}
2491
2492SDValue DAGCombiner::visitAND(SDNode *N) {
2493 SDValue N0 = N->getOperand(0);
2494 SDValue N1 = N->getOperand(1);
2495 SDValue LL, LR, RL, RR, CC0, CC1;
2496 ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
2497 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
2498 EVT VT = N1.getValueType();
2499 unsigned BitWidth = VT.getScalarType().getSizeInBits();
2500
2501 // fold vector ops
2502 if (VT.isVector()) {
2503 SDValue FoldedVOp = SimplifyVBinOp(N);
2504 if (FoldedVOp.getNode()) return FoldedVOp;
2505
2506 // fold (and x, 0) -> 0, vector edition
2507 if (ISD::isBuildVectorAllZeros(N0.getNode()))
2508 return N0;
2509 if (ISD::isBuildVectorAllZeros(N1.getNode()))
2510 return N1;
2511
2512 // fold (and x, -1) -> x, vector edition
2513 if (ISD::isBuildVectorAllOnes(N0.getNode()))
2514 return N1;
2515 if (ISD::isBuildVectorAllOnes(N1.getNode()))
2516 return N0;
2517 }
2518
2519 // fold (and x, undef) -> 0
2520 if (N0.getOpcode() == ISD::UNDEF || N1.getOpcode() == ISD::UNDEF)
2521 return DAG.getConstant(0, VT);
2522 // fold (and c1, c2) -> c1&c2
2523 if (N0C && N1C)
2524 return DAG.FoldConstantArithmetic(ISD::AND, VT, N0C, N1C);
2525 // canonicalize constant to RHS
2526 if (N0C && !N1C)
2527 return DAG.getNode(ISD::AND, SDLoc(N), VT, N1, N0);
2528 // fold (and x, -1) -> x
2529 if (N1C && N1C->isAllOnesValue())
2530 return N0;
2531 // if (and x, c) is known to be zero, return 0
2532 if (N1C && DAG.MaskedValueIsZero(SDValue(N, 0),
2533 APInt::getAllOnesValue(BitWidth)))
2534 return DAG.getConstant(0, VT);
2535 // reassociate and
2536 SDValue RAND = ReassociateOps(ISD::AND, SDLoc(N), N0, N1);
2537 if (RAND.getNode() != 0)
2538 return RAND;
2539 // fold (and (or x, C), D) -> D if (C & D) == D
2540 if (N1C && N0.getOpcode() == ISD::OR)
2541 if (ConstantSDNode *ORI = dyn_cast<ConstantSDNode>(N0.getOperand(1)))
2542 if ((ORI->getAPIntValue() & N1C->getAPIntValue()) == N1C->getAPIntValue())
2543 return N1;
2544 // fold (and (any_ext V), c) -> (zero_ext V) if 'and' only clears top bits.
2545 if (N1C && N0.getOpcode() == ISD::ANY_EXTEND) {
2546 SDValue N0Op0 = N0.getOperand(0);
2547 APInt Mask = ~N1C->getAPIntValue();
2548 Mask = Mask.trunc(N0Op0.getValueSizeInBits());
2549 if (DAG.MaskedValueIsZero(N0Op0, Mask)) {
2550 SDValue Zext = DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N),
2551 N0.getValueType(), N0Op0);
2552
2553 // Replace uses of the AND with uses of the Zero extend node.
2554 CombineTo(N, Zext);
2555
2556 // We actually want to replace all uses of the any_extend with the
2557 // zero_extend, to avoid duplicating things. This will later cause this
2558 // AND to be folded.
2559 CombineTo(N0.getNode(), Zext);
2560 return SDValue(N, 0); // Return N so it doesn't get rechecked!
2561 }
2562 }
2563 // similarly fold (and (X (load ([non_ext|any_ext|zero_ext] V))), c) ->
2564 // (X (load ([non_ext|zero_ext] V))) if 'and' only clears top bits which must
2565 // already be zero by virtue of the width of the base type of the load.
2566 //
2567 // the 'X' node here can either be nothing or an extract_vector_elt to catch
2568 // more cases.
2569 if ((N0.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
2570 N0.getOperand(0).getOpcode() == ISD::LOAD) ||
2571 N0.getOpcode() == ISD::LOAD) {
2572 LoadSDNode *Load = cast<LoadSDNode>( (N0.getOpcode() == ISD::LOAD) ?
2573 N0 : N0.getOperand(0) );
2574
2575 // Get the constant (if applicable) the zero'th operand is being ANDed with.
2576 // This can be a pure constant or a vector splat, in which case we treat the
2577 // vector as a scalar and use the splat value.
2578 APInt Constant = APInt::getNullValue(1);
2579 if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) {
2580 Constant = C->getAPIntValue();
2581 } else if (BuildVectorSDNode *Vector = dyn_cast<BuildVectorSDNode>(N1)) {
2582 APInt SplatValue, SplatUndef;
2583 unsigned SplatBitSize;
2584 bool HasAnyUndefs;
2585 bool IsSplat = Vector->isConstantSplat(SplatValue, SplatUndef,
2586 SplatBitSize, HasAnyUndefs);
2587 if (IsSplat) {
2588 // Undef bits can contribute to a possible optimisation if set, so
2589 // set them.
2590 SplatValue |= SplatUndef;
2591
2592 // The splat value may be something like "0x00FFFFFF", which means 0 for
2593 // the first vector value and FF for the rest, repeating. We need a mask
2594 // that will apply equally to all members of the vector, so AND all the
2595 // lanes of the constant together.
2596 EVT VT = Vector->getValueType(0);
2597 unsigned BitWidth = VT.getVectorElementType().getSizeInBits();
2598
2599 // If the splat value has been compressed to a bitlength lower
2600 // than the size of the vector lane, we need to re-expand it to
2601 // the lane size.
2602 if (BitWidth > SplatBitSize)
2603 for (SplatValue = SplatValue.zextOrTrunc(BitWidth);
2604 SplatBitSize < BitWidth;
2605 SplatBitSize = SplatBitSize * 2)
2606 SplatValue |= SplatValue.shl(SplatBitSize);
2607
2608 Constant = APInt::getAllOnesValue(BitWidth);
2609 for (unsigned i = 0, n = SplatBitSize/BitWidth; i < n; ++i)
2610 Constant &= SplatValue.lshr(i*BitWidth).zextOrTrunc(BitWidth);
2611 }
2612 }
2613
2614 // If we want to change an EXTLOAD to a ZEXTLOAD, ensure a ZEXTLOAD is
2615 // actually legal and isn't going to get expanded, else this is a false
2616 // optimisation.
2617 bool CanZextLoadProfitably = TLI.isLoadExtLegal(ISD::ZEXTLOAD,
2618 Load->getMemoryVT());
2619
2620 // Resize the constant to the same size as the original memory access before
2621 // extension. If it is still the AllOnesValue then this AND is completely
2622 // unneeded.
2623 Constant =
2624 Constant.zextOrTrunc(Load->getMemoryVT().getScalarType().getSizeInBits());
2625
2626 bool B;
2627 switch (Load->getExtensionType()) {
2628 default: B = false; break;
2629 case ISD::EXTLOAD: B = CanZextLoadProfitably; break;
2630 case ISD::ZEXTLOAD:
2631 case ISD::NON_EXTLOAD: B = true; break;
2632 }
2633
2634 if (B && Constant.isAllOnesValue()) {
2635 // If the load type was an EXTLOAD, convert to ZEXTLOAD in order to
2636 // preserve semantics once we get rid of the AND.
2637 SDValue NewLoad(Load, 0);
2638 if (Load->getExtensionType() == ISD::EXTLOAD) {
2639 NewLoad = DAG.getLoad(Load->getAddressingMode(), ISD::ZEXTLOAD,
2640 Load->getValueType(0), SDLoc(Load),
2641 Load->getChain(), Load->getBasePtr(),
2642 Load->getOffset(), Load->getMemoryVT(),
2643 Load->getMemOperand());
2644 // Replace uses of the EXTLOAD with the new ZEXTLOAD.
2645 if (Load->getNumValues() == 3) {
2646 // PRE/POST_INC loads have 3 values.
2647 SDValue To[] = { NewLoad.getValue(0), NewLoad.getValue(1),
2648 NewLoad.getValue(2) };
2649 CombineTo(Load, To, 3, true);
2650 } else {
2651 CombineTo(Load, NewLoad.getValue(0), NewLoad.getValue(1));
2652 }
2653 }
2654
2655 // Fold the AND away, taking care not to fold to the old load node if we
2656 // replaced it.
2657 CombineTo(N, (N0.getNode() == Load) ? NewLoad : N0);
2658
2659 return SDValue(N, 0); // Return N so it doesn't get rechecked!
2660 }
2661 }
2662 // fold (and (setcc x), (setcc y)) -> (setcc (and x, y))
2663 if (isSetCCEquivalent(N0, LL, LR, CC0) && isSetCCEquivalent(N1, RL, RR, CC1)){
2664 ISD::CondCode Op0 = cast<CondCodeSDNode>(CC0)->get();
2665 ISD::CondCode Op1 = cast<CondCodeSDNode>(CC1)->get();
2666
2667 if (LR == RR && isa<ConstantSDNode>(LR) && Op0 == Op1 &&
2668 LL.getValueType().isInteger()) {
2669 // fold (and (seteq X, 0), (seteq Y, 0)) -> (seteq (or X, Y), 0)
2670 if (cast<ConstantSDNode>(LR)->isNullValue() && Op1 == ISD::SETEQ) {
2671 SDValue ORNode = DAG.getNode(ISD::OR, SDLoc(N0),
2672 LR.getValueType(), LL, RL);
2673 AddToWorkList(ORNode.getNode());
2674 return DAG.getSetCC(SDLoc(N), VT, ORNode, LR, Op1);
2675 }
2676 // fold (and (seteq X, -1), (seteq Y, -1)) -> (seteq (and X, Y), -1)
2677 if (cast<ConstantSDNode>(LR)->isAllOnesValue() && Op1 == ISD::SETEQ) {
2678 SDValue ANDNode = DAG.getNode(ISD::AND, SDLoc(N0),
2679 LR.getValueType(), LL, RL);
2680 AddToWorkList(ANDNode.getNode());
2681 return DAG.getSetCC(SDLoc(N), VT, ANDNode, LR, Op1);
2682 }
2683 // fold (and (setgt X, -1), (setgt Y, -1)) -> (setgt (or X, Y), -1)
2684 if (cast<ConstantSDNode>(LR)->isAllOnesValue() && Op1 == ISD::SETGT) {
2685 SDValue ORNode = DAG.getNode(ISD::OR, SDLoc(N0),
2686 LR.getValueType(), LL, RL);
2687 AddToWorkList(ORNode.getNode());
2688 return DAG.getSetCC(SDLoc(N), VT, ORNode, LR, Op1);
2689 }
2690 }
2691 // Simplify (and (setne X, 0), (setne X, -1)) -> (setuge (add X, 1), 2)
2692 if (LL == RL && isa<ConstantSDNode>(LR) && isa<ConstantSDNode>(RR) &&
2693 Op0 == Op1 && LL.getValueType().isInteger() &&
2694 Op0 == ISD::SETNE && ((cast<ConstantSDNode>(LR)->isNullValue() &&
2695 cast<ConstantSDNode>(RR)->isAllOnesValue()) ||
2696 (cast<ConstantSDNode>(LR)->isAllOnesValue() &&
2697 cast<ConstantSDNode>(RR)->isNullValue()))) {
2698 SDValue ADDNode = DAG.getNode(ISD::ADD, SDLoc(N0), LL.getValueType(),
2699 LL, DAG.getConstant(1, LL.getValueType()));
2700 AddToWorkList(ADDNode.getNode());
2701 return DAG.getSetCC(SDLoc(N), VT, ADDNode,
2702 DAG.getConstant(2, LL.getValueType()), ISD::SETUGE);
2703 }
2704 // canonicalize equivalent to ll == rl
2705 if (LL == RR && LR == RL) {
2706 Op1 = ISD::getSetCCSwappedOperands(Op1);
2707 std::swap(RL, RR);
2708 }
2709 if (LL == RL && LR == RR) {
2710 bool isInteger = LL.getValueType().isInteger();
2711 ISD::CondCode Result = ISD::getSetCCAndOperation(Op0, Op1, isInteger);
2712 if (Result != ISD::SETCC_INVALID &&
2713 (!LegalOperations ||
2714 (TLI.isCondCodeLegal(Result, LL.getSimpleValueType()) &&
2715 TLI.isOperationLegal(ISD::SETCC,
2716 getSetCCResultType(N0.getSimpleValueType())))))
2717 return DAG.getSetCC(SDLoc(N), N0.getValueType(),
2718 LL, LR, Result);
2719 }
2720 }
2721
2722 // Simplify: (and (op x...), (op y...)) -> (op (and x, y))
2723 if (N0.getOpcode() == N1.getOpcode()) {
2724 SDValue Tmp = SimplifyBinOpWithSameOpcodeHands(N);
2725 if (Tmp.getNode()) return Tmp;
2726 }
2727
2728 // fold (and (sign_extend_inreg x, i16 to i32), 1) -> (and x, 1)
2729 // fold (and (sra)) -> (and (srl)) when possible.
2730 if (!VT.isVector() &&
2731 SimplifyDemandedBits(SDValue(N, 0)))
2732 return SDValue(N, 0);
2733
2734 // fold (zext_inreg (extload x)) -> (zextload x)
2735 if (ISD::isEXTLoad(N0.getNode()) && ISD::isUNINDEXEDLoad(N0.getNode())) {
2736 LoadSDNode *LN0 = cast<LoadSDNode>(N0);
2737 EVT MemVT = LN0->getMemoryVT();
2738 // If we zero all the possible extended bits, then we can turn this into
2739 // a zextload if we are running before legalize or the operation is legal.
2740 unsigned BitWidth = N1.getValueType().getScalarType().getSizeInBits();
2741 if (DAG.MaskedValueIsZero(N1, APInt::getHighBitsSet(BitWidth,
2742 BitWidth - MemVT.getScalarType().getSizeInBits())) &&
2743 ((!LegalOperations && !LN0->isVolatile()) ||
2744 TLI.isLoadExtLegal(ISD::ZEXTLOAD, MemVT))) {
2745 SDValue ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, SDLoc(N0), VT,
2746 LN0->getChain(), LN0->getBasePtr(),
2747 MemVT, LN0->getMemOperand());
2748 AddToWorkList(N);
2749 CombineTo(N0.getNode(), ExtLoad, ExtLoad.getValue(1));
2750 return SDValue(N, 0); // Return N so it doesn't get rechecked!
2751 }
2752 }
2753 // fold (zext_inreg (sextload x)) -> (zextload x) iff load has one use
2754 if (ISD::isSEXTLoad(N0.getNode()) && ISD::isUNINDEXEDLoad(N0.getNode()) &&
2755 N0.hasOneUse()) {
2756 LoadSDNode *LN0 = cast<LoadSDNode>(N0);
2757 EVT MemVT = LN0->getMemoryVT();
2758 // If we zero all the possible extended bits, then we can turn this into
2759 // a zextload if we are running before legalize or the operation is legal.
2760 unsigned BitWidth = N1.getValueType().getScalarType().getSizeInBits();
2761 if (DAG.MaskedValueIsZero(N1, APInt::getHighBitsSet(BitWidth,
2762 BitWidth - MemVT.getScalarType().getSizeInBits())) &&
2763 ((!LegalOperations && !LN0->isVolatile()) ||
2764 TLI.isLoadExtLegal(ISD::ZEXTLOAD, MemVT))) {
2765 SDValue ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, SDLoc(N0), VT,
2766 LN0->getChain(), LN0->getBasePtr(),
2767 MemVT, LN0->getMemOperand());
2768 AddToWorkList(N);
2769 CombineTo(N0.getNode(), ExtLoad, ExtLoad.getValue(1));
2770 return SDValue(N, 0); // Return N so it doesn't get rechecked!
2771 }
2772 }
2773
2774 // fold (and (load x), 255) -> (zextload x, i8)
2775 // fold (and (extload x, i16), 255) -> (zextload x, i8)
2776 // fold (and (any_ext (extload x, i16)), 255) -> (zextload x, i8)
2777 if (N1C && (N0.getOpcode() == ISD::LOAD ||
2778 (N0.getOpcode() == ISD::ANY_EXTEND &&
2779 N0.getOperand(0).getOpcode() == ISD::LOAD))) {
2780 bool HasAnyExt = N0.getOpcode() == ISD::ANY_EXTEND;
2781 LoadSDNode *LN0 = HasAnyExt
2782 ? cast<LoadSDNode>(N0.getOperand(0))
2783 : cast<LoadSDNode>(N0);
2784 if (LN0->getExtensionType() != ISD::SEXTLOAD &&
2785 LN0->isUnindexed() && N0.hasOneUse() && SDValue(LN0, 0).hasOneUse()) {
2786 uint32_t ActiveBits = N1C->getAPIntValue().getActiveBits();
2787 if (ActiveBits > 0 && APIntOps::isMask(ActiveBits, N1C->getAPIntValue())){
2788 EVT ExtVT = EVT::getIntegerVT(*DAG.getContext(), ActiveBits);
2789 EVT LoadedVT = LN0->getMemoryVT();
2790
2791 if (ExtVT == LoadedVT &&
2792 (!LegalOperations || TLI.isLoadExtLegal(ISD::ZEXTLOAD, ExtVT))) {
2793 EVT LoadResultTy = HasAnyExt ? LN0->getValueType(0) : VT;
2794
2795 SDValue NewLoad =
2796 DAG.getExtLoad(ISD::ZEXTLOAD, SDLoc(LN0), LoadResultTy,
2797 LN0->getChain(), LN0->getBasePtr(), ExtVT,
2798 LN0->getMemOperand());
2799 AddToWorkList(N);
2800 CombineTo(LN0, NewLoad, NewLoad.getValue(1));
2801 return SDValue(N, 0); // Return N so it doesn't get rechecked!
2802 }
2803
2804 // Do not change the width of a volatile load.
2805 // Do not generate loads of non-round integer types since these can
2806 // be expensive (and would be wrong if the type is not byte sized).
2807 if (!LN0->isVolatile() && LoadedVT.bitsGT(ExtVT) && ExtVT.isRound() &&
2808 (!LegalOperations || TLI.isLoadExtLegal(ISD::ZEXTLOAD, ExtVT))) {
2809 EVT PtrType = LN0->getOperand(1).getValueType();
2810
2811 unsigned Alignment = LN0->getAlignment();
2812 SDValue NewPtr = LN0->getBasePtr();
2813
2814 // For big endian targets, we need to add an offset to the pointer
2815 // to load the correct bytes. For little endian systems, we merely
2816 // need to read fewer bytes from the same pointer.
2817 if (TLI.isBigEndian()) {
2818 unsigned LVTStoreBytes = LoadedVT.getStoreSize();
2819 unsigned EVTStoreBytes = ExtVT.getStoreSize();
2820 unsigned PtrOff = LVTStoreBytes - EVTStoreBytes;
2821 NewPtr = DAG.getNode(ISD::ADD, SDLoc(LN0), PtrType,
2822 NewPtr, DAG.getConstant(PtrOff, PtrType));
2823 Alignment = MinAlign(Alignment, PtrOff);
2824 }
2825
2826 AddToWorkList(NewPtr.getNode());
2827
2828 EVT LoadResultTy = HasAnyExt ? LN0->getValueType(0) : VT;
2829 SDValue Load =
2830 DAG.getExtLoad(ISD::ZEXTLOAD, SDLoc(LN0), LoadResultTy,
2831 LN0->getChain(), NewPtr,
2832 LN0->getPointerInfo(),
2833 ExtVT, LN0->isVolatile(), LN0->isNonTemporal(),
2834 Alignment, LN0->getTBAAInfo());
2835 AddToWorkList(N);
2836 CombineTo(LN0, Load, Load.getValue(1));
2837 return SDValue(N, 0); // Return N so it doesn't get rechecked!
2838 }
2839 }
2840 }
2841 }
2842
2843 if (N0.getOpcode() == ISD::ADD && N1.getOpcode() == ISD::SRL &&
2844 VT.getSizeInBits() <= 64) {
2845 if (ConstantSDNode *ADDI = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
2846 APInt ADDC = ADDI->getAPIntValue();
2847 if (!TLI.isLegalAddImmediate(ADDC.getSExtValue())) {
2848 // Look for (and (add x, c1), (lshr y, c2)). If C1 wasn't a legal
2849 // immediate for an add, but it is legal if its top c2 bits are set,
2850 // transform the ADD so the immediate doesn't need to be materialized
2851 // in a register.
2852 if (ConstantSDNode *SRLI = dyn_cast<ConstantSDNode>(N1.getOperand(1))) {
2853 APInt Mask = APInt::getHighBitsSet(VT.getSizeInBits(),
2854 SRLI->getZExtValue());
2855 if (DAG.MaskedValueIsZero(N0.getOperand(1), Mask)) {
2856 ADDC |= Mask;
2857 if (TLI.isLegalAddImmediate(ADDC.getSExtValue())) {
2858 SDValue NewAdd =
2859 DAG.getNode(ISD::ADD, SDLoc(N0), VT,
2860 N0.getOperand(0), DAG.getConstant(ADDC, VT));
2861 CombineTo(N0.getNode(), NewAdd);
2862 return SDValue(N, 0); // Return N so it doesn't get rechecked!
2863 }
2864 }
2865 }
2866 }
2867 }
2868 }
2869
2870 // fold (and (or (srl N, 8), (shl N, 8)), 0xffff) -> (srl (bswap N), const)
2871 if (N1C && N1C->getAPIntValue() == 0xffff && N0.getOpcode() == ISD::OR) {
2872 SDValue BSwap = MatchBSwapHWordLow(N0.getNode(), N0.getOperand(0),
2873 N0.getOperand(1), false);
2874 if (BSwap.getNode())
2875 return BSwap;
2876 }
2877
2878 return SDValue();
2879}
2880
2881/// MatchBSwapHWord - Match (a >> 8) | (a << 8) as (bswap a) >> 16
2882///
2883SDValue DAGCombiner::MatchBSwapHWordLow(SDNode *N, SDValue N0, SDValue N1,
2884 bool DemandHighBits) {
2885 if (!LegalOperations)
2886 return SDValue();
2887
2888 EVT VT = N->getValueType(0);
2889 if (VT != MVT::i64 && VT != MVT::i32 && VT != MVT::i16)
2890 return SDValue();
2891 if (!TLI.isOperationLegal(ISD::BSWAP, VT))
2892 return SDValue();
2893
2894 // Recognize (and (shl a, 8), 0xff), (and (srl a, 8), 0xff00)
2895 bool LookPassAnd0 = false;
2896 bool LookPassAnd1 = false;
2897 if (N0.getOpcode() == ISD::AND && N0.getOperand(0).getOpcode() == ISD::SRL)
2898 std::swap(N0, N1);
2899 if (N1.getOpcode() == ISD::AND && N1.getOperand(0).getOpcode() == ISD::SHL)
2900 std::swap(N0, N1);
2901 if (N0.getOpcode() == ISD::AND) {
2902 if (!N0.getNode()->hasOneUse())
2903 return SDValue();
2904 ConstantSDNode *N01C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
2905 if (!N01C || N01C->getZExtValue() != 0xFF00)
2906 return SDValue();
2907 N0 = N0.getOperand(0);
2908 LookPassAnd0 = true;
2909 }
2910
2911 if (N1.getOpcode() == ISD::AND) {
2912 if (!N1.getNode()->hasOneUse())
2913 return SDValue();
2914 ConstantSDNode *N11C = dyn_cast<ConstantSDNode>(N1.getOperand(1));
2915 if (!N11C || N11C->getZExtValue() != 0xFF)
2916 return SDValue();
2917 N1 = N1.getOperand(0);
2918 LookPassAnd1 = true;
2919 }
2920
2921 if (N0.getOpcode() == ISD::SRL && N1.getOpcode() == ISD::SHL)
2922 std::swap(N0, N1);
2923 if (N0.getOpcode() != ISD::SHL || N1.getOpcode() != ISD::SRL)
2924 return SDValue();
2925 if (!N0.getNode()->hasOneUse() ||
2926 !N1.getNode()->hasOneUse())
2927 return SDValue();
2928
2929 ConstantSDNode *N01C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
2930 ConstantSDNode *N11C = dyn_cast<ConstantSDNode>(N1.getOperand(1));
2931 if (!N01C || !N11C)
2932 return SDValue();
2933 if (N01C->getZExtValue() != 8 || N11C->getZExtValue() != 8)
2934 return SDValue();
2935
2936 // Look for (shl (and a, 0xff), 8), (srl (and a, 0xff00), 8)
2937 SDValue N00 = N0->getOperand(0);
2938 if (!LookPassAnd0 && N00.getOpcode() == ISD::AND) {
2939 if (!N00.getNode()->hasOneUse())
2940 return SDValue();
2941 ConstantSDNode *N001C = dyn_cast<ConstantSDNode>(N00.getOperand(1));
2942 if (!N001C || N001C->getZExtValue() != 0xFF)
2943 return SDValue();
2944 N00 = N00.getOperand(0);
2945 LookPassAnd0 = true;
2946 }
2947
2948 SDValue N10 = N1->getOperand(0);
2949 if (!LookPassAnd1 && N10.getOpcode() == ISD::AND) {
2950 if (!N10.getNode()->hasOneUse())
2951 return SDValue();
2952 ConstantSDNode *N101C = dyn_cast<ConstantSDNode>(N10.getOperand(1));
2953 if (!N101C || N101C->getZExtValue() != 0xFF00)
2954 return SDValue();
2955 N10 = N10.getOperand(0);
2956 LookPassAnd1 = true;
2957 }
2958
2959 if (N00 != N10)
2960 return SDValue();
2961
2962 // Make sure everything beyond the low halfword gets set to zero since the SRL
2963 // 16 will clear the top bits.
2964 unsigned OpSizeInBits = VT.getSizeInBits();
2965 if (DemandHighBits && OpSizeInBits > 16) {
2966 // If the left-shift isn't masked out then the only way this is a bswap is
2967 // if all bits beyond the low 8 are 0. In that case the entire pattern
2968 // reduces to a left shift anyway: leave it for other parts of the combiner.
2969 if (!LookPassAnd0)
2970 return SDValue();
2971
2972 // However, if the right shift isn't masked out then it might be because
2973 // it's not needed. See if we can spot that too.
2974 if (!LookPassAnd1 &&
2975 !DAG.MaskedValueIsZero(
2976 N10, APInt::getHighBitsSet(OpSizeInBits, OpSizeInBits - 16)))
2977 return SDValue();
2978 }
2979
2980 SDValue Res = DAG.getNode(ISD::BSWAP, SDLoc(N), VT, N00);
2981 if (OpSizeInBits > 16)
2982 Res = DAG.getNode(ISD::SRL, SDLoc(N), VT, Res,
2983 DAG.getConstant(OpSizeInBits-16, getShiftAmountTy(VT)));
2984 return Res;
2985}
2986
2987/// isBSwapHWordElement - Return true if the specified node is an element
2988/// that makes up a 32-bit packed halfword byteswap. i.e.
2989/// ((x&0xff)<<8)|((x&0xff00)>>8)|((x&0x00ff0000)<<8)|((x&0xff000000)>>8)
2990static bool isBSwapHWordElement(SDValue N, SmallVectorImpl<SDNode *> &Parts) {
2991 if (!N.getNode()->hasOneUse())
2992 return false;
2993
2994 unsigned Opc = N.getOpcode();
2995 if (Opc != ISD::AND && Opc != ISD::SHL && Opc != ISD::SRL)
2996 return false;
2997
2998 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N.getOperand(1));
2999 if (!N1C)
3000 return false;
3001
3002 unsigned Num;
3003 switch (N1C->getZExtValue()) {
3004 default:
3005 return false;
3006 case 0xFF: Num = 0; break;
3007 case 0xFF00: Num = 1; break;
3008 case 0xFF0000: Num = 2; break;
3009 case 0xFF000000: Num = 3; break;
3010 }
3011
3012 // Look for (x & 0xff) << 8 as well as ((x << 8) & 0xff00).
3013 SDValue N0 = N.getOperand(0);
3014 if (Opc == ISD::AND) {
3015 if (Num == 0 || Num == 2) {
3016 // (x >> 8) & 0xff
3017 // (x >> 8) & 0xff0000
3018 if (N0.getOpcode() != ISD::SRL)
3019 return false;
3020 ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
3021 if (!C || C->getZExtValue() != 8)
3022 return false;
3023 } else {
3024 // (x << 8) & 0xff00
3025 // (x << 8) & 0xff000000
3026 if (N0.getOpcode() != ISD::SHL)
3027 return false;
3028 ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
3029 if (!C || C->getZExtValue() != 8)
3030 return false;
3031 }
3032 } else if (Opc == ISD::SHL) {
3033 // (x & 0xff) << 8
3034 // (x & 0xff0000) << 8
3035 if (Num != 0 && Num != 2)
3036 return false;
3037 ConstantSDNode *C = dyn_cast<ConstantSDNode>(N.getOperand(1));
3038 if (!C || C->getZExtValue() != 8)
3039 return false;
3040 } else { // Opc == ISD::SRL
3041 // (x & 0xff00) >> 8
3042 // (x & 0xff000000) >> 8
3043 if (Num != 1 && Num != 3)
3044 return false;
3045 ConstantSDNode *C = dyn_cast<ConstantSDNode>(N.getOperand(1));
3046 if (!C || C->getZExtValue() != 8)
3047 return false;
3048 }
3049
3050 if (Parts[Num])
3051 return false;
3052
3053 Parts[Num] = N0.getOperand(0).getNode();
3054 return true;
3055}
3056
3057/// MatchBSwapHWord - Match a 32-bit packed halfword bswap. That is
3058/// ((x&0xff)<<8)|((x&0xff00)>>8)|((x&0x00ff0000)<<8)|((x&0xff000000)>>8)
3059/// => (rotl (bswap x), 16)
3060SDValue DAGCombiner::MatchBSwapHWord(SDNode *N, SDValue N0, SDValue N1) {
3061 if (!LegalOperations)
3062 return SDValue();
3063
3064 EVT VT = N->getValueType(0);
3065 if (VT != MVT::i32)
3066 return SDValue();
3067 if (!TLI.isOperationLegal(ISD::BSWAP, VT))
3068 return SDValue();
3069
3070 SmallVector<SDNode*,4> Parts(4, (SDNode*)0);
3071 // Look for either
3072 // (or (or (and), (and)), (or (and), (and)))
3073 // (or (or (or (and), (and)), (and)), (and))
3074 if (N0.getOpcode() != ISD::OR)
3075 return SDValue();
3076 SDValue N00 = N0.getOperand(0);
3077 SDValue N01 = N0.getOperand(1);
3078
3079 if (N1.getOpcode() == ISD::OR &&
3080 N00.getNumOperands() == 2 && N01.getNumOperands() == 2) {
3081 // (or (or (and), (and)), (or (and), (and)))
3082 SDValue N000 = N00.getOperand(0);
3083 if (!isBSwapHWordElement(N000, Parts))
3084 return SDValue();
3085
3086 SDValue N001 = N00.getOperand(1);
3087 if (!isBSwapHWordElement(N001, Parts))
3088 return SDValue();
3089 SDValue N010 = N01.getOperand(0);
3090 if (!isBSwapHWordElement(N010, Parts))
3091 return SDValue();
3092 SDValue N011 = N01.getOperand(1);
3093 if (!isBSwapHWordElement(N011, Parts))
3094 return SDValue();
3095 } else {
3096 // (or (or (or (and), (and)), (and)), (and))
3097 if (!isBSwapHWordElement(N1, Parts))
3098 return SDValue();
3099 if (!isBSwapHWordElement(N01, Parts))
3100 return SDValue();
3101 if (N00.getOpcode() != ISD::OR)
3102 return SDValue();
3103 SDValue N000 = N00.getOperand(0);
3104 if (!isBSwapHWordElement(N000, Parts))
3105 return SDValue();
3106 SDValue N001 = N00.getOperand(1);
3107 if (!isBSwapHWordElement(N001, Parts))
3108 return SDValue();
3109 }
3110
3111 // Make sure the parts are all coming from the same node.
3112 if (Parts[0] != Parts[1] || Parts[0] != Parts[2] || Parts[0] != Parts[3])
3113 return SDValue();
3114
3115 SDValue BSwap = DAG.getNode(ISD::BSWAP, SDLoc(N), VT,
3116 SDValue(Parts[0],0));
3117
3118 // Result of the bswap should be rotated by 16. If it's not legal, then
3119 // do (x << 16) | (x >> 16).
3120 SDValue ShAmt = DAG.getConstant(16, getShiftAmountTy(VT));
3121 if (TLI.isOperationLegalOrCustom(ISD::ROTL, VT))
3122 return DAG.getNode(ISD::ROTL, SDLoc(N), VT, BSwap, ShAmt);
3123 if (TLI.isOperationLegalOrCustom(ISD::ROTR, VT))
3124 return DAG.getNode(ISD::ROTR, SDLoc(N), VT, BSwap, ShAmt);
3125 return DAG.getNode(ISD::OR, SDLoc(N), VT,
3126 DAG.getNode(ISD::SHL, SDLoc(N), VT, BSwap, ShAmt),
3127 DAG.getNode(ISD::SRL, SDLoc(N), VT, BSwap, ShAmt));
3128}
3129
3130SDValue DAGCombiner::visitOR(SDNode *N) {
3131 SDValue N0 = N->getOperand(0);
3132 SDValue N1 = N->getOperand(1);
3133 SDValue LL, LR, RL, RR, CC0, CC1;
3134 ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
3135 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
3136 EVT VT = N1.getValueType();
3137
3138 // fold vector ops
3139 if (VT.isVector()) {
3140 SDValue FoldedVOp = SimplifyVBinOp(N);
3141 if (FoldedVOp.getNode()) return FoldedVOp;
3142
3143 // fold (or x, 0) -> x, vector edition
3144 if (ISD::isBuildVectorAllZeros(N0.getNode()))
3145 return N1;
3146 if (ISD::isBuildVectorAllZeros(N1.getNode()))
3147 return N0;
3148
3149 // fold (or x, -1) -> -1, vector edition
3150 if (ISD::isBuildVectorAllOnes(N0.getNode()))
3151 return N0;
3152 if (ISD::isBuildVectorAllOnes(N1.getNode()))
3153 return N1;
3154 }
3155
3156 // fold (or x, undef) -> -1
3157 if (!LegalOperations &&
3158 (N0.getOpcode() == ISD::UNDEF || N1.getOpcode() == ISD::UNDEF)) {
3159 EVT EltVT = VT.isVector() ? VT.getVectorElementType() : VT;
3160 return DAG.getConstant(APInt::getAllOnesValue(EltVT.getSizeInBits()), VT);
3161 }
3162 // fold (or c1, c2) -> c1|c2
3163 if (N0C && N1C)
3164 return DAG.FoldConstantArithmetic(ISD::OR, VT, N0C, N1C);
3165 // canonicalize constant to RHS
3166 if (N0C && !N1C)
3167 return DAG.getNode(ISD::OR, SDLoc(N), VT, N1, N0);
3168 // fold (or x, 0) -> x
3169 if (N1C && N1C->isNullValue())
3170 return N0;
3171 // fold (or x, -1) -> -1
3172 if (N1C && N1C->isAllOnesValue())
3173 return N1;
3174 // fold (or x, c) -> c iff (x & ~c) == 0
3175 if (N1C && DAG.MaskedValueIsZero(N0, ~N1C->getAPIntValue()))
3176 return N1;
3177
3178 // Recognize halfword bswaps as (bswap + rotl 16) or (bswap + shl 16)
3179 SDValue BSwap = MatchBSwapHWord(N, N0, N1);
3180 if (BSwap.getNode() != 0)
3181 return BSwap;
3182 BSwap = MatchBSwapHWordLow(N, N0, N1);
3183 if (BSwap.getNode() != 0)
3184 return BSwap;
3185
3186 // reassociate or
3187 SDValue ROR = ReassociateOps(ISD::OR, SDLoc(N), N0, N1);
3188 if (ROR.getNode() != 0)
3189 return ROR;
3190 // Canonicalize (or (and X, c1), c2) -> (and (or X, c2), c1|c2)
3191 // iff (c1 & c2) == 0.
3192 if (N1C && N0.getOpcode() == ISD::AND && N0.getNode()->hasOneUse() &&
3193 isa<ConstantSDNode>(N0.getOperand(1))) {
3194 ConstantSDNode *C1 = cast<ConstantSDNode>(N0.getOperand(1));
3195 if ((C1->getAPIntValue() & N1C->getAPIntValue()) != 0)
3196 return DAG.getNode(ISD::AND, SDLoc(N), VT,
3197 DAG.getNode(ISD::OR, SDLoc(N0), VT,
3198 N0.getOperand(0), N1),
3199 DAG.FoldConstantArithmetic(ISD::OR, VT, N1C, C1));
3200 }
3201 // fold (or (setcc x), (setcc y)) -> (setcc (or x, y))
3202 if (isSetCCEquivalent(N0, LL, LR, CC0) && isSetCCEquivalent(N1, RL, RR, CC1)){
3203 ISD::CondCode Op0 = cast<CondCodeSDNode>(CC0)->get();
3204 ISD::CondCode Op1 = cast<CondCodeSDNode>(CC1)->get();
3205
3206 if (LR == RR && isa<ConstantSDNode>(LR) && Op0 == Op1 &&
3207 LL.getValueType().isInteger()) {
3208 // fold (or (setne X, 0), (setne Y, 0)) -> (setne (or X, Y), 0)
3209 // fold (or (setlt X, 0), (setlt Y, 0)) -> (setne (or X, Y), 0)
3210 if (cast<ConstantSDNode>(LR)->isNullValue() &&
3211 (Op1 == ISD::SETNE || Op1 == ISD::SETLT)) {
3212 SDValue ORNode = DAG.getNode(ISD::OR, SDLoc(LR),
3213 LR.getValueType(), LL, RL);
3214 AddToWorkList(ORNode.getNode());
3215 return DAG.getSetCC(SDLoc(N), VT, ORNode, LR, Op1);
3216 }
3217 // fold (or (setne X, -1), (setne Y, -1)) -> (setne (and X, Y), -1)
3218 // fold (or (setgt X, -1), (setgt Y -1)) -> (setgt (and X, Y), -1)
3219 if (cast<ConstantSDNode>(LR)->isAllOnesValue() &&
3220 (Op1 == ISD::SETNE || Op1 == ISD::SETGT)) {
3221 SDValue ANDNode = DAG.getNode(ISD::AND, SDLoc(LR),
3222 LR.getValueType(), LL, RL);
3223 AddToWorkList(ANDNode.getNode());
3224 return DAG.getSetCC(SDLoc(N), VT, ANDNode, LR, Op1);
3225 }
3226 }
3227 // canonicalize equivalent to ll == rl
3228 if (LL == RR && LR == RL) {
3229 Op1 = ISD::getSetCCSwappedOperands(Op1);
3230 std::swap(RL, RR);
3231 }
3232 if (LL == RL && LR == RR) {
3233 bool isInteger = LL.getValueType().isInteger();
3234 ISD::CondCode Result = ISD::getSetCCOrOperation(Op0, Op1, isInteger);
3235 if (Result != ISD::SETCC_INVALID &&
3236 (!LegalOperations ||
3237 (TLI.isCondCodeLegal(Result, LL.getSimpleValueType()) &&
3238 TLI.isOperationLegal(ISD::SETCC,
3239 getSetCCResultType(N0.getValueType())))))
3240 return DAG.getSetCC(SDLoc(N), N0.getValueType(),
3241 LL, LR, Result);
3242 }
3243 }
3244
3245 // Simplify: (or (op x...), (op y...)) -> (op (or x, y))
3246 if (N0.getOpcode() == N1.getOpcode()) {
3247 SDValue Tmp = SimplifyBinOpWithSameOpcodeHands(N);
3248 if (Tmp.getNode()) return Tmp;
3249 }
3250
3251 // (or (and X, C1), (and Y, C2)) -> (and (or X, Y), C3) if possible.
3252 if (N0.getOpcode() == ISD::AND &&
3253 N1.getOpcode() == ISD::AND &&
3254 N0.getOperand(1).getOpcode() == ISD::Constant &&
3255 N1.getOperand(1).getOpcode() == ISD::Constant &&
3256 // Don't increase # computations.
3257 (N0.getNode()->hasOneUse() || N1.getNode()->hasOneUse())) {
3258 // We can only do this xform if we know that bits from X that are set in C2
3259 // but not in C1 are already zero. Likewise for Y.
3260 const APInt &LHSMask =
3261 cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
3262 const APInt &RHSMask =
3263 cast<ConstantSDNode>(N1.getOperand(1))->getAPIntValue();
3264
3265 if (DAG.MaskedValueIsZero(N0.getOperand(0), RHSMask&~LHSMask) &&
3266 DAG.MaskedValueIsZero(N1.getOperand(0), LHSMask&~RHSMask)) {
3267 SDValue X = DAG.getNode(ISD::OR, SDLoc(N0), VT,
3268 N0.getOperand(0), N1.getOperand(0));
3269 return DAG.getNode(ISD::AND, SDLoc(N), VT, X,
3270 DAG.getConstant(LHSMask | RHSMask, VT));
3271 }
3272 }
3273
3274 // See if this is some rotate idiom.
3275 if (SDNode *Rot = MatchRotate(N0, N1, SDLoc(N)))
3276 return SDValue(Rot, 0);
3277
3278 // Simplify the operands using demanded-bits information.
3279 if (!VT.isVector() &&
3280 SimplifyDemandedBits(SDValue(N, 0)))
3281 return SDValue(N, 0);
3282
3283 return SDValue();
3284}
3285
3286/// MatchRotateHalf - Match "(X shl/srl V1) & V2" where V2 may not be present.
3287static bool MatchRotateHalf(SDValue Op, SDValue &Shift, SDValue &Mask) {
3288 if (Op.getOpcode() == ISD::AND) {
3289 if (isa<ConstantSDNode>(Op.getOperand(1))) {
3290 Mask = Op.getOperand(1);
3291 Op = Op.getOperand(0);
3292 } else {
3293 return false;
3294 }
3295 }
3296
3297 if (Op.getOpcode() == ISD::SRL || Op.getOpcode() == ISD::SHL) {
3298 Shift = Op;
3299 return true;
3300 }
3301
3302 return false;
3303}
3304
3305// MatchRotate - Handle an 'or' of two operands. If this is one of the many
3306// idioms for rotate, and if the target supports rotation instructions, generate
3307// a rot[lr].
3308SDNode *DAGCombiner::MatchRotate(SDValue LHS, SDValue RHS, SDLoc DL) {
3309 // Must be a legal type. Expanded 'n promoted things won't work with rotates.
3310 EVT VT = LHS.getValueType();
3311 if (!TLI.isTypeLegal(VT)) return 0;
3312
3313 // The target must have at least one rotate flavor.
3314 bool HasROTL = TLI.isOperationLegalOrCustom(ISD::ROTL, VT);
3315 bool HasROTR = TLI.isOperationLegalOrCustom(ISD::ROTR, VT);
3316 if (!HasROTL && !HasROTR) return 0;
3317
3318 // Match "(X shl/srl V1) & V2" where V2 may not be present.
3319 SDValue LHSShift; // The shift.
3320 SDValue LHSMask; // AND value if any.
3321 if (!MatchRotateHalf(LHS, LHSShift, LHSMask))
3322 return 0; // Not part of a rotate.
3323
3324 SDValue RHSShift; // The shift.
3325 SDValue RHSMask; // AND value if any.
3326 if (!MatchRotateHalf(RHS, RHSShift, RHSMask))
3327 return 0; // Not part of a rotate.
3328
3329 if (LHSShift.getOperand(0) != RHSShift.getOperand(0))
3330 return 0; // Not shifting the same value.
3331
3332 if (LHSShift.getOpcode() == RHSShift.getOpcode())
3333 return 0; // Shifts must disagree.
3334
3335 // Canonicalize shl to left side in a shl/srl pair.
3336 if (RHSShift.getOpcode() == ISD::SHL) {
3337 std::swap(LHS, RHS);
3338 std::swap(LHSShift, RHSShift);
3339 std::swap(LHSMask , RHSMask );
3340 }
3341
3342 unsigned OpSizeInBits = VT.getSizeInBits();
3343 SDValue LHSShiftArg = LHSShift.getOperand(0);
3344 SDValue LHSShiftAmt = LHSShift.getOperand(1);
3345 SDValue RHSShiftAmt = RHSShift.getOperand(1);
3346
3347 // fold (or (shl x, C1), (srl x, C2)) -> (rotl x, C1)
3348 // fold (or (shl x, C1), (srl x, C2)) -> (rotr x, C2)
3349 if (LHSShiftAmt.getOpcode() == ISD::Constant &&
3350 RHSShiftAmt.getOpcode() == ISD::Constant) {
3351 uint64_t LShVal = cast<ConstantSDNode>(LHSShiftAmt)->getZExtValue();
3352 uint64_t RShVal = cast<ConstantSDNode>(RHSShiftAmt)->getZExtValue();
3353 if ((LShVal + RShVal) != OpSizeInBits)
3354 return 0;
3355
3356 SDValue Rot = DAG.getNode(HasROTL ? ISD::ROTL : ISD::ROTR, DL, VT,
3357 LHSShiftArg, HasROTL ? LHSShiftAmt : RHSShiftAmt);
3358
3359 // If there is an AND of either shifted operand, apply it to the result.
3360 if (LHSMask.getNode() || RHSMask.getNode()) {
3361 APInt Mask = APInt::getAllOnesValue(OpSizeInBits);
3362
3363 if (LHSMask.getNode()) {
3364 APInt RHSBits = APInt::getLowBitsSet(OpSizeInBits, LShVal);
3365 Mask &= cast<ConstantSDNode>(LHSMask)->getAPIntValue() | RHSBits;
3366 }
3367 if (RHSMask.getNode()) {
3368 APInt LHSBits = APInt::getHighBitsSet(OpSizeInBits, RShVal);
3369 Mask &= cast<ConstantSDNode>(RHSMask)->getAPIntValue() | LHSBits;
3370 }
3371
3372 Rot = DAG.getNode(ISD::AND, DL, VT, Rot, DAG.getConstant(Mask, VT));
3373 }
3374
3375 return Rot.getNode();
3376 }
3377
3378 // If there is a mask here, and we have a variable shift, we can't be sure
3379 // that we're masking out the right stuff.
3380 if (LHSMask.getNode() || RHSMask.getNode())
3381 return 0;
3382
3383 // If the shift amount is sign/zext/any-extended just peel it off.
3384 SDValue LExtOp0 = LHSShiftAmt;
3385 SDValue RExtOp0 = RHSShiftAmt;
3386 if ((LHSShiftAmt.getOpcode() == ISD::SIGN_EXTEND ||
3387 LHSShiftAmt.getOpcode() == ISD::ZERO_EXTEND ||
3388 LHSShiftAmt.getOpcode() == ISD::ANY_EXTEND ||
3389 LHSShiftAmt.getOpcode() == ISD::TRUNCATE) &&
3390 (RHSShiftAmt.getOpcode() == ISD::SIGN_EXTEND ||
3391 RHSShiftAmt.getOpcode() == ISD::ZERO_EXTEND ||
3392 RHSShiftAmt.getOpcode() == ISD::ANY_EXTEND ||
3393 RHSShiftAmt.getOpcode() == ISD::TRUNCATE)) {
3394 LExtOp0 = LHSShiftAmt.getOperand(0);
3395 RExtOp0 = RHSShiftAmt.getOperand(0);
3396 }
3397
3398 if (RExtOp0.getOpcode() == ISD::SUB && RExtOp0.getOperand(1) == LExtOp0) {
3399 // fold (or (shl x, (*ext y)), (srl x, (*ext (sub 32, y)))) ->
3400 // (rotl x, y)
3401 // fold (or (shl x, (*ext y)), (srl x, (*ext (sub 32, y)))) ->
3402 // (rotr x, (sub 32, y))
3403 if (ConstantSDNode *SUBC =
3404 dyn_cast<ConstantSDNode>(RExtOp0.getOperand(0)))
3405 if (SUBC->getAPIntValue() == OpSizeInBits)
3406 return DAG.getNode(HasROTL ? ISD::ROTL : ISD::ROTR, DL, VT, LHSShiftArg,
3407 HasROTL ? LHSShiftAmt : RHSShiftAmt).getNode();
3408 } else if (LExtOp0.getOpcode() == ISD::SUB &&
3409 RExtOp0 == LExtOp0.getOperand(1)) {
3410 // fold (or (shl x, (*ext (sub 32, y))), (srl x, (*ext y))) ->
3411 // (rotr x, y)
3412 // fold (or (shl x, (*ext (sub 32, y))), (srl x, (*ext y))) ->
3413 // (rotl x, (sub 32, y))
3414 if (ConstantSDNode *SUBC =
3415 dyn_cast<ConstantSDNode>(LExtOp0.getOperand(0)))
3416 if (SUBC->getAPIntValue() == OpSizeInBits)
3417 return DAG.getNode(HasROTR ? ISD::ROTR : ISD::ROTL, DL, VT, LHSShiftArg,
3418 HasROTR ? RHSShiftAmt : LHSShiftAmt).getNode();
3419 }
3420
3421 return 0;
3422}
3423
3424SDValue DAGCombiner::visitXOR(SDNode *N) {
3425 SDValue N0 = N->getOperand(0);
3426 SDValue N1 = N->getOperand(1);
3427 SDValue LHS, RHS, CC;
3428 ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
3429 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
3430 EVT VT = N0.getValueType();
3431
3432 // fold vector ops
3433 if (VT.isVector()) {
3434 SDValue FoldedVOp = SimplifyVBinOp(N);
3435 if (FoldedVOp.getNode()) return FoldedVOp;
3436
3437 // fold (xor x, 0) -> x, vector edition
3438 if (ISD::isBuildVectorAllZeros(N0.getNode()))
3439 return N1;
3440 if (ISD::isBuildVectorAllZeros(N1.getNode()))
3441 return N0;
3442 }
3443
3444 // fold (xor undef, undef) -> 0. This is a common idiom (misuse).
3445 if (N0.getOpcode() == ISD::UNDEF && N1.getOpcode() == ISD::UNDEF)
3446 return DAG.getConstant(0, VT);
3447 // fold (xor x, undef) -> undef
3448 if (N0.getOpcode() == ISD::UNDEF)
3449 return N0;
3450 if (N1.getOpcode() == ISD::UNDEF)
3451 return N1;
3452 // fold (xor c1, c2) -> c1^c2
3453 if (N0C && N1C)
3454 return DAG.FoldConstantArithmetic(ISD::XOR, VT, N0C, N1C);
3455 // canonicalize constant to RHS
3456 if (N0C && !N1C)
3457 return DAG.getNode(ISD::XOR, SDLoc(N), VT, N1, N0);
3458 // fold (xor x, 0) -> x
3459 if (N1C && N1C->isNullValue())
3460 return N0;
3461 // reassociate xor
3462 SDValue RXOR = ReassociateOps(ISD::XOR, SDLoc(N), N0, N1);
3463 if (RXOR.getNode() != 0)
3464 return RXOR;
3465
3466 // fold !(x cc y) -> (x !cc y)
3467 if (N1C && N1C->getAPIntValue() == 1 && isSetCCEquivalent(N0, LHS, RHS, CC)) {
3468 bool isInt = LHS.getValueType().isInteger();
3469 ISD::CondCode NotCC = ISD::getSetCCInverse(cast<CondCodeSDNode>(CC)->get(),
3470 isInt);
3471
3472 if (!LegalOperations ||
3473 TLI.isCondCodeLegal(NotCC, LHS.getSimpleValueType())) {
3474 switch (N0.getOpcode()) {
3475 default:
3476 llvm_unreachable("Unhandled SetCC Equivalent!");
3477 case ISD::SETCC:
3478 return DAG.getSetCC(SDLoc(N), VT, LHS, RHS, NotCC);
3479 case ISD::SELECT_CC:
3480 return DAG.getSelectCC(SDLoc(N), LHS, RHS, N0.getOperand(2),
3481 N0.getOperand(3), NotCC);
3482 }
3483 }
3484 }
3485
3486 // fold (not (zext (setcc x, y))) -> (zext (not (setcc x, y)))
3487 if (N1C && N1C->getAPIntValue() == 1 && N0.getOpcode() == ISD::ZERO_EXTEND &&
3488 N0.getNode()->hasOneUse() &&
3489 isSetCCEquivalent(N0.getOperand(0), LHS, RHS, CC)){
3490 SDValue V = N0.getOperand(0);
3491 V = DAG.getNode(ISD::XOR, SDLoc(N0), V.getValueType(), V,
3492 DAG.getConstant(1, V.getValueType()));
3493 AddToWorkList(V.getNode());
3494 return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N), VT, V);
3495 }
3496
3497 // fold (not (or x, y)) -> (and (not x), (not y)) iff x or y are setcc
3498 if (N1C && N1C->getAPIntValue() == 1 && VT == MVT::i1 &&
3499 (N0.getOpcode() == ISD::OR || N0.getOpcode() == ISD::AND)) {
3500 SDValue LHS = N0.getOperand(0), RHS = N0.getOperand(1);
3501 if (isOneUseSetCC(RHS) || isOneUseSetCC(LHS)) {
3502 unsigned NewOpcode = N0.getOpcode() == ISD::AND ? ISD::OR : ISD::AND;
3503 LHS = DAG.getNode(ISD::XOR, SDLoc(LHS), VT, LHS, N1); // LHS = ~LHS
3504 RHS = DAG.getNode(ISD::XOR, SDLoc(RHS), VT, RHS, N1); // RHS = ~RHS
3505 AddToWorkList(LHS.getNode()); AddToWorkList(RHS.getNode());
3506 return DAG.getNode(NewOpcode, SDLoc(N), VT, LHS, RHS);
3507 }
3508 }
3509 // fold (not (or x, y)) -> (and (not x), (not y)) iff x or y are constants
3510 if (N1C && N1C->isAllOnesValue() &&
3511 (N0.getOpcode() == ISD::OR || N0.getOpcode() == ISD::AND)) {
3512 SDValue LHS = N0.getOperand(0), RHS = N0.getOperand(1);
3513 if (isa<ConstantSDNode>(RHS) || isa<ConstantSDNode>(LHS)) {
3514 unsigned NewOpcode = N0.getOpcode() == ISD::AND ? ISD::OR : ISD::AND;
3515 LHS = DAG.getNode(ISD::XOR, SDLoc(LHS), VT, LHS, N1); // LHS = ~LHS
3516 RHS = DAG.getNode(ISD::XOR, SDLoc(RHS), VT, RHS, N1); // RHS = ~RHS
3517 AddToWorkList(LHS.getNode()); AddToWorkList(RHS.getNode());
3518 return DAG.getNode(NewOpcode, SDLoc(N), VT, LHS, RHS);
3519 }
3520 }
3521 // fold (xor (and x, y), y) -> (and (not x), y)
3522 if (N0.getOpcode() == ISD::AND && N0.getNode()->hasOneUse() &&
3523 N0->getOperand(1) == N1) {
3524 SDValue X = N0->getOperand(0);
3525 SDValue NotX = DAG.getNOT(SDLoc(X), X, VT);
3526 AddToWorkList(NotX.getNode());
3527 return DAG.getNode(ISD::AND, SDLoc(N), VT, NotX, N1);
3528 }
3529 // fold (xor (xor x, c1), c2) -> (xor x, (xor c1, c2))
3530 if (N1C && N0.getOpcode() == ISD::XOR) {
3531 ConstantSDNode *N00C = dyn_cast<ConstantSDNode>(N0.getOperand(0));
3532 ConstantSDNode *N01C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
3533 if (N00C)
3534 return DAG.getNode(ISD::XOR, SDLoc(N), VT, N0.getOperand(1),
3535 DAG.getConstant(N1C->getAPIntValue() ^
3536 N00C->getAPIntValue(), VT));
3537 if (N01C)
3538 return DAG.getNode(ISD::XOR, SDLoc(N), VT, N0.getOperand(0),
3539 DAG.getConstant(N1C->getAPIntValue() ^
3540 N01C->getAPIntValue(), VT));
3541 }
3542 // fold (xor x, x) -> 0
3543 if (N0 == N1)
3544 return tryFoldToZero(SDLoc(N), TLI, VT, DAG, LegalOperations, LegalTypes);
3545
3546 // Simplify: xor (op x...), (op y...) -> (op (xor x, y))
3547 if (N0.getOpcode() == N1.getOpcode()) {
3548 SDValue Tmp = SimplifyBinOpWithSameOpcodeHands(N);
3549 if (Tmp.getNode()) return Tmp;
3550 }
3551
3552 // Simplify the expression using non-local knowledge.
3553 if (!VT.isVector() &&
3554 SimplifyDemandedBits(SDValue(N, 0)))
3555 return SDValue(N, 0);
3556
3557 return SDValue();
3558}
3559
3560/// visitShiftByConstant - Handle transforms common to the three shifts, when
3561/// the shift amount is a constant.
3562SDValue DAGCombiner::visitShiftByConstant(SDNode *N, unsigned Amt) {
3563 SDNode *LHS = N->getOperand(0).getNode();
3564 if (!LHS->hasOneUse()) return SDValue();
3565
3566 // We want to pull some binops through shifts, so that we have (and (shift))
3567 // instead of (shift (and)), likewise for add, or, xor, etc. This sort of
3568 // thing happens with address calculations, so it's important to canonicalize
3569 // it.
3570 bool HighBitSet = false; // Can we transform this if the high bit is set?
3571
3572 switch (LHS->getOpcode()) {
3573 default: return SDValue();
3574 case ISD::OR:
3575 case ISD::XOR:
3576 HighBitSet = false; // We can only transform sra if the high bit is clear.
3577 break;
3578 case ISD::AND:
3579 HighBitSet = true; // We can only transform sra if the high bit is set.
3580 break;
3581 case ISD::ADD:
3582 if (N->getOpcode() != ISD::SHL)
3583 return SDValue(); // only shl(add) not sr[al](add).
3584 HighBitSet = false; // We can only transform sra if the high bit is clear.
3585 break;
3586 }
3587
3588 // We require the RHS of the binop to be a constant as well.
3589 ConstantSDNode *BinOpCst = dyn_cast<ConstantSDNode>(LHS->getOperand(1));
3590 if (!BinOpCst) return SDValue();
3591
3592 // FIXME: disable this unless the input to the binop is a shift by a constant.
3593 // If it is not a shift, it pessimizes some common cases like:
3594 //
3595 // void foo(int *X, int i) { X[i & 1235] = 1; }
3596 // int bar(int *X, int i) { return X[i & 255]; }
3597 SDNode *BinOpLHSVal = LHS->getOperand(0).getNode();
3598 if ((BinOpLHSVal->getOpcode() != ISD::SHL &&
3599 BinOpLHSVal->getOpcode() != ISD::SRA &&
3600 BinOpLHSVal->getOpcode() != ISD::SRL) ||
3601 !isa<ConstantSDNode>(BinOpLHSVal->getOperand(1)))
3602 return SDValue();
3603
3604 EVT VT = N->getValueType(0);
3605
3606 // If this is a signed shift right, and the high bit is modified by the
3607 // logical operation, do not perform the transformation. The highBitSet
3608 // boolean indicates the value of the high bit of the constant which would
3609 // cause it to be modified for this operation.
3610 if (N->getOpcode() == ISD::SRA) {
3611 bool BinOpRHSSignSet = BinOpCst->getAPIntValue().isNegative();
3612 if (BinOpRHSSignSet != HighBitSet)
3613 return SDValue();
3614 }
3615
3616 // Fold the constants, shifting the binop RHS by the shift amount.
3617 SDValue NewRHS = DAG.getNode(N->getOpcode(), SDLoc(LHS->getOperand(1)),
3618 N->getValueType(0),
3619 LHS->getOperand(1), N->getOperand(1));
3620
3621 // Create the new shift.
3622 SDValue NewShift = DAG.getNode(N->getOpcode(),
3623 SDLoc(LHS->getOperand(0)),
3624 VT, LHS->getOperand(0), N->getOperand(1));
3625
3626 // Create the new binop.
3627 return DAG.getNode(LHS->getOpcode(), SDLoc(N), VT, NewShift, NewRHS);
3628}
3629
3630SDValue DAGCombiner::visitSHL(SDNode *N) {
3631 SDValue N0 = N->getOperand(0);
3632 SDValue N1 = N->getOperand(1);
3633 ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
3634 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
3635 EVT VT = N0.getValueType();
3636 unsigned OpSizeInBits = VT.getScalarType().getSizeInBits();
3637
3638 // fold vector ops
3639 if (VT.isVector()) {
3640 SDValue FoldedVOp = SimplifyVBinOp(N);
3641 if (FoldedVOp.getNode()) return FoldedVOp;
3642 }
3643
3644 // fold (shl c1, c2) -> c1<<c2
3645 if (N0C && N1C)
3646 return DAG.FoldConstantArithmetic(ISD::SHL, VT, N0C, N1C);
3647 // fold (shl 0, x) -> 0
3648 if (N0C && N0C->isNullValue())
3649 return N0;
3650 // fold (shl x, c >= size(x)) -> undef
3651 if (N1C && N1C->getZExtValue() >= OpSizeInBits)
3652 return DAG.getUNDEF(VT);
3653 // fold (shl x, 0) -> x
3654 if (N1C && N1C->isNullValue())
3655 return N0;
3656 // fold (shl undef, x) -> 0
3657 if (N0.getOpcode() == ISD::UNDEF)
3658 return DAG.getConstant(0, VT);
3659 // if (shl x, c) is known to be zero, return 0
3660 if (DAG.MaskedValueIsZero(SDValue(N, 0),
3661 APInt::getAllOnesValue(OpSizeInBits)))
3662 return DAG.getConstant(0, VT);
3663 // fold (shl x, (trunc (and y, c))) -> (shl x, (and (trunc y), (trunc c))).
3664 if (N1.getOpcode() == ISD::TRUNCATE &&
3665 N1.getOperand(0).getOpcode() == ISD::AND &&
3666 N1.hasOneUse() && N1.getOperand(0).hasOneUse()) {
3667 SDValue N101 = N1.getOperand(0).getOperand(1);
3668 if (ConstantSDNode *N101C = dyn_cast<ConstantSDNode>(N101)) {
3669 EVT TruncVT = N1.getValueType();
3670 SDValue N100 = N1.getOperand(0).getOperand(0);
3671 APInt TruncC = N101C->getAPIntValue();
3672 TruncC = TruncC.trunc(TruncVT.getSizeInBits());
3673 return DAG.getNode(ISD::SHL, SDLoc(N), VT, N0,
3674 DAG.getNode(ISD::AND, SDLoc(N), TruncVT,
3675 DAG.getNode(ISD::TRUNCATE,
3676 SDLoc(N),
3677 TruncVT, N100),
3678 DAG.getConstant(TruncC, TruncVT)));
3679 }
3680 }
3681
3682 if (N1C && SimplifyDemandedBits(SDValue(N, 0)))
3683 return SDValue(N, 0);
3684
3685 // fold (shl (shl x, c1), c2) -> 0 or (shl x, (add c1, c2))
3686 if (N1C && N0.getOpcode() == ISD::SHL &&
3687 N0.getOperand(1).getOpcode() == ISD::Constant) {
3688 uint64_t c1 = cast<ConstantSDNode>(N0.getOperand(1))->getZExtValue();
3689 uint64_t c2 = N1C->getZExtValue();
3690 if (c1 + c2 >= OpSizeInBits)
3691 return DAG.getConstant(0, VT);
3692 return DAG.getNode(ISD::SHL, SDLoc(N), VT, N0.getOperand(0),
3693 DAG.getConstant(c1 + c2, N1.getValueType()));
3694 }
3695
3696 // fold (shl (ext (shl x, c1)), c2) -> (ext (shl x, (add c1, c2)))
3697 // For this to be valid, the second form must not preserve any of the bits
3698 // that are shifted out by the inner shift in the first form. This means
3699 // the outer shift size must be >= the number of bits added by the ext.
3700 // As a corollary, we don't care what kind of ext it is.
3701 if (N1C && (N0.getOpcode() == ISD::ZERO_EXTEND ||
3702 N0.getOpcode() == ISD::ANY_EXTEND ||
3703 N0.getOpcode() == ISD::SIGN_EXTEND) &&
3704 N0.getOperand(0).getOpcode() == ISD::SHL &&
3705 isa<ConstantSDNode>(N0.getOperand(0)->getOperand(1))) {
3706 uint64_t c1 =
3707 cast<ConstantSDNode>(N0.getOperand(0)->getOperand(1))->getZExtValue();
3708 uint64_t c2 = N1C->getZExtValue();
3709 EVT InnerShiftVT = N0.getOperand(0).getValueType();
3710 uint64_t InnerShiftSize = InnerShiftVT.getScalarType().getSizeInBits();
3711 if (c2 >= OpSizeInBits - InnerShiftSize) {
3712 if (c1 + c2 >= OpSizeInBits)
3713 return DAG.getConstant(0, VT);
3714 return DAG.getNode(ISD::SHL, SDLoc(N0), VT,
3715 DAG.getNode(N0.getOpcode(), SDLoc(N0), VT,
3716 N0.getOperand(0)->getOperand(0)),
3717 DAG.getConstant(c1 + c2, N1.getValueType()));
3718 }
3719 }
3720
3721 // fold (shl (zext (srl x, C)), C) -> (zext (shl (srl x, C), C))
3722 // Only fold this if the inner zext has no other uses to avoid increasing
3723 // the total number of instructions.
3724 if (N1C && N0.getOpcode() == ISD::ZERO_EXTEND && N0.hasOneUse() &&
3725 N0.getOperand(0).getOpcode() == ISD::SRL &&
3726 isa<ConstantSDNode>(N0.getOperand(0)->getOperand(1))) {
3727 uint64_t c1 =
3728 cast<ConstantSDNode>(N0.getOperand(0)->getOperand(1))->getZExtValue();
3729 if (c1 < VT.getSizeInBits()) {
3730 uint64_t c2 = N1C->getZExtValue();
3731 if (c1 == c2) {
3732 SDValue NewOp0 = N0.getOperand(0);
3733 EVT CountVT = NewOp0.getOperand(1).getValueType();
3734 SDValue NewSHL = DAG.getNode(ISD::SHL, SDLoc(N), NewOp0.getValueType(),
3735 NewOp0, DAG.getConstant(c2, CountVT));
3736 AddToWorkList(NewSHL.getNode());
3737 return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N0), VT, NewSHL);
3738 }
3739 }
3740 }
3741
3742 // fold (shl (srl x, c1), c2) -> (and (shl x, (sub c2, c1), MASK) or
3743 // (and (srl x, (sub c1, c2), MASK)
3744 // Only fold this if the inner shift has no other uses -- if it does, folding
3745 // this will increase the total number of instructions.
3746 if (N1C && N0.getOpcode() == ISD::SRL && N0.hasOneUse() &&
3747 N0.getOperand(1).getOpcode() == ISD::Constant) {
3748 uint64_t c1 = cast<ConstantSDNode>(N0.getOperand(1))->getZExtValue();
3749 if (c1 < VT.getSizeInBits()) {
3750 uint64_t c2 = N1C->getZExtValue();
3751 APInt Mask = APInt::getHighBitsSet(VT.getSizeInBits(),
3752 VT.getSizeInBits() - c1);
3753 SDValue Shift;
3754 if (c2 > c1) {
3755 Mask = Mask.shl(c2-c1);
3756 Shift = DAG.getNode(ISD::SHL, SDLoc(N), VT, N0.getOperand(0),
3757 DAG.getConstant(c2-c1, N1.getValueType()));
3758 } else {
3759 Mask = Mask.lshr(c1-c2);
3760 Shift = DAG.getNode(ISD::SRL, SDLoc(N), VT, N0.getOperand(0),
3761 DAG.getConstant(c1-c2, N1.getValueType()));
3762 }
3763 return DAG.getNode(ISD::AND, SDLoc(N0), VT, Shift,
3764 DAG.getConstant(Mask, VT));
3765 }
3766 }
3767 // fold (shl (sra x, c1), c1) -> (and x, (shl -1, c1))
3768 if (N1C && N0.getOpcode() == ISD::SRA && N1 == N0.getOperand(1)) {
3769 SDValue HiBitsMask =
3770 DAG.getConstant(APInt::getHighBitsSet(VT.getSizeInBits(),
3771 VT.getSizeInBits() -
3772 N1C->getZExtValue()),
3773 VT);
3774 return DAG.getNode(ISD::AND, SDLoc(N), VT, N0.getOperand(0),
3775 HiBitsMask);
3776 }
3777
3778 if (N1C) {
3779 SDValue NewSHL = visitShiftByConstant(N, N1C->getZExtValue());
3780 if (NewSHL.getNode())
3781 return NewSHL;
3782 }
3783
3784 return SDValue();
3785}
3786
3787SDValue DAGCombiner::visitSRA(SDNode *N) {
3788 SDValue N0 = N->getOperand(0);
3789 SDValue N1 = N->getOperand(1);
3790 ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
3791 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
3792 EVT VT = N0.getValueType();
3793 unsigned OpSizeInBits = VT.getScalarType().getSizeInBits();
3794
3795 // fold vector ops
3796 if (VT.isVector()) {
3797 SDValue FoldedVOp = SimplifyVBinOp(N);
3798 if (FoldedVOp.getNode()) return FoldedVOp;
3799 }
3800
3801 // fold (sra c1, c2) -> (sra c1, c2)
3802 if (N0C && N1C)
3803 return DAG.FoldConstantArithmetic(ISD::SRA, VT, N0C, N1C);
3804 // fold (sra 0, x) -> 0
3805 if (N0C && N0C->isNullValue())
3806 return N0;
3807 // fold (sra -1, x) -> -1
3808 if (N0C && N0C->isAllOnesValue())
3809 return N0;
3810 // fold (sra x, (setge c, size(x))) -> undef
3811 if (N1C && N1C->getZExtValue() >= OpSizeInBits)
3812 return DAG.getUNDEF(VT);
3813 // fold (sra x, 0) -> x
3814 if (N1C && N1C->isNullValue())
3815 return N0;
3816 // fold (sra (shl x, c1), c1) -> sext_inreg for some c1 and target supports
3817 // sext_inreg.
3818 if (N1C && N0.getOpcode() == ISD::SHL && N1 == N0.getOperand(1)) {
3819 unsigned LowBits = OpSizeInBits - (unsigned)N1C->getZExtValue();
3820 EVT ExtVT = EVT::getIntegerVT(*DAG.getContext(), LowBits);
3821 if (VT.isVector())
3822 ExtVT = EVT::getVectorVT(*DAG.getContext(),
3823 ExtVT, VT.getVectorNumElements());
3824 if ((!LegalOperations ||
3825 TLI.isOperationLegal(ISD::SIGN_EXTEND_INREG, ExtVT)))
3826 return DAG.getNode(ISD::SIGN_EXTEND_INREG, SDLoc(N), VT,
3827 N0.getOperand(0), DAG.getValueType(ExtVT));
3828 }
3829
3830 // fold (sra (sra x, c1), c2) -> (sra x, (add c1, c2))
3831 if (N1C && N0.getOpcode() == ISD::SRA) {
3832 if (ConstantSDNode *C1 = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
3833 unsigned Sum = N1C->getZExtValue() + C1->getZExtValue();
3834 if (Sum >= OpSizeInBits) Sum = OpSizeInBits-1;
3835 return DAG.getNode(ISD::SRA, SDLoc(N), VT, N0.getOperand(0),
3836 DAG.getConstant(Sum, N1C->getValueType(0)));
3837 }
3838 }
3839
3840 // fold (sra (shl X, m), (sub result_size, n))
3841 // -> (sign_extend (trunc (shl X, (sub (sub result_size, n), m)))) for
3842 // result_size - n != m.
3843 // If truncate is free for the target sext(shl) is likely to result in better
3844 // code.
3845 if (N0.getOpcode() == ISD::SHL) {
3846 // Get the two constanst of the shifts, CN0 = m, CN = n.
3847 const ConstantSDNode *N01C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
3848 if (N01C && N1C) {
3849 // Determine what the truncate's result bitsize and type would be.
3850 EVT TruncVT =
3851 EVT::getIntegerVT(*DAG.getContext(),
3852 OpSizeInBits - N1C->getZExtValue());
3853 // Determine the residual right-shift amount.
3854 signed ShiftAmt = N1C->getZExtValue() - N01C->getZExtValue();
3855
3856 // If the shift is not a no-op (in which case this should be just a sign
3857 // extend already), the truncated to type is legal, sign_extend is legal
3858 // on that type, and the truncate to that type is both legal and free,
3859 // perform the transform.
3860 if ((ShiftAmt > 0) &&
3861 TLI.isOperationLegalOrCustom(ISD::SIGN_EXTEND, TruncVT) &&
3862 TLI.isOperationLegalOrCustom(ISD::TRUNCATE, VT) &&
3863 TLI.isTruncateFree(VT, TruncVT)) {
3864
3865 SDValue Amt = DAG.getConstant(ShiftAmt,
3866 getShiftAmountTy(N0.getOperand(0).getValueType()));
3867 SDValue Shift = DAG.getNode(ISD::SRL, SDLoc(N0), VT,
3868 N0.getOperand(0), Amt);
3869 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SDLoc(N0), TruncVT,
3870 Shift);
3871 return DAG.getNode(ISD::SIGN_EXTEND, SDLoc(N),
3872 N->getValueType(0), Trunc);
3873 }
3874 }
3875 }
3876
3877 // fold (sra x, (trunc (and y, c))) -> (sra x, (and (trunc y), (trunc c))).
3878 if (N1.getOpcode() == ISD::TRUNCATE &&
3879 N1.getOperand(0).getOpcode() == ISD::AND &&
3880 N1.hasOneUse() && N1.getOperand(0).hasOneUse()) {
3881 SDValue N101 = N1.getOperand(0).getOperand(1);
3882 if (ConstantSDNode *N101C = dyn_cast<ConstantSDNode>(N101)) {
3883 EVT TruncVT = N1.getValueType();
3884 SDValue N100 = N1.getOperand(0).getOperand(0);
3885 APInt TruncC = N101C->getAPIntValue();
3886 TruncC = TruncC.trunc(TruncVT.getScalarType().getSizeInBits());
3887 return DAG.getNode(ISD::SRA, SDLoc(N), VT, N0,
3888 DAG.getNode(ISD::AND, SDLoc(N),
3889 TruncVT,
3890 DAG.getNode(ISD::TRUNCATE,
3891 SDLoc(N),
3892 TruncVT, N100),
3893 DAG.getConstant(TruncC, TruncVT)));
3894 }
3895 }
3896
3897 // fold (sra (trunc (sr x, c1)), c2) -> (trunc (sra x, c1+c2))
3898 // if c1 is equal to the number of bits the trunc removes
3899 if (N0.getOpcode() == ISD::TRUNCATE &&
3900 (N0.getOperand(0).getOpcode() == ISD::SRL ||
3901 N0.getOperand(0).getOpcode() == ISD::SRA) &&
3902 N0.getOperand(0).hasOneUse() &&
3903 N0.getOperand(0).getOperand(1).hasOneUse() &&
3904 N1C && isa<ConstantSDNode>(N0.getOperand(0).getOperand(1))) {
3905 EVT LargeVT = N0.getOperand(0).getValueType();
3906 ConstantSDNode *LargeShiftAmt =
3907 cast<ConstantSDNode>(N0.getOperand(0).getOperand(1));
3908
3909 if (LargeVT.getScalarType().getSizeInBits() - OpSizeInBits ==
3910 LargeShiftAmt->getZExtValue()) {
3911 SDValue Amt =
3912 DAG.getConstant(LargeShiftAmt->getZExtValue() + N1C->getZExtValue(),
3913 getShiftAmountTy(N0.getOperand(0).getOperand(0).getValueType()));
3914 SDValue SRA = DAG.getNode(ISD::SRA, SDLoc(N), LargeVT,
3915 N0.getOperand(0).getOperand(0), Amt);
3916 return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, SRA);
3917 }
3918 }
3919
3920 // Simplify, based on bits shifted out of the LHS.
3921 if (N1C && SimplifyDemandedBits(SDValue(N, 0)))
3922 return SDValue(N, 0);
3923
3924
3925 // If the sign bit is known to be zero, switch this to a SRL.
3926 if (DAG.SignBitIsZero(N0))
3927 return DAG.getNode(ISD::SRL, SDLoc(N), VT, N0, N1);
3928
3929 if (N1C) {
3930 SDValue NewSRA = visitShiftByConstant(N, N1C->getZExtValue());
3931 if (NewSRA.getNode())
3932 return NewSRA;
3933 }
3934
3935 return SDValue();
3936}
3937
3938SDValue DAGCombiner::visitSRL(SDNode *N) {
3939 SDValue N0 = N->getOperand(0);
3940 SDValue N1 = N->getOperand(1);
3941 ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
3942 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
3943 EVT VT = N0.getValueType();
3944 unsigned OpSizeInBits = VT.getScalarType().getSizeInBits();
3945
3946 // fold vector ops
3947 if (VT.isVector()) {
3948 SDValue FoldedVOp = SimplifyVBinOp(N);
3949 if (FoldedVOp.getNode()) return FoldedVOp;
3950 }
3951
3952 // fold (srl c1, c2) -> c1 >>u c2
3953 if (N0C && N1C)
3954 return DAG.FoldConstantArithmetic(ISD::SRL, VT, N0C, N1C);
3955 // fold (srl 0, x) -> 0
3956 if (N0C && N0C->isNullValue())
3957 return N0;
3958 // fold (srl x, c >= size(x)) -> undef
3959 if (N1C && N1C->getZExtValue() >= OpSizeInBits)
3960 return DAG.getUNDEF(VT);
3961 // fold (srl x, 0) -> x
3962 if (N1C && N1C->isNullValue())
3963 return N0;
3964 // if (srl x, c) is known to be zero, return 0
3965 if (N1C && DAG.MaskedValueIsZero(SDValue(N, 0),
3966 APInt::getAllOnesValue(OpSizeInBits)))
3967 return DAG.getConstant(0, VT);
3968
3969 // fold (srl (srl x, c1), c2) -> 0 or (srl x, (add c1, c2))
3970 if (N1C && N0.getOpcode() == ISD::SRL &&
3971 N0.getOperand(1).getOpcode() == ISD::Constant) {
3972 uint64_t c1 = cast<ConstantSDNode>(N0.getOperand(1))->getZExtValue();
3973 uint64_t c2 = N1C->getZExtValue();
3974 if (c1 + c2 >= OpSizeInBits)
3975 return DAG.getConstant(0, VT);
3976 return DAG.getNode(ISD::SRL, SDLoc(N), VT, N0.getOperand(0),
3977 DAG.getConstant(c1 + c2, N1.getValueType()));
3978 }
3979
3980 // fold (srl (trunc (srl x, c1)), c2) -> 0 or (trunc (srl x, (add c1, c2)))
3981 if (N1C && N0.getOpcode() == ISD::TRUNCATE &&
3982 N0.getOperand(0).getOpcode() == ISD::SRL &&
3983 isa<ConstantSDNode>(N0.getOperand(0)->getOperand(1))) {
3984 uint64_t c1 =
3985 cast<ConstantSDNode>(N0.getOperand(0)->getOperand(1))->getZExtValue();
3986 uint64_t c2 = N1C->getZExtValue();
3987 EVT InnerShiftVT = N0.getOperand(0).getValueType();
3988 EVT ShiftCountVT = N0.getOperand(0)->getOperand(1).getValueType();
3989 uint64_t InnerShiftSize = InnerShiftVT.getScalarType().getSizeInBits();
3990 // This is only valid if the OpSizeInBits + c1 = size of inner shift.
3991 if (c1 + OpSizeInBits == InnerShiftSize) {
3992 if (c1 + c2 >= InnerShiftSize)
3993 return DAG.getConstant(0, VT);
3994 return DAG.getNode(ISD::TRUNCATE, SDLoc(N0), VT,
3995 DAG.getNode(ISD::SRL, SDLoc(N0), InnerShiftVT,
3996 N0.getOperand(0)->getOperand(0),
3997 DAG.getConstant(c1 + c2, ShiftCountVT)));
3998 }
3999 }
4000
4001 // fold (srl (shl x, c), c) -> (and x, cst2)
4002 if (N1C && N0.getOpcode() == ISD::SHL && N0.getOperand(1) == N1 &&
4003 N0.getValueSizeInBits() <= 64) {
4004 uint64_t ShAmt = N1C->getZExtValue()+64-N0.getValueSizeInBits();
4005 return DAG.getNode(ISD::AND, SDLoc(N), VT, N0.getOperand(0),
4006 DAG.getConstant(~0ULL >> ShAmt, VT));
4007 }
4008
4009 // fold (srl (anyextend x), c) -> (and (anyextend (srl x, c)), mask)
4010 if (N1C && N0.getOpcode() == ISD::ANY_EXTEND) {
4011 // Shifting in all undef bits?
4012 EVT SmallVT = N0.getOperand(0).getValueType();
4013 if (N1C->getZExtValue() >= SmallVT.getSizeInBits())
4014 return DAG.getUNDEF(VT);
4015
4016 if (!LegalTypes || TLI.isTypeDesirableForOp(ISD::SRL, SmallVT)) {
4017 uint64_t ShiftAmt = N1C->getZExtValue();
4018 SDValue SmallShift = DAG.getNode(ISD::SRL, SDLoc(N0), SmallVT,
4019 N0.getOperand(0),
4020 DAG.getConstant(ShiftAmt, getShiftAmountTy(SmallVT)));
4021 AddToWorkList(SmallShift.getNode());
4022 APInt Mask = APInt::getAllOnesValue(VT.getSizeInBits()).lshr(ShiftAmt);
4023 return DAG.getNode(ISD::AND, SDLoc(N), VT,
4024 DAG.getNode(ISD::ANY_EXTEND, SDLoc(N), VT, SmallShift),
4025 DAG.getConstant(Mask, VT));
4026 }
4027 }
4028
4029 // fold (srl (sra X, Y), 31) -> (srl X, 31). This srl only looks at the sign
4030 // bit, which is unmodified by sra.
4031 if (N1C && N1C->getZExtValue() + 1 == VT.getSizeInBits()) {
4032 if (N0.getOpcode() == ISD::SRA)
4033 return DAG.getNode(ISD::SRL, SDLoc(N), VT, N0.getOperand(0), N1);
4034 }
4035
4036 // fold (srl (ctlz x), "5") -> x iff x has one bit set (the low bit).
4037 if (N1C && N0.getOpcode() == ISD::CTLZ &&
4038 N1C->getAPIntValue() == Log2_32(VT.getSizeInBits())) {
4039 APInt KnownZero, KnownOne;
4040 DAG.ComputeMaskedBits(N0.getOperand(0), KnownZero, KnownOne);
4041
4042 // If any of the input bits are KnownOne, then the input couldn't be all
4043 // zeros, thus the result of the srl will always be zero.
4044 if (KnownOne.getBoolValue()) return DAG.getConstant(0, VT);
4045
4046 // If all of the bits input the to ctlz node are known to be zero, then
4047 // the result of the ctlz is "32" and the result of the shift is one.
4048 APInt UnknownBits = ~KnownZero;
4049 if (UnknownBits == 0) return DAG.getConstant(1, VT);
4050
4051 // Otherwise, check to see if there is exactly one bit input to the ctlz.
4052 if ((UnknownBits & (UnknownBits - 1)) == 0) {
4053 // Okay, we know that only that the single bit specified by UnknownBits
4054 // could be set on input to the CTLZ node. If this bit is set, the SRL
4055 // will return 0, if it is clear, it returns 1. Change the CTLZ/SRL pair
4056 // to an SRL/XOR pair, which is likely to simplify more.
4057 unsigned ShAmt = UnknownBits.countTrailingZeros();
4058 SDValue Op = N0.getOperand(0);
4059
4060 if (ShAmt) {
4061 Op = DAG.getNode(ISD::SRL, SDLoc(N0), VT, Op,
4062 DAG.getConstant(ShAmt, getShiftAmountTy(Op.getValueType())));
4063 AddToWorkList(Op.getNode());
4064 }
4065
4066 return DAG.getNode(ISD::XOR, SDLoc(N), VT,
4067 Op, DAG.getConstant(1, VT));
4068 }
4069 }
4070
4071 // fold (srl x, (trunc (and y, c))) -> (srl x, (and (trunc y), (trunc c))).
4072 if (N1.getOpcode() == ISD::TRUNCATE &&
4073 N1.getOperand(0).getOpcode() == ISD::AND &&
4074 N1.hasOneUse() && N1.getOperand(0).hasOneUse()) {
4075 SDValue N101 = N1.getOperand(0).getOperand(1);
4076 if (ConstantSDNode *N101C = dyn_cast<ConstantSDNode>(N101)) {
4077 EVT TruncVT = N1.getValueType();
4078 SDValue N100 = N1.getOperand(0).getOperand(0);
4079 APInt TruncC = N101C->getAPIntValue();
4080 TruncC = TruncC.trunc(TruncVT.getSizeInBits());
4081 return DAG.getNode(ISD::SRL, SDLoc(N), VT, N0,
4082 DAG.getNode(ISD::AND, SDLoc(N),
4083 TruncVT,
4084 DAG.getNode(ISD::TRUNCATE,
4085 SDLoc(N),
4086 TruncVT, N100),
4087 DAG.getConstant(TruncC, TruncVT)));
4088 }
4089 }
4090
4091 // fold operands of srl based on knowledge that the low bits are not
4092 // demanded.
4093 if (N1C && SimplifyDemandedBits(SDValue(N, 0)))
4094 return SDValue(N, 0);
4095
4096 if (N1C) {
4097 SDValue NewSRL = visitShiftByConstant(N, N1C->getZExtValue());
4098 if (NewSRL.getNode())
4099 return NewSRL;
4100 }
4101
4102 // Attempt to convert a srl of a load into a narrower zero-extending load.
4103 SDValue NarrowLoad = ReduceLoadWidth(N);
4104 if (NarrowLoad.getNode())
4105 return NarrowLoad;
4106
4107 // Here is a common situation. We want to optimize:
4108 //
4109 // %a = ...
4110 // %b = and i32 %a, 2
4111 // %c = srl i32 %b, 1
4112 // brcond i32 %c ...
4113 //
4114 // into
4115 //
4116 // %a = ...
4117 // %b = and %a, 2
4118 // %c = setcc eq %b, 0
4119 // brcond %c ...
4120 //
4121 // However when after the source operand of SRL is optimized into AND, the SRL
4122 // itself may not be optimized further. Look for it and add the BRCOND into
4123 // the worklist.
4124 if (N->hasOneUse()) {
4125 SDNode *Use = *N->use_begin();
4126 if (Use->getOpcode() == ISD::BRCOND)
4127 AddToWorkList(Use);
4128 else if (Use->getOpcode() == ISD::TRUNCATE && Use->hasOneUse()) {
4129 // Also look pass the truncate.
4130 Use = *Use->use_begin();
4131 if (Use->getOpcode() == ISD::BRCOND)
4132 AddToWorkList(Use);
4133 }
4134 }
4135
4136 return SDValue();
4137}
4138
4139SDValue DAGCombiner::visitCTLZ(SDNode *N) {
4140 SDValue N0 = N->getOperand(0);
4141 EVT VT = N->getValueType(0);
4142
4143 // fold (ctlz c1) -> c2
4144 if (isa<ConstantSDNode>(N0))
4145 return DAG.getNode(ISD::CTLZ, SDLoc(N), VT, N0);
4146 return SDValue();
4147}
4148
4149SDValue DAGCombiner::visitCTLZ_ZERO_UNDEF(SDNode *N) {
4150 SDValue N0 = N->getOperand(0);
4151 EVT VT = N->getValueType(0);
4152
4153 // fold (ctlz_zero_undef c1) -> c2
4154 if (isa<ConstantSDNode>(N0))
4155 return DAG.getNode(ISD::CTLZ_ZERO_UNDEF, SDLoc(N), VT, N0);
4156 return SDValue();
4157}
4158
4159SDValue DAGCombiner::visitCTTZ(SDNode *N) {
4160 SDValue N0 = N->getOperand(0);
4161 EVT VT = N->getValueType(0);
4162
4163 // fold (cttz c1) -> c2
4164 if (isa<ConstantSDNode>(N0))
4165 return DAG.getNode(ISD::CTTZ, SDLoc(N), VT, N0);
4166 return SDValue();
4167}
4168
4169SDValue DAGCombiner::visitCTTZ_ZERO_UNDEF(SDNode *N) {
4170 SDValue N0 = N->getOperand(0);
4171 EVT VT = N->getValueType(0);
4172
4173 // fold (cttz_zero_undef c1) -> c2
4174 if (isa<ConstantSDNode>(N0))
4175 return DAG.getNode(ISD::CTTZ_ZERO_UNDEF, SDLoc(N), VT, N0);
4176 return SDValue();
4177}
4178
4179SDValue DAGCombiner::visitCTPOP(SDNode *N) {
4180 SDValue N0 = N->getOperand(0);
4181 EVT VT = N->getValueType(0);
4182
4183 // fold (ctpop c1) -> c2
4184 if (isa<ConstantSDNode>(N0))
4185 return DAG.getNode(ISD::CTPOP, SDLoc(N), VT, N0);
4186 return SDValue();
4187}
4188
4189SDValue DAGCombiner::visitSELECT(SDNode *N) {
4190 SDValue N0 = N->getOperand(0);
4191 SDValue N1 = N->getOperand(1);
4192 SDValue N2 = N->getOperand(2);
4193 ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
4194 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
4195 ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2);
4196 EVT VT = N->getValueType(0);
4197 EVT VT0 = N0.getValueType();
4198
4199 // fold (select C, X, X) -> X
4200 if (N1 == N2)
4201 return N1;
4202 // fold (select true, X, Y) -> X
4203 if (N0C && !N0C->isNullValue())
4204 return N1;
4205 // fold (select false, X, Y) -> Y
4206 if (N0C && N0C->isNullValue())
4207 return N2;
4208 // fold (select C, 1, X) -> (or C, X)
4209 if (VT == MVT::i1 && N1C && N1C->getAPIntValue() == 1)
4210 return DAG.getNode(ISD::OR, SDLoc(N), VT, N0, N2);
4211 // fold (select C, 0, 1) -> (xor C, 1)
4212 if (VT.isInteger() &&
4213 (VT0 == MVT::i1 ||
4214 (VT0.isInteger() &&
4215 TLI.getBooleanContents(false) ==
4216 TargetLowering::ZeroOrOneBooleanContent)) &&
4217 N1C && N2C && N1C->isNullValue() && N2C->getAPIntValue() == 1) {
4218 SDValue XORNode;
4219 if (VT == VT0)
4220 return DAG.getNode(ISD::XOR, SDLoc(N), VT0,
4221 N0, DAG.getConstant(1, VT0));
4222 XORNode = DAG.getNode(ISD::XOR, SDLoc(N0), VT0,
4223 N0, DAG.getConstant(1, VT0));
4224 AddToWorkList(XORNode.getNode());
4225 if (VT.bitsGT(VT0))
4226 return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N), VT, XORNode);
4227 return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, XORNode);
4228 }
4229 // fold (select C, 0, X) -> (and (not C), X)
4230 if (VT == VT0 && VT == MVT::i1 && N1C && N1C->isNullValue()) {
4231 SDValue NOTNode = DAG.getNOT(SDLoc(N0), N0, VT);
4232 AddToWorkList(NOTNode.getNode());
4233 return DAG.getNode(ISD::AND, SDLoc(N), VT, NOTNode, N2);
4234 }
4235 // fold (select C, X, 1) -> (or (not C), X)
4236 if (VT == VT0 && VT == MVT::i1 && N2C && N2C->getAPIntValue() == 1) {
4237 SDValue NOTNode = DAG.getNOT(SDLoc(N0), N0, VT);
4238 AddToWorkList(NOTNode.getNode());
4239 return DAG.getNode(ISD::OR, SDLoc(N), VT, NOTNode, N1);
4240 }
4241 // fold (select C, X, 0) -> (and C, X)
4242 if (VT == MVT::i1 && N2C && N2C->isNullValue())
4243 return DAG.getNode(ISD::AND, SDLoc(N), VT, N0, N1);
4244 // fold (select X, X, Y) -> (or X, Y)
4245 // fold (select X, 1, Y) -> (or X, Y)
4246 if (VT == MVT::i1 && (N0 == N1 || (N1C && N1C->getAPIntValue() == 1)))
4247 return DAG.getNode(ISD::OR, SDLoc(N), VT, N0, N2);
4248 // fold (select X, Y, X) -> (and X, Y)
4249 // fold (select X, Y, 0) -> (and X, Y)
4250 if (VT == MVT::i1 && (N0 == N2 || (N2C && N2C->getAPIntValue() == 0)))
4251 return DAG.getNode(ISD::AND, SDLoc(N), VT, N0, N1);
4252
4253 // If we can fold this based on the true/false value, do so.
4254 if (SimplifySelectOps(N, N1, N2))
4255 return SDValue(N, 0); // Don't revisit N.
4256
4257 // fold selects based on a setcc into other things, such as min/max/abs
4258 if (N0.getOpcode() == ISD::SETCC) {
4259 // FIXME:
4260 // Check against MVT::Other for SELECT_CC, which is a workaround for targets
4261 // having to say they don't support SELECT_CC on every type the DAG knows
4262 // about, since there is no way to mark an opcode illegal at all value types
4263 if (TLI.isOperationLegalOrCustom(ISD::SELECT_CC, MVT::Other) &&
4264 TLI.isOperationLegalOrCustom(ISD::SELECT_CC, VT))
4265 return DAG.getNode(ISD::SELECT_CC, SDLoc(N), VT,
4266 N0.getOperand(0), N0.getOperand(1),
4267 N1, N2, N0.getOperand(2));
4268 return SimplifySelect(SDLoc(N), N0, N1, N2);
4269 }
4270
4271 return SDValue();
4272}
4273
4274static
4275std::pair<SDValue, SDValue> SplitVSETCC(const SDNode *N, SelectionDAG &DAG) {
4276 SDLoc DL(N);
4277 EVT LoVT, HiVT;
4278 llvm::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(N->getValueType(0));
4279
4280 // Split the inputs.
4281 SDValue Lo, Hi, LL, LH, RL, RH;
4282 llvm::tie(LL, LH) = DAG.SplitVectorOperand(N, 0);
4283 llvm::tie(RL, RH) = DAG.SplitVectorOperand(N, 1);
4284
4285 Lo = DAG.getNode(N->getOpcode(), DL, LoVT, LL, RL, N->getOperand(2));
4286 Hi = DAG.getNode(N->getOpcode(), DL, HiVT, LH, RH, N->getOperand(2));
4287
4288 return std::make_pair(Lo, Hi);
4289}
4290
4291SDValue DAGCombiner::visitVSELECT(SDNode *N) {
4292 SDValue N0 = N->getOperand(0);
4293 SDValue N1 = N->getOperand(1);
4294 SDValue N2 = N->getOperand(2);
4295 SDLoc DL(N);
4296
4297 // Canonicalize integer abs.
4298 // vselect (setg[te] X, 0), X, -X ->
4299 // vselect (setgt X, -1), X, -X ->
4300 // vselect (setl[te] X, 0), -X, X ->
4301 // Y = sra (X, size(X)-1); xor (add (X, Y), Y)
4302 if (N0.getOpcode() == ISD::SETCC) {
4303 SDValue LHS = N0.getOperand(0), RHS = N0.getOperand(1);
4304 ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get();
4305 bool isAbs = false;
4306 bool RHSIsAllZeros = ISD::isBuildVectorAllZeros(RHS.getNode());
4307
4308 if (((RHSIsAllZeros && (CC == ISD::SETGT || CC == ISD::SETGE)) ||
4309 (ISD::isBuildVectorAllOnes(RHS.getNode()) && CC == ISD::SETGT)) &&
4310 N1 == LHS && N2.getOpcode() == ISD::SUB && N1 == N2.getOperand(1))
4311 isAbs = ISD::isBuildVectorAllZeros(N2.getOperand(0).getNode());
4312 else if ((RHSIsAllZeros && (CC == ISD::SETLT || CC == ISD::SETLE)) &&
4313 N2 == LHS && N1.getOpcode() == ISD::SUB && N2 == N1.getOperand(1))
4314 isAbs = ISD::isBuildVectorAllZeros(N1.getOperand(0).getNode());
4315
4316 if (isAbs) {
4317 EVT VT = LHS.getValueType();
4318 SDValue Shift = DAG.getNode(
4319 ISD::SRA, DL, VT, LHS,
4320 DAG.getConstant(VT.getScalarType().getSizeInBits() - 1, VT));
4321 SDValue Add = DAG.getNode(ISD::ADD, DL, VT, LHS, Shift);
4322 AddToWorkList(Shift.getNode());
4323 AddToWorkList(Add.getNode());
4324 return DAG.getNode(ISD::XOR, DL, VT, Add, Shift);
4325 }
4326 }
4327
4328 // If the VSELECT result requires splitting and the mask is provided by a
4329 // SETCC, then split both nodes and its operands before legalization. This
4330 // prevents the type legalizer from unrolling SETCC into scalar comparisons
4331 // and enables future optimizations (e.g. min/max pattern matching on X86).
4332 if (N0.getOpcode() == ISD::SETCC) {
4333 EVT VT = N->getValueType(0);
4334
4335 // Check if any splitting is required.
4336 if (TLI.getTypeAction(*DAG.getContext(), VT) !=
4337 TargetLowering::TypeSplitVector)
4338 return SDValue();
4339
4340 SDValue Lo, Hi, CCLo, CCHi, LL, LH, RL, RH;
4341 llvm::tie(CCLo, CCHi) = SplitVSETCC(N0.getNode(), DAG);
4342 llvm::tie(LL, LH) = DAG.SplitVectorOperand(N, 1);
4343 llvm::tie(RL, RH) = DAG.SplitVectorOperand(N, 2);
4344
4345 Lo = DAG.getNode(N->getOpcode(), DL, LL.getValueType(), CCLo, LL, RL);
4346 Hi = DAG.getNode(N->getOpcode(), DL, LH.getValueType(), CCHi, LH, RH);
4347
4348 // Add the new VSELECT nodes to the work list in case they need to be split
4349 // again.
4350 AddToWorkList(Lo.getNode());
4351 AddToWorkList(Hi.getNode());
4352
4353 return DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, Lo, Hi);
4354 }
4355
4356 return SDValue();
4357}
4358
4359SDValue DAGCombiner::visitSELECT_CC(SDNode *N) {
4360 SDValue N0 = N->getOperand(0);
4361 SDValue N1 = N->getOperand(1);
4362 SDValue N2 = N->getOperand(2);
4363 SDValue N3 = N->getOperand(3);
4364 SDValue N4 = N->getOperand(4);
4365 ISD::CondCode CC = cast<CondCodeSDNode>(N4)->get();
4366
4367 // fold select_cc lhs, rhs, x, x, cc -> x
4368 if (N2 == N3)
4369 return N2;
4370
4371 // Determine if the condition we're dealing with is constant
4372 SDValue SCC = SimplifySetCC(getSetCCResultType(N0.getValueType()),
4373 N0, N1, CC, SDLoc(N), false);
4374 if (SCC.getNode()) {
4375 AddToWorkList(SCC.getNode());
4376
4377 if (ConstantSDNode *SCCC = dyn_cast<ConstantSDNode>(SCC.getNode())) {
4378 if (!SCCC->isNullValue())
4379 return N2; // cond always true -> true val
4380 else
4381 return N3; // cond always false -> false val
4382 }
4383
4384 // Fold to a simpler select_cc
4385 if (SCC.getOpcode() == ISD::SETCC)
4386 return DAG.getNode(ISD::SELECT_CC, SDLoc(N), N2.getValueType(),
4387 SCC.getOperand(0), SCC.getOperand(1), N2, N3,
4388 SCC.getOperand(2));
4389 }
4390
4391 // If we can fold this based on the true/false value, do so.
4392 if (SimplifySelectOps(N, N2, N3))
4393 return SDValue(N, 0); // Don't revisit N.
4394
4395 // fold select_cc into other things, such as min/max/abs
4396 return SimplifySelectCC(SDLoc(N), N0, N1, N2, N3, CC);
4397}
4398
4399SDValue DAGCombiner::visitSETCC(SDNode *N) {
4400 return SimplifySetCC(N->getValueType(0), N->getOperand(0), N->getOperand(1),
4401 cast<CondCodeSDNode>(N->getOperand(2))->get(),
4402 SDLoc(N));
4403}
4404
4405// ExtendUsesToFormExtLoad - Trying to extend uses of a load to enable this:
4406// "fold ({s|z|a}ext (load x)) -> ({s|z|a}ext (truncate ({s|z|a}extload x)))"
4407// transformation. Returns true if extension are possible and the above
4408// mentioned transformation is profitable.
4409static bool ExtendUsesToFormExtLoad(SDNode *N, SDValue N0,
4410 unsigned ExtOpc,
4411 SmallVectorImpl<SDNode *> &ExtendNodes,
4412 const TargetLowering &TLI) {
4413 bool HasCopyToRegUses = false;
4414 bool isTruncFree = TLI.isTruncateFree(N->getValueType(0), N0.getValueType());
4415 for (SDNode::use_iterator UI = N0.getNode()->use_begin(),
4416 UE = N0.getNode()->use_end();
4417 UI != UE; ++UI) {
4418 SDNode *User = *UI;
4419 if (User == N)
4420 continue;
4421 if (UI.getUse().getResNo() != N0.getResNo())
4422 continue;
4423 // FIXME: Only extend SETCC N, N and SETCC N, c for now.
4424 if (ExtOpc != ISD::ANY_EXTEND && User->getOpcode() == ISD::SETCC) {
4425 ISD::CondCode CC = cast<CondCodeSDNode>(User->getOperand(2))->get();
4426 if (ExtOpc == ISD::ZERO_EXTEND && ISD::isSignedIntSetCC(CC))
4427 // Sign bits will be lost after a zext.
4428 return false;
4429 bool Add = false;
4430 for (unsigned i = 0; i != 2; ++i) {
4431 SDValue UseOp = User->getOperand(i);
4432 if (UseOp == N0)
4433 continue;
4434 if (!isa<ConstantSDNode>(UseOp))
4435 return false;
4436 Add = true;
4437 }
4438 if (Add)
4439 ExtendNodes.push_back(User);
4440 continue;
4441 }
4442 // If truncates aren't free and there are users we can't
4443 // extend, it isn't worthwhile.
4444 if (!isTruncFree)
4445 return false;
4446 // Remember if this value is live-out.
4447 if (User->getOpcode() == ISD::CopyToReg)
4448 HasCopyToRegUses = true;
4449 }
4450
4451 if (HasCopyToRegUses) {
4452 bool BothLiveOut = false;
4453 for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
4454 UI != UE; ++UI) {
4455 SDUse &Use = UI.getUse();
4456 if (Use.getResNo() == 0 && Use.getUser()->getOpcode() == ISD::CopyToReg) {
4457 BothLiveOut = true;
4458 break;
4459 }
4460 }
4461 if (BothLiveOut)
4462 // Both unextended and extended values are live out. There had better be
4463 // a good reason for the transformation.
4464 return ExtendNodes.size();
4465 }
4466 return true;
4467}
4468
4469void DAGCombiner::ExtendSetCCUses(const SmallVectorImpl<SDNode *> &SetCCs,
4470 SDValue Trunc, SDValue ExtLoad, SDLoc DL,
4471 ISD::NodeType ExtType) {
4472 // Extend SetCC uses if necessary.
4473 for (unsigned i = 0, e = SetCCs.size(); i != e; ++i) {
4474 SDNode *SetCC = SetCCs[i];
4475 SmallVector<SDValue, 4> Ops;
4476
4477 for (unsigned j = 0; j != 2; ++j) {
4478 SDValue SOp = SetCC->getOperand(j);
4479 if (SOp == Trunc)
4480 Ops.push_back(ExtLoad);
4481 else
4482 Ops.push_back(DAG.getNode(ExtType, DL, ExtLoad->getValueType(0), SOp));
4483 }
4484
4485 Ops.push_back(SetCC->getOperand(2));
4486 CombineTo(SetCC, DAG.getNode(ISD::SETCC, DL, SetCC->getValueType(0),
4487 &Ops[0], Ops.size()));
4488 }
4489}
4490
4491SDValue DAGCombiner::visitSIGN_EXTEND(SDNode *N) {
4492 SDValue N0 = N->getOperand(0);
4493 EVT VT = N->getValueType(0);
4494
4495 // fold (sext c1) -> c1
4496 if (isa<ConstantSDNode>(N0))
4497 return DAG.getNode(ISD::SIGN_EXTEND, SDLoc(N), VT, N0);
4498
4499 // fold (sext (sext x)) -> (sext x)
4500 // fold (sext (aext x)) -> (sext x)
4501 if (N0.getOpcode() == ISD::SIGN_EXTEND || N0.getOpcode() == ISD::ANY_EXTEND)
4502 return DAG.getNode(ISD::SIGN_EXTEND, SDLoc(N), VT,
4503 N0.getOperand(0));
4504
4505 if (N0.getOpcode() == ISD::TRUNCATE) {
4506 // fold (sext (truncate (load x))) -> (sext (smaller load x))
4507 // fold (sext (truncate (srl (load x), c))) -> (sext (smaller load (x+c/n)))
4508 SDValue NarrowLoad = ReduceLoadWidth(N0.getNode());
4509 if (NarrowLoad.getNode()) {
4510 SDNode* oye = N0.getNode()->getOperand(0).getNode();
4511 if (NarrowLoad.getNode() != N0.getNode()) {
4512 CombineTo(N0.getNode(), NarrowLoad);
4513 // CombineTo deleted the truncate, if needed, but not what's under it.
4514 AddToWorkList(oye);
4515 }
4516 return SDValue(N, 0); // Return N so it doesn't get rechecked!
4517 }
4518
4519 // See if the value being truncated is already sign extended. If so, just
4520 // eliminate the trunc/sext pair.
4521 SDValue Op = N0.getOperand(0);
4522 unsigned OpBits = Op.getValueType().getScalarType().getSizeInBits();
4523 unsigned MidBits = N0.getValueType().getScalarType().getSizeInBits();
4524 unsigned DestBits = VT.getScalarType().getSizeInBits();
4525 unsigned NumSignBits = DAG.ComputeNumSignBits(Op);
4526
4527 if (OpBits == DestBits) {
4528 // Op is i32, Mid is i8, and Dest is i32. If Op has more than 24 sign
4529 // bits, it is already ready.
4530 if (NumSignBits > DestBits-MidBits)
4531 return Op;
4532 } else if (OpBits < DestBits) {
4533 // Op is i32, Mid is i8, and Dest is i64. If Op has more than 24 sign
4534 // bits, just sext from i32.
4535 if (NumSignBits > OpBits-MidBits)
4536 return DAG.getNode(ISD::SIGN_EXTEND, SDLoc(N), VT, Op);
4537 } else {
4538 // Op is i64, Mid is i8, and Dest is i32. If Op has more than 56 sign
4539 // bits, just truncate to i32.
4540 if (NumSignBits > OpBits-MidBits)
4541 return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, Op);
4542 }
4543
4544 // fold (sext (truncate x)) -> (sextinreg x).
4545 if (!LegalOperations || TLI.isOperationLegal(ISD::SIGN_EXTEND_INREG,
4546 N0.getValueType())) {
4547 if (OpBits < DestBits)
4548 Op = DAG.getNode(ISD::ANY_EXTEND, SDLoc(N0), VT, Op);
4549 else if (OpBits > DestBits)
4550 Op = DAG.getNode(ISD::TRUNCATE, SDLoc(N0), VT, Op);
4551 return DAG.getNode(ISD::SIGN_EXTEND_INREG, SDLoc(N), VT, Op,
4552 DAG.getValueType(N0.getValueType()));
4553 }
4554 }
4555
4556 // fold (sext (load x)) -> (sext (truncate (sextload x)))
4557 // None of the supported targets knows how to perform load and sign extend
4558 // on vectors in one instruction. We only perform this transformation on
4559 // scalars.
4560 if (ISD::isNON_EXTLoad(N0.getNode()) && !VT.isVector() &&
4561 ((!LegalOperations && !cast<LoadSDNode>(N0)->isVolatile()) ||
4562 TLI.isLoadExtLegal(ISD::SEXTLOAD, N0.getValueType()))) {
4563 bool DoXform = true;
4564 SmallVector<SDNode*, 4> SetCCs;
4565 if (!N0.hasOneUse())
4566 DoXform = ExtendUsesToFormExtLoad(N, N0, ISD::SIGN_EXTEND, SetCCs, TLI);
4567 if (DoXform) {
4568 LoadSDNode *LN0 = cast<LoadSDNode>(N0);
4569 SDValue ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, SDLoc(N), VT,
4570 LN0->getChain(),
4571 LN0->getBasePtr(), N0.getValueType(),
4572 LN0->getMemOperand());
4573 CombineTo(N, ExtLoad);
4574 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SDLoc(N0),
4575 N0.getValueType(), ExtLoad);
4576 CombineTo(N0.getNode(), Trunc, ExtLoad.getValue(1));
4577 ExtendSetCCUses(SetCCs, Trunc, ExtLoad, SDLoc(N),
4578 ISD::SIGN_EXTEND);
4579 return SDValue(N, 0); // Return N so it doesn't get rechecked!
4580 }
4581 }
4582
4583 // fold (sext (sextload x)) -> (sext (truncate (sextload x)))
4584 // fold (sext ( extload x)) -> (sext (truncate (sextload x)))
4585 if ((ISD::isSEXTLoad(N0.getNode()) || ISD::isEXTLoad(N0.getNode())) &&
4586 ISD::isUNINDEXEDLoad(N0.getNode()) && N0.hasOneUse()) {
4587 LoadSDNode *LN0 = cast<LoadSDNode>(N0);
4588 EVT MemVT = LN0->getMemoryVT();
4589 if ((!LegalOperations && !LN0->isVolatile()) ||
4590 TLI.isLoadExtLegal(ISD::SEXTLOAD, MemVT)) {
4591 SDValue ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, SDLoc(N), VT,
4592 LN0->getChain(),
4593 LN0->getBasePtr(), MemVT,
4594 LN0->getMemOperand());
4595 CombineTo(N, ExtLoad);
4596 CombineTo(N0.getNode(),
4597 DAG.getNode(ISD::TRUNCATE, SDLoc(N0),
4598 N0.getValueType(), ExtLoad),
4599 ExtLoad.getValue(1));
4600 return SDValue(N, 0); // Return N so it doesn't get rechecked!
4601 }
4602 }
4603
4604 // fold (sext (and/or/xor (load x), cst)) ->
4605 // (and/or/xor (sextload x), (sext cst))
4606 if ((N0.getOpcode() == ISD::AND || N0.getOpcode() == ISD::OR ||
4607 N0.getOpcode() == ISD::XOR) &&
4608 isa<LoadSDNode>(N0.getOperand(0)) &&
4609 N0.getOperand(1).getOpcode() == ISD::Constant &&
4610 TLI.isLoadExtLegal(ISD::SEXTLOAD, N0.getValueType()) &&
4611 (!LegalOperations && TLI.isOperationLegal(N0.getOpcode(), VT))) {
4612 LoadSDNode *LN0 = cast<LoadSDNode>(N0.getOperand(0));
4613 if (LN0->getExtensionType() != ISD::ZEXTLOAD) {
4614 bool DoXform = true;
4615 SmallVector<SDNode*, 4> SetCCs;
4616 if (!N0.hasOneUse())
4617 DoXform = ExtendUsesToFormExtLoad(N, N0.getOperand(0), ISD::SIGN_EXTEND,
4618 SetCCs, TLI);
4619 if (DoXform) {
4620 SDValue ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, SDLoc(LN0), VT,
4621 LN0->getChain(), LN0->getBasePtr(),
4622 LN0->getMemoryVT(),
4623 LN0->getMemOperand());
4624 APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
4625 Mask = Mask.sext(VT.getSizeInBits());
4626 SDValue And = DAG.getNode(N0.getOpcode(), SDLoc(N), VT,
4627 ExtLoad, DAG.getConstant(Mask, VT));
4628 SDValue Trunc = DAG.getNode(ISD::TRUNCATE,
4629 SDLoc(N0.getOperand(0)),
4630 N0.getOperand(0).getValueType(), ExtLoad);
4631 CombineTo(N, And);
4632 CombineTo(N0.getOperand(0).getNode(), Trunc, ExtLoad.getValue(1));
4633 ExtendSetCCUses(SetCCs, Trunc, ExtLoad, SDLoc(N),
4634 ISD::SIGN_EXTEND);
4635 return SDValue(N, 0); // Return N so it doesn't get rechecked!
4636 }
4637 }
4638 }
4639
4640 if (N0.getOpcode() == ISD::SETCC) {
4641 // sext(setcc) -> sext_in_reg(vsetcc) for vectors.
4642 // Only do this before legalize for now.
4643 if (VT.isVector() && !LegalOperations &&
4644 TLI.getBooleanContents(true) ==
4645 TargetLowering::ZeroOrNegativeOneBooleanContent) {
4646 EVT N0VT = N0.getOperand(0).getValueType();
4647 // On some architectures (such as SSE/NEON/etc) the SETCC result type is
4648 // of the same size as the compared operands. Only optimize sext(setcc())
4649 // if this is the case.
4650 EVT SVT = getSetCCResultType(N0VT);
4651
4652 // We know that the # elements of the results is the same as the
4653 // # elements of the compare (and the # elements of the compare result
4654 // for that matter). Check to see that they are the same size. If so,
4655 // we know that the element size of the sext'd result matches the
4656 // element size of the compare operands.
4657 if (VT.getSizeInBits() == SVT.getSizeInBits())
4658 return DAG.getSetCC(SDLoc(N), VT, N0.getOperand(0),
4659 N0.getOperand(1),
4660 cast<CondCodeSDNode>(N0.getOperand(2))->get());
4661
4662 // If the desired elements are smaller or larger than the source
4663 // elements we can use a matching integer vector type and then
4664 // truncate/sign extend
4665 EVT MatchingVectorType = N0VT.changeVectorElementTypeToInteger();
4666 if (SVT == MatchingVectorType) {
4667 SDValue VsetCC = DAG.getSetCC(SDLoc(N), MatchingVectorType,
4668 N0.getOperand(0), N0.getOperand(1),
4669 cast<CondCodeSDNode>(N0.getOperand(2))->get());
4670 return DAG.getSExtOrTrunc(VsetCC, SDLoc(N), VT);
4671 }
4672 }
4673
4674 // sext(setcc x, y, cc) -> (select_cc x, y, -1, 0, cc)
4675 unsigned ElementWidth = VT.getScalarType().getSizeInBits();
4676 SDValue NegOne =
4677 DAG.getConstant(APInt::getAllOnesValue(ElementWidth), VT);
4678 SDValue SCC =
4679 SimplifySelectCC(SDLoc(N), N0.getOperand(0), N0.getOperand(1),
4680 NegOne, DAG.getConstant(0, VT),
4681 cast<CondCodeSDNode>(N0.getOperand(2))->get(), true);
4682 if (SCC.getNode()) return SCC;
4683 if (!VT.isVector() &&
4684 (!LegalOperations ||
4685 TLI.isOperationLegal(ISD::SETCC, getSetCCResultType(VT)))) {
4686 return DAG.getSelect(SDLoc(N), VT,
4687 DAG.getSetCC(SDLoc(N),
4688 getSetCCResultType(VT),
4689 N0.getOperand(0), N0.getOperand(1),
4690 cast<CondCodeSDNode>(N0.getOperand(2))->get()),
4691 NegOne, DAG.getConstant(0, VT));
4692 }
4693 }
4694
4695 // fold (sext x) -> (zext x) if the sign bit is known zero.
4696 if ((!LegalOperations || TLI.isOperationLegal(ISD::ZERO_EXTEND, VT)) &&
4697 DAG.SignBitIsZero(N0))
4698 return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N), VT, N0);
4699
4700 return SDValue();
4701}
4702
4703// isTruncateOf - If N is a truncate of some other value, return true, record
4704// the value being truncated in Op and which of Op's bits are zero in KnownZero.
4705// This function computes KnownZero to avoid a duplicated call to
4706// ComputeMaskedBits in the caller.
4707static bool isTruncateOf(SelectionDAG &DAG, SDValue N, SDValue &Op,
4708 APInt &KnownZero) {
4709 APInt KnownOne;
4710 if (N->getOpcode() == ISD::TRUNCATE) {
4711 Op = N->getOperand(0);
4712 DAG.ComputeMaskedBits(Op, KnownZero, KnownOne);
4713 return true;
4714 }
4715
4716 if (N->getOpcode() != ISD::SETCC || N->getValueType(0) != MVT::i1 ||
4717 cast<CondCodeSDNode>(N->getOperand(2))->get() != ISD::SETNE)
4718 return false;
4719
4720 SDValue Op0 = N->getOperand(0);
4721 SDValue Op1 = N->getOperand(1);
4722 assert(Op0.getValueType() == Op1.getValueType());
4723
4724 ConstantSDNode *COp0 = dyn_cast<ConstantSDNode>(Op0);
4725 ConstantSDNode *COp1 = dyn_cast<ConstantSDNode>(Op1);
4726 if (COp0 && COp0->isNullValue())
4727 Op = Op1;
4728 else if (COp1 && COp1->isNullValue())
4729 Op = Op0;
4730 else
4731 return false;
4732
4733 DAG.ComputeMaskedBits(Op, KnownZero, KnownOne);
4734
4735 if (!(KnownZero | APInt(Op.getValueSizeInBits(), 1)).isAllOnesValue())
4736 return false;
4737
4738 return true;
4739}
4740
4741SDValue DAGCombiner::visitZERO_EXTEND(SDNode *N) {
4742 SDValue N0 = N->getOperand(0);
4743 EVT VT = N->getValueType(0);
4744
4745 // fold (zext c1) -> c1
4746 if (isa<ConstantSDNode>(N0))
4747 return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N), VT, N0);
4748 // fold (zext (zext x)) -> (zext x)
4749 // fold (zext (aext x)) -> (zext x)
4750 if (N0.getOpcode() == ISD::ZERO_EXTEND || N0.getOpcode() == ISD::ANY_EXTEND)
4751 return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N), VT,
4752 N0.getOperand(0));
4753
4754 // fold (zext (truncate x)) -> (zext x) or
4755 // (zext (truncate x)) -> (truncate x)
4756 // This is valid when the truncated bits of x are already zero.
4757 // FIXME: We should extend this to work for vectors too.
4758 SDValue Op;
4759 APInt KnownZero;
4760 if (!VT.isVector() && isTruncateOf(DAG, N0, Op, KnownZero)) {
4761 APInt TruncatedBits =
4762 (Op.getValueSizeInBits() == N0.getValueSizeInBits()) ?
4763 APInt(Op.getValueSizeInBits(), 0) :
4764 APInt::getBitsSet(Op.getValueSizeInBits(),
4765 N0.getValueSizeInBits(),
4766 std::min(Op.getValueSizeInBits(),
4767 VT.getSizeInBits()));
4768 if (TruncatedBits == (KnownZero & TruncatedBits)) {
4769 if (VT.bitsGT(Op.getValueType()))
4770 return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N), VT, Op);
4771 if (VT.bitsLT(Op.getValueType()))
4772 return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, Op);
4773
4774 return Op;
4775 }
4776 }
4777
4778 // fold (zext (truncate (load x))) -> (zext (smaller load x))
4779 // fold (zext (truncate (srl (load x), c))) -> (zext (small load (x+c/n)))
4780 if (N0.getOpcode() == ISD::TRUNCATE) {
4781 SDValue NarrowLoad = ReduceLoadWidth(N0.getNode());
4782 if (NarrowLoad.getNode()) {
4783 SDNode* oye = N0.getNode()->getOperand(0).getNode();
4784 if (NarrowLoad.getNode() != N0.getNode()) {
4785 CombineTo(N0.getNode(), NarrowLoad);
4786 // CombineTo deleted the truncate, if needed, but not what's under it.
4787 AddToWorkList(oye);
4788 }
4789 return SDValue(N, 0); // Return N so it doesn't get rechecked!
4790 }
4791 }
4792
4793 // fold (zext (truncate x)) -> (and x, mask)
4794 if (N0.getOpcode() == ISD::TRUNCATE &&
4795 (!LegalOperations || TLI.isOperationLegal(ISD::AND, VT))) {
4796
4797 // fold (zext (truncate (load x))) -> (zext (smaller load x))
4798 // fold (zext (truncate (srl (load x), c))) -> (zext (smaller load (x+c/n)))
4799 SDValue NarrowLoad = ReduceLoadWidth(N0.getNode());
4800 if (NarrowLoad.getNode()) {
4801 SDNode* oye = N0.getNode()->getOperand(0).getNode();
4802 if (NarrowLoad.getNode() != N0.getNode()) {
4803 CombineTo(N0.getNode(), NarrowLoad);
4804 // CombineTo deleted the truncate, if needed, but not what's under it.
4805 AddToWorkList(oye);
4806 }
4807 return SDValue(N, 0); // Return N so it doesn't get rechecked!
4808 }
4809
4810 SDValue Op = N0.getOperand(0);
4811 if (Op.getValueType().bitsLT(VT)) {
4812 Op = DAG.getNode(ISD::ANY_EXTEND, SDLoc(N), VT, Op);
4813 AddToWorkList(Op.getNode());
4814 } else if (Op.getValueType().bitsGT(VT)) {
4815 Op = DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, Op);
4816 AddToWorkList(Op.getNode());
4817 }
4818 return DAG.getZeroExtendInReg(Op, SDLoc(N),
4819 N0.getValueType().getScalarType());
4820 }
4821
4822 // Fold (zext (and (trunc x), cst)) -> (and x, cst),
4823 // if either of the casts is not free.
4824 if (N0.getOpcode() == ISD::AND &&
4825 N0.getOperand(0).getOpcode() == ISD::TRUNCATE &&
4826 N0.getOperand(1).getOpcode() == ISD::Constant &&
4827 (!TLI.isTruncateFree(N0.getOperand(0).getOperand(0).getValueType(),
4828 N0.getValueType()) ||
4829 !TLI.isZExtFree(N0.getValueType(), VT))) {
4830 SDValue X = N0.getOperand(0).getOperand(0);
4831 if (X.getValueType().bitsLT(VT)) {
4832 X = DAG.getNode(ISD::ANY_EXTEND, SDLoc(X), VT, X);
4833 } else if (X.getValueType().bitsGT(VT)) {
4834 X = DAG.getNode(ISD::TRUNCATE, SDLoc(X), VT, X);
4835 }
4836 APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
4837 Mask = Mask.zext(VT.getSizeInBits());
4838 return DAG.getNode(ISD::AND, SDLoc(N), VT,
4839 X, DAG.getConstant(Mask, VT));
4840 }
4841
4842 // fold (zext (load x)) -> (zext (truncate (zextload x)))
4843 // None of the supported targets knows how to perform load and vector_zext
4844 // on vectors in one instruction. We only perform this transformation on
4845 // scalars.
4846 if (ISD::isNON_EXTLoad(N0.getNode()) && !VT.isVector() &&
4847 ((!LegalOperations && !cast<LoadSDNode>(N0)->isVolatile()) ||
4848 TLI.isLoadExtLegal(ISD::ZEXTLOAD, N0.getValueType()))) {
4849 bool DoXform = true;
4850 SmallVector<SDNode*, 4> SetCCs;
4851 if (!N0.hasOneUse())
4852 DoXform = ExtendUsesToFormExtLoad(N, N0, ISD::ZERO_EXTEND, SetCCs, TLI);
4853 if (DoXform) {
4854 LoadSDNode *LN0 = cast<LoadSDNode>(N0);
4855 SDValue ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, SDLoc(N), VT,
4856 LN0->getChain(),
4857 LN0->getBasePtr(), N0.getValueType(),
4858 LN0->getMemOperand());
4859 CombineTo(N, ExtLoad);
4860 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SDLoc(N0),
4861 N0.getValueType(), ExtLoad);
4862 CombineTo(N0.getNode(), Trunc, ExtLoad.getValue(1));
4863
4864 ExtendSetCCUses(SetCCs, Trunc, ExtLoad, SDLoc(N),
4865 ISD::ZERO_EXTEND);
4866 return SDValue(N, 0); // Return N so it doesn't get rechecked!
4867 }
4868 }
4869
4870 // fold (zext (and/or/xor (load x), cst)) ->
4871 // (and/or/xor (zextload x), (zext cst))
4872 if ((N0.getOpcode() == ISD::AND || N0.getOpcode() == ISD::OR ||
4873 N0.getOpcode() == ISD::XOR) &&
4874 isa<LoadSDNode>(N0.getOperand(0)) &&
4875 N0.getOperand(1).getOpcode() == ISD::Constant &&
4876 TLI.isLoadExtLegal(ISD::ZEXTLOAD, N0.getValueType()) &&
4877 (!LegalOperations && TLI.isOperationLegal(N0.getOpcode(), VT))) {
4878 LoadSDNode *LN0 = cast<LoadSDNode>(N0.getOperand(0));
4879 if (LN0->getExtensionType() != ISD::SEXTLOAD) {
4880 bool DoXform = true;
4881 SmallVector<SDNode*, 4> SetCCs;
4882 if (!N0.hasOneUse())
4883 DoXform = ExtendUsesToFormExtLoad(N, N0.getOperand(0), ISD::ZERO_EXTEND,
4884 SetCCs, TLI);
4885 if (DoXform) {
4886 SDValue ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, SDLoc(LN0), VT,
4887 LN0->getChain(), LN0->getBasePtr(),
4888 LN0->getMemoryVT(),
4889 LN0->getMemOperand());
4890 APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
4891 Mask = Mask.zext(VT.getSizeInBits());
4892 SDValue And = DAG.getNode(N0.getOpcode(), SDLoc(N), VT,
4893 ExtLoad, DAG.getConstant(Mask, VT));
4894 SDValue Trunc = DAG.getNode(ISD::TRUNCATE,
4895 SDLoc(N0.getOperand(0)),
4896 N0.getOperand(0).getValueType(), ExtLoad);
4897 CombineTo(N, And);
4898 CombineTo(N0.getOperand(0).getNode(), Trunc, ExtLoad.getValue(1));
4899 ExtendSetCCUses(SetCCs, Trunc, ExtLoad, SDLoc(N),
4900 ISD::ZERO_EXTEND);
4901 return SDValue(N, 0); // Return N so it doesn't get rechecked!
4902 }
4903 }
4904 }
4905
4906 // fold (zext (zextload x)) -> (zext (truncate (zextload x)))
4907 // fold (zext ( extload x)) -> (zext (truncate (zextload x)))
4908 if ((ISD::isZEXTLoad(N0.getNode()) || ISD::isEXTLoad(N0.getNode())) &&
4909 ISD::isUNINDEXEDLoad(N0.getNode()) && N0.hasOneUse()) {
4910 LoadSDNode *LN0 = cast<LoadSDNode>(N0);
4911 EVT MemVT = LN0->getMemoryVT();
4912 if ((!LegalOperations && !LN0->isVolatile()) ||
4913 TLI.isLoadExtLegal(ISD::ZEXTLOAD, MemVT)) {
4914 SDValue ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, SDLoc(N), VT,
4915 LN0->getChain(),
4916 LN0->getBasePtr(), MemVT,
4917 LN0->getMemOperand());
4918 CombineTo(N, ExtLoad);
4919 CombineTo(N0.getNode(),
4920 DAG.getNode(ISD::TRUNCATE, SDLoc(N0), N0.getValueType(),
4921 ExtLoad),
4922 ExtLoad.getValue(1));
4923 return SDValue(N, 0); // Return N so it doesn't get rechecked!
4924 }
4925 }
4926
4927 if (N0.getOpcode() == ISD::SETCC) {
4928 if (!LegalOperations && VT.isVector()) {
4929 // zext(setcc) -> (and (vsetcc), (1, 1, ...) for vectors.
4930 // Only do this before legalize for now.
4931 EVT N0VT = N0.getOperand(0).getValueType();
4932 EVT EltVT = VT.getVectorElementType();
4933 SmallVector<SDValue,8> OneOps(VT.getVectorNumElements(),
4934 DAG.getConstant(1, EltVT));
4935 if (VT.getSizeInBits() == N0VT.getSizeInBits())
4936 // We know that the # elements of the results is the same as the
4937 // # elements of the compare (and the # elements of the compare result
4938 // for that matter). Check to see that they are the same size. If so,
4939 // we know that the element size of the sext'd result matches the
4940 // element size of the compare operands.
4941 return DAG.getNode(ISD::AND, SDLoc(N), VT,
4942 DAG.getSetCC(SDLoc(N), VT, N0.getOperand(0),
4943 N0.getOperand(1),
4944 cast<CondCodeSDNode>(N0.getOperand(2))->get()),
4945 DAG.getNode(ISD::BUILD_VECTOR, SDLoc(N), VT,
4946 &OneOps[0], OneOps.size()));
4947
4948 // If the desired elements are smaller or larger than the source
4949 // elements we can use a matching integer vector type and then
4950 // truncate/sign extend
4951 EVT MatchingElementType =
4952 EVT::getIntegerVT(*DAG.getContext(),
4953 N0VT.getScalarType().getSizeInBits());
4954 EVT MatchingVectorType =
4955 EVT::getVectorVT(*DAG.getContext(), MatchingElementType,
4956 N0VT.getVectorNumElements());
4957 SDValue VsetCC =
4958 DAG.getSetCC(SDLoc(N), MatchingVectorType, N0.getOperand(0),
4959 N0.getOperand(1),
4960 cast<CondCodeSDNode>(N0.getOperand(2))->get());
4961 return DAG.getNode(ISD::AND, SDLoc(N), VT,
4962 DAG.getSExtOrTrunc(VsetCC, SDLoc(N), VT),
4963 DAG.getNode(ISD::BUILD_VECTOR, SDLoc(N), VT,
4964 &OneOps[0], OneOps.size()));
4965 }
4966
4967 // zext(setcc x,y,cc) -> select_cc x, y, 1, 0, cc
4968 SDValue SCC =
4969 SimplifySelectCC(SDLoc(N), N0.getOperand(0), N0.getOperand(1),
4970 DAG.getConstant(1, VT), DAG.getConstant(0, VT),
4971 cast<CondCodeSDNode>(N0.getOperand(2))->get(), true);
4972 if (SCC.getNode()) return SCC;
4973 }
4974
4975 // (zext (shl (zext x), cst)) -> (shl (zext x), cst)
4976 if ((N0.getOpcode() == ISD::SHL || N0.getOpcode() == ISD::SRL) &&
4977 isa<ConstantSDNode>(N0.getOperand(1)) &&
4978 N0.getOperand(0).getOpcode() == ISD::ZERO_EXTEND &&
4979 N0.hasOneUse()) {
4980 SDValue ShAmt = N0.getOperand(1);
4981 unsigned ShAmtVal = cast<ConstantSDNode>(ShAmt)->getZExtValue();
4982 if (N0.getOpcode() == ISD::SHL) {
4983 SDValue InnerZExt = N0.getOperand(0);
4984 // If the original shl may be shifting out bits, do not perform this
4985 // transformation.
4986 unsigned KnownZeroBits = InnerZExt.getValueType().getSizeInBits() -
4987 InnerZExt.getOperand(0).getValueType().getSizeInBits();
4988 if (ShAmtVal > KnownZeroBits)
4989 return SDValue();
4990 }
4991
4992 SDLoc DL(N);
4993
4994 // Ensure that the shift amount is wide enough for the shifted value.
4995 if (VT.getSizeInBits() >= 256)
4996 ShAmt = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, ShAmt);
4997
4998 return DAG.getNode(N0.getOpcode(), DL, VT,
4999 DAG.getNode(ISD::ZERO_EXTEND, DL, VT, N0.getOperand(0)),
5000 ShAmt);
5001 }
5002
5003 return SDValue();
5004}
5005
5006SDValue DAGCombiner::visitANY_EXTEND(SDNode *N) {
5007 SDValue N0 = N->getOperand(0);
5008 EVT VT = N->getValueType(0);
5009
5010 // fold (aext c1) -> c1
5011 if (isa<ConstantSDNode>(N0))
5012 return DAG.getNode(ISD::ANY_EXTEND, SDLoc(N), VT, N0);
5013 // fold (aext (aext x)) -> (aext x)
5014 // fold (aext (zext x)) -> (zext x)
5015 // fold (aext (sext x)) -> (sext x)
5016 if (N0.getOpcode() == ISD::ANY_EXTEND ||
5017 N0.getOpcode() == ISD::ZERO_EXTEND ||
5018 N0.getOpcode() == ISD::SIGN_EXTEND)
5019 return DAG.getNode(N0.getOpcode(), SDLoc(N), VT, N0.getOperand(0));
5020
5021 // fold (aext (truncate (load x))) -> (aext (smaller load x))
5022 // fold (aext (truncate (srl (load x), c))) -> (aext (small load (x+c/n)))
5023 if (N0.getOpcode() == ISD::TRUNCATE) {
5024 SDValue NarrowLoad = ReduceLoadWidth(N0.getNode());
5025 if (NarrowLoad.getNode()) {
5026 SDNode* oye = N0.getNode()->getOperand(0).getNode();
5027 if (NarrowLoad.getNode() != N0.getNode()) {
5028 CombineTo(N0.getNode(), NarrowLoad);
5029 // CombineTo deleted the truncate, if needed, but not what's under it.
5030 AddToWorkList(oye);
5031 }
5032 return SDValue(N, 0); // Return N so it doesn't get rechecked!
5033 }
5034 }
5035
5036 // fold (aext (truncate x))
5037 if (N0.getOpcode() == ISD::TRUNCATE) {
5038 SDValue TruncOp = N0.getOperand(0);
5039 if (TruncOp.getValueType() == VT)
5040 return TruncOp; // x iff x size == zext size.
5041 if (TruncOp.getValueType().bitsGT(VT))
5042 return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, TruncOp);
5043 return DAG.getNode(ISD::ANY_EXTEND, SDLoc(N), VT, TruncOp);
5044 }
5045
5046 // Fold (aext (and (trunc x), cst)) -> (and x, cst)
5047 // if the trunc is not free.
5048 if (N0.getOpcode() == ISD::AND &&
5049 N0.getOperand(0).getOpcode() == ISD::TRUNCATE &&
5050 N0.getOperand(1).getOpcode() == ISD::Constant &&
5051 !TLI.isTruncateFree(N0.getOperand(0).getOperand(0).getValueType(),
5052 N0.getValueType())) {
5053 SDValue X = N0.getOperand(0).getOperand(0);
5054 if (X.getValueType().bitsLT(VT)) {
5055 X = DAG.getNode(ISD::ANY_EXTEND, SDLoc(N), VT, X);
5056 } else if (X.getValueType().bitsGT(VT)) {
5057 X = DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, X);
5058 }
5059 APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
5060 Mask = Mask.zext(VT.getSizeInBits());
5061 return DAG.getNode(ISD::AND, SDLoc(N), VT,
5062 X, DAG.getConstant(Mask, VT));
5063 }
5064
5065 // fold (aext (load x)) -> (aext (truncate (extload x)))
5066 // None of the supported targets knows how to perform load and any_ext
5067 // on vectors in one instruction. We only perform this transformation on
5068 // scalars.
5069 if (ISD::isNON_EXTLoad(N0.getNode()) && !VT.isVector() &&
5070 ((!LegalOperations && !cast<LoadSDNode>(N0)->isVolatile()) ||
5071 TLI.isLoadExtLegal(ISD::EXTLOAD, N0.getValueType()))) {
5072 bool DoXform = true;
5073 SmallVector<SDNode*, 4> SetCCs;
5074 if (!N0.hasOneUse())
5075 DoXform = ExtendUsesToFormExtLoad(N, N0, ISD::ANY_EXTEND, SetCCs, TLI);
5076 if (DoXform) {
5077 LoadSDNode *LN0 = cast<LoadSDNode>(N0);
5078 SDValue ExtLoad = DAG.getExtLoad(ISD::EXTLOAD, SDLoc(N), VT,
5079 LN0->getChain(),
5080 LN0->getBasePtr(), N0.getValueType(),
5081 LN0->getMemOperand());
5082 CombineTo(N, ExtLoad);
5083 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SDLoc(N0),
5084 N0.getValueType(), ExtLoad);
5085 CombineTo(N0.getNode(), Trunc, ExtLoad.getValue(1));
5086 ExtendSetCCUses(SetCCs, Trunc, ExtLoad, SDLoc(N),
5087 ISD::ANY_EXTEND);
5088 return SDValue(N, 0); // Return N so it doesn't get rechecked!
5089 }
5090 }
5091
5092 // fold (aext (zextload x)) -> (aext (truncate (zextload x)))
5093 // fold (aext (sextload x)) -> (aext (truncate (sextload x)))
5094 // fold (aext ( extload x)) -> (aext (truncate (extload x)))
5095 if (N0.getOpcode() == ISD::LOAD &&
5096 !ISD::isNON_EXTLoad(N0.getNode()) && ISD::isUNINDEXEDLoad(N0.getNode()) &&
5097 N0.hasOneUse()) {
5098 LoadSDNode *LN0 = cast<LoadSDNode>(N0);
5099 EVT MemVT = LN0->getMemoryVT();
5100 SDValue ExtLoad = DAG.getExtLoad(LN0->getExtensionType(), SDLoc(N),
5101 VT, LN0->getChain(), LN0->getBasePtr(),
5102 MemVT, LN0->getMemOperand());
5103 CombineTo(N, ExtLoad);
5104 CombineTo(N0.getNode(),
5105 DAG.getNode(ISD::TRUNCATE, SDLoc(N0),
5106 N0.getValueType(), ExtLoad),
5107 ExtLoad.getValue(1));
5108 return SDValue(N, 0); // Return N so it doesn't get rechecked!
5109 }
5110
5111 if (N0.getOpcode() == ISD::SETCC) {
5112 // aext(setcc) -> sext_in_reg(vsetcc) for vectors.
5113 // Only do this before legalize for now.
5114 if (VT.isVector() && !LegalOperations) {
5115 EVT N0VT = N0.getOperand(0).getValueType();
5116 // We know that the # elements of the results is the same as the
5117 // # elements of the compare (and the # elements of the compare result
5118 // for that matter). Check to see that they are the same size. If so,
5119 // we know that the element size of the sext'd result matches the
5120 // element size of the compare operands.
5121 if (VT.getSizeInBits() == N0VT.getSizeInBits())
5122 return DAG.getSetCC(SDLoc(N), VT, N0.getOperand(0),
5123 N0.getOperand(1),
5124 cast<CondCodeSDNode>(N0.getOperand(2))->get());
5125 // If the desired elements are smaller or larger than the source
5126 // elements we can use a matching integer vector type and then
5127 // truncate/sign extend
5128 else {
5129 EVT MatchingElementType =
5130 EVT::getIntegerVT(*DAG.getContext(),
5131 N0VT.getScalarType().getSizeInBits());
5132 EVT MatchingVectorType =
5133 EVT::getVectorVT(*DAG.getContext(), MatchingElementType,
5134 N0VT.getVectorNumElements());
5135 SDValue VsetCC =
5136 DAG.getSetCC(SDLoc(N), MatchingVectorType, N0.getOperand(0),
5137 N0.getOperand(1),
5138 cast<CondCodeSDNode>(N0.getOperand(2))->get());
5139 return DAG.getSExtOrTrunc(VsetCC, SDLoc(N), VT);
5140 }
5141 }
5142
5143 // aext(setcc x,y,cc) -> select_cc x, y, 1, 0, cc
5144 SDValue SCC =
5145 SimplifySelectCC(SDLoc(N), N0.getOperand(0), N0.getOperand(1),
5146 DAG.getConstant(1, VT), DAG.getConstant(0, VT),
5147 cast<CondCodeSDNode>(N0.getOperand(2))->get(), true);
5148 if (SCC.getNode())
5149 return SCC;
5150 }
5151
5152 return SDValue();
5153}
5154
5155/// GetDemandedBits - See if the specified operand can be simplified with the
5156/// knowledge that only the bits specified by Mask are used. If so, return the
5157/// simpler operand, otherwise return a null SDValue.
5158SDValue DAGCombiner::GetDemandedBits(SDValue V, const APInt &Mask) {
5159 switch (V.getOpcode()) {
5160 default: break;
5161 case ISD::Constant: {
5162 const ConstantSDNode *CV = cast<ConstantSDNode>(V.getNode());
5163 assert(CV != 0 && "Const value should be ConstSDNode.");
5164 const APInt &CVal = CV->getAPIntValue();
5165 APInt NewVal = CVal & Mask;
5166 if (NewVal != CVal)
5167 return DAG.getConstant(NewVal, V.getValueType());
5168 break;
5169 }
5170 case ISD::OR:
5171 case ISD::XOR:
5172 // If the LHS or RHS don't contribute bits to the or, drop them.
5173 if (DAG.MaskedValueIsZero(V.getOperand(0), Mask))
5174 return V.getOperand(1);
5175 if (DAG.MaskedValueIsZero(V.getOperand(1), Mask))
5176 return V.getOperand(0);
5177 break;
5178 case ISD::SRL:
5179 // Only look at single-use SRLs.
5180 if (!V.getNode()->hasOneUse())
5181 break;
5182 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(V.getOperand(1))) {
5183 // See if we can recursively simplify the LHS.
5184 unsigned Amt = RHSC->getZExtValue();
5185
5186 // Watch out for shift count overflow though.
5187 if (Amt >= Mask.getBitWidth()) break;
5188 APInt NewMask = Mask << Amt;
5189 SDValue SimplifyLHS = GetDemandedBits(V.getOperand(0), NewMask);
5190 if (SimplifyLHS.getNode())
5191 return DAG.getNode(ISD::SRL, SDLoc(V), V.getValueType(),
5192 SimplifyLHS, V.getOperand(1));
5193 }
5194 }
5195 return SDValue();
5196}
5197
5198/// ReduceLoadWidth - If the result of a wider load is shifted to right of N
5199/// bits and then truncated to a narrower type and where N is a multiple
5200/// of number of bits of the narrower type, transform it to a narrower load
5201/// from address + N / num of bits of new type. If the result is to be
5202/// extended, also fold the extension to form a extending load.
5203SDValue DAGCombiner::ReduceLoadWidth(SDNode *N) {
5204 unsigned Opc = N->getOpcode();
5205
5206 ISD::LoadExtType ExtType = ISD::NON_EXTLOAD;
5207 SDValue N0 = N->getOperand(0);
5208 EVT VT = N->getValueType(0);
5209 EVT ExtVT = VT;
5210
5211 // This transformation isn't valid for vector loads.
5212 if (VT.isVector())
5213 return SDValue();
5214
5215 // Special case: SIGN_EXTEND_INREG is basically truncating to ExtVT then
5216 // extended to VT.
5217 if (Opc == ISD::SIGN_EXTEND_INREG) {
5218 ExtType = ISD::SEXTLOAD;
5219 ExtVT = cast<VTSDNode>(N->getOperand(1))->getVT();
5220 } else if (Opc == ISD::SRL) {
5221 // Another special-case: SRL is basically zero-extending a narrower value.
5222 ExtType = ISD::ZEXTLOAD;
5223 N0 = SDValue(N, 0);
5224 ConstantSDNode *N01 = dyn_cast<ConstantSDNode>(N0.getOperand(1));
5225 if (!N01) return SDValue();
5226 ExtVT = EVT::getIntegerVT(*DAG.getContext(),
5227 VT.getSizeInBits() - N01->getZExtValue());
5228 }
5229 if (LegalOperations && !TLI.isLoadExtLegal(ExtType, ExtVT))
5230 return SDValue();
5231
5232 unsigned EVTBits = ExtVT.getSizeInBits();
5233
5234 // Do not generate loads of non-round integer types since these can
5235 // be expensive (and would be wrong if the type is not byte sized).
5236 if (!ExtVT.isRound())
5237 return SDValue();
5238
5239 unsigned ShAmt = 0;
5240 if (N0.getOpcode() == ISD::SRL && N0.hasOneUse()) {
5241 if (ConstantSDNode *N01 = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
5242 ShAmt = N01->getZExtValue();
5243 // Is the shift amount a multiple of size of VT?
5244 if ((ShAmt & (EVTBits-1)) == 0) {
5245 N0 = N0.getOperand(0);
5246 // Is the load width a multiple of size of VT?
5247 if ((N0.getValueType().getSizeInBits() & (EVTBits-1)) != 0)
5248 return SDValue();
5249 }
5250
5251 // At this point, we must have a load or else we can't do the transform.
5252 if (!isa<LoadSDNode>(N0)) return SDValue();
5253
5254 // Because a SRL must be assumed to *need* to zero-extend the high bits
5255 // (as opposed to anyext the high bits), we can't combine the zextload
5256 // lowering of SRL and an sextload.
5257 if (cast<LoadSDNode>(N0)->getExtensionType() == ISD::SEXTLOAD)
5258 return SDValue();
5259
5260 // If the shift amount is larger than the input type then we're not
5261 // accessing any of the loaded bytes. If the load was a zextload/extload
5262 // then the result of the shift+trunc is zero/undef (handled elsewhere).
5263 if (ShAmt >= cast<LoadSDNode>(N0)->getMemoryVT().getSizeInBits())
5264 return SDValue();
5265 }
5266 }
5267
5268 // If the load is shifted left (and the result isn't shifted back right),
5269 // we can fold the truncate through the shift.
5270 unsigned ShLeftAmt = 0;
5271 if (ShAmt == 0 && N0.getOpcode() == ISD::SHL && N0.hasOneUse() &&
5272 ExtVT == VT && TLI.isNarrowingProfitable(N0.getValueType(), VT)) {
5273 if (ConstantSDNode *N01 = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
5274 ShLeftAmt = N01->getZExtValue();
5275 N0 = N0.getOperand(0);
5276 }
5277 }
5278
5279 // If we haven't found a load, we can't narrow it. Don't transform one with
5280 // multiple uses, this would require adding a new load.
5281 if (!isa<LoadSDNode>(N0) || !N0.hasOneUse())
5282 return SDValue();
5283
5284 // Don't change the width of a volatile load.
5285 LoadSDNode *LN0 = cast<LoadSDNode>(N0);
5286 if (LN0->isVolatile())
5287 return SDValue();
5288
5289 // Verify that we are actually reducing a load width here.
5290 if (LN0->getMemoryVT().getSizeInBits() < EVTBits)
5291 return SDValue();
5292
5293 // For the transform to be legal, the load must produce only two values
5294 // (the value loaded and the chain). Don't transform a pre-increment
5295 // load, for example, which produces an extra value. Otherwise the
5296 // transformation is not equivalent, and the downstream logic to replace
5297 // uses gets things wrong.
5298 if (LN0->getNumValues() > 2)
5299 return SDValue();
5300
5301 // If the load that we're shrinking is an extload and we're not just
5302 // discarding the extension we can't simply shrink the load. Bail.
5303 // TODO: It would be possible to merge the extensions in some cases.
5304 if (LN0->getExtensionType() != ISD::NON_EXTLOAD &&
5305 LN0->getMemoryVT().getSizeInBits() < ExtVT.getSizeInBits() + ShAmt)
5306 return SDValue();
5307
5308 EVT PtrType = N0.getOperand(1).getValueType();
5309
5310 if (PtrType == MVT::Untyped || PtrType.isExtended())
5311 // It's not possible to generate a constant of extended or untyped type.
5312 return SDValue();
5313
5314 // For big endian targets, we need to adjust the offset to the pointer to
5315 // load the correct bytes.
5316 if (TLI.isBigEndian()) {
5317 unsigned LVTStoreBits = LN0->getMemoryVT().getStoreSizeInBits();
5318 unsigned EVTStoreBits = ExtVT.getStoreSizeInBits();
5319 ShAmt = LVTStoreBits - EVTStoreBits - ShAmt;
5320 }
5321
5322 uint64_t PtrOff = ShAmt / 8;
5323 unsigned NewAlign = MinAlign(LN0->getAlignment(), PtrOff);
5324 SDValue NewPtr = DAG.getNode(ISD::ADD, SDLoc(LN0),
5325 PtrType, LN0->getBasePtr(),
5326 DAG.getConstant(PtrOff, PtrType));
5327 AddToWorkList(NewPtr.getNode());
5328
5329 SDValue Load;
5330 if (ExtType == ISD::NON_EXTLOAD)
5331 Load = DAG.getLoad(VT, SDLoc(N0), LN0->getChain(), NewPtr,
5332 LN0->getPointerInfo().getWithOffset(PtrOff),
5333 LN0->isVolatile(), LN0->isNonTemporal(),
5334 LN0->isInvariant(), NewAlign, LN0->getTBAAInfo());
5335 else
5336 Load = DAG.getExtLoad(ExtType, SDLoc(N0), VT, LN0->getChain(),NewPtr,
5337 LN0->getPointerInfo().getWithOffset(PtrOff),
5338 ExtVT, LN0->isVolatile(), LN0->isNonTemporal(),
5339 NewAlign, LN0->getTBAAInfo());
5340
5341 // Replace the old load's chain with the new load's chain.
5342 WorkListRemover DeadNodes(*this);
5343 DAG.ReplaceAllUsesOfValueWith(N0.getValue(1), Load.getValue(1));
5344
5345 // Shift the result left, if we've swallowed a left shift.
5346 SDValue Result = Load;
5347 if (ShLeftAmt != 0) {
5348 EVT ShImmTy = getShiftAmountTy(Result.getValueType());
5349 if (!isUIntN(ShImmTy.getSizeInBits(), ShLeftAmt))
5350 ShImmTy = VT;
5351 // If the shift amount is as large as the result size (but, presumably,
5352 // no larger than the source) then the useful bits of the result are
5353 // zero; we can't simply return the shortened shift, because the result
5354 // of that operation is undefined.
5355 if (ShLeftAmt >= VT.getSizeInBits())
5356 Result = DAG.getConstant(0, VT);
5357 else
5358 Result = DAG.getNode(ISD::SHL, SDLoc(N0), VT,
5359 Result, DAG.getConstant(ShLeftAmt, ShImmTy));
5360 }
5361
5362 // Return the new loaded value.
5363 return Result;
5364}
5365
5366SDValue DAGCombiner::visitSIGN_EXTEND_INREG(SDNode *N) {
5367 SDValue N0 = N->getOperand(0);
5368 SDValue N1 = N->getOperand(1);
5369 EVT VT = N->getValueType(0);
5370 EVT EVT = cast<VTSDNode>(N1)->getVT();
5371 unsigned VTBits = VT.getScalarType().getSizeInBits();
5372 unsigned EVTBits = EVT.getScalarType().getSizeInBits();
5373
5374 // fold (sext_in_reg c1) -> c1
5375 if (isa<ConstantSDNode>(N0) || N0.getOpcode() == ISD::UNDEF)
5376 return DAG.getNode(ISD::SIGN_EXTEND_INREG, SDLoc(N), VT, N0, N1);
5377
5378 // If the input is already sign extended, just drop the extension.
5379 if (DAG.ComputeNumSignBits(N0) >= VTBits-EVTBits+1)
5380 return N0;
5381
5382 // fold (sext_in_reg (sext_in_reg x, VT2), VT1) -> (sext_in_reg x, minVT) pt2
5383 if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG &&
5384 EVT.bitsLT(cast<VTSDNode>(N0.getOperand(1))->getVT()))
5385 return DAG.getNode(ISD::SIGN_EXTEND_INREG, SDLoc(N), VT,
5386 N0.getOperand(0), N1);
5387
5388 // fold (sext_in_reg (sext x)) -> (sext x)
5389 // fold (sext_in_reg (aext x)) -> (sext x)
5390 // if x is small enough.
5391 if (N0.getOpcode() == ISD::SIGN_EXTEND || N0.getOpcode() == ISD::ANY_EXTEND) {
5392 SDValue N00 = N0.getOperand(0);
5393 if (N00.getValueType().getScalarType().getSizeInBits() <= EVTBits &&
5394 (!LegalOperations || TLI.isOperationLegal(ISD::SIGN_EXTEND, VT)))
5395 return DAG.getNode(ISD::SIGN_EXTEND, SDLoc(N), VT, N00, N1);
5396 }
5397
5398 // fold (sext_in_reg x) -> (zext_in_reg x) if the sign bit is known zero.
5399 if (DAG.MaskedValueIsZero(N0, APInt::getBitsSet(VTBits, EVTBits-1, EVTBits)))
5400 return DAG.getZeroExtendInReg(N0, SDLoc(N), EVT);
5401
5402 // fold operands of sext_in_reg based on knowledge that the top bits are not
5403 // demanded.
5404 if (SimplifyDemandedBits(SDValue(N, 0)))
5405 return SDValue(N, 0);
5406
5407 // fold (sext_in_reg (load x)) -> (smaller sextload x)
5408 // fold (sext_in_reg (srl (load x), c)) -> (smaller sextload (x+c/evtbits))
5409 SDValue NarrowLoad = ReduceLoadWidth(N);
5410 if (NarrowLoad.getNode())
5411 return NarrowLoad;
5412
5413 // fold (sext_in_reg (srl X, 24), i8) -> (sra X, 24)
5414 // fold (sext_in_reg (srl X, 23), i8) -> (sra X, 23) iff possible.
5415 // We already fold "(sext_in_reg (srl X, 25), i8) -> srl X, 25" above.
5416 if (N0.getOpcode() == ISD::SRL) {
5417 if (ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(N0.getOperand(1)))
5418 if (ShAmt->getZExtValue()+EVTBits <= VTBits) {
5419 // We can turn this into an SRA iff the input to the SRL is already sign
5420 // extended enough.
5421 unsigned InSignBits = DAG.ComputeNumSignBits(N0.getOperand(0));
5422 if (VTBits-(ShAmt->getZExtValue()+EVTBits) < InSignBits)
5423 return DAG.getNode(ISD::SRA, SDLoc(N), VT,
5424 N0.getOperand(0), N0.getOperand(1));
5425 }
5426 }
5427
5428 // fold (sext_inreg (extload x)) -> (sextload x)
5429 if (ISD::isEXTLoad(N0.getNode()) &&
5430 ISD::isUNINDEXEDLoad(N0.getNode()) &&
5431 EVT == cast<LoadSDNode>(N0)->getMemoryVT() &&
5432 ((!LegalOperations && !cast<LoadSDNode>(N0)->isVolatile()) ||
5433 TLI.isLoadExtLegal(ISD::SEXTLOAD, EVT))) {
5434 LoadSDNode *LN0 = cast<LoadSDNode>(N0);
5435 SDValue ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, SDLoc(N), VT,
5436 LN0->getChain(),
5437 LN0->getBasePtr(), EVT,
5438 LN0->getMemOperand());
5439 CombineTo(N, ExtLoad);
5440 CombineTo(N0.getNode(), ExtLoad, ExtLoad.getValue(1));
5441 AddToWorkList(ExtLoad.getNode());
5442 return SDValue(N, 0); // Return N so it doesn't get rechecked!
5443 }
5444 // fold (sext_inreg (zextload x)) -> (sextload x) iff load has one use
5445 if (ISD::isZEXTLoad(N0.getNode()) && ISD::isUNINDEXEDLoad(N0.getNode()) &&
5446 N0.hasOneUse() &&
5447 EVT == cast<LoadSDNode>(N0)->getMemoryVT() &&
5448 ((!LegalOperations && !cast<LoadSDNode>(N0)->isVolatile()) ||
5449 TLI.isLoadExtLegal(ISD::SEXTLOAD, EVT))) {
5450 LoadSDNode *LN0 = cast<LoadSDNode>(N0);
5451 SDValue ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, SDLoc(N), VT,
5452 LN0->getChain(),
5453 LN0->getBasePtr(), EVT,
5454 LN0->getMemOperand());
5455 CombineTo(N, ExtLoad);
5456 CombineTo(N0.getNode(), ExtLoad, ExtLoad.getValue(1));
5457 return SDValue(N, 0); // Return N so it doesn't get rechecked!
5458 }
5459
5460 // Form (sext_inreg (bswap >> 16)) or (sext_inreg (rotl (bswap) 16))
5461 if (EVTBits <= 16 && N0.getOpcode() == ISD::OR) {
5462 SDValue BSwap = MatchBSwapHWordLow(N0.getNode(), N0.getOperand(0),
5463 N0.getOperand(1), false);
5464 if (BSwap.getNode() != 0)
5465 return DAG.getNode(ISD::SIGN_EXTEND_INREG, SDLoc(N), VT,
5466 BSwap, N1);
5467 }
5468
5469 return SDValue();
5470}
5471
5472SDValue DAGCombiner::visitTRUNCATE(SDNode *N) {
5473 SDValue N0 = N->getOperand(0);
5474 EVT VT = N->getValueType(0);
5475 bool isLE = TLI.isLittleEndian();
5476
5477 // noop truncate
5478 if (N0.getValueType() == N->getValueType(0))
5479 return N0;
5480 // fold (truncate c1) -> c1
5481 if (isa<ConstantSDNode>(N0))
5482 return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, N0);
5483 // fold (truncate (truncate x)) -> (truncate x)
5484 if (N0.getOpcode() == ISD::TRUNCATE)
5485 return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, N0.getOperand(0));
5486 // fold (truncate (ext x)) -> (ext x) or (truncate x) or x
5487 if (N0.getOpcode() == ISD::ZERO_EXTEND ||
5488 N0.getOpcode() == ISD::SIGN_EXTEND ||
5489 N0.getOpcode() == ISD::ANY_EXTEND) {
5490 if (N0.getOperand(0).getValueType().bitsLT(VT))
5491 // if the source is smaller than the dest, we still need an extend
5492 return DAG.getNode(N0.getOpcode(), SDLoc(N), VT,
5493 N0.getOperand(0));
5494 if (N0.getOperand(0).getValueType().bitsGT(VT))
5495 // if the source is larger than the dest, than we just need the truncate
5496 return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, N0.getOperand(0));
5497 // if the source and dest are the same type, we can drop both the extend
5498 // and the truncate.
5499 return N0.getOperand(0);
5500 }
5501
5502 // Fold extract-and-trunc into a narrow extract. For example:
5503 // i64 x = EXTRACT_VECTOR_ELT(v2i64 val, i32 1)
5504 // i32 y = TRUNCATE(i64 x)
5505 // -- becomes --
5506 // v16i8 b = BITCAST (v2i64 val)
5507 // i8 x = EXTRACT_VECTOR_ELT(v16i8 b, i32 8)
5508 //
5509 // Note: We only run this optimization after type legalization (which often
5510 // creates this pattern) and before operation legalization after which
5511 // we need to be more careful about the vector instructions that we generate.
5512 if (N0.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
5513 LegalTypes && !LegalOperations && N0->hasOneUse()) {
5514
5515 EVT VecTy = N0.getOperand(0).getValueType();
5516 EVT ExTy = N0.getValueType();
5517 EVT TrTy = N->getValueType(0);
5518
5519 unsigned NumElem = VecTy.getVectorNumElements();
5520 unsigned SizeRatio = ExTy.getSizeInBits()/TrTy.getSizeInBits();
5521
5522 EVT NVT = EVT::getVectorVT(*DAG.getContext(), TrTy, SizeRatio * NumElem);
5523 assert(NVT.getSizeInBits() == VecTy.getSizeInBits() && "Invalid Size");
5524
5525 SDValue EltNo = N0->getOperand(1);
5526 if (isa<ConstantSDNode>(EltNo) && isTypeLegal(NVT)) {
5527 int Elt = cast<ConstantSDNode>(EltNo)->getZExtValue();
5528 EVT IndexTy = TLI.getVectorIdxTy();
5529 int Index = isLE ? (Elt*SizeRatio) : (Elt*SizeRatio + (SizeRatio-1));
5530
5531 SDValue V = DAG.getNode(ISD::BITCAST, SDLoc(N),
5532 NVT, N0.getOperand(0));
5533
5534 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT,
5535 SDLoc(N), TrTy, V,
5536 DAG.getConstant(Index, IndexTy));
5537 }
5538 }
5539
5540 // Fold a series of buildvector, bitcast, and truncate if possible.
5541 // For example fold
5542 // (2xi32 trunc (bitcast ((4xi32)buildvector x, x, y, y) 2xi64)) to
5543 // (2xi32 (buildvector x, y)).
5544 if (Level == AfterLegalizeVectorOps && VT.isVector() &&
5545 N0.getOpcode() == ISD::BITCAST && N0.hasOneUse() &&
5546 N0.getOperand(0).getOpcode() == ISD::BUILD_VECTOR &&
5547 N0.getOperand(0).hasOneUse()) {
5548
5549 SDValue BuildVect = N0.getOperand(0);
5550 EVT BuildVectEltTy = BuildVect.getValueType().getVectorElementType();
5551 EVT TruncVecEltTy = VT.getVectorElementType();
5552
5553 // Check that the element types match.
5554 if (BuildVectEltTy == TruncVecEltTy) {
5555 // Now we only need to compute the offset of the truncated elements.
5556 unsigned BuildVecNumElts = BuildVect.getNumOperands();
5557 unsigned TruncVecNumElts = VT.getVectorNumElements();
5558 unsigned TruncEltOffset = BuildVecNumElts / TruncVecNumElts;
5559
5560 assert((BuildVecNumElts % TruncVecNumElts) == 0 &&
5561 "Invalid number of elements");
5562
5563 SmallVector<SDValue, 8> Opnds;
5564 for (unsigned i = 0, e = BuildVecNumElts; i != e; i += TruncEltOffset)
5565 Opnds.push_back(BuildVect.getOperand(i));
5566
5567 return DAG.getNode(ISD::BUILD_VECTOR, SDLoc(N), VT, &Opnds[0],
5568 Opnds.size());
5569 }
5570 }
5571
5572 // See if we can simplify the input to this truncate through knowledge that
5573 // only the low bits are being used.
5574 // For example "trunc (or (shl x, 8), y)" // -> trunc y
5575 // Currently we only perform this optimization on scalars because vectors
5576 // may have different active low bits.
5577 if (!VT.isVector()) {
5578 SDValue Shorter =
5579 GetDemandedBits(N0, APInt::getLowBitsSet(N0.getValueSizeInBits(),
5580 VT.getSizeInBits()));
5581 if (Shorter.getNode())
5582 return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, Shorter);
5583 }
5584 // fold (truncate (load x)) -> (smaller load x)
5585 // fold (truncate (srl (load x), c)) -> (smaller load (x+c/evtbits))
5586 if (!LegalTypes || TLI.isTypeDesirableForOp(N0.getOpcode(), VT)) {
5587 SDValue Reduced = ReduceLoadWidth(N);
5588 if (Reduced.getNode())
5589 return Reduced;
5590 }
5591 // fold (trunc (concat ... x ...)) -> (concat ..., (trunc x), ...)),
5592 // where ... are all 'undef'.
5593 if (N0.getOpcode() == ISD::CONCAT_VECTORS && !LegalTypes) {
5594 SmallVector<EVT, 8> VTs;
5595 SDValue V;
5596 unsigned Idx = 0;
5597 unsigned NumDefs = 0;
5598
5599 for (unsigned i = 0, e = N0.getNumOperands(); i != e; ++i) {
5600 SDValue X = N0.getOperand(i);
5601 if (X.getOpcode() != ISD::UNDEF) {
5602 V = X;
5603 Idx = i;
5604 NumDefs++;
5605 }
5606 // Stop if more than one members are non-undef.
5607 if (NumDefs > 1)
5608 break;
5609 VTs.push_back(EVT::getVectorVT(*DAG.getContext(),
5610 VT.getVectorElementType(),
5611 X.getValueType().getVectorNumElements()));
5612 }
5613
5614 if (NumDefs == 0)
5615 return DAG.getUNDEF(VT);
5616
5617 if (NumDefs == 1) {
5618 assert(V.getNode() && "The single defined operand is empty!");
5619 SmallVector<SDValue, 8> Opnds;
5620 for (unsigned i = 0, e = VTs.size(); i != e; ++i) {
5621 if (i != Idx) {
5622 Opnds.push_back(DAG.getUNDEF(VTs[i]));
5623 continue;
5624 }
5625 SDValue NV = DAG.getNode(ISD::TRUNCATE, SDLoc(V), VTs[i], V);
5626 AddToWorkList(NV.getNode());
5627 Opnds.push_back(NV);
5628 }
5629 return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), VT,
5630 &Opnds[0], Opnds.size());
5631 }
5632 }
5633
5634 // Simplify the operands using demanded-bits information.
5635 if (!VT.isVector() &&
5636 SimplifyDemandedBits(SDValue(N, 0)))
5637 return SDValue(N, 0);
5638
5639 return SDValue();
5640}
5641
5642static SDNode *getBuildPairElt(SDNode *N, unsigned i) {
5643 SDValue Elt = N->getOperand(i);
5644 if (Elt.getOpcode() != ISD::MERGE_VALUES)
5645 return Elt.getNode();
5646 return Elt.getOperand(Elt.getResNo()).getNode();
5647}
5648
5649/// CombineConsecutiveLoads - build_pair (load, load) -> load
5650/// if load locations are consecutive.
5651SDValue DAGCombiner::CombineConsecutiveLoads(SDNode *N, EVT VT) {
5652 assert(N->getOpcode() == ISD::BUILD_PAIR);
5653
5654 LoadSDNode *LD1 = dyn_cast<LoadSDNode>(getBuildPairElt(N, 0));
5655 LoadSDNode *LD2 = dyn_cast<LoadSDNode>(getBuildPairElt(N, 1));
5656 if (!LD1 || !LD2 || !ISD::isNON_EXTLoad(LD1) || !LD1->hasOneUse() ||
5657 LD1->getPointerInfo().getAddrSpace() !=
5658 LD2->getPointerInfo().getAddrSpace())
5659 return SDValue();
5660 EVT LD1VT = LD1->getValueType(0);
5661
5662 if (ISD::isNON_EXTLoad(LD2) &&
5663 LD2->hasOneUse() &&
5664 // If both are volatile this would reduce the number of volatile loads.
5665 // If one is volatile it might be ok, but play conservative and bail out.
5666 !LD1->isVolatile() &&
5667 !LD2->isVolatile() &&
5668 DAG.isConsecutiveLoad(LD2, LD1, LD1VT.getSizeInBits()/8, 1)) {
5669 unsigned Align = LD1->getAlignment();
5670 unsigned NewAlign = TLI.getDataLayout()->
5671 getABITypeAlignment(VT.getTypeForEVT(*DAG.getContext()));
5672
5673 if (NewAlign <= Align &&
5674 (!LegalOperations || TLI.isOperationLegal(ISD::LOAD, VT)))
5675 return DAG.getLoad(VT, SDLoc(N), LD1->getChain(),
5676 LD1->getBasePtr(), LD1->getPointerInfo(),
5677 false, false, false, Align);
5678 }
5679
5680 return SDValue();
5681}
5682
5683SDValue DAGCombiner::visitBITCAST(SDNode *N) {
5684 SDValue N0 = N->getOperand(0);
5685 EVT VT = N->getValueType(0);
5686
5687 // If the input is a BUILD_VECTOR with all constant elements, fold this now.
5688 // Only do this before legalize, since afterward the target may be depending
5689 // on the bitconvert.
5690 // First check to see if this is all constant.
5691 if (!LegalTypes &&
5692 N0.getOpcode() == ISD::BUILD_VECTOR && N0.getNode()->hasOneUse() &&
5693 VT.isVector()) {
5694 bool isSimple = true;
5695 for (unsigned i = 0, e = N0.getNumOperands(); i != e; ++i)
5696 if (N0.getOperand(i).getOpcode() != ISD::UNDEF &&
5697 N0.getOperand(i).getOpcode() != ISD::Constant &&
5698 N0.getOperand(i).getOpcode() != ISD::ConstantFP) {
5699 isSimple = false;
5700 break;
5701 }
5702
5703 EVT DestEltVT = N->getValueType(0).getVectorElementType();
5704 assert(!DestEltVT.isVector() &&
5705 "Element type of vector ValueType must not be vector!");
5706 if (isSimple)
5707 return ConstantFoldBITCASTofBUILD_VECTOR(N0.getNode(), DestEltVT);
5708 }
5709
5710 // If the input is a constant, let getNode fold it.
5711 if (isa<ConstantSDNode>(N0) || isa<ConstantFPSDNode>(N0)) {
5712 SDValue Res = DAG.getNode(ISD::BITCAST, SDLoc(N), VT, N0);
5713 if (Res.getNode() != N) {
5714 if (!LegalOperations ||
5715 TLI.isOperationLegal(Res.getNode()->getOpcode(), VT))
5716 return Res;
5717
5718 // Folding it resulted in an illegal node, and it's too late to
5719 // do that. Clean up the old node and forego the transformation.
5720 // Ideally this won't happen very often, because instcombine
5721 // and the earlier dagcombine runs (where illegal nodes are
5722 // permitted) should have folded most of them already.
5723 DAG.DeleteNode(Res.getNode());
5724 }
5725 }
5726
5727 // (conv (conv x, t1), t2) -> (conv x, t2)
5728 if (N0.getOpcode() == ISD::BITCAST)
5729 return DAG.getNode(ISD::BITCAST, SDLoc(N), VT,
5730 N0.getOperand(0));
5731
5732 // fold (conv (load x)) -> (load (conv*)x)
5733 // If the resultant load doesn't need a higher alignment than the original!
5734 if (ISD::isNormalLoad(N0.getNode()) && N0.hasOneUse() &&
5735 // Do not change the width of a volatile load.
5736 !cast<LoadSDNode>(N0)->isVolatile() &&
5737 (!LegalOperations || TLI.isOperationLegal(ISD::LOAD, VT)) &&
5738 TLI.isLoadBitCastBeneficial(N0.getValueType(), VT)) {
5739 LoadSDNode *LN0 = cast<LoadSDNode>(N0);
5740 unsigned Align = TLI.getDataLayout()->
5741 getABITypeAlignment(VT.getTypeForEVT(*DAG.getContext()));
5742 unsigned OrigAlign = LN0->getAlignment();
5743
5744 if (Align <= OrigAlign) {
5745 SDValue Load = DAG.getLoad(VT, SDLoc(N), LN0->getChain(),
5746 LN0->getBasePtr(), LN0->getPointerInfo(),
5747 LN0->isVolatile(), LN0->isNonTemporal(),
5748 LN0->isInvariant(), OrigAlign,
5749 LN0->getTBAAInfo());
5750 AddToWorkList(N);
5751 CombineTo(N0.getNode(),
5752 DAG.getNode(ISD::BITCAST, SDLoc(N0),
5753 N0.getValueType(), Load),
5754 Load.getValue(1));
5755 return Load;
5756 }
5757 }
5758
5759 // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit)
5760 // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit))
5761 // This often reduces constant pool loads.
5762 if (((N0.getOpcode() == ISD::FNEG && !TLI.isFNegFree(N0.getValueType())) ||
5763 (N0.getOpcode() == ISD::FABS && !TLI.isFAbsFree(N0.getValueType()))) &&
5764 N0.getNode()->hasOneUse() && VT.isInteger() &&
5765 !VT.isVector() && !N0.getValueType().isVector()) {
5766 SDValue NewConv = DAG.getNode(ISD::BITCAST, SDLoc(N0), VT,
5767 N0.getOperand(0));
5768 AddToWorkList(NewConv.getNode());
5769
5770 APInt SignBit = APInt::getSignBit(VT.getSizeInBits());
5771 if (N0.getOpcode() == ISD::FNEG)
5772 return DAG.getNode(ISD::XOR, SDLoc(N), VT,
5773 NewConv, DAG.getConstant(SignBit, VT));
5774 assert(N0.getOpcode() == ISD::FABS);
5775 return DAG.getNode(ISD::AND, SDLoc(N), VT,
5776 NewConv, DAG.getConstant(~SignBit, VT));
5777 }
5778
5779 // fold (bitconvert (fcopysign cst, x)) ->
5780 // (or (and (bitconvert x), sign), (and cst, (not sign)))
5781 // Note that we don't handle (copysign x, cst) because this can always be
5782 // folded to an fneg or fabs.
5783 if (N0.getOpcode() == ISD::FCOPYSIGN && N0.getNode()->hasOneUse() &&
5784 isa<ConstantFPSDNode>(N0.getOperand(0)) &&
5785 VT.isInteger() && !VT.isVector()) {
5786 unsigned OrigXWidth = N0.getOperand(1).getValueType().getSizeInBits();
5787 EVT IntXVT = EVT::getIntegerVT(*DAG.getContext(), OrigXWidth);
5788 if (isTypeLegal(IntXVT)) {
5789 SDValue X = DAG.getNode(ISD::BITCAST, SDLoc(N0),
5790 IntXVT, N0.getOperand(1));
5791 AddToWorkList(X.getNode());
5792
5793 // If X has a different width than the result/lhs, sext it or truncate it.
5794 unsigned VTWidth = VT.getSizeInBits();
5795 if (OrigXWidth < VTWidth) {
5796 X = DAG.getNode(ISD::SIGN_EXTEND, SDLoc(N), VT, X);
5797 AddToWorkList(X.getNode());
5798 } else if (OrigXWidth > VTWidth) {
5799 // To get the sign bit in the right place, we have to shift it right
5800 // before truncating.
5801 X = DAG.getNode(ISD::SRL, SDLoc(X),
5802 X.getValueType(), X,
5803 DAG.getConstant(OrigXWidth-VTWidth, X.getValueType()));
5804 AddToWorkList(X.getNode());
5805 X = DAG.getNode(ISD::TRUNCATE, SDLoc(X), VT, X);
5806 AddToWorkList(X.getNode());
5807 }
5808
5809 APInt SignBit = APInt::getSignBit(VT.getSizeInBits());
5810 X = DAG.getNode(ISD::AND, SDLoc(X), VT,
5811 X, DAG.getConstant(SignBit, VT));
5812 AddToWorkList(X.getNode());
5813
5814 SDValue Cst = DAG.getNode(ISD::BITCAST, SDLoc(N0),
5815 VT, N0.getOperand(0));
5816 Cst = DAG.getNode(ISD::AND, SDLoc(Cst), VT,
5817 Cst, DAG.getConstant(~SignBit, VT));
5818 AddToWorkList(Cst.getNode());
5819
5820 return DAG.getNode(ISD::OR, SDLoc(N), VT, X, Cst);
5821 }
5822 }
5823
5824 // bitconvert(build_pair(ld, ld)) -> ld iff load locations are consecutive.
5825 if (N0.getOpcode() == ISD::BUILD_PAIR) {
5826 SDValue CombineLD = CombineConsecutiveLoads(N0.getNode(), VT);
5827 if (CombineLD.getNode())
5828 return CombineLD;
5829 }
5830
5831 return SDValue();
5832}
5833
5834SDValue DAGCombiner::visitBUILD_PAIR(SDNode *N) {
5835 EVT VT = N->getValueType(0);
5836 return CombineConsecutiveLoads(N, VT);
5837}
5838
5839/// ConstantFoldBITCASTofBUILD_VECTOR - We know that BV is a build_vector
5840/// node with Constant, ConstantFP or Undef operands. DstEltVT indicates the
5841/// destination element value type.
5842SDValue DAGCombiner::
5843ConstantFoldBITCASTofBUILD_VECTOR(SDNode *BV, EVT DstEltVT) {
5844 EVT SrcEltVT = BV->getValueType(0).getVectorElementType();
5845
5846 // If this is already the right type, we're done.
5847 if (SrcEltVT == DstEltVT) return SDValue(BV, 0);
5848
5849 unsigned SrcBitSize = SrcEltVT.getSizeInBits();
5850 unsigned DstBitSize = DstEltVT.getSizeInBits();
5851
5852 // If this is a conversion of N elements of one type to N elements of another
5853 // type, convert each element. This handles FP<->INT cases.
5854 if (SrcBitSize == DstBitSize) {
5855 EVT VT = EVT::getVectorVT(*DAG.getContext(), DstEltVT,
5856 BV->getValueType(0).getVectorNumElements());
5857
5858 // Due to the FP element handling below calling this routine recursively,
5859 // we can end up with a scalar-to-vector node here.
5860 if (BV->getOpcode() == ISD::SCALAR_TO_VECTOR)
5861 return DAG.getNode(ISD::SCALAR_TO_VECTOR, SDLoc(BV), VT,
5862 DAG.getNode(ISD::BITCAST, SDLoc(BV),
5863 DstEltVT, BV->getOperand(0)));
5864
5865 SmallVector<SDValue, 8> Ops;
5866 for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) {
5867 SDValue Op = BV->getOperand(i);
5868 // If the vector element type is not legal, the BUILD_VECTOR operands
5869 // are promoted and implicitly truncated. Make that explicit here.
5870 if (Op.getValueType() != SrcEltVT)
5871 Op = DAG.getNode(ISD::TRUNCATE, SDLoc(BV), SrcEltVT, Op);
5872 Ops.push_back(DAG.getNode(ISD::BITCAST, SDLoc(BV),
5873 DstEltVT, Op));
5874 AddToWorkList(Ops.back().getNode());
5875 }
5876 return DAG.getNode(ISD::BUILD_VECTOR, SDLoc(BV), VT,
5877 &Ops[0], Ops.size());
5878 }
5879
5880 // Otherwise, we're growing or shrinking the elements. To avoid having to
5881 // handle annoying details of growing/shrinking FP values, we convert them to
5882 // int first.
5883 if (SrcEltVT.isFloatingPoint()) {
5884 // Convert the input float vector to a int vector where the elements are the
5885 // same sizes.
5886 assert((SrcEltVT == MVT::f32 || SrcEltVT == MVT::f64) && "Unknown FP VT!");
5887 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), SrcEltVT.getSizeInBits());
5888 BV = ConstantFoldBITCASTofBUILD_VECTOR(BV, IntVT).getNode();
5889 SrcEltVT = IntVT;
5890 }
5891
5892 // Now we know the input is an integer vector. If the output is a FP type,
5893 // convert to integer first, then to FP of the right size.
5894 if (DstEltVT.isFloatingPoint()) {
5895 assert((DstEltVT == MVT::f32 || DstEltVT == MVT::f64) && "Unknown FP VT!");
5896 EVT TmpVT = EVT::getIntegerVT(*DAG.getContext(), DstEltVT.getSizeInBits());
5897 SDNode *Tmp = ConstantFoldBITCASTofBUILD_VECTOR(BV, TmpVT).getNode();
5898
5899 // Next, convert to FP elements of the same size.
5900 return ConstantFoldBITCASTofBUILD_VECTOR(Tmp, DstEltVT);
5901 }
5902
5903 // Okay, we know the src/dst types are both integers of differing types.
5904 // Handling growing first.
5905 assert(SrcEltVT.isInteger() && DstEltVT.isInteger());
5906 if (SrcBitSize < DstBitSize) {
5907 unsigned NumInputsPerOutput = DstBitSize/SrcBitSize;
5908
5909 SmallVector<SDValue, 8> Ops;
5910 for (unsigned i = 0, e = BV->getNumOperands(); i != e;
5911 i += NumInputsPerOutput) {
5912 bool isLE = TLI.isLittleEndian();
5913 APInt NewBits = APInt(DstBitSize, 0);
5914 bool EltIsUndef = true;
5915 for (unsigned j = 0; j != NumInputsPerOutput; ++j) {
5916 // Shift the previously computed bits over.
5917 NewBits <<= SrcBitSize;
5918 SDValue Op = BV->getOperand(i+ (isLE ? (NumInputsPerOutput-j-1) : j));
5919 if (Op.getOpcode() == ISD::UNDEF) continue;
5920 EltIsUndef = false;
5921
5922 NewBits |= cast<ConstantSDNode>(Op)->getAPIntValue().
5923 zextOrTrunc(SrcBitSize).zext(DstBitSize);
5924 }
5925
5926 if (EltIsUndef)
5927 Ops.push_back(DAG.getUNDEF(DstEltVT));
5928 else
5929 Ops.push_back(DAG.getConstant(NewBits, DstEltVT));
5930 }
5931
5932 EVT VT = EVT::getVectorVT(*DAG.getContext(), DstEltVT, Ops.size());
5933 return DAG.getNode(ISD::BUILD_VECTOR, SDLoc(BV), VT,
5934 &Ops[0], Ops.size());
5935 }
5936
5937 // Finally, this must be the case where we are shrinking elements: each input
5938 // turns into multiple outputs.
5939 bool isS2V = ISD::isScalarToVector(BV);
5940 unsigned NumOutputsPerInput = SrcBitSize/DstBitSize;
5941 EVT VT = EVT::getVectorVT(*DAG.getContext(), DstEltVT,
5942 NumOutputsPerInput*BV->getNumOperands());
5943 SmallVector<SDValue, 8> Ops;
5944
5945 for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) {
5946 if (BV->getOperand(i).getOpcode() == ISD::UNDEF) {
5947 for (unsigned j = 0; j != NumOutputsPerInput; ++j)
5948 Ops.push_back(DAG.getUNDEF(DstEltVT));
5949 continue;
5950 }
5951
5952 APInt OpVal = cast<ConstantSDNode>(BV->getOperand(i))->
5953 getAPIntValue().zextOrTrunc(SrcBitSize);
5954
5955 for (unsigned j = 0; j != NumOutputsPerInput; ++j) {
5956 APInt ThisVal = OpVal.trunc(DstBitSize);
5957 Ops.push_back(DAG.getConstant(ThisVal, DstEltVT));
5958 if (isS2V && i == 0 && j == 0 && ThisVal.zext(SrcBitSize) == OpVal)
5959 // Simply turn this into a SCALAR_TO_VECTOR of the new type.
5960 return DAG.getNode(ISD::SCALAR_TO_VECTOR, SDLoc(BV), VT,
5961 Ops[0]);
5962 OpVal = OpVal.lshr(DstBitSize);
5963 }
5964
5965 // For big endian targets, swap the order of the pieces of each element.
5966 if (TLI.isBigEndian())
5967 std::reverse(Ops.end()-NumOutputsPerInput, Ops.end());
5968 }
5969
5970 return DAG.getNode(ISD::BUILD_VECTOR, SDLoc(BV), VT,
5971 &Ops[0], Ops.size());
5972}
5973
5974SDValue DAGCombiner::visitFADD(SDNode *N) {
5975 SDValue N0 = N->getOperand(0);
5976 SDValue N1 = N->getOperand(1);
5977 ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
5978 ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
5979 EVT VT = N->getValueType(0);
5980
5981 // fold vector ops
5982 if (VT.isVector()) {
5983 SDValue FoldedVOp = SimplifyVBinOp(N);
5984 if (FoldedVOp.getNode()) return FoldedVOp;
5985 }
5986
5987 // fold (fadd c1, c2) -> c1 + c2
5988 if (N0CFP && N1CFP)
5989 return DAG.getNode(ISD::FADD, SDLoc(N), VT, N0, N1);
5990 // canonicalize constant to RHS
5991 if (N0CFP && !N1CFP)
5992 return DAG.getNode(ISD::FADD, SDLoc(N), VT, N1, N0);
5993 // fold (fadd A, 0) -> A
5994 if (DAG.getTarget().Options.UnsafeFPMath && N1CFP &&
5995 N1CFP->getValueAPF().isZero())
5996 return N0;
5997 // fold (fadd A, (fneg B)) -> (fsub A, B)
5998 if ((!LegalOperations || TLI.isOperationLegalOrCustom(ISD::FSUB, VT)) &&
5999 isNegatibleForFree(N1, LegalOperations, TLI, &DAG.getTarget().Options) == 2)
6000 return DAG.getNode(ISD::FSUB, SDLoc(N), VT, N0,
6001 GetNegatedExpression(N1, DAG, LegalOperations));
6002 // fold (fadd (fneg A), B) -> (fsub B, A)
6003 if ((!LegalOperations || TLI.isOperationLegalOrCustom(ISD::FSUB, VT)) &&
6004 isNegatibleForFree(N0, LegalOperations, TLI, &DAG.getTarget().Options) == 2)
6005 return DAG.getNode(ISD::FSUB, SDLoc(N), VT, N1,
6006 GetNegatedExpression(N0, DAG, LegalOperations));
6007
6008 // If allowed, fold (fadd (fadd x, c1), c2) -> (fadd x, (fadd c1, c2))
6009 if (DAG.getTarget().Options.UnsafeFPMath && N1CFP &&
6010 N0.getOpcode() == ISD::FADD && N0.getNode()->hasOneUse() &&
6011 isa<ConstantFPSDNode>(N0.getOperand(1)))
6012 return DAG.getNode(ISD::FADD, SDLoc(N), VT, N0.getOperand(0),
6013 DAG.getNode(ISD::FADD, SDLoc(N), VT,
6014 N0.getOperand(1), N1));
6015
6016 // No FP constant should be created after legalization as Instruction
6017 // Selection pass has hard time in dealing with FP constant.
6018 //
6019 // We don't need test this condition for transformation like following, as
6020 // the DAG being transformed implies it is legal to take FP constant as
6021 // operand.
6022 //
6023 // (fadd (fmul c, x), x) -> (fmul c+1, x)
6024 //
6025 bool AllowNewFpConst = (Level < AfterLegalizeDAG);
6026
6027 // If allow, fold (fadd (fneg x), x) -> 0.0
6028 if (AllowNewFpConst && DAG.getTarget().Options.UnsafeFPMath &&
6029 N0.getOpcode() == ISD::FNEG && N0.getOperand(0) == N1)
6030 return DAG.getConstantFP(0.0, VT);
6031
6032 // If allow, fold (fadd x, (fneg x)) -> 0.0
6033 if (AllowNewFpConst && DAG.getTarget().Options.UnsafeFPMath &&
6034 N1.getOpcode() == ISD::FNEG && N1.getOperand(0) == N0)
6035 return DAG.getConstantFP(0.0, VT);
6036
6037 // In unsafe math mode, we can fold chains of FADD's of the same value
6038 // into multiplications. This transform is not safe in general because
6039 // we are reducing the number of rounding steps.
6040 if (DAG.getTarget().Options.UnsafeFPMath &&
6041 TLI.isOperationLegalOrCustom(ISD::FMUL, VT) &&
6042 !N0CFP && !N1CFP) {
6043 if (N0.getOpcode() == ISD::FMUL) {
6044 ConstantFPSDNode *CFP00 = dyn_cast<ConstantFPSDNode>(N0.getOperand(0));
6045 ConstantFPSDNode *CFP01 = dyn_cast<ConstantFPSDNode>(N0.getOperand(1));
6046
6047 // (fadd (fmul c, x), x) -> (fmul x, c+1)
6048 if (CFP00 && !CFP01 && N0.getOperand(1) == N1) {
6049 SDValue NewCFP = DAG.getNode(ISD::FADD, SDLoc(N), VT,
6050 SDValue(CFP00, 0),
6051 DAG.getConstantFP(1.0, VT));
6052 return DAG.getNode(ISD::FMUL, SDLoc(N), VT,
6053 N1, NewCFP);
6054 }
6055
6056 // (fadd (fmul x, c), x) -> (fmul x, c+1)
6057 if (CFP01 && !CFP00 && N0.getOperand(0) == N1) {
6058 SDValue NewCFP = DAG.getNode(ISD::FADD, SDLoc(N), VT,
6059 SDValue(CFP01, 0),
6060 DAG.getConstantFP(1.0, VT));
6061 return DAG.getNode(ISD::FMUL, SDLoc(N), VT,
6062 N1, NewCFP);
6063 }
6064
6065 // (fadd (fmul c, x), (fadd x, x)) -> (fmul x, c+2)
6066 if (CFP00 && !CFP01 && N1.getOpcode() == ISD::FADD &&
6067 N1.getOperand(0) == N1.getOperand(1) &&
6068 N0.getOperand(1) == N1.getOperand(0)) {
6069 SDValue NewCFP = DAG.getNode(ISD::FADD, SDLoc(N), VT,
6070 SDValue(CFP00, 0),
6071 DAG.getConstantFP(2.0, VT));
6072 return DAG.getNode(ISD::FMUL, SDLoc(N), VT,
6073 N0.getOperand(1), NewCFP);
6074 }
6075
6076 // (fadd (fmul x, c), (fadd x, x)) -> (fmul x, c+2)
6077 if (CFP01 && !CFP00 && N1.getOpcode() == ISD::FADD &&
6078 N1.getOperand(0) == N1.getOperand(1) &&
6079 N0.getOperand(0) == N1.getOperand(0)) {
6080 SDValue NewCFP = DAG.getNode(ISD::FADD, SDLoc(N), VT,
6081 SDValue(CFP01, 0),
6082 DAG.getConstantFP(2.0, VT));
6083 return DAG.getNode(ISD::FMUL, SDLoc(N), VT,
6084 N0.getOperand(0), NewCFP);
6085 }
6086 }
6087
6088 if (N1.getOpcode() == ISD::FMUL) {
6089 ConstantFPSDNode *CFP10 = dyn_cast<ConstantFPSDNode>(N1.getOperand(0));
6090 ConstantFPSDNode *CFP11 = dyn_cast<ConstantFPSDNode>(N1.getOperand(1));
6091
6092 // (fadd x, (fmul c, x)) -> (fmul x, c+1)
6093 if (CFP10 && !CFP11 && N1.getOperand(1) == N0) {
6094 SDValue NewCFP = DAG.getNode(ISD::FADD, SDLoc(N), VT,
6095 SDValue(CFP10, 0),
6096 DAG.getConstantFP(1.0, VT));
6097 return DAG.getNode(ISD::FMUL, SDLoc(N), VT,
6098 N0, NewCFP);
6099 }
6100
6101 // (fadd x, (fmul x, c)) -> (fmul x, c+1)
6102 if (CFP11 && !CFP10 && N1.getOperand(0) == N0) {
6103 SDValue NewCFP = DAG.getNode(ISD::FADD, SDLoc(N), VT,
6104 SDValue(CFP11, 0),
6105 DAG.getConstantFP(1.0, VT));
6106 return DAG.getNode(ISD::FMUL, SDLoc(N), VT,
6107 N0, NewCFP);
6108 }
6109
6110
6111 // (fadd (fadd x, x), (fmul c, x)) -> (fmul x, c+2)
6112 if (CFP10 && !CFP11 && N0.getOpcode() == ISD::FADD &&
6113 N0.getOperand(0) == N0.getOperand(1) &&
6114 N1.getOperand(1) == N0.getOperand(0)) {
6115 SDValue NewCFP = DAG.getNode(ISD::FADD, SDLoc(N), VT,
6116 SDValue(CFP10, 0),
6117 DAG.getConstantFP(2.0, VT));
6118 return DAG.getNode(ISD::FMUL, SDLoc(N), VT,
6119 N1.getOperand(1), NewCFP);
6120 }
6121
6122 // (fadd (fadd x, x), (fmul x, c)) -> (fmul x, c+2)
6123 if (CFP11 && !CFP10 && N0.getOpcode() == ISD::FADD &&
6124 N0.getOperand(0) == N0.getOperand(1) &&
6125 N1.getOperand(0) == N0.getOperand(0)) {
6126 SDValue NewCFP = DAG.getNode(ISD::FADD, SDLoc(N), VT,
6127 SDValue(CFP11, 0),
6128 DAG.getConstantFP(2.0, VT));
6129 return DAG.getNode(ISD::FMUL, SDLoc(N), VT,
6130 N1.getOperand(0), NewCFP);
6131 }
6132 }
6133
6134 if (N0.getOpcode() == ISD::FADD && AllowNewFpConst) {
6135 ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N0.getOperand(0));
6136 // (fadd (fadd x, x), x) -> (fmul x, 3.0)
6137 if (!CFP && N0.getOperand(0) == N0.getOperand(1) &&
6138 (N0.getOperand(0) == N1))
6139 return DAG.getNode(ISD::FMUL, SDLoc(N), VT,
6140 N1, DAG.getConstantFP(3.0, VT));
6141 }
6142
6143 if (N1.getOpcode() == ISD::FADD && AllowNewFpConst) {
6144 ConstantFPSDNode *CFP10 = dyn_cast<ConstantFPSDNode>(N1.getOperand(0));
6145 // (fadd x, (fadd x, x)) -> (fmul x, 3.0)
6146 if (!CFP10 && N1.getOperand(0) == N1.getOperand(1) &&
6147 N1.getOperand(0) == N0)
6148 return DAG.getNode(ISD::FMUL, SDLoc(N), VT,
6149 N0, DAG.getConstantFP(3.0, VT));
6150 }
6151
6152 // (fadd (fadd x, x), (fadd x, x)) -> (fmul x, 4.0)
6153 if (AllowNewFpConst &&
6154 N0.getOpcode() == ISD::FADD && N1.getOpcode() == ISD::FADD &&
6155 N0.getOperand(0) == N0.getOperand(1) &&
6156 N1.getOperand(0) == N1.getOperand(1) &&
6157 N0.getOperand(0) == N1.getOperand(0))
6158 return DAG.getNode(ISD::FMUL, SDLoc(N), VT,
6159 N0.getOperand(0),
6160 DAG.getConstantFP(4.0, VT));
6161 }
6162
6163 // FADD -> FMA combines:
6164 if ((DAG.getTarget().Options.AllowFPOpFusion == FPOpFusion::Fast ||
6165 DAG.getTarget().Options.UnsafeFPMath) &&
6166 DAG.getTarget().getTargetLowering()->isFMAFasterThanFMulAndFAdd(VT) &&
6167 (!LegalOperations || TLI.isOperationLegalOrCustom(ISD::FMA, VT))) {
6168
6169 // fold (fadd (fmul x, y), z) -> (fma x, y, z)
6170 if (N0.getOpcode() == ISD::FMUL && N0->hasOneUse())
6171 return DAG.getNode(ISD::FMA, SDLoc(N), VT,
6172 N0.getOperand(0), N0.getOperand(1), N1);
6173
6174 // fold (fadd x, (fmul y, z)) -> (fma y, z, x)
6175 // Note: Commutes FADD operands.
6176 if (N1.getOpcode() == ISD::FMUL && N1->hasOneUse())
6177 return DAG.getNode(ISD::FMA, SDLoc(N), VT,
6178 N1.getOperand(0), N1.getOperand(1), N0);
6179 }
6180
6181 return SDValue();
6182}
6183
6184SDValue DAGCombiner::visitFSUB(SDNode *N) {
6185 SDValue N0 = N->getOperand(0);
6186 SDValue N1 = N->getOperand(1);
6187 ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
6188 ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
6189 EVT VT = N->getValueType(0);
6190 SDLoc dl(N);
6191
6192 // fold vector ops
6193 if (VT.isVector()) {
6194 SDValue FoldedVOp = SimplifyVBinOp(N);
6195 if (FoldedVOp.getNode()) return FoldedVOp;
6196 }
6197
6198 // fold (fsub c1, c2) -> c1-c2
6199 if (N0CFP && N1CFP)
6200 return DAG.getNode(ISD::FSUB, SDLoc(N), VT, N0, N1);
6201 // fold (fsub A, 0) -> A
6202 if (DAG.getTarget().Options.UnsafeFPMath &&
6203 N1CFP && N1CFP->getValueAPF().isZero())
6204 return N0;
6205 // fold (fsub 0, B) -> -B
6206 if (DAG.getTarget().Options.UnsafeFPMath &&
6207 N0CFP && N0CFP->getValueAPF().isZero()) {
6208 if (isNegatibleForFree(N1, LegalOperations, TLI, &DAG.getTarget().Options))
6209 return GetNegatedExpression(N1, DAG, LegalOperations);
6210 if (!LegalOperations || TLI.isOperationLegal(ISD::FNEG, VT))
6211 return DAG.getNode(ISD::FNEG, dl, VT, N1);
6212 }
6213 // fold (fsub A, (fneg B)) -> (fadd A, B)
6214 if (isNegatibleForFree(N1, LegalOperations, TLI, &DAG.getTarget().Options))
6215 return DAG.getNode(ISD::FADD, dl, VT, N0,
6216 GetNegatedExpression(N1, DAG, LegalOperations));
6217
6218 // If 'unsafe math' is enabled, fold
6219 // (fsub x, x) -> 0.0 &
6220 // (fsub x, (fadd x, y)) -> (fneg y) &
6221 // (fsub x, (fadd y, x)) -> (fneg y)
6222 if (DAG.getTarget().Options.UnsafeFPMath) {
6223 if (N0 == N1)
6224 return DAG.getConstantFP(0.0f, VT);
6225
6226 if (N1.getOpcode() == ISD::FADD) {
6227 SDValue N10 = N1->getOperand(0);
6228 SDValue N11 = N1->getOperand(1);
6229
6230 if (N10 == N0 && isNegatibleForFree(N11, LegalOperations, TLI,
6231 &DAG.getTarget().Options))
6232 return GetNegatedExpression(N11, DAG, LegalOperations);
6233
6234 if (N11 == N0 && isNegatibleForFree(N10, LegalOperations, TLI,
6235 &DAG.getTarget().Options))
6236 return GetNegatedExpression(N10, DAG, LegalOperations);
6237 }
6238 }
6239
6240 // FSUB -> FMA combines:
6241 if ((DAG.getTarget().Options.AllowFPOpFusion == FPOpFusion::Fast ||
6242 DAG.getTarget().Options.UnsafeFPMath) &&
6243 DAG.getTarget().getTargetLowering()->isFMAFasterThanFMulAndFAdd(VT) &&
6244 (!LegalOperations || TLI.isOperationLegalOrCustom(ISD::FMA, VT))) {
6245
6246 // fold (fsub (fmul x, y), z) -> (fma x, y, (fneg z))
6247 if (N0.getOpcode() == ISD::FMUL && N0->hasOneUse())
6248 return DAG.getNode(ISD::FMA, dl, VT,
6249 N0.getOperand(0), N0.getOperand(1),
6250 DAG.getNode(ISD::FNEG, dl, VT, N1));
6251
6252 // fold (fsub x, (fmul y, z)) -> (fma (fneg y), z, x)
6253 // Note: Commutes FSUB operands.
6254 if (N1.getOpcode() == ISD::FMUL && N1->hasOneUse())
6255 return DAG.getNode(ISD::FMA, dl, VT,
6256 DAG.getNode(ISD::FNEG, dl, VT,
6257 N1.getOperand(0)),
6258 N1.getOperand(1), N0);
6259
6260 // fold (fsub (fneg (fmul, x, y)), z) -> (fma (fneg x), y, (fneg z))
6261 if (N0.getOpcode() == ISD::FNEG &&
6262 N0.getOperand(0).getOpcode() == ISD::FMUL &&
6263 N0->hasOneUse() && N0.getOperand(0).hasOneUse()) {
6264 SDValue N00 = N0.getOperand(0).getOperand(0);
6265 SDValue N01 = N0.getOperand(0).getOperand(1);
6266 return DAG.getNode(ISD::FMA, dl, VT,
6267 DAG.getNode(ISD::FNEG, dl, VT, N00), N01,
6268 DAG.getNode(ISD::FNEG, dl, VT, N1));
6269 }
6270 }
6271
6272 return SDValue();
6273}
6274
6275SDValue DAGCombiner::visitFMUL(SDNode *N) {
6276 SDValue N0 = N->getOperand(0);
6277 SDValue N1 = N->getOperand(1);
6278 ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
6279 ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
6280 EVT VT = N->getValueType(0);
6281 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6282
6283 // fold vector ops
6284 if (VT.isVector()) {
6285 SDValue FoldedVOp = SimplifyVBinOp(N);
6286 if (FoldedVOp.getNode()) return FoldedVOp;
6287 }
6288
6289 // fold (fmul c1, c2) -> c1*c2
6290 if (N0CFP && N1CFP)
6291 return DAG.getNode(ISD::FMUL, SDLoc(N), VT, N0, N1);
6292 // canonicalize constant to RHS
6293 if (N0CFP && !N1CFP)
6294 return DAG.getNode(ISD::FMUL, SDLoc(N), VT, N1, N0);
6295 // fold (fmul A, 0) -> 0
6296 if (DAG.getTarget().Options.UnsafeFPMath &&
6297 N1CFP && N1CFP->getValueAPF().isZero())
6298 return N1;
6299 // fold (fmul A, 0) -> 0, vector edition.
6300 if (DAG.getTarget().Options.UnsafeFPMath &&
6301 ISD::isBuildVectorAllZeros(N1.getNode()))
6302 return N1;
6303 // fold (fmul A, 1.0) -> A
6304 if (N1CFP && N1CFP->isExactlyValue(1.0))
6305 return N0;
6306 // fold (fmul X, 2.0) -> (fadd X, X)
6307 if (N1CFP && N1CFP->isExactlyValue(+2.0))
6308 return DAG.getNode(ISD::FADD, SDLoc(N), VT, N0, N0);
6309 // fold (fmul X, -1.0) -> (fneg X)
6310 if (N1CFP && N1CFP->isExactlyValue(-1.0))
6311 if (!LegalOperations || TLI.isOperationLegal(ISD::FNEG, VT))
6312 return DAG.getNode(ISD::FNEG, SDLoc(N), VT, N0);
6313
6314 // fold (fmul (fneg X), (fneg Y)) -> (fmul X, Y)
6315 if (char LHSNeg = isNegatibleForFree(N0, LegalOperations, TLI,
6316 &DAG.getTarget().Options)) {
6317 if (char RHSNeg = isNegatibleForFree(N1, LegalOperations, TLI,
6318 &DAG.getTarget().Options)) {
6319 // Both can be negated for free, check to see if at least one is cheaper
6320 // negated.
6321 if (LHSNeg == 2 || RHSNeg == 2)
6322 return DAG.getNode(ISD::FMUL, SDLoc(N), VT,
6323 GetNegatedExpression(N0, DAG, LegalOperations),
6324 GetNegatedExpression(N1, DAG, LegalOperations));
6325 }
6326 }
6327
6328 // If allowed, fold (fmul (fmul x, c1), c2) -> (fmul x, (fmul c1, c2))
6329 if (DAG.getTarget().Options.UnsafeFPMath &&
6330 N1CFP && N0.getOpcode() == ISD::FMUL &&
6331 N0.getNode()->hasOneUse() && isa<ConstantFPSDNode>(N0.getOperand(1)))
6332 return DAG.getNode(ISD::FMUL, SDLoc(N), VT, N0.getOperand(0),
6333 DAG.getNode(ISD::FMUL, SDLoc(N), VT,
6334 N0.getOperand(1), N1));
6335
6336 return SDValue();
6337}
6338
6339SDValue DAGCombiner::visitFMA(SDNode *N) {
6340 SDValue N0 = N->getOperand(0);
6341 SDValue N1 = N->getOperand(1);
6342 SDValue N2 = N->getOperand(2);
6343 ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
6344 ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
6345 EVT VT = N->getValueType(0);
6346 SDLoc dl(N);
6347
6348 if (DAG.getTarget().Options.UnsafeFPMath) {
6349 if (N0CFP && N0CFP->isZero())
6350 return N2;
6351 if (N1CFP && N1CFP->isZero())
6352 return N2;
6353 }
6354 if (N0CFP && N0CFP->isExactlyValue(1.0))
6355 return DAG.getNode(ISD::FADD, SDLoc(N), VT, N1, N2);
6356 if (N1CFP && N1CFP->isExactlyValue(1.0))
6357 return DAG.getNode(ISD::FADD, SDLoc(N), VT, N0, N2);
6358
6359 // Canonicalize (fma c, x, y) -> (fma x, c, y)
6360 if (N0CFP && !N1CFP)
6361 return DAG.getNode(ISD::FMA, SDLoc(N), VT, N1, N0, N2);
6362
6363 // (fma x, c1, (fmul x, c2)) -> (fmul x, c1+c2)
6364 if (DAG.getTarget().Options.UnsafeFPMath && N1CFP &&
6365 N2.getOpcode() == ISD::FMUL &&
6366 N0 == N2.getOperand(0) &&
6367 N2.getOperand(1).getOpcode() == ISD::ConstantFP) {
6368 return DAG.getNode(ISD::FMUL, dl, VT, N0,
6369 DAG.getNode(ISD::FADD, dl, VT, N1, N2.getOperand(1)));
6370 }
6371
6372
6373 // (fma (fmul x, c1), c2, y) -> (fma x, c1*c2, y)
6374 if (DAG.getTarget().Options.UnsafeFPMath &&
6375 N0.getOpcode() == ISD::FMUL && N1CFP &&
6376 N0.getOperand(1).getOpcode() == ISD::ConstantFP) {
6377 return DAG.getNode(ISD::FMA, dl, VT,
6378 N0.getOperand(0),
6379 DAG.getNode(ISD::FMUL, dl, VT, N1, N0.getOperand(1)),
6380 N2);
6381 }
6382
6383 // (fma x, 1, y) -> (fadd x, y)
6384 // (fma x, -1, y) -> (fadd (fneg x), y)
6385 if (N1CFP) {
6386 if (N1CFP->isExactlyValue(1.0))
6387 return DAG.getNode(ISD::FADD, dl, VT, N0, N2);
6388
6389 if (N1CFP->isExactlyValue(-1.0) &&
6390 (!LegalOperations || TLI.isOperationLegal(ISD::FNEG, VT))) {
6391 SDValue RHSNeg = DAG.getNode(ISD::FNEG, dl, VT, N0);
6392 AddToWorkList(RHSNeg.getNode());
6393 return DAG.getNode(ISD::FADD, dl, VT, N2, RHSNeg);
6394 }
6395 }
6396
6397 // (fma x, c, x) -> (fmul x, (c+1))
6398 if (DAG.getTarget().Options.UnsafeFPMath && N1CFP && N0 == N2)
6399 return DAG.getNode(ISD::FMUL, dl, VT, N0,
6400 DAG.getNode(ISD::FADD, dl, VT,
6401 N1, DAG.getConstantFP(1.0, VT)));
6402
6403 // (fma x, c, (fneg x)) -> (fmul x, (c-1))
6404 if (DAG.getTarget().Options.UnsafeFPMath && N1CFP &&
6405 N2.getOpcode() == ISD::FNEG && N2.getOperand(0) == N0)
6406 return DAG.getNode(ISD::FMUL, dl, VT, N0,
6407 DAG.getNode(ISD::FADD, dl, VT,
6408 N1, DAG.getConstantFP(-1.0, VT)));
6409
6410
6411 return SDValue();
6412}
6413
6414SDValue DAGCombiner::visitFDIV(SDNode *N) {
6415 SDValue N0 = N->getOperand(0);
6416 SDValue N1 = N->getOperand(1);
6417 ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
6418 ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
6419 EVT VT = N->getValueType(0);
6420 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6421
6422 // fold vector ops
6423 if (VT.isVector()) {
6424 SDValue FoldedVOp = SimplifyVBinOp(N);
6425 if (FoldedVOp.getNode()) return FoldedVOp;
6426 }
6427
6428 // fold (fdiv c1, c2) -> c1/c2
6429 if (N0CFP && N1CFP)
6430 return DAG.getNode(ISD::FDIV, SDLoc(N), VT, N0, N1);
6431
6432 // fold (fdiv X, c2) -> fmul X, 1/c2 if losing precision is acceptable.
6433 if (N1CFP && DAG.getTarget().Options.UnsafeFPMath) {
6434 // Compute the reciprocal 1.0 / c2.
6435 APFloat N1APF = N1CFP->getValueAPF();
6436 APFloat Recip(N1APF.getSemantics(), 1); // 1.0
6437 APFloat::opStatus st = Recip.divide(N1APF, APFloat::rmNearestTiesToEven);
6438 // Only do the transform if the reciprocal is a legal fp immediate that
6439 // isn't too nasty (eg NaN, denormal, ...).
6440 if ((st == APFloat::opOK || st == APFloat::opInexact) && // Not too nasty
6441 (!LegalOperations ||
6442 // FIXME: custom lowering of ConstantFP might fail (see e.g. ARM
6443 // backend)... we should handle this gracefully after Legalize.
6444 // TLI.isOperationLegalOrCustom(llvm::ISD::ConstantFP, VT) ||
6445 TLI.isOperationLegal(llvm::ISD::ConstantFP, VT) ||
6446 TLI.isFPImmLegal(Recip, VT)))
6447 return DAG.getNode(ISD::FMUL, SDLoc(N), VT, N0,
6448 DAG.getConstantFP(Recip, VT));
6449 }
6450
6451 // (fdiv (fneg X), (fneg Y)) -> (fdiv X, Y)
6452 if (char LHSNeg = isNegatibleForFree(N0, LegalOperations, TLI,
6453 &DAG.getTarget().Options)) {
6454 if (char RHSNeg = isNegatibleForFree(N1, LegalOperations, TLI,
6455 &DAG.getTarget().Options)) {
6456 // Both can be negated for free, check to see if at least one is cheaper
6457 // negated.
6458 if (LHSNeg == 2 || RHSNeg == 2)
6459 return DAG.getNode(ISD::FDIV, SDLoc(N), VT,
6460 GetNegatedExpression(N0, DAG, LegalOperations),
6461 GetNegatedExpression(N1, DAG, LegalOperations));
6462 }
6463 }
6464
6465 return SDValue();
6466}
6467
6468SDValue DAGCombiner::visitFREM(SDNode *N) {
6469 SDValue N0 = N->getOperand(0);
6470 SDValue N1 = N->getOperand(1);
6471 ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
6472 ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
6473 EVT VT = N->getValueType(0);
6474
6475 // fold (frem c1, c2) -> fmod(c1,c2)
6476 if (N0CFP && N1CFP)
6477 return DAG.getNode(ISD::FREM, SDLoc(N), VT, N0, N1);
6478
6479 return SDValue();
6480}
6481
6482SDValue DAGCombiner::visitFCOPYSIGN(SDNode *N) {
6483 SDValue N0 = N->getOperand(0);
6484 SDValue N1 = N->getOperand(1);
6485 ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
6486 ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
6487 EVT VT = N->getValueType(0);
6488
6489 if (N0CFP && N1CFP) // Constant fold
6490 return DAG.getNode(ISD::FCOPYSIGN, SDLoc(N), VT, N0, N1);
6491
6492 if (N1CFP) {
6493 const APFloat& V = N1CFP->getValueAPF();
6494 // copysign(x, c1) -> fabs(x) iff ispos(c1)
6495 // copysign(x, c1) -> fneg(fabs(x)) iff isneg(c1)
6496 if (!V.isNegative()) {
6497 if (!LegalOperations || TLI.isOperationLegal(ISD::FABS, VT))
6498 return DAG.getNode(ISD::FABS, SDLoc(N), VT, N0);
6499 } else {
6500 if (!LegalOperations || TLI.isOperationLegal(ISD::FNEG, VT))
6501 return DAG.getNode(ISD::FNEG, SDLoc(N), VT,
6502 DAG.getNode(ISD::FABS, SDLoc(N0), VT, N0));
6503 }
6504 }
6505
6506 // copysign(fabs(x), y) -> copysign(x, y)
6507 // copysign(fneg(x), y) -> copysign(x, y)
6508 // copysign(copysign(x,z), y) -> copysign(x, y)
6509 if (N0.getOpcode() == ISD::FABS || N0.getOpcode() == ISD::FNEG ||
6510 N0.getOpcode() == ISD::FCOPYSIGN)
6511 return DAG.getNode(ISD::FCOPYSIGN, SDLoc(N), VT,
6512 N0.getOperand(0), N1);
6513
6514 // copysign(x, abs(y)) -> abs(x)
6515 if (N1.getOpcode() == ISD::FABS)
6516 return DAG.getNode(ISD::FABS, SDLoc(N), VT, N0);
6517
6518 // copysign(x, copysign(y,z)) -> copysign(x, z)
6519 if (N1.getOpcode() == ISD::FCOPYSIGN)
6520 return DAG.getNode(ISD::FCOPYSIGN, SDLoc(N), VT,
6521 N0, N1.getOperand(1));
6522
6523 // copysign(x, fp_extend(y)) -> copysign(x, y)
6524 // copysign(x, fp_round(y)) -> copysign(x, y)
6525 if (N1.getOpcode() == ISD::FP_EXTEND || N1.getOpcode() == ISD::FP_ROUND)
6526 return DAG.getNode(ISD::FCOPYSIGN, SDLoc(N), VT,
6527 N0, N1.getOperand(0));
6528
6529 return SDValue();
6530}
6531
6532SDValue DAGCombiner::visitSINT_TO_FP(SDNode *N) {
6533 SDValue N0 = N->getOperand(0);
6534 ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
6535 EVT VT = N->getValueType(0);
6536 EVT OpVT = N0.getValueType();
6537
6538 // fold (sint_to_fp c1) -> c1fp
6539 if (N0C &&
6540 // ...but only if the target supports immediate floating-point values
6541 (!LegalOperations ||
6542 TLI.isOperationLegalOrCustom(llvm::ISD::ConstantFP, VT)))
6543 return DAG.getNode(ISD::SINT_TO_FP, SDLoc(N), VT, N0);
6544
6545 // If the input is a legal type, and SINT_TO_FP is not legal on this target,
6546 // but UINT_TO_FP is legal on this target, try to convert.
6547 if (!TLI.isOperationLegalOrCustom(ISD::SINT_TO_FP, OpVT) &&
6548 TLI.isOperationLegalOrCustom(ISD::UINT_TO_FP, OpVT)) {
6549 // If the sign bit is known to be zero, we can change this to UINT_TO_FP.
6550 if (DAG.SignBitIsZero(N0))
6551 return DAG.getNode(ISD::UINT_TO_FP, SDLoc(N), VT, N0);
6552 }
6553
6554 // The next optimizations are desireable only if SELECT_CC can be lowered.
6555 // Check against MVT::Other for SELECT_CC, which is a workaround for targets
6556 // having to say they don't support SELECT_CC on every type the DAG knows
6557 // about, since there is no way to mark an opcode illegal at all value types
6558 // (See also visitSELECT)
6559 if (TLI.isOperationLegalOrCustom(ISD::SELECT_CC, MVT::Other)) {
6560 // fold (sint_to_fp (setcc x, y, cc)) -> (select_cc x, y, -1.0, 0.0,, cc)
6561 if (N0.getOpcode() == ISD::SETCC && N0.getValueType() == MVT::i1 &&
6562 !VT.isVector() &&
6563 (!LegalOperations ||
6564 TLI.isOperationLegalOrCustom(llvm::ISD::ConstantFP, VT))) {
6565 SDValue Ops[] =
6566 { N0.getOperand(0), N0.getOperand(1),
6567 DAG.getConstantFP(-1.0, VT) , DAG.getConstantFP(0.0, VT),
6568 N0.getOperand(2) };
6569 return DAG.getNode(ISD::SELECT_CC, SDLoc(N), VT, Ops, 5);
6570 }
6571
6572 // fold (sint_to_fp (zext (setcc x, y, cc))) ->
6573 // (select_cc x, y, 1.0, 0.0,, cc)
6574 if (N0.getOpcode() == ISD::ZERO_EXTEND &&
6575 N0.getOperand(0).getOpcode() == ISD::SETCC &&!VT.isVector() &&
6576 (!LegalOperations ||
6577 TLI.isOperationLegalOrCustom(llvm::ISD::ConstantFP, VT))) {
6578 SDValue Ops[] =
6579 { N0.getOperand(0).getOperand(0), N0.getOperand(0).getOperand(1),
6580 DAG.getConstantFP(1.0, VT) , DAG.getConstantFP(0.0, VT),
6581 N0.getOperand(0).getOperand(2) };
6582 return DAG.getNode(ISD::SELECT_CC, SDLoc(N), VT, Ops, 5);
6583 }
6584 }
6585
6586 return SDValue();
6587}
6588
6589SDValue DAGCombiner::visitUINT_TO_FP(SDNode *N) {
6590 SDValue N0 = N->getOperand(0);
6591 ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
6592 EVT VT = N->getValueType(0);
6593 EVT OpVT = N0.getValueType();
6594
6595 // fold (uint_to_fp c1) -> c1fp
6596 if (N0C &&
6597 // ...but only if the target supports immediate floating-point values
6598 (!LegalOperations ||
6599 TLI.isOperationLegalOrCustom(llvm::ISD::ConstantFP, VT)))
6600 return DAG.getNode(ISD::UINT_TO_FP, SDLoc(N), VT, N0);
6601
6602 // If the input is a legal type, and UINT_TO_FP is not legal on this target,
6603 // but SINT_TO_FP is legal on this target, try to convert.
6604 if (!TLI.isOperationLegalOrCustom(ISD::UINT_TO_FP, OpVT) &&
6605 TLI.isOperationLegalOrCustom(ISD::SINT_TO_FP, OpVT)) {
6606 // If the sign bit is known to be zero, we can change this to SINT_TO_FP.
6607 if (DAG.SignBitIsZero(N0))
6608 return DAG.getNode(ISD::SINT_TO_FP, SDLoc(N), VT, N0);
6609 }
6610
6611 // The next optimizations are desireable only if SELECT_CC can be lowered.
6612 // Check against MVT::Other for SELECT_CC, which is a workaround for targets
6613 // having to say they don't support SELECT_CC on every type the DAG knows
6614 // about, since there is no way to mark an opcode illegal at all value types
6615 // (See also visitSELECT)
6616 if (TLI.isOperationLegalOrCustom(ISD::SELECT_CC, MVT::Other)) {
6617 // fold (uint_to_fp (setcc x, y, cc)) -> (select_cc x, y, -1.0, 0.0,, cc)
6618
6619 if (N0.getOpcode() == ISD::SETCC && !VT.isVector() &&
6620 (!LegalOperations ||
6621 TLI.isOperationLegalOrCustom(llvm::ISD::ConstantFP, VT))) {
6622 SDValue Ops[] =
6623 { N0.getOperand(0), N0.getOperand(1),
6624 DAG.getConstantFP(1.0, VT), DAG.getConstantFP(0.0, VT),
6625 N0.getOperand(2) };
6626 return DAG.getNode(ISD::SELECT_CC, SDLoc(N), VT, Ops, 5);
6627 }
6628 }
6629
6630 return SDValue();
6631}
6632
6633SDValue DAGCombiner::visitFP_TO_SINT(SDNode *N) {
6634 SDValue N0 = N->getOperand(0);
6635 ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
6636 EVT VT = N->getValueType(0);
6637
6638 // fold (fp_to_sint c1fp) -> c1
6639 if (N0CFP)
6640 return DAG.getNode(ISD::FP_TO_SINT, SDLoc(N), VT, N0);
6641
6642 return SDValue();
6643}
6644
6645SDValue DAGCombiner::visitFP_TO_UINT(SDNode *N) {
6646 SDValue N0 = N->getOperand(0);
6647 ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
6648 EVT VT = N->getValueType(0);
6649
6650 // fold (fp_to_uint c1fp) -> c1
6651 if (N0CFP)
6652 return DAG.getNode(ISD::FP_TO_UINT, SDLoc(N), VT, N0);
6653
6654 return SDValue();
6655}
6656
6657SDValue DAGCombiner::visitFP_ROUND(SDNode *N) {
6658 SDValue N0 = N->getOperand(0);
6659 SDValue N1 = N->getOperand(1);
6660 ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
6661 EVT VT = N->getValueType(0);
6662
6663 // fold (fp_round c1fp) -> c1fp
6664 if (N0CFP)
6665 return DAG.getNode(ISD::FP_ROUND, SDLoc(N), VT, N0, N1);
6666
6667 // fold (fp_round (fp_extend x)) -> x
6668 if (N0.getOpcode() == ISD::FP_EXTEND && VT == N0.getOperand(0).getValueType())
6669 return N0.getOperand(0);
6670
6671 // fold (fp_round (fp_round x)) -> (fp_round x)
6672 if (N0.getOpcode() == ISD::FP_ROUND) {
6673 // This is a value preserving truncation if both round's are.
6674 bool IsTrunc = N->getConstantOperandVal(1) == 1 &&
6675 N0.getNode()->getConstantOperandVal(1) == 1;
6676 return DAG.getNode(ISD::FP_ROUND, SDLoc(N), VT, N0.getOperand(0),
6677 DAG.getIntPtrConstant(IsTrunc));
6678 }
6679
6680 // fold (fp_round (copysign X, Y)) -> (copysign (fp_round X), Y)
6681 if (N0.getOpcode() == ISD::FCOPYSIGN && N0.getNode()->hasOneUse()) {
6682 SDValue Tmp = DAG.getNode(ISD::FP_ROUND, SDLoc(N0), VT,
6683 N0.getOperand(0), N1);
6684 AddToWorkList(Tmp.getNode());
6685 return DAG.getNode(ISD::FCOPYSIGN, SDLoc(N), VT,
6686 Tmp, N0.getOperand(1));
6687 }
6688
6689 return SDValue();
6690}
6691
6692SDValue DAGCombiner::visitFP_ROUND_INREG(SDNode *N) {
6693 SDValue N0 = N->getOperand(0);
6694 EVT VT = N->getValueType(0);
6695 EVT EVT = cast<VTSDNode>(N->getOperand(1))->getVT();
6696 ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
6697
6698 // fold (fp_round_inreg c1fp) -> c1fp
6699 if (N0CFP && isTypeLegal(EVT)) {
6700 SDValue Round = DAG.getConstantFP(*N0CFP->getConstantFPValue(), EVT);
6701 return DAG.getNode(ISD::FP_EXTEND, SDLoc(N), VT, Round);
6702 }
6703
6704 return SDValue();
6705}
6706
6707SDValue DAGCombiner::visitFP_EXTEND(SDNode *N) {
6708 SDValue N0 = N->getOperand(0);
6709 ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
6710 EVT VT = N->getValueType(0);
6711
6712 // If this is fp_round(fpextend), don't fold it, allow ourselves to be folded.
6713 if (N->hasOneUse() &&
6714 N->use_begin()->getOpcode() == ISD::FP_ROUND)
6715 return SDValue();
6716
6717 // fold (fp_extend c1fp) -> c1fp
6718 if (N0CFP)
6719 return DAG.getNode(ISD::FP_EXTEND, SDLoc(N), VT, N0);
6720
6721 // Turn fp_extend(fp_round(X, 1)) -> x since the fp_round doesn't affect the
6722 // value of X.
6723 if (N0.getOpcode() == ISD::FP_ROUND
6724 && N0.getNode()->getConstantOperandVal(1) == 1) {
6725 SDValue In = N0.getOperand(0);
6726 if (In.getValueType() == VT) return In;
6727 if (VT.bitsLT(In.getValueType()))
6728 return DAG.getNode(ISD::FP_ROUND, SDLoc(N), VT,
6729 In, N0.getOperand(1));
6730 return DAG.getNode(ISD::FP_EXTEND, SDLoc(N), VT, In);
6731 }
6732
6733 // fold (fpext (load x)) -> (fpext (fptrunc (extload x)))
6734 if (ISD::isNormalLoad(N0.getNode()) && N0.hasOneUse() &&
6735 ((!LegalOperations && !cast<LoadSDNode>(N0)->isVolatile()) ||
6736 TLI.isLoadExtLegal(ISD::EXTLOAD, N0.getValueType()))) {
6737 LoadSDNode *LN0 = cast<LoadSDNode>(N0);
6738 SDValue ExtLoad = DAG.getExtLoad(ISD::EXTLOAD, SDLoc(N), VT,
6739 LN0->getChain(),
6740 LN0->getBasePtr(), N0.getValueType(),
6741 LN0->getMemOperand());
6742 CombineTo(N, ExtLoad);
6743 CombineTo(N0.getNode(),
6744 DAG.getNode(ISD::FP_ROUND, SDLoc(N0),
6745 N0.getValueType(), ExtLoad, DAG.getIntPtrConstant(1)),
6746 ExtLoad.getValue(1));
6747 return SDValue(N, 0); // Return N so it doesn't get rechecked!
6748 }
6749
6750 return SDValue();
6751}
6752
6753SDValue DAGCombiner::visitFNEG(SDNode *N) {
6754 SDValue N0 = N->getOperand(0);
6755 EVT VT = N->getValueType(0);
6756
6757 if (VT.isVector()) {
6758 SDValue FoldedVOp = SimplifyVUnaryOp(N);
6759 if (FoldedVOp.getNode()) return FoldedVOp;
6760 }
6761
6762 if (isNegatibleForFree(N0, LegalOperations, DAG.getTargetLoweringInfo(),
6763 &DAG.getTarget().Options))
6764 return GetNegatedExpression(N0, DAG, LegalOperations);
6765
6766 // Transform fneg(bitconvert(x)) -> bitconvert(x^sign) to avoid loading
6767 // constant pool values.
6768 if (!TLI.isFNegFree(VT) && N0.getOpcode() == ISD::BITCAST &&
6769 !VT.isVector() &&
6770 N0.getNode()->hasOneUse() &&
6771 N0.getOperand(0).getValueType().isInteger()) {
6772 SDValue Int = N0.getOperand(0);
6773 EVT IntVT = Int.getValueType();
6774 if (IntVT.isInteger() && !IntVT.isVector()) {
6775 Int = DAG.getNode(ISD::XOR, SDLoc(N0), IntVT, Int,
6776 DAG.getConstant(APInt::getSignBit(IntVT.getSizeInBits()), IntVT));
6777 AddToWorkList(Int.getNode());
6778 return DAG.getNode(ISD::BITCAST, SDLoc(N),
6779 VT, Int);
6780 }
6781 }
6782
6783 // (fneg (fmul c, x)) -> (fmul -c, x)
6784 if (N0.getOpcode() == ISD::FMUL) {
6785 ConstantFPSDNode *CFP1 = dyn_cast<ConstantFPSDNode>(N0.getOperand(1));
6786 if (CFP1)
6787 return DAG.getNode(ISD::FMUL, SDLoc(N), VT,
6788 N0.getOperand(0),
6789 DAG.getNode(ISD::FNEG, SDLoc(N), VT,
6790 N0.getOperand(1)));
6791 }
6792
6793 return SDValue();
6794}
6795
6796SDValue DAGCombiner::visitFCEIL(SDNode *N) {
6797 SDValue N0 = N->getOperand(0);
6798 ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
6799 EVT VT = N->getValueType(0);
6800
6801 // fold (fceil c1) -> fceil(c1)
6802 if (N0CFP)
6803 return DAG.getNode(ISD::FCEIL, SDLoc(N), VT, N0);
6804
6805 return SDValue();
6806}
6807
6808SDValue DAGCombiner::visitFTRUNC(SDNode *N) {
6809 SDValue N0 = N->getOperand(0);
6810 ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
6811 EVT VT = N->getValueType(0);
6812
6813 // fold (ftrunc c1) -> ftrunc(c1)
6814 if (N0CFP)
6815 return DAG.getNode(ISD::FTRUNC, SDLoc(N), VT, N0);
6816
6817 return SDValue();
6818}
6819
6820SDValue DAGCombiner::visitFFLOOR(SDNode *N) {
6821 SDValue N0 = N->getOperand(0);
6822 ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
6823 EVT VT = N->getValueType(0);
6824
6825 // fold (ffloor c1) -> ffloor(c1)
6826 if (N0CFP)
6827 return DAG.getNode(ISD::FFLOOR, SDLoc(N), VT, N0);
6828
6829 return SDValue();
6830}
6831
6832SDValue DAGCombiner::visitFABS(SDNode *N) {
6833 SDValue N0 = N->getOperand(0);
6834 ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
6835 EVT VT = N->getValueType(0);
6836
6837 if (VT.isVector()) {
6838 SDValue FoldedVOp = SimplifyVUnaryOp(N);
6839 if (FoldedVOp.getNode()) return FoldedVOp;
6840 }
6841
6842 // fold (fabs c1) -> fabs(c1)
6843 if (N0CFP)
6844 return DAG.getNode(ISD::FABS, SDLoc(N), VT, N0);
6845 // fold (fabs (fabs x)) -> (fabs x)
6846 if (N0.getOpcode() == ISD::FABS)
6847 return N->getOperand(0);
6848 // fold (fabs (fneg x)) -> (fabs x)
6849 // fold (fabs (fcopysign x, y)) -> (fabs x)
6850 if (N0.getOpcode() == ISD::FNEG || N0.getOpcode() == ISD::FCOPYSIGN)
6851 return DAG.getNode(ISD::FABS, SDLoc(N), VT, N0.getOperand(0));
6852
6853 // Transform fabs(bitconvert(x)) -> bitconvert(x&~sign) to avoid loading
6854 // constant pool values.
6855 if (!TLI.isFAbsFree(VT) &&
6856 N0.getOpcode() == ISD::BITCAST && N0.getNode()->hasOneUse() &&
6857 N0.getOperand(0).getValueType().isInteger() &&
6858 !N0.getOperand(0).getValueType().isVector()) {
6859 SDValue Int = N0.getOperand(0);
6860 EVT IntVT = Int.getValueType();
6861 if (IntVT.isInteger() && !IntVT.isVector()) {
6862 Int = DAG.getNode(ISD::AND, SDLoc(N0), IntVT, Int,
6863 DAG.getConstant(~APInt::getSignBit(IntVT.getSizeInBits()), IntVT));
6864 AddToWorkList(Int.getNode());
6865 return DAG.getNode(ISD::BITCAST, SDLoc(N),
6866 N->getValueType(0), Int);
6867 }
6868 }
6869
6870 return SDValue();
6871}
6872
6873SDValue DAGCombiner::visitBRCOND(SDNode *N) {
6874 SDValue Chain = N->getOperand(0);
6875 SDValue N1 = N->getOperand(1);
6876 SDValue N2 = N->getOperand(2);
6877
6878 // If N is a constant we could fold this into a fallthrough or unconditional
6879 // branch. However that doesn't happen very often in normal code, because
6880 // Instcombine/SimplifyCFG should have handled the available opportunities.
6881 // If we did this folding here, it would be necessary to update the
6882 // MachineBasicBlock CFG, which is awkward.
6883
6884 // fold a brcond with a setcc condition into a BR_CC node if BR_CC is legal
6885 // on the target.
6886 if (N1.getOpcode() == ISD::SETCC &&
6887 TLI.isOperationLegalOrCustom(ISD::BR_CC,
6888 N1.getOperand(0).getValueType())) {
6889 return DAG.getNode(ISD::BR_CC, SDLoc(N), MVT::Other,
6890 Chain, N1.getOperand(2),
6891 N1.getOperand(0), N1.getOperand(1), N2);
6892 }
6893
6894 if ((N1.hasOneUse() && N1.getOpcode() == ISD::SRL) ||
6895 ((N1.getOpcode() == ISD::TRUNCATE && N1.hasOneUse()) &&
6896 (N1.getOperand(0).hasOneUse() &&
6897 N1.getOperand(0).getOpcode() == ISD::SRL))) {
6898 SDNode *Trunc = 0;
6899 if (N1.getOpcode() == ISD::TRUNCATE) {
6900 // Look pass the truncate.
6901 Trunc = N1.getNode();
6902 N1 = N1.getOperand(0);
6903 }
6904
6905 // Match this pattern so that we can generate simpler code:
6906 //
6907 // %a = ...
6908 // %b = and i32 %a, 2
6909 // %c = srl i32 %b, 1
6910 // brcond i32 %c ...
6911 //
6912 // into
6913 //
6914 // %a = ...
6915 // %b = and i32 %a, 2
6916 // %c = setcc eq %b, 0
6917 // brcond %c ...
6918 //
6919 // This applies only when the AND constant value has one bit set and the
6920 // SRL constant is equal to the log2 of the AND constant. The back-end is
6921 // smart enough to convert the result into a TEST/JMP sequence.
6922 SDValue Op0 = N1.getOperand(0);
6923 SDValue Op1 = N1.getOperand(1);
6924
6925 if (Op0.getOpcode() == ISD::AND &&
6926 Op1.getOpcode() == ISD::Constant) {
6927 SDValue AndOp1 = Op0.getOperand(1);
6928
6929 if (AndOp1.getOpcode() == ISD::Constant) {
6930 const APInt &AndConst = cast<ConstantSDNode>(AndOp1)->getAPIntValue();
6931
6932 if (AndConst.isPowerOf2() &&
6933 cast<ConstantSDNode>(Op1)->getAPIntValue()==AndConst.logBase2()) {
6934 SDValue SetCC =
6935 DAG.getSetCC(SDLoc(N),
6936 getSetCCResultType(Op0.getValueType()),
6937 Op0, DAG.getConstant(0, Op0.getValueType()),
6938 ISD::SETNE);
6939
6940 SDValue NewBRCond = DAG.getNode(ISD::BRCOND, SDLoc(N),
6941 MVT::Other, Chain, SetCC, N2);
6942 // Don't add the new BRCond into the worklist or else SimplifySelectCC
6943 // will convert it back to (X & C1) >> C2.
6944 CombineTo(N, NewBRCond, false);
6945 // Truncate is dead.
6946 if (Trunc) {
6947 removeFromWorkList(Trunc);
6948 DAG.DeleteNode(Trunc);
6949 }
6950 // Replace the uses of SRL with SETCC
6951 WorkListRemover DeadNodes(*this);
6952 DAG.ReplaceAllUsesOfValueWith(N1, SetCC);
6953 removeFromWorkList(N1.getNode());
6954 DAG.DeleteNode(N1.getNode());
6955 return SDValue(N, 0); // Return N so it doesn't get rechecked!
6956 }
6957 }
6958 }
6959
6960 if (Trunc)
6961 // Restore N1 if the above transformation doesn't match.
6962 N1 = N->getOperand(1);
6963 }
6964
6965 // Transform br(xor(x, y)) -> br(x != y)
6966 // Transform br(xor(xor(x,y), 1)) -> br (x == y)
6967 if (N1.hasOneUse() && N1.getOpcode() == ISD::XOR) {
6968 SDNode *TheXor = N1.getNode();
6969 SDValue Op0 = TheXor->getOperand(0);
6970 SDValue Op1 = TheXor->getOperand(1);
6971 if (Op0.getOpcode() == Op1.getOpcode()) {
6972 // Avoid missing important xor optimizations.
6973 SDValue Tmp = visitXOR(TheXor);
6974 if (Tmp.getNode()) {
6975 if (Tmp.getNode() != TheXor) {
6976 DEBUG(dbgs() << "\nReplacing.8 ";
6977 TheXor->dump(&DAG);
6978 dbgs() << "\nWith: ";
6979 Tmp.getNode()->dump(&DAG);
6980 dbgs() << '\n');
6981 WorkListRemover DeadNodes(*this);
6982 DAG.ReplaceAllUsesOfValueWith(N1, Tmp);
6983 removeFromWorkList(TheXor);
6984 DAG.DeleteNode(TheXor);
6985 return DAG.getNode(ISD::BRCOND, SDLoc(N),
6986 MVT::Other, Chain, Tmp, N2);
6987 }
6988
6989 // visitXOR has changed XOR's operands or replaced the XOR completely,
6990 // bail out.
6991 return SDValue(N, 0);
6992 }
6993 }
6994
6995 if (Op0.getOpcode() != ISD::SETCC && Op1.getOpcode() != ISD::SETCC) {
6996 bool Equal = false;
6997 if (ConstantSDNode *RHSCI = dyn_cast<ConstantSDNode>(Op0))
6998 if (RHSCI->getAPIntValue() == 1 && Op0.hasOneUse() &&
6999 Op0.getOpcode() == ISD::XOR) {
7000 TheXor = Op0.getNode();
7001 Equal = true;
7002 }
7003
7004 EVT SetCCVT = N1.getValueType();
7005 if (LegalTypes)
7006 SetCCVT = getSetCCResultType(SetCCVT);
7007 SDValue SetCC = DAG.getSetCC(SDLoc(TheXor),
7008 SetCCVT,
7009 Op0, Op1,
7010 Equal ? ISD::SETEQ : ISD::SETNE);
7011 // Replace the uses of XOR with SETCC
7012 WorkListRemover DeadNodes(*this);
7013 DAG.ReplaceAllUsesOfValueWith(N1, SetCC);
7014 removeFromWorkList(N1.getNode());
7015 DAG.DeleteNode(N1.getNode());
7016 return DAG.getNode(ISD::BRCOND, SDLoc(N),
7017 MVT::Other, Chain, SetCC, N2);
7018 }
7019 }
7020
7021 return SDValue();
7022}
7023
7024// Operand List for BR_CC: Chain, CondCC, CondLHS, CondRHS, DestBB.
7025//
7026SDValue DAGCombiner::visitBR_CC(SDNode *N) {
7027 CondCodeSDNode *CC = cast<CondCodeSDNode>(N->getOperand(1));
7028 SDValue CondLHS = N->getOperand(2), CondRHS = N->getOperand(3);
7029
7030 // If N is a constant we could fold this into a fallthrough or unconditional
7031 // branch. However that doesn't happen very often in normal code, because
7032 // Instcombine/SimplifyCFG should have handled the available opportunities.
7033 // If we did this folding here, it would be necessary to update the
7034 // MachineBasicBlock CFG, which is awkward.
7035
7036 // Use SimplifySetCC to simplify SETCC's.
7037 SDValue Simp = SimplifySetCC(getSetCCResultType(CondLHS.getValueType()),
7038 CondLHS, CondRHS, CC->get(), SDLoc(N),
7039 false);
7040 if (Simp.getNode()) AddToWorkList(Simp.getNode());
7041
7042 // fold to a simpler setcc
7043 if (Simp.getNode() && Simp.getOpcode() == ISD::SETCC)
7044 return DAG.getNode(ISD::BR_CC, SDLoc(N), MVT::Other,
7045 N->getOperand(0), Simp.getOperand(2),
7046 Simp.getOperand(0), Simp.getOperand(1),
7047 N->getOperand(4));
7048
7049 return SDValue();
7050}
7051
7052/// canFoldInAddressingMode - Return true if 'Use' is a load or a store that
7053/// uses N as its base pointer and that N may be folded in the load / store
7054/// addressing mode.
7055static bool canFoldInAddressingMode(SDNode *N, SDNode *Use,
7056 SelectionDAG &DAG,
7057 const TargetLowering &TLI) {
7058 EVT VT;
7059 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Use)) {
7060 if (LD->isIndexed() || LD->getBasePtr().getNode() != N)
7061 return false;
7062 VT = Use->getValueType(0);
7063 } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(Use)) {
7064 if (ST->isIndexed() || ST->getBasePtr().getNode() != N)
7065 return false;
7066 VT = ST->getValue().getValueType();
7067 } else
7068 return false;
7069
7070 TargetLowering::AddrMode AM;
7071 if (N->getOpcode() == ISD::ADD) {
7072 ConstantSDNode *Offset = dyn_cast<ConstantSDNode>(N->getOperand(1));
7073 if (Offset)
7074 // [reg +/- imm]
7075 AM.BaseOffs = Offset->getSExtValue();
7076 else
7077 // [reg +/- reg]
7078 AM.Scale = 1;
7079 } else if (N->getOpcode() == ISD::SUB) {
7080 ConstantSDNode *Offset = dyn_cast<ConstantSDNode>(N->getOperand(1));
7081 if (Offset)
7082 // [reg +/- imm]
7083 AM.BaseOffs = -Offset->getSExtValue();
7084 else
7085 // [reg +/- reg]
7086 AM.Scale = 1;
7087 } else
7088 return false;
7089
7090 return TLI.isLegalAddressingMode(AM, VT.getTypeForEVT(*DAG.getContext()));
7091}
7092
7093/// CombineToPreIndexedLoadStore - Try turning a load / store into a
7094/// pre-indexed load / store when the base pointer is an add or subtract
7095/// and it has other uses besides the load / store. After the
7096/// transformation, the new indexed load / store has effectively folded
7097/// the add / subtract in and all of its other uses are redirected to the
7098/// new load / store.
7099bool DAGCombiner::CombineToPreIndexedLoadStore(SDNode *N) {
7100 if (Level < AfterLegalizeDAG)
7101 return false;
7102
7103 bool isLoad = true;
7104 SDValue Ptr;
7105 EVT VT;
7106 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
7107 if (LD->isIndexed())
7108 return false;
7109 VT = LD->getMemoryVT();
7110 if (!TLI.isIndexedLoadLegal(ISD::PRE_INC, VT) &&
7111 !TLI.isIndexedLoadLegal(ISD::PRE_DEC, VT))
7112 return false;
7113 Ptr = LD->getBasePtr();
7114 } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
7115 if (ST->isIndexed())
7116 return false;
7117 VT = ST->getMemoryVT();
7118 if (!TLI.isIndexedStoreLegal(ISD::PRE_INC, VT) &&
7119 !TLI.isIndexedStoreLegal(ISD::PRE_DEC, VT))
7120 return false;
7121 Ptr = ST->getBasePtr();
7122 isLoad = false;
7123 } else {
7124 return false;
7125 }
7126
7127 // If the pointer is not an add/sub, or if it doesn't have multiple uses, bail
7128 // out. There is no reason to make this a preinc/predec.
7129 if ((Ptr.getOpcode() != ISD::ADD && Ptr.getOpcode() != ISD::SUB) ||
7130 Ptr.getNode()->hasOneUse())
7131 return false;
7132
7133 // Ask the target to do addressing mode selection.
7134 SDValue BasePtr;
7135 SDValue Offset;
7136 ISD::MemIndexedMode AM = ISD::UNINDEXED;
7137 if (!TLI.getPreIndexedAddressParts(N, BasePtr, Offset, AM, DAG))
7138 return false;
7139
7140 // Backends without true r+i pre-indexed forms may need to pass a
7141 // constant base with a variable offset so that constant coercion
7142 // will work with the patterns in canonical form.
7143 bool Swapped = false;
7144 if (isa<ConstantSDNode>(BasePtr)) {
7145 std::swap(BasePtr, Offset);
7146 Swapped = true;
7147 }
7148
7149 // Don't create a indexed load / store with zero offset.
7150 if (isa<ConstantSDNode>(Offset) &&
7151 cast<ConstantSDNode>(Offset)->isNullValue())
7152 return false;
7153
7154 // Try turning it into a pre-indexed load / store except when:
7155 // 1) The new base ptr is a frame index.
7156 // 2) If N is a store and the new base ptr is either the same as or is a
7157 // predecessor of the value being stored.
7158 // 3) Another use of old base ptr is a predecessor of N. If ptr is folded
7159 // that would create a cycle.
7160 // 4) All uses are load / store ops that use it as old base ptr.
7161
7162 // Check #1. Preinc'ing a frame index would require copying the stack pointer
7163 // (plus the implicit offset) to a register to preinc anyway.
7164 if (isa<FrameIndexSDNode>(BasePtr) || isa<RegisterSDNode>(BasePtr))
7165 return false;
7166
7167 // Check #2.
7168 if (!isLoad) {
7169 SDValue Val = cast<StoreSDNode>(N)->getValue();
7170 if (Val == BasePtr || BasePtr.getNode()->isPredecessorOf(Val.getNode()))
7171 return false;
7172 }
7173
7174 // If the offset is a constant, there may be other adds of constants that
7175 // can be folded with this one. We should do this to avoid having to keep
7176 // a copy of the original base pointer.
7177 SmallVector<SDNode *, 16> OtherUses;
7178 if (isa<ConstantSDNode>(Offset))
7179 for (SDNode::use_iterator I = BasePtr.getNode()->use_begin(),
7180 E = BasePtr.getNode()->use_end(); I != E; ++I) {
7181 SDNode *Use = *I;
7182 if (Use == Ptr.getNode())
7183 continue;
7184
7185 if (Use->isPredecessorOf(N))
7186 continue;
7187
7188 if (Use->getOpcode() != ISD::ADD && Use->getOpcode() != ISD::SUB) {
7189 OtherUses.clear();
7190 break;
7191 }
7192
7193 SDValue Op0 = Use->getOperand(0), Op1 = Use->getOperand(1);
7194 if (Op1.getNode() == BasePtr.getNode())
7195 std::swap(Op0, Op1);
7196 assert(Op0.getNode() == BasePtr.getNode() &&
7197 "Use of ADD/SUB but not an operand");
7198
7199 if (!isa<ConstantSDNode>(Op1)) {
7200 OtherUses.clear();
7201 break;
7202 }
7203
7204 // FIXME: In some cases, we can be smarter about this.
7205 if (Op1.getValueType() != Offset.getValueType()) {
7206 OtherUses.clear();
7207 break;
7208 }
7209
7210 OtherUses.push_back(Use);
7211 }
7212
7213 if (Swapped)
7214 std::swap(BasePtr, Offset);
7215
7216 // Now check for #3 and #4.
7217 bool RealUse = false;
7218
7219 // Caches for hasPredecessorHelper
7220 SmallPtrSet<const SDNode *, 32> Visited;
7221 SmallVector<const SDNode *, 16> Worklist;
7222
7223 for (SDNode::use_iterator I = Ptr.getNode()->use_begin(),
7224 E = Ptr.getNode()->use_end(); I != E; ++I) {
7225 SDNode *Use = *I;
7226 if (Use == N)
7227 continue;
7228 if (N->hasPredecessorHelper(Use, Visited, Worklist))
7229 return false;
7230
7231 // If Ptr may be folded in addressing mode of other use, then it's
7232 // not profitable to do this transformation.
7233 if (!canFoldInAddressingMode(Ptr.getNode(), Use, DAG, TLI))
7234 RealUse = true;
7235 }
7236
7237 if (!RealUse)
7238 return false;
7239
7240 SDValue Result;
7241 if (isLoad)
7242 Result = DAG.getIndexedLoad(SDValue(N,0), SDLoc(N),
7243 BasePtr, Offset, AM);
7244 else
7245 Result = DAG.getIndexedStore(SDValue(N,0), SDLoc(N),
7246 BasePtr, Offset, AM);
7247 ++PreIndexedNodes;
7248 ++NodesCombined;
7249 DEBUG(dbgs() << "\nReplacing.4 ";
7250 N->dump(&DAG);
7251 dbgs() << "\nWith: ";
7252 Result.getNode()->dump(&DAG);
7253 dbgs() << '\n');
7254 WorkListRemover DeadNodes(*this);
7255 if (isLoad) {
7256 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result.getValue(0));
7257 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), Result.getValue(2));
7258 } else {
7259 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result.getValue(1));
7260 }
7261
7262 // Finally, since the node is now dead, remove it from the graph.
7263 DAG.DeleteNode(N);
7264
7265 if (Swapped)
7266 std::swap(BasePtr, Offset);
7267
7268 // Replace other uses of BasePtr that can be updated to use Ptr
7269 for (unsigned i = 0, e = OtherUses.size(); i != e; ++i) {
7270 unsigned OffsetIdx = 1;
7271 if (OtherUses[i]->getOperand(OffsetIdx).getNode() == BasePtr.getNode())
7272 OffsetIdx = 0;
7273 assert(OtherUses[i]->getOperand(!OffsetIdx).getNode() ==
7274 BasePtr.getNode() && "Expected BasePtr operand");
7275
7276 // We need to replace ptr0 in the following expression:
7277 // x0 * offset0 + y0 * ptr0 = t0
7278 // knowing that
7279 // x1 * offset1 + y1 * ptr0 = t1 (the indexed load/store)
7280 //
7281 // where x0, x1, y0 and y1 in {-1, 1} are given by the types of the
7282 // indexed load/store and the expresion that needs to be re-written.
7283 //
7284 // Therefore, we have:
7285 // t0 = (x0 * offset0 - x1 * y0 * y1 *offset1) + (y0 * y1) * t1
7286
7287 ConstantSDNode *CN =
7288 cast<ConstantSDNode>(OtherUses[i]->getOperand(OffsetIdx));
7289 int X0, X1, Y0, Y1;
7290 APInt Offset0 = CN->getAPIntValue();
7291 APInt Offset1 = cast<ConstantSDNode>(Offset)->getAPIntValue();
7292
7293 X0 = (OtherUses[i]->getOpcode() == ISD::SUB && OffsetIdx == 1) ? -1 : 1;
7294 Y0 = (OtherUses[i]->getOpcode() == ISD::SUB && OffsetIdx == 0) ? -1 : 1;
7295 X1 = (AM == ISD::PRE_DEC && !Swapped) ? -1 : 1;
7296 Y1 = (AM == ISD::PRE_DEC && Swapped) ? -1 : 1;
7297
7298 unsigned Opcode = (Y0 * Y1 < 0) ? ISD::SUB : ISD::ADD;
7299
7300 APInt CNV = Offset0;
7301 if (X0 < 0) CNV = -CNV;
7302 if (X1 * Y0 * Y1 < 0) CNV = CNV + Offset1;
7303 else CNV = CNV - Offset1;
7304
7305 // We can now generate the new expression.
7306 SDValue NewOp1 = DAG.getConstant(CNV, CN->getValueType(0));
7307 SDValue NewOp2 = Result.getValue(isLoad ? 1 : 0);
7308
7309 SDValue NewUse = DAG.getNode(Opcode,
7310 SDLoc(OtherUses[i]),
7311 OtherUses[i]->getValueType(0), NewOp1, NewOp2);
7312 DAG.ReplaceAllUsesOfValueWith(SDValue(OtherUses[i], 0), NewUse);
7313 removeFromWorkList(OtherUses[i]);
7314 DAG.DeleteNode(OtherUses[i]);
7315 }
7316
7317 // Replace the uses of Ptr with uses of the updated base value.
7318 DAG.ReplaceAllUsesOfValueWith(Ptr, Result.getValue(isLoad ? 1 : 0));
7319 removeFromWorkList(Ptr.getNode());
7320 DAG.DeleteNode(Ptr.getNode());
7321
7322 return true;
7323}
7324
7325/// CombineToPostIndexedLoadStore - Try to combine a load / store with a
7326/// add / sub of the base pointer node into a post-indexed load / store.
7327/// The transformation folded the add / subtract into the new indexed
7328/// load / store effectively and all of its uses are redirected to the
7329/// new load / store.
7330bool DAGCombiner::CombineToPostIndexedLoadStore(SDNode *N) {
7331 if (Level < AfterLegalizeDAG)
7332 return false;
7333
7334 bool isLoad = true;
7335 SDValue Ptr;
7336 EVT VT;
7337 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
7338 if (LD->isIndexed())
7339 return false;
7340 VT = LD->getMemoryVT();
7341 if (!TLI.isIndexedLoadLegal(ISD::POST_INC, VT) &&
7342 !TLI.isIndexedLoadLegal(ISD::POST_DEC, VT))
7343 return false;
7344 Ptr = LD->getBasePtr();
7345 } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
7346 if (ST->isIndexed())
7347 return false;
7348 VT = ST->getMemoryVT();
7349 if (!TLI.isIndexedStoreLegal(ISD::POST_INC, VT) &&
7350 !TLI.isIndexedStoreLegal(ISD::POST_DEC, VT))
7351 return false;
7352 Ptr = ST->getBasePtr();
7353 isLoad = false;
7354 } else {
7355 return false;
7356 }
7357
7358 if (Ptr.getNode()->hasOneUse())
7359 return false;
7360
7361 for (SDNode::use_iterator I = Ptr.getNode()->use_begin(),
7362 E = Ptr.getNode()->use_end(); I != E; ++I) {
7363 SDNode *Op = *I;
7364 if (Op == N ||
7365 (Op->getOpcode() != ISD::ADD && Op->getOpcode() != ISD::SUB))
7366 continue;
7367
7368 SDValue BasePtr;
7369 SDValue Offset;
7370 ISD::MemIndexedMode AM = ISD::UNINDEXED;
7371 if (TLI.getPostIndexedAddressParts(N, Op, BasePtr, Offset, AM, DAG)) {
7372 // Don't create a indexed load / store with zero offset.
7373 if (isa<ConstantSDNode>(Offset) &&
7374 cast<ConstantSDNode>(Offset)->isNullValue())
7375 continue;
7376
7377 // Try turning it into a post-indexed load / store except when
7378 // 1) All uses are load / store ops that use it as base ptr (and
7379 // it may be folded as addressing mmode).
7380 // 2) Op must be independent of N, i.e. Op is neither a predecessor
7381 // nor a successor of N. Otherwise, if Op is folded that would
7382 // create a cycle.
7383
7384 if (isa<FrameIndexSDNode>(BasePtr) || isa<RegisterSDNode>(BasePtr))
7385 continue;
7386
7387 // Check for #1.
7388 bool TryNext = false;
7389 for (SDNode::use_iterator II = BasePtr.getNode()->use_begin(),
7390 EE = BasePtr.getNode()->use_end(); II != EE; ++II) {
7391 SDNode *Use = *II;
7392 if (Use == Ptr.getNode())
7393 continue;
7394
7395 // If all the uses are load / store addresses, then don't do the
7396 // transformation.
7397 if (Use->getOpcode() == ISD::ADD || Use->getOpcode() == ISD::SUB){
7398 bool RealUse = false;
7399 for (SDNode::use_iterator III = Use->use_begin(),
7400 EEE = Use->use_end(); III != EEE; ++III) {
7401 SDNode *UseUse = *III;
7402 if (!canFoldInAddressingMode(Use, UseUse, DAG, TLI))
7403 RealUse = true;
7404 }
7405
7406 if (!RealUse) {
7407 TryNext = true;
7408 break;
7409 }
7410 }
7411 }
7412
7413 if (TryNext)
7414 continue;
7415
7416 // Check for #2
7417 if (!Op->isPredecessorOf(N) && !N->isPredecessorOf(Op)) {
7418 SDValue Result = isLoad
7419 ? DAG.getIndexedLoad(SDValue(N,0), SDLoc(N),
7420 BasePtr, Offset, AM)
7421 : DAG.getIndexedStore(SDValue(N,0), SDLoc(N),
7422 BasePtr, Offset, AM);
7423 ++PostIndexedNodes;
7424 ++NodesCombined;
7425 DEBUG(dbgs() << "\nReplacing.5 ";
7426 N->dump(&DAG);
7427 dbgs() << "\nWith: ";
7428 Result.getNode()->dump(&DAG);
7429 dbgs() << '\n');
7430 WorkListRemover DeadNodes(*this);
7431 if (isLoad) {
7432 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result.getValue(0));
7433 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), Result.getValue(2));
7434 } else {
7435 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result.getValue(1));
7436 }
7437
7438 // Finally, since the node is now dead, remove it from the graph.
7439 DAG.DeleteNode(N);
7440
7441 // Replace the uses of Use with uses of the updated base value.
7442 DAG.ReplaceAllUsesOfValueWith(SDValue(Op, 0),
7443 Result.getValue(isLoad ? 1 : 0));
7444 removeFromWorkList(Op);
7445 DAG.DeleteNode(Op);
7446 return true;
7447 }
7448 }
7449 }
7450
7451 return false;
7452}
7453
7454SDValue DAGCombiner::visitLOAD(SDNode *N) {
7455 LoadSDNode *LD = cast<LoadSDNode>(N);
7456 SDValue Chain = LD->getChain();
7457 SDValue Ptr = LD->getBasePtr();
7458
7459 // If load is not volatile and there are no uses of the loaded value (and
7460 // the updated indexed value in case of indexed loads), change uses of the
7461 // chain value into uses of the chain input (i.e. delete the dead load).
7462 if (!LD->isVolatile()) {
7463 if (N->getValueType(1) == MVT::Other) {
7464 // Unindexed loads.
7465 if (!N->hasAnyUseOfValue(0)) {
7466 // It's not safe to use the two value CombineTo variant here. e.g.
7467 // v1, chain2 = load chain1, loc
7468 // v2, chain3 = load chain2, loc
7469 // v3 = add v2, c
7470 // Now we replace use of chain2 with chain1. This makes the second load
7471 // isomorphic to the one we are deleting, and thus makes this load live.
7472 DEBUG(dbgs() << "\nReplacing.6 ";
7473 N->dump(&DAG);
7474 dbgs() << "\nWith chain: ";
7475 Chain.getNode()->dump(&DAG);
7476 dbgs() << "\n");
7477 WorkListRemover DeadNodes(*this);
7478 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), Chain);
7479
7480 if (N->use_empty()) {
7481 removeFromWorkList(N);
7482 DAG.DeleteNode(N);
7483 }
7484
7485 return SDValue(N, 0); // Return N so it doesn't get rechecked!
7486 }
7487 } else {
7488 // Indexed loads.
7489 assert(N->getValueType(2) == MVT::Other && "Malformed indexed loads?");
7490 if (!N->hasAnyUseOfValue(0) && !N->hasAnyUseOfValue(1)) {
7491 SDValue Undef = DAG.getUNDEF(N->getValueType(0));
7492 DEBUG(dbgs() << "\nReplacing.7 ";
7493 N->dump(&DAG);
7494 dbgs() << "\nWith: ";
7495 Undef.getNode()->dump(&DAG);
7496 dbgs() << " and 2 other values\n");
7497 WorkListRemover DeadNodes(*this);
7498 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Undef);
7499 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1),
7500 DAG.getUNDEF(N->getValueType(1)));
7501 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 2), Chain);
7502 removeFromWorkList(N);
7503 DAG.DeleteNode(N);
7504 return SDValue(N, 0); // Return N so it doesn't get rechecked!
7505 }
7506 }
7507 }
7508
7509 // If this load is directly stored, replace the load value with the stored
7510 // value.
7511 // TODO: Handle store large -> read small portion.
7512 // TODO: Handle TRUNCSTORE/LOADEXT
7513 if (ISD::isNormalLoad(N) && !LD->isVolatile()) {
7514 if (ISD::isNON_TRUNCStore(Chain.getNode())) {
7515 StoreSDNode *PrevST = cast<StoreSDNode>(Chain);
7516 if (PrevST->getBasePtr() == Ptr &&
7517 PrevST->getValue().getValueType() == N->getValueType(0))
7518 return CombineTo(N, Chain.getOperand(1), Chain);
7519 }
7520 }
7521
7522 // Try to infer better alignment information than the load already has.
7523 if (OptLevel != CodeGenOpt::None && LD->isUnindexed()) {
7524 if (unsigned Align = DAG.InferPtrAlignment(Ptr)) {
7525 if (Align > LD->getMemOperand()->getBaseAlignment()) {
7526 SDValue NewLoad =
7527 DAG.getExtLoad(LD->getExtensionType(), SDLoc(N),
7528 LD->getValueType(0),
7529 Chain, Ptr, LD->getPointerInfo(),
7530 LD->getMemoryVT(),
7531 LD->isVolatile(), LD->isNonTemporal(), Align,
7532 LD->getTBAAInfo());
7533 return CombineTo(N, NewLoad, SDValue(NewLoad.getNode(), 1), true);
7534 }
7535 }
7536 }
7537
7538 bool UseAA = CombinerAA.getNumOccurrences() > 0 ? CombinerAA :
7539 TLI.getTargetMachine().getSubtarget<TargetSubtargetInfo>().useAA();
7540 if (UseAA) {
7541 // Walk up chain skipping non-aliasing memory nodes.
7542 SDValue BetterChain = FindBetterChain(N, Chain);
7543
7544 // If there is a better chain.
7545 if (Chain != BetterChain) {
7546 SDValue ReplLoad;
7547
7548 // Replace the chain to void dependency.
7549 if (LD->getExtensionType() == ISD::NON_EXTLOAD) {
7550 ReplLoad = DAG.getLoad(N->getValueType(0), SDLoc(LD),
7551 BetterChain, Ptr, LD->getMemOperand());
7552 } else {
7553 ReplLoad = DAG.getExtLoad(LD->getExtensionType(), SDLoc(LD),
7554 LD->getValueType(0),
7555 BetterChain, Ptr, LD->getMemoryVT(),
7556 LD->getMemOperand());
7557 }
7558
7559 // Create token factor to keep old chain connected.
7560 SDValue Token = DAG.getNode(ISD::TokenFactor, SDLoc(N),
7561 MVT::Other, Chain, ReplLoad.getValue(1));
7562
7563 // Make sure the new and old chains are cleaned up.
7564 AddToWorkList(Token.getNode());
7565
7566 // Replace uses with load result and token factor. Don't add users
7567 // to work list.
7568 return CombineTo(N, ReplLoad.getValue(0), Token, false);
7569 }
7570 }
7571
7572 // Try transforming N to an indexed load.
7573 if (CombineToPreIndexedLoadStore(N) || CombineToPostIndexedLoadStore(N))
7574 return SDValue(N, 0);
7575
7576 // Try to slice up N to more direct loads if the slices are mapped to
7577 // different register banks or pairing can take place.
7578 if (SliceUpLoad(N))
7579 return SDValue(N, 0);
7580
7581 return SDValue();
7582}
7583
7584namespace {
7585/// \brief Helper structure used to slice a load in smaller loads.
7586/// Basically a slice is obtained from the following sequence:
7587/// Origin = load Ty1, Base
7588/// Shift = srl Ty1 Origin, CstTy Amount
7589/// Inst = trunc Shift to Ty2
7590///
7591/// Then, it will be rewriten into:
7592/// Slice = load SliceTy, Base + SliceOffset
7593/// [Inst = zext Slice to Ty2], only if SliceTy <> Ty2
7594///
7595/// SliceTy is deduced from the number of bits that are actually used to
7596/// build Inst.
7597struct LoadedSlice {
7598 /// \brief Helper structure used to compute the cost of a slice.
7599 struct Cost {
7600 /// Are we optimizing for code size.
7601 bool ForCodeSize;
7602 /// Various cost.
7603 unsigned Loads;
7604 unsigned Truncates;
7605 unsigned CrossRegisterBanksCopies;
7606 unsigned ZExts;
7607 unsigned Shift;
7608
7609 Cost(bool ForCodeSize = false)
7610 : ForCodeSize(ForCodeSize), Loads(0), Truncates(0),
7611 CrossRegisterBanksCopies(0), ZExts(0), Shift(0) {}
7612
7613 /// \brief Get the cost of one isolated slice.
7614 Cost(const LoadedSlice &LS, bool ForCodeSize = false)
7615 : ForCodeSize(ForCodeSize), Loads(1), Truncates(0),
7616 CrossRegisterBanksCopies(0), ZExts(0), Shift(0) {
7617 EVT TruncType = LS.Inst->getValueType(0);
7618 EVT LoadedType = LS.getLoadedType();
7619 if (TruncType != LoadedType &&
7620 !LS.DAG->getTargetLoweringInfo().isZExtFree(LoadedType, TruncType))
7621 ZExts = 1;
7622 }
7623
7624 /// \brief Account for slicing gain in the current cost.
7625 /// Slicing provide a few gains like removing a shift or a
7626 /// truncate. This method allows to grow the cost of the original
7627 /// load with the gain from this slice.
7628 void addSliceGain(const LoadedSlice &LS) {
7629 // Each slice saves a truncate.
7630 const TargetLowering &TLI = LS.DAG->getTargetLoweringInfo();
7631 if (!TLI.isTruncateFree(LS.Inst->getValueType(0),
7632 LS.Inst->getOperand(0).getValueType()))
7633 ++Truncates;
7634 // If there is a shift amount, this slice gets rid of it.
7635 if (LS.Shift)
7636 ++Shift;
7637 // If this slice can merge a cross register bank copy, account for it.
7638 if (LS.canMergeExpensiveCrossRegisterBankCopy())
7639 ++CrossRegisterBanksCopies;
7640 }
7641
7642 Cost &operator+=(const Cost &RHS) {
7643 Loads += RHS.Loads;
7644 Truncates += RHS.Truncates;
7645 CrossRegisterBanksCopies += RHS.CrossRegisterBanksCopies;
7646 ZExts += RHS.ZExts;
7647 Shift += RHS.Shift;
7648 return *this;
7649 }
7650
7651 bool operator==(const Cost &RHS) const {
7652 return Loads == RHS.Loads && Truncates == RHS.Truncates &&
7653 CrossRegisterBanksCopies == RHS.CrossRegisterBanksCopies &&
7654 ZExts == RHS.ZExts && Shift == RHS.Shift;
7655 }
7656
7657 bool operator!=(const Cost &RHS) const { return !(*this == RHS); }
7658
7659 bool operator<(const Cost &RHS) const {
7660 // Assume cross register banks copies are as expensive as loads.
7661 // FIXME: Do we want some more target hooks?
7662 unsigned ExpensiveOpsLHS = Loads + CrossRegisterBanksCopies;
7663 unsigned ExpensiveOpsRHS = RHS.Loads + RHS.CrossRegisterBanksCopies;
7664 // Unless we are optimizing for code size, consider the
7665 // expensive operation first.
7666 if (!ForCodeSize && ExpensiveOpsLHS != ExpensiveOpsRHS)
7667 return ExpensiveOpsLHS < ExpensiveOpsRHS;
7668 return (Truncates + ZExts + Shift + ExpensiveOpsLHS) <
7669 (RHS.Truncates + RHS.ZExts + RHS.Shift + ExpensiveOpsRHS);
7670 }
7671
7672 bool operator>(const Cost &RHS) const { return RHS < *this; }
7673
7674 bool operator<=(const Cost &RHS) const { return !(RHS < *this); }
7675
7676 bool operator>=(const Cost &RHS) const { return !(*this < RHS); }
7677 };
7678 // The last instruction that represent the slice. This should be a
7679 // truncate instruction.
7680 SDNode *Inst;
7681 // The original load instruction.
7682 LoadSDNode *Origin;
7683 // The right shift amount in bits from the original load.
7684 unsigned Shift;
7685 // The DAG from which Origin came from.
7686 // This is used to get some contextual information about legal types, etc.
7687 SelectionDAG *DAG;
7688
7689 LoadedSlice(SDNode *Inst = NULL, LoadSDNode *Origin = NULL,
7690 unsigned Shift = 0, SelectionDAG *DAG = NULL)
7691 : Inst(Inst), Origin(Origin), Shift(Shift), DAG(DAG) {}
7692
7693 LoadedSlice(const LoadedSlice &LS)
7694 : Inst(LS.Inst), Origin(LS.Origin), Shift(LS.Shift), DAG(LS.DAG) {}
7695
7696 /// \brief Get the bits used in a chunk of bits \p BitWidth large.
7697 /// \return Result is \p BitWidth and has used bits set to 1 and
7698 /// not used bits set to 0.
7699 APInt getUsedBits() const {
7700 // Reproduce the trunc(lshr) sequence:
7701 // - Start from the truncated value.
7702 // - Zero extend to the desired bit width.
7703 // - Shift left.
7704 assert(Origin && "No original load to compare against.");
7705 unsigned BitWidth = Origin->getValueSizeInBits(0);
7706 assert(Inst && "This slice is not bound to an instruction");
7707 assert(Inst->getValueSizeInBits(0) <= BitWidth &&
7708 "Extracted slice is bigger than the whole type!");
7709 APInt UsedBits(Inst->getValueSizeInBits(0), 0);
7710 UsedBits.setAllBits();
7711 UsedBits = UsedBits.zext(BitWidth);
7712 UsedBits <<= Shift;
7713 return UsedBits;
7714 }
7715
7716 /// \brief Get the size of the slice to be loaded in bytes.
7717 unsigned getLoadedSize() const {
7718 unsigned SliceSize = getUsedBits().countPopulation();
7719 assert(!(SliceSize & 0x7) && "Size is not a multiple of a byte.");
7720 return SliceSize / 8;
7721 }
7722
7723 /// \brief Get the type that will be loaded for this slice.
7724 /// Note: This may not be the final type for the slice.
7725 EVT getLoadedType() const {
7726 assert(DAG && "Missing context");
7727 LLVMContext &Ctxt = *DAG->getContext();
7728 return EVT::getIntegerVT(Ctxt, getLoadedSize() * 8);
7729 }
7730
7731 /// \brief Get the alignment of the load used for this slice.
7732 unsigned getAlignment() const {
7733 unsigned Alignment = Origin->getAlignment();
7734 unsigned Offset = getOffsetFromBase();
7735 if (Offset != 0)
7736 Alignment = MinAlign(Alignment, Alignment + Offset);
7737 return Alignment;
7738 }
7739
7740 /// \brief Check if this slice can be rewritten with legal operations.
7741 bool isLegal() const {
7742 // An invalid slice is not legal.
7743 if (!Origin || !Inst || !DAG)
7744 return false;
7745
7746 // Offsets are for indexed load only, we do not handle that.
7747 if (Origin->getOffset().getOpcode() != ISD::UNDEF)
7748 return false;
7749
7750 const TargetLowering &TLI = DAG->getTargetLoweringInfo();
7751
7752 // Check that the type is legal.
7753 EVT SliceType = getLoadedType();
7754 if (!TLI.isTypeLegal(SliceType))
7755 return false;
7756
7757 // Check that the load is legal for this type.
7758 if (!TLI.isOperationLegal(ISD::LOAD, SliceType))
7759 return false;
7760
7761 // Check that the offset can be computed.
7762 // 1. Check its type.
7763 EVT PtrType = Origin->getBasePtr().getValueType();
7764 if (PtrType == MVT::Untyped || PtrType.isExtended())
7765 return false;
7766
7767 // 2. Check that it fits in the immediate.
7768 if (!TLI.isLegalAddImmediate(getOffsetFromBase()))
7769 return false;
7770
7771 // 3. Check that the computation is legal.
7772 if (!TLI.isOperationLegal(ISD::ADD, PtrType))
7773 return false;
7774
7775 // Check that the zext is legal if it needs one.
7776 EVT TruncateType = Inst->getValueType(0);
7777 if (TruncateType != SliceType &&
7778 !TLI.isOperationLegal(ISD::ZERO_EXTEND, TruncateType))
7779 return false;
7780
7781 return true;
7782 }
7783
7784 /// \brief Get the offset in bytes of this slice in the original chunk of
7785 /// bits.
7786 /// \pre DAG != NULL.
7787 uint64_t getOffsetFromBase() const {
7788 assert(DAG && "Missing context.");
7789 bool IsBigEndian =
7790 DAG->getTargetLoweringInfo().getDataLayout()->isBigEndian();
7791 assert(!(Shift & 0x7) && "Shifts not aligned on Bytes are not supported.");
7792 uint64_t Offset = Shift / 8;
7793 unsigned TySizeInBytes = Origin->getValueSizeInBits(0) / 8;
7794 assert(!(Origin->getValueSizeInBits(0) & 0x7) &&
7795 "The size of the original loaded type is not a multiple of a"
7796 " byte.");
7797 // If Offset is bigger than TySizeInBytes, it means we are loading all
7798 // zeros. This should have been optimized before in the process.
7799 assert(TySizeInBytes > Offset &&
7800 "Invalid shift amount for given loaded size");
7801 if (IsBigEndian)
7802 Offset = TySizeInBytes - Offset - getLoadedSize();
7803 return Offset;
7804 }
7805
7806 /// \brief Generate the sequence of instructions to load the slice
7807 /// represented by this object and redirect the uses of this slice to
7808 /// this new sequence of instructions.
7809 /// \pre this->Inst && this->Origin are valid Instructions and this
7810 /// object passed the legal check: LoadedSlice::isLegal returned true.
7811 /// \return The last instruction of the sequence used to load the slice.
7812 SDValue loadSlice() const {
7813 assert(Inst && Origin && "Unable to replace a non-existing slice.");
7814 const SDValue &OldBaseAddr = Origin->getBasePtr();
7815 SDValue BaseAddr = OldBaseAddr;
7816 // Get the offset in that chunk of bytes w.r.t. the endianess.
7817 int64_t Offset = static_cast<int64_t>(getOffsetFromBase());
7818 assert(Offset >= 0 && "Offset too big to fit in int64_t!");
7819 if (Offset) {
7820 // BaseAddr = BaseAddr + Offset.
7821 EVT ArithType = BaseAddr.getValueType();
7822 BaseAddr = DAG->getNode(ISD::ADD, SDLoc(Origin), ArithType, BaseAddr,
7823 DAG->getConstant(Offset, ArithType));
7824 }
7825
7826 // Create the type of the loaded slice according to its size.
7827 EVT SliceType = getLoadedType();
7828
7829 // Create the load for the slice.
7830 SDValue LastInst = DAG->getLoad(
7831 SliceType, SDLoc(Origin), Origin->getChain(), BaseAddr,
7832 Origin->getPointerInfo().getWithOffset(Offset), Origin->isVolatile(),
7833 Origin->isNonTemporal(), Origin->isInvariant(), getAlignment());
7834 // If the final type is not the same as the loaded type, this means that
7835 // we have to pad with zero. Create a zero extend for that.
7836 EVT FinalType = Inst->getValueType(0);
7837 if (SliceType != FinalType)
7838 LastInst =
7839 DAG->getNode(ISD::ZERO_EXTEND, SDLoc(LastInst), FinalType, LastInst);
7840 return LastInst;
7841 }
7842
7843 /// \brief Check if this slice can be merged with an expensive cross register
7844 /// bank copy. E.g.,
7845 /// i = load i32
7846 /// f = bitcast i32 i to float
7847 bool canMergeExpensiveCrossRegisterBankCopy() const {
7848 if (!Inst || !Inst->hasOneUse())
7849 return false;
7850 SDNode *Use = *Inst->use_begin();
7851 if (Use->getOpcode() != ISD::BITCAST)
7852 return false;
7853 assert(DAG && "Missing context");
7854 const TargetLowering &TLI = DAG->getTargetLoweringInfo();
7855 EVT ResVT = Use->getValueType(0);
7856 const TargetRegisterClass *ResRC = TLI.getRegClassFor(ResVT.getSimpleVT());
7857 const TargetRegisterClass *ArgRC =
7858 TLI.getRegClassFor(Use->getOperand(0).getValueType().getSimpleVT());
7859 if (ArgRC == ResRC || !TLI.isOperationLegal(ISD::LOAD, ResVT))
7860 return false;
7861
7862 // At this point, we know that we perform a cross-register-bank copy.
7863 // Check if it is expensive.
7864 const TargetRegisterInfo *TRI = TLI.getTargetMachine().getRegisterInfo();
7865 // Assume bitcasts are cheap, unless both register classes do not
7866 // explicitly share a common sub class.
7867 if (!TRI || TRI->getCommonSubClass(ArgRC, ResRC))
7868 return false;
7869
7870 // Check if it will be merged with the load.
7871 // 1. Check the alignment constraint.
7872 unsigned RequiredAlignment = TLI.getDataLayout()->getABITypeAlignment(
7873 ResVT.getTypeForEVT(*DAG->getContext()));
7874
7875 if (RequiredAlignment > getAlignment())
7876 return false;
7877
7878 // 2. Check that the load is a legal operation for that type.
7879 if (!TLI.isOperationLegal(ISD::LOAD, ResVT))
7880 return false;
7881
7882 // 3. Check that we do not have a zext in the way.
7883 if (Inst->getValueType(0) != getLoadedType())
7884 return false;
7885
7886 return true;
7887 }
7888};
7889}
7890
7891/// \brief Sorts LoadedSlice according to their offset.
7892struct LoadedSliceSorter {
7893 bool operator()(const LoadedSlice &LHS, const LoadedSlice &RHS) {
7894 assert(LHS.Origin == RHS.Origin && "Different bases not implemented.");
7895 return LHS.getOffsetFromBase() < RHS.getOffsetFromBase();
7896 }
7897};
7898
7899/// \brief Check that all bits set in \p UsedBits form a dense region, i.e.,
7900/// \p UsedBits looks like 0..0 1..1 0..0.
7901static bool areUsedBitsDense(const APInt &UsedBits) {
7902 // If all the bits are one, this is dense!
7903 if (UsedBits.isAllOnesValue())
7904 return true;
7905
7906 // Get rid of the unused bits on the right.
7907 APInt NarrowedUsedBits = UsedBits.lshr(UsedBits.countTrailingZeros());
7908 // Get rid of the unused bits on the left.
7909 if (NarrowedUsedBits.countLeadingZeros())
7910 NarrowedUsedBits = NarrowedUsedBits.trunc(NarrowedUsedBits.getActiveBits());
7911 // Check that the chunk of bits is completely used.
7912 return NarrowedUsedBits.isAllOnesValue();
7913}
7914
7915/// \brief Check whether or not \p First and \p Second are next to each other
7916/// in memory. This means that there is no hole between the bits loaded
7917/// by \p First and the bits loaded by \p Second.
7918static bool areSlicesNextToEachOther(const LoadedSlice &First,
7919 const LoadedSlice &Second) {
7920 assert(First.Origin == Second.Origin && First.Origin &&
7921 "Unable to match different memory origins.");
7922 APInt UsedBits = First.getUsedBits();
7923 assert((UsedBits & Second.getUsedBits()) == 0 &&
7924 "Slices are not supposed to overlap.");
7925 UsedBits |= Second.getUsedBits();
7926 return areUsedBitsDense(UsedBits);
7927}
7928
7929/// \brief Adjust the \p GlobalLSCost according to the target
7930/// paring capabilities and the layout of the slices.
7931/// \pre \p GlobalLSCost should account for at least as many loads as
7932/// there is in the slices in \p LoadedSlices.
7933static void adjustCostForPairing(SmallVectorImpl<LoadedSlice> &LoadedSlices,
7934 LoadedSlice::Cost &GlobalLSCost) {
7935 unsigned NumberOfSlices = LoadedSlices.size();
7936 // If there is less than 2 elements, no pairing is possible.
7937 if (NumberOfSlices < 2)
7938 return;
7939
7940 // Sort the slices so that elements that are likely to be next to each
7941 // other in memory are next to each other in the list.
7942 std::sort(LoadedSlices.begin(), LoadedSlices.end(), LoadedSliceSorter());
7943 const TargetLowering &TLI = LoadedSlices[0].DAG->getTargetLoweringInfo();
7944 // First (resp. Second) is the first (resp. Second) potentially candidate
7945 // to be placed in a paired load.
7946 const LoadedSlice *First = NULL;
7947 const LoadedSlice *Second = NULL;
7948 for (unsigned CurrSlice = 0; CurrSlice < NumberOfSlices; ++CurrSlice,
7949 // Set the beginning of the pair.
7950 First = Second) {
7951
7952 Second = &LoadedSlices[CurrSlice];
7953
7954 // If First is NULL, it means we start a new pair.
7955 // Get to the next slice.
7956 if (!First)
7957 continue;
7958
7959 EVT LoadedType = First->getLoadedType();
7960
7961 // If the types of the slices are different, we cannot pair them.
7962 if (LoadedType != Second->getLoadedType())
7963 continue;
7964
7965 // Check if the target supplies paired loads for this type.
7966 unsigned RequiredAlignment = 0;
7967 if (!TLI.hasPairedLoad(LoadedType, RequiredAlignment)) {
7968 // move to the next pair, this type is hopeless.
7969 Second = NULL;
7970 continue;
7971 }
7972 // Check if we meet the alignment requirement.
7973 if (RequiredAlignment > First->getAlignment())
7974 continue;
7975
7976 // Check that both loads are next to each other in memory.
7977 if (!areSlicesNextToEachOther(*First, *Second))
7978 continue;
7979
7980 assert(GlobalLSCost.Loads > 0 && "We save more loads than we created!");
7981 --GlobalLSCost.Loads;
7982 // Move to the next pair.
7983 Second = NULL;
7984 }
7985}
7986
7987/// \brief Check the profitability of all involved LoadedSlice.
7988/// Currently, it is considered profitable if there is exactly two
7989/// involved slices (1) which are (2) next to each other in memory, and
7990/// whose cost (\see LoadedSlice::Cost) is smaller than the original load (3).
7991///
7992/// Note: The order of the elements in \p LoadedSlices may be modified, but not
7993/// the elements themselves.
7994///
7995/// FIXME: When the cost model will be mature enough, we can relax
7996/// constraints (1) and (2).
7997static bool isSlicingProfitable(SmallVectorImpl<LoadedSlice> &LoadedSlices,
7998 const APInt &UsedBits, bool ForCodeSize) {
7999 unsigned NumberOfSlices = LoadedSlices.size();
8000 if (StressLoadSlicing)
8001 return NumberOfSlices > 1;
8002
8003 // Check (1).
8004 if (NumberOfSlices != 2)
8005 return false;
8006
8007 // Check (2).
8008 if (!areUsedBitsDense(UsedBits))
8009 return false;
8010
8011 // Check (3).
8012 LoadedSlice::Cost OrigCost(ForCodeSize), GlobalSlicingCost(ForCodeSize);
8013 // The original code has one big load.
8014 OrigCost.Loads = 1;
8015 for (unsigned CurrSlice = 0; CurrSlice < NumberOfSlices; ++CurrSlice) {
8016 const LoadedSlice &LS = LoadedSlices[CurrSlice];
8017 // Accumulate the cost of all the slices.
8018 LoadedSlice::Cost SliceCost(LS, ForCodeSize);
8019 GlobalSlicingCost += SliceCost;
8020
8021 // Account as cost in the original configuration the gain obtained
8022 // with the current slices.
8023 OrigCost.addSliceGain(LS);
8024 }
8025
8026 // If the target supports paired load, adjust the cost accordingly.
8027 adjustCostForPairing(LoadedSlices, GlobalSlicingCost);
8028 return OrigCost > GlobalSlicingCost;
8029}
8030
8031/// \brief If the given load, \p LI, is used only by trunc or trunc(lshr)
8032/// operations, split it in the various pieces being extracted.
8033///
8034/// This sort of thing is introduced by SROA.
8035/// This slicing takes care not to insert overlapping loads.
8036/// \pre LI is a simple load (i.e., not an atomic or volatile load).
8037bool DAGCombiner::SliceUpLoad(SDNode *N) {
8038 if (Level < AfterLegalizeDAG)
8039 return false;
8040
8041 LoadSDNode *LD = cast<LoadSDNode>(N);
8042 if (LD->isVolatile() || !ISD::isNormalLoad(LD) ||
8043 !LD->getValueType(0).isInteger())
8044 return false;
8045
8046 // Keep track of already used bits to detect overlapping values.
8047 // In that case, we will just abort the transformation.
8048 APInt UsedBits(LD->getValueSizeInBits(0), 0);
8049
8050 SmallVector<LoadedSlice, 4> LoadedSlices;
8051
8052 // Check if this load is used as several smaller chunks of bits.
8053 // Basically, look for uses in trunc or trunc(lshr) and record a new chain
8054 // of computation for each trunc.
8055 for (SDNode::use_iterator UI = LD->use_begin(), UIEnd = LD->use_end();
8056 UI != UIEnd; ++UI) {
8057 // Skip the uses of the chain.
8058 if (UI.getUse().getResNo() != 0)
8059 continue;
8060
8061 SDNode *User = *UI;
8062 unsigned Shift = 0;
8063
8064 // Check if this is a trunc(lshr).
8065 if (User->getOpcode() == ISD::SRL && User->hasOneUse() &&
8066 isa<ConstantSDNode>(User->getOperand(1))) {
8067 Shift = cast<ConstantSDNode>(User->getOperand(1))->getZExtValue();
8068 User = *User->use_begin();
8069 }
8070
8071 // At this point, User is a Truncate, iff we encountered, trunc or
8072 // trunc(lshr).
8073 if (User->getOpcode() != ISD::TRUNCATE)
8074 return false;
8075
8076 // The width of the type must be a power of 2 and greater than 8-bits.
8077 // Otherwise the load cannot be represented in LLVM IR.
8078 // Moreover, if we shifted with a non 8-bits multiple, the slice
8079 // will be accross several bytes. We do not support that.
8080 unsigned Width = User->getValueSizeInBits(0);
8081 if (Width < 8 || !isPowerOf2_32(Width) || (Shift & 0x7))
8082 return 0;
8083
8084 // Build the slice for this chain of computations.
8085 LoadedSlice LS(User, LD, Shift, &DAG);
8086 APInt CurrentUsedBits = LS.getUsedBits();
8087
8088 // Check if this slice overlaps with another.
8089 if ((CurrentUsedBits & UsedBits) != 0)
8090 return false;
8091 // Update the bits used globally.
8092 UsedBits |= CurrentUsedBits;
8093
8094 // Check if the new slice would be legal.
8095 if (!LS.isLegal())
8096 return false;
8097
8098 // Record the slice.
8099 LoadedSlices.push_back(LS);
8100 }
8101
8102 // Abort slicing if it does not seem to be profitable.
8103 if (!isSlicingProfitable(LoadedSlices, UsedBits, ForCodeSize))
8104 return false;
8105
8106 ++SlicedLoads;
8107
8108 // Rewrite each chain to use an independent load.
8109 // By construction, each chain can be represented by a unique load.
8110
8111 // Prepare the argument for the new token factor for all the slices.
8112 SmallVector<SDValue, 8> ArgChains;
8113 for (SmallVectorImpl<LoadedSlice>::const_iterator
8114 LSIt = LoadedSlices.begin(),
8115 LSItEnd = LoadedSlices.end();
8116 LSIt != LSItEnd; ++LSIt) {
8117 SDValue SliceInst = LSIt->loadSlice();
8118 CombineTo(LSIt->Inst, SliceInst, true);
8119 if (SliceInst.getNode()->getOpcode() != ISD::LOAD)
8120 SliceInst = SliceInst.getOperand(0);
8121 assert(SliceInst->getOpcode() == ISD::LOAD &&
8122 "It takes more than a zext to get to the loaded slice!!");
8123 ArgChains.push_back(SliceInst.getValue(1));
8124 }
8125
8126 SDValue Chain = DAG.getNode(ISD::TokenFactor, SDLoc(LD), MVT::Other,
8127 &ArgChains[0], ArgChains.size());
8128 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), Chain);
8129 return true;
8130}
8131
8132/// CheckForMaskedLoad - Check to see if V is (and load (ptr), imm), where the
8133/// load is having specific bytes cleared out. If so, return the byte size
8134/// being masked out and the shift amount.
8135static std::pair<unsigned, unsigned>
8136CheckForMaskedLoad(SDValue V, SDValue Ptr, SDValue Chain) {
8137 std::pair<unsigned, unsigned> Result(0, 0);
8138
8139 // Check for the structure we're looking for.
8140 if (V->getOpcode() != ISD::AND ||
8141 !isa<ConstantSDNode>(V->getOperand(1)) ||
8142 !ISD::isNormalLoad(V->getOperand(0).getNode()))
8143 return Result;
8144
8145 // Check the chain and pointer.
8146 LoadSDNode *LD = cast<LoadSDNode>(V->getOperand(0));
8147 if (LD->getBasePtr() != Ptr) return Result; // Not from same pointer.
8148
8149 // The store should be chained directly to the load or be an operand of a
8150 // tokenfactor.
8151 if (LD == Chain.getNode())
8152 ; // ok.
8153 else if (Chain->getOpcode() != ISD::TokenFactor)
8154 return Result; // Fail.
8155 else {
8156 bool isOk = false;
8157 for (unsigned i = 0, e = Chain->getNumOperands(); i != e; ++i)
8158 if (Chain->getOperand(i).getNode() == LD) {
8159 isOk = true;
8160 break;
8161 }
8162 if (!isOk) return Result;
8163 }
8164
8165 // This only handles simple types.
8166 if (V.getValueType() != MVT::i16 &&
8167 V.getValueType() != MVT::i32 &&
8168 V.getValueType() != MVT::i64)
8169 return Result;
8170
8171 // Check the constant mask. Invert it so that the bits being masked out are
8172 // 0 and the bits being kept are 1. Use getSExtValue so that leading bits
8173 // follow the sign bit for uniformity.
8174 uint64_t NotMask = ~cast<ConstantSDNode>(V->getOperand(1))->getSExtValue();
8175 unsigned NotMaskLZ = countLeadingZeros(NotMask);
8176 if (NotMaskLZ & 7) return Result; // Must be multiple of a byte.
8177 unsigned NotMaskTZ = countTrailingZeros(NotMask);
8178 if (NotMaskTZ & 7) return Result; // Must be multiple of a byte.
8179 if (NotMaskLZ == 64) return Result; // All zero mask.
8180
8181 // See if we have a continuous run of bits. If so, we have 0*1+0*
8182 if (CountTrailingOnes_64(NotMask >> NotMaskTZ)+NotMaskTZ+NotMaskLZ != 64)
8183 return Result;
8184
8185 // Adjust NotMaskLZ down to be from the actual size of the int instead of i64.
8186 if (V.getValueType() != MVT::i64 && NotMaskLZ)
8187 NotMaskLZ -= 64-V.getValueSizeInBits();
8188
8189 unsigned MaskedBytes = (V.getValueSizeInBits()-NotMaskLZ-NotMaskTZ)/8;
8190 switch (MaskedBytes) {
8191 case 1:
8192 case 2:
8193 case 4: break;
8194 default: return Result; // All one mask, or 5-byte mask.
8195 }
8196
8197 // Verify that the first bit starts at a multiple of mask so that the access
8198 // is aligned the same as the access width.
8199 if (NotMaskTZ && NotMaskTZ/8 % MaskedBytes) return Result;
8200
8201 Result.first = MaskedBytes;
8202 Result.second = NotMaskTZ/8;
8203 return Result;
8204}
8205
8206
8207/// ShrinkLoadReplaceStoreWithStore - Check to see if IVal is something that
8208/// provides a value as specified by MaskInfo. If so, replace the specified
8209/// store with a narrower store of truncated IVal.
8210static SDNode *
8211ShrinkLoadReplaceStoreWithStore(const std::pair<unsigned, unsigned> &MaskInfo,
8212 SDValue IVal, StoreSDNode *St,
8213 DAGCombiner *DC) {
8214 unsigned NumBytes = MaskInfo.first;
8215 unsigned ByteShift = MaskInfo.second;
8216 SelectionDAG &DAG = DC->getDAG();
8217
8218 // Check to see if IVal is all zeros in the part being masked in by the 'or'
8219 // that uses this. If not, this is not a replacement.
8220 APInt Mask = ~APInt::getBitsSet(IVal.getValueSizeInBits(),
8221 ByteShift*8, (ByteShift+NumBytes)*8);
8222 if (!DAG.MaskedValueIsZero(IVal, Mask)) return 0;
8223
8224 // Check that it is legal on the target to do this. It is legal if the new
8225 // VT we're shrinking to (i8/i16/i32) is legal or we're still before type
8226 // legalization.
8227 MVT VT = MVT::getIntegerVT(NumBytes*8);
8228 if (!DC->isTypeLegal(VT))
8229 return 0;
8230
8231 // Okay, we can do this! Replace the 'St' store with a store of IVal that is
8232 // shifted by ByteShift and truncated down to NumBytes.
8233 if (ByteShift)
8234 IVal = DAG.getNode(ISD::SRL, SDLoc(IVal), IVal.getValueType(), IVal,
8235 DAG.getConstant(ByteShift*8,
8236 DC->getShiftAmountTy(IVal.getValueType())));
8237
8238 // Figure out the offset for the store and the alignment of the access.
8239 unsigned StOffset;
8240 unsigned NewAlign = St->getAlignment();
8241
8242 if (DAG.getTargetLoweringInfo().isLittleEndian())
8243 StOffset = ByteShift;
8244 else
8245 StOffset = IVal.getValueType().getStoreSize() - ByteShift - NumBytes;
8246
8247 SDValue Ptr = St->getBasePtr();
8248 if (StOffset) {
8249 Ptr = DAG.getNode(ISD::ADD, SDLoc(IVal), Ptr.getValueType(),
8250 Ptr, DAG.getConstant(StOffset, Ptr.getValueType()));
8251 NewAlign = MinAlign(NewAlign, StOffset);
8252 }
8253
8254 // Truncate down to the new size.
8255 IVal = DAG.getNode(ISD::TRUNCATE, SDLoc(IVal), VT, IVal);
8256
8257 ++OpsNarrowed;
8258 return DAG.getStore(St->getChain(), SDLoc(St), IVal, Ptr,
8259 St->getPointerInfo().getWithOffset(StOffset),
8260 false, false, NewAlign).getNode();
8261}
8262
8263
8264/// ReduceLoadOpStoreWidth - Look for sequence of load / op / store where op is
8265/// one of 'or', 'xor', and 'and' of immediates. If 'op' is only touching some
8266/// of the loaded bits, try narrowing the load and store if it would end up
8267/// being a win for performance or code size.
8268SDValue DAGCombiner::ReduceLoadOpStoreWidth(SDNode *N) {
8269 StoreSDNode *ST = cast<StoreSDNode>(N);
8270 if (ST->isVolatile())
8271 return SDValue();
8272
8273 SDValue Chain = ST->getChain();
8274 SDValue Value = ST->getValue();
8275 SDValue Ptr = ST->getBasePtr();
8276 EVT VT = Value.getValueType();
8277
8278 if (ST->isTruncatingStore() || VT.isVector() || !Value.hasOneUse())
8279 return SDValue();
8280
8281 unsigned Opc = Value.getOpcode();
8282
8283 // If this is "store (or X, Y), P" and X is "(and (load P), cst)", where cst
8284 // is a byte mask indicating a consecutive number of bytes, check to see if
8285 // Y is known to provide just those bytes. If so, we try to replace the
8286 // load + replace + store sequence with a single (narrower) store, which makes
8287 // the load dead.
8288 if (Opc == ISD::OR) {
8289 std::pair<unsigned, unsigned> MaskedLoad;
8290 MaskedLoad = CheckForMaskedLoad(Value.getOperand(0), Ptr, Chain);
8291 if (MaskedLoad.first)
8292 if (SDNode *NewST = ShrinkLoadReplaceStoreWithStore(MaskedLoad,
8293 Value.getOperand(1), ST,this))
8294 return SDValue(NewST, 0);
8295
8296 // Or is commutative, so try swapping X and Y.
8297 MaskedLoad = CheckForMaskedLoad(Value.getOperand(1), Ptr, Chain);
8298 if (MaskedLoad.first)
8299 if (SDNode *NewST = ShrinkLoadReplaceStoreWithStore(MaskedLoad,
8300 Value.getOperand(0), ST,this))
8301 return SDValue(NewST, 0);
8302 }
8303
8304 if ((Opc != ISD::OR && Opc != ISD::XOR && Opc != ISD::AND) ||
8305 Value.getOperand(1).getOpcode() != ISD::Constant)
8306 return SDValue();
8307
8308 SDValue N0 = Value.getOperand(0);
8309 if (ISD::isNormalLoad(N0.getNode()) && N0.hasOneUse() &&
8310 Chain == SDValue(N0.getNode(), 1)) {
8311 LoadSDNode *LD = cast<LoadSDNode>(N0);
8312 if (LD->getBasePtr() != Ptr ||
8313 LD->getPointerInfo().getAddrSpace() !=
8314 ST->getPointerInfo().getAddrSpace())
8315 return SDValue();
8316
8317 // Find the type to narrow it the load / op / store to.
8318 SDValue N1 = Value.getOperand(1);
8319 unsigned BitWidth = N1.getValueSizeInBits();
8320 APInt Imm = cast<ConstantSDNode>(N1)->getAPIntValue();
8321 if (Opc == ISD::AND)
8322 Imm ^= APInt::getAllOnesValue(BitWidth);
8323 if (Imm == 0 || Imm.isAllOnesValue())
8324 return SDValue();
8325 unsigned ShAmt = Imm.countTrailingZeros();
8326 unsigned MSB = BitWidth - Imm.countLeadingZeros() - 1;
8327 unsigned NewBW = NextPowerOf2(MSB - ShAmt);
8328 EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), NewBW);
8329 while (NewBW < BitWidth &&
8330 !(TLI.isOperationLegalOrCustom(Opc, NewVT) &&
8331 TLI.isNarrowingProfitable(VT, NewVT))) {
8332 NewBW = NextPowerOf2(NewBW);
8333 NewVT = EVT::getIntegerVT(*DAG.getContext(), NewBW);
8334 }
8335 if (NewBW >= BitWidth)
8336 return SDValue();
8337
8338 // If the lsb changed does not start at the type bitwidth boundary,
8339 // start at the previous one.
8340 if (ShAmt % NewBW)
8341 ShAmt = (((ShAmt + NewBW - 1) / NewBW) * NewBW) - NewBW;
8342 APInt Mask = APInt::getBitsSet(BitWidth, ShAmt,
8343 std::min(BitWidth, ShAmt + NewBW));
8344 if ((Imm & Mask) == Imm) {
8345 APInt NewImm = (Imm & Mask).lshr(ShAmt).trunc(NewBW);
8346 if (Opc == ISD::AND)
8347 NewImm ^= APInt::getAllOnesValue(NewBW);
8348 uint64_t PtrOff = ShAmt / 8;
8349 // For big endian targets, we need to adjust the offset to the pointer to
8350 // load the correct bytes.
8351 if (TLI.isBigEndian())
8352 PtrOff = (BitWidth + 7 - NewBW) / 8 - PtrOff;
8353
8354 unsigned NewAlign = MinAlign(LD->getAlignment(), PtrOff);
8355 Type *NewVTTy = NewVT.getTypeForEVT(*DAG.getContext());
8356 if (NewAlign < TLI.getDataLayout()->getABITypeAlignment(NewVTTy))
8357 return SDValue();
8358
8359 SDValue NewPtr = DAG.getNode(ISD::ADD, SDLoc(LD),
8360 Ptr.getValueType(), Ptr,
8361 DAG.getConstant(PtrOff, Ptr.getValueType()));
8362 SDValue NewLD = DAG.getLoad(NewVT, SDLoc(N0),
8363 LD->getChain(), NewPtr,
8364 LD->getPointerInfo().getWithOffset(PtrOff),
8365 LD->isVolatile(), LD->isNonTemporal(),
8366 LD->isInvariant(), NewAlign,
8367 LD->getTBAAInfo());
8368 SDValue NewVal = DAG.getNode(Opc, SDLoc(Value), NewVT, NewLD,
8369 DAG.getConstant(NewImm, NewVT));
8370 SDValue NewST = DAG.getStore(Chain, SDLoc(N),
8371 NewVal, NewPtr,
8372 ST->getPointerInfo().getWithOffset(PtrOff),
8373 false, false, NewAlign);
8374
8375 AddToWorkList(NewPtr.getNode());
8376 AddToWorkList(NewLD.getNode());
8377 AddToWorkList(NewVal.getNode());
8378 WorkListRemover DeadNodes(*this);
8379 DAG.ReplaceAllUsesOfValueWith(N0.getValue(1), NewLD.getValue(1));
8380 ++OpsNarrowed;
8381 return NewST;
8382 }
8383 }
8384
8385 return SDValue();
8386}
8387
8388/// TransformFPLoadStorePair - For a given floating point load / store pair,
8389/// if the load value isn't used by any other operations, then consider
8390/// transforming the pair to integer load / store operations if the target
8391/// deems the transformation profitable.
8392SDValue DAGCombiner::TransformFPLoadStorePair(SDNode *N) {
8393 StoreSDNode *ST = cast<StoreSDNode>(N);
8394 SDValue Chain = ST->getChain();
8395 SDValue Value = ST->getValue();
8396 if (ISD::isNormalStore(ST) && ISD::isNormalLoad(Value.getNode()) &&
8397 Value.hasOneUse() &&
8398 Chain == SDValue(Value.getNode(), 1)) {
8399 LoadSDNode *LD = cast<LoadSDNode>(Value);
8400 EVT VT = LD->getMemoryVT();
8401 if (!VT.isFloatingPoint() ||
8402 VT != ST->getMemoryVT() ||
8403 LD->isNonTemporal() ||
8404 ST->isNonTemporal() ||
8405 LD->getPointerInfo().getAddrSpace() != 0 ||
8406 ST->getPointerInfo().getAddrSpace() != 0)
8407 return SDValue();
8408
8409 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits());
8410 if (!TLI.isOperationLegal(ISD::LOAD, IntVT) ||
8411 !TLI.isOperationLegal(ISD::STORE, IntVT) ||
8412 !TLI.isDesirableToTransformToIntegerOp(ISD::LOAD, VT) ||
8413 !TLI.isDesirableToTransformToIntegerOp(ISD::STORE, VT))
8414 return SDValue();
8415
8416 unsigned LDAlign = LD->getAlignment();
8417 unsigned STAlign = ST->getAlignment();
8418 Type *IntVTTy = IntVT.getTypeForEVT(*DAG.getContext());
8419 unsigned ABIAlign = TLI.getDataLayout()->getABITypeAlignment(IntVTTy);
8420 if (LDAlign < ABIAlign || STAlign < ABIAlign)
8421 return SDValue();
8422
8423 SDValue NewLD = DAG.getLoad(IntVT, SDLoc(Value),
8424 LD->getChain(), LD->getBasePtr(),
8425 LD->getPointerInfo(),
8426 false, false, false, LDAlign);
8427
8428 SDValue NewST = DAG.getStore(NewLD.getValue(1), SDLoc(N),
8429 NewLD, ST->getBasePtr(),
8430 ST->getPointerInfo(),
8431 false, false, STAlign);
8432
8433 AddToWorkList(NewLD.getNode());
8434 AddToWorkList(NewST.getNode());
8435 WorkListRemover DeadNodes(*this);
8436 DAG.ReplaceAllUsesOfValueWith(Value.getValue(1), NewLD.getValue(1));
8437 ++LdStFP2Int;
8438 return NewST;
8439 }
8440
8441 return SDValue();
8442}
8443
8444/// Helper struct to parse and store a memory address as base + index + offset.
8445/// We ignore sign extensions when it is safe to do so.
8446/// The following two expressions are not equivalent. To differentiate we need
8447/// to store whether there was a sign extension involved in the index
8448/// computation.
8449/// (load (i64 add (i64 copyfromreg %c)
8450/// (i64 signextend (add (i8 load %index)
8451/// (i8 1))))
8452/// vs
8453///
8454/// (load (i64 add (i64 copyfromreg %c)
8455/// (i64 signextend (i32 add (i32 signextend (i8 load %index))
8456/// (i32 1)))))
8457struct BaseIndexOffset {
8458 SDValue Base;
8459 SDValue Index;
8460 int64_t Offset;
8461 bool IsIndexSignExt;
8462
8463 BaseIndexOffset() : Offset(0), IsIndexSignExt(false) {}
8464
8465 BaseIndexOffset(SDValue Base, SDValue Index, int64_t Offset,
8466 bool IsIndexSignExt) :
8467 Base(Base), Index(Index), Offset(Offset), IsIndexSignExt(IsIndexSignExt) {}
8468
8469 bool equalBaseIndex(const BaseIndexOffset &Other) {
8470 return Other.Base == Base && Other.Index == Index &&
8471 Other.IsIndexSignExt == IsIndexSignExt;
8472 }
8473
8474 /// Parses tree in Ptr for base, index, offset addresses.
8475 static BaseIndexOffset match(SDValue Ptr) {
8476 bool IsIndexSignExt = false;
8477
8478 // We only can pattern match BASE + INDEX + OFFSET. If Ptr is not an ADD
8479 // instruction, then it could be just the BASE or everything else we don't
8480 // know how to handle. Just use Ptr as BASE and give up.
8481 if (Ptr->getOpcode() != ISD::ADD)
8482 return BaseIndexOffset(Ptr, SDValue(), 0, IsIndexSignExt);
8483
8484 // We know that we have at least an ADD instruction. Try to pattern match
8485 // the simple case of BASE + OFFSET.
8486 if (isa<ConstantSDNode>(Ptr->getOperand(1))) {
8487 int64_t Offset = cast<ConstantSDNode>(Ptr->getOperand(1))->getSExtValue();
8488 return BaseIndexOffset(Ptr->getOperand(0), SDValue(), Offset,
8489 IsIndexSignExt);
8490 }
8491
8492 // Inside a loop the current BASE pointer is calculated using an ADD and a
8493 // MUL instruction. In this case Ptr is the actual BASE pointer.
8494 // (i64 add (i64 %array_ptr)
8495 // (i64 mul (i64 %induction_var)
8496 // (i64 %element_size)))
8497 if (Ptr->getOperand(1)->getOpcode() == ISD::MUL)
8498 return BaseIndexOffset(Ptr, SDValue(), 0, IsIndexSignExt);
8499
8500 // Look at Base + Index + Offset cases.
8501 SDValue Base = Ptr->getOperand(0);
8502 SDValue IndexOffset = Ptr->getOperand(1);
8503
8504 // Skip signextends.
8505 if (IndexOffset->getOpcode() == ISD::SIGN_EXTEND) {
8506 IndexOffset = IndexOffset->getOperand(0);
8507 IsIndexSignExt = true;
8508 }
8509
8510 // Either the case of Base + Index (no offset) or something else.
8511 if (IndexOffset->getOpcode() != ISD::ADD)
8512 return BaseIndexOffset(Base, IndexOffset, 0, IsIndexSignExt);
8513
8514 // Now we have the case of Base + Index + offset.
8515 SDValue Index = IndexOffset->getOperand(0);
8516 SDValue Offset = IndexOffset->getOperand(1);
8517
8518 if (!isa<ConstantSDNode>(Offset))
8519 return BaseIndexOffset(Ptr, SDValue(), 0, IsIndexSignExt);
8520
8521 // Ignore signextends.
8522 if (Index->getOpcode() == ISD::SIGN_EXTEND) {
8523 Index = Index->getOperand(0);
8524 IsIndexSignExt = true;
8525 } else IsIndexSignExt = false;
8526
8527 int64_t Off = cast<ConstantSDNode>(Offset)->getSExtValue();
8528 return BaseIndexOffset(Base, Index, Off, IsIndexSignExt);
8529 }
8530};
8531
8532/// Holds a pointer to an LSBaseSDNode as well as information on where it
8533/// is located in a sequence of memory operations connected by a chain.
8534struct MemOpLink {
8535 MemOpLink (LSBaseSDNode *N, int64_t Offset, unsigned Seq):
8536 MemNode(N), OffsetFromBase(Offset), SequenceNum(Seq) { }
8537 // Ptr to the mem node.
8538 LSBaseSDNode *MemNode;
8539 // Offset from the base ptr.
8540 int64_t OffsetFromBase;
8541 // What is the sequence number of this mem node.
8542 // Lowest mem operand in the DAG starts at zero.
8543 unsigned SequenceNum;
8544};
8545
8546/// Sorts store nodes in a link according to their offset from a shared
8547// base ptr.
8548struct ConsecutiveMemoryChainSorter {
8549 bool operator()(MemOpLink LHS, MemOpLink RHS) {
1//===-- DAGCombiner.cpp - Implement a DAG node combiner -------------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass combines dag nodes to form fewer, simpler DAG nodes. It can be run
11// both before and after the DAG is legalized.
12//
13// This pass is not a substitute for the LLVM IR instcombine pass. This pass is
14// primarily intended to handle simplification opportunities that are implicit
15// in the LLVM IR and exposed by the various codegen lowering phases.
16//
17//===----------------------------------------------------------------------===//
18
19#define DEBUG_TYPE "dagcombine"
20#include "llvm/CodeGen/SelectionDAG.h"
21#include "llvm/ADT/SmallPtrSet.h"
22#include "llvm/ADT/Statistic.h"
23#include "llvm/Analysis/AliasAnalysis.h"
24#include "llvm/CodeGen/MachineFrameInfo.h"
25#include "llvm/CodeGen/MachineFunction.h"
26#include "llvm/IR/DataLayout.h"
27#include "llvm/IR/DerivedTypes.h"
28#include "llvm/IR/Function.h"
29#include "llvm/IR/LLVMContext.h"
30#include "llvm/Support/CommandLine.h"
31#include "llvm/Support/Debug.h"
32#include "llvm/Support/ErrorHandling.h"
33#include "llvm/Support/MathExtras.h"
34#include "llvm/Support/raw_ostream.h"
35#include "llvm/Target/TargetLowering.h"
36#include "llvm/Target/TargetMachine.h"
37#include "llvm/Target/TargetOptions.h"
38#include "llvm/Target/TargetRegisterInfo.h"
39#include "llvm/Target/TargetSubtargetInfo.h"
40#include <algorithm>
41using namespace llvm;
42
43STATISTIC(NodesCombined , "Number of dag nodes combined");
44STATISTIC(PreIndexedNodes , "Number of pre-indexed nodes created");
45STATISTIC(PostIndexedNodes, "Number of post-indexed nodes created");
46STATISTIC(OpsNarrowed , "Number of load/op/store narrowed");
47STATISTIC(LdStFP2Int , "Number of fp load/store pairs transformed to int");
48STATISTIC(SlicedLoads, "Number of load sliced");
49
50namespace {
51 static cl::opt<bool>
52 CombinerAA("combiner-alias-analysis", cl::Hidden,
53 cl::desc("Turn on alias analysis during testing"));
54
55 static cl::opt<bool>
56 CombinerGlobalAA("combiner-global-alias-analysis", cl::Hidden,
57 cl::desc("Include global information in alias analysis"));
58
59 /// Hidden option to stress test load slicing, i.e., when this option
60 /// is enabled, load slicing bypasses most of its profitability guards.
61 static cl::opt<bool>
62 StressLoadSlicing("combiner-stress-load-slicing", cl::Hidden,
63 cl::desc("Bypass the profitability model of load "
64 "slicing"),
65 cl::init(false));
66
67//------------------------------ DAGCombiner ---------------------------------//
68
69 class DAGCombiner {
70 SelectionDAG &DAG;
71 const TargetLowering &TLI;
72 CombineLevel Level;
73 CodeGenOpt::Level OptLevel;
74 bool LegalOperations;
75 bool LegalTypes;
76 bool ForCodeSize;
77
78 // Worklist of all of the nodes that need to be simplified.
79 //
80 // This has the semantics that when adding to the worklist,
81 // the item added must be next to be processed. It should
82 // also only appear once. The naive approach to this takes
83 // linear time.
84 //
85 // To reduce the insert/remove time to logarithmic, we use
86 // a set and a vector to maintain our worklist.
87 //
88 // The set contains the items on the worklist, but does not
89 // maintain the order they should be visited.
90 //
91 // The vector maintains the order nodes should be visited, but may
92 // contain duplicate or removed nodes. When choosing a node to
93 // visit, we pop off the order stack until we find an item that is
94 // also in the contents set. All operations are O(log N).
95 SmallPtrSet<SDNode*, 64> WorkListContents;
96 SmallVector<SDNode*, 64> WorkListOrder;
97
98 // AA - Used for DAG load/store alias analysis.
99 AliasAnalysis &AA;
100
101 /// AddUsersToWorkList - When an instruction is simplified, add all users of
102 /// the instruction to the work lists because they might get more simplified
103 /// now.
104 ///
105 void AddUsersToWorkList(SDNode *N) {
106 for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
107 UI != UE; ++UI)
108 AddToWorkList(*UI);
109 }
110
111 /// visit - call the node-specific routine that knows how to fold each
112 /// particular type of node.
113 SDValue visit(SDNode *N);
114
115 public:
116 /// AddToWorkList - Add to the work list making sure its instance is at the
117 /// back (next to be processed.)
118 void AddToWorkList(SDNode *N) {
119 WorkListContents.insert(N);
120 WorkListOrder.push_back(N);
121 }
122
123 /// removeFromWorkList - remove all instances of N from the worklist.
124 ///
125 void removeFromWorkList(SDNode *N) {
126 WorkListContents.erase(N);
127 }
128
129 SDValue CombineTo(SDNode *N, const SDValue *To, unsigned NumTo,
130 bool AddTo = true);
131
132 SDValue CombineTo(SDNode *N, SDValue Res, bool AddTo = true) {
133 return CombineTo(N, &Res, 1, AddTo);
134 }
135
136 SDValue CombineTo(SDNode *N, SDValue Res0, SDValue Res1,
137 bool AddTo = true) {
138 SDValue To[] = { Res0, Res1 };
139 return CombineTo(N, To, 2, AddTo);
140 }
141
142 void CommitTargetLoweringOpt(const TargetLowering::TargetLoweringOpt &TLO);
143
144 private:
145
146 /// SimplifyDemandedBits - Check the specified integer node value to see if
147 /// it can be simplified or if things it uses can be simplified by bit
148 /// propagation. If so, return true.
149 bool SimplifyDemandedBits(SDValue Op) {
150 unsigned BitWidth = Op.getValueType().getScalarType().getSizeInBits();
151 APInt Demanded = APInt::getAllOnesValue(BitWidth);
152 return SimplifyDemandedBits(Op, Demanded);
153 }
154
155 bool SimplifyDemandedBits(SDValue Op, const APInt &Demanded);
156
157 bool CombineToPreIndexedLoadStore(SDNode *N);
158 bool CombineToPostIndexedLoadStore(SDNode *N);
159 bool SliceUpLoad(SDNode *N);
160
161 void ReplaceLoadWithPromotedLoad(SDNode *Load, SDNode *ExtLoad);
162 SDValue PromoteOperand(SDValue Op, EVT PVT, bool &Replace);
163 SDValue SExtPromoteOperand(SDValue Op, EVT PVT);
164 SDValue ZExtPromoteOperand(SDValue Op, EVT PVT);
165 SDValue PromoteIntBinOp(SDValue Op);
166 SDValue PromoteIntShiftOp(SDValue Op);
167 SDValue PromoteExtend(SDValue Op);
168 bool PromoteLoad(SDValue Op);
169
170 void ExtendSetCCUses(const SmallVectorImpl<SDNode *> &SetCCs,
171 SDValue Trunc, SDValue ExtLoad, SDLoc DL,
172 ISD::NodeType ExtType);
173
174 /// combine - call the node-specific routine that knows how to fold each
175 /// particular type of node. If that doesn't do anything, try the
176 /// target-specific DAG combines.
177 SDValue combine(SDNode *N);
178
179 // Visitation implementation - Implement dag node combining for different
180 // node types. The semantics are as follows:
181 // Return Value:
182 // SDValue.getNode() == 0 - No change was made
183 // SDValue.getNode() == N - N was replaced, is dead and has been handled.
184 // otherwise - N should be replaced by the returned Operand.
185 //
186 SDValue visitTokenFactor(SDNode *N);
187 SDValue visitMERGE_VALUES(SDNode *N);
188 SDValue visitADD(SDNode *N);
189 SDValue visitSUB(SDNode *N);
190 SDValue visitADDC(SDNode *N);
191 SDValue visitSUBC(SDNode *N);
192 SDValue visitADDE(SDNode *N);
193 SDValue visitSUBE(SDNode *N);
194 SDValue visitMUL(SDNode *N);
195 SDValue visitSDIV(SDNode *N);
196 SDValue visitUDIV(SDNode *N);
197 SDValue visitSREM(SDNode *N);
198 SDValue visitUREM(SDNode *N);
199 SDValue visitMULHU(SDNode *N);
200 SDValue visitMULHS(SDNode *N);
201 SDValue visitSMUL_LOHI(SDNode *N);
202 SDValue visitUMUL_LOHI(SDNode *N);
203 SDValue visitSMULO(SDNode *N);
204 SDValue visitUMULO(SDNode *N);
205 SDValue visitSDIVREM(SDNode *N);
206 SDValue visitUDIVREM(SDNode *N);
207 SDValue visitAND(SDNode *N);
208 SDValue visitOR(SDNode *N);
209 SDValue visitXOR(SDNode *N);
210 SDValue SimplifyVBinOp(SDNode *N);
211 SDValue SimplifyVUnaryOp(SDNode *N);
212 SDValue visitSHL(SDNode *N);
213 SDValue visitSRA(SDNode *N);
214 SDValue visitSRL(SDNode *N);
215 SDValue visitCTLZ(SDNode *N);
216 SDValue visitCTLZ_ZERO_UNDEF(SDNode *N);
217 SDValue visitCTTZ(SDNode *N);
218 SDValue visitCTTZ_ZERO_UNDEF(SDNode *N);
219 SDValue visitCTPOP(SDNode *N);
220 SDValue visitSELECT(SDNode *N);
221 SDValue visitVSELECT(SDNode *N);
222 SDValue visitSELECT_CC(SDNode *N);
223 SDValue visitSETCC(SDNode *N);
224 SDValue visitSIGN_EXTEND(SDNode *N);
225 SDValue visitZERO_EXTEND(SDNode *N);
226 SDValue visitANY_EXTEND(SDNode *N);
227 SDValue visitSIGN_EXTEND_INREG(SDNode *N);
228 SDValue visitTRUNCATE(SDNode *N);
229 SDValue visitBITCAST(SDNode *N);
230 SDValue visitBUILD_PAIR(SDNode *N);
231 SDValue visitFADD(SDNode *N);
232 SDValue visitFSUB(SDNode *N);
233 SDValue visitFMUL(SDNode *N);
234 SDValue visitFMA(SDNode *N);
235 SDValue visitFDIV(SDNode *N);
236 SDValue visitFREM(SDNode *N);
237 SDValue visitFCOPYSIGN(SDNode *N);
238 SDValue visitSINT_TO_FP(SDNode *N);
239 SDValue visitUINT_TO_FP(SDNode *N);
240 SDValue visitFP_TO_SINT(SDNode *N);
241 SDValue visitFP_TO_UINT(SDNode *N);
242 SDValue visitFP_ROUND(SDNode *N);
243 SDValue visitFP_ROUND_INREG(SDNode *N);
244 SDValue visitFP_EXTEND(SDNode *N);
245 SDValue visitFNEG(SDNode *N);
246 SDValue visitFABS(SDNode *N);
247 SDValue visitFCEIL(SDNode *N);
248 SDValue visitFTRUNC(SDNode *N);
249 SDValue visitFFLOOR(SDNode *N);
250 SDValue visitBRCOND(SDNode *N);
251 SDValue visitBR_CC(SDNode *N);
252 SDValue visitLOAD(SDNode *N);
253 SDValue visitSTORE(SDNode *N);
254 SDValue visitINSERT_VECTOR_ELT(SDNode *N);
255 SDValue visitEXTRACT_VECTOR_ELT(SDNode *N);
256 SDValue visitBUILD_VECTOR(SDNode *N);
257 SDValue visitCONCAT_VECTORS(SDNode *N);
258 SDValue visitEXTRACT_SUBVECTOR(SDNode *N);
259 SDValue visitVECTOR_SHUFFLE(SDNode *N);
260
261 SDValue XformToShuffleWithZero(SDNode *N);
262 SDValue ReassociateOps(unsigned Opc, SDLoc DL, SDValue LHS, SDValue RHS);
263
264 SDValue visitShiftByConstant(SDNode *N, unsigned Amt);
265
266 bool SimplifySelectOps(SDNode *SELECT, SDValue LHS, SDValue RHS);
267 SDValue SimplifyBinOpWithSameOpcodeHands(SDNode *N);
268 SDValue SimplifySelect(SDLoc DL, SDValue N0, SDValue N1, SDValue N2);
269 SDValue SimplifySelectCC(SDLoc DL, SDValue N0, SDValue N1, SDValue N2,
270 SDValue N3, ISD::CondCode CC,
271 bool NotExtCompare = false);
272 SDValue SimplifySetCC(EVT VT, SDValue N0, SDValue N1, ISD::CondCode Cond,
273 SDLoc DL, bool foldBooleans = true);
274 SDValue SimplifyNodeWithTwoResults(SDNode *N, unsigned LoOp,
275 unsigned HiOp);
276 SDValue CombineConsecutiveLoads(SDNode *N, EVT VT);
277 SDValue ConstantFoldBITCASTofBUILD_VECTOR(SDNode *, EVT);
278 SDValue BuildSDIV(SDNode *N);
279 SDValue BuildUDIV(SDNode *N);
280 SDValue MatchBSwapHWordLow(SDNode *N, SDValue N0, SDValue N1,
281 bool DemandHighBits = true);
282 SDValue MatchBSwapHWord(SDNode *N, SDValue N0, SDValue N1);
283 SDNode *MatchRotate(SDValue LHS, SDValue RHS, SDLoc DL);
284 SDValue ReduceLoadWidth(SDNode *N);
285 SDValue ReduceLoadOpStoreWidth(SDNode *N);
286 SDValue TransformFPLoadStorePair(SDNode *N);
287 SDValue reduceBuildVecExtToExtBuildVec(SDNode *N);
288 SDValue reduceBuildVecConvertToConvertBuildVec(SDNode *N);
289
290 SDValue GetDemandedBits(SDValue V, const APInt &Mask);
291
292 /// GatherAllAliases - Walk up chain skipping non-aliasing memory nodes,
293 /// looking for aliasing nodes and adding them to the Aliases vector.
294 void GatherAllAliases(SDNode *N, SDValue OriginalChain,
295 SmallVectorImpl<SDValue> &Aliases);
296
297 /// isAlias - Return true if there is any possibility that the two addresses
298 /// overlap.
299 bool isAlias(SDValue Ptr1, int64_t Size1, bool IsVolatile1,
300 const Value *SrcValue1, int SrcValueOffset1,
301 unsigned SrcValueAlign1,
302 const MDNode *TBAAInfo1,
303 SDValue Ptr2, int64_t Size2, bool IsVolatile2,
304 const Value *SrcValue2, int SrcValueOffset2,
305 unsigned SrcValueAlign2,
306 const MDNode *TBAAInfo2) const;
307
308 /// isAlias - Return true if there is any possibility that the two addresses
309 /// overlap.
310 bool isAlias(LSBaseSDNode *Op0, LSBaseSDNode *Op1);
311
312 /// FindAliasInfo - Extracts the relevant alias information from the memory
313 /// node. Returns true if the operand was a load.
314 bool FindAliasInfo(SDNode *N,
315 SDValue &Ptr, int64_t &Size, bool &IsVolatile,
316 const Value *&SrcValue, int &SrcValueOffset,
317 unsigned &SrcValueAlignment,
318 const MDNode *&TBAAInfo) const;
319
320 /// FindBetterChain - Walk up chain skipping non-aliasing memory nodes,
321 /// looking for a better chain (aliasing node.)
322 SDValue FindBetterChain(SDNode *N, SDValue Chain);
323
324 /// Merge consecutive store operations into a wide store.
325 /// This optimization uses wide integers or vectors when possible.
326 /// \return True if some memory operations were changed.
327 bool MergeConsecutiveStores(StoreSDNode *N);
328
329 public:
330 DAGCombiner(SelectionDAG &D, AliasAnalysis &A, CodeGenOpt::Level OL)
331 : DAG(D), TLI(D.getTargetLoweringInfo()), Level(BeforeLegalizeTypes),
332 OptLevel(OL), LegalOperations(false), LegalTypes(false), AA(A) {
333 AttributeSet FnAttrs =
334 DAG.getMachineFunction().getFunction()->getAttributes();
335 ForCodeSize =
336 FnAttrs.hasAttribute(AttributeSet::FunctionIndex,
337 Attribute::OptimizeForSize) ||
338 FnAttrs.hasAttribute(AttributeSet::FunctionIndex, Attribute::MinSize);
339 }
340
341 /// Run - runs the dag combiner on all nodes in the work list
342 void Run(CombineLevel AtLevel);
343
344 SelectionDAG &getDAG() const { return DAG; }
345
346 /// getShiftAmountTy - Returns a type large enough to hold any valid
347 /// shift amount - before type legalization these can be huge.
348 EVT getShiftAmountTy(EVT LHSTy) {
349 assert(LHSTy.isInteger() && "Shift amount is not an integer type!");
350 if (LHSTy.isVector())
351 return LHSTy;
352 return LegalTypes ? TLI.getScalarShiftAmountTy(LHSTy)
353 : TLI.getPointerTy();
354 }
355
356 /// isTypeLegal - This method returns true if we are running before type
357 /// legalization or if the specified VT is legal.
358 bool isTypeLegal(const EVT &VT) {
359 if (!LegalTypes) return true;
360 return TLI.isTypeLegal(VT);
361 }
362
363 /// getSetCCResultType - Convenience wrapper around
364 /// TargetLowering::getSetCCResultType
365 EVT getSetCCResultType(EVT VT) const {
366 return TLI.getSetCCResultType(*DAG.getContext(), VT);
367 }
368 };
369}
370
371
372namespace {
373/// WorkListRemover - This class is a DAGUpdateListener that removes any deleted
374/// nodes from the worklist.
375class WorkListRemover : public SelectionDAG::DAGUpdateListener {
376 DAGCombiner &DC;
377public:
378 explicit WorkListRemover(DAGCombiner &dc)
379 : SelectionDAG::DAGUpdateListener(dc.getDAG()), DC(dc) {}
380
381 virtual void NodeDeleted(SDNode *N, SDNode *E) {
382 DC.removeFromWorkList(N);
383 }
384};
385}
386
387//===----------------------------------------------------------------------===//
388// TargetLowering::DAGCombinerInfo implementation
389//===----------------------------------------------------------------------===//
390
391void TargetLowering::DAGCombinerInfo::AddToWorklist(SDNode *N) {
392 ((DAGCombiner*)DC)->AddToWorkList(N);
393}
394
395void TargetLowering::DAGCombinerInfo::RemoveFromWorklist(SDNode *N) {
396 ((DAGCombiner*)DC)->removeFromWorkList(N);
397}
398
399SDValue TargetLowering::DAGCombinerInfo::
400CombineTo(SDNode *N, const std::vector<SDValue> &To, bool AddTo) {
401 return ((DAGCombiner*)DC)->CombineTo(N, &To[0], To.size(), AddTo);
402}
403
404SDValue TargetLowering::DAGCombinerInfo::
405CombineTo(SDNode *N, SDValue Res, bool AddTo) {
406 return ((DAGCombiner*)DC)->CombineTo(N, Res, AddTo);
407}
408
409
410SDValue TargetLowering::DAGCombinerInfo::
411CombineTo(SDNode *N, SDValue Res0, SDValue Res1, bool AddTo) {
412 return ((DAGCombiner*)DC)->CombineTo(N, Res0, Res1, AddTo);
413}
414
415void TargetLowering::DAGCombinerInfo::
416CommitTargetLoweringOpt(const TargetLowering::TargetLoweringOpt &TLO) {
417 return ((DAGCombiner*)DC)->CommitTargetLoweringOpt(TLO);
418}
419
420//===----------------------------------------------------------------------===//
421// Helper Functions
422//===----------------------------------------------------------------------===//
423
424/// isNegatibleForFree - Return 1 if we can compute the negated form of the
425/// specified expression for the same cost as the expression itself, or 2 if we
426/// can compute the negated form more cheaply than the expression itself.
427static char isNegatibleForFree(SDValue Op, bool LegalOperations,
428 const TargetLowering &TLI,
429 const TargetOptions *Options,
430 unsigned Depth = 0) {
431 // fneg is removable even if it has multiple uses.
432 if (Op.getOpcode() == ISD::FNEG) return 2;
433
434 // Don't allow anything with multiple uses.
435 if (!Op.hasOneUse()) return 0;
436
437 // Don't recurse exponentially.
438 if (Depth > 6) return 0;
439
440 switch (Op.getOpcode()) {
441 default: return false;
442 case ISD::ConstantFP:
443 // Don't invert constant FP values after legalize. The negated constant
444 // isn't necessarily legal.
445 return LegalOperations ? 0 : 1;
446 case ISD::FADD:
447 // FIXME: determine better conditions for this xform.
448 if (!Options->UnsafeFPMath) return 0;
449
450 // After operation legalization, it might not be legal to create new FSUBs.
451 if (LegalOperations &&
452 !TLI.isOperationLegalOrCustom(ISD::FSUB, Op.getValueType()))
453 return 0;
454
455 // fold (fneg (fadd A, B)) -> (fsub (fneg A), B)
456 if (char V = isNegatibleForFree(Op.getOperand(0), LegalOperations, TLI,
457 Options, Depth + 1))
458 return V;
459 // fold (fneg (fadd A, B)) -> (fsub (fneg B), A)
460 return isNegatibleForFree(Op.getOperand(1), LegalOperations, TLI, Options,
461 Depth + 1);
462 case ISD::FSUB:
463 // We can't turn -(A-B) into B-A when we honor signed zeros.
464 if (!Options->UnsafeFPMath) return 0;
465
466 // fold (fneg (fsub A, B)) -> (fsub B, A)
467 return 1;
468
469 case ISD::FMUL:
470 case ISD::FDIV:
471 if (Options->HonorSignDependentRoundingFPMath()) return 0;
472
473 // fold (fneg (fmul X, Y)) -> (fmul (fneg X), Y) or (fmul X, (fneg Y))
474 if (char V = isNegatibleForFree(Op.getOperand(0), LegalOperations, TLI,
475 Options, Depth + 1))
476 return V;
477
478 return isNegatibleForFree(Op.getOperand(1), LegalOperations, TLI, Options,
479 Depth + 1);
480
481 case ISD::FP_EXTEND:
482 case ISD::FP_ROUND:
483 case ISD::FSIN:
484 return isNegatibleForFree(Op.getOperand(0), LegalOperations, TLI, Options,
485 Depth + 1);
486 }
487}
488
489/// GetNegatedExpression - If isNegatibleForFree returns true, this function
490/// returns the newly negated expression.
491static SDValue GetNegatedExpression(SDValue Op, SelectionDAG &DAG,
492 bool LegalOperations, unsigned Depth = 0) {
493 // fneg is removable even if it has multiple uses.
494 if (Op.getOpcode() == ISD::FNEG) return Op.getOperand(0);
495
496 // Don't allow anything with multiple uses.
497 assert(Op.hasOneUse() && "Unknown reuse!");
498
499 assert(Depth <= 6 && "GetNegatedExpression doesn't match isNegatibleForFree");
500 switch (Op.getOpcode()) {
501 default: llvm_unreachable("Unknown code");
502 case ISD::ConstantFP: {
503 APFloat V = cast<ConstantFPSDNode>(Op)->getValueAPF();
504 V.changeSign();
505 return DAG.getConstantFP(V, Op.getValueType());
506 }
507 case ISD::FADD:
508 // FIXME: determine better conditions for this xform.
509 assert(DAG.getTarget().Options.UnsafeFPMath);
510
511 // fold (fneg (fadd A, B)) -> (fsub (fneg A), B)
512 if (isNegatibleForFree(Op.getOperand(0), LegalOperations,
513 DAG.getTargetLoweringInfo(),
514 &DAG.getTarget().Options, Depth+1))
515 return DAG.getNode(ISD::FSUB, SDLoc(Op), Op.getValueType(),
516 GetNegatedExpression(Op.getOperand(0), DAG,
517 LegalOperations, Depth+1),
518 Op.getOperand(1));
519 // fold (fneg (fadd A, B)) -> (fsub (fneg B), A)
520 return DAG.getNode(ISD::FSUB, SDLoc(Op), Op.getValueType(),
521 GetNegatedExpression(Op.getOperand(1), DAG,
522 LegalOperations, Depth+1),
523 Op.getOperand(0));
524 case ISD::FSUB:
525 // We can't turn -(A-B) into B-A when we honor signed zeros.
526 assert(DAG.getTarget().Options.UnsafeFPMath);
527
528 // fold (fneg (fsub 0, B)) -> B
529 if (ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(Op.getOperand(0)))
530 if (N0CFP->getValueAPF().isZero())
531 return Op.getOperand(1);
532
533 // fold (fneg (fsub A, B)) -> (fsub B, A)
534 return DAG.getNode(ISD::FSUB, SDLoc(Op), Op.getValueType(),
535 Op.getOperand(1), Op.getOperand(0));
536
537 case ISD::FMUL:
538 case ISD::FDIV:
539 assert(!DAG.getTarget().Options.HonorSignDependentRoundingFPMath());
540
541 // fold (fneg (fmul X, Y)) -> (fmul (fneg X), Y)
542 if (isNegatibleForFree(Op.getOperand(0), LegalOperations,
543 DAG.getTargetLoweringInfo(),
544 &DAG.getTarget().Options, Depth+1))
545 return DAG.getNode(Op.getOpcode(), SDLoc(Op), Op.getValueType(),
546 GetNegatedExpression(Op.getOperand(0), DAG,
547 LegalOperations, Depth+1),
548 Op.getOperand(1));
549
550 // fold (fneg (fmul X, Y)) -> (fmul X, (fneg Y))
551 return DAG.getNode(Op.getOpcode(), SDLoc(Op), Op.getValueType(),
552 Op.getOperand(0),
553 GetNegatedExpression(Op.getOperand(1), DAG,
554 LegalOperations, Depth+1));
555
556 case ISD::FP_EXTEND:
557 case ISD::FSIN:
558 return DAG.getNode(Op.getOpcode(), SDLoc(Op), Op.getValueType(),
559 GetNegatedExpression(Op.getOperand(0), DAG,
560 LegalOperations, Depth+1));
561 case ISD::FP_ROUND:
562 return DAG.getNode(ISD::FP_ROUND, SDLoc(Op), Op.getValueType(),
563 GetNegatedExpression(Op.getOperand(0), DAG,
564 LegalOperations, Depth+1),
565 Op.getOperand(1));
566 }
567}
568
569
570// isSetCCEquivalent - Return true if this node is a setcc, or is a select_cc
571// that selects between the values 1 and 0, making it equivalent to a setcc.
572// Also, set the incoming LHS, RHS, and CC references to the appropriate
573// nodes based on the type of node we are checking. This simplifies life a
574// bit for the callers.
575static bool isSetCCEquivalent(SDValue N, SDValue &LHS, SDValue &RHS,
576 SDValue &CC) {
577 if (N.getOpcode() == ISD::SETCC) {
578 LHS = N.getOperand(0);
579 RHS = N.getOperand(1);
580 CC = N.getOperand(2);
581 return true;
582 }
583 if (N.getOpcode() == ISD::SELECT_CC &&
584 N.getOperand(2).getOpcode() == ISD::Constant &&
585 N.getOperand(3).getOpcode() == ISD::Constant &&
586 cast<ConstantSDNode>(N.getOperand(2))->getAPIntValue() == 1 &&
587 cast<ConstantSDNode>(N.getOperand(3))->isNullValue()) {
588 LHS = N.getOperand(0);
589 RHS = N.getOperand(1);
590 CC = N.getOperand(4);
591 return true;
592 }
593 return false;
594}
595
596// isOneUseSetCC - Return true if this is a SetCC-equivalent operation with only
597// one use. If this is true, it allows the users to invert the operation for
598// free when it is profitable to do so.
599static bool isOneUseSetCC(SDValue N) {
600 SDValue N0, N1, N2;
601 if (isSetCCEquivalent(N, N0, N1, N2) && N.getNode()->hasOneUse())
602 return true;
603 return false;
604}
605
606SDValue DAGCombiner::ReassociateOps(unsigned Opc, SDLoc DL,
607 SDValue N0, SDValue N1) {
608 EVT VT = N0.getValueType();
609 if (N0.getOpcode() == Opc && isa<ConstantSDNode>(N0.getOperand(1))) {
610 if (isa<ConstantSDNode>(N1)) {
611 // reassoc. (op (op x, c1), c2) -> (op x, (op c1, c2))
612 SDValue OpNode =
613 DAG.FoldConstantArithmetic(Opc, VT,
614 cast<ConstantSDNode>(N0.getOperand(1)),
615 cast<ConstantSDNode>(N1));
616 return DAG.getNode(Opc, DL, VT, N0.getOperand(0), OpNode);
617 }
618 if (N0.hasOneUse()) {
619 // reassoc. (op (op x, c1), y) -> (op (op x, y), c1) iff x+c1 has one use
620 SDValue OpNode = DAG.getNode(Opc, SDLoc(N0), VT,
621 N0.getOperand(0), N1);
622 AddToWorkList(OpNode.getNode());
623 return DAG.getNode(Opc, DL, VT, OpNode, N0.getOperand(1));
624 }
625 }
626
627 if (N1.getOpcode() == Opc && isa<ConstantSDNode>(N1.getOperand(1))) {
628 if (isa<ConstantSDNode>(N0)) {
629 // reassoc. (op c2, (op x, c1)) -> (op x, (op c1, c2))
630 SDValue OpNode =
631 DAG.FoldConstantArithmetic(Opc, VT,
632 cast<ConstantSDNode>(N1.getOperand(1)),
633 cast<ConstantSDNode>(N0));
634 return DAG.getNode(Opc, DL, VT, N1.getOperand(0), OpNode);
635 }
636 if (N1.hasOneUse()) {
637 // reassoc. (op y, (op x, c1)) -> (op (op x, y), c1) iff x+c1 has one use
638 SDValue OpNode = DAG.getNode(Opc, SDLoc(N0), VT,
639 N1.getOperand(0), N0);
640 AddToWorkList(OpNode.getNode());
641 return DAG.getNode(Opc, DL, VT, OpNode, N1.getOperand(1));
642 }
643 }
644
645 return SDValue();
646}
647
648SDValue DAGCombiner::CombineTo(SDNode *N, const SDValue *To, unsigned NumTo,
649 bool AddTo) {
650 assert(N->getNumValues() == NumTo && "Broken CombineTo call!");
651 ++NodesCombined;
652 DEBUG(dbgs() << "\nReplacing.1 ";
653 N->dump(&DAG);
654 dbgs() << "\nWith: ";
655 To[0].getNode()->dump(&DAG);
656 dbgs() << " and " << NumTo-1 << " other values\n";
657 for (unsigned i = 0, e = NumTo; i != e; ++i)
658 assert((!To[i].getNode() ||
659 N->getValueType(i) == To[i].getValueType()) &&
660 "Cannot combine value to value of different type!"));
661 WorkListRemover DeadNodes(*this);
662 DAG.ReplaceAllUsesWith(N, To);
663 if (AddTo) {
664 // Push the new nodes and any users onto the worklist
665 for (unsigned i = 0, e = NumTo; i != e; ++i) {
666 if (To[i].getNode()) {
667 AddToWorkList(To[i].getNode());
668 AddUsersToWorkList(To[i].getNode());
669 }
670 }
671 }
672
673 // Finally, if the node is now dead, remove it from the graph. The node
674 // may not be dead if the replacement process recursively simplified to
675 // something else needing this node.
676 if (N->use_empty()) {
677 // Nodes can be reintroduced into the worklist. Make sure we do not
678 // process a node that has been replaced.
679 removeFromWorkList(N);
680
681 // Finally, since the node is now dead, remove it from the graph.
682 DAG.DeleteNode(N);
683 }
684 return SDValue(N, 0);
685}
686
687void DAGCombiner::
688CommitTargetLoweringOpt(const TargetLowering::TargetLoweringOpt &TLO) {
689 // Replace all uses. If any nodes become isomorphic to other nodes and
690 // are deleted, make sure to remove them from our worklist.
691 WorkListRemover DeadNodes(*this);
692 DAG.ReplaceAllUsesOfValueWith(TLO.Old, TLO.New);
693
694 // Push the new node and any (possibly new) users onto the worklist.
695 AddToWorkList(TLO.New.getNode());
696 AddUsersToWorkList(TLO.New.getNode());
697
698 // Finally, if the node is now dead, remove it from the graph. The node
699 // may not be dead if the replacement process recursively simplified to
700 // something else needing this node.
701 if (TLO.Old.getNode()->use_empty()) {
702 removeFromWorkList(TLO.Old.getNode());
703
704 // If the operands of this node are only used by the node, they will now
705 // be dead. Make sure to visit them first to delete dead nodes early.
706 for (unsigned i = 0, e = TLO.Old.getNode()->getNumOperands(); i != e; ++i)
707 if (TLO.Old.getNode()->getOperand(i).getNode()->hasOneUse())
708 AddToWorkList(TLO.Old.getNode()->getOperand(i).getNode());
709
710 DAG.DeleteNode(TLO.Old.getNode());
711 }
712}
713
714/// SimplifyDemandedBits - Check the specified integer node value to see if
715/// it can be simplified or if things it uses can be simplified by bit
716/// propagation. If so, return true.
717bool DAGCombiner::SimplifyDemandedBits(SDValue Op, const APInt &Demanded) {
718 TargetLowering::TargetLoweringOpt TLO(DAG, LegalTypes, LegalOperations);
719 APInt KnownZero, KnownOne;
720 if (!TLI.SimplifyDemandedBits(Op, Demanded, KnownZero, KnownOne, TLO))
721 return false;
722
723 // Revisit the node.
724 AddToWorkList(Op.getNode());
725
726 // Replace the old value with the new one.
727 ++NodesCombined;
728 DEBUG(dbgs() << "\nReplacing.2 ";
729 TLO.Old.getNode()->dump(&DAG);
730 dbgs() << "\nWith: ";
731 TLO.New.getNode()->dump(&DAG);
732 dbgs() << '\n');
733
734 CommitTargetLoweringOpt(TLO);
735 return true;
736}
737
738void DAGCombiner::ReplaceLoadWithPromotedLoad(SDNode *Load, SDNode *ExtLoad) {
739 SDLoc dl(Load);
740 EVT VT = Load->getValueType(0);
741 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, VT, SDValue(ExtLoad, 0));
742
743 DEBUG(dbgs() << "\nReplacing.9 ";
744 Load->dump(&DAG);
745 dbgs() << "\nWith: ";
746 Trunc.getNode()->dump(&DAG);
747 dbgs() << '\n');
748 WorkListRemover DeadNodes(*this);
749 DAG.ReplaceAllUsesOfValueWith(SDValue(Load, 0), Trunc);
750 DAG.ReplaceAllUsesOfValueWith(SDValue(Load, 1), SDValue(ExtLoad, 1));
751 removeFromWorkList(Load);
752 DAG.DeleteNode(Load);
753 AddToWorkList(Trunc.getNode());
754}
755
756SDValue DAGCombiner::PromoteOperand(SDValue Op, EVT PVT, bool &Replace) {
757 Replace = false;
758 SDLoc dl(Op);
759 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Op)) {
760 EVT MemVT = LD->getMemoryVT();
761 ISD::LoadExtType ExtType = ISD::isNON_EXTLoad(LD)
762 ? (TLI.isLoadExtLegal(ISD::ZEXTLOAD, MemVT) ? ISD::ZEXTLOAD
763 : ISD::EXTLOAD)
764 : LD->getExtensionType();
765 Replace = true;
766 return DAG.getExtLoad(ExtType, dl, PVT,
767 LD->getChain(), LD->getBasePtr(),
768 MemVT, LD->getMemOperand());
769 }
770
771 unsigned Opc = Op.getOpcode();
772 switch (Opc) {
773 default: break;
774 case ISD::AssertSext:
775 return DAG.getNode(ISD::AssertSext, dl, PVT,
776 SExtPromoteOperand(Op.getOperand(0), PVT),
777 Op.getOperand(1));
778 case ISD::AssertZext:
779 return DAG.getNode(ISD::AssertZext, dl, PVT,
780 ZExtPromoteOperand(Op.getOperand(0), PVT),
781 Op.getOperand(1));
782 case ISD::Constant: {
783 unsigned ExtOpc =
784 Op.getValueType().isByteSized() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
785 return DAG.getNode(ExtOpc, dl, PVT, Op);
786 }
787 }
788
789 if (!TLI.isOperationLegal(ISD::ANY_EXTEND, PVT))
790 return SDValue();
791 return DAG.getNode(ISD::ANY_EXTEND, dl, PVT, Op);
792}
793
794SDValue DAGCombiner::SExtPromoteOperand(SDValue Op, EVT PVT) {
795 if (!TLI.isOperationLegal(ISD::SIGN_EXTEND_INREG, PVT))
796 return SDValue();
797 EVT OldVT = Op.getValueType();
798 SDLoc dl(Op);
799 bool Replace = false;
800 SDValue NewOp = PromoteOperand(Op, PVT, Replace);
801 if (NewOp.getNode() == 0)
802 return SDValue();
803 AddToWorkList(NewOp.getNode());
804
805 if (Replace)
806 ReplaceLoadWithPromotedLoad(Op.getNode(), NewOp.getNode());
807 return DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, NewOp.getValueType(), NewOp,
808 DAG.getValueType(OldVT));
809}
810
811SDValue DAGCombiner::ZExtPromoteOperand(SDValue Op, EVT PVT) {
812 EVT OldVT = Op.getValueType();
813 SDLoc dl(Op);
814 bool Replace = false;
815 SDValue NewOp = PromoteOperand(Op, PVT, Replace);
816 if (NewOp.getNode() == 0)
817 return SDValue();
818 AddToWorkList(NewOp.getNode());
819
820 if (Replace)
821 ReplaceLoadWithPromotedLoad(Op.getNode(), NewOp.getNode());
822 return DAG.getZeroExtendInReg(NewOp, dl, OldVT);
823}
824
825/// PromoteIntBinOp - Promote the specified integer binary operation if the
826/// target indicates it is beneficial. e.g. On x86, it's usually better to
827/// promote i16 operations to i32 since i16 instructions are longer.
828SDValue DAGCombiner::PromoteIntBinOp(SDValue Op) {
829 if (!LegalOperations)
830 return SDValue();
831
832 EVT VT = Op.getValueType();
833 if (VT.isVector() || !VT.isInteger())
834 return SDValue();
835
836 // If operation type is 'undesirable', e.g. i16 on x86, consider
837 // promoting it.
838 unsigned Opc = Op.getOpcode();
839 if (TLI.isTypeDesirableForOp(Opc, VT))
840 return SDValue();
841
842 EVT PVT = VT;
843 // Consult target whether it is a good idea to promote this operation and
844 // what's the right type to promote it to.
845 if (TLI.IsDesirableToPromoteOp(Op, PVT)) {
846 assert(PVT != VT && "Don't know what type to promote to!");
847
848 bool Replace0 = false;
849 SDValue N0 = Op.getOperand(0);
850 SDValue NN0 = PromoteOperand(N0, PVT, Replace0);
851 if (NN0.getNode() == 0)
852 return SDValue();
853
854 bool Replace1 = false;
855 SDValue N1 = Op.getOperand(1);
856 SDValue NN1;
857 if (N0 == N1)
858 NN1 = NN0;
859 else {
860 NN1 = PromoteOperand(N1, PVT, Replace1);
861 if (NN1.getNode() == 0)
862 return SDValue();
863 }
864
865 AddToWorkList(NN0.getNode());
866 if (NN1.getNode())
867 AddToWorkList(NN1.getNode());
868
869 if (Replace0)
870 ReplaceLoadWithPromotedLoad(N0.getNode(), NN0.getNode());
871 if (Replace1)
872 ReplaceLoadWithPromotedLoad(N1.getNode(), NN1.getNode());
873
874 DEBUG(dbgs() << "\nPromoting ";
875 Op.getNode()->dump(&DAG));
876 SDLoc dl(Op);
877 return DAG.getNode(ISD::TRUNCATE, dl, VT,
878 DAG.getNode(Opc, dl, PVT, NN0, NN1));
879 }
880 return SDValue();
881}
882
883/// PromoteIntShiftOp - Promote the specified integer shift operation if the
884/// target indicates it is beneficial. e.g. On x86, it's usually better to
885/// promote i16 operations to i32 since i16 instructions are longer.
886SDValue DAGCombiner::PromoteIntShiftOp(SDValue Op) {
887 if (!LegalOperations)
888 return SDValue();
889
890 EVT VT = Op.getValueType();
891 if (VT.isVector() || !VT.isInteger())
892 return SDValue();
893
894 // If operation type is 'undesirable', e.g. i16 on x86, consider
895 // promoting it.
896 unsigned Opc = Op.getOpcode();
897 if (TLI.isTypeDesirableForOp(Opc, VT))
898 return SDValue();
899
900 EVT PVT = VT;
901 // Consult target whether it is a good idea to promote this operation and
902 // what's the right type to promote it to.
903 if (TLI.IsDesirableToPromoteOp(Op, PVT)) {
904 assert(PVT != VT && "Don't know what type to promote to!");
905
906 bool Replace = false;
907 SDValue N0 = Op.getOperand(0);
908 if (Opc == ISD::SRA)
909 N0 = SExtPromoteOperand(Op.getOperand(0), PVT);
910 else if (Opc == ISD::SRL)
911 N0 = ZExtPromoteOperand(Op.getOperand(0), PVT);
912 else
913 N0 = PromoteOperand(N0, PVT, Replace);
914 if (N0.getNode() == 0)
915 return SDValue();
916
917 AddToWorkList(N0.getNode());
918 if (Replace)
919 ReplaceLoadWithPromotedLoad(Op.getOperand(0).getNode(), N0.getNode());
920
921 DEBUG(dbgs() << "\nPromoting ";
922 Op.getNode()->dump(&DAG));
923 SDLoc dl(Op);
924 return DAG.getNode(ISD::TRUNCATE, dl, VT,
925 DAG.getNode(Opc, dl, PVT, N0, Op.getOperand(1)));
926 }
927 return SDValue();
928}
929
930SDValue DAGCombiner::PromoteExtend(SDValue Op) {
931 if (!LegalOperations)
932 return SDValue();
933
934 EVT VT = Op.getValueType();
935 if (VT.isVector() || !VT.isInteger())
936 return SDValue();
937
938 // If operation type is 'undesirable', e.g. i16 on x86, consider
939 // promoting it.
940 unsigned Opc = Op.getOpcode();
941 if (TLI.isTypeDesirableForOp(Opc, VT))
942 return SDValue();
943
944 EVT PVT = VT;
945 // Consult target whether it is a good idea to promote this operation and
946 // what's the right type to promote it to.
947 if (TLI.IsDesirableToPromoteOp(Op, PVT)) {
948 assert(PVT != VT && "Don't know what type to promote to!");
949 // fold (aext (aext x)) -> (aext x)
950 // fold (aext (zext x)) -> (zext x)
951 // fold (aext (sext x)) -> (sext x)
952 DEBUG(dbgs() << "\nPromoting ";
953 Op.getNode()->dump(&DAG));
954 return DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, Op.getOperand(0));
955 }
956 return SDValue();
957}
958
959bool DAGCombiner::PromoteLoad(SDValue Op) {
960 if (!LegalOperations)
961 return false;
962
963 EVT VT = Op.getValueType();
964 if (VT.isVector() || !VT.isInteger())
965 return false;
966
967 // If operation type is 'undesirable', e.g. i16 on x86, consider
968 // promoting it.
969 unsigned Opc = Op.getOpcode();
970 if (TLI.isTypeDesirableForOp(Opc, VT))
971 return false;
972
973 EVT PVT = VT;
974 // Consult target whether it is a good idea to promote this operation and
975 // what's the right type to promote it to.
976 if (TLI.IsDesirableToPromoteOp(Op, PVT)) {
977 assert(PVT != VT && "Don't know what type to promote to!");
978
979 SDLoc dl(Op);
980 SDNode *N = Op.getNode();
981 LoadSDNode *LD = cast<LoadSDNode>(N);
982 EVT MemVT = LD->getMemoryVT();
983 ISD::LoadExtType ExtType = ISD::isNON_EXTLoad(LD)
984 ? (TLI.isLoadExtLegal(ISD::ZEXTLOAD, MemVT) ? ISD::ZEXTLOAD
985 : ISD::EXTLOAD)
986 : LD->getExtensionType();
987 SDValue NewLD = DAG.getExtLoad(ExtType, dl, PVT,
988 LD->getChain(), LD->getBasePtr(),
989 MemVT, LD->getMemOperand());
990 SDValue Result = DAG.getNode(ISD::TRUNCATE, dl, VT, NewLD);
991
992 DEBUG(dbgs() << "\nPromoting ";
993 N->dump(&DAG);
994 dbgs() << "\nTo: ";
995 Result.getNode()->dump(&DAG);
996 dbgs() << '\n');
997 WorkListRemover DeadNodes(*this);
998 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result);
999 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), NewLD.getValue(1));
1000 removeFromWorkList(N);
1001 DAG.DeleteNode(N);
1002 AddToWorkList(Result.getNode());
1003 return true;
1004 }
1005 return false;
1006}
1007
1008
1009//===----------------------------------------------------------------------===//
1010// Main DAG Combiner implementation
1011//===----------------------------------------------------------------------===//
1012
1013void DAGCombiner::Run(CombineLevel AtLevel) {
1014 // set the instance variables, so that the various visit routines may use it.
1015 Level = AtLevel;
1016 LegalOperations = Level >= AfterLegalizeVectorOps;
1017 LegalTypes = Level >= AfterLegalizeTypes;
1018
1019 // Add all the dag nodes to the worklist.
1020 for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(),
1021 E = DAG.allnodes_end(); I != E; ++I)
1022 AddToWorkList(I);
1023
1024 // Create a dummy node (which is not added to allnodes), that adds a reference
1025 // to the root node, preventing it from being deleted, and tracking any
1026 // changes of the root.
1027 HandleSDNode Dummy(DAG.getRoot());
1028
1029 // The root of the dag may dangle to deleted nodes until the dag combiner is
1030 // done. Set it to null to avoid confusion.
1031 DAG.setRoot(SDValue());
1032
1033 // while the worklist isn't empty, find a node and
1034 // try and combine it.
1035 while (!WorkListContents.empty()) {
1036 SDNode *N;
1037 // The WorkListOrder holds the SDNodes in order, but it may contain
1038 // duplicates.
1039 // In order to avoid a linear scan, we use a set (O(log N)) to hold what the
1040 // worklist *should* contain, and check the node we want to visit is should
1041 // actually be visited.
1042 do {
1043 N = WorkListOrder.pop_back_val();
1044 } while (!WorkListContents.erase(N));
1045
1046 // If N has no uses, it is dead. Make sure to revisit all N's operands once
1047 // N is deleted from the DAG, since they too may now be dead or may have a
1048 // reduced number of uses, allowing other xforms.
1049 if (N->use_empty() && N != &Dummy) {
1050 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
1051 AddToWorkList(N->getOperand(i).getNode());
1052
1053 DAG.DeleteNode(N);
1054 continue;
1055 }
1056
1057 SDValue RV = combine(N);
1058
1059 if (RV.getNode() == 0)
1060 continue;
1061
1062 ++NodesCombined;
1063
1064 // If we get back the same node we passed in, rather than a new node or
1065 // zero, we know that the node must have defined multiple values and
1066 // CombineTo was used. Since CombineTo takes care of the worklist
1067 // mechanics for us, we have no work to do in this case.
1068 if (RV.getNode() == N)
1069 continue;
1070
1071 assert(N->getOpcode() != ISD::DELETED_NODE &&
1072 RV.getNode()->getOpcode() != ISD::DELETED_NODE &&
1073 "Node was deleted but visit returned new node!");
1074
1075 DEBUG(dbgs() << "\nReplacing.3 ";
1076 N->dump(&DAG);
1077 dbgs() << "\nWith: ";
1078 RV.getNode()->dump(&DAG);
1079 dbgs() << '\n');
1080
1081 // Transfer debug value.
1082 DAG.TransferDbgValues(SDValue(N, 0), RV);
1083 WorkListRemover DeadNodes(*this);
1084 if (N->getNumValues() == RV.getNode()->getNumValues())
1085 DAG.ReplaceAllUsesWith(N, RV.getNode());
1086 else {
1087 assert(N->getValueType(0) == RV.getValueType() &&
1088 N->getNumValues() == 1 && "Type mismatch");
1089 SDValue OpV = RV;
1090 DAG.ReplaceAllUsesWith(N, &OpV);
1091 }
1092
1093 // Push the new node and any users onto the worklist
1094 AddToWorkList(RV.getNode());
1095 AddUsersToWorkList(RV.getNode());
1096
1097 // Add any uses of the old node to the worklist in case this node is the
1098 // last one that uses them. They may become dead after this node is
1099 // deleted.
1100 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
1101 AddToWorkList(N->getOperand(i).getNode());
1102
1103 // Finally, if the node is now dead, remove it from the graph. The node
1104 // may not be dead if the replacement process recursively simplified to
1105 // something else needing this node.
1106 if (N->use_empty()) {
1107 // Nodes can be reintroduced into the worklist. Make sure we do not
1108 // process a node that has been replaced.
1109 removeFromWorkList(N);
1110
1111 // Finally, since the node is now dead, remove it from the graph.
1112 DAG.DeleteNode(N);
1113 }
1114 }
1115
1116 // If the root changed (e.g. it was a dead load, update the root).
1117 DAG.setRoot(Dummy.getValue());
1118 DAG.RemoveDeadNodes();
1119}
1120
1121SDValue DAGCombiner::visit(SDNode *N) {
1122 switch (N->getOpcode()) {
1123 default: break;
1124 case ISD::TokenFactor: return visitTokenFactor(N);
1125 case ISD::MERGE_VALUES: return visitMERGE_VALUES(N);
1126 case ISD::ADD: return visitADD(N);
1127 case ISD::SUB: return visitSUB(N);
1128 case ISD::ADDC: return visitADDC(N);
1129 case ISD::SUBC: return visitSUBC(N);
1130 case ISD::ADDE: return visitADDE(N);
1131 case ISD::SUBE: return visitSUBE(N);
1132 case ISD::MUL: return visitMUL(N);
1133 case ISD::SDIV: return visitSDIV(N);
1134 case ISD::UDIV: return visitUDIV(N);
1135 case ISD::SREM: return visitSREM(N);
1136 case ISD::UREM: return visitUREM(N);
1137 case ISD::MULHU: return visitMULHU(N);
1138 case ISD::MULHS: return visitMULHS(N);
1139 case ISD::SMUL_LOHI: return visitSMUL_LOHI(N);
1140 case ISD::UMUL_LOHI: return visitUMUL_LOHI(N);
1141 case ISD::SMULO: return visitSMULO(N);
1142 case ISD::UMULO: return visitUMULO(N);
1143 case ISD::SDIVREM: return visitSDIVREM(N);
1144 case ISD::UDIVREM: return visitUDIVREM(N);
1145 case ISD::AND: return visitAND(N);
1146 case ISD::OR: return visitOR(N);
1147 case ISD::XOR: return visitXOR(N);
1148 case ISD::SHL: return visitSHL(N);
1149 case ISD::SRA: return visitSRA(N);
1150 case ISD::SRL: return visitSRL(N);
1151 case ISD::CTLZ: return visitCTLZ(N);
1152 case ISD::CTLZ_ZERO_UNDEF: return visitCTLZ_ZERO_UNDEF(N);
1153 case ISD::CTTZ: return visitCTTZ(N);
1154 case ISD::CTTZ_ZERO_UNDEF: return visitCTTZ_ZERO_UNDEF(N);
1155 case ISD::CTPOP: return visitCTPOP(N);
1156 case ISD::SELECT: return visitSELECT(N);
1157 case ISD::VSELECT: return visitVSELECT(N);
1158 case ISD::SELECT_CC: return visitSELECT_CC(N);
1159 case ISD::SETCC: return visitSETCC(N);
1160 case ISD::SIGN_EXTEND: return visitSIGN_EXTEND(N);
1161 case ISD::ZERO_EXTEND: return visitZERO_EXTEND(N);
1162 case ISD::ANY_EXTEND: return visitANY_EXTEND(N);
1163 case ISD::SIGN_EXTEND_INREG: return visitSIGN_EXTEND_INREG(N);
1164 case ISD::TRUNCATE: return visitTRUNCATE(N);
1165 case ISD::BITCAST: return visitBITCAST(N);
1166 case ISD::BUILD_PAIR: return visitBUILD_PAIR(N);
1167 case ISD::FADD: return visitFADD(N);
1168 case ISD::FSUB: return visitFSUB(N);
1169 case ISD::FMUL: return visitFMUL(N);
1170 case ISD::FMA: return visitFMA(N);
1171 case ISD::FDIV: return visitFDIV(N);
1172 case ISD::FREM: return visitFREM(N);
1173 case ISD::FCOPYSIGN: return visitFCOPYSIGN(N);
1174 case ISD::SINT_TO_FP: return visitSINT_TO_FP(N);
1175 case ISD::UINT_TO_FP: return visitUINT_TO_FP(N);
1176 case ISD::FP_TO_SINT: return visitFP_TO_SINT(N);
1177 case ISD::FP_TO_UINT: return visitFP_TO_UINT(N);
1178 case ISD::FP_ROUND: return visitFP_ROUND(N);
1179 case ISD::FP_ROUND_INREG: return visitFP_ROUND_INREG(N);
1180 case ISD::FP_EXTEND: return visitFP_EXTEND(N);
1181 case ISD::FNEG: return visitFNEG(N);
1182 case ISD::FABS: return visitFABS(N);
1183 case ISD::FFLOOR: return visitFFLOOR(N);
1184 case ISD::FCEIL: return visitFCEIL(N);
1185 case ISD::FTRUNC: return visitFTRUNC(N);
1186 case ISD::BRCOND: return visitBRCOND(N);
1187 case ISD::BR_CC: return visitBR_CC(N);
1188 case ISD::LOAD: return visitLOAD(N);
1189 case ISD::STORE: return visitSTORE(N);
1190 case ISD::INSERT_VECTOR_ELT: return visitINSERT_VECTOR_ELT(N);
1191 case ISD::EXTRACT_VECTOR_ELT: return visitEXTRACT_VECTOR_ELT(N);
1192 case ISD::BUILD_VECTOR: return visitBUILD_VECTOR(N);
1193 case ISD::CONCAT_VECTORS: return visitCONCAT_VECTORS(N);
1194 case ISD::EXTRACT_SUBVECTOR: return visitEXTRACT_SUBVECTOR(N);
1195 case ISD::VECTOR_SHUFFLE: return visitVECTOR_SHUFFLE(N);
1196 }
1197 return SDValue();
1198}
1199
1200SDValue DAGCombiner::combine(SDNode *N) {
1201 SDValue RV = visit(N);
1202
1203 // If nothing happened, try a target-specific DAG combine.
1204 if (RV.getNode() == 0) {
1205 assert(N->getOpcode() != ISD::DELETED_NODE &&
1206 "Node was deleted but visit returned NULL!");
1207
1208 if (N->getOpcode() >= ISD::BUILTIN_OP_END ||
1209 TLI.hasTargetDAGCombine((ISD::NodeType)N->getOpcode())) {
1210
1211 // Expose the DAG combiner to the target combiner impls.
1212 TargetLowering::DAGCombinerInfo
1213 DagCombineInfo(DAG, Level, false, this);
1214
1215 RV = TLI.PerformDAGCombine(N, DagCombineInfo);
1216 }
1217 }
1218
1219 // If nothing happened still, try promoting the operation.
1220 if (RV.getNode() == 0) {
1221 switch (N->getOpcode()) {
1222 default: break;
1223 case ISD::ADD:
1224 case ISD::SUB:
1225 case ISD::MUL:
1226 case ISD::AND:
1227 case ISD::OR:
1228 case ISD::XOR:
1229 RV = PromoteIntBinOp(SDValue(N, 0));
1230 break;
1231 case ISD::SHL:
1232 case ISD::SRA:
1233 case ISD::SRL:
1234 RV = PromoteIntShiftOp(SDValue(N, 0));
1235 break;
1236 case ISD::SIGN_EXTEND:
1237 case ISD::ZERO_EXTEND:
1238 case ISD::ANY_EXTEND:
1239 RV = PromoteExtend(SDValue(N, 0));
1240 break;
1241 case ISD::LOAD:
1242 if (PromoteLoad(SDValue(N, 0)))
1243 RV = SDValue(N, 0);
1244 break;
1245 }
1246 }
1247
1248 // If N is a commutative binary node, try commuting it to enable more
1249 // sdisel CSE.
1250 if (RV.getNode() == 0 &&
1251 SelectionDAG::isCommutativeBinOp(N->getOpcode()) &&
1252 N->getNumValues() == 1) {
1253 SDValue N0 = N->getOperand(0);
1254 SDValue N1 = N->getOperand(1);
1255
1256 // Constant operands are canonicalized to RHS.
1257 if (isa<ConstantSDNode>(N0) || !isa<ConstantSDNode>(N1)) {
1258 SDValue Ops[] = { N1, N0 };
1259 SDNode *CSENode = DAG.getNodeIfExists(N->getOpcode(), N->getVTList(),
1260 Ops, 2);
1261 if (CSENode)
1262 return SDValue(CSENode, 0);
1263 }
1264 }
1265
1266 return RV;
1267}
1268
1269/// getInputChainForNode - Given a node, return its input chain if it has one,
1270/// otherwise return a null sd operand.
1271static SDValue getInputChainForNode(SDNode *N) {
1272 if (unsigned NumOps = N->getNumOperands()) {
1273 if (N->getOperand(0).getValueType() == MVT::Other)
1274 return N->getOperand(0);
1275 if (N->getOperand(NumOps-1).getValueType() == MVT::Other)
1276 return N->getOperand(NumOps-1);
1277 for (unsigned i = 1; i < NumOps-1; ++i)
1278 if (N->getOperand(i).getValueType() == MVT::Other)
1279 return N->getOperand(i);
1280 }
1281 return SDValue();
1282}
1283
1284SDValue DAGCombiner::visitTokenFactor(SDNode *N) {
1285 // If N has two operands, where one has an input chain equal to the other,
1286 // the 'other' chain is redundant.
1287 if (N->getNumOperands() == 2) {
1288 if (getInputChainForNode(N->getOperand(0).getNode()) == N->getOperand(1))
1289 return N->getOperand(0);
1290 if (getInputChainForNode(N->getOperand(1).getNode()) == N->getOperand(0))
1291 return N->getOperand(1);
1292 }
1293
1294 SmallVector<SDNode *, 8> TFs; // List of token factors to visit.
1295 SmallVector<SDValue, 8> Ops; // Ops for replacing token factor.
1296 SmallPtrSet<SDNode*, 16> SeenOps;
1297 bool Changed = false; // If we should replace this token factor.
1298
1299 // Start out with this token factor.
1300 TFs.push_back(N);
1301
1302 // Iterate through token factors. The TFs grows when new token factors are
1303 // encountered.
1304 for (unsigned i = 0; i < TFs.size(); ++i) {
1305 SDNode *TF = TFs[i];
1306
1307 // Check each of the operands.
1308 for (unsigned i = 0, ie = TF->getNumOperands(); i != ie; ++i) {
1309 SDValue Op = TF->getOperand(i);
1310
1311 switch (Op.getOpcode()) {
1312 case ISD::EntryToken:
1313 // Entry tokens don't need to be added to the list. They are
1314 // rededundant.
1315 Changed = true;
1316 break;
1317
1318 case ISD::TokenFactor:
1319 if (Op.hasOneUse() &&
1320 std::find(TFs.begin(), TFs.end(), Op.getNode()) == TFs.end()) {
1321 // Queue up for processing.
1322 TFs.push_back(Op.getNode());
1323 // Clean up in case the token factor is removed.
1324 AddToWorkList(Op.getNode());
1325 Changed = true;
1326 break;
1327 }
1328 // Fall thru
1329
1330 default:
1331 // Only add if it isn't already in the list.
1332 if (SeenOps.insert(Op.getNode()))
1333 Ops.push_back(Op);
1334 else
1335 Changed = true;
1336 break;
1337 }
1338 }
1339 }
1340
1341 SDValue Result;
1342
1343 // If we've change things around then replace token factor.
1344 if (Changed) {
1345 if (Ops.empty()) {
1346 // The entry token is the only possible outcome.
1347 Result = DAG.getEntryNode();
1348 } else {
1349 // New and improved token factor.
1350 Result = DAG.getNode(ISD::TokenFactor, SDLoc(N),
1351 MVT::Other, &Ops[0], Ops.size());
1352 }
1353
1354 // Don't add users to work list.
1355 return CombineTo(N, Result, false);
1356 }
1357
1358 return Result;
1359}
1360
1361/// MERGE_VALUES can always be eliminated.
1362SDValue DAGCombiner::visitMERGE_VALUES(SDNode *N) {
1363 WorkListRemover DeadNodes(*this);
1364 // Replacing results may cause a different MERGE_VALUES to suddenly
1365 // be CSE'd with N, and carry its uses with it. Iterate until no
1366 // uses remain, to ensure that the node can be safely deleted.
1367 // First add the users of this node to the work list so that they
1368 // can be tried again once they have new operands.
1369 AddUsersToWorkList(N);
1370 do {
1371 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
1372 DAG.ReplaceAllUsesOfValueWith(SDValue(N, i), N->getOperand(i));
1373 } while (!N->use_empty());
1374 removeFromWorkList(N);
1375 DAG.DeleteNode(N);
1376 return SDValue(N, 0); // Return N so it doesn't get rechecked!
1377}
1378
1379static
1380SDValue combineShlAddConstant(SDLoc DL, SDValue N0, SDValue N1,
1381 SelectionDAG &DAG) {
1382 EVT VT = N0.getValueType();
1383 SDValue N00 = N0.getOperand(0);
1384 SDValue N01 = N0.getOperand(1);
1385 ConstantSDNode *N01C = dyn_cast<ConstantSDNode>(N01);
1386
1387 if (N01C && N00.getOpcode() == ISD::ADD && N00.getNode()->hasOneUse() &&
1388 isa<ConstantSDNode>(N00.getOperand(1))) {
1389 // fold (add (shl (add x, c1), c2), ) -> (add (add (shl x, c2), c1<<c2), )
1390 N0 = DAG.getNode(ISD::ADD, SDLoc(N0), VT,
1391 DAG.getNode(ISD::SHL, SDLoc(N00), VT,
1392 N00.getOperand(0), N01),
1393 DAG.getNode(ISD::SHL, SDLoc(N01), VT,
1394 N00.getOperand(1), N01));
1395 return DAG.getNode(ISD::ADD, DL, VT, N0, N1);
1396 }
1397
1398 return SDValue();
1399}
1400
1401SDValue DAGCombiner::visitADD(SDNode *N) {
1402 SDValue N0 = N->getOperand(0);
1403 SDValue N1 = N->getOperand(1);
1404 ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1405 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1406 EVT VT = N0.getValueType();
1407
1408 // fold vector ops
1409 if (VT.isVector()) {
1410 SDValue FoldedVOp = SimplifyVBinOp(N);
1411 if (FoldedVOp.getNode()) return FoldedVOp;
1412
1413 // fold (add x, 0) -> x, vector edition
1414 if (ISD::isBuildVectorAllZeros(N1.getNode()))
1415 return N0;
1416 if (ISD::isBuildVectorAllZeros(N0.getNode()))
1417 return N1;
1418 }
1419
1420 // fold (add x, undef) -> undef
1421 if (N0.getOpcode() == ISD::UNDEF)
1422 return N0;
1423 if (N1.getOpcode() == ISD::UNDEF)
1424 return N1;
1425 // fold (add c1, c2) -> c1+c2
1426 if (N0C && N1C)
1427 return DAG.FoldConstantArithmetic(ISD::ADD, VT, N0C, N1C);
1428 // canonicalize constant to RHS
1429 if (N0C && !N1C)
1430 return DAG.getNode(ISD::ADD, SDLoc(N), VT, N1, N0);
1431 // fold (add x, 0) -> x
1432 if (N1C && N1C->isNullValue())
1433 return N0;
1434 // fold (add Sym, c) -> Sym+c
1435 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N0))
1436 if (!LegalOperations && TLI.isOffsetFoldingLegal(GA) && N1C &&
1437 GA->getOpcode() == ISD::GlobalAddress)
1438 return DAG.getGlobalAddress(GA->getGlobal(), SDLoc(N1C), VT,
1439 GA->getOffset() +
1440 (uint64_t)N1C->getSExtValue());
1441 // fold ((c1-A)+c2) -> (c1+c2)-A
1442 if (N1C && N0.getOpcode() == ISD::SUB)
1443 if (ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0.getOperand(0)))
1444 return DAG.getNode(ISD::SUB, SDLoc(N), VT,
1445 DAG.getConstant(N1C->getAPIntValue()+
1446 N0C->getAPIntValue(), VT),
1447 N0.getOperand(1));
1448 // reassociate add
1449 SDValue RADD = ReassociateOps(ISD::ADD, SDLoc(N), N0, N1);
1450 if (RADD.getNode() != 0)
1451 return RADD;
1452 // fold ((0-A) + B) -> B-A
1453 if (N0.getOpcode() == ISD::SUB && isa<ConstantSDNode>(N0.getOperand(0)) &&
1454 cast<ConstantSDNode>(N0.getOperand(0))->isNullValue())
1455 return DAG.getNode(ISD::SUB, SDLoc(N), VT, N1, N0.getOperand(1));
1456 // fold (A + (0-B)) -> A-B
1457 if (N1.getOpcode() == ISD::SUB && isa<ConstantSDNode>(N1.getOperand(0)) &&
1458 cast<ConstantSDNode>(N1.getOperand(0))->isNullValue())
1459 return DAG.getNode(ISD::SUB, SDLoc(N), VT, N0, N1.getOperand(1));
1460 // fold (A+(B-A)) -> B
1461 if (N1.getOpcode() == ISD::SUB && N0 == N1.getOperand(1))
1462 return N1.getOperand(0);
1463 // fold ((B-A)+A) -> B
1464 if (N0.getOpcode() == ISD::SUB && N1 == N0.getOperand(1))
1465 return N0.getOperand(0);
1466 // fold (A+(B-(A+C))) to (B-C)
1467 if (N1.getOpcode() == ISD::SUB && N1.getOperand(1).getOpcode() == ISD::ADD &&
1468 N0 == N1.getOperand(1).getOperand(0))
1469 return DAG.getNode(ISD::SUB, SDLoc(N), VT, N1.getOperand(0),
1470 N1.getOperand(1).getOperand(1));
1471 // fold (A+(B-(C+A))) to (B-C)
1472 if (N1.getOpcode() == ISD::SUB && N1.getOperand(1).getOpcode() == ISD::ADD &&
1473 N0 == N1.getOperand(1).getOperand(1))
1474 return DAG.getNode(ISD::SUB, SDLoc(N), VT, N1.getOperand(0),
1475 N1.getOperand(1).getOperand(0));
1476 // fold (A+((B-A)+or-C)) to (B+or-C)
1477 if ((N1.getOpcode() == ISD::SUB || N1.getOpcode() == ISD::ADD) &&
1478 N1.getOperand(0).getOpcode() == ISD::SUB &&
1479 N0 == N1.getOperand(0).getOperand(1))
1480 return DAG.getNode(N1.getOpcode(), SDLoc(N), VT,
1481 N1.getOperand(0).getOperand(0), N1.getOperand(1));
1482
1483 // fold (A-B)+(C-D) to (A+C)-(B+D) when A or C is constant
1484 if (N0.getOpcode() == ISD::SUB && N1.getOpcode() == ISD::SUB) {
1485 SDValue N00 = N0.getOperand(0);
1486 SDValue N01 = N0.getOperand(1);
1487 SDValue N10 = N1.getOperand(0);
1488 SDValue N11 = N1.getOperand(1);
1489
1490 if (isa<ConstantSDNode>(N00) || isa<ConstantSDNode>(N10))
1491 return DAG.getNode(ISD::SUB, SDLoc(N), VT,
1492 DAG.getNode(ISD::ADD, SDLoc(N0), VT, N00, N10),
1493 DAG.getNode(ISD::ADD, SDLoc(N1), VT, N01, N11));
1494 }
1495
1496 if (!VT.isVector() && SimplifyDemandedBits(SDValue(N, 0)))
1497 return SDValue(N, 0);
1498
1499 // fold (a+b) -> (a|b) iff a and b share no bits.
1500 if (VT.isInteger() && !VT.isVector()) {
1501 APInt LHSZero, LHSOne;
1502 APInt RHSZero, RHSOne;
1503 DAG.ComputeMaskedBits(N0, LHSZero, LHSOne);
1504
1505 if (LHSZero.getBoolValue()) {
1506 DAG.ComputeMaskedBits(N1, RHSZero, RHSOne);
1507
1508 // If all possibly-set bits on the LHS are clear on the RHS, return an OR.
1509 // If all possibly-set bits on the RHS are clear on the LHS, return an OR.
1510 if ((RHSZero & ~LHSZero) == ~LHSZero || (LHSZero & ~RHSZero) == ~RHSZero)
1511 return DAG.getNode(ISD::OR, SDLoc(N), VT, N0, N1);
1512 }
1513 }
1514
1515 // fold (add (shl (add x, c1), c2), ) -> (add (add (shl x, c2), c1<<c2), )
1516 if (N0.getOpcode() == ISD::SHL && N0.getNode()->hasOneUse()) {
1517 SDValue Result = combineShlAddConstant(SDLoc(N), N0, N1, DAG);
1518 if (Result.getNode()) return Result;
1519 }
1520 if (N1.getOpcode() == ISD::SHL && N1.getNode()->hasOneUse()) {
1521 SDValue Result = combineShlAddConstant(SDLoc(N), N1, N0, DAG);
1522 if (Result.getNode()) return Result;
1523 }
1524
1525 // fold (add x, shl(0 - y, n)) -> sub(x, shl(y, n))
1526 if (N1.getOpcode() == ISD::SHL &&
1527 N1.getOperand(0).getOpcode() == ISD::SUB)
1528 if (ConstantSDNode *C =
1529 dyn_cast<ConstantSDNode>(N1.getOperand(0).getOperand(0)))
1530 if (C->getAPIntValue() == 0)
1531 return DAG.getNode(ISD::SUB, SDLoc(N), VT, N0,
1532 DAG.getNode(ISD::SHL, SDLoc(N), VT,
1533 N1.getOperand(0).getOperand(1),
1534 N1.getOperand(1)));
1535 if (N0.getOpcode() == ISD::SHL &&
1536 N0.getOperand(0).getOpcode() == ISD::SUB)
1537 if (ConstantSDNode *C =
1538 dyn_cast<ConstantSDNode>(N0.getOperand(0).getOperand(0)))
1539 if (C->getAPIntValue() == 0)
1540 return DAG.getNode(ISD::SUB, SDLoc(N), VT, N1,
1541 DAG.getNode(ISD::SHL, SDLoc(N), VT,
1542 N0.getOperand(0).getOperand(1),
1543 N0.getOperand(1)));
1544
1545 if (N1.getOpcode() == ISD::AND) {
1546 SDValue AndOp0 = N1.getOperand(0);
1547 ConstantSDNode *AndOp1 = dyn_cast<ConstantSDNode>(N1->getOperand(1));
1548 unsigned NumSignBits = DAG.ComputeNumSignBits(AndOp0);
1549 unsigned DestBits = VT.getScalarType().getSizeInBits();
1550
1551 // (add z, (and (sbbl x, x), 1)) -> (sub z, (sbbl x, x))
1552 // and similar xforms where the inner op is either ~0 or 0.
1553 if (NumSignBits == DestBits && AndOp1 && AndOp1->isOne()) {
1554 SDLoc DL(N);
1555 return DAG.getNode(ISD::SUB, DL, VT, N->getOperand(0), AndOp0);
1556 }
1557 }
1558
1559 // add (sext i1), X -> sub X, (zext i1)
1560 if (N0.getOpcode() == ISD::SIGN_EXTEND &&
1561 N0.getOperand(0).getValueType() == MVT::i1 &&
1562 !TLI.isOperationLegal(ISD::SIGN_EXTEND, MVT::i1)) {
1563 SDLoc DL(N);
1564 SDValue ZExt = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, N0.getOperand(0));
1565 return DAG.getNode(ISD::SUB, DL, VT, N1, ZExt);
1566 }
1567
1568 return SDValue();
1569}
1570
1571SDValue DAGCombiner::visitADDC(SDNode *N) {
1572 SDValue N0 = N->getOperand(0);
1573 SDValue N1 = N->getOperand(1);
1574 ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1575 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1576 EVT VT = N0.getValueType();
1577
1578 // If the flag result is dead, turn this into an ADD.
1579 if (!N->hasAnyUseOfValue(1))
1580 return CombineTo(N, DAG.getNode(ISD::ADD, SDLoc(N), VT, N0, N1),
1581 DAG.getNode(ISD::CARRY_FALSE,
1582 SDLoc(N), MVT::Glue));
1583
1584 // canonicalize constant to RHS.
1585 if (N0C && !N1C)
1586 return DAG.getNode(ISD::ADDC, SDLoc(N), N->getVTList(), N1, N0);
1587
1588 // fold (addc x, 0) -> x + no carry out
1589 if (N1C && N1C->isNullValue())
1590 return CombineTo(N, N0, DAG.getNode(ISD::CARRY_FALSE,
1591 SDLoc(N), MVT::Glue));
1592
1593 // fold (addc a, b) -> (or a, b), CARRY_FALSE iff a and b share no bits.
1594 APInt LHSZero, LHSOne;
1595 APInt RHSZero, RHSOne;
1596 DAG.ComputeMaskedBits(N0, LHSZero, LHSOne);
1597
1598 if (LHSZero.getBoolValue()) {
1599 DAG.ComputeMaskedBits(N1, RHSZero, RHSOne);
1600
1601 // If all possibly-set bits on the LHS are clear on the RHS, return an OR.
1602 // If all possibly-set bits on the RHS are clear on the LHS, return an OR.
1603 if ((RHSZero & ~LHSZero) == ~LHSZero || (LHSZero & ~RHSZero) == ~RHSZero)
1604 return CombineTo(N, DAG.getNode(ISD::OR, SDLoc(N), VT, N0, N1),
1605 DAG.getNode(ISD::CARRY_FALSE,
1606 SDLoc(N), MVT::Glue));
1607 }
1608
1609 return SDValue();
1610}
1611
1612SDValue DAGCombiner::visitADDE(SDNode *N) {
1613 SDValue N0 = N->getOperand(0);
1614 SDValue N1 = N->getOperand(1);
1615 SDValue CarryIn = N->getOperand(2);
1616 ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1617 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1618
1619 // canonicalize constant to RHS
1620 if (N0C && !N1C)
1621 return DAG.getNode(ISD::ADDE, SDLoc(N), N->getVTList(),
1622 N1, N0, CarryIn);
1623
1624 // fold (adde x, y, false) -> (addc x, y)
1625 if (CarryIn.getOpcode() == ISD::CARRY_FALSE)
1626 return DAG.getNode(ISD::ADDC, SDLoc(N), N->getVTList(), N0, N1);
1627
1628 return SDValue();
1629}
1630
1631// Since it may not be valid to emit a fold to zero for vector initializers
1632// check if we can before folding.
1633static SDValue tryFoldToZero(SDLoc DL, const TargetLowering &TLI, EVT VT,
1634 SelectionDAG &DAG,
1635 bool LegalOperations, bool LegalTypes) {
1636 if (!VT.isVector())
1637 return DAG.getConstant(0, VT);
1638 if (!LegalOperations || TLI.isOperationLegal(ISD::BUILD_VECTOR, VT))
1639 return DAG.getConstant(0, VT);
1640 return SDValue();
1641}
1642
1643SDValue DAGCombiner::visitSUB(SDNode *N) {
1644 SDValue N0 = N->getOperand(0);
1645 SDValue N1 = N->getOperand(1);
1646 ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0.getNode());
1647 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
1648 ConstantSDNode *N1C1 = N1.getOpcode() != ISD::ADD ? 0 :
1649 dyn_cast<ConstantSDNode>(N1.getOperand(1).getNode());
1650 EVT VT = N0.getValueType();
1651
1652 // fold vector ops
1653 if (VT.isVector()) {
1654 SDValue FoldedVOp = SimplifyVBinOp(N);
1655 if (FoldedVOp.getNode()) return FoldedVOp;
1656
1657 // fold (sub x, 0) -> x, vector edition
1658 if (ISD::isBuildVectorAllZeros(N1.getNode()))
1659 return N0;
1660 }
1661
1662 // fold (sub x, x) -> 0
1663 // FIXME: Refactor this and xor and other similar operations together.
1664 if (N0 == N1)
1665 return tryFoldToZero(SDLoc(N), TLI, VT, DAG, LegalOperations, LegalTypes);
1666 // fold (sub c1, c2) -> c1-c2
1667 if (N0C && N1C)
1668 return DAG.FoldConstantArithmetic(ISD::SUB, VT, N0C, N1C);
1669 // fold (sub x, c) -> (add x, -c)
1670 if (N1C)
1671 return DAG.getNode(ISD::ADD, SDLoc(N), VT, N0,
1672 DAG.getConstant(-N1C->getAPIntValue(), VT));
1673 // Canonicalize (sub -1, x) -> ~x, i.e. (xor x, -1)
1674 if (N0C && N0C->isAllOnesValue())
1675 return DAG.getNode(ISD::XOR, SDLoc(N), VT, N1, N0);
1676 // fold A-(A-B) -> B
1677 if (N1.getOpcode() == ISD::SUB && N0 == N1.getOperand(0))
1678 return N1.getOperand(1);
1679 // fold (A+B)-A -> B
1680 if (N0.getOpcode() == ISD::ADD && N0.getOperand(0) == N1)
1681 return N0.getOperand(1);
1682 // fold (A+B)-B -> A
1683 if (N0.getOpcode() == ISD::ADD && N0.getOperand(1) == N1)
1684 return N0.getOperand(0);
1685 // fold C2-(A+C1) -> (C2-C1)-A
1686 if (N1.getOpcode() == ISD::ADD && N0C && N1C1) {
1687 SDValue NewC = DAG.getConstant(N0C->getAPIntValue() - N1C1->getAPIntValue(),
1688 VT);
1689 return DAG.getNode(ISD::SUB, SDLoc(N), VT, NewC,
1690 N1.getOperand(0));
1691 }
1692 // fold ((A+(B+or-C))-B) -> A+or-C
1693 if (N0.getOpcode() == ISD::ADD &&
1694 (N0.getOperand(1).getOpcode() == ISD::SUB ||
1695 N0.getOperand(1).getOpcode() == ISD::ADD) &&
1696 N0.getOperand(1).getOperand(0) == N1)
1697 return DAG.getNode(N0.getOperand(1).getOpcode(), SDLoc(N), VT,
1698 N0.getOperand(0), N0.getOperand(1).getOperand(1));
1699 // fold ((A+(C+B))-B) -> A+C
1700 if (N0.getOpcode() == ISD::ADD &&
1701 N0.getOperand(1).getOpcode() == ISD::ADD &&
1702 N0.getOperand(1).getOperand(1) == N1)
1703 return DAG.getNode(ISD::ADD, SDLoc(N), VT,
1704 N0.getOperand(0), N0.getOperand(1).getOperand(0));
1705 // fold ((A-(B-C))-C) -> A-B
1706 if (N0.getOpcode() == ISD::SUB &&
1707 N0.getOperand(1).getOpcode() == ISD::SUB &&
1708 N0.getOperand(1).getOperand(1) == N1)
1709 return DAG.getNode(ISD::SUB, SDLoc(N), VT,
1710 N0.getOperand(0), N0.getOperand(1).getOperand(0));
1711
1712 // If either operand of a sub is undef, the result is undef
1713 if (N0.getOpcode() == ISD::UNDEF)
1714 return N0;
1715 if (N1.getOpcode() == ISD::UNDEF)
1716 return N1;
1717
1718 // If the relocation model supports it, consider symbol offsets.
1719 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N0))
1720 if (!LegalOperations && TLI.isOffsetFoldingLegal(GA)) {
1721 // fold (sub Sym, c) -> Sym-c
1722 if (N1C && GA->getOpcode() == ISD::GlobalAddress)
1723 return DAG.getGlobalAddress(GA->getGlobal(), SDLoc(N1C), VT,
1724 GA->getOffset() -
1725 (uint64_t)N1C->getSExtValue());
1726 // fold (sub Sym+c1, Sym+c2) -> c1-c2
1727 if (GlobalAddressSDNode *GB = dyn_cast<GlobalAddressSDNode>(N1))
1728 if (GA->getGlobal() == GB->getGlobal())
1729 return DAG.getConstant((uint64_t)GA->getOffset() - GB->getOffset(),
1730 VT);
1731 }
1732
1733 return SDValue();
1734}
1735
1736SDValue DAGCombiner::visitSUBC(SDNode *N) {
1737 SDValue N0 = N->getOperand(0);
1738 SDValue N1 = N->getOperand(1);
1739 ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1740 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1741 EVT VT = N0.getValueType();
1742
1743 // If the flag result is dead, turn this into an SUB.
1744 if (!N->hasAnyUseOfValue(1))
1745 return CombineTo(N, DAG.getNode(ISD::SUB, SDLoc(N), VT, N0, N1),
1746 DAG.getNode(ISD::CARRY_FALSE, SDLoc(N),
1747 MVT::Glue));
1748
1749 // fold (subc x, x) -> 0 + no borrow
1750 if (N0 == N1)
1751 return CombineTo(N, DAG.getConstant(0, VT),
1752 DAG.getNode(ISD::CARRY_FALSE, SDLoc(N),
1753 MVT::Glue));
1754
1755 // fold (subc x, 0) -> x + no borrow
1756 if (N1C && N1C->isNullValue())
1757 return CombineTo(N, N0, DAG.getNode(ISD::CARRY_FALSE, SDLoc(N),
1758 MVT::Glue));
1759
1760 // Canonicalize (sub -1, x) -> ~x, i.e. (xor x, -1) + no borrow
1761 if (N0C && N0C->isAllOnesValue())
1762 return CombineTo(N, DAG.getNode(ISD::XOR, SDLoc(N), VT, N1, N0),
1763 DAG.getNode(ISD::CARRY_FALSE, SDLoc(N),
1764 MVT::Glue));
1765
1766 return SDValue();
1767}
1768
1769SDValue DAGCombiner::visitSUBE(SDNode *N) {
1770 SDValue N0 = N->getOperand(0);
1771 SDValue N1 = N->getOperand(1);
1772 SDValue CarryIn = N->getOperand(2);
1773
1774 // fold (sube x, y, false) -> (subc x, y)
1775 if (CarryIn.getOpcode() == ISD::CARRY_FALSE)
1776 return DAG.getNode(ISD::SUBC, SDLoc(N), N->getVTList(), N0, N1);
1777
1778 return SDValue();
1779}
1780
1781/// isConstantSplatVector - Returns true if N is a BUILD_VECTOR node whose
1782/// elements are all the same constant or undefined.
1783static bool isConstantSplatVector(SDNode *N, APInt& SplatValue) {
1784 BuildVectorSDNode *C = dyn_cast<BuildVectorSDNode>(N);
1785 if (!C)
1786 return false;
1787
1788 APInt SplatUndef;
1789 unsigned SplatBitSize;
1790 bool HasAnyUndefs;
1791 EVT EltVT = N->getValueType(0).getVectorElementType();
1792 return (C->isConstantSplat(SplatValue, SplatUndef, SplatBitSize,
1793 HasAnyUndefs) &&
1794 EltVT.getSizeInBits() >= SplatBitSize);
1795}
1796
1797SDValue DAGCombiner::visitMUL(SDNode *N) {
1798 SDValue N0 = N->getOperand(0);
1799 SDValue N1 = N->getOperand(1);
1800 EVT VT = N0.getValueType();
1801
1802 // fold (mul x, undef) -> 0
1803 if (N0.getOpcode() == ISD::UNDEF || N1.getOpcode() == ISD::UNDEF)
1804 return DAG.getConstant(0, VT);
1805
1806 bool N0IsConst = false;
1807 bool N1IsConst = false;
1808 APInt ConstValue0, ConstValue1;
1809 // fold vector ops
1810 if (VT.isVector()) {
1811 SDValue FoldedVOp = SimplifyVBinOp(N);
1812 if (FoldedVOp.getNode()) return FoldedVOp;
1813
1814 N0IsConst = isConstantSplatVector(N0.getNode(), ConstValue0);
1815 N1IsConst = isConstantSplatVector(N1.getNode(), ConstValue1);
1816 } else {
1817 N0IsConst = dyn_cast<ConstantSDNode>(N0) != 0;
1818 ConstValue0 = N0IsConst ? (dyn_cast<ConstantSDNode>(N0))->getAPIntValue()
1819 : APInt();
1820 N1IsConst = dyn_cast<ConstantSDNode>(N1) != 0;
1821 ConstValue1 = N1IsConst ? (dyn_cast<ConstantSDNode>(N1))->getAPIntValue()
1822 : APInt();
1823 }
1824
1825 // fold (mul c1, c2) -> c1*c2
1826 if (N0IsConst && N1IsConst)
1827 return DAG.FoldConstantArithmetic(ISD::MUL, VT, N0.getNode(), N1.getNode());
1828
1829 // canonicalize constant to RHS
1830 if (N0IsConst && !N1IsConst)
1831 return DAG.getNode(ISD::MUL, SDLoc(N), VT, N1, N0);
1832 // fold (mul x, 0) -> 0
1833 if (N1IsConst && ConstValue1 == 0)
1834 return N1;
1835 // We require a splat of the entire scalar bit width for non-contiguous
1836 // bit patterns.
1837 bool IsFullSplat =
1838 ConstValue1.getBitWidth() == VT.getScalarType().getSizeInBits();
1839 // fold (mul x, 1) -> x
1840 if (N1IsConst && ConstValue1 == 1 && IsFullSplat)
1841 return N0;
1842 // fold (mul x, -1) -> 0-x
1843 if (N1IsConst && ConstValue1.isAllOnesValue())
1844 return DAG.getNode(ISD::SUB, SDLoc(N), VT,
1845 DAG.getConstant(0, VT), N0);
1846 // fold (mul x, (1 << c)) -> x << c
1847 if (N1IsConst && ConstValue1.isPowerOf2() && IsFullSplat)
1848 return DAG.getNode(ISD::SHL, SDLoc(N), VT, N0,
1849 DAG.getConstant(ConstValue1.logBase2(),
1850 getShiftAmountTy(N0.getValueType())));
1851 // fold (mul x, -(1 << c)) -> -(x << c) or (-x) << c
1852 if (N1IsConst && (-ConstValue1).isPowerOf2() && IsFullSplat) {
1853 unsigned Log2Val = (-ConstValue1).logBase2();
1854 // FIXME: If the input is something that is easily negated (e.g. a
1855 // single-use add), we should put the negate there.
1856 return DAG.getNode(ISD::SUB, SDLoc(N), VT,
1857 DAG.getConstant(0, VT),
1858 DAG.getNode(ISD::SHL, SDLoc(N), VT, N0,
1859 DAG.getConstant(Log2Val,
1860 getShiftAmountTy(N0.getValueType()))));
1861 }
1862
1863 APInt Val;
1864 // (mul (shl X, c1), c2) -> (mul X, c2 << c1)
1865 if (N1IsConst && N0.getOpcode() == ISD::SHL &&
1866 (isConstantSplatVector(N0.getOperand(1).getNode(), Val) ||
1867 isa<ConstantSDNode>(N0.getOperand(1)))) {
1868 SDValue C3 = DAG.getNode(ISD::SHL, SDLoc(N), VT,
1869 N1, N0.getOperand(1));
1870 AddToWorkList(C3.getNode());
1871 return DAG.getNode(ISD::MUL, SDLoc(N), VT,
1872 N0.getOperand(0), C3);
1873 }
1874
1875 // Change (mul (shl X, C), Y) -> (shl (mul X, Y), C) when the shift has one
1876 // use.
1877 {
1878 SDValue Sh(0,0), Y(0,0);
1879 // Check for both (mul (shl X, C), Y) and (mul Y, (shl X, C)).
1880 if (N0.getOpcode() == ISD::SHL &&
1881 (isConstantSplatVector(N0.getOperand(1).getNode(), Val) ||
1882 isa<ConstantSDNode>(N0.getOperand(1))) &&
1883 N0.getNode()->hasOneUse()) {
1884 Sh = N0; Y = N1;
1885 } else if (N1.getOpcode() == ISD::SHL &&
1886 isa<ConstantSDNode>(N1.getOperand(1)) &&
1887 N1.getNode()->hasOneUse()) {
1888 Sh = N1; Y = N0;
1889 }
1890
1891 if (Sh.getNode()) {
1892 SDValue Mul = DAG.getNode(ISD::MUL, SDLoc(N), VT,
1893 Sh.getOperand(0), Y);
1894 return DAG.getNode(ISD::SHL, SDLoc(N), VT,
1895 Mul, Sh.getOperand(1));
1896 }
1897 }
1898
1899 // fold (mul (add x, c1), c2) -> (add (mul x, c2), c1*c2)
1900 if (N1IsConst && N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse() &&
1901 (isConstantSplatVector(N0.getOperand(1).getNode(), Val) ||
1902 isa<ConstantSDNode>(N0.getOperand(1))))
1903 return DAG.getNode(ISD::ADD, SDLoc(N), VT,
1904 DAG.getNode(ISD::MUL, SDLoc(N0), VT,
1905 N0.getOperand(0), N1),
1906 DAG.getNode(ISD::MUL, SDLoc(N1), VT,
1907 N0.getOperand(1), N1));
1908
1909 // reassociate mul
1910 SDValue RMUL = ReassociateOps(ISD::MUL, SDLoc(N), N0, N1);
1911 if (RMUL.getNode() != 0)
1912 return RMUL;
1913
1914 return SDValue();
1915}
1916
1917SDValue DAGCombiner::visitSDIV(SDNode *N) {
1918 SDValue N0 = N->getOperand(0);
1919 SDValue N1 = N->getOperand(1);
1920 ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0.getNode());
1921 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
1922 EVT VT = N->getValueType(0);
1923
1924 // fold vector ops
1925 if (VT.isVector()) {
1926 SDValue FoldedVOp = SimplifyVBinOp(N);
1927 if (FoldedVOp.getNode()) return FoldedVOp;
1928 }
1929
1930 // fold (sdiv c1, c2) -> c1/c2
1931 if (N0C && N1C && !N1C->isNullValue())
1932 return DAG.FoldConstantArithmetic(ISD::SDIV, VT, N0C, N1C);
1933 // fold (sdiv X, 1) -> X
1934 if (N1C && N1C->getAPIntValue() == 1LL)
1935 return N0;
1936 // fold (sdiv X, -1) -> 0-X
1937 if (N1C && N1C->isAllOnesValue())
1938 return DAG.getNode(ISD::SUB, SDLoc(N), VT,
1939 DAG.getConstant(0, VT), N0);
1940 // If we know the sign bits of both operands are zero, strength reduce to a
1941 // udiv instead. Handles (X&15) /s 4 -> X&15 >> 2
1942 if (!VT.isVector()) {
1943 if (DAG.SignBitIsZero(N1) && DAG.SignBitIsZero(N0))
1944 return DAG.getNode(ISD::UDIV, SDLoc(N), N1.getValueType(),
1945 N0, N1);
1946 }
1947 // fold (sdiv X, pow2) -> simple ops after legalize
1948 if (N1C && !N1C->isNullValue() &&
1949 (N1C->getAPIntValue().isPowerOf2() ||
1950 (-N1C->getAPIntValue()).isPowerOf2())) {
1951 // If dividing by powers of two is cheap, then don't perform the following
1952 // fold.
1953 if (TLI.isPow2DivCheap())
1954 return SDValue();
1955
1956 unsigned lg2 = N1C->getAPIntValue().countTrailingZeros();
1957
1958 // Splat the sign bit into the register
1959 SDValue SGN = DAG.getNode(ISD::SRA, SDLoc(N), VT, N0,
1960 DAG.getConstant(VT.getSizeInBits()-1,
1961 getShiftAmountTy(N0.getValueType())));
1962 AddToWorkList(SGN.getNode());
1963
1964 // Add (N0 < 0) ? abs2 - 1 : 0;
1965 SDValue SRL = DAG.getNode(ISD::SRL, SDLoc(N), VT, SGN,
1966 DAG.getConstant(VT.getSizeInBits() - lg2,
1967 getShiftAmountTy(SGN.getValueType())));
1968 SDValue ADD = DAG.getNode(ISD::ADD, SDLoc(N), VT, N0, SRL);
1969 AddToWorkList(SRL.getNode());
1970 AddToWorkList(ADD.getNode()); // Divide by pow2
1971 SDValue SRA = DAG.getNode(ISD::SRA, SDLoc(N), VT, ADD,
1972 DAG.getConstant(lg2, getShiftAmountTy(ADD.getValueType())));
1973
1974 // If we're dividing by a positive value, we're done. Otherwise, we must
1975 // negate the result.
1976 if (N1C->getAPIntValue().isNonNegative())
1977 return SRA;
1978
1979 AddToWorkList(SRA.getNode());
1980 return DAG.getNode(ISD::SUB, SDLoc(N), VT,
1981 DAG.getConstant(0, VT), SRA);
1982 }
1983
1984 // if integer divide is expensive and we satisfy the requirements, emit an
1985 // alternate sequence.
1986 if (N1C && !N1C->isNullValue() && !TLI.isIntDivCheap()) {
1987 SDValue Op = BuildSDIV(N);
1988 if (Op.getNode()) return Op;
1989 }
1990
1991 // undef / X -> 0
1992 if (N0.getOpcode() == ISD::UNDEF)
1993 return DAG.getConstant(0, VT);
1994 // X / undef -> undef
1995 if (N1.getOpcode() == ISD::UNDEF)
1996 return N1;
1997
1998 return SDValue();
1999}
2000
2001SDValue DAGCombiner::visitUDIV(SDNode *N) {
2002 SDValue N0 = N->getOperand(0);
2003 SDValue N1 = N->getOperand(1);
2004 ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0.getNode());
2005 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
2006 EVT VT = N->getValueType(0);
2007
2008 // fold vector ops
2009 if (VT.isVector()) {
2010 SDValue FoldedVOp = SimplifyVBinOp(N);
2011 if (FoldedVOp.getNode()) return FoldedVOp;
2012 }
2013
2014 // fold (udiv c1, c2) -> c1/c2
2015 if (N0C && N1C && !N1C->isNullValue())
2016 return DAG.FoldConstantArithmetic(ISD::UDIV, VT, N0C, N1C);
2017 // fold (udiv x, (1 << c)) -> x >>u c
2018 if (N1C && N1C->getAPIntValue().isPowerOf2())
2019 return DAG.getNode(ISD::SRL, SDLoc(N), VT, N0,
2020 DAG.getConstant(N1C->getAPIntValue().logBase2(),
2021 getShiftAmountTy(N0.getValueType())));
2022 // fold (udiv x, (shl c, y)) -> x >>u (log2(c)+y) iff c is power of 2
2023 if (N1.getOpcode() == ISD::SHL) {
2024 if (ConstantSDNode *SHC = dyn_cast<ConstantSDNode>(N1.getOperand(0))) {
2025 if (SHC->getAPIntValue().isPowerOf2()) {
2026 EVT ADDVT = N1.getOperand(1).getValueType();
2027 SDValue Add = DAG.getNode(ISD::ADD, SDLoc(N), ADDVT,
2028 N1.getOperand(1),
2029 DAG.getConstant(SHC->getAPIntValue()
2030 .logBase2(),
2031 ADDVT));
2032 AddToWorkList(Add.getNode());
2033 return DAG.getNode(ISD::SRL, SDLoc(N), VT, N0, Add);
2034 }
2035 }
2036 }
2037 // fold (udiv x, c) -> alternate
2038 if (N1C && !N1C->isNullValue() && !TLI.isIntDivCheap()) {
2039 SDValue Op = BuildUDIV(N);
2040 if (Op.getNode()) return Op;
2041 }
2042
2043 // undef / X -> 0
2044 if (N0.getOpcode() == ISD::UNDEF)
2045 return DAG.getConstant(0, VT);
2046 // X / undef -> undef
2047 if (N1.getOpcode() == ISD::UNDEF)
2048 return N1;
2049
2050 return SDValue();
2051}
2052
2053SDValue DAGCombiner::visitSREM(SDNode *N) {
2054 SDValue N0 = N->getOperand(0);
2055 SDValue N1 = N->getOperand(1);
2056 ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
2057 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
2058 EVT VT = N->getValueType(0);
2059
2060 // fold (srem c1, c2) -> c1%c2
2061 if (N0C && N1C && !N1C->isNullValue())
2062 return DAG.FoldConstantArithmetic(ISD::SREM, VT, N0C, N1C);
2063 // If we know the sign bits of both operands are zero, strength reduce to a
2064 // urem instead. Handles (X & 0x0FFFFFFF) %s 16 -> X&15
2065 if (!VT.isVector()) {
2066 if (DAG.SignBitIsZero(N1) && DAG.SignBitIsZero(N0))
2067 return DAG.getNode(ISD::UREM, SDLoc(N), VT, N0, N1);
2068 }
2069
2070 // If X/C can be simplified by the division-by-constant logic, lower
2071 // X%C to the equivalent of X-X/C*C.
2072 if (N1C && !N1C->isNullValue()) {
2073 SDValue Div = DAG.getNode(ISD::SDIV, SDLoc(N), VT, N0, N1);
2074 AddToWorkList(Div.getNode());
2075 SDValue OptimizedDiv = combine(Div.getNode());
2076 if (OptimizedDiv.getNode() && OptimizedDiv.getNode() != Div.getNode()) {
2077 SDValue Mul = DAG.getNode(ISD::MUL, SDLoc(N), VT,
2078 OptimizedDiv, N1);
2079 SDValue Sub = DAG.getNode(ISD::SUB, SDLoc(N), VT, N0, Mul);
2080 AddToWorkList(Mul.getNode());
2081 return Sub;
2082 }
2083 }
2084
2085 // undef % X -> 0
2086 if (N0.getOpcode() == ISD::UNDEF)
2087 return DAG.getConstant(0, VT);
2088 // X % undef -> undef
2089 if (N1.getOpcode() == ISD::UNDEF)
2090 return N1;
2091
2092 return SDValue();
2093}
2094
2095SDValue DAGCombiner::visitUREM(SDNode *N) {
2096 SDValue N0 = N->getOperand(0);
2097 SDValue N1 = N->getOperand(1);
2098 ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
2099 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
2100 EVT VT = N->getValueType(0);
2101
2102 // fold (urem c1, c2) -> c1%c2
2103 if (N0C && N1C && !N1C->isNullValue())
2104 return DAG.FoldConstantArithmetic(ISD::UREM, VT, N0C, N1C);
2105 // fold (urem x, pow2) -> (and x, pow2-1)
2106 if (N1C && !N1C->isNullValue() && N1C->getAPIntValue().isPowerOf2())
2107 return DAG.getNode(ISD::AND, SDLoc(N), VT, N0,
2108 DAG.getConstant(N1C->getAPIntValue()-1,VT));
2109 // fold (urem x, (shl pow2, y)) -> (and x, (add (shl pow2, y), -1))
2110 if (N1.getOpcode() == ISD::SHL) {
2111 if (ConstantSDNode *SHC = dyn_cast<ConstantSDNode>(N1.getOperand(0))) {
2112 if (SHC->getAPIntValue().isPowerOf2()) {
2113 SDValue Add =
2114 DAG.getNode(ISD::ADD, SDLoc(N), VT, N1,
2115 DAG.getConstant(APInt::getAllOnesValue(VT.getSizeInBits()),
2116 VT));
2117 AddToWorkList(Add.getNode());
2118 return DAG.getNode(ISD::AND, SDLoc(N), VT, N0, Add);
2119 }
2120 }
2121 }
2122
2123 // If X/C can be simplified by the division-by-constant logic, lower
2124 // X%C to the equivalent of X-X/C*C.
2125 if (N1C && !N1C->isNullValue()) {
2126 SDValue Div = DAG.getNode(ISD::UDIV, SDLoc(N), VT, N0, N1);
2127 AddToWorkList(Div.getNode());
2128 SDValue OptimizedDiv = combine(Div.getNode());
2129 if (OptimizedDiv.getNode() && OptimizedDiv.getNode() != Div.getNode()) {
2130 SDValue Mul = DAG.getNode(ISD::MUL, SDLoc(N), VT,
2131 OptimizedDiv, N1);
2132 SDValue Sub = DAG.getNode(ISD::SUB, SDLoc(N), VT, N0, Mul);
2133 AddToWorkList(Mul.getNode());
2134 return Sub;
2135 }
2136 }
2137
2138 // undef % X -> 0
2139 if (N0.getOpcode() == ISD::UNDEF)
2140 return DAG.getConstant(0, VT);
2141 // X % undef -> undef
2142 if (N1.getOpcode() == ISD::UNDEF)
2143 return N1;
2144
2145 return SDValue();
2146}
2147
2148SDValue DAGCombiner::visitMULHS(SDNode *N) {
2149 SDValue N0 = N->getOperand(0);
2150 SDValue N1 = N->getOperand(1);
2151 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
2152 EVT VT = N->getValueType(0);
2153 SDLoc DL(N);
2154
2155 // fold (mulhs x, 0) -> 0
2156 if (N1C && N1C->isNullValue())
2157 return N1;
2158 // fold (mulhs x, 1) -> (sra x, size(x)-1)
2159 if (N1C && N1C->getAPIntValue() == 1)
2160 return DAG.getNode(ISD::SRA, SDLoc(N), N0.getValueType(), N0,
2161 DAG.getConstant(N0.getValueType().getSizeInBits() - 1,
2162 getShiftAmountTy(N0.getValueType())));
2163 // fold (mulhs x, undef) -> 0
2164 if (N0.getOpcode() == ISD::UNDEF || N1.getOpcode() == ISD::UNDEF)
2165 return DAG.getConstant(0, VT);
2166
2167 // If the type twice as wide is legal, transform the mulhs to a wider multiply
2168 // plus a shift.
2169 if (VT.isSimple() && !VT.isVector()) {
2170 MVT Simple = VT.getSimpleVT();
2171 unsigned SimpleSize = Simple.getSizeInBits();
2172 EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), SimpleSize*2);
2173 if (TLI.isOperationLegal(ISD::MUL, NewVT)) {
2174 N0 = DAG.getNode(ISD::SIGN_EXTEND, DL, NewVT, N0);
2175 N1 = DAG.getNode(ISD::SIGN_EXTEND, DL, NewVT, N1);
2176 N1 = DAG.getNode(ISD::MUL, DL, NewVT, N0, N1);
2177 N1 = DAG.getNode(ISD::SRL, DL, NewVT, N1,
2178 DAG.getConstant(SimpleSize, getShiftAmountTy(N1.getValueType())));
2179 return DAG.getNode(ISD::TRUNCATE, DL, VT, N1);
2180 }
2181 }
2182
2183 return SDValue();
2184}
2185
2186SDValue DAGCombiner::visitMULHU(SDNode *N) {
2187 SDValue N0 = N->getOperand(0);
2188 SDValue N1 = N->getOperand(1);
2189 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
2190 EVT VT = N->getValueType(0);
2191 SDLoc DL(N);
2192
2193 // fold (mulhu x, 0) -> 0
2194 if (N1C && N1C->isNullValue())
2195 return N1;
2196 // fold (mulhu x, 1) -> 0
2197 if (N1C && N1C->getAPIntValue() == 1)
2198 return DAG.getConstant(0, N0.getValueType());
2199 // fold (mulhu x, undef) -> 0
2200 if (N0.getOpcode() == ISD::UNDEF || N1.getOpcode() == ISD::UNDEF)
2201 return DAG.getConstant(0, VT);
2202
2203 // If the type twice as wide is legal, transform the mulhu to a wider multiply
2204 // plus a shift.
2205 if (VT.isSimple() && !VT.isVector()) {
2206 MVT Simple = VT.getSimpleVT();
2207 unsigned SimpleSize = Simple.getSizeInBits();
2208 EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), SimpleSize*2);
2209 if (TLI.isOperationLegal(ISD::MUL, NewVT)) {
2210 N0 = DAG.getNode(ISD::ZERO_EXTEND, DL, NewVT, N0);
2211 N1 = DAG.getNode(ISD::ZERO_EXTEND, DL, NewVT, N1);
2212 N1 = DAG.getNode(ISD::MUL, DL, NewVT, N0, N1);
2213 N1 = DAG.getNode(ISD::SRL, DL, NewVT, N1,
2214 DAG.getConstant(SimpleSize, getShiftAmountTy(N1.getValueType())));
2215 return DAG.getNode(ISD::TRUNCATE, DL, VT, N1);
2216 }
2217 }
2218
2219 return SDValue();
2220}
2221
2222/// SimplifyNodeWithTwoResults - Perform optimizations common to nodes that
2223/// compute two values. LoOp and HiOp give the opcodes for the two computations
2224/// that are being performed. Return true if a simplification was made.
2225///
2226SDValue DAGCombiner::SimplifyNodeWithTwoResults(SDNode *N, unsigned LoOp,
2227 unsigned HiOp) {
2228 // If the high half is not needed, just compute the low half.
2229 bool HiExists = N->hasAnyUseOfValue(1);
2230 if (!HiExists &&
2231 (!LegalOperations ||
2232 TLI.isOperationLegal(LoOp, N->getValueType(0)))) {
2233 SDValue Res = DAG.getNode(LoOp, SDLoc(N), N->getValueType(0),
2234 N->op_begin(), N->getNumOperands());
2235 return CombineTo(N, Res, Res);
2236 }
2237
2238 // If the low half is not needed, just compute the high half.
2239 bool LoExists = N->hasAnyUseOfValue(0);
2240 if (!LoExists &&
2241 (!LegalOperations ||
2242 TLI.isOperationLegal(HiOp, N->getValueType(1)))) {
2243 SDValue Res = DAG.getNode(HiOp, SDLoc(N), N->getValueType(1),
2244 N->op_begin(), N->getNumOperands());
2245 return CombineTo(N, Res, Res);
2246 }
2247
2248 // If both halves are used, return as it is.
2249 if (LoExists && HiExists)
2250 return SDValue();
2251
2252 // If the two computed results can be simplified separately, separate them.
2253 if (LoExists) {
2254 SDValue Lo = DAG.getNode(LoOp, SDLoc(N), N->getValueType(0),
2255 N->op_begin(), N->getNumOperands());
2256 AddToWorkList(Lo.getNode());
2257 SDValue LoOpt = combine(Lo.getNode());
2258 if (LoOpt.getNode() && LoOpt.getNode() != Lo.getNode() &&
2259 (!LegalOperations ||
2260 TLI.isOperationLegal(LoOpt.getOpcode(), LoOpt.getValueType())))
2261 return CombineTo(N, LoOpt, LoOpt);
2262 }
2263
2264 if (HiExists) {
2265 SDValue Hi = DAG.getNode(HiOp, SDLoc(N), N->getValueType(1),
2266 N->op_begin(), N->getNumOperands());
2267 AddToWorkList(Hi.getNode());
2268 SDValue HiOpt = combine(Hi.getNode());
2269 if (HiOpt.getNode() && HiOpt != Hi &&
2270 (!LegalOperations ||
2271 TLI.isOperationLegal(HiOpt.getOpcode(), HiOpt.getValueType())))
2272 return CombineTo(N, HiOpt, HiOpt);
2273 }
2274
2275 return SDValue();
2276}
2277
2278SDValue DAGCombiner::visitSMUL_LOHI(SDNode *N) {
2279 SDValue Res = SimplifyNodeWithTwoResults(N, ISD::MUL, ISD::MULHS);
2280 if (Res.getNode()) return Res;
2281
2282 EVT VT = N->getValueType(0);
2283 SDLoc DL(N);
2284
2285 // If the type twice as wide is legal, transform the mulhu to a wider multiply
2286 // plus a shift.
2287 if (VT.isSimple() && !VT.isVector()) {
2288 MVT Simple = VT.getSimpleVT();
2289 unsigned SimpleSize = Simple.getSizeInBits();
2290 EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), SimpleSize*2);
2291 if (TLI.isOperationLegal(ISD::MUL, NewVT)) {
2292 SDValue Lo = DAG.getNode(ISD::SIGN_EXTEND, DL, NewVT, N->getOperand(0));
2293 SDValue Hi = DAG.getNode(ISD::SIGN_EXTEND, DL, NewVT, N->getOperand(1));
2294 Lo = DAG.getNode(ISD::MUL, DL, NewVT, Lo, Hi);
2295 // Compute the high part as N1.
2296 Hi = DAG.getNode(ISD::SRL, DL, NewVT, Lo,
2297 DAG.getConstant(SimpleSize, getShiftAmountTy(Lo.getValueType())));
2298 Hi = DAG.getNode(ISD::TRUNCATE, DL, VT, Hi);
2299 // Compute the low part as N0.
2300 Lo = DAG.getNode(ISD::TRUNCATE, DL, VT, Lo);
2301 return CombineTo(N, Lo, Hi);
2302 }
2303 }
2304
2305 return SDValue();
2306}
2307
2308SDValue DAGCombiner::visitUMUL_LOHI(SDNode *N) {
2309 SDValue Res = SimplifyNodeWithTwoResults(N, ISD::MUL, ISD::MULHU);
2310 if (Res.getNode()) return Res;
2311
2312 EVT VT = N->getValueType(0);
2313 SDLoc DL(N);
2314
2315 // If the type twice as wide is legal, transform the mulhu to a wider multiply
2316 // plus a shift.
2317 if (VT.isSimple() && !VT.isVector()) {
2318 MVT Simple = VT.getSimpleVT();
2319 unsigned SimpleSize = Simple.getSizeInBits();
2320 EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), SimpleSize*2);
2321 if (TLI.isOperationLegal(ISD::MUL, NewVT)) {
2322 SDValue Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, NewVT, N->getOperand(0));
2323 SDValue Hi = DAG.getNode(ISD::ZERO_EXTEND, DL, NewVT, N->getOperand(1));
2324 Lo = DAG.getNode(ISD::MUL, DL, NewVT, Lo, Hi);
2325 // Compute the high part as N1.
2326 Hi = DAG.getNode(ISD::SRL, DL, NewVT, Lo,
2327 DAG.getConstant(SimpleSize, getShiftAmountTy(Lo.getValueType())));
2328 Hi = DAG.getNode(ISD::TRUNCATE, DL, VT, Hi);
2329 // Compute the low part as N0.
2330 Lo = DAG.getNode(ISD::TRUNCATE, DL, VT, Lo);
2331 return CombineTo(N, Lo, Hi);
2332 }
2333 }
2334
2335 return SDValue();
2336}
2337
2338SDValue DAGCombiner::visitSMULO(SDNode *N) {
2339 // (smulo x, 2) -> (saddo x, x)
2340 if (ConstantSDNode *C2 = dyn_cast<ConstantSDNode>(N->getOperand(1)))
2341 if (C2->getAPIntValue() == 2)
2342 return DAG.getNode(ISD::SADDO, SDLoc(N), N->getVTList(),
2343 N->getOperand(0), N->getOperand(0));
2344
2345 return SDValue();
2346}
2347
2348SDValue DAGCombiner::visitUMULO(SDNode *N) {
2349 // (umulo x, 2) -> (uaddo x, x)
2350 if (ConstantSDNode *C2 = dyn_cast<ConstantSDNode>(N->getOperand(1)))
2351 if (C2->getAPIntValue() == 2)
2352 return DAG.getNode(ISD::UADDO, SDLoc(N), N->getVTList(),
2353 N->getOperand(0), N->getOperand(0));
2354
2355 return SDValue();
2356}
2357
2358SDValue DAGCombiner::visitSDIVREM(SDNode *N) {
2359 SDValue Res = SimplifyNodeWithTwoResults(N, ISD::SDIV, ISD::SREM);
2360 if (Res.getNode()) return Res;
2361
2362 return SDValue();
2363}
2364
2365SDValue DAGCombiner::visitUDIVREM(SDNode *N) {
2366 SDValue Res = SimplifyNodeWithTwoResults(N, ISD::UDIV, ISD::UREM);
2367 if (Res.getNode()) return Res;
2368
2369 return SDValue();
2370}
2371
2372/// SimplifyBinOpWithSameOpcodeHands - If this is a binary operator with
2373/// two operands of the same opcode, try to simplify it.
2374SDValue DAGCombiner::SimplifyBinOpWithSameOpcodeHands(SDNode *N) {
2375 SDValue N0 = N->getOperand(0), N1 = N->getOperand(1);
2376 EVT VT = N0.getValueType();
2377 assert(N0.getOpcode() == N1.getOpcode() && "Bad input!");
2378
2379 // Bail early if none of these transforms apply.
2380 if (N0.getNode()->getNumOperands() == 0) return SDValue();
2381
2382 // For each of OP in AND/OR/XOR:
2383 // fold (OP (zext x), (zext y)) -> (zext (OP x, y))
2384 // fold (OP (sext x), (sext y)) -> (sext (OP x, y))
2385 // fold (OP (aext x), (aext y)) -> (aext (OP x, y))
2386 // fold (OP (trunc x), (trunc y)) -> (trunc (OP x, y)) (if trunc isn't free)
2387 //
2388 // do not sink logical op inside of a vector extend, since it may combine
2389 // into a vsetcc.
2390 EVT Op0VT = N0.getOperand(0).getValueType();
2391 if ((N0.getOpcode() == ISD::ZERO_EXTEND ||
2392 N0.getOpcode() == ISD::SIGN_EXTEND ||
2393 // Avoid infinite looping with PromoteIntBinOp.
2394 (N0.getOpcode() == ISD::ANY_EXTEND &&
2395 (!LegalTypes || TLI.isTypeDesirableForOp(N->getOpcode(), Op0VT))) ||
2396 (N0.getOpcode() == ISD::TRUNCATE &&
2397 (!TLI.isZExtFree(VT, Op0VT) ||
2398 !TLI.isTruncateFree(Op0VT, VT)) &&
2399 TLI.isTypeLegal(Op0VT))) &&
2400 !VT.isVector() &&
2401 Op0VT == N1.getOperand(0).getValueType() &&
2402 (!LegalOperations || TLI.isOperationLegal(N->getOpcode(), Op0VT))) {
2403 SDValue ORNode = DAG.getNode(N->getOpcode(), SDLoc(N0),
2404 N0.getOperand(0).getValueType(),
2405 N0.getOperand(0), N1.getOperand(0));
2406 AddToWorkList(ORNode.getNode());
2407 return DAG.getNode(N0.getOpcode(), SDLoc(N), VT, ORNode);
2408 }
2409
2410 // For each of OP in SHL/SRL/SRA/AND...
2411 // fold (and (OP x, z), (OP y, z)) -> (OP (and x, y), z)
2412 // fold (or (OP x, z), (OP y, z)) -> (OP (or x, y), z)
2413 // fold (xor (OP x, z), (OP y, z)) -> (OP (xor x, y), z)
2414 if ((N0.getOpcode() == ISD::SHL || N0.getOpcode() == ISD::SRL ||
2415 N0.getOpcode() == ISD::SRA || N0.getOpcode() == ISD::AND) &&
2416 N0.getOperand(1) == N1.getOperand(1)) {
2417 SDValue ORNode = DAG.getNode(N->getOpcode(), SDLoc(N0),
2418 N0.getOperand(0).getValueType(),
2419 N0.getOperand(0), N1.getOperand(0));
2420 AddToWorkList(ORNode.getNode());
2421 return DAG.getNode(N0.getOpcode(), SDLoc(N), VT,
2422 ORNode, N0.getOperand(1));
2423 }
2424
2425 // Simplify xor/and/or (bitcast(A), bitcast(B)) -> bitcast(op (A,B))
2426 // Only perform this optimization after type legalization and before
2427 // LegalizeVectorOprs. LegalizeVectorOprs promotes vector operations by
2428 // adding bitcasts. For example (xor v4i32) is promoted to (v2i64), and
2429 // we don't want to undo this promotion.
2430 // We also handle SCALAR_TO_VECTOR because xor/or/and operations are cheaper
2431 // on scalars.
2432 if ((N0.getOpcode() == ISD::BITCAST ||
2433 N0.getOpcode() == ISD::SCALAR_TO_VECTOR) &&
2434 Level == AfterLegalizeTypes) {
2435 SDValue In0 = N0.getOperand(0);
2436 SDValue In1 = N1.getOperand(0);
2437 EVT In0Ty = In0.getValueType();
2438 EVT In1Ty = In1.getValueType();
2439 SDLoc DL(N);
2440 // If both incoming values are integers, and the original types are the
2441 // same.
2442 if (In0Ty.isInteger() && In1Ty.isInteger() && In0Ty == In1Ty) {
2443 SDValue Op = DAG.getNode(N->getOpcode(), DL, In0Ty, In0, In1);
2444 SDValue BC = DAG.getNode(N0.getOpcode(), DL, VT, Op);
2445 AddToWorkList(Op.getNode());
2446 return BC;
2447 }
2448 }
2449
2450 // Xor/and/or are indifferent to the swizzle operation (shuffle of one value).
2451 // Simplify xor/and/or (shuff(A), shuff(B)) -> shuff(op (A,B))
2452 // If both shuffles use the same mask, and both shuffle within a single
2453 // vector, then it is worthwhile to move the swizzle after the operation.
2454 // The type-legalizer generates this pattern when loading illegal
2455 // vector types from memory. In many cases this allows additional shuffle
2456 // optimizations.
2457 if (N0.getOpcode() == ISD::VECTOR_SHUFFLE && Level < AfterLegalizeDAG &&
2458 N0.getOperand(1).getOpcode() == ISD::UNDEF &&
2459 N1.getOperand(1).getOpcode() == ISD::UNDEF) {
2460 ShuffleVectorSDNode *SVN0 = cast<ShuffleVectorSDNode>(N0);
2461 ShuffleVectorSDNode *SVN1 = cast<ShuffleVectorSDNode>(N1);
2462
2463 assert(N0.getOperand(0).getValueType() == N1.getOperand(1).getValueType() &&
2464 "Inputs to shuffles are not the same type");
2465
2466 unsigned NumElts = VT.getVectorNumElements();
2467
2468 // Check that both shuffles use the same mask. The masks are known to be of
2469 // the same length because the result vector type is the same.
2470 bool SameMask = true;
2471 for (unsigned i = 0; i != NumElts; ++i) {
2472 int Idx0 = SVN0->getMaskElt(i);
2473 int Idx1 = SVN1->getMaskElt(i);
2474 if (Idx0 != Idx1) {
2475 SameMask = false;
2476 break;
2477 }
2478 }
2479
2480 if (SameMask) {
2481 SDValue Op = DAG.getNode(N->getOpcode(), SDLoc(N), VT,
2482 N0.getOperand(0), N1.getOperand(0));
2483 AddToWorkList(Op.getNode());
2484 return DAG.getVectorShuffle(VT, SDLoc(N), Op,
2485 DAG.getUNDEF(VT), &SVN0->getMask()[0]);
2486 }
2487 }
2488
2489 return SDValue();
2490}
2491
2492SDValue DAGCombiner::visitAND(SDNode *N) {
2493 SDValue N0 = N->getOperand(0);
2494 SDValue N1 = N->getOperand(1);
2495 SDValue LL, LR, RL, RR, CC0, CC1;
2496 ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
2497 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
2498 EVT VT = N1.getValueType();
2499 unsigned BitWidth = VT.getScalarType().getSizeInBits();
2500
2501 // fold vector ops
2502 if (VT.isVector()) {
2503 SDValue FoldedVOp = SimplifyVBinOp(N);
2504 if (FoldedVOp.getNode()) return FoldedVOp;
2505
2506 // fold (and x, 0) -> 0, vector edition
2507 if (ISD::isBuildVectorAllZeros(N0.getNode()))
2508 return N0;
2509 if (ISD::isBuildVectorAllZeros(N1.getNode()))
2510 return N1;
2511
2512 // fold (and x, -1) -> x, vector edition
2513 if (ISD::isBuildVectorAllOnes(N0.getNode()))
2514 return N1;
2515 if (ISD::isBuildVectorAllOnes(N1.getNode()))
2516 return N0;
2517 }
2518
2519 // fold (and x, undef) -> 0
2520 if (N0.getOpcode() == ISD::UNDEF || N1.getOpcode() == ISD::UNDEF)
2521 return DAG.getConstant(0, VT);
2522 // fold (and c1, c2) -> c1&c2
2523 if (N0C && N1C)
2524 return DAG.FoldConstantArithmetic(ISD::AND, VT, N0C, N1C);
2525 // canonicalize constant to RHS
2526 if (N0C && !N1C)
2527 return DAG.getNode(ISD::AND, SDLoc(N), VT, N1, N0);
2528 // fold (and x, -1) -> x
2529 if (N1C && N1C->isAllOnesValue())
2530 return N0;
2531 // if (and x, c) is known to be zero, return 0
2532 if (N1C && DAG.MaskedValueIsZero(SDValue(N, 0),
2533 APInt::getAllOnesValue(BitWidth)))
2534 return DAG.getConstant(0, VT);
2535 // reassociate and
2536 SDValue RAND = ReassociateOps(ISD::AND, SDLoc(N), N0, N1);
2537 if (RAND.getNode() != 0)
2538 return RAND;
2539 // fold (and (or x, C), D) -> D if (C & D) == D
2540 if (N1C && N0.getOpcode() == ISD::OR)
2541 if (ConstantSDNode *ORI = dyn_cast<ConstantSDNode>(N0.getOperand(1)))
2542 if ((ORI->getAPIntValue() & N1C->getAPIntValue()) == N1C->getAPIntValue())
2543 return N1;
2544 // fold (and (any_ext V), c) -> (zero_ext V) if 'and' only clears top bits.
2545 if (N1C && N0.getOpcode() == ISD::ANY_EXTEND) {
2546 SDValue N0Op0 = N0.getOperand(0);
2547 APInt Mask = ~N1C->getAPIntValue();
2548 Mask = Mask.trunc(N0Op0.getValueSizeInBits());
2549 if (DAG.MaskedValueIsZero(N0Op0, Mask)) {
2550 SDValue Zext = DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N),
2551 N0.getValueType(), N0Op0);
2552
2553 // Replace uses of the AND with uses of the Zero extend node.
2554 CombineTo(N, Zext);
2555
2556 // We actually want to replace all uses of the any_extend with the
2557 // zero_extend, to avoid duplicating things. This will later cause this
2558 // AND to be folded.
2559 CombineTo(N0.getNode(), Zext);
2560 return SDValue(N, 0); // Return N so it doesn't get rechecked!
2561 }
2562 }
2563 // similarly fold (and (X (load ([non_ext|any_ext|zero_ext] V))), c) ->
2564 // (X (load ([non_ext|zero_ext] V))) if 'and' only clears top bits which must
2565 // already be zero by virtue of the width of the base type of the load.
2566 //
2567 // the 'X' node here can either be nothing or an extract_vector_elt to catch
2568 // more cases.
2569 if ((N0.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
2570 N0.getOperand(0).getOpcode() == ISD::LOAD) ||
2571 N0.getOpcode() == ISD::LOAD) {
2572 LoadSDNode *Load = cast<LoadSDNode>( (N0.getOpcode() == ISD::LOAD) ?
2573 N0 : N0.getOperand(0) );
2574
2575 // Get the constant (if applicable) the zero'th operand is being ANDed with.
2576 // This can be a pure constant or a vector splat, in which case we treat the
2577 // vector as a scalar and use the splat value.
2578 APInt Constant = APInt::getNullValue(1);
2579 if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) {
2580 Constant = C->getAPIntValue();
2581 } else if (BuildVectorSDNode *Vector = dyn_cast<BuildVectorSDNode>(N1)) {
2582 APInt SplatValue, SplatUndef;
2583 unsigned SplatBitSize;
2584 bool HasAnyUndefs;
2585 bool IsSplat = Vector->isConstantSplat(SplatValue, SplatUndef,
2586 SplatBitSize, HasAnyUndefs);
2587 if (IsSplat) {
2588 // Undef bits can contribute to a possible optimisation if set, so
2589 // set them.
2590 SplatValue |= SplatUndef;
2591
2592 // The splat value may be something like "0x00FFFFFF", which means 0 for
2593 // the first vector value and FF for the rest, repeating. We need a mask
2594 // that will apply equally to all members of the vector, so AND all the
2595 // lanes of the constant together.
2596 EVT VT = Vector->getValueType(0);
2597 unsigned BitWidth = VT.getVectorElementType().getSizeInBits();
2598
2599 // If the splat value has been compressed to a bitlength lower
2600 // than the size of the vector lane, we need to re-expand it to
2601 // the lane size.
2602 if (BitWidth > SplatBitSize)
2603 for (SplatValue = SplatValue.zextOrTrunc(BitWidth);
2604 SplatBitSize < BitWidth;
2605 SplatBitSize = SplatBitSize * 2)
2606 SplatValue |= SplatValue.shl(SplatBitSize);
2607
2608 Constant = APInt::getAllOnesValue(BitWidth);
2609 for (unsigned i = 0, n = SplatBitSize/BitWidth; i < n; ++i)
2610 Constant &= SplatValue.lshr(i*BitWidth).zextOrTrunc(BitWidth);
2611 }
2612 }
2613
2614 // If we want to change an EXTLOAD to a ZEXTLOAD, ensure a ZEXTLOAD is
2615 // actually legal and isn't going to get expanded, else this is a false
2616 // optimisation.
2617 bool CanZextLoadProfitably = TLI.isLoadExtLegal(ISD::ZEXTLOAD,
2618 Load->getMemoryVT());
2619
2620 // Resize the constant to the same size as the original memory access before
2621 // extension. If it is still the AllOnesValue then this AND is completely
2622 // unneeded.
2623 Constant =
2624 Constant.zextOrTrunc(Load->getMemoryVT().getScalarType().getSizeInBits());
2625
2626 bool B;
2627 switch (Load->getExtensionType()) {
2628 default: B = false; break;
2629 case ISD::EXTLOAD: B = CanZextLoadProfitably; break;
2630 case ISD::ZEXTLOAD:
2631 case ISD::NON_EXTLOAD: B = true; break;
2632 }
2633
2634 if (B && Constant.isAllOnesValue()) {
2635 // If the load type was an EXTLOAD, convert to ZEXTLOAD in order to
2636 // preserve semantics once we get rid of the AND.
2637 SDValue NewLoad(Load, 0);
2638 if (Load->getExtensionType() == ISD::EXTLOAD) {
2639 NewLoad = DAG.getLoad(Load->getAddressingMode(), ISD::ZEXTLOAD,
2640 Load->getValueType(0), SDLoc(Load),
2641 Load->getChain(), Load->getBasePtr(),
2642 Load->getOffset(), Load->getMemoryVT(),
2643 Load->getMemOperand());
2644 // Replace uses of the EXTLOAD with the new ZEXTLOAD.
2645 if (Load->getNumValues() == 3) {
2646 // PRE/POST_INC loads have 3 values.
2647 SDValue To[] = { NewLoad.getValue(0), NewLoad.getValue(1),
2648 NewLoad.getValue(2) };
2649 CombineTo(Load, To, 3, true);
2650 } else {
2651 CombineTo(Load, NewLoad.getValue(0), NewLoad.getValue(1));
2652 }
2653 }
2654
2655 // Fold the AND away, taking care not to fold to the old load node if we
2656 // replaced it.
2657 CombineTo(N, (N0.getNode() == Load) ? NewLoad : N0);
2658
2659 return SDValue(N, 0); // Return N so it doesn't get rechecked!
2660 }
2661 }
2662 // fold (and (setcc x), (setcc y)) -> (setcc (and x, y))
2663 if (isSetCCEquivalent(N0, LL, LR, CC0) && isSetCCEquivalent(N1, RL, RR, CC1)){
2664 ISD::CondCode Op0 = cast<CondCodeSDNode>(CC0)->get();
2665 ISD::CondCode Op1 = cast<CondCodeSDNode>(CC1)->get();
2666
2667 if (LR == RR && isa<ConstantSDNode>(LR) && Op0 == Op1 &&
2668 LL.getValueType().isInteger()) {
2669 // fold (and (seteq X, 0), (seteq Y, 0)) -> (seteq (or X, Y), 0)
2670 if (cast<ConstantSDNode>(LR)->isNullValue() && Op1 == ISD::SETEQ) {
2671 SDValue ORNode = DAG.getNode(ISD::OR, SDLoc(N0),
2672 LR.getValueType(), LL, RL);
2673 AddToWorkList(ORNode.getNode());
2674 return DAG.getSetCC(SDLoc(N), VT, ORNode, LR, Op1);
2675 }
2676 // fold (and (seteq X, -1), (seteq Y, -1)) -> (seteq (and X, Y), -1)
2677 if (cast<ConstantSDNode>(LR)->isAllOnesValue() && Op1 == ISD::SETEQ) {
2678 SDValue ANDNode = DAG.getNode(ISD::AND, SDLoc(N0),
2679 LR.getValueType(), LL, RL);
2680 AddToWorkList(ANDNode.getNode());
2681 return DAG.getSetCC(SDLoc(N), VT, ANDNode, LR, Op1);
2682 }
2683 // fold (and (setgt X, -1), (setgt Y, -1)) -> (setgt (or X, Y), -1)
2684 if (cast<ConstantSDNode>(LR)->isAllOnesValue() && Op1 == ISD::SETGT) {
2685 SDValue ORNode = DAG.getNode(ISD::OR, SDLoc(N0),
2686 LR.getValueType(), LL, RL);
2687 AddToWorkList(ORNode.getNode());
2688 return DAG.getSetCC(SDLoc(N), VT, ORNode, LR, Op1);
2689 }
2690 }
2691 // Simplify (and (setne X, 0), (setne X, -1)) -> (setuge (add X, 1), 2)
2692 if (LL == RL && isa<ConstantSDNode>(LR) && isa<ConstantSDNode>(RR) &&
2693 Op0 == Op1 && LL.getValueType().isInteger() &&
2694 Op0 == ISD::SETNE && ((cast<ConstantSDNode>(LR)->isNullValue() &&
2695 cast<ConstantSDNode>(RR)->isAllOnesValue()) ||
2696 (cast<ConstantSDNode>(LR)->isAllOnesValue() &&
2697 cast<ConstantSDNode>(RR)->isNullValue()))) {
2698 SDValue ADDNode = DAG.getNode(ISD::ADD, SDLoc(N0), LL.getValueType(),
2699 LL, DAG.getConstant(1, LL.getValueType()));
2700 AddToWorkList(ADDNode.getNode());
2701 return DAG.getSetCC(SDLoc(N), VT, ADDNode,
2702 DAG.getConstant(2, LL.getValueType()), ISD::SETUGE);
2703 }
2704 // canonicalize equivalent to ll == rl
2705 if (LL == RR && LR == RL) {
2706 Op1 = ISD::getSetCCSwappedOperands(Op1);
2707 std::swap(RL, RR);
2708 }
2709 if (LL == RL && LR == RR) {
2710 bool isInteger = LL.getValueType().isInteger();
2711 ISD::CondCode Result = ISD::getSetCCAndOperation(Op0, Op1, isInteger);
2712 if (Result != ISD::SETCC_INVALID &&
2713 (!LegalOperations ||
2714 (TLI.isCondCodeLegal(Result, LL.getSimpleValueType()) &&
2715 TLI.isOperationLegal(ISD::SETCC,
2716 getSetCCResultType(N0.getSimpleValueType())))))
2717 return DAG.getSetCC(SDLoc(N), N0.getValueType(),
2718 LL, LR, Result);
2719 }
2720 }
2721
2722 // Simplify: (and (op x...), (op y...)) -> (op (and x, y))
2723 if (N0.getOpcode() == N1.getOpcode()) {
2724 SDValue Tmp = SimplifyBinOpWithSameOpcodeHands(N);
2725 if (Tmp.getNode()) return Tmp;
2726 }
2727
2728 // fold (and (sign_extend_inreg x, i16 to i32), 1) -> (and x, 1)
2729 // fold (and (sra)) -> (and (srl)) when possible.
2730 if (!VT.isVector() &&
2731 SimplifyDemandedBits(SDValue(N, 0)))
2732 return SDValue(N, 0);
2733
2734 // fold (zext_inreg (extload x)) -> (zextload x)
2735 if (ISD::isEXTLoad(N0.getNode()) && ISD::isUNINDEXEDLoad(N0.getNode())) {
2736 LoadSDNode *LN0 = cast<LoadSDNode>(N0);
2737 EVT MemVT = LN0->getMemoryVT();
2738 // If we zero all the possible extended bits, then we can turn this into
2739 // a zextload if we are running before legalize or the operation is legal.
2740 unsigned BitWidth = N1.getValueType().getScalarType().getSizeInBits();
2741 if (DAG.MaskedValueIsZero(N1, APInt::getHighBitsSet(BitWidth,
2742 BitWidth - MemVT.getScalarType().getSizeInBits())) &&
2743 ((!LegalOperations && !LN0->isVolatile()) ||
2744 TLI.isLoadExtLegal(ISD::ZEXTLOAD, MemVT))) {
2745 SDValue ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, SDLoc(N0), VT,
2746 LN0->getChain(), LN0->getBasePtr(),
2747 MemVT, LN0->getMemOperand());
2748 AddToWorkList(N);
2749 CombineTo(N0.getNode(), ExtLoad, ExtLoad.getValue(1));
2750 return SDValue(N, 0); // Return N so it doesn't get rechecked!
2751 }
2752 }
2753 // fold (zext_inreg (sextload x)) -> (zextload x) iff load has one use
2754 if (ISD::isSEXTLoad(N0.getNode()) && ISD::isUNINDEXEDLoad(N0.getNode()) &&
2755 N0.hasOneUse()) {
2756 LoadSDNode *LN0 = cast<LoadSDNode>(N0);
2757 EVT MemVT = LN0->getMemoryVT();
2758 // If we zero all the possible extended bits, then we can turn this into
2759 // a zextload if we are running before legalize or the operation is legal.
2760 unsigned BitWidth = N1.getValueType().getScalarType().getSizeInBits();
2761 if (DAG.MaskedValueIsZero(N1, APInt::getHighBitsSet(BitWidth,
2762 BitWidth - MemVT.getScalarType().getSizeInBits())) &&
2763 ((!LegalOperations && !LN0->isVolatile()) ||
2764 TLI.isLoadExtLegal(ISD::ZEXTLOAD, MemVT))) {
2765 SDValue ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, SDLoc(N0), VT,
2766 LN0->getChain(), LN0->getBasePtr(),
2767 MemVT, LN0->getMemOperand());
2768 AddToWorkList(N);
2769 CombineTo(N0.getNode(), ExtLoad, ExtLoad.getValue(1));
2770 return SDValue(N, 0); // Return N so it doesn't get rechecked!
2771 }
2772 }
2773
2774 // fold (and (load x), 255) -> (zextload x, i8)
2775 // fold (and (extload x, i16), 255) -> (zextload x, i8)
2776 // fold (and (any_ext (extload x, i16)), 255) -> (zextload x, i8)
2777 if (N1C && (N0.getOpcode() == ISD::LOAD ||
2778 (N0.getOpcode() == ISD::ANY_EXTEND &&
2779 N0.getOperand(0).getOpcode() == ISD::LOAD))) {
2780 bool HasAnyExt = N0.getOpcode() == ISD::ANY_EXTEND;
2781 LoadSDNode *LN0 = HasAnyExt
2782 ? cast<LoadSDNode>(N0.getOperand(0))
2783 : cast<LoadSDNode>(N0);
2784 if (LN0->getExtensionType() != ISD::SEXTLOAD &&
2785 LN0->isUnindexed() && N0.hasOneUse() && SDValue(LN0, 0).hasOneUse()) {
2786 uint32_t ActiveBits = N1C->getAPIntValue().getActiveBits();
2787 if (ActiveBits > 0 && APIntOps::isMask(ActiveBits, N1C->getAPIntValue())){
2788 EVT ExtVT = EVT::getIntegerVT(*DAG.getContext(), ActiveBits);
2789 EVT LoadedVT = LN0->getMemoryVT();
2790
2791 if (ExtVT == LoadedVT &&
2792 (!LegalOperations || TLI.isLoadExtLegal(ISD::ZEXTLOAD, ExtVT))) {
2793 EVT LoadResultTy = HasAnyExt ? LN0->getValueType(0) : VT;
2794
2795 SDValue NewLoad =
2796 DAG.getExtLoad(ISD::ZEXTLOAD, SDLoc(LN0), LoadResultTy,
2797 LN0->getChain(), LN0->getBasePtr(), ExtVT,
2798 LN0->getMemOperand());
2799 AddToWorkList(N);
2800 CombineTo(LN0, NewLoad, NewLoad.getValue(1));
2801 return SDValue(N, 0); // Return N so it doesn't get rechecked!
2802 }
2803
2804 // Do not change the width of a volatile load.
2805 // Do not generate loads of non-round integer types since these can
2806 // be expensive (and would be wrong if the type is not byte sized).
2807 if (!LN0->isVolatile() && LoadedVT.bitsGT(ExtVT) && ExtVT.isRound() &&
2808 (!LegalOperations || TLI.isLoadExtLegal(ISD::ZEXTLOAD, ExtVT))) {
2809 EVT PtrType = LN0->getOperand(1).getValueType();
2810
2811 unsigned Alignment = LN0->getAlignment();
2812 SDValue NewPtr = LN0->getBasePtr();
2813
2814 // For big endian targets, we need to add an offset to the pointer
2815 // to load the correct bytes. For little endian systems, we merely
2816 // need to read fewer bytes from the same pointer.
2817 if (TLI.isBigEndian()) {
2818 unsigned LVTStoreBytes = LoadedVT.getStoreSize();
2819 unsigned EVTStoreBytes = ExtVT.getStoreSize();
2820 unsigned PtrOff = LVTStoreBytes - EVTStoreBytes;
2821 NewPtr = DAG.getNode(ISD::ADD, SDLoc(LN0), PtrType,
2822 NewPtr, DAG.getConstant(PtrOff, PtrType));
2823 Alignment = MinAlign(Alignment, PtrOff);
2824 }
2825
2826 AddToWorkList(NewPtr.getNode());
2827
2828 EVT LoadResultTy = HasAnyExt ? LN0->getValueType(0) : VT;
2829 SDValue Load =
2830 DAG.getExtLoad(ISD::ZEXTLOAD, SDLoc(LN0), LoadResultTy,
2831 LN0->getChain(), NewPtr,
2832 LN0->getPointerInfo(),
2833 ExtVT, LN0->isVolatile(), LN0->isNonTemporal(),
2834 Alignment, LN0->getTBAAInfo());
2835 AddToWorkList(N);
2836 CombineTo(LN0, Load, Load.getValue(1));
2837 return SDValue(N, 0); // Return N so it doesn't get rechecked!
2838 }
2839 }
2840 }
2841 }
2842
2843 if (N0.getOpcode() == ISD::ADD && N1.getOpcode() == ISD::SRL &&
2844 VT.getSizeInBits() <= 64) {
2845 if (ConstantSDNode *ADDI = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
2846 APInt ADDC = ADDI->getAPIntValue();
2847 if (!TLI.isLegalAddImmediate(ADDC.getSExtValue())) {
2848 // Look for (and (add x, c1), (lshr y, c2)). If C1 wasn't a legal
2849 // immediate for an add, but it is legal if its top c2 bits are set,
2850 // transform the ADD so the immediate doesn't need to be materialized
2851 // in a register.
2852 if (ConstantSDNode *SRLI = dyn_cast<ConstantSDNode>(N1.getOperand(1))) {
2853 APInt Mask = APInt::getHighBitsSet(VT.getSizeInBits(),
2854 SRLI->getZExtValue());
2855 if (DAG.MaskedValueIsZero(N0.getOperand(1), Mask)) {
2856 ADDC |= Mask;
2857 if (TLI.isLegalAddImmediate(ADDC.getSExtValue())) {
2858 SDValue NewAdd =
2859 DAG.getNode(ISD::ADD, SDLoc(N0), VT,
2860 N0.getOperand(0), DAG.getConstant(ADDC, VT));
2861 CombineTo(N0.getNode(), NewAdd);
2862 return SDValue(N, 0); // Return N so it doesn't get rechecked!
2863 }
2864 }
2865 }
2866 }
2867 }
2868 }
2869
2870 // fold (and (or (srl N, 8), (shl N, 8)), 0xffff) -> (srl (bswap N), const)
2871 if (N1C && N1C->getAPIntValue() == 0xffff && N0.getOpcode() == ISD::OR) {
2872 SDValue BSwap = MatchBSwapHWordLow(N0.getNode(), N0.getOperand(0),
2873 N0.getOperand(1), false);
2874 if (BSwap.getNode())
2875 return BSwap;
2876 }
2877
2878 return SDValue();
2879}
2880
2881/// MatchBSwapHWord - Match (a >> 8) | (a << 8) as (bswap a) >> 16
2882///
2883SDValue DAGCombiner::MatchBSwapHWordLow(SDNode *N, SDValue N0, SDValue N1,
2884 bool DemandHighBits) {
2885 if (!LegalOperations)
2886 return SDValue();
2887
2888 EVT VT = N->getValueType(0);
2889 if (VT != MVT::i64 && VT != MVT::i32 && VT != MVT::i16)
2890 return SDValue();
2891 if (!TLI.isOperationLegal(ISD::BSWAP, VT))
2892 return SDValue();
2893
2894 // Recognize (and (shl a, 8), 0xff), (and (srl a, 8), 0xff00)
2895 bool LookPassAnd0 = false;
2896 bool LookPassAnd1 = false;
2897 if (N0.getOpcode() == ISD::AND && N0.getOperand(0).getOpcode() == ISD::SRL)
2898 std::swap(N0, N1);
2899 if (N1.getOpcode() == ISD::AND && N1.getOperand(0).getOpcode() == ISD::SHL)
2900 std::swap(N0, N1);
2901 if (N0.getOpcode() == ISD::AND) {
2902 if (!N0.getNode()->hasOneUse())
2903 return SDValue();
2904 ConstantSDNode *N01C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
2905 if (!N01C || N01C->getZExtValue() != 0xFF00)
2906 return SDValue();
2907 N0 = N0.getOperand(0);
2908 LookPassAnd0 = true;
2909 }
2910
2911 if (N1.getOpcode() == ISD::AND) {
2912 if (!N1.getNode()->hasOneUse())
2913 return SDValue();
2914 ConstantSDNode *N11C = dyn_cast<ConstantSDNode>(N1.getOperand(1));
2915 if (!N11C || N11C->getZExtValue() != 0xFF)
2916 return SDValue();
2917 N1 = N1.getOperand(0);
2918 LookPassAnd1 = true;
2919 }
2920
2921 if (N0.getOpcode() == ISD::SRL && N1.getOpcode() == ISD::SHL)
2922 std::swap(N0, N1);
2923 if (N0.getOpcode() != ISD::SHL || N1.getOpcode() != ISD::SRL)
2924 return SDValue();
2925 if (!N0.getNode()->hasOneUse() ||
2926 !N1.getNode()->hasOneUse())
2927 return SDValue();
2928
2929 ConstantSDNode *N01C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
2930 ConstantSDNode *N11C = dyn_cast<ConstantSDNode>(N1.getOperand(1));
2931 if (!N01C || !N11C)
2932 return SDValue();
2933 if (N01C->getZExtValue() != 8 || N11C->getZExtValue() != 8)
2934 return SDValue();
2935
2936 // Look for (shl (and a, 0xff), 8), (srl (and a, 0xff00), 8)
2937 SDValue N00 = N0->getOperand(0);
2938 if (!LookPassAnd0 && N00.getOpcode() == ISD::AND) {
2939 if (!N00.getNode()->hasOneUse())
2940 return SDValue();
2941 ConstantSDNode *N001C = dyn_cast<ConstantSDNode>(N00.getOperand(1));
2942 if (!N001C || N001C->getZExtValue() != 0xFF)
2943 return SDValue();
2944 N00 = N00.getOperand(0);
2945 LookPassAnd0 = true;
2946 }
2947
2948 SDValue N10 = N1->getOperand(0);
2949 if (!LookPassAnd1 && N10.getOpcode() == ISD::AND) {
2950 if (!N10.getNode()->hasOneUse())
2951 return SDValue();
2952 ConstantSDNode *N101C = dyn_cast<ConstantSDNode>(N10.getOperand(1));
2953 if (!N101C || N101C->getZExtValue() != 0xFF00)
2954 return SDValue();
2955 N10 = N10.getOperand(0);
2956 LookPassAnd1 = true;
2957 }
2958
2959 if (N00 != N10)
2960 return SDValue();
2961
2962 // Make sure everything beyond the low halfword gets set to zero since the SRL
2963 // 16 will clear the top bits.
2964 unsigned OpSizeInBits = VT.getSizeInBits();
2965 if (DemandHighBits && OpSizeInBits > 16) {
2966 // If the left-shift isn't masked out then the only way this is a bswap is
2967 // if all bits beyond the low 8 are 0. In that case the entire pattern
2968 // reduces to a left shift anyway: leave it for other parts of the combiner.
2969 if (!LookPassAnd0)
2970 return SDValue();
2971
2972 // However, if the right shift isn't masked out then it might be because
2973 // it's not needed. See if we can spot that too.
2974 if (!LookPassAnd1 &&
2975 !DAG.MaskedValueIsZero(
2976 N10, APInt::getHighBitsSet(OpSizeInBits, OpSizeInBits - 16)))
2977 return SDValue();
2978 }
2979
2980 SDValue Res = DAG.getNode(ISD::BSWAP, SDLoc(N), VT, N00);
2981 if (OpSizeInBits > 16)
2982 Res = DAG.getNode(ISD::SRL, SDLoc(N), VT, Res,
2983 DAG.getConstant(OpSizeInBits-16, getShiftAmountTy(VT)));
2984 return Res;
2985}
2986
2987/// isBSwapHWordElement - Return true if the specified node is an element
2988/// that makes up a 32-bit packed halfword byteswap. i.e.
2989/// ((x&0xff)<<8)|((x&0xff00)>>8)|((x&0x00ff0000)<<8)|((x&0xff000000)>>8)
2990static bool isBSwapHWordElement(SDValue N, SmallVectorImpl<SDNode *> &Parts) {
2991 if (!N.getNode()->hasOneUse())
2992 return false;
2993
2994 unsigned Opc = N.getOpcode();
2995 if (Opc != ISD::AND && Opc != ISD::SHL && Opc != ISD::SRL)
2996 return false;
2997
2998 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N.getOperand(1));
2999 if (!N1C)
3000 return false;
3001
3002 unsigned Num;
3003 switch (N1C->getZExtValue()) {
3004 default:
3005 return false;
3006 case 0xFF: Num = 0; break;
3007 case 0xFF00: Num = 1; break;
3008 case 0xFF0000: Num = 2; break;
3009 case 0xFF000000: Num = 3; break;
3010 }
3011
3012 // Look for (x & 0xff) << 8 as well as ((x << 8) & 0xff00).
3013 SDValue N0 = N.getOperand(0);
3014 if (Opc == ISD::AND) {
3015 if (Num == 0 || Num == 2) {
3016 // (x >> 8) & 0xff
3017 // (x >> 8) & 0xff0000
3018 if (N0.getOpcode() != ISD::SRL)
3019 return false;
3020 ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
3021 if (!C || C->getZExtValue() != 8)
3022 return false;
3023 } else {
3024 // (x << 8) & 0xff00
3025 // (x << 8) & 0xff000000
3026 if (N0.getOpcode() != ISD::SHL)
3027 return false;
3028 ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
3029 if (!C || C->getZExtValue() != 8)
3030 return false;
3031 }
3032 } else if (Opc == ISD::SHL) {
3033 // (x & 0xff) << 8
3034 // (x & 0xff0000) << 8
3035 if (Num != 0 && Num != 2)
3036 return false;
3037 ConstantSDNode *C = dyn_cast<ConstantSDNode>(N.getOperand(1));
3038 if (!C || C->getZExtValue() != 8)
3039 return false;
3040 } else { // Opc == ISD::SRL
3041 // (x & 0xff00) >> 8
3042 // (x & 0xff000000) >> 8
3043 if (Num != 1 && Num != 3)
3044 return false;
3045 ConstantSDNode *C = dyn_cast<ConstantSDNode>(N.getOperand(1));
3046 if (!C || C->getZExtValue() != 8)
3047 return false;
3048 }
3049
3050 if (Parts[Num])
3051 return false;
3052
3053 Parts[Num] = N0.getOperand(0).getNode();
3054 return true;
3055}
3056
3057/// MatchBSwapHWord - Match a 32-bit packed halfword bswap. That is
3058/// ((x&0xff)<<8)|((x&0xff00)>>8)|((x&0x00ff0000)<<8)|((x&0xff000000)>>8)
3059/// => (rotl (bswap x), 16)
3060SDValue DAGCombiner::MatchBSwapHWord(SDNode *N, SDValue N0, SDValue N1) {
3061 if (!LegalOperations)
3062 return SDValue();
3063
3064 EVT VT = N->getValueType(0);
3065 if (VT != MVT::i32)
3066 return SDValue();
3067 if (!TLI.isOperationLegal(ISD::BSWAP, VT))
3068 return SDValue();
3069
3070 SmallVector<SDNode*,4> Parts(4, (SDNode*)0);
3071 // Look for either
3072 // (or (or (and), (and)), (or (and), (and)))
3073 // (or (or (or (and), (and)), (and)), (and))
3074 if (N0.getOpcode() != ISD::OR)
3075 return SDValue();
3076 SDValue N00 = N0.getOperand(0);
3077 SDValue N01 = N0.getOperand(1);
3078
3079 if (N1.getOpcode() == ISD::OR &&
3080 N00.getNumOperands() == 2 && N01.getNumOperands() == 2) {
3081 // (or (or (and), (and)), (or (and), (and)))
3082 SDValue N000 = N00.getOperand(0);
3083 if (!isBSwapHWordElement(N000, Parts))
3084 return SDValue();
3085
3086 SDValue N001 = N00.getOperand(1);
3087 if (!isBSwapHWordElement(N001, Parts))
3088 return SDValue();
3089 SDValue N010 = N01.getOperand(0);
3090 if (!isBSwapHWordElement(N010, Parts))
3091 return SDValue();
3092 SDValue N011 = N01.getOperand(1);
3093 if (!isBSwapHWordElement(N011, Parts))
3094 return SDValue();
3095 } else {
3096 // (or (or (or (and), (and)), (and)), (and))
3097 if (!isBSwapHWordElement(N1, Parts))
3098 return SDValue();
3099 if (!isBSwapHWordElement(N01, Parts))
3100 return SDValue();
3101 if (N00.getOpcode() != ISD::OR)
3102 return SDValue();
3103 SDValue N000 = N00.getOperand(0);
3104 if (!isBSwapHWordElement(N000, Parts))
3105 return SDValue();
3106 SDValue N001 = N00.getOperand(1);
3107 if (!isBSwapHWordElement(N001, Parts))
3108 return SDValue();
3109 }
3110
3111 // Make sure the parts are all coming from the same node.
3112 if (Parts[0] != Parts[1] || Parts[0] != Parts[2] || Parts[0] != Parts[3])
3113 return SDValue();
3114
3115 SDValue BSwap = DAG.getNode(ISD::BSWAP, SDLoc(N), VT,
3116 SDValue(Parts[0],0));
3117
3118 // Result of the bswap should be rotated by 16. If it's not legal, then
3119 // do (x << 16) | (x >> 16).
3120 SDValue ShAmt = DAG.getConstant(16, getShiftAmountTy(VT));
3121 if (TLI.isOperationLegalOrCustom(ISD::ROTL, VT))
3122 return DAG.getNode(ISD::ROTL, SDLoc(N), VT, BSwap, ShAmt);
3123 if (TLI.isOperationLegalOrCustom(ISD::ROTR, VT))
3124 return DAG.getNode(ISD::ROTR, SDLoc(N), VT, BSwap, ShAmt);
3125 return DAG.getNode(ISD::OR, SDLoc(N), VT,
3126 DAG.getNode(ISD::SHL, SDLoc(N), VT, BSwap, ShAmt),
3127 DAG.getNode(ISD::SRL, SDLoc(N), VT, BSwap, ShAmt));
3128}
3129
3130SDValue DAGCombiner::visitOR(SDNode *N) {
3131 SDValue N0 = N->getOperand(0);
3132 SDValue N1 = N->getOperand(1);
3133 SDValue LL, LR, RL, RR, CC0, CC1;
3134 ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
3135 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
3136 EVT VT = N1.getValueType();
3137
3138 // fold vector ops
3139 if (VT.isVector()) {
3140 SDValue FoldedVOp = SimplifyVBinOp(N);
3141 if (FoldedVOp.getNode()) return FoldedVOp;
3142
3143 // fold (or x, 0) -> x, vector edition
3144 if (ISD::isBuildVectorAllZeros(N0.getNode()))
3145 return N1;
3146 if (ISD::isBuildVectorAllZeros(N1.getNode()))
3147 return N0;
3148
3149 // fold (or x, -1) -> -1, vector edition
3150 if (ISD::isBuildVectorAllOnes(N0.getNode()))
3151 return N0;
3152 if (ISD::isBuildVectorAllOnes(N1.getNode()))
3153 return N1;
3154 }
3155
3156 // fold (or x, undef) -> -1
3157 if (!LegalOperations &&
3158 (N0.getOpcode() == ISD::UNDEF || N1.getOpcode() == ISD::UNDEF)) {
3159 EVT EltVT = VT.isVector() ? VT.getVectorElementType() : VT;
3160 return DAG.getConstant(APInt::getAllOnesValue(EltVT.getSizeInBits()), VT);
3161 }
3162 // fold (or c1, c2) -> c1|c2
3163 if (N0C && N1C)
3164 return DAG.FoldConstantArithmetic(ISD::OR, VT, N0C, N1C);
3165 // canonicalize constant to RHS
3166 if (N0C && !N1C)
3167 return DAG.getNode(ISD::OR, SDLoc(N), VT, N1, N0);
3168 // fold (or x, 0) -> x
3169 if (N1C && N1C->isNullValue())
3170 return N0;
3171 // fold (or x, -1) -> -1
3172 if (N1C && N1C->isAllOnesValue())
3173 return N1;
3174 // fold (or x, c) -> c iff (x & ~c) == 0
3175 if (N1C && DAG.MaskedValueIsZero(N0, ~N1C->getAPIntValue()))
3176 return N1;
3177
3178 // Recognize halfword bswaps as (bswap + rotl 16) or (bswap + shl 16)
3179 SDValue BSwap = MatchBSwapHWord(N, N0, N1);
3180 if (BSwap.getNode() != 0)
3181 return BSwap;
3182 BSwap = MatchBSwapHWordLow(N, N0, N1);
3183 if (BSwap.getNode() != 0)
3184 return BSwap;
3185
3186 // reassociate or
3187 SDValue ROR = ReassociateOps(ISD::OR, SDLoc(N), N0, N1);
3188 if (ROR.getNode() != 0)
3189 return ROR;
3190 // Canonicalize (or (and X, c1), c2) -> (and (or X, c2), c1|c2)
3191 // iff (c1 & c2) == 0.
3192 if (N1C && N0.getOpcode() == ISD::AND && N0.getNode()->hasOneUse() &&
3193 isa<ConstantSDNode>(N0.getOperand(1))) {
3194 ConstantSDNode *C1 = cast<ConstantSDNode>(N0.getOperand(1));
3195 if ((C1->getAPIntValue() & N1C->getAPIntValue()) != 0)
3196 return DAG.getNode(ISD::AND, SDLoc(N), VT,
3197 DAG.getNode(ISD::OR, SDLoc(N0), VT,
3198 N0.getOperand(0), N1),
3199 DAG.FoldConstantArithmetic(ISD::OR, VT, N1C, C1));
3200 }
3201 // fold (or (setcc x), (setcc y)) -> (setcc (or x, y))
3202 if (isSetCCEquivalent(N0, LL, LR, CC0) && isSetCCEquivalent(N1, RL, RR, CC1)){
3203 ISD::CondCode Op0 = cast<CondCodeSDNode>(CC0)->get();
3204 ISD::CondCode Op1 = cast<CondCodeSDNode>(CC1)->get();
3205
3206 if (LR == RR && isa<ConstantSDNode>(LR) && Op0 == Op1 &&
3207 LL.getValueType().isInteger()) {
3208 // fold (or (setne X, 0), (setne Y, 0)) -> (setne (or X, Y), 0)
3209 // fold (or (setlt X, 0), (setlt Y, 0)) -> (setne (or X, Y), 0)
3210 if (cast<ConstantSDNode>(LR)->isNullValue() &&
3211 (Op1 == ISD::SETNE || Op1 == ISD::SETLT)) {
3212 SDValue ORNode = DAG.getNode(ISD::OR, SDLoc(LR),
3213 LR.getValueType(), LL, RL);
3214 AddToWorkList(ORNode.getNode());
3215 return DAG.getSetCC(SDLoc(N), VT, ORNode, LR, Op1);
3216 }
3217 // fold (or (setne X, -1), (setne Y, -1)) -> (setne (and X, Y), -1)
3218 // fold (or (setgt X, -1), (setgt Y -1)) -> (setgt (and X, Y), -1)
3219 if (cast<ConstantSDNode>(LR)->isAllOnesValue() &&
3220 (Op1 == ISD::SETNE || Op1 == ISD::SETGT)) {
3221 SDValue ANDNode = DAG.getNode(ISD::AND, SDLoc(LR),
3222 LR.getValueType(), LL, RL);
3223 AddToWorkList(ANDNode.getNode());
3224 return DAG.getSetCC(SDLoc(N), VT, ANDNode, LR, Op1);
3225 }
3226 }
3227 // canonicalize equivalent to ll == rl
3228 if (LL == RR && LR == RL) {
3229 Op1 = ISD::getSetCCSwappedOperands(Op1);
3230 std::swap(RL, RR);
3231 }
3232 if (LL == RL && LR == RR) {
3233 bool isInteger = LL.getValueType().isInteger();
3234 ISD::CondCode Result = ISD::getSetCCOrOperation(Op0, Op1, isInteger);
3235 if (Result != ISD::SETCC_INVALID &&
3236 (!LegalOperations ||
3237 (TLI.isCondCodeLegal(Result, LL.getSimpleValueType()) &&
3238 TLI.isOperationLegal(ISD::SETCC,
3239 getSetCCResultType(N0.getValueType())))))
3240 return DAG.getSetCC(SDLoc(N), N0.getValueType(),
3241 LL, LR, Result);
3242 }
3243 }
3244
3245 // Simplify: (or (op x...), (op y...)) -> (op (or x, y))
3246 if (N0.getOpcode() == N1.getOpcode()) {
3247 SDValue Tmp = SimplifyBinOpWithSameOpcodeHands(N);
3248 if (Tmp.getNode()) return Tmp;
3249 }
3250
3251 // (or (and X, C1), (and Y, C2)) -> (and (or X, Y), C3) if possible.
3252 if (N0.getOpcode() == ISD::AND &&
3253 N1.getOpcode() == ISD::AND &&
3254 N0.getOperand(1).getOpcode() == ISD::Constant &&
3255 N1.getOperand(1).getOpcode() == ISD::Constant &&
3256 // Don't increase # computations.
3257 (N0.getNode()->hasOneUse() || N1.getNode()->hasOneUse())) {
3258 // We can only do this xform if we know that bits from X that are set in C2
3259 // but not in C1 are already zero. Likewise for Y.
3260 const APInt &LHSMask =
3261 cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
3262 const APInt &RHSMask =
3263 cast<ConstantSDNode>(N1.getOperand(1))->getAPIntValue();
3264
3265 if (DAG.MaskedValueIsZero(N0.getOperand(0), RHSMask&~LHSMask) &&
3266 DAG.MaskedValueIsZero(N1.getOperand(0), LHSMask&~RHSMask)) {
3267 SDValue X = DAG.getNode(ISD::OR, SDLoc(N0), VT,
3268 N0.getOperand(0), N1.getOperand(0));
3269 return DAG.getNode(ISD::AND, SDLoc(N), VT, X,
3270 DAG.getConstant(LHSMask | RHSMask, VT));
3271 }
3272 }
3273
3274 // See if this is some rotate idiom.
3275 if (SDNode *Rot = MatchRotate(N0, N1, SDLoc(N)))
3276 return SDValue(Rot, 0);
3277
3278 // Simplify the operands using demanded-bits information.
3279 if (!VT.isVector() &&
3280 SimplifyDemandedBits(SDValue(N, 0)))
3281 return SDValue(N, 0);
3282
3283 return SDValue();
3284}
3285
3286/// MatchRotateHalf - Match "(X shl/srl V1) & V2" where V2 may not be present.
3287static bool MatchRotateHalf(SDValue Op, SDValue &Shift, SDValue &Mask) {
3288 if (Op.getOpcode() == ISD::AND) {
3289 if (isa<ConstantSDNode>(Op.getOperand(1))) {
3290 Mask = Op.getOperand(1);
3291 Op = Op.getOperand(0);
3292 } else {
3293 return false;
3294 }
3295 }
3296
3297 if (Op.getOpcode() == ISD::SRL || Op.getOpcode() == ISD::SHL) {
3298 Shift = Op;
3299 return true;
3300 }
3301
3302 return false;
3303}
3304
3305// MatchRotate - Handle an 'or' of two operands. If this is one of the many
3306// idioms for rotate, and if the target supports rotation instructions, generate
3307// a rot[lr].
3308SDNode *DAGCombiner::MatchRotate(SDValue LHS, SDValue RHS, SDLoc DL) {
3309 // Must be a legal type. Expanded 'n promoted things won't work with rotates.
3310 EVT VT = LHS.getValueType();
3311 if (!TLI.isTypeLegal(VT)) return 0;
3312
3313 // The target must have at least one rotate flavor.
3314 bool HasROTL = TLI.isOperationLegalOrCustom(ISD::ROTL, VT);
3315 bool HasROTR = TLI.isOperationLegalOrCustom(ISD::ROTR, VT);
3316 if (!HasROTL && !HasROTR) return 0;
3317
3318 // Match "(X shl/srl V1) & V2" where V2 may not be present.
3319 SDValue LHSShift; // The shift.
3320 SDValue LHSMask; // AND value if any.
3321 if (!MatchRotateHalf(LHS, LHSShift, LHSMask))
3322 return 0; // Not part of a rotate.
3323
3324 SDValue RHSShift; // The shift.
3325 SDValue RHSMask; // AND value if any.
3326 if (!MatchRotateHalf(RHS, RHSShift, RHSMask))
3327 return 0; // Not part of a rotate.
3328
3329 if (LHSShift.getOperand(0) != RHSShift.getOperand(0))
3330 return 0; // Not shifting the same value.
3331
3332 if (LHSShift.getOpcode() == RHSShift.getOpcode())
3333 return 0; // Shifts must disagree.
3334
3335 // Canonicalize shl to left side in a shl/srl pair.
3336 if (RHSShift.getOpcode() == ISD::SHL) {
3337 std::swap(LHS, RHS);
3338 std::swap(LHSShift, RHSShift);
3339 std::swap(LHSMask , RHSMask );
3340 }
3341
3342 unsigned OpSizeInBits = VT.getSizeInBits();
3343 SDValue LHSShiftArg = LHSShift.getOperand(0);
3344 SDValue LHSShiftAmt = LHSShift.getOperand(1);
3345 SDValue RHSShiftAmt = RHSShift.getOperand(1);
3346
3347 // fold (or (shl x, C1), (srl x, C2)) -> (rotl x, C1)
3348 // fold (or (shl x, C1), (srl x, C2)) -> (rotr x, C2)
3349 if (LHSShiftAmt.getOpcode() == ISD::Constant &&
3350 RHSShiftAmt.getOpcode() == ISD::Constant) {
3351 uint64_t LShVal = cast<ConstantSDNode>(LHSShiftAmt)->getZExtValue();
3352 uint64_t RShVal = cast<ConstantSDNode>(RHSShiftAmt)->getZExtValue();
3353 if ((LShVal + RShVal) != OpSizeInBits)
3354 return 0;
3355
3356 SDValue Rot = DAG.getNode(HasROTL ? ISD::ROTL : ISD::ROTR, DL, VT,
3357 LHSShiftArg, HasROTL ? LHSShiftAmt : RHSShiftAmt);
3358
3359 // If there is an AND of either shifted operand, apply it to the result.
3360 if (LHSMask.getNode() || RHSMask.getNode()) {
3361 APInt Mask = APInt::getAllOnesValue(OpSizeInBits);
3362
3363 if (LHSMask.getNode()) {
3364 APInt RHSBits = APInt::getLowBitsSet(OpSizeInBits, LShVal);
3365 Mask &= cast<ConstantSDNode>(LHSMask)->getAPIntValue() | RHSBits;
3366 }
3367 if (RHSMask.getNode()) {
3368 APInt LHSBits = APInt::getHighBitsSet(OpSizeInBits, RShVal);
3369 Mask &= cast<ConstantSDNode>(RHSMask)->getAPIntValue() | LHSBits;
3370 }
3371
3372 Rot = DAG.getNode(ISD::AND, DL, VT, Rot, DAG.getConstant(Mask, VT));
3373 }
3374
3375 return Rot.getNode();
3376 }
3377
3378 // If there is a mask here, and we have a variable shift, we can't be sure
3379 // that we're masking out the right stuff.
3380 if (LHSMask.getNode() || RHSMask.getNode())
3381 return 0;
3382
3383 // If the shift amount is sign/zext/any-extended just peel it off.
3384 SDValue LExtOp0 = LHSShiftAmt;
3385 SDValue RExtOp0 = RHSShiftAmt;
3386 if ((LHSShiftAmt.getOpcode() == ISD::SIGN_EXTEND ||
3387 LHSShiftAmt.getOpcode() == ISD::ZERO_EXTEND ||
3388 LHSShiftAmt.getOpcode() == ISD::ANY_EXTEND ||
3389 LHSShiftAmt.getOpcode() == ISD::TRUNCATE) &&
3390 (RHSShiftAmt.getOpcode() == ISD::SIGN_EXTEND ||
3391 RHSShiftAmt.getOpcode() == ISD::ZERO_EXTEND ||
3392 RHSShiftAmt.getOpcode() == ISD::ANY_EXTEND ||
3393 RHSShiftAmt.getOpcode() == ISD::TRUNCATE)) {
3394 LExtOp0 = LHSShiftAmt.getOperand(0);
3395 RExtOp0 = RHSShiftAmt.getOperand(0);
3396 }
3397
3398 if (RExtOp0.getOpcode() == ISD::SUB && RExtOp0.getOperand(1) == LExtOp0) {
3399 // fold (or (shl x, (*ext y)), (srl x, (*ext (sub 32, y)))) ->
3400 // (rotl x, y)
3401 // fold (or (shl x, (*ext y)), (srl x, (*ext (sub 32, y)))) ->
3402 // (rotr x, (sub 32, y))
3403 if (ConstantSDNode *SUBC =
3404 dyn_cast<ConstantSDNode>(RExtOp0.getOperand(0)))
3405 if (SUBC->getAPIntValue() == OpSizeInBits)
3406 return DAG.getNode(HasROTL ? ISD::ROTL : ISD::ROTR, DL, VT, LHSShiftArg,
3407 HasROTL ? LHSShiftAmt : RHSShiftAmt).getNode();
3408 } else if (LExtOp0.getOpcode() == ISD::SUB &&
3409 RExtOp0 == LExtOp0.getOperand(1)) {
3410 // fold (or (shl x, (*ext (sub 32, y))), (srl x, (*ext y))) ->
3411 // (rotr x, y)
3412 // fold (or (shl x, (*ext (sub 32, y))), (srl x, (*ext y))) ->
3413 // (rotl x, (sub 32, y))
3414 if (ConstantSDNode *SUBC =
3415 dyn_cast<ConstantSDNode>(LExtOp0.getOperand(0)))
3416 if (SUBC->getAPIntValue() == OpSizeInBits)
3417 return DAG.getNode(HasROTR ? ISD::ROTR : ISD::ROTL, DL, VT, LHSShiftArg,
3418 HasROTR ? RHSShiftAmt : LHSShiftAmt).getNode();
3419 }
3420
3421 return 0;
3422}
3423
3424SDValue DAGCombiner::visitXOR(SDNode *N) {
3425 SDValue N0 = N->getOperand(0);
3426 SDValue N1 = N->getOperand(1);
3427 SDValue LHS, RHS, CC;
3428 ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
3429 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
3430 EVT VT = N0.getValueType();
3431
3432 // fold vector ops
3433 if (VT.isVector()) {
3434 SDValue FoldedVOp = SimplifyVBinOp(N);
3435 if (FoldedVOp.getNode()) return FoldedVOp;
3436
3437 // fold (xor x, 0) -> x, vector edition
3438 if (ISD::isBuildVectorAllZeros(N0.getNode()))
3439 return N1;
3440 if (ISD::isBuildVectorAllZeros(N1.getNode()))
3441 return N0;
3442 }
3443
3444 // fold (xor undef, undef) -> 0. This is a common idiom (misuse).
3445 if (N0.getOpcode() == ISD::UNDEF && N1.getOpcode() == ISD::UNDEF)
3446 return DAG.getConstant(0, VT);
3447 // fold (xor x, undef) -> undef
3448 if (N0.getOpcode() == ISD::UNDEF)
3449 return N0;
3450 if (N1.getOpcode() == ISD::UNDEF)
3451 return N1;
3452 // fold (xor c1, c2) -> c1^c2
3453 if (N0C && N1C)
3454 return DAG.FoldConstantArithmetic(ISD::XOR, VT, N0C, N1C);
3455 // canonicalize constant to RHS
3456 if (N0C && !N1C)
3457 return DAG.getNode(ISD::XOR, SDLoc(N), VT, N1, N0);
3458 // fold (xor x, 0) -> x
3459 if (N1C && N1C->isNullValue())
3460 return N0;
3461 // reassociate xor
3462 SDValue RXOR = ReassociateOps(ISD::XOR, SDLoc(N), N0, N1);
3463 if (RXOR.getNode() != 0)
3464 return RXOR;
3465
3466 // fold !(x cc y) -> (x !cc y)
3467 if (N1C && N1C->getAPIntValue() == 1 && isSetCCEquivalent(N0, LHS, RHS, CC)) {
3468 bool isInt = LHS.getValueType().isInteger();
3469 ISD::CondCode NotCC = ISD::getSetCCInverse(cast<CondCodeSDNode>(CC)->get(),
3470 isInt);
3471
3472 if (!LegalOperations ||
3473 TLI.isCondCodeLegal(NotCC, LHS.getSimpleValueType())) {
3474 switch (N0.getOpcode()) {
3475 default:
3476 llvm_unreachable("Unhandled SetCC Equivalent!");
3477 case ISD::SETCC:
3478 return DAG.getSetCC(SDLoc(N), VT, LHS, RHS, NotCC);
3479 case ISD::SELECT_CC:
3480 return DAG.getSelectCC(SDLoc(N), LHS, RHS, N0.getOperand(2),
3481 N0.getOperand(3), NotCC);
3482 }
3483 }
3484 }
3485
3486 // fold (not (zext (setcc x, y))) -> (zext (not (setcc x, y)))
3487 if (N1C && N1C->getAPIntValue() == 1 && N0.getOpcode() == ISD::ZERO_EXTEND &&
3488 N0.getNode()->hasOneUse() &&
3489 isSetCCEquivalent(N0.getOperand(0), LHS, RHS, CC)){
3490 SDValue V = N0.getOperand(0);
3491 V = DAG.getNode(ISD::XOR, SDLoc(N0), V.getValueType(), V,
3492 DAG.getConstant(1, V.getValueType()));
3493 AddToWorkList(V.getNode());
3494 return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N), VT, V);
3495 }
3496
3497 // fold (not (or x, y)) -> (and (not x), (not y)) iff x or y are setcc
3498 if (N1C && N1C->getAPIntValue() == 1 && VT == MVT::i1 &&
3499 (N0.getOpcode() == ISD::OR || N0.getOpcode() == ISD::AND)) {
3500 SDValue LHS = N0.getOperand(0), RHS = N0.getOperand(1);
3501 if (isOneUseSetCC(RHS) || isOneUseSetCC(LHS)) {
3502 unsigned NewOpcode = N0.getOpcode() == ISD::AND ? ISD::OR : ISD::AND;
3503 LHS = DAG.getNode(ISD::XOR, SDLoc(LHS), VT, LHS, N1); // LHS = ~LHS
3504 RHS = DAG.getNode(ISD::XOR, SDLoc(RHS), VT, RHS, N1); // RHS = ~RHS
3505 AddToWorkList(LHS.getNode()); AddToWorkList(RHS.getNode());
3506 return DAG.getNode(NewOpcode, SDLoc(N), VT, LHS, RHS);
3507 }
3508 }
3509 // fold (not (or x, y)) -> (and (not x), (not y)) iff x or y are constants
3510 if (N1C && N1C->isAllOnesValue() &&
3511 (N0.getOpcode() == ISD::OR || N0.getOpcode() == ISD::AND)) {
3512 SDValue LHS = N0.getOperand(0), RHS = N0.getOperand(1);
3513 if (isa<ConstantSDNode>(RHS) || isa<ConstantSDNode>(LHS)) {
3514 unsigned NewOpcode = N0.getOpcode() == ISD::AND ? ISD::OR : ISD::AND;
3515 LHS = DAG.getNode(ISD::XOR, SDLoc(LHS), VT, LHS, N1); // LHS = ~LHS
3516 RHS = DAG.getNode(ISD::XOR, SDLoc(RHS), VT, RHS, N1); // RHS = ~RHS
3517 AddToWorkList(LHS.getNode()); AddToWorkList(RHS.getNode());
3518 return DAG.getNode(NewOpcode, SDLoc(N), VT, LHS, RHS);
3519 }
3520 }
3521 // fold (xor (and x, y), y) -> (and (not x), y)
3522 if (N0.getOpcode() == ISD::AND && N0.getNode()->hasOneUse() &&
3523 N0->getOperand(1) == N1) {
3524 SDValue X = N0->getOperand(0);
3525 SDValue NotX = DAG.getNOT(SDLoc(X), X, VT);
3526 AddToWorkList(NotX.getNode());
3527 return DAG.getNode(ISD::AND, SDLoc(N), VT, NotX, N1);
3528 }
3529 // fold (xor (xor x, c1), c2) -> (xor x, (xor c1, c2))
3530 if (N1C && N0.getOpcode() == ISD::XOR) {
3531 ConstantSDNode *N00C = dyn_cast<ConstantSDNode>(N0.getOperand(0));
3532 ConstantSDNode *N01C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
3533 if (N00C)
3534 return DAG.getNode(ISD::XOR, SDLoc(N), VT, N0.getOperand(1),
3535 DAG.getConstant(N1C->getAPIntValue() ^
3536 N00C->getAPIntValue(), VT));
3537 if (N01C)
3538 return DAG.getNode(ISD::XOR, SDLoc(N), VT, N0.getOperand(0),
3539 DAG.getConstant(N1C->getAPIntValue() ^
3540 N01C->getAPIntValue(), VT));
3541 }
3542 // fold (xor x, x) -> 0
3543 if (N0 == N1)
3544 return tryFoldToZero(SDLoc(N), TLI, VT, DAG, LegalOperations, LegalTypes);
3545
3546 // Simplify: xor (op x...), (op y...) -> (op (xor x, y))
3547 if (N0.getOpcode() == N1.getOpcode()) {
3548 SDValue Tmp = SimplifyBinOpWithSameOpcodeHands(N);
3549 if (Tmp.getNode()) return Tmp;
3550 }
3551
3552 // Simplify the expression using non-local knowledge.
3553 if (!VT.isVector() &&
3554 SimplifyDemandedBits(SDValue(N, 0)))
3555 return SDValue(N, 0);
3556
3557 return SDValue();
3558}
3559
3560/// visitShiftByConstant - Handle transforms common to the three shifts, when
3561/// the shift amount is a constant.
3562SDValue DAGCombiner::visitShiftByConstant(SDNode *N, unsigned Amt) {
3563 SDNode *LHS = N->getOperand(0).getNode();
3564 if (!LHS->hasOneUse()) return SDValue();
3565
3566 // We want to pull some binops through shifts, so that we have (and (shift))
3567 // instead of (shift (and)), likewise for add, or, xor, etc. This sort of
3568 // thing happens with address calculations, so it's important to canonicalize
3569 // it.
3570 bool HighBitSet = false; // Can we transform this if the high bit is set?
3571
3572 switch (LHS->getOpcode()) {
3573 default: return SDValue();
3574 case ISD::OR:
3575 case ISD::XOR:
3576 HighBitSet = false; // We can only transform sra if the high bit is clear.
3577 break;
3578 case ISD::AND:
3579 HighBitSet = true; // We can only transform sra if the high bit is set.
3580 break;
3581 case ISD::ADD:
3582 if (N->getOpcode() != ISD::SHL)
3583 return SDValue(); // only shl(add) not sr[al](add).
3584 HighBitSet = false; // We can only transform sra if the high bit is clear.
3585 break;
3586 }
3587
3588 // We require the RHS of the binop to be a constant as well.
3589 ConstantSDNode *BinOpCst = dyn_cast<ConstantSDNode>(LHS->getOperand(1));
3590 if (!BinOpCst) return SDValue();
3591
3592 // FIXME: disable this unless the input to the binop is a shift by a constant.
3593 // If it is not a shift, it pessimizes some common cases like:
3594 //
3595 // void foo(int *X, int i) { X[i & 1235] = 1; }
3596 // int bar(int *X, int i) { return X[i & 255]; }
3597 SDNode *BinOpLHSVal = LHS->getOperand(0).getNode();
3598 if ((BinOpLHSVal->getOpcode() != ISD::SHL &&
3599 BinOpLHSVal->getOpcode() != ISD::SRA &&
3600 BinOpLHSVal->getOpcode() != ISD::SRL) ||
3601 !isa<ConstantSDNode>(BinOpLHSVal->getOperand(1)))
3602 return SDValue();
3603
3604 EVT VT = N->getValueType(0);
3605
3606 // If this is a signed shift right, and the high bit is modified by the
3607 // logical operation, do not perform the transformation. The highBitSet
3608 // boolean indicates the value of the high bit of the constant which would
3609 // cause it to be modified for this operation.
3610 if (N->getOpcode() == ISD::SRA) {
3611 bool BinOpRHSSignSet = BinOpCst->getAPIntValue().isNegative();
3612 if (BinOpRHSSignSet != HighBitSet)
3613 return SDValue();
3614 }
3615
3616 // Fold the constants, shifting the binop RHS by the shift amount.
3617 SDValue NewRHS = DAG.getNode(N->getOpcode(), SDLoc(LHS->getOperand(1)),
3618 N->getValueType(0),
3619 LHS->getOperand(1), N->getOperand(1));
3620
3621 // Create the new shift.
3622 SDValue NewShift = DAG.getNode(N->getOpcode(),
3623 SDLoc(LHS->getOperand(0)),
3624 VT, LHS->getOperand(0), N->getOperand(1));
3625
3626 // Create the new binop.
3627 return DAG.getNode(LHS->getOpcode(), SDLoc(N), VT, NewShift, NewRHS);
3628}
3629
3630SDValue DAGCombiner::visitSHL(SDNode *N) {
3631 SDValue N0 = N->getOperand(0);
3632 SDValue N1 = N->getOperand(1);
3633 ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
3634 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
3635 EVT VT = N0.getValueType();
3636 unsigned OpSizeInBits = VT.getScalarType().getSizeInBits();
3637
3638 // fold vector ops
3639 if (VT.isVector()) {
3640 SDValue FoldedVOp = SimplifyVBinOp(N);
3641 if (FoldedVOp.getNode()) return FoldedVOp;
3642 }
3643
3644 // fold (shl c1, c2) -> c1<<c2
3645 if (N0C && N1C)
3646 return DAG.FoldConstantArithmetic(ISD::SHL, VT, N0C, N1C);
3647 // fold (shl 0, x) -> 0
3648 if (N0C && N0C->isNullValue())
3649 return N0;
3650 // fold (shl x, c >= size(x)) -> undef
3651 if (N1C && N1C->getZExtValue() >= OpSizeInBits)
3652 return DAG.getUNDEF(VT);
3653 // fold (shl x, 0) -> x
3654 if (N1C && N1C->isNullValue())
3655 return N0;
3656 // fold (shl undef, x) -> 0
3657 if (N0.getOpcode() == ISD::UNDEF)
3658 return DAG.getConstant(0, VT);
3659 // if (shl x, c) is known to be zero, return 0
3660 if (DAG.MaskedValueIsZero(SDValue(N, 0),
3661 APInt::getAllOnesValue(OpSizeInBits)))
3662 return DAG.getConstant(0, VT);
3663 // fold (shl x, (trunc (and y, c))) -> (shl x, (and (trunc y), (trunc c))).
3664 if (N1.getOpcode() == ISD::TRUNCATE &&
3665 N1.getOperand(0).getOpcode() == ISD::AND &&
3666 N1.hasOneUse() && N1.getOperand(0).hasOneUse()) {
3667 SDValue N101 = N1.getOperand(0).getOperand(1);
3668 if (ConstantSDNode *N101C = dyn_cast<ConstantSDNode>(N101)) {
3669 EVT TruncVT = N1.getValueType();
3670 SDValue N100 = N1.getOperand(0).getOperand(0);
3671 APInt TruncC = N101C->getAPIntValue();
3672 TruncC = TruncC.trunc(TruncVT.getSizeInBits());
3673 return DAG.getNode(ISD::SHL, SDLoc(N), VT, N0,
3674 DAG.getNode(ISD::AND, SDLoc(N), TruncVT,
3675 DAG.getNode(ISD::TRUNCATE,
3676 SDLoc(N),
3677 TruncVT, N100),
3678 DAG.getConstant(TruncC, TruncVT)));
3679 }
3680 }
3681
3682 if (N1C && SimplifyDemandedBits(SDValue(N, 0)))
3683 return SDValue(N, 0);
3684
3685 // fold (shl (shl x, c1), c2) -> 0 or (shl x, (add c1, c2))
3686 if (N1C && N0.getOpcode() == ISD::SHL &&
3687 N0.getOperand(1).getOpcode() == ISD::Constant) {
3688 uint64_t c1 = cast<ConstantSDNode>(N0.getOperand(1))->getZExtValue();
3689 uint64_t c2 = N1C->getZExtValue();
3690 if (c1 + c2 >= OpSizeInBits)
3691 return DAG.getConstant(0, VT);
3692 return DAG.getNode(ISD::SHL, SDLoc(N), VT, N0.getOperand(0),
3693 DAG.getConstant(c1 + c2, N1.getValueType()));
3694 }
3695
3696 // fold (shl (ext (shl x, c1)), c2) -> (ext (shl x, (add c1, c2)))
3697 // For this to be valid, the second form must not preserve any of the bits
3698 // that are shifted out by the inner shift in the first form. This means
3699 // the outer shift size must be >= the number of bits added by the ext.
3700 // As a corollary, we don't care what kind of ext it is.
3701 if (N1C && (N0.getOpcode() == ISD::ZERO_EXTEND ||
3702 N0.getOpcode() == ISD::ANY_EXTEND ||
3703 N0.getOpcode() == ISD::SIGN_EXTEND) &&
3704 N0.getOperand(0).getOpcode() == ISD::SHL &&
3705 isa<ConstantSDNode>(N0.getOperand(0)->getOperand(1))) {
3706 uint64_t c1 =
3707 cast<ConstantSDNode>(N0.getOperand(0)->getOperand(1))->getZExtValue();
3708 uint64_t c2 = N1C->getZExtValue();
3709 EVT InnerShiftVT = N0.getOperand(0).getValueType();
3710 uint64_t InnerShiftSize = InnerShiftVT.getScalarType().getSizeInBits();
3711 if (c2 >= OpSizeInBits - InnerShiftSize) {
3712 if (c1 + c2 >= OpSizeInBits)
3713 return DAG.getConstant(0, VT);
3714 return DAG.getNode(ISD::SHL, SDLoc(N0), VT,
3715 DAG.getNode(N0.getOpcode(), SDLoc(N0), VT,
3716 N0.getOperand(0)->getOperand(0)),
3717 DAG.getConstant(c1 + c2, N1.getValueType()));
3718 }
3719 }
3720
3721 // fold (shl (zext (srl x, C)), C) -> (zext (shl (srl x, C), C))
3722 // Only fold this if the inner zext has no other uses to avoid increasing
3723 // the total number of instructions.
3724 if (N1C && N0.getOpcode() == ISD::ZERO_EXTEND && N0.hasOneUse() &&
3725 N0.getOperand(0).getOpcode() == ISD::SRL &&
3726 isa<ConstantSDNode>(N0.getOperand(0)->getOperand(1))) {
3727 uint64_t c1 =
3728 cast<ConstantSDNode>(N0.getOperand(0)->getOperand(1))->getZExtValue();
3729 if (c1 < VT.getSizeInBits()) {
3730 uint64_t c2 = N1C->getZExtValue();
3731 if (c1 == c2) {
3732 SDValue NewOp0 = N0.getOperand(0);
3733 EVT CountVT = NewOp0.getOperand(1).getValueType();
3734 SDValue NewSHL = DAG.getNode(ISD::SHL, SDLoc(N), NewOp0.getValueType(),
3735 NewOp0, DAG.getConstant(c2, CountVT));
3736 AddToWorkList(NewSHL.getNode());
3737 return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N0), VT, NewSHL);
3738 }
3739 }
3740 }
3741
3742 // fold (shl (srl x, c1), c2) -> (and (shl x, (sub c2, c1), MASK) or
3743 // (and (srl x, (sub c1, c2), MASK)
3744 // Only fold this if the inner shift has no other uses -- if it does, folding
3745 // this will increase the total number of instructions.
3746 if (N1C && N0.getOpcode() == ISD::SRL && N0.hasOneUse() &&
3747 N0.getOperand(1).getOpcode() == ISD::Constant) {
3748 uint64_t c1 = cast<ConstantSDNode>(N0.getOperand(1))->getZExtValue();
3749 if (c1 < VT.getSizeInBits()) {
3750 uint64_t c2 = N1C->getZExtValue();
3751 APInt Mask = APInt::getHighBitsSet(VT.getSizeInBits(),
3752 VT.getSizeInBits() - c1);
3753 SDValue Shift;
3754 if (c2 > c1) {
3755 Mask = Mask.shl(c2-c1);
3756 Shift = DAG.getNode(ISD::SHL, SDLoc(N), VT, N0.getOperand(0),
3757 DAG.getConstant(c2-c1, N1.getValueType()));
3758 } else {
3759 Mask = Mask.lshr(c1-c2);
3760 Shift = DAG.getNode(ISD::SRL, SDLoc(N), VT, N0.getOperand(0),
3761 DAG.getConstant(c1-c2, N1.getValueType()));
3762 }
3763 return DAG.getNode(ISD::AND, SDLoc(N0), VT, Shift,
3764 DAG.getConstant(Mask, VT));
3765 }
3766 }
3767 // fold (shl (sra x, c1), c1) -> (and x, (shl -1, c1))
3768 if (N1C && N0.getOpcode() == ISD::SRA && N1 == N0.getOperand(1)) {
3769 SDValue HiBitsMask =
3770 DAG.getConstant(APInt::getHighBitsSet(VT.getSizeInBits(),
3771 VT.getSizeInBits() -
3772 N1C->getZExtValue()),
3773 VT);
3774 return DAG.getNode(ISD::AND, SDLoc(N), VT, N0.getOperand(0),
3775 HiBitsMask);
3776 }
3777
3778 if (N1C) {
3779 SDValue NewSHL = visitShiftByConstant(N, N1C->getZExtValue());
3780 if (NewSHL.getNode())
3781 return NewSHL;
3782 }
3783
3784 return SDValue();
3785}
3786
3787SDValue DAGCombiner::visitSRA(SDNode *N) {
3788 SDValue N0 = N->getOperand(0);
3789 SDValue N1 = N->getOperand(1);
3790 ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
3791 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
3792 EVT VT = N0.getValueType();
3793 unsigned OpSizeInBits = VT.getScalarType().getSizeInBits();
3794
3795 // fold vector ops
3796 if (VT.isVector()) {
3797 SDValue FoldedVOp = SimplifyVBinOp(N);
3798 if (FoldedVOp.getNode()) return FoldedVOp;
3799 }
3800
3801 // fold (sra c1, c2) -> (sra c1, c2)
3802 if (N0C && N1C)
3803 return DAG.FoldConstantArithmetic(ISD::SRA, VT, N0C, N1C);
3804 // fold (sra 0, x) -> 0
3805 if (N0C && N0C->isNullValue())
3806 return N0;
3807 // fold (sra -1, x) -> -1
3808 if (N0C && N0C->isAllOnesValue())
3809 return N0;
3810 // fold (sra x, (setge c, size(x))) -> undef
3811 if (N1C && N1C->getZExtValue() >= OpSizeInBits)
3812 return DAG.getUNDEF(VT);
3813 // fold (sra x, 0) -> x
3814 if (N1C && N1C->isNullValue())
3815 return N0;
3816 // fold (sra (shl x, c1), c1) -> sext_inreg for some c1 and target supports
3817 // sext_inreg.
3818 if (N1C && N0.getOpcode() == ISD::SHL && N1 == N0.getOperand(1)) {
3819 unsigned LowBits = OpSizeInBits - (unsigned)N1C->getZExtValue();
3820 EVT ExtVT = EVT::getIntegerVT(*DAG.getContext(), LowBits);
3821 if (VT.isVector())
3822 ExtVT = EVT::getVectorVT(*DAG.getContext(),
3823 ExtVT, VT.getVectorNumElements());
3824 if ((!LegalOperations ||
3825 TLI.isOperationLegal(ISD::SIGN_EXTEND_INREG, ExtVT)))
3826 return DAG.getNode(ISD::SIGN_EXTEND_INREG, SDLoc(N), VT,
3827 N0.getOperand(0), DAG.getValueType(ExtVT));
3828 }
3829
3830 // fold (sra (sra x, c1), c2) -> (sra x, (add c1, c2))
3831 if (N1C && N0.getOpcode() == ISD::SRA) {
3832 if (ConstantSDNode *C1 = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
3833 unsigned Sum = N1C->getZExtValue() + C1->getZExtValue();
3834 if (Sum >= OpSizeInBits) Sum = OpSizeInBits-1;
3835 return DAG.getNode(ISD::SRA, SDLoc(N), VT, N0.getOperand(0),
3836 DAG.getConstant(Sum, N1C->getValueType(0)));
3837 }
3838 }
3839
3840 // fold (sra (shl X, m), (sub result_size, n))
3841 // -> (sign_extend (trunc (shl X, (sub (sub result_size, n), m)))) for
3842 // result_size - n != m.
3843 // If truncate is free for the target sext(shl) is likely to result in better
3844 // code.
3845 if (N0.getOpcode() == ISD::SHL) {
3846 // Get the two constanst of the shifts, CN0 = m, CN = n.
3847 const ConstantSDNode *N01C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
3848 if (N01C && N1C) {
3849 // Determine what the truncate's result bitsize and type would be.
3850 EVT TruncVT =
3851 EVT::getIntegerVT(*DAG.getContext(),
3852 OpSizeInBits - N1C->getZExtValue());
3853 // Determine the residual right-shift amount.
3854 signed ShiftAmt = N1C->getZExtValue() - N01C->getZExtValue();
3855
3856 // If the shift is not a no-op (in which case this should be just a sign
3857 // extend already), the truncated to type is legal, sign_extend is legal
3858 // on that type, and the truncate to that type is both legal and free,
3859 // perform the transform.
3860 if ((ShiftAmt > 0) &&
3861 TLI.isOperationLegalOrCustom(ISD::SIGN_EXTEND, TruncVT) &&
3862 TLI.isOperationLegalOrCustom(ISD::TRUNCATE, VT) &&
3863 TLI.isTruncateFree(VT, TruncVT)) {
3864
3865 SDValue Amt = DAG.getConstant(ShiftAmt,
3866 getShiftAmountTy(N0.getOperand(0).getValueType()));
3867 SDValue Shift = DAG.getNode(ISD::SRL, SDLoc(N0), VT,
3868 N0.getOperand(0), Amt);
3869 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SDLoc(N0), TruncVT,
3870 Shift);
3871 return DAG.getNode(ISD::SIGN_EXTEND, SDLoc(N),
3872 N->getValueType(0), Trunc);
3873 }
3874 }
3875 }
3876
3877 // fold (sra x, (trunc (and y, c))) -> (sra x, (and (trunc y), (trunc c))).
3878 if (N1.getOpcode() == ISD::TRUNCATE &&
3879 N1.getOperand(0).getOpcode() == ISD::AND &&
3880 N1.hasOneUse() && N1.getOperand(0).hasOneUse()) {
3881 SDValue N101 = N1.getOperand(0).getOperand(1);
3882 if (ConstantSDNode *N101C = dyn_cast<ConstantSDNode>(N101)) {
3883 EVT TruncVT = N1.getValueType();
3884 SDValue N100 = N1.getOperand(0).getOperand(0);
3885 APInt TruncC = N101C->getAPIntValue();
3886 TruncC = TruncC.trunc(TruncVT.getScalarType().getSizeInBits());
3887 return DAG.getNode(ISD::SRA, SDLoc(N), VT, N0,
3888 DAG.getNode(ISD::AND, SDLoc(N),
3889 TruncVT,
3890 DAG.getNode(ISD::TRUNCATE,
3891 SDLoc(N),
3892 TruncVT, N100),
3893 DAG.getConstant(TruncC, TruncVT)));
3894 }
3895 }
3896
3897 // fold (sra (trunc (sr x, c1)), c2) -> (trunc (sra x, c1+c2))
3898 // if c1 is equal to the number of bits the trunc removes
3899 if (N0.getOpcode() == ISD::TRUNCATE &&
3900 (N0.getOperand(0).getOpcode() == ISD::SRL ||
3901 N0.getOperand(0).getOpcode() == ISD::SRA) &&
3902 N0.getOperand(0).hasOneUse() &&
3903 N0.getOperand(0).getOperand(1).hasOneUse() &&
3904 N1C && isa<ConstantSDNode>(N0.getOperand(0).getOperand(1))) {
3905 EVT LargeVT = N0.getOperand(0).getValueType();
3906 ConstantSDNode *LargeShiftAmt =
3907 cast<ConstantSDNode>(N0.getOperand(0).getOperand(1));
3908
3909 if (LargeVT.getScalarType().getSizeInBits() - OpSizeInBits ==
3910 LargeShiftAmt->getZExtValue()) {
3911 SDValue Amt =
3912 DAG.getConstant(LargeShiftAmt->getZExtValue() + N1C->getZExtValue(),
3913 getShiftAmountTy(N0.getOperand(0).getOperand(0).getValueType()));
3914 SDValue SRA = DAG.getNode(ISD::SRA, SDLoc(N), LargeVT,
3915 N0.getOperand(0).getOperand(0), Amt);
3916 return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, SRA);
3917 }
3918 }
3919
3920 // Simplify, based on bits shifted out of the LHS.
3921 if (N1C && SimplifyDemandedBits(SDValue(N, 0)))
3922 return SDValue(N, 0);
3923
3924
3925 // If the sign bit is known to be zero, switch this to a SRL.
3926 if (DAG.SignBitIsZero(N0))
3927 return DAG.getNode(ISD::SRL, SDLoc(N), VT, N0, N1);
3928
3929 if (N1C) {
3930 SDValue NewSRA = visitShiftByConstant(N, N1C->getZExtValue());
3931 if (NewSRA.getNode())
3932 return NewSRA;
3933 }
3934
3935 return SDValue();
3936}
3937
3938SDValue DAGCombiner::visitSRL(SDNode *N) {
3939 SDValue N0 = N->getOperand(0);
3940 SDValue N1 = N->getOperand(1);
3941 ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
3942 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
3943 EVT VT = N0.getValueType();
3944 unsigned OpSizeInBits = VT.getScalarType().getSizeInBits();
3945
3946 // fold vector ops
3947 if (VT.isVector()) {
3948 SDValue FoldedVOp = SimplifyVBinOp(N);
3949 if (FoldedVOp.getNode()) return FoldedVOp;
3950 }
3951
3952 // fold (srl c1, c2) -> c1 >>u c2
3953 if (N0C && N1C)
3954 return DAG.FoldConstantArithmetic(ISD::SRL, VT, N0C, N1C);
3955 // fold (srl 0, x) -> 0
3956 if (N0C && N0C->isNullValue())
3957 return N0;
3958 // fold (srl x, c >= size(x)) -> undef
3959 if (N1C && N1C->getZExtValue() >= OpSizeInBits)
3960 return DAG.getUNDEF(VT);
3961 // fold (srl x, 0) -> x
3962 if (N1C && N1C->isNullValue())
3963 return N0;
3964 // if (srl x, c) is known to be zero, return 0
3965 if (N1C && DAG.MaskedValueIsZero(SDValue(N, 0),
3966 APInt::getAllOnesValue(OpSizeInBits)))
3967 return DAG.getConstant(0, VT);
3968
3969 // fold (srl (srl x, c1), c2) -> 0 or (srl x, (add c1, c2))
3970 if (N1C && N0.getOpcode() == ISD::SRL &&
3971 N0.getOperand(1).getOpcode() == ISD::Constant) {
3972 uint64_t c1 = cast<ConstantSDNode>(N0.getOperand(1))->getZExtValue();
3973 uint64_t c2 = N1C->getZExtValue();
3974 if (c1 + c2 >= OpSizeInBits)
3975 return DAG.getConstant(0, VT);
3976 return DAG.getNode(ISD::SRL, SDLoc(N), VT, N0.getOperand(0),
3977 DAG.getConstant(c1 + c2, N1.getValueType()));
3978 }
3979
3980 // fold (srl (trunc (srl x, c1)), c2) -> 0 or (trunc (srl x, (add c1, c2)))
3981 if (N1C && N0.getOpcode() == ISD::TRUNCATE &&
3982 N0.getOperand(0).getOpcode() == ISD::SRL &&
3983 isa<ConstantSDNode>(N0.getOperand(0)->getOperand(1))) {
3984 uint64_t c1 =
3985 cast<ConstantSDNode>(N0.getOperand(0)->getOperand(1))->getZExtValue();
3986 uint64_t c2 = N1C->getZExtValue();
3987 EVT InnerShiftVT = N0.getOperand(0).getValueType();
3988 EVT ShiftCountVT = N0.getOperand(0)->getOperand(1).getValueType();
3989 uint64_t InnerShiftSize = InnerShiftVT.getScalarType().getSizeInBits();
3990 // This is only valid if the OpSizeInBits + c1 = size of inner shift.
3991 if (c1 + OpSizeInBits == InnerShiftSize) {
3992 if (c1 + c2 >= InnerShiftSize)
3993 return DAG.getConstant(0, VT);
3994 return DAG.getNode(ISD::TRUNCATE, SDLoc(N0), VT,
3995 DAG.getNode(ISD::SRL, SDLoc(N0), InnerShiftVT,
3996 N0.getOperand(0)->getOperand(0),
3997 DAG.getConstant(c1 + c2, ShiftCountVT)));
3998 }
3999 }
4000
4001 // fold (srl (shl x, c), c) -> (and x, cst2)
4002 if (N1C && N0.getOpcode() == ISD::SHL && N0.getOperand(1) == N1 &&
4003 N0.getValueSizeInBits() <= 64) {
4004 uint64_t ShAmt = N1C->getZExtValue()+64-N0.getValueSizeInBits();
4005 return DAG.getNode(ISD::AND, SDLoc(N), VT, N0.getOperand(0),
4006 DAG.getConstant(~0ULL >> ShAmt, VT));
4007 }
4008
4009 // fold (srl (anyextend x), c) -> (and (anyextend (srl x, c)), mask)
4010 if (N1C && N0.getOpcode() == ISD::ANY_EXTEND) {
4011 // Shifting in all undef bits?
4012 EVT SmallVT = N0.getOperand(0).getValueType();
4013 if (N1C->getZExtValue() >= SmallVT.getSizeInBits())
4014 return DAG.getUNDEF(VT);
4015
4016 if (!LegalTypes || TLI.isTypeDesirableForOp(ISD::SRL, SmallVT)) {
4017 uint64_t ShiftAmt = N1C->getZExtValue();
4018 SDValue SmallShift = DAG.getNode(ISD::SRL, SDLoc(N0), SmallVT,
4019 N0.getOperand(0),
4020 DAG.getConstant(ShiftAmt, getShiftAmountTy(SmallVT)));
4021 AddToWorkList(SmallShift.getNode());
4022 APInt Mask = APInt::getAllOnesValue(VT.getSizeInBits()).lshr(ShiftAmt);
4023 return DAG.getNode(ISD::AND, SDLoc(N), VT,
4024 DAG.getNode(ISD::ANY_EXTEND, SDLoc(N), VT, SmallShift),
4025 DAG.getConstant(Mask, VT));
4026 }
4027 }
4028
4029 // fold (srl (sra X, Y), 31) -> (srl X, 31). This srl only looks at the sign
4030 // bit, which is unmodified by sra.
4031 if (N1C && N1C->getZExtValue() + 1 == VT.getSizeInBits()) {
4032 if (N0.getOpcode() == ISD::SRA)
4033 return DAG.getNode(ISD::SRL, SDLoc(N), VT, N0.getOperand(0), N1);
4034 }
4035
4036 // fold (srl (ctlz x), "5") -> x iff x has one bit set (the low bit).
4037 if (N1C && N0.getOpcode() == ISD::CTLZ &&
4038 N1C->getAPIntValue() == Log2_32(VT.getSizeInBits())) {
4039 APInt KnownZero, KnownOne;
4040 DAG.ComputeMaskedBits(N0.getOperand(0), KnownZero, KnownOne);
4041
4042 // If any of the input bits are KnownOne, then the input couldn't be all
4043 // zeros, thus the result of the srl will always be zero.
4044 if (KnownOne.getBoolValue()) return DAG.getConstant(0, VT);
4045
4046 // If all of the bits input the to ctlz node are known to be zero, then
4047 // the result of the ctlz is "32" and the result of the shift is one.
4048 APInt UnknownBits = ~KnownZero;
4049 if (UnknownBits == 0) return DAG.getConstant(1, VT);
4050
4051 // Otherwise, check to see if there is exactly one bit input to the ctlz.
4052 if ((UnknownBits & (UnknownBits - 1)) == 0) {
4053 // Okay, we know that only that the single bit specified by UnknownBits
4054 // could be set on input to the CTLZ node. If this bit is set, the SRL
4055 // will return 0, if it is clear, it returns 1. Change the CTLZ/SRL pair
4056 // to an SRL/XOR pair, which is likely to simplify more.
4057 unsigned ShAmt = UnknownBits.countTrailingZeros();
4058 SDValue Op = N0.getOperand(0);
4059
4060 if (ShAmt) {
4061 Op = DAG.getNode(ISD::SRL, SDLoc(N0), VT, Op,
4062 DAG.getConstant(ShAmt, getShiftAmountTy(Op.getValueType())));
4063 AddToWorkList(Op.getNode());
4064 }
4065
4066 return DAG.getNode(ISD::XOR, SDLoc(N), VT,
4067 Op, DAG.getConstant(1, VT));
4068 }
4069 }
4070
4071 // fold (srl x, (trunc (and y, c))) -> (srl x, (and (trunc y), (trunc c))).
4072 if (N1.getOpcode() == ISD::TRUNCATE &&
4073 N1.getOperand(0).getOpcode() == ISD::AND &&
4074 N1.hasOneUse() && N1.getOperand(0).hasOneUse()) {
4075 SDValue N101 = N1.getOperand(0).getOperand(1);
4076 if (ConstantSDNode *N101C = dyn_cast<ConstantSDNode>(N101)) {
4077 EVT TruncVT = N1.getValueType();
4078 SDValue N100 = N1.getOperand(0).getOperand(0);
4079 APInt TruncC = N101C->getAPIntValue();
4080 TruncC = TruncC.trunc(TruncVT.getSizeInBits());
4081 return DAG.getNode(ISD::SRL, SDLoc(N), VT, N0,
4082 DAG.getNode(ISD::AND, SDLoc(N),
4083 TruncVT,
4084 DAG.getNode(ISD::TRUNCATE,
4085 SDLoc(N),
4086 TruncVT, N100),
4087 DAG.getConstant(TruncC, TruncVT)));
4088 }
4089 }
4090
4091 // fold operands of srl based on knowledge that the low bits are not
4092 // demanded.
4093 if (N1C && SimplifyDemandedBits(SDValue(N, 0)))
4094 return SDValue(N, 0);
4095
4096 if (N1C) {
4097 SDValue NewSRL = visitShiftByConstant(N, N1C->getZExtValue());
4098 if (NewSRL.getNode())
4099 return NewSRL;
4100 }
4101
4102 // Attempt to convert a srl of a load into a narrower zero-extending load.
4103 SDValue NarrowLoad = ReduceLoadWidth(N);
4104 if (NarrowLoad.getNode())
4105 return NarrowLoad;
4106
4107 // Here is a common situation. We want to optimize:
4108 //
4109 // %a = ...
4110 // %b = and i32 %a, 2
4111 // %c = srl i32 %b, 1
4112 // brcond i32 %c ...
4113 //
4114 // into
4115 //
4116 // %a = ...
4117 // %b = and %a, 2
4118 // %c = setcc eq %b, 0
4119 // brcond %c ...
4120 //
4121 // However when after the source operand of SRL is optimized into AND, the SRL
4122 // itself may not be optimized further. Look for it and add the BRCOND into
4123 // the worklist.
4124 if (N->hasOneUse()) {
4125 SDNode *Use = *N->use_begin();
4126 if (Use->getOpcode() == ISD::BRCOND)
4127 AddToWorkList(Use);
4128 else if (Use->getOpcode() == ISD::TRUNCATE && Use->hasOneUse()) {
4129 // Also look pass the truncate.
4130 Use = *Use->use_begin();
4131 if (Use->getOpcode() == ISD::BRCOND)
4132 AddToWorkList(Use);
4133 }
4134 }
4135
4136 return SDValue();
4137}
4138
4139SDValue DAGCombiner::visitCTLZ(SDNode *N) {
4140 SDValue N0 = N->getOperand(0);
4141 EVT VT = N->getValueType(0);
4142
4143 // fold (ctlz c1) -> c2
4144 if (isa<ConstantSDNode>(N0))
4145 return DAG.getNode(ISD::CTLZ, SDLoc(N), VT, N0);
4146 return SDValue();
4147}
4148
4149SDValue DAGCombiner::visitCTLZ_ZERO_UNDEF(SDNode *N) {
4150 SDValue N0 = N->getOperand(0);
4151 EVT VT = N->getValueType(0);
4152
4153 // fold (ctlz_zero_undef c1) -> c2
4154 if (isa<ConstantSDNode>(N0))
4155 return DAG.getNode(ISD::CTLZ_ZERO_UNDEF, SDLoc(N), VT, N0);
4156 return SDValue();
4157}
4158
4159SDValue DAGCombiner::visitCTTZ(SDNode *N) {
4160 SDValue N0 = N->getOperand(0);
4161 EVT VT = N->getValueType(0);
4162
4163 // fold (cttz c1) -> c2
4164 if (isa<ConstantSDNode>(N0))
4165 return DAG.getNode(ISD::CTTZ, SDLoc(N), VT, N0);
4166 return SDValue();
4167}
4168
4169SDValue DAGCombiner::visitCTTZ_ZERO_UNDEF(SDNode *N) {
4170 SDValue N0 = N->getOperand(0);
4171 EVT VT = N->getValueType(0);
4172
4173 // fold (cttz_zero_undef c1) -> c2
4174 if (isa<ConstantSDNode>(N0))
4175 return DAG.getNode(ISD::CTTZ_ZERO_UNDEF, SDLoc(N), VT, N0);
4176 return SDValue();
4177}
4178
4179SDValue DAGCombiner::visitCTPOP(SDNode *N) {
4180 SDValue N0 = N->getOperand(0);
4181 EVT VT = N->getValueType(0);
4182
4183 // fold (ctpop c1) -> c2
4184 if (isa<ConstantSDNode>(N0))
4185 return DAG.getNode(ISD::CTPOP, SDLoc(N), VT, N0);
4186 return SDValue();
4187}
4188
4189SDValue DAGCombiner::visitSELECT(SDNode *N) {
4190 SDValue N0 = N->getOperand(0);
4191 SDValue N1 = N->getOperand(1);
4192 SDValue N2 = N->getOperand(2);
4193 ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
4194 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
4195 ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2);
4196 EVT VT = N->getValueType(0);
4197 EVT VT0 = N0.getValueType();
4198
4199 // fold (select C, X, X) -> X
4200 if (N1 == N2)
4201 return N1;
4202 // fold (select true, X, Y) -> X
4203 if (N0C && !N0C->isNullValue())
4204 return N1;
4205 // fold (select false, X, Y) -> Y
4206 if (N0C && N0C->isNullValue())
4207 return N2;
4208 // fold (select C, 1, X) -> (or C, X)
4209 if (VT == MVT::i1 && N1C && N1C->getAPIntValue() == 1)
4210 return DAG.getNode(ISD::OR, SDLoc(N), VT, N0, N2);
4211 // fold (select C, 0, 1) -> (xor C, 1)
4212 if (VT.isInteger() &&
4213 (VT0 == MVT::i1 ||
4214 (VT0.isInteger() &&
4215 TLI.getBooleanContents(false) ==
4216 TargetLowering::ZeroOrOneBooleanContent)) &&
4217 N1C && N2C && N1C->isNullValue() && N2C->getAPIntValue() == 1) {
4218 SDValue XORNode;
4219 if (VT == VT0)
4220 return DAG.getNode(ISD::XOR, SDLoc(N), VT0,
4221 N0, DAG.getConstant(1, VT0));
4222 XORNode = DAG.getNode(ISD::XOR, SDLoc(N0), VT0,
4223 N0, DAG.getConstant(1, VT0));
4224 AddToWorkList(XORNode.getNode());
4225 if (VT.bitsGT(VT0))
4226 return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N), VT, XORNode);
4227 return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, XORNode);
4228 }
4229 // fold (select C, 0, X) -> (and (not C), X)
4230 if (VT == VT0 && VT == MVT::i1 && N1C && N1C->isNullValue()) {
4231 SDValue NOTNode = DAG.getNOT(SDLoc(N0), N0, VT);
4232 AddToWorkList(NOTNode.getNode());
4233 return DAG.getNode(ISD::AND, SDLoc(N), VT, NOTNode, N2);
4234 }
4235 // fold (select C, X, 1) -> (or (not C), X)
4236 if (VT == VT0 && VT == MVT::i1 && N2C && N2C->getAPIntValue() == 1) {
4237 SDValue NOTNode = DAG.getNOT(SDLoc(N0), N0, VT);
4238 AddToWorkList(NOTNode.getNode());
4239 return DAG.getNode(ISD::OR, SDLoc(N), VT, NOTNode, N1);
4240 }
4241 // fold (select C, X, 0) -> (and C, X)
4242 if (VT == MVT::i1 && N2C && N2C->isNullValue())
4243 return DAG.getNode(ISD::AND, SDLoc(N), VT, N0, N1);
4244 // fold (select X, X, Y) -> (or X, Y)
4245 // fold (select X, 1, Y) -> (or X, Y)
4246 if (VT == MVT::i1 && (N0 == N1 || (N1C && N1C->getAPIntValue() == 1)))
4247 return DAG.getNode(ISD::OR, SDLoc(N), VT, N0, N2);
4248 // fold (select X, Y, X) -> (and X, Y)
4249 // fold (select X, Y, 0) -> (and X, Y)
4250 if (VT == MVT::i1 && (N0 == N2 || (N2C && N2C->getAPIntValue() == 0)))
4251 return DAG.getNode(ISD::AND, SDLoc(N), VT, N0, N1);
4252
4253 // If we can fold this based on the true/false value, do so.
4254 if (SimplifySelectOps(N, N1, N2))
4255 return SDValue(N, 0); // Don't revisit N.
4256
4257 // fold selects based on a setcc into other things, such as min/max/abs
4258 if (N0.getOpcode() == ISD::SETCC) {
4259 // FIXME:
4260 // Check against MVT::Other for SELECT_CC, which is a workaround for targets
4261 // having to say they don't support SELECT_CC on every type the DAG knows
4262 // about, since there is no way to mark an opcode illegal at all value types
4263 if (TLI.isOperationLegalOrCustom(ISD::SELECT_CC, MVT::Other) &&
4264 TLI.isOperationLegalOrCustom(ISD::SELECT_CC, VT))
4265 return DAG.getNode(ISD::SELECT_CC, SDLoc(N), VT,
4266 N0.getOperand(0), N0.getOperand(1),
4267 N1, N2, N0.getOperand(2));
4268 return SimplifySelect(SDLoc(N), N0, N1, N2);
4269 }
4270
4271 return SDValue();
4272}
4273
4274static
4275std::pair<SDValue, SDValue> SplitVSETCC(const SDNode *N, SelectionDAG &DAG) {
4276 SDLoc DL(N);
4277 EVT LoVT, HiVT;
4278 llvm::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(N->getValueType(0));
4279
4280 // Split the inputs.
4281 SDValue Lo, Hi, LL, LH, RL, RH;
4282 llvm::tie(LL, LH) = DAG.SplitVectorOperand(N, 0);
4283 llvm::tie(RL, RH) = DAG.SplitVectorOperand(N, 1);
4284
4285 Lo = DAG.getNode(N->getOpcode(), DL, LoVT, LL, RL, N->getOperand(2));
4286 Hi = DAG.getNode(N->getOpcode(), DL, HiVT, LH, RH, N->getOperand(2));
4287
4288 return std::make_pair(Lo, Hi);
4289}
4290
4291SDValue DAGCombiner::visitVSELECT(SDNode *N) {
4292 SDValue N0 = N->getOperand(0);
4293 SDValue N1 = N->getOperand(1);
4294 SDValue N2 = N->getOperand(2);
4295 SDLoc DL(N);
4296
4297 // Canonicalize integer abs.
4298 // vselect (setg[te] X, 0), X, -X ->
4299 // vselect (setgt X, -1), X, -X ->
4300 // vselect (setl[te] X, 0), -X, X ->
4301 // Y = sra (X, size(X)-1); xor (add (X, Y), Y)
4302 if (N0.getOpcode() == ISD::SETCC) {
4303 SDValue LHS = N0.getOperand(0), RHS = N0.getOperand(1);
4304 ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get();
4305 bool isAbs = false;
4306 bool RHSIsAllZeros = ISD::isBuildVectorAllZeros(RHS.getNode());
4307
4308 if (((RHSIsAllZeros && (CC == ISD::SETGT || CC == ISD::SETGE)) ||
4309 (ISD::isBuildVectorAllOnes(RHS.getNode()) && CC == ISD::SETGT)) &&
4310 N1 == LHS && N2.getOpcode() == ISD::SUB && N1 == N2.getOperand(1))
4311 isAbs = ISD::isBuildVectorAllZeros(N2.getOperand(0).getNode());
4312 else if ((RHSIsAllZeros && (CC == ISD::SETLT || CC == ISD::SETLE)) &&
4313 N2 == LHS && N1.getOpcode() == ISD::SUB && N2 == N1.getOperand(1))
4314 isAbs = ISD::isBuildVectorAllZeros(N1.getOperand(0).getNode());
4315
4316 if (isAbs) {
4317 EVT VT = LHS.getValueType();
4318 SDValue Shift = DAG.getNode(
4319 ISD::SRA, DL, VT, LHS,
4320 DAG.getConstant(VT.getScalarType().getSizeInBits() - 1, VT));
4321 SDValue Add = DAG.getNode(ISD::ADD, DL, VT, LHS, Shift);
4322 AddToWorkList(Shift.getNode());
4323 AddToWorkList(Add.getNode());
4324 return DAG.getNode(ISD::XOR, DL, VT, Add, Shift);
4325 }
4326 }
4327
4328 // If the VSELECT result requires splitting and the mask is provided by a
4329 // SETCC, then split both nodes and its operands before legalization. This
4330 // prevents the type legalizer from unrolling SETCC into scalar comparisons
4331 // and enables future optimizations (e.g. min/max pattern matching on X86).
4332 if (N0.getOpcode() == ISD::SETCC) {
4333 EVT VT = N->getValueType(0);
4334
4335 // Check if any splitting is required.
4336 if (TLI.getTypeAction(*DAG.getContext(), VT) !=
4337 TargetLowering::TypeSplitVector)
4338 return SDValue();
4339
4340 SDValue Lo, Hi, CCLo, CCHi, LL, LH, RL, RH;
4341 llvm::tie(CCLo, CCHi) = SplitVSETCC(N0.getNode(), DAG);
4342 llvm::tie(LL, LH) = DAG.SplitVectorOperand(N, 1);
4343 llvm::tie(RL, RH) = DAG.SplitVectorOperand(N, 2);
4344
4345 Lo = DAG.getNode(N->getOpcode(), DL, LL.getValueType(), CCLo, LL, RL);
4346 Hi = DAG.getNode(N->getOpcode(), DL, LH.getValueType(), CCHi, LH, RH);
4347
4348 // Add the new VSELECT nodes to the work list in case they need to be split
4349 // again.
4350 AddToWorkList(Lo.getNode());
4351 AddToWorkList(Hi.getNode());
4352
4353 return DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, Lo, Hi);
4354 }
4355
4356 return SDValue();
4357}
4358
4359SDValue DAGCombiner::visitSELECT_CC(SDNode *N) {
4360 SDValue N0 = N->getOperand(0);
4361 SDValue N1 = N->getOperand(1);
4362 SDValue N2 = N->getOperand(2);
4363 SDValue N3 = N->getOperand(3);
4364 SDValue N4 = N->getOperand(4);
4365 ISD::CondCode CC = cast<CondCodeSDNode>(N4)->get();
4366
4367 // fold select_cc lhs, rhs, x, x, cc -> x
4368 if (N2 == N3)
4369 return N2;
4370
4371 // Determine if the condition we're dealing with is constant
4372 SDValue SCC = SimplifySetCC(getSetCCResultType(N0.getValueType()),
4373 N0, N1, CC, SDLoc(N), false);
4374 if (SCC.getNode()) {
4375 AddToWorkList(SCC.getNode());
4376
4377 if (ConstantSDNode *SCCC = dyn_cast<ConstantSDNode>(SCC.getNode())) {
4378 if (!SCCC->isNullValue())
4379 return N2; // cond always true -> true val
4380 else
4381 return N3; // cond always false -> false val
4382 }
4383
4384 // Fold to a simpler select_cc
4385 if (SCC.getOpcode() == ISD::SETCC)
4386 return DAG.getNode(ISD::SELECT_CC, SDLoc(N), N2.getValueType(),
4387 SCC.getOperand(0), SCC.getOperand(1), N2, N3,
4388 SCC.getOperand(2));
4389 }
4390
4391 // If we can fold this based on the true/false value, do so.
4392 if (SimplifySelectOps(N, N2, N3))
4393 return SDValue(N, 0); // Don't revisit N.
4394
4395 // fold select_cc into other things, such as min/max/abs
4396 return SimplifySelectCC(SDLoc(N), N0, N1, N2, N3, CC);
4397}
4398
4399SDValue DAGCombiner::visitSETCC(SDNode *N) {
4400 return SimplifySetCC(N->getValueType(0), N->getOperand(0), N->getOperand(1),
4401 cast<CondCodeSDNode>(N->getOperand(2))->get(),
4402 SDLoc(N));
4403}
4404
4405// ExtendUsesToFormExtLoad - Trying to extend uses of a load to enable this:
4406// "fold ({s|z|a}ext (load x)) -> ({s|z|a}ext (truncate ({s|z|a}extload x)))"
4407// transformation. Returns true if extension are possible and the above
4408// mentioned transformation is profitable.
4409static bool ExtendUsesToFormExtLoad(SDNode *N, SDValue N0,
4410 unsigned ExtOpc,
4411 SmallVectorImpl<SDNode *> &ExtendNodes,
4412 const TargetLowering &TLI) {
4413 bool HasCopyToRegUses = false;
4414 bool isTruncFree = TLI.isTruncateFree(N->getValueType(0), N0.getValueType());
4415 for (SDNode::use_iterator UI = N0.getNode()->use_begin(),
4416 UE = N0.getNode()->use_end();
4417 UI != UE; ++UI) {
4418 SDNode *User = *UI;
4419 if (User == N)
4420 continue;
4421 if (UI.getUse().getResNo() != N0.getResNo())
4422 continue;
4423 // FIXME: Only extend SETCC N, N and SETCC N, c for now.
4424 if (ExtOpc != ISD::ANY_EXTEND && User->getOpcode() == ISD::SETCC) {
4425 ISD::CondCode CC = cast<CondCodeSDNode>(User->getOperand(2))->get();
4426 if (ExtOpc == ISD::ZERO_EXTEND && ISD::isSignedIntSetCC(CC))
4427 // Sign bits will be lost after a zext.
4428 return false;
4429 bool Add = false;
4430 for (unsigned i = 0; i != 2; ++i) {
4431 SDValue UseOp = User->getOperand(i);
4432 if (UseOp == N0)
4433 continue;
4434 if (!isa<ConstantSDNode>(UseOp))
4435 return false;
4436 Add = true;
4437 }
4438 if (Add)
4439 ExtendNodes.push_back(User);
4440 continue;
4441 }
4442 // If truncates aren't free and there are users we can't
4443 // extend, it isn't worthwhile.
4444 if (!isTruncFree)
4445 return false;
4446 // Remember if this value is live-out.
4447 if (User->getOpcode() == ISD::CopyToReg)
4448 HasCopyToRegUses = true;
4449 }
4450
4451 if (HasCopyToRegUses) {
4452 bool BothLiveOut = false;
4453 for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
4454 UI != UE; ++UI) {
4455 SDUse &Use = UI.getUse();
4456 if (Use.getResNo() == 0 && Use.getUser()->getOpcode() == ISD::CopyToReg) {
4457 BothLiveOut = true;
4458 break;
4459 }
4460 }
4461 if (BothLiveOut)
4462 // Both unextended and extended values are live out. There had better be
4463 // a good reason for the transformation.
4464 return ExtendNodes.size();
4465 }
4466 return true;
4467}
4468
4469void DAGCombiner::ExtendSetCCUses(const SmallVectorImpl<SDNode *> &SetCCs,
4470 SDValue Trunc, SDValue ExtLoad, SDLoc DL,
4471 ISD::NodeType ExtType) {
4472 // Extend SetCC uses if necessary.
4473 for (unsigned i = 0, e = SetCCs.size(); i != e; ++i) {
4474 SDNode *SetCC = SetCCs[i];
4475 SmallVector<SDValue, 4> Ops;
4476
4477 for (unsigned j = 0; j != 2; ++j) {
4478 SDValue SOp = SetCC->getOperand(j);
4479 if (SOp == Trunc)
4480 Ops.push_back(ExtLoad);
4481 else
4482 Ops.push_back(DAG.getNode(ExtType, DL, ExtLoad->getValueType(0), SOp));
4483 }
4484
4485 Ops.push_back(SetCC->getOperand(2));
4486 CombineTo(SetCC, DAG.getNode(ISD::SETCC, DL, SetCC->getValueType(0),
4487 &Ops[0], Ops.size()));
4488 }
4489}
4490
4491SDValue DAGCombiner::visitSIGN_EXTEND(SDNode *N) {
4492 SDValue N0 = N->getOperand(0);
4493 EVT VT = N->getValueType(0);
4494
4495 // fold (sext c1) -> c1
4496 if (isa<ConstantSDNode>(N0))
4497 return DAG.getNode(ISD::SIGN_EXTEND, SDLoc(N), VT, N0);
4498
4499 // fold (sext (sext x)) -> (sext x)
4500 // fold (sext (aext x)) -> (sext x)
4501 if (N0.getOpcode() == ISD::SIGN_EXTEND || N0.getOpcode() == ISD::ANY_EXTEND)
4502 return DAG.getNode(ISD::SIGN_EXTEND, SDLoc(N), VT,
4503 N0.getOperand(0));
4504
4505 if (N0.getOpcode() == ISD::TRUNCATE) {
4506 // fold (sext (truncate (load x))) -> (sext (smaller load x))
4507 // fold (sext (truncate (srl (load x), c))) -> (sext (smaller load (x+c/n)))
4508 SDValue NarrowLoad = ReduceLoadWidth(N0.getNode());
4509 if (NarrowLoad.getNode()) {
4510 SDNode* oye = N0.getNode()->getOperand(0).getNode();
4511 if (NarrowLoad.getNode() != N0.getNode()) {
4512 CombineTo(N0.getNode(), NarrowLoad);
4513 // CombineTo deleted the truncate, if needed, but not what's under it.
4514 AddToWorkList(oye);
4515 }
4516 return SDValue(N, 0); // Return N so it doesn't get rechecked!
4517 }
4518
4519 // See if the value being truncated is already sign extended. If so, just
4520 // eliminate the trunc/sext pair.
4521 SDValue Op = N0.getOperand(0);
4522 unsigned OpBits = Op.getValueType().getScalarType().getSizeInBits();
4523 unsigned MidBits = N0.getValueType().getScalarType().getSizeInBits();
4524 unsigned DestBits = VT.getScalarType().getSizeInBits();
4525 unsigned NumSignBits = DAG.ComputeNumSignBits(Op);
4526
4527 if (OpBits == DestBits) {
4528 // Op is i32, Mid is i8, and Dest is i32. If Op has more than 24 sign
4529 // bits, it is already ready.
4530 if (NumSignBits > DestBits-MidBits)
4531 return Op;
4532 } else if (OpBits < DestBits) {
4533 // Op is i32, Mid is i8, and Dest is i64. If Op has more than 24 sign
4534 // bits, just sext from i32.
4535 if (NumSignBits > OpBits-MidBits)
4536 return DAG.getNode(ISD::SIGN_EXTEND, SDLoc(N), VT, Op);
4537 } else {
4538 // Op is i64, Mid is i8, and Dest is i32. If Op has more than 56 sign
4539 // bits, just truncate to i32.
4540 if (NumSignBits > OpBits-MidBits)
4541 return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, Op);
4542 }
4543
4544 // fold (sext (truncate x)) -> (sextinreg x).
4545 if (!LegalOperations || TLI.isOperationLegal(ISD::SIGN_EXTEND_INREG,
4546 N0.getValueType())) {
4547 if (OpBits < DestBits)
4548 Op = DAG.getNode(ISD::ANY_EXTEND, SDLoc(N0), VT, Op);
4549 else if (OpBits > DestBits)
4550 Op = DAG.getNode(ISD::TRUNCATE, SDLoc(N0), VT, Op);
4551 return DAG.getNode(ISD::SIGN_EXTEND_INREG, SDLoc(N), VT, Op,
4552 DAG.getValueType(N0.getValueType()));
4553 }
4554 }
4555
4556 // fold (sext (load x)) -> (sext (truncate (sextload x)))
4557 // None of the supported targets knows how to perform load and sign extend
4558 // on vectors in one instruction. We only perform this transformation on
4559 // scalars.
4560 if (ISD::isNON_EXTLoad(N0.getNode()) && !VT.isVector() &&
4561 ((!LegalOperations && !cast<LoadSDNode>(N0)->isVolatile()) ||
4562 TLI.isLoadExtLegal(ISD::SEXTLOAD, N0.getValueType()))) {
4563 bool DoXform = true;
4564 SmallVector<SDNode*, 4> SetCCs;
4565 if (!N0.hasOneUse())
4566 DoXform = ExtendUsesToFormExtLoad(N, N0, ISD::SIGN_EXTEND, SetCCs, TLI);
4567 if (DoXform) {
4568 LoadSDNode *LN0 = cast<LoadSDNode>(N0);
4569 SDValue ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, SDLoc(N), VT,
4570 LN0->getChain(),
4571 LN0->getBasePtr(), N0.getValueType(),
4572 LN0->getMemOperand());
4573 CombineTo(N, ExtLoad);
4574 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SDLoc(N0),
4575 N0.getValueType(), ExtLoad);
4576 CombineTo(N0.getNode(), Trunc, ExtLoad.getValue(1));
4577 ExtendSetCCUses(SetCCs, Trunc, ExtLoad, SDLoc(N),
4578 ISD::SIGN_EXTEND);
4579 return SDValue(N, 0); // Return N so it doesn't get rechecked!
4580 }
4581 }
4582
4583 // fold (sext (sextload x)) -> (sext (truncate (sextload x)))
4584 // fold (sext ( extload x)) -> (sext (truncate (sextload x)))
4585 if ((ISD::isSEXTLoad(N0.getNode()) || ISD::isEXTLoad(N0.getNode())) &&
4586 ISD::isUNINDEXEDLoad(N0.getNode()) && N0.hasOneUse()) {
4587 LoadSDNode *LN0 = cast<LoadSDNode>(N0);
4588 EVT MemVT = LN0->getMemoryVT();
4589 if ((!LegalOperations && !LN0->isVolatile()) ||
4590 TLI.isLoadExtLegal(ISD::SEXTLOAD, MemVT)) {
4591 SDValue ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, SDLoc(N), VT,
4592 LN0->getChain(),
4593 LN0->getBasePtr(), MemVT,
4594 LN0->getMemOperand());
4595 CombineTo(N, ExtLoad);
4596 CombineTo(N0.getNode(),
4597 DAG.getNode(ISD::TRUNCATE, SDLoc(N0),
4598 N0.getValueType(), ExtLoad),
4599 ExtLoad.getValue(1));
4600 return SDValue(N, 0); // Return N so it doesn't get rechecked!
4601 }
4602 }
4603
4604 // fold (sext (and/or/xor (load x), cst)) ->
4605 // (and/or/xor (sextload x), (sext cst))
4606 if ((N0.getOpcode() == ISD::AND || N0.getOpcode() == ISD::OR ||
4607 N0.getOpcode() == ISD::XOR) &&
4608 isa<LoadSDNode>(N0.getOperand(0)) &&
4609 N0.getOperand(1).getOpcode() == ISD::Constant &&
4610 TLI.isLoadExtLegal(ISD::SEXTLOAD, N0.getValueType()) &&
4611 (!LegalOperations && TLI.isOperationLegal(N0.getOpcode(), VT))) {
4612 LoadSDNode *LN0 = cast<LoadSDNode>(N0.getOperand(0));
4613 if (LN0->getExtensionType() != ISD::ZEXTLOAD) {
4614 bool DoXform = true;
4615 SmallVector<SDNode*, 4> SetCCs;
4616 if (!N0.hasOneUse())
4617 DoXform = ExtendUsesToFormExtLoad(N, N0.getOperand(0), ISD::SIGN_EXTEND,
4618 SetCCs, TLI);
4619 if (DoXform) {
4620 SDValue ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, SDLoc(LN0), VT,
4621 LN0->getChain(), LN0->getBasePtr(),
4622 LN0->getMemoryVT(),
4623 LN0->getMemOperand());
4624 APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
4625 Mask = Mask.sext(VT.getSizeInBits());
4626 SDValue And = DAG.getNode(N0.getOpcode(), SDLoc(N), VT,
4627 ExtLoad, DAG.getConstant(Mask, VT));
4628 SDValue Trunc = DAG.getNode(ISD::TRUNCATE,
4629 SDLoc(N0.getOperand(0)),
4630 N0.getOperand(0).getValueType(), ExtLoad);
4631 CombineTo(N, And);
4632 CombineTo(N0.getOperand(0).getNode(), Trunc, ExtLoad.getValue(1));
4633 ExtendSetCCUses(SetCCs, Trunc, ExtLoad, SDLoc(N),
4634 ISD::SIGN_EXTEND);
4635 return SDValue(N, 0); // Return N so it doesn't get rechecked!
4636 }
4637 }
4638 }
4639
4640 if (N0.getOpcode() == ISD::SETCC) {
4641 // sext(setcc) -> sext_in_reg(vsetcc) for vectors.
4642 // Only do this before legalize for now.
4643 if (VT.isVector() && !LegalOperations &&
4644 TLI.getBooleanContents(true) ==
4645 TargetLowering::ZeroOrNegativeOneBooleanContent) {
4646 EVT N0VT = N0.getOperand(0).getValueType();
4647 // On some architectures (such as SSE/NEON/etc) the SETCC result type is
4648 // of the same size as the compared operands. Only optimize sext(setcc())
4649 // if this is the case.
4650 EVT SVT = getSetCCResultType(N0VT);
4651
4652 // We know that the # elements of the results is the same as the
4653 // # elements of the compare (and the # elements of the compare result
4654 // for that matter). Check to see that they are the same size. If so,
4655 // we know that the element size of the sext'd result matches the
4656 // element size of the compare operands.
4657 if (VT.getSizeInBits() == SVT.getSizeInBits())
4658 return DAG.getSetCC(SDLoc(N), VT, N0.getOperand(0),
4659 N0.getOperand(1),
4660 cast<CondCodeSDNode>(N0.getOperand(2))->get());
4661
4662 // If the desired elements are smaller or larger than the source
4663 // elements we can use a matching integer vector type and then
4664 // truncate/sign extend
4665 EVT MatchingVectorType = N0VT.changeVectorElementTypeToInteger();
4666 if (SVT == MatchingVectorType) {
4667 SDValue VsetCC = DAG.getSetCC(SDLoc(N), MatchingVectorType,
4668 N0.getOperand(0), N0.getOperand(1),
4669 cast<CondCodeSDNode>(N0.getOperand(2))->get());
4670 return DAG.getSExtOrTrunc(VsetCC, SDLoc(N), VT);
4671 }
4672 }
4673
4674 // sext(setcc x, y, cc) -> (select_cc x, y, -1, 0, cc)
4675 unsigned ElementWidth = VT.getScalarType().getSizeInBits();
4676 SDValue NegOne =
4677 DAG.getConstant(APInt::getAllOnesValue(ElementWidth), VT);
4678 SDValue SCC =
4679 SimplifySelectCC(SDLoc(N), N0.getOperand(0), N0.getOperand(1),
4680 NegOne, DAG.getConstant(0, VT),
4681 cast<CondCodeSDNode>(N0.getOperand(2))->get(), true);
4682 if (SCC.getNode()) return SCC;
4683 if (!VT.isVector() &&
4684 (!LegalOperations ||
4685 TLI.isOperationLegal(ISD::SETCC, getSetCCResultType(VT)))) {
4686 return DAG.getSelect(SDLoc(N), VT,
4687 DAG.getSetCC(SDLoc(N),
4688 getSetCCResultType(VT),
4689 N0.getOperand(0), N0.getOperand(1),
4690 cast<CondCodeSDNode>(N0.getOperand(2))->get()),
4691 NegOne, DAG.getConstant(0, VT));
4692 }
4693 }
4694
4695 // fold (sext x) -> (zext x) if the sign bit is known zero.
4696 if ((!LegalOperations || TLI.isOperationLegal(ISD::ZERO_EXTEND, VT)) &&
4697 DAG.SignBitIsZero(N0))
4698 return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N), VT, N0);
4699
4700 return SDValue();
4701}
4702
4703// isTruncateOf - If N is a truncate of some other value, return true, record
4704// the value being truncated in Op and which of Op's bits are zero in KnownZero.
4705// This function computes KnownZero to avoid a duplicated call to
4706// ComputeMaskedBits in the caller.
4707static bool isTruncateOf(SelectionDAG &DAG, SDValue N, SDValue &Op,
4708 APInt &KnownZero) {
4709 APInt KnownOne;
4710 if (N->getOpcode() == ISD::TRUNCATE) {
4711 Op = N->getOperand(0);
4712 DAG.ComputeMaskedBits(Op, KnownZero, KnownOne);
4713 return true;
4714 }
4715
4716 if (N->getOpcode() != ISD::SETCC || N->getValueType(0) != MVT::i1 ||
4717 cast<CondCodeSDNode>(N->getOperand(2))->get() != ISD::SETNE)
4718 return false;
4719
4720 SDValue Op0 = N->getOperand(0);
4721 SDValue Op1 = N->getOperand(1);
4722 assert(Op0.getValueType() == Op1.getValueType());
4723
4724 ConstantSDNode *COp0 = dyn_cast<ConstantSDNode>(Op0);
4725 ConstantSDNode *COp1 = dyn_cast<ConstantSDNode>(Op1);
4726 if (COp0 && COp0->isNullValue())
4727 Op = Op1;
4728 else if (COp1 && COp1->isNullValue())
4729 Op = Op0;
4730 else
4731 return false;
4732
4733 DAG.ComputeMaskedBits(Op, KnownZero, KnownOne);
4734
4735 if (!(KnownZero | APInt(Op.getValueSizeInBits(), 1)).isAllOnesValue())
4736 return false;
4737
4738 return true;
4739}
4740
4741SDValue DAGCombiner::visitZERO_EXTEND(SDNode *N) {
4742 SDValue N0 = N->getOperand(0);
4743 EVT VT = N->getValueType(0);
4744
4745 // fold (zext c1) -> c1
4746 if (isa<ConstantSDNode>(N0))
4747 return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N), VT, N0);
4748 // fold (zext (zext x)) -> (zext x)
4749 // fold (zext (aext x)) -> (zext x)
4750 if (N0.getOpcode() == ISD::ZERO_EXTEND || N0.getOpcode() == ISD::ANY_EXTEND)
4751 return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N), VT,
4752 N0.getOperand(0));
4753
4754 // fold (zext (truncate x)) -> (zext x) or
4755 // (zext (truncate x)) -> (truncate x)
4756 // This is valid when the truncated bits of x are already zero.
4757 // FIXME: We should extend this to work for vectors too.
4758 SDValue Op;
4759 APInt KnownZero;
4760 if (!VT.isVector() && isTruncateOf(DAG, N0, Op, KnownZero)) {
4761 APInt TruncatedBits =
4762 (Op.getValueSizeInBits() == N0.getValueSizeInBits()) ?
4763 APInt(Op.getValueSizeInBits(), 0) :
4764 APInt::getBitsSet(Op.getValueSizeInBits(),
4765 N0.getValueSizeInBits(),
4766 std::min(Op.getValueSizeInBits(),
4767 VT.getSizeInBits()));
4768 if (TruncatedBits == (KnownZero & TruncatedBits)) {
4769 if (VT.bitsGT(Op.getValueType()))
4770 return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N), VT, Op);
4771 if (VT.bitsLT(Op.getValueType()))
4772 return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, Op);
4773
4774 return Op;
4775 }
4776 }
4777
4778 // fold (zext (truncate (load x))) -> (zext (smaller load x))
4779 // fold (zext (truncate (srl (load x), c))) -> (zext (small load (x+c/n)))
4780 if (N0.getOpcode() == ISD::TRUNCATE) {
4781 SDValue NarrowLoad = ReduceLoadWidth(N0.getNode());
4782 if (NarrowLoad.getNode()) {
4783 SDNode* oye = N0.getNode()->getOperand(0).getNode();
4784 if (NarrowLoad.getNode() != N0.getNode()) {
4785 CombineTo(N0.getNode(), NarrowLoad);
4786 // CombineTo deleted the truncate, if needed, but not what's under it.
4787 AddToWorkList(oye);
4788 }
4789 return SDValue(N, 0); // Return N so it doesn't get rechecked!
4790 }
4791 }
4792
4793 // fold (zext (truncate x)) -> (and x, mask)
4794 if (N0.getOpcode() == ISD::TRUNCATE &&
4795 (!LegalOperations || TLI.isOperationLegal(ISD::AND, VT))) {
4796
4797 // fold (zext (truncate (load x))) -> (zext (smaller load x))
4798 // fold (zext (truncate (srl (load x), c))) -> (zext (smaller load (x+c/n)))
4799 SDValue NarrowLoad = ReduceLoadWidth(N0.getNode());
4800 if (NarrowLoad.getNode()) {
4801 SDNode* oye = N0.getNode()->getOperand(0).getNode();
4802 if (NarrowLoad.getNode() != N0.getNode()) {
4803 CombineTo(N0.getNode(), NarrowLoad);
4804 // CombineTo deleted the truncate, if needed, but not what's under it.
4805 AddToWorkList(oye);
4806 }
4807 return SDValue(N, 0); // Return N so it doesn't get rechecked!
4808 }
4809
4810 SDValue Op = N0.getOperand(0);
4811 if (Op.getValueType().bitsLT(VT)) {
4812 Op = DAG.getNode(ISD::ANY_EXTEND, SDLoc(N), VT, Op);
4813 AddToWorkList(Op.getNode());
4814 } else if (Op.getValueType().bitsGT(VT)) {
4815 Op = DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, Op);
4816 AddToWorkList(Op.getNode());
4817 }
4818 return DAG.getZeroExtendInReg(Op, SDLoc(N),
4819 N0.getValueType().getScalarType());
4820 }
4821
4822 // Fold (zext (and (trunc x), cst)) -> (and x, cst),
4823 // if either of the casts is not free.
4824 if (N0.getOpcode() == ISD::AND &&
4825 N0.getOperand(0).getOpcode() == ISD::TRUNCATE &&
4826 N0.getOperand(1).getOpcode() == ISD::Constant &&
4827 (!TLI.isTruncateFree(N0.getOperand(0).getOperand(0).getValueType(),
4828 N0.getValueType()) ||
4829 !TLI.isZExtFree(N0.getValueType(), VT))) {
4830 SDValue X = N0.getOperand(0).getOperand(0);
4831 if (X.getValueType().bitsLT(VT)) {
4832 X = DAG.getNode(ISD::ANY_EXTEND, SDLoc(X), VT, X);
4833 } else if (X.getValueType().bitsGT(VT)) {
4834 X = DAG.getNode(ISD::TRUNCATE, SDLoc(X), VT, X);
4835 }
4836 APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
4837 Mask = Mask.zext(VT.getSizeInBits());
4838 return DAG.getNode(ISD::AND, SDLoc(N), VT,
4839 X, DAG.getConstant(Mask, VT));
4840 }
4841
4842 // fold (zext (load x)) -> (zext (truncate (zextload x)))
4843 // None of the supported targets knows how to perform load and vector_zext
4844 // on vectors in one instruction. We only perform this transformation on
4845 // scalars.
4846 if (ISD::isNON_EXTLoad(N0.getNode()) && !VT.isVector() &&
4847 ((!LegalOperations && !cast<LoadSDNode>(N0)->isVolatile()) ||
4848 TLI.isLoadExtLegal(ISD::ZEXTLOAD, N0.getValueType()))) {
4849 bool DoXform = true;
4850 SmallVector<SDNode*, 4> SetCCs;
4851 if (!N0.hasOneUse())
4852 DoXform = ExtendUsesToFormExtLoad(N, N0, ISD::ZERO_EXTEND, SetCCs, TLI);
4853 if (DoXform) {
4854 LoadSDNode *LN0 = cast<LoadSDNode>(N0);
4855 SDValue ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, SDLoc(N), VT,
4856 LN0->getChain(),
4857 LN0->getBasePtr(), N0.getValueType(),
4858 LN0->getMemOperand());
4859 CombineTo(N, ExtLoad);
4860 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SDLoc(N0),
4861 N0.getValueType(), ExtLoad);
4862 CombineTo(N0.getNode(), Trunc, ExtLoad.getValue(1));
4863
4864 ExtendSetCCUses(SetCCs, Trunc, ExtLoad, SDLoc(N),
4865 ISD::ZERO_EXTEND);
4866 return SDValue(N, 0); // Return N so it doesn't get rechecked!
4867 }
4868 }
4869
4870 // fold (zext (and/or/xor (load x), cst)) ->
4871 // (and/or/xor (zextload x), (zext cst))
4872 if ((N0.getOpcode() == ISD::AND || N0.getOpcode() == ISD::OR ||
4873 N0.getOpcode() == ISD::XOR) &&
4874 isa<LoadSDNode>(N0.getOperand(0)) &&
4875 N0.getOperand(1).getOpcode() == ISD::Constant &&
4876 TLI.isLoadExtLegal(ISD::ZEXTLOAD, N0.getValueType()) &&
4877 (!LegalOperations && TLI.isOperationLegal(N0.getOpcode(), VT))) {
4878 LoadSDNode *LN0 = cast<LoadSDNode>(N0.getOperand(0));
4879 if (LN0->getExtensionType() != ISD::SEXTLOAD) {
4880 bool DoXform = true;
4881 SmallVector<SDNode*, 4> SetCCs;
4882 if (!N0.hasOneUse())
4883 DoXform = ExtendUsesToFormExtLoad(N, N0.getOperand(0), ISD::ZERO_EXTEND,
4884 SetCCs, TLI);
4885 if (DoXform) {
4886 SDValue ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, SDLoc(LN0), VT,
4887 LN0->getChain(), LN0->getBasePtr(),
4888 LN0->getMemoryVT(),
4889 LN0->getMemOperand());
4890 APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
4891 Mask = Mask.zext(VT.getSizeInBits());
4892 SDValue And = DAG.getNode(N0.getOpcode(), SDLoc(N), VT,
4893 ExtLoad, DAG.getConstant(Mask, VT));
4894 SDValue Trunc = DAG.getNode(ISD::TRUNCATE,
4895 SDLoc(N0.getOperand(0)),
4896 N0.getOperand(0).getValueType(), ExtLoad);
4897 CombineTo(N, And);
4898 CombineTo(N0.getOperand(0).getNode(), Trunc, ExtLoad.getValue(1));
4899 ExtendSetCCUses(SetCCs, Trunc, ExtLoad, SDLoc(N),
4900 ISD::ZERO_EXTEND);
4901 return SDValue(N, 0); // Return N so it doesn't get rechecked!
4902 }
4903 }
4904 }
4905
4906 // fold (zext (zextload x)) -> (zext (truncate (zextload x)))
4907 // fold (zext ( extload x)) -> (zext (truncate (zextload x)))
4908 if ((ISD::isZEXTLoad(N0.getNode()) || ISD::isEXTLoad(N0.getNode())) &&
4909 ISD::isUNINDEXEDLoad(N0.getNode()) && N0.hasOneUse()) {
4910 LoadSDNode *LN0 = cast<LoadSDNode>(N0);
4911 EVT MemVT = LN0->getMemoryVT();
4912 if ((!LegalOperations && !LN0->isVolatile()) ||
4913 TLI.isLoadExtLegal(ISD::ZEXTLOAD, MemVT)) {
4914 SDValue ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, SDLoc(N), VT,
4915 LN0->getChain(),
4916 LN0->getBasePtr(), MemVT,
4917 LN0->getMemOperand());
4918 CombineTo(N, ExtLoad);
4919 CombineTo(N0.getNode(),
4920 DAG.getNode(ISD::TRUNCATE, SDLoc(N0), N0.getValueType(),
4921 ExtLoad),
4922 ExtLoad.getValue(1));
4923 return SDValue(N, 0); // Return N so it doesn't get rechecked!
4924 }
4925 }
4926
4927 if (N0.getOpcode() == ISD::SETCC) {
4928 if (!LegalOperations && VT.isVector()) {
4929 // zext(setcc) -> (and (vsetcc), (1, 1, ...) for vectors.
4930 // Only do this before legalize for now.
4931 EVT N0VT = N0.getOperand(0).getValueType();
4932 EVT EltVT = VT.getVectorElementType();
4933 SmallVector<SDValue,8> OneOps(VT.getVectorNumElements(),
4934 DAG.getConstant(1, EltVT));
4935 if (VT.getSizeInBits() == N0VT.getSizeInBits())
4936 // We know that the # elements of the results is the same as the
4937 // # elements of the compare (and the # elements of the compare result
4938 // for that matter). Check to see that they are the same size. If so,
4939 // we know that the element size of the sext'd result matches the
4940 // element size of the compare operands.
4941 return DAG.getNode(ISD::AND, SDLoc(N), VT,
4942 DAG.getSetCC(SDLoc(N), VT, N0.getOperand(0),
4943 N0.getOperand(1),
4944 cast<CondCodeSDNode>(N0.getOperand(2))->get()),
4945 DAG.getNode(ISD::BUILD_VECTOR, SDLoc(N), VT,
4946 &OneOps[0], OneOps.size()));
4947
4948 // If the desired elements are smaller or larger than the source
4949 // elements we can use a matching integer vector type and then
4950 // truncate/sign extend
4951 EVT MatchingElementType =
4952 EVT::getIntegerVT(*DAG.getContext(),
4953 N0VT.getScalarType().getSizeInBits());
4954 EVT MatchingVectorType =
4955 EVT::getVectorVT(*DAG.getContext(), MatchingElementType,
4956 N0VT.getVectorNumElements());
4957 SDValue VsetCC =
4958 DAG.getSetCC(SDLoc(N), MatchingVectorType, N0.getOperand(0),
4959 N0.getOperand(1),
4960 cast<CondCodeSDNode>(N0.getOperand(2))->get());
4961 return DAG.getNode(ISD::AND, SDLoc(N), VT,
4962 DAG.getSExtOrTrunc(VsetCC, SDLoc(N), VT),
4963 DAG.getNode(ISD::BUILD_VECTOR, SDLoc(N), VT,
4964 &OneOps[0], OneOps.size()));
4965 }
4966
4967 // zext(setcc x,y,cc) -> select_cc x, y, 1, 0, cc
4968 SDValue SCC =
4969 SimplifySelectCC(SDLoc(N), N0.getOperand(0), N0.getOperand(1),
4970 DAG.getConstant(1, VT), DAG.getConstant(0, VT),
4971 cast<CondCodeSDNode>(N0.getOperand(2))->get(), true);
4972 if (SCC.getNode()) return SCC;
4973 }
4974
4975 // (zext (shl (zext x), cst)) -> (shl (zext x), cst)
4976 if ((N0.getOpcode() == ISD::SHL || N0.getOpcode() == ISD::SRL) &&
4977 isa<ConstantSDNode>(N0.getOperand(1)) &&
4978 N0.getOperand(0).getOpcode() == ISD::ZERO_EXTEND &&
4979 N0.hasOneUse()) {
4980 SDValue ShAmt = N0.getOperand(1);
4981 unsigned ShAmtVal = cast<ConstantSDNode>(ShAmt)->getZExtValue();
4982 if (N0.getOpcode() == ISD::SHL) {
4983 SDValue InnerZExt = N0.getOperand(0);
4984 // If the original shl may be shifting out bits, do not perform this
4985 // transformation.
4986 unsigned KnownZeroBits = InnerZExt.getValueType().getSizeInBits() -
4987 InnerZExt.getOperand(0).getValueType().getSizeInBits();
4988 if (ShAmtVal > KnownZeroBits)
4989 return SDValue();
4990 }
4991
4992 SDLoc DL(N);
4993
4994 // Ensure that the shift amount is wide enough for the shifted value.
4995 if (VT.getSizeInBits() >= 256)
4996 ShAmt = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, ShAmt);
4997
4998 return DAG.getNode(N0.getOpcode(), DL, VT,
4999 DAG.getNode(ISD::ZERO_EXTEND, DL, VT, N0.getOperand(0)),
5000 ShAmt);
5001 }
5002
5003 return SDValue();
5004}
5005
5006SDValue DAGCombiner::visitANY_EXTEND(SDNode *N) {
5007 SDValue N0 = N->getOperand(0);
5008 EVT VT = N->getValueType(0);
5009
5010 // fold (aext c1) -> c1
5011 if (isa<ConstantSDNode>(N0))
5012 return DAG.getNode(ISD::ANY_EXTEND, SDLoc(N), VT, N0);
5013 // fold (aext (aext x)) -> (aext x)
5014 // fold (aext (zext x)) -> (zext x)
5015 // fold (aext (sext x)) -> (sext x)
5016 if (N0.getOpcode() == ISD::ANY_EXTEND ||
5017 N0.getOpcode() == ISD::ZERO_EXTEND ||
5018 N0.getOpcode() == ISD::SIGN_EXTEND)
5019 return DAG.getNode(N0.getOpcode(), SDLoc(N), VT, N0.getOperand(0));
5020
5021 // fold (aext (truncate (load x))) -> (aext (smaller load x))
5022 // fold (aext (truncate (srl (load x), c))) -> (aext (small load (x+c/n)))
5023 if (N0.getOpcode() == ISD::TRUNCATE) {
5024 SDValue NarrowLoad = ReduceLoadWidth(N0.getNode());
5025 if (NarrowLoad.getNode()) {
5026 SDNode* oye = N0.getNode()->getOperand(0).getNode();
5027 if (NarrowLoad.getNode() != N0.getNode()) {
5028 CombineTo(N0.getNode(), NarrowLoad);
5029 // CombineTo deleted the truncate, if needed, but not what's under it.
5030 AddToWorkList(oye);
5031 }
5032 return SDValue(N, 0); // Return N so it doesn't get rechecked!
5033 }
5034 }
5035
5036 // fold (aext (truncate x))
5037 if (N0.getOpcode() == ISD::TRUNCATE) {
5038 SDValue TruncOp = N0.getOperand(0);
5039 if (TruncOp.getValueType() == VT)
5040 return TruncOp; // x iff x size == zext size.
5041 if (TruncOp.getValueType().bitsGT(VT))
5042 return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, TruncOp);
5043 return DAG.getNode(ISD::ANY_EXTEND, SDLoc(N), VT, TruncOp);
5044 }
5045
5046 // Fold (aext (and (trunc x), cst)) -> (and x, cst)
5047 // if the trunc is not free.
5048 if (N0.getOpcode() == ISD::AND &&
5049 N0.getOperand(0).getOpcode() == ISD::TRUNCATE &&
5050 N0.getOperand(1).getOpcode() == ISD::Constant &&
5051 !TLI.isTruncateFree(N0.getOperand(0).getOperand(0).getValueType(),
5052 N0.getValueType())) {
5053 SDValue X = N0.getOperand(0).getOperand(0);
5054 if (X.getValueType().bitsLT(VT)) {
5055 X = DAG.getNode(ISD::ANY_EXTEND, SDLoc(N), VT, X);
5056 } else if (X.getValueType().bitsGT(VT)) {
5057 X = DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, X);
5058 }
5059 APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
5060 Mask = Mask.zext(VT.getSizeInBits());
5061 return DAG.getNode(ISD::AND, SDLoc(N), VT,
5062 X, DAG.getConstant(Mask, VT));
5063 }
5064
5065 // fold (aext (load x)) -> (aext (truncate (extload x)))
5066 // None of the supported targets knows how to perform load and any_ext
5067 // on vectors in one instruction. We only perform this transformation on
5068 // scalars.
5069 if (ISD::isNON_EXTLoad(N0.getNode()) && !VT.isVector() &&
5070 ((!LegalOperations && !cast<LoadSDNode>(N0)->isVolatile()) ||
5071 TLI.isLoadExtLegal(ISD::EXTLOAD, N0.getValueType()))) {
5072 bool DoXform = true;
5073 SmallVector<SDNode*, 4> SetCCs;
5074 if (!N0.hasOneUse())
5075 DoXform = ExtendUsesToFormExtLoad(N, N0, ISD::ANY_EXTEND, SetCCs, TLI);
5076 if (DoXform) {
5077 LoadSDNode *LN0 = cast<LoadSDNode>(N0);
5078 SDValue ExtLoad = DAG.getExtLoad(ISD::EXTLOAD, SDLoc(N), VT,
5079 LN0->getChain(),
5080 LN0->getBasePtr(), N0.getValueType(),
5081 LN0->getMemOperand());
5082 CombineTo(N, ExtLoad);
5083 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SDLoc(N0),
5084 N0.getValueType(), ExtLoad);
5085 CombineTo(N0.getNode(), Trunc, ExtLoad.getValue(1));
5086 ExtendSetCCUses(SetCCs, Trunc, ExtLoad, SDLoc(N),
5087 ISD::ANY_EXTEND);
5088 return SDValue(N, 0); // Return N so it doesn't get rechecked!
5089 }
5090 }
5091
5092 // fold (aext (zextload x)) -> (aext (truncate (zextload x)))
5093 // fold (aext (sextload x)) -> (aext (truncate (sextload x)))
5094 // fold (aext ( extload x)) -> (aext (truncate (extload x)))
5095 if (N0.getOpcode() == ISD::LOAD &&
5096 !ISD::isNON_EXTLoad(N0.getNode()) && ISD::isUNINDEXEDLoad(N0.getNode()) &&
5097 N0.hasOneUse()) {
5098 LoadSDNode *LN0 = cast<LoadSDNode>(N0);
5099 EVT MemVT = LN0->getMemoryVT();
5100 SDValue ExtLoad = DAG.getExtLoad(LN0->getExtensionType(), SDLoc(N),
5101 VT, LN0->getChain(), LN0->getBasePtr(),
5102 MemVT, LN0->getMemOperand());
5103 CombineTo(N, ExtLoad);
5104 CombineTo(N0.getNode(),
5105 DAG.getNode(ISD::TRUNCATE, SDLoc(N0),
5106 N0.getValueType(), ExtLoad),
5107 ExtLoad.getValue(1));
5108 return SDValue(N, 0); // Return N so it doesn't get rechecked!
5109 }
5110
5111 if (N0.getOpcode() == ISD::SETCC) {
5112 // aext(setcc) -> sext_in_reg(vsetcc) for vectors.
5113 // Only do this before legalize for now.
5114 if (VT.isVector() && !LegalOperations) {
5115 EVT N0VT = N0.getOperand(0).getValueType();
5116 // We know that the # elements of the results is the same as the
5117 // # elements of the compare (and the # elements of the compare result
5118 // for that matter). Check to see that they are the same size. If so,
5119 // we know that the element size of the sext'd result matches the
5120 // element size of the compare operands.
5121 if (VT.getSizeInBits() == N0VT.getSizeInBits())
5122 return DAG.getSetCC(SDLoc(N), VT, N0.getOperand(0),
5123 N0.getOperand(1),
5124 cast<CondCodeSDNode>(N0.getOperand(2))->get());
5125 // If the desired elements are smaller or larger than the source
5126 // elements we can use a matching integer vector type and then
5127 // truncate/sign extend
5128 else {
5129 EVT MatchingElementType =
5130 EVT::getIntegerVT(*DAG.getContext(),
5131 N0VT.getScalarType().getSizeInBits());
5132 EVT MatchingVectorType =
5133 EVT::getVectorVT(*DAG.getContext(), MatchingElementType,
5134 N0VT.getVectorNumElements());
5135 SDValue VsetCC =
5136 DAG.getSetCC(SDLoc(N), MatchingVectorType, N0.getOperand(0),
5137 N0.getOperand(1),
5138 cast<CondCodeSDNode>(N0.getOperand(2))->get());
5139 return DAG.getSExtOrTrunc(VsetCC, SDLoc(N), VT);
5140 }
5141 }
5142
5143 // aext(setcc x,y,cc) -> select_cc x, y, 1, 0, cc
5144 SDValue SCC =
5145 SimplifySelectCC(SDLoc(N), N0.getOperand(0), N0.getOperand(1),
5146 DAG.getConstant(1, VT), DAG.getConstant(0, VT),
5147 cast<CondCodeSDNode>(N0.getOperand(2))->get(), true);
5148 if (SCC.getNode())
5149 return SCC;
5150 }
5151
5152 return SDValue();
5153}
5154
5155/// GetDemandedBits - See if the specified operand can be simplified with the
5156/// knowledge that only the bits specified by Mask are used. If so, return the
5157/// simpler operand, otherwise return a null SDValue.
5158SDValue DAGCombiner::GetDemandedBits(SDValue V, const APInt &Mask) {
5159 switch (V.getOpcode()) {
5160 default: break;
5161 case ISD::Constant: {
5162 const ConstantSDNode *CV = cast<ConstantSDNode>(V.getNode());
5163 assert(CV != 0 && "Const value should be ConstSDNode.");
5164 const APInt &CVal = CV->getAPIntValue();
5165 APInt NewVal = CVal & Mask;
5166 if (NewVal != CVal)
5167 return DAG.getConstant(NewVal, V.getValueType());
5168 break;
5169 }
5170 case ISD::OR:
5171 case ISD::XOR:
5172 // If the LHS or RHS don't contribute bits to the or, drop them.
5173 if (DAG.MaskedValueIsZero(V.getOperand(0), Mask))
5174 return V.getOperand(1);
5175 if (DAG.MaskedValueIsZero(V.getOperand(1), Mask))
5176 return V.getOperand(0);
5177 break;
5178 case ISD::SRL:
5179 // Only look at single-use SRLs.
5180 if (!V.getNode()->hasOneUse())
5181 break;
5182 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(V.getOperand(1))) {
5183 // See if we can recursively simplify the LHS.
5184 unsigned Amt = RHSC->getZExtValue();
5185
5186 // Watch out for shift count overflow though.
5187 if (Amt >= Mask.getBitWidth()) break;
5188 APInt NewMask = Mask << Amt;
5189 SDValue SimplifyLHS = GetDemandedBits(V.getOperand(0), NewMask);
5190 if (SimplifyLHS.getNode())
5191 return DAG.getNode(ISD::SRL, SDLoc(V), V.getValueType(),
5192 SimplifyLHS, V.getOperand(1));
5193 }
5194 }
5195 return SDValue();
5196}
5197
5198/// ReduceLoadWidth - If the result of a wider load is shifted to right of N
5199/// bits and then truncated to a narrower type and where N is a multiple
5200/// of number of bits of the narrower type, transform it to a narrower load
5201/// from address + N / num of bits of new type. If the result is to be
5202/// extended, also fold the extension to form a extending load.
5203SDValue DAGCombiner::ReduceLoadWidth(SDNode *N) {
5204 unsigned Opc = N->getOpcode();
5205
5206 ISD::LoadExtType ExtType = ISD::NON_EXTLOAD;
5207 SDValue N0 = N->getOperand(0);
5208 EVT VT = N->getValueType(0);
5209 EVT ExtVT = VT;
5210
5211 // This transformation isn't valid for vector loads.
5212 if (VT.isVector())
5213 return SDValue();
5214
5215 // Special case: SIGN_EXTEND_INREG is basically truncating to ExtVT then
5216 // extended to VT.
5217 if (Opc == ISD::SIGN_EXTEND_INREG) {
5218 ExtType = ISD::SEXTLOAD;
5219 ExtVT = cast<VTSDNode>(N->getOperand(1))->getVT();
5220 } else if (Opc == ISD::SRL) {
5221 // Another special-case: SRL is basically zero-extending a narrower value.
5222 ExtType = ISD::ZEXTLOAD;
5223 N0 = SDValue(N, 0);
5224 ConstantSDNode *N01 = dyn_cast<ConstantSDNode>(N0.getOperand(1));
5225 if (!N01) return SDValue();
5226 ExtVT = EVT::getIntegerVT(*DAG.getContext(),
5227 VT.getSizeInBits() - N01->getZExtValue());
5228 }
5229 if (LegalOperations && !TLI.isLoadExtLegal(ExtType, ExtVT))
5230 return SDValue();
5231
5232 unsigned EVTBits = ExtVT.getSizeInBits();
5233
5234 // Do not generate loads of non-round integer types since these can
5235 // be expensive (and would be wrong if the type is not byte sized).
5236 if (!ExtVT.isRound())
5237 return SDValue();
5238
5239 unsigned ShAmt = 0;
5240 if (N0.getOpcode() == ISD::SRL && N0.hasOneUse()) {
5241 if (ConstantSDNode *N01 = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
5242 ShAmt = N01->getZExtValue();
5243 // Is the shift amount a multiple of size of VT?
5244 if ((ShAmt & (EVTBits-1)) == 0) {
5245 N0 = N0.getOperand(0);
5246 // Is the load width a multiple of size of VT?
5247 if ((N0.getValueType().getSizeInBits() & (EVTBits-1)) != 0)
5248 return SDValue();
5249 }
5250
5251 // At this point, we must have a load or else we can't do the transform.
5252 if (!isa<LoadSDNode>(N0)) return SDValue();
5253
5254 // Because a SRL must be assumed to *need* to zero-extend the high bits
5255 // (as opposed to anyext the high bits), we can't combine the zextload
5256 // lowering of SRL and an sextload.
5257 if (cast<LoadSDNode>(N0)->getExtensionType() == ISD::SEXTLOAD)
5258 return SDValue();
5259
5260 // If the shift amount is larger than the input type then we're not
5261 // accessing any of the loaded bytes. If the load was a zextload/extload
5262 // then the result of the shift+trunc is zero/undef (handled elsewhere).
5263 if (ShAmt >= cast<LoadSDNode>(N0)->getMemoryVT().getSizeInBits())
5264 return SDValue();
5265 }
5266 }
5267
5268 // If the load is shifted left (and the result isn't shifted back right),
5269 // we can fold the truncate through the shift.
5270 unsigned ShLeftAmt = 0;
5271 if (ShAmt == 0 && N0.getOpcode() == ISD::SHL && N0.hasOneUse() &&
5272 ExtVT == VT && TLI.isNarrowingProfitable(N0.getValueType(), VT)) {
5273 if (ConstantSDNode *N01 = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
5274 ShLeftAmt = N01->getZExtValue();
5275 N0 = N0.getOperand(0);
5276 }
5277 }
5278
5279 // If we haven't found a load, we can't narrow it. Don't transform one with
5280 // multiple uses, this would require adding a new load.
5281 if (!isa<LoadSDNode>(N0) || !N0.hasOneUse())
5282 return SDValue();
5283
5284 // Don't change the width of a volatile load.
5285 LoadSDNode *LN0 = cast<LoadSDNode>(N0);
5286 if (LN0->isVolatile())
5287 return SDValue();
5288
5289 // Verify that we are actually reducing a load width here.
5290 if (LN0->getMemoryVT().getSizeInBits() < EVTBits)
5291 return SDValue();
5292
5293 // For the transform to be legal, the load must produce only two values
5294 // (the value loaded and the chain). Don't transform a pre-increment
5295 // load, for example, which produces an extra value. Otherwise the
5296 // transformation is not equivalent, and the downstream logic to replace
5297 // uses gets things wrong.
5298 if (LN0->getNumValues() > 2)
5299 return SDValue();
5300
5301 // If the load that we're shrinking is an extload and we're not just
5302 // discarding the extension we can't simply shrink the load. Bail.
5303 // TODO: It would be possible to merge the extensions in some cases.
5304 if (LN0->getExtensionType() != ISD::NON_EXTLOAD &&
5305 LN0->getMemoryVT().getSizeInBits() < ExtVT.getSizeInBits() + ShAmt)
5306 return SDValue();
5307
5308 EVT PtrType = N0.getOperand(1).getValueType();
5309
5310 if (PtrType == MVT::Untyped || PtrType.isExtended())
5311 // It's not possible to generate a constant of extended or untyped type.
5312 return SDValue();
5313
5314 // For big endian targets, we need to adjust the offset to the pointer to
5315 // load the correct bytes.
5316 if (TLI.isBigEndian()) {
5317 unsigned LVTStoreBits = LN0->getMemoryVT().getStoreSizeInBits();
5318 unsigned EVTStoreBits = ExtVT.getStoreSizeInBits();
5319 ShAmt = LVTStoreBits - EVTStoreBits - ShAmt;
5320 }
5321
5322 uint64_t PtrOff = ShAmt / 8;
5323 unsigned NewAlign = MinAlign(LN0->getAlignment(), PtrOff);
5324 SDValue NewPtr = DAG.getNode(ISD::ADD, SDLoc(LN0),
5325 PtrType, LN0->getBasePtr(),
5326 DAG.getConstant(PtrOff, PtrType));
5327 AddToWorkList(NewPtr.getNode());
5328
5329 SDValue Load;
5330 if (ExtType == ISD::NON_EXTLOAD)
5331 Load = DAG.getLoad(VT, SDLoc(N0), LN0->getChain(), NewPtr,
5332 LN0->getPointerInfo().getWithOffset(PtrOff),
5333 LN0->isVolatile(), LN0->isNonTemporal(),
5334 LN0->isInvariant(), NewAlign, LN0->getTBAAInfo());
5335 else
5336 Load = DAG.getExtLoad(ExtType, SDLoc(N0), VT, LN0->getChain(),NewPtr,
5337 LN0->getPointerInfo().getWithOffset(PtrOff),
5338 ExtVT, LN0->isVolatile(), LN0->isNonTemporal(),
5339 NewAlign, LN0->getTBAAInfo());
5340
5341 // Replace the old load's chain with the new load's chain.
5342 WorkListRemover DeadNodes(*this);
5343 DAG.ReplaceAllUsesOfValueWith(N0.getValue(1), Load.getValue(1));
5344
5345 // Shift the result left, if we've swallowed a left shift.
5346 SDValue Result = Load;
5347 if (ShLeftAmt != 0) {
5348 EVT ShImmTy = getShiftAmountTy(Result.getValueType());
5349 if (!isUIntN(ShImmTy.getSizeInBits(), ShLeftAmt))
5350 ShImmTy = VT;
5351 // If the shift amount is as large as the result size (but, presumably,
5352 // no larger than the source) then the useful bits of the result are
5353 // zero; we can't simply return the shortened shift, because the result
5354 // of that operation is undefined.
5355 if (ShLeftAmt >= VT.getSizeInBits())
5356 Result = DAG.getConstant(0, VT);
5357 else
5358 Result = DAG.getNode(ISD::SHL, SDLoc(N0), VT,
5359 Result, DAG.getConstant(ShLeftAmt, ShImmTy));
5360 }
5361
5362 // Return the new loaded value.
5363 return Result;
5364}
5365
5366SDValue DAGCombiner::visitSIGN_EXTEND_INREG(SDNode *N) {
5367 SDValue N0 = N->getOperand(0);
5368 SDValue N1 = N->getOperand(1);
5369 EVT VT = N->getValueType(0);
5370 EVT EVT = cast<VTSDNode>(N1)->getVT();
5371 unsigned VTBits = VT.getScalarType().getSizeInBits();
5372 unsigned EVTBits = EVT.getScalarType().getSizeInBits();
5373
5374 // fold (sext_in_reg c1) -> c1
5375 if (isa<ConstantSDNode>(N0) || N0.getOpcode() == ISD::UNDEF)
5376 return DAG.getNode(ISD::SIGN_EXTEND_INREG, SDLoc(N), VT, N0, N1);
5377
5378 // If the input is already sign extended, just drop the extension.
5379 if (DAG.ComputeNumSignBits(N0) >= VTBits-EVTBits+1)
5380 return N0;
5381
5382 // fold (sext_in_reg (sext_in_reg x, VT2), VT1) -> (sext_in_reg x, minVT) pt2
5383 if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG &&
5384 EVT.bitsLT(cast<VTSDNode>(N0.getOperand(1))->getVT()))
5385 return DAG.getNode(ISD::SIGN_EXTEND_INREG, SDLoc(N), VT,
5386 N0.getOperand(0), N1);
5387
5388 // fold (sext_in_reg (sext x)) -> (sext x)
5389 // fold (sext_in_reg (aext x)) -> (sext x)
5390 // if x is small enough.
5391 if (N0.getOpcode() == ISD::SIGN_EXTEND || N0.getOpcode() == ISD::ANY_EXTEND) {
5392 SDValue N00 = N0.getOperand(0);
5393 if (N00.getValueType().getScalarType().getSizeInBits() <= EVTBits &&
5394 (!LegalOperations || TLI.isOperationLegal(ISD::SIGN_EXTEND, VT)))
5395 return DAG.getNode(ISD::SIGN_EXTEND, SDLoc(N), VT, N00, N1);
5396 }
5397
5398 // fold (sext_in_reg x) -> (zext_in_reg x) if the sign bit is known zero.
5399 if (DAG.MaskedValueIsZero(N0, APInt::getBitsSet(VTBits, EVTBits-1, EVTBits)))
5400 return DAG.getZeroExtendInReg(N0, SDLoc(N), EVT);
5401
5402 // fold operands of sext_in_reg based on knowledge that the top bits are not
5403 // demanded.
5404 if (SimplifyDemandedBits(SDValue(N, 0)))
5405 return SDValue(N, 0);
5406
5407 // fold (sext_in_reg (load x)) -> (smaller sextload x)
5408 // fold (sext_in_reg (srl (load x), c)) -> (smaller sextload (x+c/evtbits))
5409 SDValue NarrowLoad = ReduceLoadWidth(N);
5410 if (NarrowLoad.getNode())
5411 return NarrowLoad;
5412
5413 // fold (sext_in_reg (srl X, 24), i8) -> (sra X, 24)
5414 // fold (sext_in_reg (srl X, 23), i8) -> (sra X, 23) iff possible.
5415 // We already fold "(sext_in_reg (srl X, 25), i8) -> srl X, 25" above.
5416 if (N0.getOpcode() == ISD::SRL) {
5417 if (ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(N0.getOperand(1)))
5418 if (ShAmt->getZExtValue()+EVTBits <= VTBits) {
5419 // We can turn this into an SRA iff the input to the SRL is already sign
5420 // extended enough.
5421 unsigned InSignBits = DAG.ComputeNumSignBits(N0.getOperand(0));
5422 if (VTBits-(ShAmt->getZExtValue()+EVTBits) < InSignBits)
5423 return DAG.getNode(ISD::SRA, SDLoc(N), VT,
5424 N0.getOperand(0), N0.getOperand(1));
5425 }
5426 }
5427
5428 // fold (sext_inreg (extload x)) -> (sextload x)
5429 if (ISD::isEXTLoad(N0.getNode()) &&
5430 ISD::isUNINDEXEDLoad(N0.getNode()) &&
5431 EVT == cast<LoadSDNode>(N0)->getMemoryVT() &&
5432 ((!LegalOperations && !cast<LoadSDNode>(N0)->isVolatile()) ||
5433 TLI.isLoadExtLegal(ISD::SEXTLOAD, EVT))) {
5434 LoadSDNode *LN0 = cast<LoadSDNode>(N0);
5435 SDValue ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, SDLoc(N), VT,
5436 LN0->getChain(),
5437 LN0->getBasePtr(), EVT,
5438 LN0->getMemOperand());
5439 CombineTo(N, ExtLoad);
5440 CombineTo(N0.getNode(), ExtLoad, ExtLoad.getValue(1));
5441 AddToWorkList(ExtLoad.getNode());
5442 return SDValue(N, 0); // Return N so it doesn't get rechecked!
5443 }
5444 // fold (sext_inreg (zextload x)) -> (sextload x) iff load has one use
5445 if (ISD::isZEXTLoad(N0.getNode()) && ISD::isUNINDEXEDLoad(N0.getNode()) &&
5446 N0.hasOneUse() &&
5447 EVT == cast<LoadSDNode>(N0)->getMemoryVT() &&
5448 ((!LegalOperations && !cast<LoadSDNode>(N0)->isVolatile()) ||
5449 TLI.isLoadExtLegal(ISD::SEXTLOAD, EVT))) {
5450 LoadSDNode *LN0 = cast<LoadSDNode>(N0);
5451 SDValue ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, SDLoc(N), VT,
5452 LN0->getChain(),
5453 LN0->getBasePtr(), EVT,
5454 LN0->getMemOperand());
5455 CombineTo(N, ExtLoad);
5456 CombineTo(N0.getNode(), ExtLoad, ExtLoad.getValue(1));
5457 return SDValue(N, 0); // Return N so it doesn't get rechecked!
5458 }
5459
5460 // Form (sext_inreg (bswap >> 16)) or (sext_inreg (rotl (bswap) 16))
5461 if (EVTBits <= 16 && N0.getOpcode() == ISD::OR) {
5462 SDValue BSwap = MatchBSwapHWordLow(N0.getNode(), N0.getOperand(0),
5463 N0.getOperand(1), false);
5464 if (BSwap.getNode() != 0)
5465 return DAG.getNode(ISD::SIGN_EXTEND_INREG, SDLoc(N), VT,
5466 BSwap, N1);
5467 }
5468
5469 return SDValue();
5470}
5471
5472SDValue DAGCombiner::visitTRUNCATE(SDNode *N) {
5473 SDValue N0 = N->getOperand(0);
5474 EVT VT = N->getValueType(0);
5475 bool isLE = TLI.isLittleEndian();
5476
5477 // noop truncate
5478 if (N0.getValueType() == N->getValueType(0))
5479 return N0;
5480 // fold (truncate c1) -> c1
5481 if (isa<ConstantSDNode>(N0))
5482 return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, N0);
5483 // fold (truncate (truncate x)) -> (truncate x)
5484 if (N0.getOpcode() == ISD::TRUNCATE)
5485 return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, N0.getOperand(0));
5486 // fold (truncate (ext x)) -> (ext x) or (truncate x) or x
5487 if (N0.getOpcode() == ISD::ZERO_EXTEND ||
5488 N0.getOpcode() == ISD::SIGN_EXTEND ||
5489 N0.getOpcode() == ISD::ANY_EXTEND) {
5490 if (N0.getOperand(0).getValueType().bitsLT(VT))
5491 // if the source is smaller than the dest, we still need an extend
5492 return DAG.getNode(N0.getOpcode(), SDLoc(N), VT,
5493 N0.getOperand(0));
5494 if (N0.getOperand(0).getValueType().bitsGT(VT))
5495 // if the source is larger than the dest, than we just need the truncate
5496 return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, N0.getOperand(0));
5497 // if the source and dest are the same type, we can drop both the extend
5498 // and the truncate.
5499 return N0.getOperand(0);
5500 }
5501
5502 // Fold extract-and-trunc into a narrow extract. For example:
5503 // i64 x = EXTRACT_VECTOR_ELT(v2i64 val, i32 1)
5504 // i32 y = TRUNCATE(i64 x)
5505 // -- becomes --
5506 // v16i8 b = BITCAST (v2i64 val)
5507 // i8 x = EXTRACT_VECTOR_ELT(v16i8 b, i32 8)
5508 //
5509 // Note: We only run this optimization after type legalization (which often
5510 // creates this pattern) and before operation legalization after which
5511 // we need to be more careful about the vector instructions that we generate.
5512 if (N0.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
5513 LegalTypes && !LegalOperations && N0->hasOneUse()) {
5514
5515 EVT VecTy = N0.getOperand(0).getValueType();
5516 EVT ExTy = N0.getValueType();
5517 EVT TrTy = N->getValueType(0);
5518
5519 unsigned NumElem = VecTy.getVectorNumElements();
5520 unsigned SizeRatio = ExTy.getSizeInBits()/TrTy.getSizeInBits();
5521
5522 EVT NVT = EVT::getVectorVT(*DAG.getContext(), TrTy, SizeRatio * NumElem);
5523 assert(NVT.getSizeInBits() == VecTy.getSizeInBits() && "Invalid Size");
5524
5525 SDValue EltNo = N0->getOperand(1);
5526 if (isa<ConstantSDNode>(EltNo) && isTypeLegal(NVT)) {
5527 int Elt = cast<ConstantSDNode>(EltNo)->getZExtValue();
5528 EVT IndexTy = TLI.getVectorIdxTy();
5529 int Index = isLE ? (Elt*SizeRatio) : (Elt*SizeRatio + (SizeRatio-1));
5530
5531 SDValue V = DAG.getNode(ISD::BITCAST, SDLoc(N),
5532 NVT, N0.getOperand(0));
5533
5534 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT,
5535 SDLoc(N), TrTy, V,
5536 DAG.getConstant(Index, IndexTy));
5537 }
5538 }
5539
5540 // Fold a series of buildvector, bitcast, and truncate if possible.
5541 // For example fold
5542 // (2xi32 trunc (bitcast ((4xi32)buildvector x, x, y, y) 2xi64)) to
5543 // (2xi32 (buildvector x, y)).
5544 if (Level == AfterLegalizeVectorOps && VT.isVector() &&
5545 N0.getOpcode() == ISD::BITCAST && N0.hasOneUse() &&
5546 N0.getOperand(0).getOpcode() == ISD::BUILD_VECTOR &&
5547 N0.getOperand(0).hasOneUse()) {
5548
5549 SDValue BuildVect = N0.getOperand(0);
5550 EVT BuildVectEltTy = BuildVect.getValueType().getVectorElementType();
5551 EVT TruncVecEltTy = VT.getVectorElementType();
5552
5553 // Check that the element types match.
5554 if (BuildVectEltTy == TruncVecEltTy) {
5555 // Now we only need to compute the offset of the truncated elements.
5556 unsigned BuildVecNumElts = BuildVect.getNumOperands();
5557 unsigned TruncVecNumElts = VT.getVectorNumElements();
5558 unsigned TruncEltOffset = BuildVecNumElts / TruncVecNumElts;
5559
5560 assert((BuildVecNumElts % TruncVecNumElts) == 0 &&
5561 "Invalid number of elements");
5562
5563 SmallVector<SDValue, 8> Opnds;
5564 for (unsigned i = 0, e = BuildVecNumElts; i != e; i += TruncEltOffset)
5565 Opnds.push_back(BuildVect.getOperand(i));
5566
5567 return DAG.getNode(ISD::BUILD_VECTOR, SDLoc(N), VT, &Opnds[0],
5568 Opnds.size());
5569 }
5570 }
5571
5572 // See if we can simplify the input to this truncate through knowledge that
5573 // only the low bits are being used.
5574 // For example "trunc (or (shl x, 8), y)" // -> trunc y
5575 // Currently we only perform this optimization on scalars because vectors
5576 // may have different active low bits.
5577 if (!VT.isVector()) {
5578 SDValue Shorter =
5579 GetDemandedBits(N0, APInt::getLowBitsSet(N0.getValueSizeInBits(),
5580 VT.getSizeInBits()));
5581 if (Shorter.getNode())
5582 return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, Shorter);
5583 }
5584 // fold (truncate (load x)) -> (smaller load x)
5585 // fold (truncate (srl (load x), c)) -> (smaller load (x+c/evtbits))
5586 if (!LegalTypes || TLI.isTypeDesirableForOp(N0.getOpcode(), VT)) {
5587 SDValue Reduced = ReduceLoadWidth(N);
5588 if (Reduced.getNode())
5589 return Reduced;
5590 }
5591 // fold (trunc (concat ... x ...)) -> (concat ..., (trunc x), ...)),
5592 // where ... are all 'undef'.
5593 if (N0.getOpcode() == ISD::CONCAT_VECTORS && !LegalTypes) {
5594 SmallVector<EVT, 8> VTs;
5595 SDValue V;
5596 unsigned Idx = 0;
5597 unsigned NumDefs = 0;
5598
5599 for (unsigned i = 0, e = N0.getNumOperands(); i != e; ++i) {
5600 SDValue X = N0.getOperand(i);
5601 if (X.getOpcode() != ISD::UNDEF) {
5602 V = X;
5603 Idx = i;
5604 NumDefs++;
5605 }
5606 // Stop if more than one members are non-undef.
5607 if (NumDefs > 1)
5608 break;
5609 VTs.push_back(EVT::getVectorVT(*DAG.getContext(),
5610 VT.getVectorElementType(),
5611 X.getValueType().getVectorNumElements()));
5612 }
5613
5614 if (NumDefs == 0)
5615 return DAG.getUNDEF(VT);
5616
5617 if (NumDefs == 1) {
5618 assert(V.getNode() && "The single defined operand is empty!");
5619 SmallVector<SDValue, 8> Opnds;
5620 for (unsigned i = 0, e = VTs.size(); i != e; ++i) {
5621 if (i != Idx) {
5622 Opnds.push_back(DAG.getUNDEF(VTs[i]));
5623 continue;
5624 }
5625 SDValue NV = DAG.getNode(ISD::TRUNCATE, SDLoc(V), VTs[i], V);
5626 AddToWorkList(NV.getNode());
5627 Opnds.push_back(NV);
5628 }
5629 return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), VT,
5630 &Opnds[0], Opnds.size());
5631 }
5632 }
5633
5634 // Simplify the operands using demanded-bits information.
5635 if (!VT.isVector() &&
5636 SimplifyDemandedBits(SDValue(N, 0)))
5637 return SDValue(N, 0);
5638
5639 return SDValue();
5640}
5641
5642static SDNode *getBuildPairElt(SDNode *N, unsigned i) {
5643 SDValue Elt = N->getOperand(i);
5644 if (Elt.getOpcode() != ISD::MERGE_VALUES)
5645 return Elt.getNode();
5646 return Elt.getOperand(Elt.getResNo()).getNode();
5647}
5648
5649/// CombineConsecutiveLoads - build_pair (load, load) -> load
5650/// if load locations are consecutive.
5651SDValue DAGCombiner::CombineConsecutiveLoads(SDNode *N, EVT VT) {
5652 assert(N->getOpcode() == ISD::BUILD_PAIR);
5653
5654 LoadSDNode *LD1 = dyn_cast<LoadSDNode>(getBuildPairElt(N, 0));
5655 LoadSDNode *LD2 = dyn_cast<LoadSDNode>(getBuildPairElt(N, 1));
5656 if (!LD1 || !LD2 || !ISD::isNON_EXTLoad(LD1) || !LD1->hasOneUse() ||
5657 LD1->getPointerInfo().getAddrSpace() !=
5658 LD2->getPointerInfo().getAddrSpace())
5659 return SDValue();
5660 EVT LD1VT = LD1->getValueType(0);
5661
5662 if (ISD::isNON_EXTLoad(LD2) &&
5663 LD2->hasOneUse() &&
5664 // If both are volatile this would reduce the number of volatile loads.
5665 // If one is volatile it might be ok, but play conservative and bail out.
5666 !LD1->isVolatile() &&
5667 !LD2->isVolatile() &&
5668 DAG.isConsecutiveLoad(LD2, LD1, LD1VT.getSizeInBits()/8, 1)) {
5669 unsigned Align = LD1->getAlignment();
5670 unsigned NewAlign = TLI.getDataLayout()->
5671 getABITypeAlignment(VT.getTypeForEVT(*DAG.getContext()));
5672
5673 if (NewAlign <= Align &&
5674 (!LegalOperations || TLI.isOperationLegal(ISD::LOAD, VT)))
5675 return DAG.getLoad(VT, SDLoc(N), LD1->getChain(),
5676 LD1->getBasePtr(), LD1->getPointerInfo(),
5677 false, false, false, Align);
5678 }
5679
5680 return SDValue();
5681}
5682
5683SDValue DAGCombiner::visitBITCAST(SDNode *N) {
5684 SDValue N0 = N->getOperand(0);
5685 EVT VT = N->getValueType(0);
5686
5687 // If the input is a BUILD_VECTOR with all constant elements, fold this now.
5688 // Only do this before legalize, since afterward the target may be depending
5689 // on the bitconvert.
5690 // First check to see if this is all constant.
5691 if (!LegalTypes &&
5692 N0.getOpcode() == ISD::BUILD_VECTOR && N0.getNode()->hasOneUse() &&
5693 VT.isVector()) {
5694 bool isSimple = true;
5695 for (unsigned i = 0, e = N0.getNumOperands(); i != e; ++i)
5696 if (N0.getOperand(i).getOpcode() != ISD::UNDEF &&
5697 N0.getOperand(i).getOpcode() != ISD::Constant &&
5698 N0.getOperand(i).getOpcode() != ISD::ConstantFP) {
5699 isSimple = false;
5700 break;
5701 }
5702
5703 EVT DestEltVT = N->getValueType(0).getVectorElementType();
5704 assert(!DestEltVT.isVector() &&
5705 "Element type of vector ValueType must not be vector!");
5706 if (isSimple)
5707 return ConstantFoldBITCASTofBUILD_VECTOR(N0.getNode(), DestEltVT);
5708 }
5709
5710 // If the input is a constant, let getNode fold it.
5711 if (isa<ConstantSDNode>(N0) || isa<ConstantFPSDNode>(N0)) {
5712 SDValue Res = DAG.getNode(ISD::BITCAST, SDLoc(N), VT, N0);
5713 if (Res.getNode() != N) {
5714 if (!LegalOperations ||
5715 TLI.isOperationLegal(Res.getNode()->getOpcode(), VT))
5716 return Res;
5717
5718 // Folding it resulted in an illegal node, and it's too late to
5719 // do that. Clean up the old node and forego the transformation.
5720 // Ideally this won't happen very often, because instcombine
5721 // and the earlier dagcombine runs (where illegal nodes are
5722 // permitted) should have folded most of them already.
5723 DAG.DeleteNode(Res.getNode());
5724 }
5725 }
5726
5727 // (conv (conv x, t1), t2) -> (conv x, t2)
5728 if (N0.getOpcode() == ISD::BITCAST)
5729 return DAG.getNode(ISD::BITCAST, SDLoc(N), VT,
5730 N0.getOperand(0));
5731
5732 // fold (conv (load x)) -> (load (conv*)x)
5733 // If the resultant load doesn't need a higher alignment than the original!
5734 if (ISD::isNormalLoad(N0.getNode()) && N0.hasOneUse() &&
5735 // Do not change the width of a volatile load.
5736 !cast<LoadSDNode>(N0)->isVolatile() &&
5737 (!LegalOperations || TLI.isOperationLegal(ISD::LOAD, VT)) &&
5738 TLI.isLoadBitCastBeneficial(N0.getValueType(), VT)) {
5739 LoadSDNode *LN0 = cast<LoadSDNode>(N0);
5740 unsigned Align = TLI.getDataLayout()->
5741 getABITypeAlignment(VT.getTypeForEVT(*DAG.getContext()));
5742 unsigned OrigAlign = LN0->getAlignment();
5743
5744 if (Align <= OrigAlign) {
5745 SDValue Load = DAG.getLoad(VT, SDLoc(N), LN0->getChain(),
5746 LN0->getBasePtr(), LN0->getPointerInfo(),
5747 LN0->isVolatile(), LN0->isNonTemporal(),
5748 LN0->isInvariant(), OrigAlign,
5749 LN0->getTBAAInfo());
5750 AddToWorkList(N);
5751 CombineTo(N0.getNode(),
5752 DAG.getNode(ISD::BITCAST, SDLoc(N0),
5753 N0.getValueType(), Load),
5754 Load.getValue(1));
5755 return Load;
5756 }
5757 }
5758
5759 // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit)
5760 // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit))
5761 // This often reduces constant pool loads.
5762 if (((N0.getOpcode() == ISD::FNEG && !TLI.isFNegFree(N0.getValueType())) ||
5763 (N0.getOpcode() == ISD::FABS && !TLI.isFAbsFree(N0.getValueType()))) &&
5764 N0.getNode()->hasOneUse() && VT.isInteger() &&
5765 !VT.isVector() && !N0.getValueType().isVector()) {
5766 SDValue NewConv = DAG.getNode(ISD::BITCAST, SDLoc(N0), VT,
5767 N0.getOperand(0));
5768 AddToWorkList(NewConv.getNode());
5769
5770 APInt SignBit = APInt::getSignBit(VT.getSizeInBits());
5771 if (N0.getOpcode() == ISD::FNEG)
5772 return DAG.getNode(ISD::XOR, SDLoc(N), VT,
5773 NewConv, DAG.getConstant(SignBit, VT));
5774 assert(N0.getOpcode() == ISD::FABS);
5775 return DAG.getNode(ISD::AND, SDLoc(N), VT,
5776 NewConv, DAG.getConstant(~SignBit, VT));
5777 }
5778
5779 // fold (bitconvert (fcopysign cst, x)) ->
5780 // (or (and (bitconvert x), sign), (and cst, (not sign)))
5781 // Note that we don't handle (copysign x, cst) because this can always be
5782 // folded to an fneg or fabs.
5783 if (N0.getOpcode() == ISD::FCOPYSIGN && N0.getNode()->hasOneUse() &&
5784 isa<ConstantFPSDNode>(N0.getOperand(0)) &&
5785 VT.isInteger() && !VT.isVector()) {
5786 unsigned OrigXWidth = N0.getOperand(1).getValueType().getSizeInBits();
5787 EVT IntXVT = EVT::getIntegerVT(*DAG.getContext(), OrigXWidth);
5788 if (isTypeLegal(IntXVT)) {
5789 SDValue X = DAG.getNode(ISD::BITCAST, SDLoc(N0),
5790 IntXVT, N0.getOperand(1));
5791 AddToWorkList(X.getNode());
5792
5793 // If X has a different width than the result/lhs, sext it or truncate it.
5794 unsigned VTWidth = VT.getSizeInBits();
5795 if (OrigXWidth < VTWidth) {
5796 X = DAG.getNode(ISD::SIGN_EXTEND, SDLoc(N), VT, X);
5797 AddToWorkList(X.getNode());
5798 } else if (OrigXWidth > VTWidth) {
5799 // To get the sign bit in the right place, we have to shift it right
5800 // before truncating.
5801 X = DAG.getNode(ISD::SRL, SDLoc(X),
5802 X.getValueType(), X,
5803 DAG.getConstant(OrigXWidth-VTWidth, X.getValueType()));
5804 AddToWorkList(X.getNode());
5805 X = DAG.getNode(ISD::TRUNCATE, SDLoc(X), VT, X);
5806 AddToWorkList(X.getNode());
5807 }
5808
5809 APInt SignBit = APInt::getSignBit(VT.getSizeInBits());
5810 X = DAG.getNode(ISD::AND, SDLoc(X), VT,
5811 X, DAG.getConstant(SignBit, VT));
5812 AddToWorkList(X.getNode());
5813
5814 SDValue Cst = DAG.getNode(ISD::BITCAST, SDLoc(N0),
5815 VT, N0.getOperand(0));
5816 Cst = DAG.getNode(ISD::AND, SDLoc(Cst), VT,
5817 Cst, DAG.getConstant(~SignBit, VT));
5818 AddToWorkList(Cst.getNode());
5819
5820 return DAG.getNode(ISD::OR, SDLoc(N), VT, X, Cst);
5821 }
5822 }
5823
5824 // bitconvert(build_pair(ld, ld)) -> ld iff load locations are consecutive.
5825 if (N0.getOpcode() == ISD::BUILD_PAIR) {
5826 SDValue CombineLD = CombineConsecutiveLoads(N0.getNode(), VT);
5827 if (CombineLD.getNode())
5828 return CombineLD;
5829 }
5830
5831 return SDValue();
5832}
5833
5834SDValue DAGCombiner::visitBUILD_PAIR(SDNode *N) {
5835 EVT VT = N->getValueType(0);
5836 return CombineConsecutiveLoads(N, VT);
5837}
5838
5839/// ConstantFoldBITCASTofBUILD_VECTOR - We know that BV is a build_vector
5840/// node with Constant, ConstantFP or Undef operands. DstEltVT indicates the
5841/// destination element value type.
5842SDValue DAGCombiner::
5843ConstantFoldBITCASTofBUILD_VECTOR(SDNode *BV, EVT DstEltVT) {
5844 EVT SrcEltVT = BV->getValueType(0).getVectorElementType();
5845
5846 // If this is already the right type, we're done.
5847 if (SrcEltVT == DstEltVT) return SDValue(BV, 0);
5848
5849 unsigned SrcBitSize = SrcEltVT.getSizeInBits();
5850 unsigned DstBitSize = DstEltVT.getSizeInBits();
5851
5852 // If this is a conversion of N elements of one type to N elements of another
5853 // type, convert each element. This handles FP<->INT cases.
5854 if (SrcBitSize == DstBitSize) {
5855 EVT VT = EVT::getVectorVT(*DAG.getContext(), DstEltVT,
5856 BV->getValueType(0).getVectorNumElements());
5857
5858 // Due to the FP element handling below calling this routine recursively,
5859 // we can end up with a scalar-to-vector node here.
5860 if (BV->getOpcode() == ISD::SCALAR_TO_VECTOR)
5861 return DAG.getNode(ISD::SCALAR_TO_VECTOR, SDLoc(BV), VT,
5862 DAG.getNode(ISD::BITCAST, SDLoc(BV),
5863 DstEltVT, BV->getOperand(0)));
5864
5865 SmallVector<SDValue, 8> Ops;
5866 for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) {
5867 SDValue Op = BV->getOperand(i);
5868 // If the vector element type is not legal, the BUILD_VECTOR operands
5869 // are promoted and implicitly truncated. Make that explicit here.
5870 if (Op.getValueType() != SrcEltVT)
5871 Op = DAG.getNode(ISD::TRUNCATE, SDLoc(BV), SrcEltVT, Op);
5872 Ops.push_back(DAG.getNode(ISD::BITCAST, SDLoc(BV),
5873 DstEltVT, Op));
5874 AddToWorkList(Ops.back().getNode());
5875 }
5876 return DAG.getNode(ISD::BUILD_VECTOR, SDLoc(BV), VT,
5877 &Ops[0], Ops.size());
5878 }
5879
5880 // Otherwise, we're growing or shrinking the elements. To avoid having to
5881 // handle annoying details of growing/shrinking FP values, we convert them to
5882 // int first.
5883 if (SrcEltVT.isFloatingPoint()) {
5884 // Convert the input float vector to a int vector where the elements are the
5885 // same sizes.
5886 assert((SrcEltVT == MVT::f32 || SrcEltVT == MVT::f64) && "Unknown FP VT!");
5887 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), SrcEltVT.getSizeInBits());
5888 BV = ConstantFoldBITCASTofBUILD_VECTOR(BV, IntVT).getNode();
5889 SrcEltVT = IntVT;
5890 }
5891
5892 // Now we know the input is an integer vector. If the output is a FP type,
5893 // convert to integer first, then to FP of the right size.
5894 if (DstEltVT.isFloatingPoint()) {
5895 assert((DstEltVT == MVT::f32 || DstEltVT == MVT::f64) && "Unknown FP VT!");
5896 EVT TmpVT = EVT::getIntegerVT(*DAG.getContext(), DstEltVT.getSizeInBits());
5897 SDNode *Tmp = ConstantFoldBITCASTofBUILD_VECTOR(BV, TmpVT).getNode();
5898
5899 // Next, convert to FP elements of the same size.
5900 return ConstantFoldBITCASTofBUILD_VECTOR(Tmp, DstEltVT);
5901 }
5902
5903 // Okay, we know the src/dst types are both integers of differing types.
5904 // Handling growing first.
5905 assert(SrcEltVT.isInteger() && DstEltVT.isInteger());
5906 if (SrcBitSize < DstBitSize) {
5907 unsigned NumInputsPerOutput = DstBitSize/SrcBitSize;
5908
5909 SmallVector<SDValue, 8> Ops;
5910 for (unsigned i = 0, e = BV->getNumOperands(); i != e;
5911 i += NumInputsPerOutput) {
5912 bool isLE = TLI.isLittleEndian();
5913 APInt NewBits = APInt(DstBitSize, 0);
5914 bool EltIsUndef = true;
5915 for (unsigned j = 0; j != NumInputsPerOutput; ++j) {
5916 // Shift the previously computed bits over.
5917 NewBits <<= SrcBitSize;
5918 SDValue Op = BV->getOperand(i+ (isLE ? (NumInputsPerOutput-j-1) : j));
5919 if (Op.getOpcode() == ISD::UNDEF) continue;
5920 EltIsUndef = false;
5921
5922 NewBits |= cast<ConstantSDNode>(Op)->getAPIntValue().
5923 zextOrTrunc(SrcBitSize).zext(DstBitSize);
5924 }
5925
5926 if (EltIsUndef)
5927 Ops.push_back(DAG.getUNDEF(DstEltVT));
5928 else
5929 Ops.push_back(DAG.getConstant(NewBits, DstEltVT));
5930 }
5931
5932 EVT VT = EVT::getVectorVT(*DAG.getContext(), DstEltVT, Ops.size());
5933 return DAG.getNode(ISD::BUILD_VECTOR, SDLoc(BV), VT,
5934 &Ops[0], Ops.size());
5935 }
5936
5937 // Finally, this must be the case where we are shrinking elements: each input
5938 // turns into multiple outputs.
5939 bool isS2V = ISD::isScalarToVector(BV);
5940 unsigned NumOutputsPerInput = SrcBitSize/DstBitSize;
5941 EVT VT = EVT::getVectorVT(*DAG.getContext(), DstEltVT,
5942 NumOutputsPerInput*BV->getNumOperands());
5943 SmallVector<SDValue, 8> Ops;
5944
5945 for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) {
5946 if (BV->getOperand(i).getOpcode() == ISD::UNDEF) {
5947 for (unsigned j = 0; j != NumOutputsPerInput; ++j)
5948 Ops.push_back(DAG.getUNDEF(DstEltVT));
5949 continue;
5950 }
5951
5952 APInt OpVal = cast<ConstantSDNode>(BV->getOperand(i))->
5953 getAPIntValue().zextOrTrunc(SrcBitSize);
5954
5955 for (unsigned j = 0; j != NumOutputsPerInput; ++j) {
5956 APInt ThisVal = OpVal.trunc(DstBitSize);
5957 Ops.push_back(DAG.getConstant(ThisVal, DstEltVT));
5958 if (isS2V && i == 0 && j == 0 && ThisVal.zext(SrcBitSize) == OpVal)
5959 // Simply turn this into a SCALAR_TO_VECTOR of the new type.
5960 return DAG.getNode(ISD::SCALAR_TO_VECTOR, SDLoc(BV), VT,
5961 Ops[0]);
5962 OpVal = OpVal.lshr(DstBitSize);
5963 }
5964
5965 // For big endian targets, swap the order of the pieces of each element.
5966 if (TLI.isBigEndian())
5967 std::reverse(Ops.end()-NumOutputsPerInput, Ops.end());
5968 }
5969
5970 return DAG.getNode(ISD::BUILD_VECTOR, SDLoc(BV), VT,
5971 &Ops[0], Ops.size());
5972}
5973
5974SDValue DAGCombiner::visitFADD(SDNode *N) {
5975 SDValue N0 = N->getOperand(0);
5976 SDValue N1 = N->getOperand(1);
5977 ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
5978 ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
5979 EVT VT = N->getValueType(0);
5980
5981 // fold vector ops
5982 if (VT.isVector()) {
5983 SDValue FoldedVOp = SimplifyVBinOp(N);
5984 if (FoldedVOp.getNode()) return FoldedVOp;
5985 }
5986
5987 // fold (fadd c1, c2) -> c1 + c2
5988 if (N0CFP && N1CFP)
5989 return DAG.getNode(ISD::FADD, SDLoc(N), VT, N0, N1);
5990 // canonicalize constant to RHS
5991 if (N0CFP && !N1CFP)
5992 return DAG.getNode(ISD::FADD, SDLoc(N), VT, N1, N0);
5993 // fold (fadd A, 0) -> A
5994 if (DAG.getTarget().Options.UnsafeFPMath && N1CFP &&
5995 N1CFP->getValueAPF().isZero())
5996 return N0;
5997 // fold (fadd A, (fneg B)) -> (fsub A, B)
5998 if ((!LegalOperations || TLI.isOperationLegalOrCustom(ISD::FSUB, VT)) &&
5999 isNegatibleForFree(N1, LegalOperations, TLI, &DAG.getTarget().Options) == 2)
6000 return DAG.getNode(ISD::FSUB, SDLoc(N), VT, N0,
6001 GetNegatedExpression(N1, DAG, LegalOperations));
6002 // fold (fadd (fneg A), B) -> (fsub B, A)
6003 if ((!LegalOperations || TLI.isOperationLegalOrCustom(ISD::FSUB, VT)) &&
6004 isNegatibleForFree(N0, LegalOperations, TLI, &DAG.getTarget().Options) == 2)
6005 return DAG.getNode(ISD::FSUB, SDLoc(N), VT, N1,
6006 GetNegatedExpression(N0, DAG, LegalOperations));
6007
6008 // If allowed, fold (fadd (fadd x, c1), c2) -> (fadd x, (fadd c1, c2))
6009 if (DAG.getTarget().Options.UnsafeFPMath && N1CFP &&
6010 N0.getOpcode() == ISD::FADD && N0.getNode()->hasOneUse() &&
6011 isa<ConstantFPSDNode>(N0.getOperand(1)))
6012 return DAG.getNode(ISD::FADD, SDLoc(N), VT, N0.getOperand(0),
6013 DAG.getNode(ISD::FADD, SDLoc(N), VT,
6014 N0.getOperand(1), N1));
6015
6016 // No FP constant should be created after legalization as Instruction
6017 // Selection pass has hard time in dealing with FP constant.
6018 //
6019 // We don't need test this condition for transformation like following, as
6020 // the DAG being transformed implies it is legal to take FP constant as
6021 // operand.
6022 //
6023 // (fadd (fmul c, x), x) -> (fmul c+1, x)
6024 //
6025 bool AllowNewFpConst = (Level < AfterLegalizeDAG);
6026
6027 // If allow, fold (fadd (fneg x), x) -> 0.0
6028 if (AllowNewFpConst && DAG.getTarget().Options.UnsafeFPMath &&
6029 N0.getOpcode() == ISD::FNEG && N0.getOperand(0) == N1)
6030 return DAG.getConstantFP(0.0, VT);
6031
6032 // If allow, fold (fadd x, (fneg x)) -> 0.0
6033 if (AllowNewFpConst && DAG.getTarget().Options.UnsafeFPMath &&
6034 N1.getOpcode() == ISD::FNEG && N1.getOperand(0) == N0)
6035 return DAG.getConstantFP(0.0, VT);
6036
6037 // In unsafe math mode, we can fold chains of FADD's of the same value
6038 // into multiplications. This transform is not safe in general because
6039 // we are reducing the number of rounding steps.
6040 if (DAG.getTarget().Options.UnsafeFPMath &&
6041 TLI.isOperationLegalOrCustom(ISD::FMUL, VT) &&
6042 !N0CFP && !N1CFP) {
6043 if (N0.getOpcode() == ISD::FMUL) {
6044 ConstantFPSDNode *CFP00 = dyn_cast<ConstantFPSDNode>(N0.getOperand(0));
6045 ConstantFPSDNode *CFP01 = dyn_cast<ConstantFPSDNode>(N0.getOperand(1));
6046
6047 // (fadd (fmul c, x), x) -> (fmul x, c+1)
6048 if (CFP00 && !CFP01 && N0.getOperand(1) == N1) {
6049 SDValue NewCFP = DAG.getNode(ISD::FADD, SDLoc(N), VT,
6050 SDValue(CFP00, 0),
6051 DAG.getConstantFP(1.0, VT));
6052 return DAG.getNode(ISD::FMUL, SDLoc(N), VT,
6053 N1, NewCFP);
6054 }
6055
6056 // (fadd (fmul x, c), x) -> (fmul x, c+1)
6057 if (CFP01 && !CFP00 && N0.getOperand(0) == N1) {
6058 SDValue NewCFP = DAG.getNode(ISD::FADD, SDLoc(N), VT,
6059 SDValue(CFP01, 0),
6060 DAG.getConstantFP(1.0, VT));
6061 return DAG.getNode(ISD::FMUL, SDLoc(N), VT,
6062 N1, NewCFP);
6063 }
6064
6065 // (fadd (fmul c, x), (fadd x, x)) -> (fmul x, c+2)
6066 if (CFP00 && !CFP01 && N1.getOpcode() == ISD::FADD &&
6067 N1.getOperand(0) == N1.getOperand(1) &&
6068 N0.getOperand(1) == N1.getOperand(0)) {
6069 SDValue NewCFP = DAG.getNode(ISD::FADD, SDLoc(N), VT,
6070 SDValue(CFP00, 0),
6071 DAG.getConstantFP(2.0, VT));
6072 return DAG.getNode(ISD::FMUL, SDLoc(N), VT,
6073 N0.getOperand(1), NewCFP);
6074 }
6075
6076 // (fadd (fmul x, c), (fadd x, x)) -> (fmul x, c+2)
6077 if (CFP01 && !CFP00 && N1.getOpcode() == ISD::FADD &&
6078 N1.getOperand(0) == N1.getOperand(1) &&
6079 N0.getOperand(0) == N1.getOperand(0)) {
6080 SDValue NewCFP = DAG.getNode(ISD::FADD, SDLoc(N), VT,
6081 SDValue(CFP01, 0),
6082 DAG.getConstantFP(2.0, VT));
6083 return DAG.getNode(ISD::FMUL, SDLoc(N), VT,
6084 N0.getOperand(0), NewCFP);
6085 }
6086 }
6087
6088 if (N1.getOpcode() == ISD::FMUL) {
6089 ConstantFPSDNode *CFP10 = dyn_cast<ConstantFPSDNode>(N1.getOperand(0));
6090 ConstantFPSDNode *CFP11 = dyn_cast<ConstantFPSDNode>(N1.getOperand(1));
6091
6092 // (fadd x, (fmul c, x)) -> (fmul x, c+1)
6093 if (CFP10 && !CFP11 && N1.getOperand(1) == N0) {
6094 SDValue NewCFP = DAG.getNode(ISD::FADD, SDLoc(N), VT,
6095 SDValue(CFP10, 0),
6096 DAG.getConstantFP(1.0, VT));
6097 return DAG.getNode(ISD::FMUL, SDLoc(N), VT,
6098 N0, NewCFP);
6099 }
6100
6101 // (fadd x, (fmul x, c)) -> (fmul x, c+1)
6102 if (CFP11 && !CFP10 && N1.getOperand(0) == N0) {
6103 SDValue NewCFP = DAG.getNode(ISD::FADD, SDLoc(N), VT,
6104 SDValue(CFP11, 0),
6105 DAG.getConstantFP(1.0, VT));
6106 return DAG.getNode(ISD::FMUL, SDLoc(N), VT,
6107 N0, NewCFP);
6108 }
6109
6110
6111 // (fadd (fadd x, x), (fmul c, x)) -> (fmul x, c+2)
6112 if (CFP10 && !CFP11 && N0.getOpcode() == ISD::FADD &&
6113 N0.getOperand(0) == N0.getOperand(1) &&
6114 N1.getOperand(1) == N0.getOperand(0)) {
6115 SDValue NewCFP = DAG.getNode(ISD::FADD, SDLoc(N), VT,
6116 SDValue(CFP10, 0),
6117 DAG.getConstantFP(2.0, VT));
6118 return DAG.getNode(ISD::FMUL, SDLoc(N), VT,
6119 N1.getOperand(1), NewCFP);
6120 }
6121
6122 // (fadd (fadd x, x), (fmul x, c)) -> (fmul x, c+2)
6123 if (CFP11 && !CFP10 && N0.getOpcode() == ISD::FADD &&
6124 N0.getOperand(0) == N0.getOperand(1) &&
6125 N1.getOperand(0) == N0.getOperand(0)) {
6126 SDValue NewCFP = DAG.getNode(ISD::FADD, SDLoc(N), VT,
6127 SDValue(CFP11, 0),
6128 DAG.getConstantFP(2.0, VT));
6129 return DAG.getNode(ISD::FMUL, SDLoc(N), VT,
6130 N1.getOperand(0), NewCFP);
6131 }
6132 }
6133
6134 if (N0.getOpcode() == ISD::FADD && AllowNewFpConst) {
6135 ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N0.getOperand(0));
6136 // (fadd (fadd x, x), x) -> (fmul x, 3.0)
6137 if (!CFP && N0.getOperand(0) == N0.getOperand(1) &&
6138 (N0.getOperand(0) == N1))
6139 return DAG.getNode(ISD::FMUL, SDLoc(N), VT,
6140 N1, DAG.getConstantFP(3.0, VT));
6141 }
6142
6143 if (N1.getOpcode() == ISD::FADD && AllowNewFpConst) {
6144 ConstantFPSDNode *CFP10 = dyn_cast<ConstantFPSDNode>(N1.getOperand(0));
6145 // (fadd x, (fadd x, x)) -> (fmul x, 3.0)
6146 if (!CFP10 && N1.getOperand(0) == N1.getOperand(1) &&
6147 N1.getOperand(0) == N0)
6148 return DAG.getNode(ISD::FMUL, SDLoc(N), VT,
6149 N0, DAG.getConstantFP(3.0, VT));
6150 }
6151
6152 // (fadd (fadd x, x), (fadd x, x)) -> (fmul x, 4.0)
6153 if (AllowNewFpConst &&
6154 N0.getOpcode() == ISD::FADD && N1.getOpcode() == ISD::FADD &&
6155 N0.getOperand(0) == N0.getOperand(1) &&
6156 N1.getOperand(0) == N1.getOperand(1) &&
6157 N0.getOperand(0) == N1.getOperand(0))
6158 return DAG.getNode(ISD::FMUL, SDLoc(N), VT,
6159 N0.getOperand(0),
6160 DAG.getConstantFP(4.0, VT));
6161 }
6162
6163 // FADD -> FMA combines:
6164 if ((DAG.getTarget().Options.AllowFPOpFusion == FPOpFusion::Fast ||
6165 DAG.getTarget().Options.UnsafeFPMath) &&
6166 DAG.getTarget().getTargetLowering()->isFMAFasterThanFMulAndFAdd(VT) &&
6167 (!LegalOperations || TLI.isOperationLegalOrCustom(ISD::FMA, VT))) {
6168
6169 // fold (fadd (fmul x, y), z) -> (fma x, y, z)
6170 if (N0.getOpcode() == ISD::FMUL && N0->hasOneUse())
6171 return DAG.getNode(ISD::FMA, SDLoc(N), VT,
6172 N0.getOperand(0), N0.getOperand(1), N1);
6173
6174 // fold (fadd x, (fmul y, z)) -> (fma y, z, x)
6175 // Note: Commutes FADD operands.
6176 if (N1.getOpcode() == ISD::FMUL && N1->hasOneUse())
6177 return DAG.getNode(ISD::FMA, SDLoc(N), VT,
6178 N1.getOperand(0), N1.getOperand(1), N0);
6179 }
6180
6181 return SDValue();
6182}
6183
6184SDValue DAGCombiner::visitFSUB(SDNode *N) {
6185 SDValue N0 = N->getOperand(0);
6186 SDValue N1 = N->getOperand(1);
6187 ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
6188 ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
6189 EVT VT = N->getValueType(0);
6190 SDLoc dl(N);
6191
6192 // fold vector ops
6193 if (VT.isVector()) {
6194 SDValue FoldedVOp = SimplifyVBinOp(N);
6195 if (FoldedVOp.getNode()) return FoldedVOp;
6196 }
6197
6198 // fold (fsub c1, c2) -> c1-c2
6199 if (N0CFP && N1CFP)
6200 return DAG.getNode(ISD::FSUB, SDLoc(N), VT, N0, N1);
6201 // fold (fsub A, 0) -> A
6202 if (DAG.getTarget().Options.UnsafeFPMath &&
6203 N1CFP && N1CFP->getValueAPF().isZero())
6204 return N0;
6205 // fold (fsub 0, B) -> -B
6206 if (DAG.getTarget().Options.UnsafeFPMath &&
6207 N0CFP && N0CFP->getValueAPF().isZero()) {
6208 if (isNegatibleForFree(N1, LegalOperations, TLI, &DAG.getTarget().Options))
6209 return GetNegatedExpression(N1, DAG, LegalOperations);
6210 if (!LegalOperations || TLI.isOperationLegal(ISD::FNEG, VT))
6211 return DAG.getNode(ISD::FNEG, dl, VT, N1);
6212 }
6213 // fold (fsub A, (fneg B)) -> (fadd A, B)
6214 if (isNegatibleForFree(N1, LegalOperations, TLI, &DAG.getTarget().Options))
6215 return DAG.getNode(ISD::FADD, dl, VT, N0,
6216 GetNegatedExpression(N1, DAG, LegalOperations));
6217
6218 // If 'unsafe math' is enabled, fold
6219 // (fsub x, x) -> 0.0 &
6220 // (fsub x, (fadd x, y)) -> (fneg y) &
6221 // (fsub x, (fadd y, x)) -> (fneg y)
6222 if (DAG.getTarget().Options.UnsafeFPMath) {
6223 if (N0 == N1)
6224 return DAG.getConstantFP(0.0f, VT);
6225
6226 if (N1.getOpcode() == ISD::FADD) {
6227 SDValue N10 = N1->getOperand(0);
6228 SDValue N11 = N1->getOperand(1);
6229
6230 if (N10 == N0 && isNegatibleForFree(N11, LegalOperations, TLI,
6231 &DAG.getTarget().Options))
6232 return GetNegatedExpression(N11, DAG, LegalOperations);
6233
6234 if (N11 == N0 && isNegatibleForFree(N10, LegalOperations, TLI,
6235 &DAG.getTarget().Options))
6236 return GetNegatedExpression(N10, DAG, LegalOperations);
6237 }
6238 }
6239
6240 // FSUB -> FMA combines:
6241 if ((DAG.getTarget().Options.AllowFPOpFusion == FPOpFusion::Fast ||
6242 DAG.getTarget().Options.UnsafeFPMath) &&
6243 DAG.getTarget().getTargetLowering()->isFMAFasterThanFMulAndFAdd(VT) &&
6244 (!LegalOperations || TLI.isOperationLegalOrCustom(ISD::FMA, VT))) {
6245
6246 // fold (fsub (fmul x, y), z) -> (fma x, y, (fneg z))
6247 if (N0.getOpcode() == ISD::FMUL && N0->hasOneUse())
6248 return DAG.getNode(ISD::FMA, dl, VT,
6249 N0.getOperand(0), N0.getOperand(1),
6250 DAG.getNode(ISD::FNEG, dl, VT, N1));
6251
6252 // fold (fsub x, (fmul y, z)) -> (fma (fneg y), z, x)
6253 // Note: Commutes FSUB operands.
6254 if (N1.getOpcode() == ISD::FMUL && N1->hasOneUse())
6255 return DAG.getNode(ISD::FMA, dl, VT,
6256 DAG.getNode(ISD::FNEG, dl, VT,
6257 N1.getOperand(0)),
6258 N1.getOperand(1), N0);
6259
6260 // fold (fsub (fneg (fmul, x, y)), z) -> (fma (fneg x), y, (fneg z))
6261 if (N0.getOpcode() == ISD::FNEG &&
6262 N0.getOperand(0).getOpcode() == ISD::FMUL &&
6263 N0->hasOneUse() && N0.getOperand(0).hasOneUse()) {
6264 SDValue N00 = N0.getOperand(0).getOperand(0);
6265 SDValue N01 = N0.getOperand(0).getOperand(1);
6266 return DAG.getNode(ISD::FMA, dl, VT,
6267 DAG.getNode(ISD::FNEG, dl, VT, N00), N01,
6268 DAG.getNode(ISD::FNEG, dl, VT, N1));
6269 }
6270 }
6271
6272 return SDValue();
6273}
6274
6275SDValue DAGCombiner::visitFMUL(SDNode *N) {
6276 SDValue N0 = N->getOperand(0);
6277 SDValue N1 = N->getOperand(1);
6278 ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
6279 ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
6280 EVT VT = N->getValueType(0);
6281 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6282
6283 // fold vector ops
6284 if (VT.isVector()) {
6285 SDValue FoldedVOp = SimplifyVBinOp(N);
6286 if (FoldedVOp.getNode()) return FoldedVOp;
6287 }
6288
6289 // fold (fmul c1, c2) -> c1*c2
6290 if (N0CFP && N1CFP)
6291 return DAG.getNode(ISD::FMUL, SDLoc(N), VT, N0, N1);
6292 // canonicalize constant to RHS
6293 if (N0CFP && !N1CFP)
6294 return DAG.getNode(ISD::FMUL, SDLoc(N), VT, N1, N0);
6295 // fold (fmul A, 0) -> 0
6296 if (DAG.getTarget().Options.UnsafeFPMath &&
6297 N1CFP && N1CFP->getValueAPF().isZero())
6298 return N1;
6299 // fold (fmul A, 0) -> 0, vector edition.
6300 if (DAG.getTarget().Options.UnsafeFPMath &&
6301 ISD::isBuildVectorAllZeros(N1.getNode()))
6302 return N1;
6303 // fold (fmul A, 1.0) -> A
6304 if (N1CFP && N1CFP->isExactlyValue(1.0))
6305 return N0;
6306 // fold (fmul X, 2.0) -> (fadd X, X)
6307 if (N1CFP && N1CFP->isExactlyValue(+2.0))
6308 return DAG.getNode(ISD::FADD, SDLoc(N), VT, N0, N0);
6309 // fold (fmul X, -1.0) -> (fneg X)
6310 if (N1CFP && N1CFP->isExactlyValue(-1.0))
6311 if (!LegalOperations || TLI.isOperationLegal(ISD::FNEG, VT))
6312 return DAG.getNode(ISD::FNEG, SDLoc(N), VT, N0);
6313
6314 // fold (fmul (fneg X), (fneg Y)) -> (fmul X, Y)
6315 if (char LHSNeg = isNegatibleForFree(N0, LegalOperations, TLI,
6316 &DAG.getTarget().Options)) {
6317 if (char RHSNeg = isNegatibleForFree(N1, LegalOperations, TLI,
6318 &DAG.getTarget().Options)) {
6319 // Both can be negated for free, check to see if at least one is cheaper
6320 // negated.
6321 if (LHSNeg == 2 || RHSNeg == 2)
6322 return DAG.getNode(ISD::FMUL, SDLoc(N), VT,
6323 GetNegatedExpression(N0, DAG, LegalOperations),
6324 GetNegatedExpression(N1, DAG, LegalOperations));
6325 }
6326 }
6327
6328 // If allowed, fold (fmul (fmul x, c1), c2) -> (fmul x, (fmul c1, c2))
6329 if (DAG.getTarget().Options.UnsafeFPMath &&
6330 N1CFP && N0.getOpcode() == ISD::FMUL &&
6331 N0.getNode()->hasOneUse() && isa<ConstantFPSDNode>(N0.getOperand(1)))
6332 return DAG.getNode(ISD::FMUL, SDLoc(N), VT, N0.getOperand(0),
6333 DAG.getNode(ISD::FMUL, SDLoc(N), VT,
6334 N0.getOperand(1), N1));
6335
6336 return SDValue();
6337}
6338
6339SDValue DAGCombiner::visitFMA(SDNode *N) {
6340 SDValue N0 = N->getOperand(0);
6341 SDValue N1 = N->getOperand(1);
6342 SDValue N2 = N->getOperand(2);
6343 ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
6344 ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
6345 EVT VT = N->getValueType(0);
6346 SDLoc dl(N);
6347
6348 if (DAG.getTarget().Options.UnsafeFPMath) {
6349 if (N0CFP && N0CFP->isZero())
6350 return N2;
6351 if (N1CFP && N1CFP->isZero())
6352 return N2;
6353 }
6354 if (N0CFP && N0CFP->isExactlyValue(1.0))
6355 return DAG.getNode(ISD::FADD, SDLoc(N), VT, N1, N2);
6356 if (N1CFP && N1CFP->isExactlyValue(1.0))
6357 return DAG.getNode(ISD::FADD, SDLoc(N), VT, N0, N2);
6358
6359 // Canonicalize (fma c, x, y) -> (fma x, c, y)
6360 if (N0CFP && !N1CFP)
6361 return DAG.getNode(ISD::FMA, SDLoc(N), VT, N1, N0, N2);
6362
6363 // (fma x, c1, (fmul x, c2)) -> (fmul x, c1+c2)
6364 if (DAG.getTarget().Options.UnsafeFPMath && N1CFP &&
6365 N2.getOpcode() == ISD::FMUL &&
6366 N0 == N2.getOperand(0) &&
6367 N2.getOperand(1).getOpcode() == ISD::ConstantFP) {
6368 return DAG.getNode(ISD::FMUL, dl, VT, N0,
6369 DAG.getNode(ISD::FADD, dl, VT, N1, N2.getOperand(1)));
6370 }
6371
6372
6373 // (fma (fmul x, c1), c2, y) -> (fma x, c1*c2, y)
6374 if (DAG.getTarget().Options.UnsafeFPMath &&
6375 N0.getOpcode() == ISD::FMUL && N1CFP &&
6376 N0.getOperand(1).getOpcode() == ISD::ConstantFP) {
6377 return DAG.getNode(ISD::FMA, dl, VT,
6378 N0.getOperand(0),
6379 DAG.getNode(ISD::FMUL, dl, VT, N1, N0.getOperand(1)),
6380 N2);
6381 }
6382
6383 // (fma x, 1, y) -> (fadd x, y)
6384 // (fma x, -1, y) -> (fadd (fneg x), y)
6385 if (N1CFP) {
6386 if (N1CFP->isExactlyValue(1.0))
6387 return DAG.getNode(ISD::FADD, dl, VT, N0, N2);
6388
6389 if (N1CFP->isExactlyValue(-1.0) &&
6390 (!LegalOperations || TLI.isOperationLegal(ISD::FNEG, VT))) {
6391 SDValue RHSNeg = DAG.getNode(ISD::FNEG, dl, VT, N0);
6392 AddToWorkList(RHSNeg.getNode());
6393 return DAG.getNode(ISD::FADD, dl, VT, N2, RHSNeg);
6394 }
6395 }
6396
6397 // (fma x, c, x) -> (fmul x, (c+1))
6398 if (DAG.getTarget().Options.UnsafeFPMath && N1CFP && N0 == N2)
6399 return DAG.getNode(ISD::FMUL, dl, VT, N0,
6400 DAG.getNode(ISD::FADD, dl, VT,
6401 N1, DAG.getConstantFP(1.0, VT)));
6402
6403 // (fma x, c, (fneg x)) -> (fmul x, (c-1))
6404 if (DAG.getTarget().Options.UnsafeFPMath && N1CFP &&
6405 N2.getOpcode() == ISD::FNEG && N2.getOperand(0) == N0)
6406 return DAG.getNode(ISD::FMUL, dl, VT, N0,
6407 DAG.getNode(ISD::FADD, dl, VT,
6408 N1, DAG.getConstantFP(-1.0, VT)));
6409
6410
6411 return SDValue();
6412}
6413
6414SDValue DAGCombiner::visitFDIV(SDNode *N) {
6415 SDValue N0 = N->getOperand(0);
6416 SDValue N1 = N->getOperand(1);
6417 ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
6418 ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
6419 EVT VT = N->getValueType(0);
6420 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6421
6422 // fold vector ops
6423 if (VT.isVector()) {
6424 SDValue FoldedVOp = SimplifyVBinOp(N);
6425 if (FoldedVOp.getNode()) return FoldedVOp;
6426 }
6427
6428 // fold (fdiv c1, c2) -> c1/c2
6429 if (N0CFP && N1CFP)
6430 return DAG.getNode(ISD::FDIV, SDLoc(N), VT, N0, N1);
6431
6432 // fold (fdiv X, c2) -> fmul X, 1/c2 if losing precision is acceptable.
6433 if (N1CFP && DAG.getTarget().Options.UnsafeFPMath) {
6434 // Compute the reciprocal 1.0 / c2.
6435 APFloat N1APF = N1CFP->getValueAPF();
6436 APFloat Recip(N1APF.getSemantics(), 1); // 1.0
6437 APFloat::opStatus st = Recip.divide(N1APF, APFloat::rmNearestTiesToEven);
6438 // Only do the transform if the reciprocal is a legal fp immediate that
6439 // isn't too nasty (eg NaN, denormal, ...).
6440 if ((st == APFloat::opOK || st == APFloat::opInexact) && // Not too nasty
6441 (!LegalOperations ||
6442 // FIXME: custom lowering of ConstantFP might fail (see e.g. ARM
6443 // backend)... we should handle this gracefully after Legalize.
6444 // TLI.isOperationLegalOrCustom(llvm::ISD::ConstantFP, VT) ||
6445 TLI.isOperationLegal(llvm::ISD::ConstantFP, VT) ||
6446 TLI.isFPImmLegal(Recip, VT)))
6447 return DAG.getNode(ISD::FMUL, SDLoc(N), VT, N0,
6448 DAG.getConstantFP(Recip, VT));
6449 }
6450
6451 // (fdiv (fneg X), (fneg Y)) -> (fdiv X, Y)
6452 if (char LHSNeg = isNegatibleForFree(N0, LegalOperations, TLI,
6453 &DAG.getTarget().Options)) {
6454 if (char RHSNeg = isNegatibleForFree(N1, LegalOperations, TLI,
6455 &DAG.getTarget().Options)) {
6456 // Both can be negated for free, check to see if at least one is cheaper
6457 // negated.
6458 if (LHSNeg == 2 || RHSNeg == 2)
6459 return DAG.getNode(ISD::FDIV, SDLoc(N), VT,
6460 GetNegatedExpression(N0, DAG, LegalOperations),
6461 GetNegatedExpression(N1, DAG, LegalOperations));
6462 }
6463 }
6464
6465 return SDValue();
6466}
6467
6468SDValue DAGCombiner::visitFREM(SDNode *N) {
6469 SDValue N0 = N->getOperand(0);
6470 SDValue N1 = N->getOperand(1);
6471 ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
6472 ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
6473 EVT VT = N->getValueType(0);
6474
6475 // fold (frem c1, c2) -> fmod(c1,c2)
6476 if (N0CFP && N1CFP)
6477 return DAG.getNode(ISD::FREM, SDLoc(N), VT, N0, N1);
6478
6479 return SDValue();
6480}
6481
6482SDValue DAGCombiner::visitFCOPYSIGN(SDNode *N) {
6483 SDValue N0 = N->getOperand(0);
6484 SDValue N1 = N->getOperand(1);
6485 ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
6486 ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
6487 EVT VT = N->getValueType(0);
6488
6489 if (N0CFP && N1CFP) // Constant fold
6490 return DAG.getNode(ISD::FCOPYSIGN, SDLoc(N), VT, N0, N1);
6491
6492 if (N1CFP) {
6493 const APFloat& V = N1CFP->getValueAPF();
6494 // copysign(x, c1) -> fabs(x) iff ispos(c1)
6495 // copysign(x, c1) -> fneg(fabs(x)) iff isneg(c1)
6496 if (!V.isNegative()) {
6497 if (!LegalOperations || TLI.isOperationLegal(ISD::FABS, VT))
6498 return DAG.getNode(ISD::FABS, SDLoc(N), VT, N0);
6499 } else {
6500 if (!LegalOperations || TLI.isOperationLegal(ISD::FNEG, VT))
6501 return DAG.getNode(ISD::FNEG, SDLoc(N), VT,
6502 DAG.getNode(ISD::FABS, SDLoc(N0), VT, N0));
6503 }
6504 }
6505
6506 // copysign(fabs(x), y) -> copysign(x, y)
6507 // copysign(fneg(x), y) -> copysign(x, y)
6508 // copysign(copysign(x,z), y) -> copysign(x, y)
6509 if (N0.getOpcode() == ISD::FABS || N0.getOpcode() == ISD::FNEG ||
6510 N0.getOpcode() == ISD::FCOPYSIGN)
6511 return DAG.getNode(ISD::FCOPYSIGN, SDLoc(N), VT,
6512 N0.getOperand(0), N1);
6513
6514 // copysign(x, abs(y)) -> abs(x)
6515 if (N1.getOpcode() == ISD::FABS)
6516 return DAG.getNode(ISD::FABS, SDLoc(N), VT, N0);
6517
6518 // copysign(x, copysign(y,z)) -> copysign(x, z)
6519 if (N1.getOpcode() == ISD::FCOPYSIGN)
6520 return DAG.getNode(ISD::FCOPYSIGN, SDLoc(N), VT,
6521 N0, N1.getOperand(1));
6522
6523 // copysign(x, fp_extend(y)) -> copysign(x, y)
6524 // copysign(x, fp_round(y)) -> copysign(x, y)
6525 if (N1.getOpcode() == ISD::FP_EXTEND || N1.getOpcode() == ISD::FP_ROUND)
6526 return DAG.getNode(ISD::FCOPYSIGN, SDLoc(N), VT,
6527 N0, N1.getOperand(0));
6528
6529 return SDValue();
6530}
6531
6532SDValue DAGCombiner::visitSINT_TO_FP(SDNode *N) {
6533 SDValue N0 = N->getOperand(0);
6534 ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
6535 EVT VT = N->getValueType(0);
6536 EVT OpVT = N0.getValueType();
6537
6538 // fold (sint_to_fp c1) -> c1fp
6539 if (N0C &&
6540 // ...but only if the target supports immediate floating-point values
6541 (!LegalOperations ||
6542 TLI.isOperationLegalOrCustom(llvm::ISD::ConstantFP, VT)))
6543 return DAG.getNode(ISD::SINT_TO_FP, SDLoc(N), VT, N0);
6544
6545 // If the input is a legal type, and SINT_TO_FP is not legal on this target,
6546 // but UINT_TO_FP is legal on this target, try to convert.
6547 if (!TLI.isOperationLegalOrCustom(ISD::SINT_TO_FP, OpVT) &&
6548 TLI.isOperationLegalOrCustom(ISD::UINT_TO_FP, OpVT)) {
6549 // If the sign bit is known to be zero, we can change this to UINT_TO_FP.
6550 if (DAG.SignBitIsZero(N0))
6551 return DAG.getNode(ISD::UINT_TO_FP, SDLoc(N), VT, N0);
6552 }
6553
6554 // The next optimizations are desireable only if SELECT_CC can be lowered.
6555 // Check against MVT::Other for SELECT_CC, which is a workaround for targets
6556 // having to say they don't support SELECT_CC on every type the DAG knows
6557 // about, since there is no way to mark an opcode illegal at all value types
6558 // (See also visitSELECT)
6559 if (TLI.isOperationLegalOrCustom(ISD::SELECT_CC, MVT::Other)) {
6560 // fold (sint_to_fp (setcc x, y, cc)) -> (select_cc x, y, -1.0, 0.0,, cc)
6561 if (N0.getOpcode() == ISD::SETCC && N0.getValueType() == MVT::i1 &&
6562 !VT.isVector() &&
6563 (!LegalOperations ||
6564 TLI.isOperationLegalOrCustom(llvm::ISD::ConstantFP, VT))) {
6565 SDValue Ops[] =
6566 { N0.getOperand(0), N0.getOperand(1),
6567 DAG.getConstantFP(-1.0, VT) , DAG.getConstantFP(0.0, VT),
6568 N0.getOperand(2) };
6569 return DAG.getNode(ISD::SELECT_CC, SDLoc(N), VT, Ops, 5);
6570 }
6571
6572 // fold (sint_to_fp (zext (setcc x, y, cc))) ->
6573 // (select_cc x, y, 1.0, 0.0,, cc)
6574 if (N0.getOpcode() == ISD::ZERO_EXTEND &&
6575 N0.getOperand(0).getOpcode() == ISD::SETCC &&!VT.isVector() &&
6576 (!LegalOperations ||
6577 TLI.isOperationLegalOrCustom(llvm::ISD::ConstantFP, VT))) {
6578 SDValue Ops[] =
6579 { N0.getOperand(0).getOperand(0), N0.getOperand(0).getOperand(1),
6580 DAG.getConstantFP(1.0, VT) , DAG.getConstantFP(0.0, VT),
6581 N0.getOperand(0).getOperand(2) };
6582 return DAG.getNode(ISD::SELECT_CC, SDLoc(N), VT, Ops, 5);
6583 }
6584 }
6585
6586 return SDValue();
6587}
6588
6589SDValue DAGCombiner::visitUINT_TO_FP(SDNode *N) {
6590 SDValue N0 = N->getOperand(0);
6591 ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
6592 EVT VT = N->getValueType(0);
6593 EVT OpVT = N0.getValueType();
6594
6595 // fold (uint_to_fp c1) -> c1fp
6596 if (N0C &&
6597 // ...but only if the target supports immediate floating-point values
6598 (!LegalOperations ||
6599 TLI.isOperationLegalOrCustom(llvm::ISD::ConstantFP, VT)))
6600 return DAG.getNode(ISD::UINT_TO_FP, SDLoc(N), VT, N0);
6601
6602 // If the input is a legal type, and UINT_TO_FP is not legal on this target,
6603 // but SINT_TO_FP is legal on this target, try to convert.
6604 if (!TLI.isOperationLegalOrCustom(ISD::UINT_TO_FP, OpVT) &&
6605 TLI.isOperationLegalOrCustom(ISD::SINT_TO_FP, OpVT)) {
6606 // If the sign bit is known to be zero, we can change this to SINT_TO_FP.
6607 if (DAG.SignBitIsZero(N0))
6608 return DAG.getNode(ISD::SINT_TO_FP, SDLoc(N), VT, N0);
6609 }
6610
6611 // The next optimizations are desireable only if SELECT_CC can be lowered.
6612 // Check against MVT::Other for SELECT_CC, which is a workaround for targets
6613 // having to say they don't support SELECT_CC on every type the DAG knows
6614 // about, since there is no way to mark an opcode illegal at all value types
6615 // (See also visitSELECT)
6616 if (TLI.isOperationLegalOrCustom(ISD::SELECT_CC, MVT::Other)) {
6617 // fold (uint_to_fp (setcc x, y, cc)) -> (select_cc x, y, -1.0, 0.0,, cc)
6618
6619 if (N0.getOpcode() == ISD::SETCC && !VT.isVector() &&
6620 (!LegalOperations ||
6621 TLI.isOperationLegalOrCustom(llvm::ISD::ConstantFP, VT))) {
6622 SDValue Ops[] =
6623 { N0.getOperand(0), N0.getOperand(1),
6624 DAG.getConstantFP(1.0, VT), DAG.getConstantFP(0.0, VT),
6625 N0.getOperand(2) };
6626 return DAG.getNode(ISD::SELECT_CC, SDLoc(N), VT, Ops, 5);
6627 }
6628 }
6629
6630 return SDValue();
6631}
6632
6633SDValue DAGCombiner::visitFP_TO_SINT(SDNode *N) {
6634 SDValue N0 = N->getOperand(0);
6635 ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
6636 EVT VT = N->getValueType(0);
6637
6638 // fold (fp_to_sint c1fp) -> c1
6639 if (N0CFP)
6640 return DAG.getNode(ISD::FP_TO_SINT, SDLoc(N), VT, N0);
6641
6642 return SDValue();
6643}
6644
6645SDValue DAGCombiner::visitFP_TO_UINT(SDNode *N) {
6646 SDValue N0 = N->getOperand(0);
6647 ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
6648 EVT VT = N->getValueType(0);
6649
6650 // fold (fp_to_uint c1fp) -> c1
6651 if (N0CFP)
6652 return DAG.getNode(ISD::FP_TO_UINT, SDLoc(N), VT, N0);
6653
6654 return SDValue();
6655}
6656
6657SDValue DAGCombiner::visitFP_ROUND(SDNode *N) {
6658 SDValue N0 = N->getOperand(0);
6659 SDValue N1 = N->getOperand(1);
6660 ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
6661 EVT VT = N->getValueType(0);
6662
6663 // fold (fp_round c1fp) -> c1fp
6664 if (N0CFP)
6665 return DAG.getNode(ISD::FP_ROUND, SDLoc(N), VT, N0, N1);
6666
6667 // fold (fp_round (fp_extend x)) -> x
6668 if (N0.getOpcode() == ISD::FP_EXTEND && VT == N0.getOperand(0).getValueType())
6669 return N0.getOperand(0);
6670
6671 // fold (fp_round (fp_round x)) -> (fp_round x)
6672 if (N0.getOpcode() == ISD::FP_ROUND) {
6673 // This is a value preserving truncation if both round's are.
6674 bool IsTrunc = N->getConstantOperandVal(1) == 1 &&
6675 N0.getNode()->getConstantOperandVal(1) == 1;
6676 return DAG.getNode(ISD::FP_ROUND, SDLoc(N), VT, N0.getOperand(0),
6677 DAG.getIntPtrConstant(IsTrunc));
6678 }
6679
6680 // fold (fp_round (copysign X, Y)) -> (copysign (fp_round X), Y)
6681 if (N0.getOpcode() == ISD::FCOPYSIGN && N0.getNode()->hasOneUse()) {
6682 SDValue Tmp = DAG.getNode(ISD::FP_ROUND, SDLoc(N0), VT,
6683 N0.getOperand(0), N1);
6684 AddToWorkList(Tmp.getNode());
6685 return DAG.getNode(ISD::FCOPYSIGN, SDLoc(N), VT,
6686 Tmp, N0.getOperand(1));
6687 }
6688
6689 return SDValue();
6690}
6691
6692SDValue DAGCombiner::visitFP_ROUND_INREG(SDNode *N) {
6693 SDValue N0 = N->getOperand(0);
6694 EVT VT = N->getValueType(0);
6695 EVT EVT = cast<VTSDNode>(N->getOperand(1))->getVT();
6696 ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
6697
6698 // fold (fp_round_inreg c1fp) -> c1fp
6699 if (N0CFP && isTypeLegal(EVT)) {
6700 SDValue Round = DAG.getConstantFP(*N0CFP->getConstantFPValue(), EVT);
6701 return DAG.getNode(ISD::FP_EXTEND, SDLoc(N), VT, Round);
6702 }
6703
6704 return SDValue();
6705}
6706
6707SDValue DAGCombiner::visitFP_EXTEND(SDNode *N) {
6708 SDValue N0 = N->getOperand(0);
6709 ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
6710 EVT VT = N->getValueType(0);
6711
6712 // If this is fp_round(fpextend), don't fold it, allow ourselves to be folded.
6713 if (N->hasOneUse() &&
6714 N->use_begin()->getOpcode() == ISD::FP_ROUND)
6715 return SDValue();
6716
6717 // fold (fp_extend c1fp) -> c1fp
6718 if (N0CFP)
6719 return DAG.getNode(ISD::FP_EXTEND, SDLoc(N), VT, N0);
6720
6721 // Turn fp_extend(fp_round(X, 1)) -> x since the fp_round doesn't affect the
6722 // value of X.
6723 if (N0.getOpcode() == ISD::FP_ROUND
6724 && N0.getNode()->getConstantOperandVal(1) == 1) {
6725 SDValue In = N0.getOperand(0);
6726 if (In.getValueType() == VT) return In;
6727 if (VT.bitsLT(In.getValueType()))
6728 return DAG.getNode(ISD::FP_ROUND, SDLoc(N), VT,
6729 In, N0.getOperand(1));
6730 return DAG.getNode(ISD::FP_EXTEND, SDLoc(N), VT, In);
6731 }
6732
6733 // fold (fpext (load x)) -> (fpext (fptrunc (extload x)))
6734 if (ISD::isNormalLoad(N0.getNode()) && N0.hasOneUse() &&
6735 ((!LegalOperations && !cast<LoadSDNode>(N0)->isVolatile()) ||
6736 TLI.isLoadExtLegal(ISD::EXTLOAD, N0.getValueType()))) {
6737 LoadSDNode *LN0 = cast<LoadSDNode>(N0);
6738 SDValue ExtLoad = DAG.getExtLoad(ISD::EXTLOAD, SDLoc(N), VT,
6739 LN0->getChain(),
6740 LN0->getBasePtr(), N0.getValueType(),
6741 LN0->getMemOperand());
6742 CombineTo(N, ExtLoad);
6743 CombineTo(N0.getNode(),
6744 DAG.getNode(ISD::FP_ROUND, SDLoc(N0),
6745 N0.getValueType(), ExtLoad, DAG.getIntPtrConstant(1)),
6746 ExtLoad.getValue(1));
6747 return SDValue(N, 0); // Return N so it doesn't get rechecked!
6748 }
6749
6750 return SDValue();
6751}
6752
6753SDValue DAGCombiner::visitFNEG(SDNode *N) {
6754 SDValue N0 = N->getOperand(0);
6755 EVT VT = N->getValueType(0);
6756
6757 if (VT.isVector()) {
6758 SDValue FoldedVOp = SimplifyVUnaryOp(N);
6759 if (FoldedVOp.getNode()) return FoldedVOp;
6760 }
6761
6762 if (isNegatibleForFree(N0, LegalOperations, DAG.getTargetLoweringInfo(),
6763 &DAG.getTarget().Options))
6764 return GetNegatedExpression(N0, DAG, LegalOperations);
6765
6766 // Transform fneg(bitconvert(x)) -> bitconvert(x^sign) to avoid loading
6767 // constant pool values.
6768 if (!TLI.isFNegFree(VT) && N0.getOpcode() == ISD::BITCAST &&
6769 !VT.isVector() &&
6770 N0.getNode()->hasOneUse() &&
6771 N0.getOperand(0).getValueType().isInteger()) {
6772 SDValue Int = N0.getOperand(0);
6773 EVT IntVT = Int.getValueType();
6774 if (IntVT.isInteger() && !IntVT.isVector()) {
6775 Int = DAG.getNode(ISD::XOR, SDLoc(N0), IntVT, Int,
6776 DAG.getConstant(APInt::getSignBit(IntVT.getSizeInBits()), IntVT));
6777 AddToWorkList(Int.getNode());
6778 return DAG.getNode(ISD::BITCAST, SDLoc(N),
6779 VT, Int);
6780 }
6781 }
6782
6783 // (fneg (fmul c, x)) -> (fmul -c, x)
6784 if (N0.getOpcode() == ISD::FMUL) {
6785 ConstantFPSDNode *CFP1 = dyn_cast<ConstantFPSDNode>(N0.getOperand(1));
6786 if (CFP1)
6787 return DAG.getNode(ISD::FMUL, SDLoc(N), VT,
6788 N0.getOperand(0),
6789 DAG.getNode(ISD::FNEG, SDLoc(N), VT,
6790 N0.getOperand(1)));
6791 }
6792
6793 return SDValue();
6794}
6795
6796SDValue DAGCombiner::visitFCEIL(SDNode *N) {
6797 SDValue N0 = N->getOperand(0);
6798 ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
6799 EVT VT = N->getValueType(0);
6800
6801 // fold (fceil c1) -> fceil(c1)
6802 if (N0CFP)
6803 return DAG.getNode(ISD::FCEIL, SDLoc(N), VT, N0);
6804
6805 return SDValue();
6806}
6807
6808SDValue DAGCombiner::visitFTRUNC(SDNode *N) {
6809 SDValue N0 = N->getOperand(0);
6810 ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
6811 EVT VT = N->getValueType(0);
6812
6813 // fold (ftrunc c1) -> ftrunc(c1)
6814 if (N0CFP)
6815 return DAG.getNode(ISD::FTRUNC, SDLoc(N), VT, N0);
6816
6817 return SDValue();
6818}
6819
6820SDValue DAGCombiner::visitFFLOOR(SDNode *N) {
6821 SDValue N0 = N->getOperand(0);
6822 ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
6823 EVT VT = N->getValueType(0);
6824
6825 // fold (ffloor c1) -> ffloor(c1)
6826 if (N0CFP)
6827 return DAG.getNode(ISD::FFLOOR, SDLoc(N), VT, N0);
6828
6829 return SDValue();
6830}
6831
6832SDValue DAGCombiner::visitFABS(SDNode *N) {
6833 SDValue N0 = N->getOperand(0);
6834 ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
6835 EVT VT = N->getValueType(0);
6836
6837 if (VT.isVector()) {
6838 SDValue FoldedVOp = SimplifyVUnaryOp(N);
6839 if (FoldedVOp.getNode()) return FoldedVOp;
6840 }
6841
6842 // fold (fabs c1) -> fabs(c1)
6843 if (N0CFP)
6844 return DAG.getNode(ISD::FABS, SDLoc(N), VT, N0);
6845 // fold (fabs (fabs x)) -> (fabs x)
6846 if (N0.getOpcode() == ISD::FABS)
6847 return N->getOperand(0);
6848 // fold (fabs (fneg x)) -> (fabs x)
6849 // fold (fabs (fcopysign x, y)) -> (fabs x)
6850 if (N0.getOpcode() == ISD::FNEG || N0.getOpcode() == ISD::FCOPYSIGN)
6851 return DAG.getNode(ISD::FABS, SDLoc(N), VT, N0.getOperand(0));
6852
6853 // Transform fabs(bitconvert(x)) -> bitconvert(x&~sign) to avoid loading
6854 // constant pool values.
6855 if (!TLI.isFAbsFree(VT) &&
6856 N0.getOpcode() == ISD::BITCAST && N0.getNode()->hasOneUse() &&
6857 N0.getOperand(0).getValueType().isInteger() &&
6858 !N0.getOperand(0).getValueType().isVector()) {
6859 SDValue Int = N0.getOperand(0);
6860 EVT IntVT = Int.getValueType();
6861 if (IntVT.isInteger() && !IntVT.isVector()) {
6862 Int = DAG.getNode(ISD::AND, SDLoc(N0), IntVT, Int,
6863 DAG.getConstant(~APInt::getSignBit(IntVT.getSizeInBits()), IntVT));
6864 AddToWorkList(Int.getNode());
6865 return DAG.getNode(ISD::BITCAST, SDLoc(N),
6866 N->getValueType(0), Int);
6867 }
6868 }
6869
6870 return SDValue();
6871}
6872
6873SDValue DAGCombiner::visitBRCOND(SDNode *N) {
6874 SDValue Chain = N->getOperand(0);
6875 SDValue N1 = N->getOperand(1);
6876 SDValue N2 = N->getOperand(2);
6877
6878 // If N is a constant we could fold this into a fallthrough or unconditional
6879 // branch. However that doesn't happen very often in normal code, because
6880 // Instcombine/SimplifyCFG should have handled the available opportunities.
6881 // If we did this folding here, it would be necessary to update the
6882 // MachineBasicBlock CFG, which is awkward.
6883
6884 // fold a brcond with a setcc condition into a BR_CC node if BR_CC is legal
6885 // on the target.
6886 if (N1.getOpcode() == ISD::SETCC &&
6887 TLI.isOperationLegalOrCustom(ISD::BR_CC,
6888 N1.getOperand(0).getValueType())) {
6889 return DAG.getNode(ISD::BR_CC, SDLoc(N), MVT::Other,
6890 Chain, N1.getOperand(2),
6891 N1.getOperand(0), N1.getOperand(1), N2);
6892 }
6893
6894 if ((N1.hasOneUse() && N1.getOpcode() == ISD::SRL) ||
6895 ((N1.getOpcode() == ISD::TRUNCATE && N1.hasOneUse()) &&
6896 (N1.getOperand(0).hasOneUse() &&
6897 N1.getOperand(0).getOpcode() == ISD::SRL))) {
6898 SDNode *Trunc = 0;
6899 if (N1.getOpcode() == ISD::TRUNCATE) {
6900 // Look pass the truncate.
6901 Trunc = N1.getNode();
6902 N1 = N1.getOperand(0);
6903 }
6904
6905 // Match this pattern so that we can generate simpler code:
6906 //
6907 // %a = ...
6908 // %b = and i32 %a, 2
6909 // %c = srl i32 %b, 1
6910 // brcond i32 %c ...
6911 //
6912 // into
6913 //
6914 // %a = ...
6915 // %b = and i32 %a, 2
6916 // %c = setcc eq %b, 0
6917 // brcond %c ...
6918 //
6919 // This applies only when the AND constant value has one bit set and the
6920 // SRL constant is equal to the log2 of the AND constant. The back-end is
6921 // smart enough to convert the result into a TEST/JMP sequence.
6922 SDValue Op0 = N1.getOperand(0);
6923 SDValue Op1 = N1.getOperand(1);
6924
6925 if (Op0.getOpcode() == ISD::AND &&
6926 Op1.getOpcode() == ISD::Constant) {
6927 SDValue AndOp1 = Op0.getOperand(1);
6928
6929 if (AndOp1.getOpcode() == ISD::Constant) {
6930 const APInt &AndConst = cast<ConstantSDNode>(AndOp1)->getAPIntValue();
6931
6932 if (AndConst.isPowerOf2() &&
6933 cast<ConstantSDNode>(Op1)->getAPIntValue()==AndConst.logBase2()) {
6934 SDValue SetCC =
6935 DAG.getSetCC(SDLoc(N),
6936 getSetCCResultType(Op0.getValueType()),
6937 Op0, DAG.getConstant(0, Op0.getValueType()),
6938 ISD::SETNE);
6939
6940 SDValue NewBRCond = DAG.getNode(ISD::BRCOND, SDLoc(N),
6941 MVT::Other, Chain, SetCC, N2);
6942 // Don't add the new BRCond into the worklist or else SimplifySelectCC
6943 // will convert it back to (X & C1) >> C2.
6944 CombineTo(N, NewBRCond, false);
6945 // Truncate is dead.
6946 if (Trunc) {
6947 removeFromWorkList(Trunc);
6948 DAG.DeleteNode(Trunc);
6949 }
6950 // Replace the uses of SRL with SETCC
6951 WorkListRemover DeadNodes(*this);
6952 DAG.ReplaceAllUsesOfValueWith(N1, SetCC);
6953 removeFromWorkList(N1.getNode());
6954 DAG.DeleteNode(N1.getNode());
6955 return SDValue(N, 0); // Return N so it doesn't get rechecked!
6956 }
6957 }
6958 }
6959
6960 if (Trunc)
6961 // Restore N1 if the above transformation doesn't match.
6962 N1 = N->getOperand(1);
6963 }
6964
6965 // Transform br(xor(x, y)) -> br(x != y)
6966 // Transform br(xor(xor(x,y), 1)) -> br (x == y)
6967 if (N1.hasOneUse() && N1.getOpcode() == ISD::XOR) {
6968 SDNode *TheXor = N1.getNode();
6969 SDValue Op0 = TheXor->getOperand(0);
6970 SDValue Op1 = TheXor->getOperand(1);
6971 if (Op0.getOpcode() == Op1.getOpcode()) {
6972 // Avoid missing important xor optimizations.
6973 SDValue Tmp = visitXOR(TheXor);
6974 if (Tmp.getNode()) {
6975 if (Tmp.getNode() != TheXor) {
6976 DEBUG(dbgs() << "\nReplacing.8 ";
6977 TheXor->dump(&DAG);
6978 dbgs() << "\nWith: ";
6979 Tmp.getNode()->dump(&DAG);
6980 dbgs() << '\n');
6981 WorkListRemover DeadNodes(*this);
6982 DAG.ReplaceAllUsesOfValueWith(N1, Tmp);
6983 removeFromWorkList(TheXor);
6984 DAG.DeleteNode(TheXor);
6985 return DAG.getNode(ISD::BRCOND, SDLoc(N),
6986 MVT::Other, Chain, Tmp, N2);
6987 }
6988
6989 // visitXOR has changed XOR's operands or replaced the XOR completely,
6990 // bail out.
6991 return SDValue(N, 0);
6992 }
6993 }
6994
6995 if (Op0.getOpcode() != ISD::SETCC && Op1.getOpcode() != ISD::SETCC) {
6996 bool Equal = false;
6997 if (ConstantSDNode *RHSCI = dyn_cast<ConstantSDNode>(Op0))
6998 if (RHSCI->getAPIntValue() == 1 && Op0.hasOneUse() &&
6999 Op0.getOpcode() == ISD::XOR) {
7000 TheXor = Op0.getNode();
7001 Equal = true;
7002 }
7003
7004 EVT SetCCVT = N1.getValueType();
7005 if (LegalTypes)
7006 SetCCVT = getSetCCResultType(SetCCVT);
7007 SDValue SetCC = DAG.getSetCC(SDLoc(TheXor),
7008 SetCCVT,
7009 Op0, Op1,
7010 Equal ? ISD::SETEQ : ISD::SETNE);
7011 // Replace the uses of XOR with SETCC
7012 WorkListRemover DeadNodes(*this);
7013 DAG.ReplaceAllUsesOfValueWith(N1, SetCC);
7014 removeFromWorkList(N1.getNode());
7015 DAG.DeleteNode(N1.getNode());
7016 return DAG.getNode(ISD::BRCOND, SDLoc(N),
7017 MVT::Other, Chain, SetCC, N2);
7018 }
7019 }
7020
7021 return SDValue();
7022}
7023
7024// Operand List for BR_CC: Chain, CondCC, CondLHS, CondRHS, DestBB.
7025//
7026SDValue DAGCombiner::visitBR_CC(SDNode *N) {
7027 CondCodeSDNode *CC = cast<CondCodeSDNode>(N->getOperand(1));
7028 SDValue CondLHS = N->getOperand(2), CondRHS = N->getOperand(3);
7029
7030 // If N is a constant we could fold this into a fallthrough or unconditional
7031 // branch. However that doesn't happen very often in normal code, because
7032 // Instcombine/SimplifyCFG should have handled the available opportunities.
7033 // If we did this folding here, it would be necessary to update the
7034 // MachineBasicBlock CFG, which is awkward.
7035
7036 // Use SimplifySetCC to simplify SETCC's.
7037 SDValue Simp = SimplifySetCC(getSetCCResultType(CondLHS.getValueType()),
7038 CondLHS, CondRHS, CC->get(), SDLoc(N),
7039 false);
7040 if (Simp.getNode()) AddToWorkList(Simp.getNode());
7041
7042 // fold to a simpler setcc
7043 if (Simp.getNode() && Simp.getOpcode() == ISD::SETCC)
7044 return DAG.getNode(ISD::BR_CC, SDLoc(N), MVT::Other,
7045 N->getOperand(0), Simp.getOperand(2),
7046 Simp.getOperand(0), Simp.getOperand(1),
7047 N->getOperand(4));
7048
7049 return SDValue();
7050}
7051
7052/// canFoldInAddressingMode - Return true if 'Use' is a load or a store that
7053/// uses N as its base pointer and that N may be folded in the load / store
7054/// addressing mode.
7055static bool canFoldInAddressingMode(SDNode *N, SDNode *Use,
7056 SelectionDAG &DAG,
7057 const TargetLowering &TLI) {
7058 EVT VT;
7059 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Use)) {
7060 if (LD->isIndexed() || LD->getBasePtr().getNode() != N)
7061 return false;
7062 VT = Use->getValueType(0);
7063 } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(Use)) {
7064 if (ST->isIndexed() || ST->getBasePtr().getNode() != N)
7065 return false;
7066 VT = ST->getValue().getValueType();
7067 } else
7068 return false;
7069
7070 TargetLowering::AddrMode AM;
7071 if (N->getOpcode() == ISD::ADD) {
7072 ConstantSDNode *Offset = dyn_cast<ConstantSDNode>(N->getOperand(1));
7073 if (Offset)
7074 // [reg +/- imm]
7075 AM.BaseOffs = Offset->getSExtValue();
7076 else
7077 // [reg +/- reg]
7078 AM.Scale = 1;
7079 } else if (N->getOpcode() == ISD::SUB) {
7080 ConstantSDNode *Offset = dyn_cast<ConstantSDNode>(N->getOperand(1));
7081 if (Offset)
7082 // [reg +/- imm]
7083 AM.BaseOffs = -Offset->getSExtValue();
7084 else
7085 // [reg +/- reg]
7086 AM.Scale = 1;
7087 } else
7088 return false;
7089
7090 return TLI.isLegalAddressingMode(AM, VT.getTypeForEVT(*DAG.getContext()));
7091}
7092
7093/// CombineToPreIndexedLoadStore - Try turning a load / store into a
7094/// pre-indexed load / store when the base pointer is an add or subtract
7095/// and it has other uses besides the load / store. After the
7096/// transformation, the new indexed load / store has effectively folded
7097/// the add / subtract in and all of its other uses are redirected to the
7098/// new load / store.
7099bool DAGCombiner::CombineToPreIndexedLoadStore(SDNode *N) {
7100 if (Level < AfterLegalizeDAG)
7101 return false;
7102
7103 bool isLoad = true;
7104 SDValue Ptr;
7105 EVT VT;
7106 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
7107 if (LD->isIndexed())
7108 return false;
7109 VT = LD->getMemoryVT();
7110 if (!TLI.isIndexedLoadLegal(ISD::PRE_INC, VT) &&
7111 !TLI.isIndexedLoadLegal(ISD::PRE_DEC, VT))
7112 return false;
7113 Ptr = LD->getBasePtr();
7114 } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
7115 if (ST->isIndexed())
7116 return false;
7117 VT = ST->getMemoryVT();
7118 if (!TLI.isIndexedStoreLegal(ISD::PRE_INC, VT) &&
7119 !TLI.isIndexedStoreLegal(ISD::PRE_DEC, VT))
7120 return false;
7121 Ptr = ST->getBasePtr();
7122 isLoad = false;
7123 } else {
7124 return false;
7125 }
7126
7127 // If the pointer is not an add/sub, or if it doesn't have multiple uses, bail
7128 // out. There is no reason to make this a preinc/predec.
7129 if ((Ptr.getOpcode() != ISD::ADD && Ptr.getOpcode() != ISD::SUB) ||
7130 Ptr.getNode()->hasOneUse())
7131 return false;
7132
7133 // Ask the target to do addressing mode selection.
7134 SDValue BasePtr;
7135 SDValue Offset;
7136 ISD::MemIndexedMode AM = ISD::UNINDEXED;
7137 if (!TLI.getPreIndexedAddressParts(N, BasePtr, Offset, AM, DAG))
7138 return false;
7139
7140 // Backends without true r+i pre-indexed forms may need to pass a
7141 // constant base with a variable offset so that constant coercion
7142 // will work with the patterns in canonical form.
7143 bool Swapped = false;
7144 if (isa<ConstantSDNode>(BasePtr)) {
7145 std::swap(BasePtr, Offset);
7146 Swapped = true;
7147 }
7148
7149 // Don't create a indexed load / store with zero offset.
7150 if (isa<ConstantSDNode>(Offset) &&
7151 cast<ConstantSDNode>(Offset)->isNullValue())
7152 return false;
7153
7154 // Try turning it into a pre-indexed load / store except when:
7155 // 1) The new base ptr is a frame index.
7156 // 2) If N is a store and the new base ptr is either the same as or is a
7157 // predecessor of the value being stored.
7158 // 3) Another use of old base ptr is a predecessor of N. If ptr is folded
7159 // that would create a cycle.
7160 // 4) All uses are load / store ops that use it as old base ptr.
7161
7162 // Check #1. Preinc'ing a frame index would require copying the stack pointer
7163 // (plus the implicit offset) to a register to preinc anyway.
7164 if (isa<FrameIndexSDNode>(BasePtr) || isa<RegisterSDNode>(BasePtr))
7165 return false;
7166
7167 // Check #2.
7168 if (!isLoad) {
7169 SDValue Val = cast<StoreSDNode>(N)->getValue();
7170 if (Val == BasePtr || BasePtr.getNode()->isPredecessorOf(Val.getNode()))
7171 return false;
7172 }
7173
7174 // If the offset is a constant, there may be other adds of constants that
7175 // can be folded with this one. We should do this to avoid having to keep
7176 // a copy of the original base pointer.
7177 SmallVector<SDNode *, 16> OtherUses;
7178 if (isa<ConstantSDNode>(Offset))
7179 for (SDNode::use_iterator I = BasePtr.getNode()->use_begin(),
7180 E = BasePtr.getNode()->use_end(); I != E; ++I) {
7181 SDNode *Use = *I;
7182 if (Use == Ptr.getNode())
7183 continue;
7184
7185 if (Use->isPredecessorOf(N))
7186 continue;
7187
7188 if (Use->getOpcode() != ISD::ADD && Use->getOpcode() != ISD::SUB) {
7189 OtherUses.clear();
7190 break;
7191 }
7192
7193 SDValue Op0 = Use->getOperand(0), Op1 = Use->getOperand(1);
7194 if (Op1.getNode() == BasePtr.getNode())
7195 std::swap(Op0, Op1);
7196 assert(Op0.getNode() == BasePtr.getNode() &&
7197 "Use of ADD/SUB but not an operand");
7198
7199 if (!isa<ConstantSDNode>(Op1)) {
7200 OtherUses.clear();
7201 break;
7202 }
7203
7204 // FIXME: In some cases, we can be smarter about this.
7205 if (Op1.getValueType() != Offset.getValueType()) {
7206 OtherUses.clear();
7207 break;
7208 }
7209
7210 OtherUses.push_back(Use);
7211 }
7212
7213 if (Swapped)
7214 std::swap(BasePtr, Offset);
7215
7216 // Now check for #3 and #4.
7217 bool RealUse = false;
7218
7219 // Caches for hasPredecessorHelper
7220 SmallPtrSet<const SDNode *, 32> Visited;
7221 SmallVector<const SDNode *, 16> Worklist;
7222
7223 for (SDNode::use_iterator I = Ptr.getNode()->use_begin(),
7224 E = Ptr.getNode()->use_end(); I != E; ++I) {
7225 SDNode *Use = *I;
7226 if (Use == N)
7227 continue;
7228 if (N->hasPredecessorHelper(Use, Visited, Worklist))
7229 return false;
7230
7231 // If Ptr may be folded in addressing mode of other use, then it's
7232 // not profitable to do this transformation.
7233 if (!canFoldInAddressingMode(Ptr.getNode(), Use, DAG, TLI))
7234 RealUse = true;
7235 }
7236
7237 if (!RealUse)
7238 return false;
7239
7240 SDValue Result;
7241 if (isLoad)
7242 Result = DAG.getIndexedLoad(SDValue(N,0), SDLoc(N),
7243 BasePtr, Offset, AM);
7244 else
7245 Result = DAG.getIndexedStore(SDValue(N,0), SDLoc(N),
7246 BasePtr, Offset, AM);
7247 ++PreIndexedNodes;
7248 ++NodesCombined;
7249 DEBUG(dbgs() << "\nReplacing.4 ";
7250 N->dump(&DAG);
7251 dbgs() << "\nWith: ";
7252 Result.getNode()->dump(&DAG);
7253 dbgs() << '\n');
7254 WorkListRemover DeadNodes(*this);
7255 if (isLoad) {
7256 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result.getValue(0));
7257 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), Result.getValue(2));
7258 } else {
7259 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result.getValue(1));
7260 }
7261
7262 // Finally, since the node is now dead, remove it from the graph.
7263 DAG.DeleteNode(N);
7264
7265 if (Swapped)
7266 std::swap(BasePtr, Offset);
7267
7268 // Replace other uses of BasePtr that can be updated to use Ptr
7269 for (unsigned i = 0, e = OtherUses.size(); i != e; ++i) {
7270 unsigned OffsetIdx = 1;
7271 if (OtherUses[i]->getOperand(OffsetIdx).getNode() == BasePtr.getNode())
7272 OffsetIdx = 0;
7273 assert(OtherUses[i]->getOperand(!OffsetIdx).getNode() ==
7274 BasePtr.getNode() && "Expected BasePtr operand");
7275
7276 // We need to replace ptr0 in the following expression:
7277 // x0 * offset0 + y0 * ptr0 = t0
7278 // knowing that
7279 // x1 * offset1 + y1 * ptr0 = t1 (the indexed load/store)
7280 //
7281 // where x0, x1, y0 and y1 in {-1, 1} are given by the types of the
7282 // indexed load/store and the expresion that needs to be re-written.
7283 //
7284 // Therefore, we have:
7285 // t0 = (x0 * offset0 - x1 * y0 * y1 *offset1) + (y0 * y1) * t1
7286
7287 ConstantSDNode *CN =
7288 cast<ConstantSDNode>(OtherUses[i]->getOperand(OffsetIdx));
7289 int X0, X1, Y0, Y1;
7290 APInt Offset0 = CN->getAPIntValue();
7291 APInt Offset1 = cast<ConstantSDNode>(Offset)->getAPIntValue();
7292
7293 X0 = (OtherUses[i]->getOpcode() == ISD::SUB && OffsetIdx == 1) ? -1 : 1;
7294 Y0 = (OtherUses[i]->getOpcode() == ISD::SUB && OffsetIdx == 0) ? -1 : 1;
7295 X1 = (AM == ISD::PRE_DEC && !Swapped) ? -1 : 1;
7296 Y1 = (AM == ISD::PRE_DEC && Swapped) ? -1 : 1;
7297
7298 unsigned Opcode = (Y0 * Y1 < 0) ? ISD::SUB : ISD::ADD;
7299
7300 APInt CNV = Offset0;
7301 if (X0 < 0) CNV = -CNV;
7302 if (X1 * Y0 * Y1 < 0) CNV = CNV + Offset1;
7303 else CNV = CNV - Offset1;
7304
7305 // We can now generate the new expression.
7306 SDValue NewOp1 = DAG.getConstant(CNV, CN->getValueType(0));
7307 SDValue NewOp2 = Result.getValue(isLoad ? 1 : 0);
7308
7309 SDValue NewUse = DAG.getNode(Opcode,
7310 SDLoc(OtherUses[i]),
7311 OtherUses[i]->getValueType(0), NewOp1, NewOp2);
7312 DAG.ReplaceAllUsesOfValueWith(SDValue(OtherUses[i], 0), NewUse);
7313 removeFromWorkList(OtherUses[i]);
7314 DAG.DeleteNode(OtherUses[i]);
7315 }
7316
7317 // Replace the uses of Ptr with uses of the updated base value.
7318 DAG.ReplaceAllUsesOfValueWith(Ptr, Result.getValue(isLoad ? 1 : 0));
7319 removeFromWorkList(Ptr.getNode());
7320 DAG.DeleteNode(Ptr.getNode());
7321
7322 return true;
7323}
7324
7325/// CombineToPostIndexedLoadStore - Try to combine a load / store with a
7326/// add / sub of the base pointer node into a post-indexed load / store.
7327/// The transformation folded the add / subtract into the new indexed
7328/// load / store effectively and all of its uses are redirected to the
7329/// new load / store.
7330bool DAGCombiner::CombineToPostIndexedLoadStore(SDNode *N) {
7331 if (Level < AfterLegalizeDAG)
7332 return false;
7333
7334 bool isLoad = true;
7335 SDValue Ptr;
7336 EVT VT;
7337 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
7338 if (LD->isIndexed())
7339 return false;
7340 VT = LD->getMemoryVT();
7341 if (!TLI.isIndexedLoadLegal(ISD::POST_INC, VT) &&
7342 !TLI.isIndexedLoadLegal(ISD::POST_DEC, VT))
7343 return false;
7344 Ptr = LD->getBasePtr();
7345 } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
7346 if (ST->isIndexed())
7347 return false;
7348 VT = ST->getMemoryVT();
7349 if (!TLI.isIndexedStoreLegal(ISD::POST_INC, VT) &&
7350 !TLI.isIndexedStoreLegal(ISD::POST_DEC, VT))
7351 return false;
7352 Ptr = ST->getBasePtr();
7353 isLoad = false;
7354 } else {
7355 return false;
7356 }
7357
7358 if (Ptr.getNode()->hasOneUse())
7359 return false;
7360
7361 for (SDNode::use_iterator I = Ptr.getNode()->use_begin(),
7362 E = Ptr.getNode()->use_end(); I != E; ++I) {
7363 SDNode *Op = *I;
7364 if (Op == N ||
7365 (Op->getOpcode() != ISD::ADD && Op->getOpcode() != ISD::SUB))
7366 continue;
7367
7368 SDValue BasePtr;
7369 SDValue Offset;
7370 ISD::MemIndexedMode AM = ISD::UNINDEXED;
7371 if (TLI.getPostIndexedAddressParts(N, Op, BasePtr, Offset, AM, DAG)) {
7372 // Don't create a indexed load / store with zero offset.
7373 if (isa<ConstantSDNode>(Offset) &&
7374 cast<ConstantSDNode>(Offset)->isNullValue())
7375 continue;
7376
7377 // Try turning it into a post-indexed load / store except when
7378 // 1) All uses are load / store ops that use it as base ptr (and
7379 // it may be folded as addressing mmode).
7380 // 2) Op must be independent of N, i.e. Op is neither a predecessor
7381 // nor a successor of N. Otherwise, if Op is folded that would
7382 // create a cycle.
7383
7384 if (isa<FrameIndexSDNode>(BasePtr) || isa<RegisterSDNode>(BasePtr))
7385 continue;
7386
7387 // Check for #1.
7388 bool TryNext = false;
7389 for (SDNode::use_iterator II = BasePtr.getNode()->use_begin(),
7390 EE = BasePtr.getNode()->use_end(); II != EE; ++II) {
7391 SDNode *Use = *II;
7392 if (Use == Ptr.getNode())
7393 continue;
7394
7395 // If all the uses are load / store addresses, then don't do the
7396 // transformation.
7397 if (Use->getOpcode() == ISD::ADD || Use->getOpcode() == ISD::SUB){
7398 bool RealUse = false;
7399 for (SDNode::use_iterator III = Use->use_begin(),
7400 EEE = Use->use_end(); III != EEE; ++III) {
7401 SDNode *UseUse = *III;
7402 if (!canFoldInAddressingMode(Use, UseUse, DAG, TLI))
7403 RealUse = true;
7404 }
7405
7406 if (!RealUse) {
7407 TryNext = true;
7408 break;
7409 }
7410 }
7411 }
7412
7413 if (TryNext)
7414 continue;
7415
7416 // Check for #2
7417 if (!Op->isPredecessorOf(N) && !N->isPredecessorOf(Op)) {
7418 SDValue Result = isLoad
7419 ? DAG.getIndexedLoad(SDValue(N,0), SDLoc(N),
7420 BasePtr, Offset, AM)
7421 : DAG.getIndexedStore(SDValue(N,0), SDLoc(N),
7422 BasePtr, Offset, AM);
7423 ++PostIndexedNodes;
7424 ++NodesCombined;
7425 DEBUG(dbgs() << "\nReplacing.5 ";
7426 N->dump(&DAG);
7427 dbgs() << "\nWith: ";
7428 Result.getNode()->dump(&DAG);
7429 dbgs() << '\n');
7430 WorkListRemover DeadNodes(*this);
7431 if (isLoad) {
7432 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result.getValue(0));
7433 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), Result.getValue(2));
7434 } else {
7435 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result.getValue(1));
7436 }
7437
7438 // Finally, since the node is now dead, remove it from the graph.
7439 DAG.DeleteNode(N);
7440
7441 // Replace the uses of Use with uses of the updated base value.
7442 DAG.ReplaceAllUsesOfValueWith(SDValue(Op, 0),
7443 Result.getValue(isLoad ? 1 : 0));
7444 removeFromWorkList(Op);
7445 DAG.DeleteNode(Op);
7446 return true;
7447 }
7448 }
7449 }
7450
7451 return false;
7452}
7453
7454SDValue DAGCombiner::visitLOAD(SDNode *N) {
7455 LoadSDNode *LD = cast<LoadSDNode>(N);
7456 SDValue Chain = LD->getChain();
7457 SDValue Ptr = LD->getBasePtr();
7458
7459 // If load is not volatile and there are no uses of the loaded value (and
7460 // the updated indexed value in case of indexed loads), change uses of the
7461 // chain value into uses of the chain input (i.e. delete the dead load).
7462 if (!LD->isVolatile()) {
7463 if (N->getValueType(1) == MVT::Other) {
7464 // Unindexed loads.
7465 if (!N->hasAnyUseOfValue(0)) {
7466 // It's not safe to use the two value CombineTo variant here. e.g.
7467 // v1, chain2 = load chain1, loc
7468 // v2, chain3 = load chain2, loc
7469 // v3 = add v2, c
7470 // Now we replace use of chain2 with chain1. This makes the second load
7471 // isomorphic to the one we are deleting, and thus makes this load live.
7472 DEBUG(dbgs() << "\nReplacing.6 ";
7473 N->dump(&DAG);
7474 dbgs() << "\nWith chain: ";
7475 Chain.getNode()->dump(&DAG);
7476 dbgs() << "\n");
7477 WorkListRemover DeadNodes(*this);
7478 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), Chain);
7479
7480 if (N->use_empty()) {
7481 removeFromWorkList(N);
7482 DAG.DeleteNode(N);
7483 }
7484
7485 return SDValue(N, 0); // Return N so it doesn't get rechecked!
7486 }
7487 } else {
7488 // Indexed loads.
7489 assert(N->getValueType(2) == MVT::Other && "Malformed indexed loads?");
7490 if (!N->hasAnyUseOfValue(0) && !N->hasAnyUseOfValue(1)) {
7491 SDValue Undef = DAG.getUNDEF(N->getValueType(0));
7492 DEBUG(dbgs() << "\nReplacing.7 ";
7493 N->dump(&DAG);
7494 dbgs() << "\nWith: ";
7495 Undef.getNode()->dump(&DAG);
7496 dbgs() << " and 2 other values\n");
7497 WorkListRemover DeadNodes(*this);
7498 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Undef);
7499 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1),
7500 DAG.getUNDEF(N->getValueType(1)));
7501 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 2), Chain);
7502 removeFromWorkList(N);
7503 DAG.DeleteNode(N);
7504 return SDValue(N, 0); // Return N so it doesn't get rechecked!
7505 }
7506 }
7507 }
7508
7509 // If this load is directly stored, replace the load value with the stored
7510 // value.
7511 // TODO: Handle store large -> read small portion.
7512 // TODO: Handle TRUNCSTORE/LOADEXT
7513 if (ISD::isNormalLoad(N) && !LD->isVolatile()) {
7514 if (ISD::isNON_TRUNCStore(Chain.getNode())) {
7515 StoreSDNode *PrevST = cast<StoreSDNode>(Chain);
7516 if (PrevST->getBasePtr() == Ptr &&
7517 PrevST->getValue().getValueType() == N->getValueType(0))
7518 return CombineTo(N, Chain.getOperand(1), Chain);
7519 }
7520 }
7521
7522 // Try to infer better alignment information than the load already has.
7523 if (OptLevel != CodeGenOpt::None && LD->isUnindexed()) {
7524 if (unsigned Align = DAG.InferPtrAlignment(Ptr)) {
7525 if (Align > LD->getMemOperand()->getBaseAlignment()) {
7526 SDValue NewLoad =
7527 DAG.getExtLoad(LD->getExtensionType(), SDLoc(N),
7528 LD->getValueType(0),
7529 Chain, Ptr, LD->getPointerInfo(),
7530 LD->getMemoryVT(),
7531 LD->isVolatile(), LD->isNonTemporal(), Align,
7532 LD->getTBAAInfo());
7533 return CombineTo(N, NewLoad, SDValue(NewLoad.getNode(), 1), true);
7534 }
7535 }
7536 }
7537
7538 bool UseAA = CombinerAA.getNumOccurrences() > 0 ? CombinerAA :
7539 TLI.getTargetMachine().getSubtarget<TargetSubtargetInfo>().useAA();
7540 if (UseAA) {
7541 // Walk up chain skipping non-aliasing memory nodes.
7542 SDValue BetterChain = FindBetterChain(N, Chain);
7543
7544 // If there is a better chain.
7545 if (Chain != BetterChain) {
7546 SDValue ReplLoad;
7547
7548 // Replace the chain to void dependency.
7549 if (LD->getExtensionType() == ISD::NON_EXTLOAD) {
7550 ReplLoad = DAG.getLoad(N->getValueType(0), SDLoc(LD),
7551 BetterChain, Ptr, LD->getMemOperand());
7552 } else {
7553 ReplLoad = DAG.getExtLoad(LD->getExtensionType(), SDLoc(LD),
7554 LD->getValueType(0),
7555 BetterChain, Ptr, LD->getMemoryVT(),
7556 LD->getMemOperand());
7557 }
7558
7559 // Create token factor to keep old chain connected.
7560 SDValue Token = DAG.getNode(ISD::TokenFactor, SDLoc(N),
7561 MVT::Other, Chain, ReplLoad.getValue(1));
7562
7563 // Make sure the new and old chains are cleaned up.
7564 AddToWorkList(Token.getNode());
7565
7566 // Replace uses with load result and token factor. Don't add users
7567 // to work list.
7568 return CombineTo(N, ReplLoad.getValue(0), Token, false);
7569 }
7570 }
7571
7572 // Try transforming N to an indexed load.
7573 if (CombineToPreIndexedLoadStore(N) || CombineToPostIndexedLoadStore(N))
7574 return SDValue(N, 0);
7575
7576 // Try to slice up N to more direct loads if the slices are mapped to
7577 // different register banks or pairing can take place.
7578 if (SliceUpLoad(N))
7579 return SDValue(N, 0);
7580
7581 return SDValue();
7582}
7583
7584namespace {
7585/// \brief Helper structure used to slice a load in smaller loads.
7586/// Basically a slice is obtained from the following sequence:
7587/// Origin = load Ty1, Base
7588/// Shift = srl Ty1 Origin, CstTy Amount
7589/// Inst = trunc Shift to Ty2
7590///
7591/// Then, it will be rewriten into:
7592/// Slice = load SliceTy, Base + SliceOffset
7593/// [Inst = zext Slice to Ty2], only if SliceTy <> Ty2
7594///
7595/// SliceTy is deduced from the number of bits that are actually used to
7596/// build Inst.
7597struct LoadedSlice {
7598 /// \brief Helper structure used to compute the cost of a slice.
7599 struct Cost {
7600 /// Are we optimizing for code size.
7601 bool ForCodeSize;
7602 /// Various cost.
7603 unsigned Loads;
7604 unsigned Truncates;
7605 unsigned CrossRegisterBanksCopies;
7606 unsigned ZExts;
7607 unsigned Shift;
7608
7609 Cost(bool ForCodeSize = false)
7610 : ForCodeSize(ForCodeSize), Loads(0), Truncates(0),
7611 CrossRegisterBanksCopies(0), ZExts(0), Shift(0) {}
7612
7613 /// \brief Get the cost of one isolated slice.
7614 Cost(const LoadedSlice &LS, bool ForCodeSize = false)
7615 : ForCodeSize(ForCodeSize), Loads(1), Truncates(0),
7616 CrossRegisterBanksCopies(0), ZExts(0), Shift(0) {
7617 EVT TruncType = LS.Inst->getValueType(0);
7618 EVT LoadedType = LS.getLoadedType();
7619 if (TruncType != LoadedType &&
7620 !LS.DAG->getTargetLoweringInfo().isZExtFree(LoadedType, TruncType))
7621 ZExts = 1;
7622 }
7623
7624 /// \brief Account for slicing gain in the current cost.
7625 /// Slicing provide a few gains like removing a shift or a
7626 /// truncate. This method allows to grow the cost of the original
7627 /// load with the gain from this slice.
7628 void addSliceGain(const LoadedSlice &LS) {
7629 // Each slice saves a truncate.
7630 const TargetLowering &TLI = LS.DAG->getTargetLoweringInfo();
7631 if (!TLI.isTruncateFree(LS.Inst->getValueType(0),
7632 LS.Inst->getOperand(0).getValueType()))
7633 ++Truncates;
7634 // If there is a shift amount, this slice gets rid of it.
7635 if (LS.Shift)
7636 ++Shift;
7637 // If this slice can merge a cross register bank copy, account for it.
7638 if (LS.canMergeExpensiveCrossRegisterBankCopy())
7639 ++CrossRegisterBanksCopies;
7640 }
7641
7642 Cost &operator+=(const Cost &RHS) {
7643 Loads += RHS.Loads;
7644 Truncates += RHS.Truncates;
7645 CrossRegisterBanksCopies += RHS.CrossRegisterBanksCopies;
7646 ZExts += RHS.ZExts;
7647 Shift += RHS.Shift;
7648 return *this;
7649 }
7650
7651 bool operator==(const Cost &RHS) const {
7652 return Loads == RHS.Loads && Truncates == RHS.Truncates &&
7653 CrossRegisterBanksCopies == RHS.CrossRegisterBanksCopies &&
7654 ZExts == RHS.ZExts && Shift == RHS.Shift;
7655 }
7656
7657 bool operator!=(const Cost &RHS) const { return !(*this == RHS); }
7658
7659 bool operator<(const Cost &RHS) const {
7660 // Assume cross register banks copies are as expensive as loads.
7661 // FIXME: Do we want some more target hooks?
7662 unsigned ExpensiveOpsLHS = Loads + CrossRegisterBanksCopies;
7663 unsigned ExpensiveOpsRHS = RHS.Loads + RHS.CrossRegisterBanksCopies;
7664 // Unless we are optimizing for code size, consider the
7665 // expensive operation first.
7666 if (!ForCodeSize && ExpensiveOpsLHS != ExpensiveOpsRHS)
7667 return ExpensiveOpsLHS < ExpensiveOpsRHS;
7668 return (Truncates + ZExts + Shift + ExpensiveOpsLHS) <
7669 (RHS.Truncates + RHS.ZExts + RHS.Shift + ExpensiveOpsRHS);
7670 }
7671
7672 bool operator>(const Cost &RHS) const { return RHS < *this; }
7673
7674 bool operator<=(const Cost &RHS) const { return !(RHS < *this); }
7675
7676 bool operator>=(const Cost &RHS) const { return !(*this < RHS); }
7677 };
7678 // The last instruction that represent the slice. This should be a
7679 // truncate instruction.
7680 SDNode *Inst;
7681 // The original load instruction.
7682 LoadSDNode *Origin;
7683 // The right shift amount in bits from the original load.
7684 unsigned Shift;
7685 // The DAG from which Origin came from.
7686 // This is used to get some contextual information about legal types, etc.
7687 SelectionDAG *DAG;
7688
7689 LoadedSlice(SDNode *Inst = NULL, LoadSDNode *Origin = NULL,
7690 unsigned Shift = 0, SelectionDAG *DAG = NULL)
7691 : Inst(Inst), Origin(Origin), Shift(Shift), DAG(DAG) {}
7692
7693 LoadedSlice(const LoadedSlice &LS)
7694 : Inst(LS.Inst), Origin(LS.Origin), Shift(LS.Shift), DAG(LS.DAG) {}
7695
7696 /// \brief Get the bits used in a chunk of bits \p BitWidth large.
7697 /// \return Result is \p BitWidth and has used bits set to 1 and
7698 /// not used bits set to 0.
7699 APInt getUsedBits() const {
7700 // Reproduce the trunc(lshr) sequence:
7701 // - Start from the truncated value.
7702 // - Zero extend to the desired bit width.
7703 // - Shift left.
7704 assert(Origin && "No original load to compare against.");
7705 unsigned BitWidth = Origin->getValueSizeInBits(0);
7706 assert(Inst && "This slice is not bound to an instruction");
7707 assert(Inst->getValueSizeInBits(0) <= BitWidth &&
7708 "Extracted slice is bigger than the whole type!");
7709 APInt UsedBits(Inst->getValueSizeInBits(0), 0);
7710 UsedBits.setAllBits();
7711 UsedBits = UsedBits.zext(BitWidth);
7712 UsedBits <<= Shift;
7713 return UsedBits;
7714 }
7715
7716 /// \brief Get the size of the slice to be loaded in bytes.
7717 unsigned getLoadedSize() const {
7718 unsigned SliceSize = getUsedBits().countPopulation();
7719 assert(!(SliceSize & 0x7) && "Size is not a multiple of a byte.");
7720 return SliceSize / 8;
7721 }
7722
7723 /// \brief Get the type that will be loaded for this slice.
7724 /// Note: This may not be the final type for the slice.
7725 EVT getLoadedType() const {
7726 assert(DAG && "Missing context");
7727 LLVMContext &Ctxt = *DAG->getContext();
7728 return EVT::getIntegerVT(Ctxt, getLoadedSize() * 8);
7729 }
7730
7731 /// \brief Get the alignment of the load used for this slice.
7732 unsigned getAlignment() const {
7733 unsigned Alignment = Origin->getAlignment();
7734 unsigned Offset = getOffsetFromBase();
7735 if (Offset != 0)
7736 Alignment = MinAlign(Alignment, Alignment + Offset);
7737 return Alignment;
7738 }
7739
7740 /// \brief Check if this slice can be rewritten with legal operations.
7741 bool isLegal() const {
7742 // An invalid slice is not legal.
7743 if (!Origin || !Inst || !DAG)
7744 return false;
7745
7746 // Offsets are for indexed load only, we do not handle that.
7747 if (Origin->getOffset().getOpcode() != ISD::UNDEF)
7748 return false;
7749
7750 const TargetLowering &TLI = DAG->getTargetLoweringInfo();
7751
7752 // Check that the type is legal.
7753 EVT SliceType = getLoadedType();
7754 if (!TLI.isTypeLegal(SliceType))
7755 return false;
7756
7757 // Check that the load is legal for this type.
7758 if (!TLI.isOperationLegal(ISD::LOAD, SliceType))
7759 return false;
7760
7761 // Check that the offset can be computed.
7762 // 1. Check its type.
7763 EVT PtrType = Origin->getBasePtr().getValueType();
7764 if (PtrType == MVT::Untyped || PtrType.isExtended())
7765 return false;
7766
7767 // 2. Check that it fits in the immediate.
7768 if (!TLI.isLegalAddImmediate(getOffsetFromBase()))
7769 return false;
7770
7771 // 3. Check that the computation is legal.
7772 if (!TLI.isOperationLegal(ISD::ADD, PtrType))
7773 return false;
7774
7775 // Check that the zext is legal if it needs one.
7776 EVT TruncateType = Inst->getValueType(0);
7777 if (TruncateType != SliceType &&
7778 !TLI.isOperationLegal(ISD::ZERO_EXTEND, TruncateType))
7779 return false;
7780
7781 return true;
7782 }
7783
7784 /// \brief Get the offset in bytes of this slice in the original chunk of
7785 /// bits.
7786 /// \pre DAG != NULL.
7787 uint64_t getOffsetFromBase() const {
7788 assert(DAG && "Missing context.");
7789 bool IsBigEndian =
7790 DAG->getTargetLoweringInfo().getDataLayout()->isBigEndian();
7791 assert(!(Shift & 0x7) && "Shifts not aligned on Bytes are not supported.");
7792 uint64_t Offset = Shift / 8;
7793 unsigned TySizeInBytes = Origin->getValueSizeInBits(0) / 8;
7794 assert(!(Origin->getValueSizeInBits(0) & 0x7) &&
7795 "The size of the original loaded type is not a multiple of a"
7796 " byte.");
7797 // If Offset is bigger than TySizeInBytes, it means we are loading all
7798 // zeros. This should have been optimized before in the process.
7799 assert(TySizeInBytes > Offset &&
7800 "Invalid shift amount for given loaded size");
7801 if (IsBigEndian)
7802 Offset = TySizeInBytes - Offset - getLoadedSize();
7803 return Offset;
7804 }
7805
7806 /// \brief Generate the sequence of instructions to load the slice
7807 /// represented by this object and redirect the uses of this slice to
7808 /// this new sequence of instructions.
7809 /// \pre this->Inst && this->Origin are valid Instructions and this
7810 /// object passed the legal check: LoadedSlice::isLegal returned true.
7811 /// \return The last instruction of the sequence used to load the slice.
7812 SDValue loadSlice() const {
7813 assert(Inst && Origin && "Unable to replace a non-existing slice.");
7814 const SDValue &OldBaseAddr = Origin->getBasePtr();
7815 SDValue BaseAddr = OldBaseAddr;
7816 // Get the offset in that chunk of bytes w.r.t. the endianess.
7817 int64_t Offset = static_cast<int64_t>(getOffsetFromBase());
7818 assert(Offset >= 0 && "Offset too big to fit in int64_t!");
7819 if (Offset) {
7820 // BaseAddr = BaseAddr + Offset.
7821 EVT ArithType = BaseAddr.getValueType();
7822 BaseAddr = DAG->getNode(ISD::ADD, SDLoc(Origin), ArithType, BaseAddr,
7823 DAG->getConstant(Offset, ArithType));
7824 }
7825
7826 // Create the type of the loaded slice according to its size.
7827 EVT SliceType = getLoadedType();
7828
7829 // Create the load for the slice.
7830 SDValue LastInst = DAG->getLoad(
7831 SliceType, SDLoc(Origin), Origin->getChain(), BaseAddr,
7832 Origin->getPointerInfo().getWithOffset(Offset), Origin->isVolatile(),
7833 Origin->isNonTemporal(), Origin->isInvariant(), getAlignment());
7834 // If the final type is not the same as the loaded type, this means that
7835 // we have to pad with zero. Create a zero extend for that.
7836 EVT FinalType = Inst->getValueType(0);
7837 if (SliceType != FinalType)
7838 LastInst =
7839 DAG->getNode(ISD::ZERO_EXTEND, SDLoc(LastInst), FinalType, LastInst);
7840 return LastInst;
7841 }
7842
7843 /// \brief Check if this slice can be merged with an expensive cross register
7844 /// bank copy. E.g.,
7845 /// i = load i32
7846 /// f = bitcast i32 i to float
7847 bool canMergeExpensiveCrossRegisterBankCopy() const {
7848 if (!Inst || !Inst->hasOneUse())
7849 return false;
7850 SDNode *Use = *Inst->use_begin();
7851 if (Use->getOpcode() != ISD::BITCAST)
7852 return false;
7853 assert(DAG && "Missing context");
7854 const TargetLowering &TLI = DAG->getTargetLoweringInfo();
7855 EVT ResVT = Use->getValueType(0);
7856 const TargetRegisterClass *ResRC = TLI.getRegClassFor(ResVT.getSimpleVT());
7857 const TargetRegisterClass *ArgRC =
7858 TLI.getRegClassFor(Use->getOperand(0).getValueType().getSimpleVT());
7859 if (ArgRC == ResRC || !TLI.isOperationLegal(ISD::LOAD, ResVT))
7860 return false;
7861
7862 // At this point, we know that we perform a cross-register-bank copy.
7863 // Check if it is expensive.
7864 const TargetRegisterInfo *TRI = TLI.getTargetMachine().getRegisterInfo();
7865 // Assume bitcasts are cheap, unless both register classes do not
7866 // explicitly share a common sub class.
7867 if (!TRI || TRI->getCommonSubClass(ArgRC, ResRC))
7868 return false;
7869
7870 // Check if it will be merged with the load.
7871 // 1. Check the alignment constraint.
7872 unsigned RequiredAlignment = TLI.getDataLayout()->getABITypeAlignment(
7873 ResVT.getTypeForEVT(*DAG->getContext()));
7874
7875 if (RequiredAlignment > getAlignment())
7876 return false;
7877
7878 // 2. Check that the load is a legal operation for that type.
7879 if (!TLI.isOperationLegal(ISD::LOAD, ResVT))
7880 return false;
7881
7882 // 3. Check that we do not have a zext in the way.
7883 if (Inst->getValueType(0) != getLoadedType())
7884 return false;
7885
7886 return true;
7887 }
7888};
7889}
7890
7891/// \brief Sorts LoadedSlice according to their offset.
7892struct LoadedSliceSorter {
7893 bool operator()(const LoadedSlice &LHS, const LoadedSlice &RHS) {
7894 assert(LHS.Origin == RHS.Origin && "Different bases not implemented.");
7895 return LHS.getOffsetFromBase() < RHS.getOffsetFromBase();
7896 }
7897};
7898
7899/// \brief Check that all bits set in \p UsedBits form a dense region, i.e.,
7900/// \p UsedBits looks like 0..0 1..1 0..0.
7901static bool areUsedBitsDense(const APInt &UsedBits) {
7902 // If all the bits are one, this is dense!
7903 if (UsedBits.isAllOnesValue())
7904 return true;
7905
7906 // Get rid of the unused bits on the right.
7907 APInt NarrowedUsedBits = UsedBits.lshr(UsedBits.countTrailingZeros());
7908 // Get rid of the unused bits on the left.
7909 if (NarrowedUsedBits.countLeadingZeros())
7910 NarrowedUsedBits = NarrowedUsedBits.trunc(NarrowedUsedBits.getActiveBits());
7911 // Check that the chunk of bits is completely used.
7912 return NarrowedUsedBits.isAllOnesValue();
7913}
7914
7915/// \brief Check whether or not \p First and \p Second are next to each other
7916/// in memory. This means that there is no hole between the bits loaded
7917/// by \p First and the bits loaded by \p Second.
7918static bool areSlicesNextToEachOther(const LoadedSlice &First,
7919 const LoadedSlice &Second) {
7920 assert(First.Origin == Second.Origin && First.Origin &&
7921 "Unable to match different memory origins.");
7922 APInt UsedBits = First.getUsedBits();
7923 assert((UsedBits & Second.getUsedBits()) == 0 &&
7924 "Slices are not supposed to overlap.");
7925 UsedBits |= Second.getUsedBits();
7926 return areUsedBitsDense(UsedBits);
7927}
7928
7929/// \brief Adjust the \p GlobalLSCost according to the target
7930/// paring capabilities and the layout of the slices.
7931/// \pre \p GlobalLSCost should account for at least as many loads as
7932/// there is in the slices in \p LoadedSlices.
7933static void adjustCostForPairing(SmallVectorImpl<LoadedSlice> &LoadedSlices,
7934 LoadedSlice::Cost &GlobalLSCost) {
7935 unsigned NumberOfSlices = LoadedSlices.size();
7936 // If there is less than 2 elements, no pairing is possible.
7937 if (NumberOfSlices < 2)
7938 return;
7939
7940 // Sort the slices so that elements that are likely to be next to each
7941 // other in memory are next to each other in the list.
7942 std::sort(LoadedSlices.begin(), LoadedSlices.end(), LoadedSliceSorter());
7943 const TargetLowering &TLI = LoadedSlices[0].DAG->getTargetLoweringInfo();
7944 // First (resp. Second) is the first (resp. Second) potentially candidate
7945 // to be placed in a paired load.
7946 const LoadedSlice *First = NULL;
7947 const LoadedSlice *Second = NULL;
7948 for (unsigned CurrSlice = 0; CurrSlice < NumberOfSlices; ++CurrSlice,
7949 // Set the beginning of the pair.
7950 First = Second) {
7951
7952 Second = &LoadedSlices[CurrSlice];
7953
7954 // If First is NULL, it means we start a new pair.
7955 // Get to the next slice.
7956 if (!First)
7957 continue;
7958
7959 EVT LoadedType = First->getLoadedType();
7960
7961 // If the types of the slices are different, we cannot pair them.
7962 if (LoadedType != Second->getLoadedType())
7963 continue;
7964
7965 // Check if the target supplies paired loads for this type.
7966 unsigned RequiredAlignment = 0;
7967 if (!TLI.hasPairedLoad(LoadedType, RequiredAlignment)) {
7968 // move to the next pair, this type is hopeless.
7969 Second = NULL;
7970 continue;
7971 }
7972 // Check if we meet the alignment requirement.
7973 if (RequiredAlignment > First->getAlignment())
7974 continue;
7975
7976 // Check that both loads are next to each other in memory.
7977 if (!areSlicesNextToEachOther(*First, *Second))
7978 continue;
7979
7980 assert(GlobalLSCost.Loads > 0 && "We save more loads than we created!");
7981 --GlobalLSCost.Loads;
7982 // Move to the next pair.
7983 Second = NULL;
7984 }
7985}
7986
7987/// \brief Check the profitability of all involved LoadedSlice.
7988/// Currently, it is considered profitable if there is exactly two
7989/// involved slices (1) which are (2) next to each other in memory, and
7990/// whose cost (\see LoadedSlice::Cost) is smaller than the original load (3).
7991///
7992/// Note: The order of the elements in \p LoadedSlices may be modified, but not
7993/// the elements themselves.
7994///
7995/// FIXME: When the cost model will be mature enough, we can relax
7996/// constraints (1) and (2).
7997static bool isSlicingProfitable(SmallVectorImpl<LoadedSlice> &LoadedSlices,
7998 const APInt &UsedBits, bool ForCodeSize) {
7999 unsigned NumberOfSlices = LoadedSlices.size();
8000 if (StressLoadSlicing)
8001 return NumberOfSlices > 1;
8002
8003 // Check (1).
8004 if (NumberOfSlices != 2)
8005 return false;
8006
8007 // Check (2).
8008 if (!areUsedBitsDense(UsedBits))
8009 return false;
8010
8011 // Check (3).
8012 LoadedSlice::Cost OrigCost(ForCodeSize), GlobalSlicingCost(ForCodeSize);
8013 // The original code has one big load.
8014 OrigCost.Loads = 1;
8015 for (unsigned CurrSlice = 0; CurrSlice < NumberOfSlices; ++CurrSlice) {
8016 const LoadedSlice &LS = LoadedSlices[CurrSlice];
8017 // Accumulate the cost of all the slices.
8018 LoadedSlice::Cost SliceCost(LS, ForCodeSize);
8019 GlobalSlicingCost += SliceCost;
8020
8021 // Account as cost in the original configuration the gain obtained
8022 // with the current slices.
8023 OrigCost.addSliceGain(LS);
8024 }
8025
8026 // If the target supports paired load, adjust the cost accordingly.
8027 adjustCostForPairing(LoadedSlices, GlobalSlicingCost);
8028 return OrigCost > GlobalSlicingCost;
8029}
8030
8031/// \brief If the given load, \p LI, is used only by trunc or trunc(lshr)
8032/// operations, split it in the various pieces being extracted.
8033///
8034/// This sort of thing is introduced by SROA.
8035/// This slicing takes care not to insert overlapping loads.
8036/// \pre LI is a simple load (i.e., not an atomic or volatile load).
8037bool DAGCombiner::SliceUpLoad(SDNode *N) {
8038 if (Level < AfterLegalizeDAG)
8039 return false;
8040
8041 LoadSDNode *LD = cast<LoadSDNode>(N);
8042 if (LD->isVolatile() || !ISD::isNormalLoad(LD) ||
8043 !LD->getValueType(0).isInteger())
8044 return false;
8045
8046 // Keep track of already used bits to detect overlapping values.
8047 // In that case, we will just abort the transformation.
8048 APInt UsedBits(LD->getValueSizeInBits(0), 0);
8049
8050 SmallVector<LoadedSlice, 4> LoadedSlices;
8051
8052 // Check if this load is used as several smaller chunks of bits.
8053 // Basically, look for uses in trunc or trunc(lshr) and record a new chain
8054 // of computation for each trunc.
8055 for (SDNode::use_iterator UI = LD->use_begin(), UIEnd = LD->use_end();
8056 UI != UIEnd; ++UI) {
8057 // Skip the uses of the chain.
8058 if (UI.getUse().getResNo() != 0)
8059 continue;
8060
8061 SDNode *User = *UI;
8062 unsigned Shift = 0;
8063
8064 // Check if this is a trunc(lshr).
8065 if (User->getOpcode() == ISD::SRL && User->hasOneUse() &&
8066 isa<ConstantSDNode>(User->getOperand(1))) {
8067 Shift = cast<ConstantSDNode>(User->getOperand(1))->getZExtValue();
8068 User = *User->use_begin();
8069 }
8070
8071 // At this point, User is a Truncate, iff we encountered, trunc or
8072 // trunc(lshr).
8073 if (User->getOpcode() != ISD::TRUNCATE)
8074 return false;
8075
8076 // The width of the type must be a power of 2 and greater than 8-bits.
8077 // Otherwise the load cannot be represented in LLVM IR.
8078 // Moreover, if we shifted with a non 8-bits multiple, the slice
8079 // will be accross several bytes. We do not support that.
8080 unsigned Width = User->getValueSizeInBits(0);
8081 if (Width < 8 || !isPowerOf2_32(Width) || (Shift & 0x7))
8082 return 0;
8083
8084 // Build the slice for this chain of computations.
8085 LoadedSlice LS(User, LD, Shift, &DAG);
8086 APInt CurrentUsedBits = LS.getUsedBits();
8087
8088 // Check if this slice overlaps with another.
8089 if ((CurrentUsedBits & UsedBits) != 0)
8090 return false;
8091 // Update the bits used globally.
8092 UsedBits |= CurrentUsedBits;
8093
8094 // Check if the new slice would be legal.
8095 if (!LS.isLegal())
8096 return false;
8097
8098 // Record the slice.
8099 LoadedSlices.push_back(LS);
8100 }
8101
8102 // Abort slicing if it does not seem to be profitable.
8103 if (!isSlicingProfitable(LoadedSlices, UsedBits, ForCodeSize))
8104 return false;
8105
8106 ++SlicedLoads;
8107
8108 // Rewrite each chain to use an independent load.
8109 // By construction, each chain can be represented by a unique load.
8110
8111 // Prepare the argument for the new token factor for all the slices.
8112 SmallVector<SDValue, 8> ArgChains;
8113 for (SmallVectorImpl<LoadedSlice>::const_iterator
8114 LSIt = LoadedSlices.begin(),
8115 LSItEnd = LoadedSlices.end();
8116 LSIt != LSItEnd; ++LSIt) {
8117 SDValue SliceInst = LSIt->loadSlice();
8118 CombineTo(LSIt->Inst, SliceInst, true);
8119 if (SliceInst.getNode()->getOpcode() != ISD::LOAD)
8120 SliceInst = SliceInst.getOperand(0);
8121 assert(SliceInst->getOpcode() == ISD::LOAD &&
8122 "It takes more than a zext to get to the loaded slice!!");
8123 ArgChains.push_back(SliceInst.getValue(1));
8124 }
8125
8126 SDValue Chain = DAG.getNode(ISD::TokenFactor, SDLoc(LD), MVT::Other,
8127 &ArgChains[0], ArgChains.size());
8128 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), Chain);
8129 return true;
8130}
8131
8132/// CheckForMaskedLoad - Check to see if V is (and load (ptr), imm), where the
8133/// load is having specific bytes cleared out. If so, return the byte size
8134/// being masked out and the shift amount.
8135static std::pair<unsigned, unsigned>
8136CheckForMaskedLoad(SDValue V, SDValue Ptr, SDValue Chain) {
8137 std::pair<unsigned, unsigned> Result(0, 0);
8138
8139 // Check for the structure we're looking for.
8140 if (V->getOpcode() != ISD::AND ||
8141 !isa<ConstantSDNode>(V->getOperand(1)) ||
8142 !ISD::isNormalLoad(V->getOperand(0).getNode()))
8143 return Result;
8144
8145 // Check the chain and pointer.
8146 LoadSDNode *LD = cast<LoadSDNode>(V->getOperand(0));
8147 if (LD->getBasePtr() != Ptr) return Result; // Not from same pointer.
8148
8149 // The store should be chained directly to the load or be an operand of a
8150 // tokenfactor.
8151 if (LD == Chain.getNode())
8152 ; // ok.
8153 else if (Chain->getOpcode() != ISD::TokenFactor)
8154 return Result; // Fail.
8155 else {
8156 bool isOk = false;
8157 for (unsigned i = 0, e = Chain->getNumOperands(); i != e; ++i)
8158 if (Chain->getOperand(i).getNode() == LD) {
8159 isOk = true;
8160 break;
8161 }
8162 if (!isOk) return Result;
8163 }
8164
8165 // This only handles simple types.
8166 if (V.getValueType() != MVT::i16 &&
8167 V.getValueType() != MVT::i32 &&
8168 V.getValueType() != MVT::i64)
8169 return Result;
8170
8171 // Check the constant mask. Invert it so that the bits being masked out are
8172 // 0 and the bits being kept are 1. Use getSExtValue so that leading bits
8173 // follow the sign bit for uniformity.
8174 uint64_t NotMask = ~cast<ConstantSDNode>(V->getOperand(1))->getSExtValue();
8175 unsigned NotMaskLZ = countLeadingZeros(NotMask);
8176 if (NotMaskLZ & 7) return Result; // Must be multiple of a byte.
8177 unsigned NotMaskTZ = countTrailingZeros(NotMask);
8178 if (NotMaskTZ & 7) return Result; // Must be multiple of a byte.
8179 if (NotMaskLZ == 64) return Result; // All zero mask.
8180
8181 // See if we have a continuous run of bits. If so, we have 0*1+0*
8182 if (CountTrailingOnes_64(NotMask >> NotMaskTZ)+NotMaskTZ+NotMaskLZ != 64)
8183 return Result;
8184
8185 // Adjust NotMaskLZ down to be from the actual size of the int instead of i64.
8186 if (V.getValueType() != MVT::i64 && NotMaskLZ)
8187 NotMaskLZ -= 64-V.getValueSizeInBits();
8188
8189 unsigned MaskedBytes = (V.getValueSizeInBits()-NotMaskLZ-NotMaskTZ)/8;
8190 switch (MaskedBytes) {
8191 case 1:
8192 case 2:
8193 case 4: break;
8194 default: return Result; // All one mask, or 5-byte mask.
8195 }
8196
8197 // Verify that the first bit starts at a multiple of mask so that the access
8198 // is aligned the same as the access width.
8199 if (NotMaskTZ && NotMaskTZ/8 % MaskedBytes) return Result;
8200
8201 Result.first = MaskedBytes;
8202 Result.second = NotMaskTZ/8;
8203 return Result;
8204}
8205
8206
8207/// ShrinkLoadReplaceStoreWithStore - Check to see if IVal is something that
8208/// provides a value as specified by MaskInfo. If so, replace the specified
8209/// store with a narrower store of truncated IVal.
8210static SDNode *
8211ShrinkLoadReplaceStoreWithStore(const std::pair<unsigned, unsigned> &MaskInfo,
8212 SDValue IVal, StoreSDNode *St,
8213 DAGCombiner *DC) {
8214 unsigned NumBytes = MaskInfo.first;
8215 unsigned ByteShift = MaskInfo.second;
8216 SelectionDAG &DAG = DC->getDAG();
8217
8218 // Check to see if IVal is all zeros in the part being masked in by the 'or'
8219 // that uses this. If not, this is not a replacement.
8220 APInt Mask = ~APInt::getBitsSet(IVal.getValueSizeInBits(),
8221 ByteShift*8, (ByteShift+NumBytes)*8);
8222 if (!DAG.MaskedValueIsZero(IVal, Mask)) return 0;
8223
8224 // Check that it is legal on the target to do this. It is legal if the new
8225 // VT we're shrinking to (i8/i16/i32) is legal or we're still before type
8226 // legalization.
8227 MVT VT = MVT::getIntegerVT(NumBytes*8);
8228 if (!DC->isTypeLegal(VT))
8229 return 0;
8230
8231 // Okay, we can do this! Replace the 'St' store with a store of IVal that is
8232 // shifted by ByteShift and truncated down to NumBytes.
8233 if (ByteShift)
8234 IVal = DAG.getNode(ISD::SRL, SDLoc(IVal), IVal.getValueType(), IVal,
8235 DAG.getConstant(ByteShift*8,
8236 DC->getShiftAmountTy(IVal.getValueType())));
8237
8238 // Figure out the offset for the store and the alignment of the access.
8239 unsigned StOffset;
8240 unsigned NewAlign = St->getAlignment();
8241
8242 if (DAG.getTargetLoweringInfo().isLittleEndian())
8243 StOffset = ByteShift;
8244 else
8245 StOffset = IVal.getValueType().getStoreSize() - ByteShift - NumBytes;
8246
8247 SDValue Ptr = St->getBasePtr();
8248 if (StOffset) {
8249 Ptr = DAG.getNode(ISD::ADD, SDLoc(IVal), Ptr.getValueType(),
8250 Ptr, DAG.getConstant(StOffset, Ptr.getValueType()));
8251 NewAlign = MinAlign(NewAlign, StOffset);
8252 }
8253
8254 // Truncate down to the new size.
8255 IVal = DAG.getNode(ISD::TRUNCATE, SDLoc(IVal), VT, IVal);
8256
8257 ++OpsNarrowed;
8258 return DAG.getStore(St->getChain(), SDLoc(St), IVal, Ptr,
8259 St->getPointerInfo().getWithOffset(StOffset),
8260 false, false, NewAlign).getNode();
8261}
8262
8263
8264/// ReduceLoadOpStoreWidth - Look for sequence of load / op / store where op is
8265/// one of 'or', 'xor', and 'and' of immediates. If 'op' is only touching some
8266/// of the loaded bits, try narrowing the load and store if it would end up
8267/// being a win for performance or code size.
8268SDValue DAGCombiner::ReduceLoadOpStoreWidth(SDNode *N) {
8269 StoreSDNode *ST = cast<StoreSDNode>(N);
8270 if (ST->isVolatile())
8271 return SDValue();
8272
8273 SDValue Chain = ST->getChain();
8274 SDValue Value = ST->getValue();
8275 SDValue Ptr = ST->getBasePtr();
8276 EVT VT = Value.getValueType();
8277
8278 if (ST->isTruncatingStore() || VT.isVector() || !Value.hasOneUse())
8279 return SDValue();
8280
8281 unsigned Opc = Value.getOpcode();
8282
8283 // If this is "store (or X, Y), P" and X is "(and (load P), cst)", where cst
8284 // is a byte mask indicating a consecutive number of bytes, check to see if
8285 // Y is known to provide just those bytes. If so, we try to replace the
8286 // load + replace + store sequence with a single (narrower) store, which makes
8287 // the load dead.
8288 if (Opc == ISD::OR) {
8289 std::pair<unsigned, unsigned> MaskedLoad;
8290 MaskedLoad = CheckForMaskedLoad(Value.getOperand(0), Ptr, Chain);
8291 if (MaskedLoad.first)
8292 if (SDNode *NewST = ShrinkLoadReplaceStoreWithStore(MaskedLoad,
8293 Value.getOperand(1), ST,this))
8294 return SDValue(NewST, 0);
8295
8296 // Or is commutative, so try swapping X and Y.
8297 MaskedLoad = CheckForMaskedLoad(Value.getOperand(1), Ptr, Chain);
8298 if (MaskedLoad.first)
8299 if (SDNode *NewST = ShrinkLoadReplaceStoreWithStore(MaskedLoad,
8300 Value.getOperand(0), ST,this))
8301 return SDValue(NewST, 0);
8302 }
8303
8304 if ((Opc != ISD::OR && Opc != ISD::XOR && Opc != ISD::AND) ||
8305 Value.getOperand(1).getOpcode() != ISD::Constant)
8306 return SDValue();
8307
8308 SDValue N0 = Value.getOperand(0);
8309 if (ISD::isNormalLoad(N0.getNode()) && N0.hasOneUse() &&
8310 Chain == SDValue(N0.getNode(), 1)) {
8311 LoadSDNode *LD = cast<LoadSDNode>(N0);
8312 if (LD->getBasePtr() != Ptr ||
8313 LD->getPointerInfo().getAddrSpace() !=
8314 ST->getPointerInfo().getAddrSpace())
8315 return SDValue();
8316
8317 // Find the type to narrow it the load / op / store to.
8318 SDValue N1 = Value.getOperand(1);
8319 unsigned BitWidth = N1.getValueSizeInBits();
8320 APInt Imm = cast<ConstantSDNode>(N1)->getAPIntValue();
8321 if (Opc == ISD::AND)
8322 Imm ^= APInt::getAllOnesValue(BitWidth);
8323 if (Imm == 0 || Imm.isAllOnesValue())
8324 return SDValue();
8325 unsigned ShAmt = Imm.countTrailingZeros();
8326 unsigned MSB = BitWidth - Imm.countLeadingZeros() - 1;
8327 unsigned NewBW = NextPowerOf2(MSB - ShAmt);
8328 EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), NewBW);
8329 while (NewBW < BitWidth &&
8330 !(TLI.isOperationLegalOrCustom(Opc, NewVT) &&
8331 TLI.isNarrowingProfitable(VT, NewVT))) {
8332 NewBW = NextPowerOf2(NewBW);
8333 NewVT = EVT::getIntegerVT(*DAG.getContext(), NewBW);
8334 }
8335 if (NewBW >= BitWidth)
8336 return SDValue();
8337
8338 // If the lsb changed does not start at the type bitwidth boundary,
8339 // start at the previous one.
8340 if (ShAmt % NewBW)
8341 ShAmt = (((ShAmt + NewBW - 1) / NewBW) * NewBW) - NewBW;
8342 APInt Mask = APInt::getBitsSet(BitWidth, ShAmt,
8343 std::min(BitWidth, ShAmt + NewBW));
8344 if ((Imm & Mask) == Imm) {
8345 APInt NewImm = (Imm & Mask).lshr(ShAmt).trunc(NewBW);
8346 if (Opc == ISD::AND)
8347 NewImm ^= APInt::getAllOnesValue(NewBW);
8348 uint64_t PtrOff = ShAmt / 8;
8349 // For big endian targets, we need to adjust the offset to the pointer to
8350 // load the correct bytes.
8351 if (TLI.isBigEndian())
8352 PtrOff = (BitWidth + 7 - NewBW) / 8 - PtrOff;
8353
8354 unsigned NewAlign = MinAlign(LD->getAlignment(), PtrOff);
8355 Type *NewVTTy = NewVT.getTypeForEVT(*DAG.getContext());
8356 if (NewAlign < TLI.getDataLayout()->getABITypeAlignment(NewVTTy))
8357 return SDValue();
8358
8359 SDValue NewPtr = DAG.getNode(ISD::ADD, SDLoc(LD),
8360 Ptr.getValueType(), Ptr,
8361 DAG.getConstant(PtrOff, Ptr.getValueType()));
8362 SDValue NewLD = DAG.getLoad(NewVT, SDLoc(N0),
8363 LD->getChain(), NewPtr,
8364 LD->getPointerInfo().getWithOffset(PtrOff),
8365 LD->isVolatile(), LD->isNonTemporal(),
8366 LD->isInvariant(), NewAlign,
8367 LD->getTBAAInfo());
8368 SDValue NewVal = DAG.getNode(Opc, SDLoc(Value), NewVT, NewLD,
8369 DAG.getConstant(NewImm, NewVT));
8370 SDValue NewST = DAG.getStore(Chain, SDLoc(N),
8371 NewVal, NewPtr,
8372 ST->getPointerInfo().getWithOffset(PtrOff),
8373 false, false, NewAlign);
8374
8375 AddToWorkList(NewPtr.getNode());
8376 AddToWorkList(NewLD.getNode());
8377 AddToWorkList(NewVal.getNode());
8378 WorkListRemover DeadNodes(*this);
8379 DAG.ReplaceAllUsesOfValueWith(N0.getValue(1), NewLD.getValue(1));
8380 ++OpsNarrowed;
8381 return NewST;
8382 }
8383 }
8384
8385 return SDValue();
8386}
8387
8388/// TransformFPLoadStorePair - For a given floating point load / store pair,
8389/// if the load value isn't used by any other operations, then consider
8390/// transforming the pair to integer load / store operations if the target
8391/// deems the transformation profitable.
8392SDValue DAGCombiner::TransformFPLoadStorePair(SDNode *N) {
8393 StoreSDNode *ST = cast<StoreSDNode>(N);
8394 SDValue Chain = ST->getChain();
8395 SDValue Value = ST->getValue();
8396 if (ISD::isNormalStore(ST) && ISD::isNormalLoad(Value.getNode()) &&
8397 Value.hasOneUse() &&
8398 Chain == SDValue(Value.getNode(), 1)) {
8399 LoadSDNode *LD = cast<LoadSDNode>(Value);
8400 EVT VT = LD->getMemoryVT();
8401 if (!VT.isFloatingPoint() ||
8402 VT != ST->getMemoryVT() ||
8403 LD->isNonTemporal() ||
8404 ST->isNonTemporal() ||
8405 LD->getPointerInfo().getAddrSpace() != 0 ||
8406 ST->getPointerInfo().getAddrSpace() != 0)
8407 return SDValue();
8408
8409 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits());
8410 if (!TLI.isOperationLegal(ISD::LOAD, IntVT) ||
8411 !TLI.isOperationLegal(ISD::STORE, IntVT) ||
8412 !TLI.isDesirableToTransformToIntegerOp(ISD::LOAD, VT) ||
8413 !TLI.isDesirableToTransformToIntegerOp(ISD::STORE, VT))
8414 return SDValue();
8415
8416 unsigned LDAlign = LD->getAlignment();
8417 unsigned STAlign = ST->getAlignment();
8418 Type *IntVTTy = IntVT.getTypeForEVT(*DAG.getContext());
8419 unsigned ABIAlign = TLI.getDataLayout()->getABITypeAlignment(IntVTTy);
8420 if (LDAlign < ABIAlign || STAlign < ABIAlign)
8421 return SDValue();
8422
8423 SDValue NewLD = DAG.getLoad(IntVT, SDLoc(Value),
8424 LD->getChain(), LD->getBasePtr(),
8425 LD->getPointerInfo(),
8426 false, false, false, LDAlign);
8427
8428 SDValue NewST = DAG.getStore(NewLD.getValue(1), SDLoc(N),
8429 NewLD, ST->getBasePtr(),
8430 ST->getPointerInfo(),
8431 false, false, STAlign);
8432
8433 AddToWorkList(NewLD.getNode());
8434 AddToWorkList(NewST.getNode());
8435 WorkListRemover DeadNodes(*this);
8436 DAG.ReplaceAllUsesOfValueWith(Value.getValue(1), NewLD.getValue(1));
8437 ++LdStFP2Int;
8438 return NewST;
8439 }
8440
8441 return SDValue();
8442}
8443
8444/// Helper struct to parse and store a memory address as base + index + offset.
8445/// We ignore sign extensions when it is safe to do so.
8446/// The following two expressions are not equivalent. To differentiate we need
8447/// to store whether there was a sign extension involved in the index
8448/// computation.
8449/// (load (i64 add (i64 copyfromreg %c)
8450/// (i64 signextend (add (i8 load %index)
8451/// (i8 1))))
8452/// vs
8453///
8454/// (load (i64 add (i64 copyfromreg %c)
8455/// (i64 signextend (i32 add (i32 signextend (i8 load %index))
8456/// (i32 1)))))
8457struct BaseIndexOffset {
8458 SDValue Base;
8459 SDValue Index;
8460 int64_t Offset;
8461 bool IsIndexSignExt;
8462
8463 BaseIndexOffset() : Offset(0), IsIndexSignExt(false) {}
8464
8465 BaseIndexOffset(SDValue Base, SDValue Index, int64_t Offset,
8466 bool IsIndexSignExt) :
8467 Base(Base), Index(Index), Offset(Offset), IsIndexSignExt(IsIndexSignExt) {}
8468
8469 bool equalBaseIndex(const BaseIndexOffset &Other) {
8470 return Other.Base == Base && Other.Index == Index &&
8471 Other.IsIndexSignExt == IsIndexSignExt;
8472 }
8473
8474 /// Parses tree in Ptr for base, index, offset addresses.
8475 static BaseIndexOffset match(SDValue Ptr) {
8476 bool IsIndexSignExt = false;
8477
8478 // We only can pattern match BASE + INDEX + OFFSET. If Ptr is not an ADD
8479 // instruction, then it could be just the BASE or everything else we don't
8480 // know how to handle. Just use Ptr as BASE and give up.
8481 if (Ptr->getOpcode() != ISD::ADD)
8482 return BaseIndexOffset(Ptr, SDValue(), 0, IsIndexSignExt);
8483
8484 // We know that we have at least an ADD instruction. Try to pattern match
8485 // the simple case of BASE + OFFSET.
8486 if (isa<ConstantSDNode>(Ptr->getOperand(1))) {
8487 int64_t Offset = cast<ConstantSDNode>(Ptr->getOperand(1))->getSExtValue();
8488 return BaseIndexOffset(Ptr->getOperand(0), SDValue(), Offset,
8489 IsIndexSignExt);
8490 }
8491
8492 // Inside a loop the current BASE pointer is calculated using an ADD and a
8493 // MUL instruction. In this case Ptr is the actual BASE pointer.
8494 // (i64 add (i64 %array_ptr)
8495 // (i64 mul (i64 %induction_var)
8496 // (i64 %element_size)))
8497 if (Ptr->getOperand(1)->getOpcode() == ISD::MUL)
8498 return BaseIndexOffset(Ptr, SDValue(), 0, IsIndexSignExt);
8499
8500 // Look at Base + Index + Offset cases.
8501 SDValue Base = Ptr->getOperand(0);
8502 SDValue IndexOffset = Ptr->getOperand(1);
8503
8504 // Skip signextends.
8505 if (IndexOffset->getOpcode() == ISD::SIGN_EXTEND) {
8506 IndexOffset = IndexOffset->getOperand(0);
8507 IsIndexSignExt = true;
8508 }
8509
8510 // Either the case of Base + Index (no offset) or something else.
8511 if (IndexOffset->getOpcode() != ISD::ADD)
8512 return BaseIndexOffset(Base, IndexOffset, 0, IsIndexSignExt);
8513
8514 // Now we have the case of Base + Index + offset.
8515 SDValue Index = IndexOffset->getOperand(0);
8516 SDValue Offset = IndexOffset->getOperand(1);
8517
8518 if (!isa<ConstantSDNode>(Offset))
8519 return BaseIndexOffset(Ptr, SDValue(), 0, IsIndexSignExt);
8520
8521 // Ignore signextends.
8522 if (Index->getOpcode() == ISD::SIGN_EXTEND) {
8523 Index = Index->getOperand(0);
8524 IsIndexSignExt = true;
8525 } else IsIndexSignExt = false;
8526
8527 int64_t Off = cast<ConstantSDNode>(Offset)->getSExtValue();
8528 return BaseIndexOffset(Base, Index, Off, IsIndexSignExt);
8529 }
8530};
8531
8532/// Holds a pointer to an LSBaseSDNode as well as information on where it
8533/// is located in a sequence of memory operations connected by a chain.
8534struct MemOpLink {
8535 MemOpLink (LSBaseSDNode *N, int64_t Offset, unsigned Seq):
8536 MemNode(N), OffsetFromBase(Offset), SequenceNum(Seq) { }
8537 // Ptr to the mem node.
8538 LSBaseSDNode *MemNode;
8539 // Offset from the base ptr.
8540 int64_t OffsetFromBase;
8541 // What is the sequence number of this mem node.
8542 // Lowest mem operand in the DAG starts at zero.
8543 unsigned SequenceNum;
8544};
8545
8546/// Sorts store nodes in a link according to their offset from a shared
8547// base ptr.
8548struct ConsecutiveMemoryChainSorter {
8549 bool operator()(MemOpLink LHS, MemOpLink RHS) {
8550 return LHS.OffsetFromBase < RHS.OffsetFromBase;
8550 return
8551 LHS.OffsetFromBase < RHS.OffsetFromBase ||
8552 (LHS.OffsetFromBase == RHS.OffsetFromBase &&
8553 LHS.SequenceNum > RHS.SequenceNum);
8551 }
8552};
8553
8554bool DAGCombiner::MergeConsecutiveStores(StoreSDNode* St) {
8555 EVT MemVT = St->getMemoryVT();
8556 int64_t ElementSizeBytes = MemVT.getSizeInBits()/8;
8557 bool NoVectors = DAG.getMachineFunction().getFunction()->getAttributes().
8558 hasAttribute(AttributeSet::FunctionIndex, Attribute::NoImplicitFloat);
8559
8560 // Don't merge vectors into wider inputs.
8561 if (MemVT.isVector() || !MemVT.isSimple())
8562 return false;
8563
8564 // Perform an early exit check. Do not bother looking at stored values that
8565 // are not constants or loads.
8566 SDValue StoredVal = St->getValue();
8567 bool IsLoadSrc = isa<LoadSDNode>(StoredVal);
8568 if (!isa<ConstantSDNode>(StoredVal) && !isa<ConstantFPSDNode>(StoredVal) &&
8569 !IsLoadSrc)
8570 return false;
8571
8572 // Only look at ends of store sequences.
8573 SDValue Chain = SDValue(St, 1);
8574 if (Chain->hasOneUse() && Chain->use_begin()->getOpcode() == ISD::STORE)
8575 return false;
8576
8577 // This holds the base pointer, index, and the offset in bytes from the base
8578 // pointer.
8579 BaseIndexOffset BasePtr = BaseIndexOffset::match(St->getBasePtr());
8580
8581 // We must have a base and an offset.
8582 if (!BasePtr.Base.getNode())
8583 return false;
8584
8585 // Do not handle stores to undef base pointers.
8586 if (BasePtr.Base.getOpcode() == ISD::UNDEF)
8587 return false;
8588
8589 // Save the LoadSDNodes that we find in the chain.
8590 // We need to make sure that these nodes do not interfere with
8591 // any of the store nodes.
8592 SmallVector<LSBaseSDNode*, 8> AliasLoadNodes;
8593
8594 // Save the StoreSDNodes that we find in the chain.
8595 SmallVector<MemOpLink, 8> StoreNodes;
8596
8597 // Walk up the chain and look for nodes with offsets from the same
8598 // base pointer. Stop when reaching an instruction with a different kind
8599 // or instruction which has a different base pointer.
8600 unsigned Seq = 0;
8601 StoreSDNode *Index = St;
8602 while (Index) {
8603 // If the chain has more than one use, then we can't reorder the mem ops.
8604 if (Index != St && !SDValue(Index, 1)->hasOneUse())
8605 break;
8606
8607 // Find the base pointer and offset for this memory node.
8608 BaseIndexOffset Ptr = BaseIndexOffset::match(Index->getBasePtr());
8609
8610 // Check that the base pointer is the same as the original one.
8611 if (!Ptr.equalBaseIndex(BasePtr))
8612 break;
8613
8614 // Check that the alignment is the same.
8615 if (Index->getAlignment() != St->getAlignment())
8616 break;
8617
8618 // The memory operands must not be volatile.
8619 if (Index->isVolatile() || Index->isIndexed())
8620 break;
8621
8622 // No truncation.
8623 if (StoreSDNode *St = dyn_cast<StoreSDNode>(Index))
8624 if (St->isTruncatingStore())
8625 break;
8626
8627 // The stored memory type must be the same.
8628 if (Index->getMemoryVT() != MemVT)
8629 break;
8630
8631 // We do not allow unaligned stores because we want to prevent overriding
8632 // stores.
8633 if (Index->getAlignment()*8 != MemVT.getSizeInBits())
8634 break;
8635
8636 // We found a potential memory operand to merge.
8637 StoreNodes.push_back(MemOpLink(Index, Ptr.Offset, Seq++));
8638
8639 // Find the next memory operand in the chain. If the next operand in the
8640 // chain is a store then move up and continue the scan with the next
8641 // memory operand. If the next operand is a load save it and use alias
8642 // information to check if it interferes with anything.
8643 SDNode *NextInChain = Index->getChain().getNode();
8644 while (1) {
8645 if (StoreSDNode *STn = dyn_cast<StoreSDNode>(NextInChain)) {
8646 // We found a store node. Use it for the next iteration.
8647 Index = STn;
8648 break;
8649 } else if (LoadSDNode *Ldn = dyn_cast<LoadSDNode>(NextInChain)) {
8650 if (Ldn->isVolatile()) {
8651 Index = NULL;
8652 break;
8653 }
8654
8655 // Save the load node for later. Continue the scan.
8656 AliasLoadNodes.push_back(Ldn);
8657 NextInChain = Ldn->getChain().getNode();
8658 continue;
8659 } else {
8660 Index = NULL;
8661 break;
8662 }
8663 }
8664 }
8665
8666 // Check if there is anything to merge.
8667 if (StoreNodes.size() < 2)
8668 return false;
8669
8670 // Sort the memory operands according to their distance from the base pointer.
8671 std::sort(StoreNodes.begin(), StoreNodes.end(),
8672 ConsecutiveMemoryChainSorter());
8673
8674 // Scan the memory operations on the chain and find the first non-consecutive
8675 // store memory address.
8676 unsigned LastConsecutiveStore = 0;
8677 int64_t StartAddress = StoreNodes[0].OffsetFromBase;
8678 for (unsigned i = 0, e = StoreNodes.size(); i < e; ++i) {
8679
8680 // Check that the addresses are consecutive starting from the second
8681 // element in the list of stores.
8682 if (i > 0) {
8683 int64_t CurrAddress = StoreNodes[i].OffsetFromBase;
8684 if (CurrAddress - StartAddress != (ElementSizeBytes * i))
8685 break;
8686 }
8687
8688 bool Alias = false;
8689 // Check if this store interferes with any of the loads that we found.
8690 for (unsigned ld = 0, lde = AliasLoadNodes.size(); ld < lde; ++ld)
8691 if (isAlias(AliasLoadNodes[ld], StoreNodes[i].MemNode)) {
8692 Alias = true;
8693 break;
8694 }
8695 // We found a load that alias with this store. Stop the sequence.
8696 if (Alias)
8697 break;
8698
8699 // Mark this node as useful.
8700 LastConsecutiveStore = i;
8701 }
8702
8703 // The node with the lowest store address.
8704 LSBaseSDNode *FirstInChain = StoreNodes[0].MemNode;
8705
8706 // Store the constants into memory as one consecutive store.
8707 if (!IsLoadSrc) {
8708 unsigned LastLegalType = 0;
8709 unsigned LastLegalVectorType = 0;
8710 bool NonZero = false;
8711 for (unsigned i=0; i<LastConsecutiveStore+1; ++i) {
8712 StoreSDNode *St = cast<StoreSDNode>(StoreNodes[i].MemNode);
8713 SDValue StoredVal = St->getValue();
8714
8715 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(StoredVal)) {
8716 NonZero |= !C->isNullValue();
8717 } else if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(StoredVal)) {
8718 NonZero |= !C->getConstantFPValue()->isNullValue();
8719 } else {
8720 // Non constant.
8721 break;
8722 }
8723
8724 // Find a legal type for the constant store.
8725 unsigned StoreBW = (i+1) * ElementSizeBytes * 8;
8726 EVT StoreTy = EVT::getIntegerVT(*DAG.getContext(), StoreBW);
8727 if (TLI.isTypeLegal(StoreTy))
8728 LastLegalType = i+1;
8729 // Or check whether a truncstore is legal.
8730 else if (TLI.getTypeAction(*DAG.getContext(), StoreTy) ==
8731 TargetLowering::TypePromoteInteger) {
8732 EVT LegalizedStoredValueTy =
8733 TLI.getTypeToTransformTo(*DAG.getContext(), StoredVal.getValueType());
8734 if (TLI.isTruncStoreLegal(LegalizedStoredValueTy, StoreTy))
8735 LastLegalType = i+1;
8736 }
8737
8738 // Find a legal type for the vector store.
8739 EVT Ty = EVT::getVectorVT(*DAG.getContext(), MemVT, i+1);
8740 if (TLI.isTypeLegal(Ty))
8741 LastLegalVectorType = i + 1;
8742 }
8743
8744 // We only use vectors if the constant is known to be zero and the
8745 // function is not marked with the noimplicitfloat attribute.
8746 if (NonZero || NoVectors)
8747 LastLegalVectorType = 0;
8748
8749 // Check if we found a legal integer type to store.
8750 if (LastLegalType == 0 && LastLegalVectorType == 0)
8751 return false;
8752
8753 bool UseVector = (LastLegalVectorType > LastLegalType) && !NoVectors;
8754 unsigned NumElem = UseVector ? LastLegalVectorType : LastLegalType;
8755
8756 // Make sure we have something to merge.
8757 if (NumElem < 2)
8758 return false;
8759
8760 unsigned EarliestNodeUsed = 0;
8761 for (unsigned i=0; i < NumElem; ++i) {
8762 // Find a chain for the new wide-store operand. Notice that some
8763 // of the store nodes that we found may not be selected for inclusion
8764 // in the wide store. The chain we use needs to be the chain of the
8765 // earliest store node which is *used* and replaced by the wide store.
8766 if (StoreNodes[i].SequenceNum > StoreNodes[EarliestNodeUsed].SequenceNum)
8767 EarliestNodeUsed = i;
8768 }
8769
8770 // The earliest Node in the DAG.
8771 LSBaseSDNode *EarliestOp = StoreNodes[EarliestNodeUsed].MemNode;
8772 SDLoc DL(StoreNodes[0].MemNode);
8773
8774 SDValue StoredVal;
8775 if (UseVector) {
8776 // Find a legal type for the vector store.
8777 EVT Ty = EVT::getVectorVT(*DAG.getContext(), MemVT, NumElem);
8778 assert(TLI.isTypeLegal(Ty) && "Illegal vector store");
8779 StoredVal = DAG.getConstant(0, Ty);
8780 } else {
8781 unsigned StoreBW = NumElem * ElementSizeBytes * 8;
8782 APInt StoreInt(StoreBW, 0);
8783
8784 // Construct a single integer constant which is made of the smaller
8785 // constant inputs.
8786 bool IsLE = TLI.isLittleEndian();
8787 for (unsigned i = 0; i < NumElem ; ++i) {
8788 unsigned Idx = IsLE ?(NumElem - 1 - i) : i;
8789 StoreSDNode *St = cast<StoreSDNode>(StoreNodes[Idx].MemNode);
8790 SDValue Val = St->getValue();
8791 StoreInt<<=ElementSizeBytes*8;
8792 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val)) {
8793 StoreInt|=C->getAPIntValue().zext(StoreBW);
8794 } else if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Val)) {
8795 StoreInt|= C->getValueAPF().bitcastToAPInt().zext(StoreBW);
8796 } else {
8797 assert(false && "Invalid constant element type");
8798 }
8799 }
8800
8801 // Create the new Load and Store operations.
8802 EVT StoreTy = EVT::getIntegerVT(*DAG.getContext(), StoreBW);
8803 StoredVal = DAG.getConstant(StoreInt, StoreTy);
8804 }
8805
8806 SDValue NewStore = DAG.getStore(EarliestOp->getChain(), DL, StoredVal,
8807 FirstInChain->getBasePtr(),
8808 FirstInChain->getPointerInfo(),
8809 false, false,
8810 FirstInChain->getAlignment());
8811
8812 // Replace the first store with the new store
8813 CombineTo(EarliestOp, NewStore);
8814 // Erase all other stores.
8815 for (unsigned i = 0; i < NumElem ; ++i) {
8816 if (StoreNodes[i].MemNode == EarliestOp)
8817 continue;
8818 StoreSDNode *St = cast<StoreSDNode>(StoreNodes[i].MemNode);
8819 // ReplaceAllUsesWith will replace all uses that existed when it was
8820 // called, but graph optimizations may cause new ones to appear. For
8821 // example, the case in pr14333 looks like
8822 //
8823 // St's chain -> St -> another store -> X
8824 //
8825 // And the only difference from St to the other store is the chain.
8826 // When we change it's chain to be St's chain they become identical,
8827 // get CSEed and the net result is that X is now a use of St.
8828 // Since we know that St is redundant, just iterate.
8829 while (!St->use_empty())
8830 DAG.ReplaceAllUsesWith(SDValue(St, 0), St->getChain());
8831 removeFromWorkList(St);
8832 DAG.DeleteNode(St);
8833 }
8834
8835 return true;
8836 }
8837
8838 // Below we handle the case of multiple consecutive stores that
8839 // come from multiple consecutive loads. We merge them into a single
8840 // wide load and a single wide store.
8841
8842 // Look for load nodes which are used by the stored values.
8843 SmallVector<MemOpLink, 8> LoadNodes;
8844
8845 // Find acceptable loads. Loads need to have the same chain (token factor),
8846 // must not be zext, volatile, indexed, and they must be consecutive.
8847 BaseIndexOffset LdBasePtr;
8848 for (unsigned i=0; i<LastConsecutiveStore+1; ++i) {
8849 StoreSDNode *St = cast<StoreSDNode>(StoreNodes[i].MemNode);
8850 LoadSDNode *Ld = dyn_cast<LoadSDNode>(St->getValue());
8851 if (!Ld) break;
8852
8853 // Loads must only have one use.
8854 if (!Ld->hasNUsesOfValue(1, 0))
8855 break;
8856
8857 // Check that the alignment is the same as the stores.
8858 if (Ld->getAlignment() != St->getAlignment())
8859 break;
8860
8861 // The memory operands must not be volatile.
8862 if (Ld->isVolatile() || Ld->isIndexed())
8863 break;
8864
8865 // We do not accept ext loads.
8866 if (Ld->getExtensionType() != ISD::NON_EXTLOAD)
8867 break;
8868
8869 // The stored memory type must be the same.
8870 if (Ld->getMemoryVT() != MemVT)
8871 break;
8872
8873 BaseIndexOffset LdPtr = BaseIndexOffset::match(Ld->getBasePtr());
8874 // If this is not the first ptr that we check.
8875 if (LdBasePtr.Base.getNode()) {
8876 // The base ptr must be the same.
8877 if (!LdPtr.equalBaseIndex(LdBasePtr))
8878 break;
8879 } else {
8880 // Check that all other base pointers are the same as this one.
8881 LdBasePtr = LdPtr;
8882 }
8883
8884 // We found a potential memory operand to merge.
8885 LoadNodes.push_back(MemOpLink(Ld, LdPtr.Offset, 0));
8886 }
8887
8888 if (LoadNodes.size() < 2)
8889 return false;
8890
8891 // Scan the memory operations on the chain and find the first non-consecutive
8892 // load memory address. These variables hold the index in the store node
8893 // array.
8894 unsigned LastConsecutiveLoad = 0;
8895 // This variable refers to the size and not index in the array.
8896 unsigned LastLegalVectorType = 0;
8897 unsigned LastLegalIntegerType = 0;
8898 StartAddress = LoadNodes[0].OffsetFromBase;
8899 SDValue FirstChain = LoadNodes[0].MemNode->getChain();
8900 for (unsigned i = 1; i < LoadNodes.size(); ++i) {
8901 // All loads much share the same chain.
8902 if (LoadNodes[i].MemNode->getChain() != FirstChain)
8903 break;
8904
8905 int64_t CurrAddress = LoadNodes[i].OffsetFromBase;
8906 if (CurrAddress - StartAddress != (ElementSizeBytes * i))
8907 break;
8908 LastConsecutiveLoad = i;
8909
8910 // Find a legal type for the vector store.
8911 EVT StoreTy = EVT::getVectorVT(*DAG.getContext(), MemVT, i+1);
8912 if (TLI.isTypeLegal(StoreTy))
8913 LastLegalVectorType = i + 1;
8914
8915 // Find a legal type for the integer store.
8916 unsigned StoreBW = (i+1) * ElementSizeBytes * 8;
8917 StoreTy = EVT::getIntegerVT(*DAG.getContext(), StoreBW);
8918 if (TLI.isTypeLegal(StoreTy))
8919 LastLegalIntegerType = i + 1;
8920 // Or check whether a truncstore and extload is legal.
8921 else if (TLI.getTypeAction(*DAG.getContext(), StoreTy) ==
8922 TargetLowering::TypePromoteInteger) {
8923 EVT LegalizedStoredValueTy =
8924 TLI.getTypeToTransformTo(*DAG.getContext(), StoreTy);
8925 if (TLI.isTruncStoreLegal(LegalizedStoredValueTy, StoreTy) &&
8926 TLI.isLoadExtLegal(ISD::ZEXTLOAD, StoreTy) &&
8927 TLI.isLoadExtLegal(ISD::SEXTLOAD, StoreTy) &&
8928 TLI.isLoadExtLegal(ISD::EXTLOAD, StoreTy))
8929 LastLegalIntegerType = i+1;
8930 }
8931 }
8932
8933 // Only use vector types if the vector type is larger than the integer type.
8934 // If they are the same, use integers.
8935 bool UseVectorTy = LastLegalVectorType > LastLegalIntegerType && !NoVectors;
8936 unsigned LastLegalType = std::max(LastLegalVectorType, LastLegalIntegerType);
8937
8938 // We add +1 here because the LastXXX variables refer to location while
8939 // the NumElem refers to array/index size.
8940 unsigned NumElem = std::min(LastConsecutiveStore, LastConsecutiveLoad) + 1;
8941 NumElem = std::min(LastLegalType, NumElem);
8942
8943 if (NumElem < 2)
8944 return false;
8945
8946 // The earliest Node in the DAG.
8947 unsigned EarliestNodeUsed = 0;
8948 LSBaseSDNode *EarliestOp = StoreNodes[EarliestNodeUsed].MemNode;
8949 for (unsigned i=1; i<NumElem; ++i) {
8950 // Find a chain for the new wide-store operand. Notice that some
8951 // of the store nodes that we found may not be selected for inclusion
8952 // in the wide store. The chain we use needs to be the chain of the
8953 // earliest store node which is *used* and replaced by the wide store.
8954 if (StoreNodes[i].SequenceNum > StoreNodes[EarliestNodeUsed].SequenceNum)
8955 EarliestNodeUsed = i;
8956 }
8957
8958 // Find if it is better to use vectors or integers to load and store
8959 // to memory.
8960 EVT JointMemOpVT;
8961 if (UseVectorTy) {
8962 JointMemOpVT = EVT::getVectorVT(*DAG.getContext(), MemVT, NumElem);
8963 } else {
8964 unsigned StoreBW = NumElem * ElementSizeBytes * 8;
8965 JointMemOpVT = EVT::getIntegerVT(*DAG.getContext(), StoreBW);
8966 }
8967
8968 SDLoc LoadDL(LoadNodes[0].MemNode);
8969 SDLoc StoreDL(StoreNodes[0].MemNode);
8970
8971 LoadSDNode *FirstLoad = cast<LoadSDNode>(LoadNodes[0].MemNode);
8972 SDValue NewLoad = DAG.getLoad(JointMemOpVT, LoadDL,
8973 FirstLoad->getChain(),
8974 FirstLoad->getBasePtr(),
8975 FirstLoad->getPointerInfo(),
8976 false, false, false,
8977 FirstLoad->getAlignment());
8978
8979 SDValue NewStore = DAG.getStore(EarliestOp->getChain(), StoreDL, NewLoad,
8980 FirstInChain->getBasePtr(),
8981 FirstInChain->getPointerInfo(), false, false,
8982 FirstInChain->getAlignment());
8983
8984 // Replace one of the loads with the new load.
8985 LoadSDNode *Ld = cast<LoadSDNode>(LoadNodes[0].MemNode);
8986 DAG.ReplaceAllUsesOfValueWith(SDValue(Ld, 1),
8987 SDValue(NewLoad.getNode(), 1));
8988
8989 // Remove the rest of the load chains.
8990 for (unsigned i = 1; i < NumElem ; ++i) {
8991 // Replace all chain users of the old load nodes with the chain of the new
8992 // load node.
8993 LoadSDNode *Ld = cast<LoadSDNode>(LoadNodes[i].MemNode);
8994 DAG.ReplaceAllUsesOfValueWith(SDValue(Ld, 1), Ld->getChain());
8995 }
8996
8997 // Replace the first store with the new store.
8998 CombineTo(EarliestOp, NewStore);
8999 // Erase all other stores.
9000 for (unsigned i = 0; i < NumElem ; ++i) {
9001 // Remove all Store nodes.
9002 if (StoreNodes[i].MemNode == EarliestOp)
9003 continue;
9004 StoreSDNode *St = cast<StoreSDNode>(StoreNodes[i].MemNode);
9005 DAG.ReplaceAllUsesOfValueWith(SDValue(St, 0), St->getChain());
9006 removeFromWorkList(St);
9007 DAG.DeleteNode(St);
9008 }
9009
9010 return true;
9011}
9012
9013SDValue DAGCombiner::visitSTORE(SDNode *N) {
9014 StoreSDNode *ST = cast<StoreSDNode>(N);
9015 SDValue Chain = ST->getChain();
9016 SDValue Value = ST->getValue();
9017 SDValue Ptr = ST->getBasePtr();
9018
9019 // If this is a store of a bit convert, store the input value if the
9020 // resultant store does not need a higher alignment than the original.
9021 if (Value.getOpcode() == ISD::BITCAST && !ST->isTruncatingStore() &&
9022 ST->isUnindexed()) {
9023 unsigned OrigAlign = ST->getAlignment();
9024 EVT SVT = Value.getOperand(0).getValueType();
9025 unsigned Align = TLI.getDataLayout()->
9026 getABITypeAlignment(SVT.getTypeForEVT(*DAG.getContext()));
9027 if (Align <= OrigAlign &&
9028 ((!LegalOperations && !ST->isVolatile()) ||
9029 TLI.isOperationLegalOrCustom(ISD::STORE, SVT)))
9030 return DAG.getStore(Chain, SDLoc(N), Value.getOperand(0),
9031 Ptr, ST->getPointerInfo(), ST->isVolatile(),
9032 ST->isNonTemporal(), OrigAlign,
9033 ST->getTBAAInfo());
9034 }
9035
9036 // Turn 'store undef, Ptr' -> nothing.
9037 if (Value.getOpcode() == ISD::UNDEF && ST->isUnindexed())
9038 return Chain;
9039
9040 // Turn 'store float 1.0, Ptr' -> 'store int 0x12345678, Ptr'
9041 if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Value)) {
9042 // NOTE: If the original store is volatile, this transform must not increase
9043 // the number of stores. For example, on x86-32 an f64 can be stored in one
9044 // processor operation but an i64 (which is not legal) requires two. So the
9045 // transform should not be done in this case.
9046 if (Value.getOpcode() != ISD::TargetConstantFP) {
9047 SDValue Tmp;
9048 switch (CFP->getSimpleValueType(0).SimpleTy) {
9049 default: llvm_unreachable("Unknown FP type");
9050 case MVT::f16: // We don't do this for these yet.
9051 case MVT::f80:
9052 case MVT::f128:
9053 case MVT::ppcf128:
9054 break;
9055 case MVT::f32:
9056 if ((isTypeLegal(MVT::i32) && !LegalOperations && !ST->isVolatile()) ||
9057 TLI.isOperationLegalOrCustom(ISD::STORE, MVT::i32)) {
9058 Tmp = DAG.getConstant((uint32_t)CFP->getValueAPF().
9059 bitcastToAPInt().getZExtValue(), MVT::i32);
9060 return DAG.getStore(Chain, SDLoc(N), Tmp,
9061 Ptr, ST->getMemOperand());
9062 }
9063 break;
9064 case MVT::f64:
9065 if ((TLI.isTypeLegal(MVT::i64) && !LegalOperations &&
9066 !ST->isVolatile()) ||
9067 TLI.isOperationLegalOrCustom(ISD::STORE, MVT::i64)) {
9068 Tmp = DAG.getConstant(CFP->getValueAPF().bitcastToAPInt().
9069 getZExtValue(), MVT::i64);
9070 return DAG.getStore(Chain, SDLoc(N), Tmp,
9071 Ptr, ST->getMemOperand());
9072 }
9073
9074 if (!ST->isVolatile() &&
9075 TLI.isOperationLegalOrCustom(ISD::STORE, MVT::i32)) {
9076 // Many FP stores are not made apparent until after legalize, e.g. for
9077 // argument passing. Since this is so common, custom legalize the
9078 // 64-bit integer store into two 32-bit stores.
9079 uint64_t Val = CFP->getValueAPF().bitcastToAPInt().getZExtValue();
9080 SDValue Lo = DAG.getConstant(Val & 0xFFFFFFFF, MVT::i32);
9081 SDValue Hi = DAG.getConstant(Val >> 32, MVT::i32);
9082 if (TLI.isBigEndian()) std::swap(Lo, Hi);
9083
9084 unsigned Alignment = ST->getAlignment();
9085 bool isVolatile = ST->isVolatile();
9086 bool isNonTemporal = ST->isNonTemporal();
9087 const MDNode *TBAAInfo = ST->getTBAAInfo();
9088
9089 SDValue St0 = DAG.getStore(Chain, SDLoc(ST), Lo,
9090 Ptr, ST->getPointerInfo(),
9091 isVolatile, isNonTemporal,
9092 ST->getAlignment(), TBAAInfo);
9093 Ptr = DAG.getNode(ISD::ADD, SDLoc(N), Ptr.getValueType(), Ptr,
9094 DAG.getConstant(4, Ptr.getValueType()));
9095 Alignment = MinAlign(Alignment, 4U);
9096 SDValue St1 = DAG.getStore(Chain, SDLoc(ST), Hi,
9097 Ptr, ST->getPointerInfo().getWithOffset(4),
9098 isVolatile, isNonTemporal,
9099 Alignment, TBAAInfo);
9100 return DAG.getNode(ISD::TokenFactor, SDLoc(N), MVT::Other,
9101 St0, St1);
9102 }
9103
9104 break;
9105 }
9106 }
9107 }
9108
9109 // Try to infer better alignment information than the store already has.
9110 if (OptLevel != CodeGenOpt::None && ST->isUnindexed()) {
9111 if (unsigned Align = DAG.InferPtrAlignment(Ptr)) {
9112 if (Align > ST->getAlignment())
9113 return DAG.getTruncStore(Chain, SDLoc(N), Value,
9114 Ptr, ST->getPointerInfo(), ST->getMemoryVT(),
9115 ST->isVolatile(), ST->isNonTemporal(), Align,
9116 ST->getTBAAInfo());
9117 }
9118 }
9119
9120 // Try transforming a pair floating point load / store ops to integer
9121 // load / store ops.
9122 SDValue NewST = TransformFPLoadStorePair(N);
9123 if (NewST.getNode())
9124 return NewST;
9125
9126 bool UseAA = CombinerAA.getNumOccurrences() > 0 ? CombinerAA :
9127 TLI.getTargetMachine().getSubtarget<TargetSubtargetInfo>().useAA();
9128 if (UseAA) {
9129 // Walk up chain skipping non-aliasing memory nodes.
9130 SDValue BetterChain = FindBetterChain(N, Chain);
9131
9132 // If there is a better chain.
9133 if (Chain != BetterChain) {
9134 SDValue ReplStore;
9135
9136 // Replace the chain to avoid dependency.
9137 if (ST->isTruncatingStore()) {
9138 ReplStore = DAG.getTruncStore(BetterChain, SDLoc(N), Value, Ptr,
9139 ST->getMemoryVT(), ST->getMemOperand());
9140 } else {
9141 ReplStore = DAG.getStore(BetterChain, SDLoc(N), Value, Ptr,
9142 ST->getMemOperand());
9143 }
9144
9145 // Create token to keep both nodes around.
9146 SDValue Token = DAG.getNode(ISD::TokenFactor, SDLoc(N),
9147 MVT::Other, Chain, ReplStore);
9148
9149 // Make sure the new and old chains are cleaned up.
9150 AddToWorkList(Token.getNode());
9151
9152 // Don't add users to work list.
9153 return CombineTo(N, Token, false);
9154 }
9155 }
9156
9157 // Try transforming N to an indexed store.
9158 if (CombineToPreIndexedLoadStore(N) || CombineToPostIndexedLoadStore(N))
9159 return SDValue(N, 0);
9160
9161 // FIXME: is there such a thing as a truncating indexed store?
9162 if (ST->isTruncatingStore() && ST->isUnindexed() &&
9163 Value.getValueType().isInteger()) {
9164 // See if we can simplify the input to this truncstore with knowledge that
9165 // only the low bits are being used. For example:
9166 // "truncstore (or (shl x, 8), y), i8" -> "truncstore y, i8"
9167 SDValue Shorter =
9168 GetDemandedBits(Value,
9169 APInt::getLowBitsSet(
9170 Value.getValueType().getScalarType().getSizeInBits(),
9171 ST->getMemoryVT().getScalarType().getSizeInBits()));
9172 AddToWorkList(Value.getNode());
9173 if (Shorter.getNode())
9174 return DAG.getTruncStore(Chain, SDLoc(N), Shorter,
9175 Ptr, ST->getMemoryVT(), ST->getMemOperand());
9176
9177 // Otherwise, see if we can simplify the operation with
9178 // SimplifyDemandedBits, which only works if the value has a single use.
9179 if (SimplifyDemandedBits(Value,
9180 APInt::getLowBitsSet(
9181 Value.getValueType().getScalarType().getSizeInBits(),
9182 ST->getMemoryVT().getScalarType().getSizeInBits())))
9183 return SDValue(N, 0);
9184 }
9185
9186 // If this is a load followed by a store to the same location, then the store
9187 // is dead/noop.
9188 if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Value)) {
9189 if (Ld->getBasePtr() == Ptr && ST->getMemoryVT() == Ld->getMemoryVT() &&
9190 ST->isUnindexed() && !ST->isVolatile() &&
9191 // There can't be any side effects between the load and store, such as
9192 // a call or store.
9193 Chain.reachesChainWithoutSideEffects(SDValue(Ld, 1))) {
9194 // The store is dead, remove it.
9195 return Chain;
9196 }
9197 }
9198
9199 // If this is an FP_ROUND or TRUNC followed by a store, fold this into a
9200 // truncating store. We can do this even if this is already a truncstore.
9201 if ((Value.getOpcode() == ISD::FP_ROUND || Value.getOpcode() == ISD::TRUNCATE)
9202 && Value.getNode()->hasOneUse() && ST->isUnindexed() &&
9203 TLI.isTruncStoreLegal(Value.getOperand(0).getValueType(),
9204 ST->getMemoryVT())) {
9205 return DAG.getTruncStore(Chain, SDLoc(N), Value.getOperand(0),
9206 Ptr, ST->getMemoryVT(), ST->getMemOperand());
9207 }
9208
9209 // Only perform this optimization before the types are legal, because we
9210 // don't want to perform this optimization on every DAGCombine invocation.
9211 if (!LegalTypes) {
9212 bool EverChanged = false;
9213
9214 do {
9215 // There can be multiple store sequences on the same chain.
9216 // Keep trying to merge store sequences until we are unable to do so
9217 // or until we merge the last store on the chain.
9218 bool Changed = MergeConsecutiveStores(ST);
9219 EverChanged |= Changed;
9220 if (!Changed) break;
9221 } while (ST->getOpcode() != ISD::DELETED_NODE);
9222
9223 if (EverChanged)
9224 return SDValue(N, 0);
9225 }
9226
9227 return ReduceLoadOpStoreWidth(N);
9228}
9229
9230SDValue DAGCombiner::visitINSERT_VECTOR_ELT(SDNode *N) {
9231 SDValue InVec = N->getOperand(0);
9232 SDValue InVal = N->getOperand(1);
9233 SDValue EltNo = N->getOperand(2);
9234 SDLoc dl(N);
9235
9236 // If the inserted element is an UNDEF, just use the input vector.
9237 if (InVal.getOpcode() == ISD::UNDEF)
9238 return InVec;
9239
9240 EVT VT = InVec.getValueType();
9241
9242 // If we can't generate a legal BUILD_VECTOR, exit
9243 if (LegalOperations && !TLI.isOperationLegal(ISD::BUILD_VECTOR, VT))
9244 return SDValue();
9245
9246 // Check that we know which element is being inserted
9247 if (!isa<ConstantSDNode>(EltNo))
9248 return SDValue();
9249 unsigned Elt = cast<ConstantSDNode>(EltNo)->getZExtValue();
9250
9251 // Check that the operand is a BUILD_VECTOR (or UNDEF, which can essentially
9252 // be converted to a BUILD_VECTOR). Fill in the Ops vector with the
9253 // vector elements.
9254 SmallVector<SDValue, 8> Ops;
9255 // Do not combine these two vectors if the output vector will not replace
9256 // the input vector.
9257 if (InVec.getOpcode() == ISD::BUILD_VECTOR && InVec.hasOneUse()) {
9258 Ops.append(InVec.getNode()->op_begin(),
9259 InVec.getNode()->op_end());
9260 } else if (InVec.getOpcode() == ISD::UNDEF) {
9261 unsigned NElts = VT.getVectorNumElements();
9262 Ops.append(NElts, DAG.getUNDEF(InVal.getValueType()));
9263 } else {
9264 return SDValue();
9265 }
9266
9267 // Insert the element
9268 if (Elt < Ops.size()) {
9269 // All the operands of BUILD_VECTOR must have the same type;
9270 // we enforce that here.
9271 EVT OpVT = Ops[0].getValueType();
9272 if (InVal.getValueType() != OpVT)
9273 InVal = OpVT.bitsGT(InVal.getValueType()) ?
9274 DAG.getNode(ISD::ANY_EXTEND, dl, OpVT, InVal) :
9275 DAG.getNode(ISD::TRUNCATE, dl, OpVT, InVal);
9276 Ops[Elt] = InVal;
9277 }
9278
9279 // Return the new vector
9280 return DAG.getNode(ISD::BUILD_VECTOR, dl,
9281 VT, &Ops[0], Ops.size());
9282}
9283
9284SDValue DAGCombiner::visitEXTRACT_VECTOR_ELT(SDNode *N) {
9285 // (vextract (scalar_to_vector val, 0) -> val
9286 SDValue InVec = N->getOperand(0);
9287 EVT VT = InVec.getValueType();
9288 EVT NVT = N->getValueType(0);
9289
9290 if (InVec.getOpcode() == ISD::SCALAR_TO_VECTOR) {
9291 // Check if the result type doesn't match the inserted element type. A
9292 // SCALAR_TO_VECTOR may truncate the inserted element and the
9293 // EXTRACT_VECTOR_ELT may widen the extracted vector.
9294 SDValue InOp = InVec.getOperand(0);
9295 if (InOp.getValueType() != NVT) {
9296 assert(InOp.getValueType().isInteger() && NVT.isInteger());
9297 return DAG.getSExtOrTrunc(InOp, SDLoc(InVec), NVT);
9298 }
9299 return InOp;
9300 }
9301
9302 SDValue EltNo = N->getOperand(1);
9303 bool ConstEltNo = isa<ConstantSDNode>(EltNo);
9304
9305 // Transform: (EXTRACT_VECTOR_ELT( VECTOR_SHUFFLE )) -> EXTRACT_VECTOR_ELT.
9306 // We only perform this optimization before the op legalization phase because
9307 // we may introduce new vector instructions which are not backed by TD
9308 // patterns. For example on AVX, extracting elements from a wide vector
9309 // without using extract_subvector.
9310 if (InVec.getOpcode() == ISD::VECTOR_SHUFFLE
9311 && ConstEltNo && !LegalOperations) {
9312 int Elt = cast<ConstantSDNode>(EltNo)->getZExtValue();
9313 int NumElem = VT.getVectorNumElements();
9314 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(InVec);
9315 // Find the new index to extract from.
9316 int OrigElt = SVOp->getMaskElt(Elt);
9317
9318 // Extracting an undef index is undef.
9319 if (OrigElt == -1)
9320 return DAG.getUNDEF(NVT);
9321
9322 // Select the right vector half to extract from.
9323 if (OrigElt < NumElem) {
9324 InVec = InVec->getOperand(0);
9325 } else {
9326 InVec = InVec->getOperand(1);
9327 OrigElt -= NumElem;
9328 }
9329
9330 EVT IndexTy = TLI.getVectorIdxTy();
9331 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(N), NVT,
9332 InVec, DAG.getConstant(OrigElt, IndexTy));
9333 }
9334
9335 // Perform only after legalization to ensure build_vector / vector_shuffle
9336 // optimizations have already been done.
9337 if (!LegalOperations) return SDValue();
9338
9339 // (vextract (v4f32 load $addr), c) -> (f32 load $addr+c*size)
9340 // (vextract (v4f32 s2v (f32 load $addr)), c) -> (f32 load $addr+c*size)
9341 // (vextract (v4f32 shuffle (load $addr), <1,u,u,u>), 0) -> (f32 load $addr)
9342
9343 if (ConstEltNo) {
9344 int Elt = cast<ConstantSDNode>(EltNo)->getZExtValue();
9345 bool NewLoad = false;
9346 bool BCNumEltsChanged = false;
9347 EVT ExtVT = VT.getVectorElementType();
9348 EVT LVT = ExtVT;
9349
9350 // If the result of load has to be truncated, then it's not necessarily
9351 // profitable.
9352 if (NVT.bitsLT(LVT) && !TLI.isTruncateFree(LVT, NVT))
9353 return SDValue();
9354
9355 if (InVec.getOpcode() == ISD::BITCAST) {
9356 // Don't duplicate a load with other uses.
9357 if (!InVec.hasOneUse())
9358 return SDValue();
9359
9360 EVT BCVT = InVec.getOperand(0).getValueType();
9361 if (!BCVT.isVector() || ExtVT.bitsGT(BCVT.getVectorElementType()))
9362 return SDValue();
9363 if (VT.getVectorNumElements() != BCVT.getVectorNumElements())
9364 BCNumEltsChanged = true;
9365 InVec = InVec.getOperand(0);
9366 ExtVT = BCVT.getVectorElementType();
9367 NewLoad = true;
9368 }
9369
9370 LoadSDNode *LN0 = NULL;
9371 const ShuffleVectorSDNode *SVN = NULL;
9372 if (ISD::isNormalLoad(InVec.getNode())) {
9373 LN0 = cast<LoadSDNode>(InVec);
9374 } else if (InVec.getOpcode() == ISD::SCALAR_TO_VECTOR &&
9375 InVec.getOperand(0).getValueType() == ExtVT &&
9376 ISD::isNormalLoad(InVec.getOperand(0).getNode())) {
9377 // Don't duplicate a load with other uses.
9378 if (!InVec.hasOneUse())
9379 return SDValue();
9380
9381 LN0 = cast<LoadSDNode>(InVec.getOperand(0));
9382 } else if ((SVN = dyn_cast<ShuffleVectorSDNode>(InVec))) {
9383 // (vextract (vector_shuffle (load $addr), v2, <1, u, u, u>), 1)
9384 // =>
9385 // (load $addr+1*size)
9386
9387 // Don't duplicate a load with other uses.
9388 if (!InVec.hasOneUse())
9389 return SDValue();
9390
9391 // If the bit convert changed the number of elements, it is unsafe
9392 // to examine the mask.
9393 if (BCNumEltsChanged)
9394 return SDValue();
9395
9396 // Select the input vector, guarding against out of range extract vector.
9397 unsigned NumElems = VT.getVectorNumElements();
9398 int Idx = (Elt > (int)NumElems) ? -1 : SVN->getMaskElt(Elt);
9399 InVec = (Idx < (int)NumElems) ? InVec.getOperand(0) : InVec.getOperand(1);
9400
9401 if (InVec.getOpcode() == ISD::BITCAST) {
9402 // Don't duplicate a load with other uses.
9403 if (!InVec.hasOneUse())
9404 return SDValue();
9405
9406 InVec = InVec.getOperand(0);
9407 }
9408 if (ISD::isNormalLoad(InVec.getNode())) {
9409 LN0 = cast<LoadSDNode>(InVec);
9410 Elt = (Idx < (int)NumElems) ? Idx : Idx - (int)NumElems;
9411 }
9412 }
9413
9414 // Make sure we found a non-volatile load and the extractelement is
9415 // the only use.
9416 if (!LN0 || !LN0->hasNUsesOfValue(1,0) || LN0->isVolatile())
9417 return SDValue();
9418
9419 // If Idx was -1 above, Elt is going to be -1, so just return undef.
9420 if (Elt == -1)
9421 return DAG.getUNDEF(LVT);
9422
9423 unsigned Align = LN0->getAlignment();
9424 if (NewLoad) {
9425 // Check the resultant load doesn't need a higher alignment than the
9426 // original load.
9427 unsigned NewAlign =
9428 TLI.getDataLayout()
9429 ->getABITypeAlignment(LVT.getTypeForEVT(*DAG.getContext()));
9430
9431 if (NewAlign > Align || !TLI.isOperationLegalOrCustom(ISD::LOAD, LVT))
9432 return SDValue();
9433
9434 Align = NewAlign;
9435 }
9436
9437 SDValue NewPtr = LN0->getBasePtr();
9438 unsigned PtrOff = 0;
9439
9440 if (Elt) {
9441 PtrOff = LVT.getSizeInBits() * Elt / 8;
9442 EVT PtrType = NewPtr.getValueType();
9443 if (TLI.isBigEndian())
9444 PtrOff = VT.getSizeInBits() / 8 - PtrOff;
9445 NewPtr = DAG.getNode(ISD::ADD, SDLoc(N), PtrType, NewPtr,
9446 DAG.getConstant(PtrOff, PtrType));
9447 }
9448
9449 // The replacement we need to do here is a little tricky: we need to
9450 // replace an extractelement of a load with a load.
9451 // Use ReplaceAllUsesOfValuesWith to do the replacement.
9452 // Note that this replacement assumes that the extractvalue is the only
9453 // use of the load; that's okay because we don't want to perform this
9454 // transformation in other cases anyway.
9455 SDValue Load;
9456 SDValue Chain;
9457 if (NVT.bitsGT(LVT)) {
9458 // If the result type of vextract is wider than the load, then issue an
9459 // extending load instead.
9460 ISD::LoadExtType ExtType = TLI.isLoadExtLegal(ISD::ZEXTLOAD, LVT)
9461 ? ISD::ZEXTLOAD : ISD::EXTLOAD;
9462 Load = DAG.getExtLoad(ExtType, SDLoc(N), NVT, LN0->getChain(),
9463 NewPtr, LN0->getPointerInfo().getWithOffset(PtrOff),
9464 LVT, LN0->isVolatile(), LN0->isNonTemporal(),
9465 Align, LN0->getTBAAInfo());
9466 Chain = Load.getValue(1);
9467 } else {
9468 Load = DAG.getLoad(LVT, SDLoc(N), LN0->getChain(), NewPtr,
9469 LN0->getPointerInfo().getWithOffset(PtrOff),
9470 LN0->isVolatile(), LN0->isNonTemporal(),
9471 LN0->isInvariant(), Align, LN0->getTBAAInfo());
9472 Chain = Load.getValue(1);
9473 if (NVT.bitsLT(LVT))
9474 Load = DAG.getNode(ISD::TRUNCATE, SDLoc(N), NVT, Load);
9475 else
9476 Load = DAG.getNode(ISD::BITCAST, SDLoc(N), NVT, Load);
9477 }
9478 WorkListRemover DeadNodes(*this);
9479 SDValue From[] = { SDValue(N, 0), SDValue(LN0,1) };
9480 SDValue To[] = { Load, Chain };
9481 DAG.ReplaceAllUsesOfValuesWith(From, To, 2);
9482 // Since we're explcitly calling ReplaceAllUses, add the new node to the
9483 // worklist explicitly as well.
9484 AddToWorkList(Load.getNode());
9485 AddUsersToWorkList(Load.getNode()); // Add users too
9486 // Make sure to revisit this node to clean it up; it will usually be dead.
9487 AddToWorkList(N);
9488 return SDValue(N, 0);
9489 }
9490
9491 return SDValue();
9492}
9493
9494// Simplify (build_vec (ext )) to (bitcast (build_vec ))
9495SDValue DAGCombiner::reduceBuildVecExtToExtBuildVec(SDNode *N) {
9496 // We perform this optimization post type-legalization because
9497 // the type-legalizer often scalarizes integer-promoted vectors.
9498 // Performing this optimization before may create bit-casts which
9499 // will be type-legalized to complex code sequences.
9500 // We perform this optimization only before the operation legalizer because we
9501 // may introduce illegal operations.
9502 if (Level != AfterLegalizeVectorOps && Level != AfterLegalizeTypes)
9503 return SDValue();
9504
9505 unsigned NumInScalars = N->getNumOperands();
9506 SDLoc dl(N);
9507 EVT VT = N->getValueType(0);
9508
9509 // Check to see if this is a BUILD_VECTOR of a bunch of values
9510 // which come from any_extend or zero_extend nodes. If so, we can create
9511 // a new BUILD_VECTOR using bit-casts which may enable other BUILD_VECTOR
9512 // optimizations. We do not handle sign-extend because we can't fill the sign
9513 // using shuffles.
9514 EVT SourceType = MVT::Other;
9515 bool AllAnyExt = true;
9516
9517 for (unsigned i = 0; i != NumInScalars; ++i) {
9518 SDValue In = N->getOperand(i);
9519 // Ignore undef inputs.
9520 if (In.getOpcode() == ISD::UNDEF) continue;
9521
9522 bool AnyExt = In.getOpcode() == ISD::ANY_EXTEND;
9523 bool ZeroExt = In.getOpcode() == ISD::ZERO_EXTEND;
9524
9525 // Abort if the element is not an extension.
9526 if (!ZeroExt && !AnyExt) {
9527 SourceType = MVT::Other;
9528 break;
9529 }
9530
9531 // The input is a ZeroExt or AnyExt. Check the original type.
9532 EVT InTy = In.getOperand(0).getValueType();
9533
9534 // Check that all of the widened source types are the same.
9535 if (SourceType == MVT::Other)
9536 // First time.
9537 SourceType = InTy;
9538 else if (InTy != SourceType) {
9539 // Multiple income types. Abort.
9540 SourceType = MVT::Other;
9541 break;
9542 }
9543
9544 // Check if all of the extends are ANY_EXTENDs.
9545 AllAnyExt &= AnyExt;
9546 }
9547
9548 // In order to have valid types, all of the inputs must be extended from the
9549 // same source type and all of the inputs must be any or zero extend.
9550 // Scalar sizes must be a power of two.
9551 EVT OutScalarTy = VT.getScalarType();
9552 bool ValidTypes = SourceType != MVT::Other &&
9553 isPowerOf2_32(OutScalarTy.getSizeInBits()) &&
9554 isPowerOf2_32(SourceType.getSizeInBits());
9555
9556 // Create a new simpler BUILD_VECTOR sequence which other optimizations can
9557 // turn into a single shuffle instruction.
9558 if (!ValidTypes)
9559 return SDValue();
9560
9561 bool isLE = TLI.isLittleEndian();
9562 unsigned ElemRatio = OutScalarTy.getSizeInBits()/SourceType.getSizeInBits();
9563 assert(ElemRatio > 1 && "Invalid element size ratio");
9564 SDValue Filler = AllAnyExt ? DAG.getUNDEF(SourceType):
9565 DAG.getConstant(0, SourceType);
9566
9567 unsigned NewBVElems = ElemRatio * VT.getVectorNumElements();
9568 SmallVector<SDValue, 8> Ops(NewBVElems, Filler);
9569
9570 // Populate the new build_vector
9571 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
9572 SDValue Cast = N->getOperand(i);
9573 assert((Cast.getOpcode() == ISD::ANY_EXTEND ||
9574 Cast.getOpcode() == ISD::ZERO_EXTEND ||
9575 Cast.getOpcode() == ISD::UNDEF) && "Invalid cast opcode");
9576 SDValue In;
9577 if (Cast.getOpcode() == ISD::UNDEF)
9578 In = DAG.getUNDEF(SourceType);
9579 else
9580 In = Cast->getOperand(0);
9581 unsigned Index = isLE ? (i * ElemRatio) :
9582 (i * ElemRatio + (ElemRatio - 1));
9583
9584 assert(Index < Ops.size() && "Invalid index");
9585 Ops[Index] = In;
9586 }
9587
9588 // The type of the new BUILD_VECTOR node.
9589 EVT VecVT = EVT::getVectorVT(*DAG.getContext(), SourceType, NewBVElems);
9590 assert(VecVT.getSizeInBits() == VT.getSizeInBits() &&
9591 "Invalid vector size");
9592 // Check if the new vector type is legal.
9593 if (!isTypeLegal(VecVT)) return SDValue();
9594
9595 // Make the new BUILD_VECTOR.
9596 SDValue BV = DAG.getNode(ISD::BUILD_VECTOR, dl, VecVT, &Ops[0], Ops.size());
9597
9598 // The new BUILD_VECTOR node has the potential to be further optimized.
9599 AddToWorkList(BV.getNode());
9600 // Bitcast to the desired type.
9601 return DAG.getNode(ISD::BITCAST, dl, VT, BV);
9602}
9603
9604SDValue DAGCombiner::reduceBuildVecConvertToConvertBuildVec(SDNode *N) {
9605 EVT VT = N->getValueType(0);
9606
9607 unsigned NumInScalars = N->getNumOperands();
9608 SDLoc dl(N);
9609
9610 EVT SrcVT = MVT::Other;
9611 unsigned Opcode = ISD::DELETED_NODE;
9612 unsigned NumDefs = 0;
9613
9614 for (unsigned i = 0; i != NumInScalars; ++i) {
9615 SDValue In = N->getOperand(i);
9616 unsigned Opc = In.getOpcode();
9617
9618 if (Opc == ISD::UNDEF)
9619 continue;
9620
9621 // If all scalar values are floats and converted from integers.
9622 if (Opcode == ISD::DELETED_NODE &&
9623 (Opc == ISD::UINT_TO_FP || Opc == ISD::SINT_TO_FP)) {
9624 Opcode = Opc;
9625 }
9626
9627 if (Opc != Opcode)
9628 return SDValue();
9629
9630 EVT InVT = In.getOperand(0).getValueType();
9631
9632 // If all scalar values are typed differently, bail out. It's chosen to
9633 // simplify BUILD_VECTOR of integer types.
9634 if (SrcVT == MVT::Other)
9635 SrcVT = InVT;
9636 if (SrcVT != InVT)
9637 return SDValue();
9638 NumDefs++;
9639 }
9640
9641 // If the vector has just one element defined, it's not worth to fold it into
9642 // a vectorized one.
9643 if (NumDefs < 2)
9644 return SDValue();
9645
9646 assert((Opcode == ISD::UINT_TO_FP || Opcode == ISD::SINT_TO_FP)
9647 && "Should only handle conversion from integer to float.");
9648 assert(SrcVT != MVT::Other && "Cannot determine source type!");
9649
9650 EVT NVT = EVT::getVectorVT(*DAG.getContext(), SrcVT, NumInScalars);
9651
9652 if (!TLI.isOperationLegalOrCustom(Opcode, NVT))
9653 return SDValue();
9654
9655 SmallVector<SDValue, 8> Opnds;
9656 for (unsigned i = 0; i != NumInScalars; ++i) {
9657 SDValue In = N->getOperand(i);
9658
9659 if (In.getOpcode() == ISD::UNDEF)
9660 Opnds.push_back(DAG.getUNDEF(SrcVT));
9661 else
9662 Opnds.push_back(In.getOperand(0));
9663 }
9664 SDValue BV = DAG.getNode(ISD::BUILD_VECTOR, dl, NVT,
9665 &Opnds[0], Opnds.size());
9666 AddToWorkList(BV.getNode());
9667
9668 return DAG.getNode(Opcode, dl, VT, BV);
9669}
9670
9671SDValue DAGCombiner::visitBUILD_VECTOR(SDNode *N) {
9672 unsigned NumInScalars = N->getNumOperands();
9673 SDLoc dl(N);
9674 EVT VT = N->getValueType(0);
9675
9676 // A vector built entirely of undefs is undef.
9677 if (ISD::allOperandsUndef(N))
9678 return DAG.getUNDEF(VT);
9679
9680 SDValue V = reduceBuildVecExtToExtBuildVec(N);
9681 if (V.getNode())
9682 return V;
9683
9684 V = reduceBuildVecConvertToConvertBuildVec(N);
9685 if (V.getNode())
9686 return V;
9687
9688 // Check to see if this is a BUILD_VECTOR of a bunch of EXTRACT_VECTOR_ELT
9689 // operations. If so, and if the EXTRACT_VECTOR_ELT vector inputs come from
9690 // at most two distinct vectors, turn this into a shuffle node.
9691
9692 // May only combine to shuffle after legalize if shuffle is legal.
9693 if (LegalOperations &&
9694 !TLI.isOperationLegalOrCustom(ISD::VECTOR_SHUFFLE, VT))
9695 return SDValue();
9696
9697 SDValue VecIn1, VecIn2;
9698 for (unsigned i = 0; i != NumInScalars; ++i) {
9699 // Ignore undef inputs.
9700 if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
9701
9702 // If this input is something other than a EXTRACT_VECTOR_ELT with a
9703 // constant index, bail out.
9704 if (N->getOperand(i).getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
9705 !isa<ConstantSDNode>(N->getOperand(i).getOperand(1))) {
9706 VecIn1 = VecIn2 = SDValue(0, 0);
9707 break;
9708 }
9709
9710 // We allow up to two distinct input vectors.
9711 SDValue ExtractedFromVec = N->getOperand(i).getOperand(0);
9712 if (ExtractedFromVec == VecIn1 || ExtractedFromVec == VecIn2)
9713 continue;
9714
9715 if (VecIn1.getNode() == 0) {
9716 VecIn1 = ExtractedFromVec;
9717 } else if (VecIn2.getNode() == 0) {
9718 VecIn2 = ExtractedFromVec;
9719 } else {
9720 // Too many inputs.
9721 VecIn1 = VecIn2 = SDValue(0, 0);
9722 break;
9723 }
9724 }
9725
9726 // If everything is good, we can make a shuffle operation.
9727 if (VecIn1.getNode()) {
9728 SmallVector<int, 8> Mask;
9729 for (unsigned i = 0; i != NumInScalars; ++i) {
9730 if (N->getOperand(i).getOpcode() == ISD::UNDEF) {
9731 Mask.push_back(-1);
9732 continue;
9733 }
9734
9735 // If extracting from the first vector, just use the index directly.
9736 SDValue Extract = N->getOperand(i);
9737 SDValue ExtVal = Extract.getOperand(1);
9738 if (Extract.getOperand(0) == VecIn1) {
9739 unsigned ExtIndex = cast<ConstantSDNode>(ExtVal)->getZExtValue();
9740 if (ExtIndex > VT.getVectorNumElements())
9741 return SDValue();
9742
9743 Mask.push_back(ExtIndex);
9744 continue;
9745 }
9746
9747 // Otherwise, use InIdx + VecSize
9748 unsigned Idx = cast<ConstantSDNode>(ExtVal)->getZExtValue();
9749 Mask.push_back(Idx+NumInScalars);
9750 }
9751
9752 // We can't generate a shuffle node with mismatched input and output types.
9753 // Attempt to transform a single input vector to the correct type.
9754 if ((VT != VecIn1.getValueType())) {
9755 // We don't support shuffeling between TWO values of different types.
9756 if (VecIn2.getNode() != 0)
9757 return SDValue();
9758
9759 // We only support widening of vectors which are half the size of the
9760 // output registers. For example XMM->YMM widening on X86 with AVX.
9761 if (VecIn1.getValueType().getSizeInBits()*2 != VT.getSizeInBits())
9762 return SDValue();
9763
9764 // If the input vector type has a different base type to the output
9765 // vector type, bail out.
9766 if (VecIn1.getValueType().getVectorElementType() !=
9767 VT.getVectorElementType())
9768 return SDValue();
9769
9770 // Widen the input vector by adding undef values.
9771 VecIn1 = DAG.getNode(ISD::CONCAT_VECTORS, dl, VT,
9772 VecIn1, DAG.getUNDEF(VecIn1.getValueType()));
9773 }
9774
9775 // If VecIn2 is unused then change it to undef.
9776 VecIn2 = VecIn2.getNode() ? VecIn2 : DAG.getUNDEF(VT);
9777
9778 // Check that we were able to transform all incoming values to the same
9779 // type.
9780 if (VecIn2.getValueType() != VecIn1.getValueType() ||
9781 VecIn1.getValueType() != VT)
9782 return SDValue();
9783
9784 // Only type-legal BUILD_VECTOR nodes are converted to shuffle nodes.
9785 if (!isTypeLegal(VT))
9786 return SDValue();
9787
9788 // Return the new VECTOR_SHUFFLE node.
9789 SDValue Ops[2];
9790 Ops[0] = VecIn1;
9791 Ops[1] = VecIn2;
9792 return DAG.getVectorShuffle(VT, dl, Ops[0], Ops[1], &Mask[0]);
9793 }
9794
9795 return SDValue();
9796}
9797
9798SDValue DAGCombiner::visitCONCAT_VECTORS(SDNode *N) {
9799 // TODO: Check to see if this is a CONCAT_VECTORS of a bunch of
9800 // EXTRACT_SUBVECTOR operations. If so, and if the EXTRACT_SUBVECTOR vector
9801 // inputs come from at most two distinct vectors, turn this into a shuffle
9802 // node.
9803
9804 // If we only have one input vector, we don't need to do any concatenation.
9805 if (N->getNumOperands() == 1)
9806 return N->getOperand(0);
9807
9808 // Check if all of the operands are undefs.
9809 EVT VT = N->getValueType(0);
9810 if (ISD::allOperandsUndef(N))
9811 return DAG.getUNDEF(VT);
9812
9813 // Optimize concat_vectors where one of the vectors is undef.
9814 if (N->getNumOperands() == 2 &&
9815 N->getOperand(1)->getOpcode() == ISD::UNDEF) {
9816 SDValue In = N->getOperand(0);
9817 assert(In.getValueType().isVector() && "Must concat vectors");
9818
9819 // Transform: concat_vectors(scalar, undef) -> scalar_to_vector(sclr).
9820 if (In->getOpcode() == ISD::BITCAST &&
9821 !In->getOperand(0)->getValueType(0).isVector()) {
9822 SDValue Scalar = In->getOperand(0);
9823 EVT SclTy = Scalar->getValueType(0);
9824
9825 if (!SclTy.isFloatingPoint() && !SclTy.isInteger())
9826 return SDValue();
9827
9828 EVT NVT = EVT::getVectorVT(*DAG.getContext(), SclTy,
9829 VT.getSizeInBits() / SclTy.getSizeInBits());
9830 if (!TLI.isTypeLegal(NVT) || !TLI.isTypeLegal(Scalar.getValueType()))
9831 return SDValue();
9832
9833 SDLoc dl = SDLoc(N);
9834 SDValue Res = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, NVT, Scalar);
9835 return DAG.getNode(ISD::BITCAST, dl, VT, Res);
9836 }
9837 }
9838
9839 // Type legalization of vectors and DAG canonicalization of SHUFFLE_VECTOR
9840 // nodes often generate nop CONCAT_VECTOR nodes.
9841 // Scan the CONCAT_VECTOR operands and look for a CONCAT operations that
9842 // place the incoming vectors at the exact same location.
9843 SDValue SingleSource = SDValue();
9844 unsigned PartNumElem = N->getOperand(0).getValueType().getVectorNumElements();
9845
9846 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
9847 SDValue Op = N->getOperand(i);
9848
9849 if (Op.getOpcode() == ISD::UNDEF)
9850 continue;
9851
9852 // Check if this is the identity extract:
9853 if (Op.getOpcode() != ISD::EXTRACT_SUBVECTOR)
9854 return SDValue();
9855
9856 // Find the single incoming vector for the extract_subvector.
9857 if (SingleSource.getNode()) {
9858 if (Op.getOperand(0) != SingleSource)
9859 return SDValue();
9860 } else {
9861 SingleSource = Op.getOperand(0);
9862
9863 // Check the source type is the same as the type of the result.
9864 // If not, this concat may extend the vector, so we can not
9865 // optimize it away.
9866 if (SingleSource.getValueType() != N->getValueType(0))
9867 return SDValue();
9868 }
9869
9870 unsigned IdentityIndex = i * PartNumElem;
9871 ConstantSDNode *CS = dyn_cast<ConstantSDNode>(Op.getOperand(1));
9872 // The extract index must be constant.
9873 if (!CS)
9874 return SDValue();
9875
9876 // Check that we are reading from the identity index.
9877 if (CS->getZExtValue() != IdentityIndex)
9878 return SDValue();
9879 }
9880
9881 if (SingleSource.getNode())
9882 return SingleSource;
9883
9884 return SDValue();
9885}
9886
9887SDValue DAGCombiner::visitEXTRACT_SUBVECTOR(SDNode* N) {
9888 EVT NVT = N->getValueType(0);
9889 SDValue V = N->getOperand(0);
9890
9891 if (V->getOpcode() == ISD::CONCAT_VECTORS) {
9892 // Combine:
9893 // (extract_subvec (concat V1, V2, ...), i)
9894 // Into:
9895 // Vi if possible
9896 // Only operand 0 is checked as 'concat' assumes all inputs of the same
9897 // type.
9898 if (V->getOperand(0).getValueType() != NVT)
9899 return SDValue();
9900 unsigned Idx = dyn_cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
9901 unsigned NumElems = NVT.getVectorNumElements();
9902 assert((Idx % NumElems) == 0 &&
9903 "IDX in concat is not a multiple of the result vector length.");
9904 return V->getOperand(Idx / NumElems);
9905 }
9906
9907 // Skip bitcasting
9908 if (V->getOpcode() == ISD::BITCAST)
9909 V = V.getOperand(0);
9910
9911 if (V->getOpcode() == ISD::INSERT_SUBVECTOR) {
9912 SDLoc dl(N);
9913 // Handle only simple case where vector being inserted and vector
9914 // being extracted are of same type, and are half size of larger vectors.
9915 EVT BigVT = V->getOperand(0).getValueType();
9916 EVT SmallVT = V->getOperand(1).getValueType();
9917 if (!NVT.bitsEq(SmallVT) || NVT.getSizeInBits()*2 != BigVT.getSizeInBits())
9918 return SDValue();
9919
9920 // Only handle cases where both indexes are constants with the same type.
9921 ConstantSDNode *ExtIdx = dyn_cast<ConstantSDNode>(N->getOperand(1));
9922 ConstantSDNode *InsIdx = dyn_cast<ConstantSDNode>(V->getOperand(2));
9923
9924 if (InsIdx && ExtIdx &&
9925 InsIdx->getValueType(0).getSizeInBits() <= 64 &&
9926 ExtIdx->getValueType(0).getSizeInBits() <= 64) {
9927 // Combine:
9928 // (extract_subvec (insert_subvec V1, V2, InsIdx), ExtIdx)
9929 // Into:
9930 // indices are equal or bit offsets are equal => V1
9931 // otherwise => (extract_subvec V1, ExtIdx)
9932 if (InsIdx->getZExtValue() * SmallVT.getScalarType().getSizeInBits() ==
9933 ExtIdx->getZExtValue() * NVT.getScalarType().getSizeInBits())
9934 return DAG.getNode(ISD::BITCAST, dl, NVT, V->getOperand(1));
9935 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, NVT,
9936 DAG.getNode(ISD::BITCAST, dl,
9937 N->getOperand(0).getValueType(),
9938 V->getOperand(0)), N->getOperand(1));
9939 }
9940 }
9941
9942 return SDValue();
9943}
9944
9945// Tries to turn a shuffle of two CONCAT_VECTORS into a single concat.
9946static SDValue partitionShuffleOfConcats(SDNode *N, SelectionDAG &DAG) {
9947 EVT VT = N->getValueType(0);
9948 unsigned NumElts = VT.getVectorNumElements();
9949
9950 SDValue N0 = N->getOperand(0);
9951 SDValue N1 = N->getOperand(1);
9952 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
9953
9954 SmallVector<SDValue, 4> Ops;
9955 EVT ConcatVT = N0.getOperand(0).getValueType();
9956 unsigned NumElemsPerConcat = ConcatVT.getVectorNumElements();
9957 unsigned NumConcats = NumElts / NumElemsPerConcat;
9958
9959 // Look at every vector that's inserted. We're looking for exact
9960 // subvector-sized copies from a concatenated vector
9961 for (unsigned I = 0; I != NumConcats; ++I) {
9962 // Make sure we're dealing with a copy.
9963 unsigned Begin = I * NumElemsPerConcat;
9964 bool AllUndef = true, NoUndef = true;
9965 for (unsigned J = Begin; J != Begin + NumElemsPerConcat; ++J) {
9966 if (SVN->getMaskElt(J) >= 0)
9967 AllUndef = false;
9968 else
9969 NoUndef = false;
9970 }
9971
9972 if (NoUndef) {
9973 if (SVN->getMaskElt(Begin) % NumElemsPerConcat != 0)
9974 return SDValue();
9975
9976 for (unsigned J = 1; J != NumElemsPerConcat; ++J)
9977 if (SVN->getMaskElt(Begin + J - 1) + 1 != SVN->getMaskElt(Begin + J))
9978 return SDValue();
9979
9980 unsigned FirstElt = SVN->getMaskElt(Begin) / NumElemsPerConcat;
9981 if (FirstElt < N0.getNumOperands())
9982 Ops.push_back(N0.getOperand(FirstElt));
9983 else
9984 Ops.push_back(N1.getOperand(FirstElt - N0.getNumOperands()));
9985
9986 } else if (AllUndef) {
9987 Ops.push_back(DAG.getUNDEF(N0.getOperand(0).getValueType()));
9988 } else { // Mixed with general masks and undefs, can't do optimization.
9989 return SDValue();
9990 }
9991 }
9992
9993 return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), VT, Ops.data(),
9994 Ops.size());
9995}
9996
9997SDValue DAGCombiner::visitVECTOR_SHUFFLE(SDNode *N) {
9998 EVT VT = N->getValueType(0);
9999 unsigned NumElts = VT.getVectorNumElements();
10000
10001 SDValue N0 = N->getOperand(0);
10002 SDValue N1 = N->getOperand(1);
10003
10004 assert(N0.getValueType() == VT && "Vector shuffle must be normalized in DAG");
10005
10006 // Canonicalize shuffle undef, undef -> undef
10007 if (N0.getOpcode() == ISD::UNDEF && N1.getOpcode() == ISD::UNDEF)
10008 return DAG.getUNDEF(VT);
10009
10010 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
10011
10012 // Canonicalize shuffle v, v -> v, undef
10013 if (N0 == N1) {
10014 SmallVector<int, 8> NewMask;
10015 for (unsigned i = 0; i != NumElts; ++i) {
10016 int Idx = SVN->getMaskElt(i);
10017 if (Idx >= (int)NumElts) Idx -= NumElts;
10018 NewMask.push_back(Idx);
10019 }
10020 return DAG.getVectorShuffle(VT, SDLoc(N), N0, DAG.getUNDEF(VT),
10021 &NewMask[0]);
10022 }
10023
10024 // Canonicalize shuffle undef, v -> v, undef. Commute the shuffle mask.
10025 if (N0.getOpcode() == ISD::UNDEF) {
10026 SmallVector<int, 8> NewMask;
10027 for (unsigned i = 0; i != NumElts; ++i) {
10028 int Idx = SVN->getMaskElt(i);
10029 if (Idx >= 0) {
10030 if (Idx >= (int)NumElts)
10031 Idx -= NumElts;
10032 else
10033 Idx = -1; // remove reference to lhs
10034 }
10035 NewMask.push_back(Idx);
10036 }
10037 return DAG.getVectorShuffle(VT, SDLoc(N), N1, DAG.getUNDEF(VT),
10038 &NewMask[0]);
10039 }
10040
10041 // Remove references to rhs if it is undef
10042 if (N1.getOpcode() == ISD::UNDEF) {
10043 bool Changed = false;
10044 SmallVector<int, 8> NewMask;
10045 for (unsigned i = 0; i != NumElts; ++i) {
10046 int Idx = SVN->getMaskElt(i);
10047 if (Idx >= (int)NumElts) {
10048 Idx = -1;
10049 Changed = true;
10050 }
10051 NewMask.push_back(Idx);
10052 }
10053 if (Changed)
10054 return DAG.getVectorShuffle(VT, SDLoc(N), N0, N1, &NewMask[0]);
10055 }
10056
10057 // If it is a splat, check if the argument vector is another splat or a
10058 // build_vector with all scalar elements the same.
10059 if (SVN->isSplat() && SVN->getSplatIndex() < (int)NumElts) {
10060 SDNode *V = N0.getNode();
10061
10062 // If this is a bit convert that changes the element type of the vector but
10063 // not the number of vector elements, look through it. Be careful not to
10064 // look though conversions that change things like v4f32 to v2f64.
10065 if (V->getOpcode() == ISD::BITCAST) {
10066 SDValue ConvInput = V->getOperand(0);
10067 if (ConvInput.getValueType().isVector() &&
10068 ConvInput.getValueType().getVectorNumElements() == NumElts)
10069 V = ConvInput.getNode();
10070 }
10071
10072 if (V->getOpcode() == ISD::BUILD_VECTOR) {
10073 assert(V->getNumOperands() == NumElts &&
10074 "BUILD_VECTOR has wrong number of operands");
10075 SDValue Base;
10076 bool AllSame = true;
10077 for (unsigned i = 0; i != NumElts; ++i) {
10078 if (V->getOperand(i).getOpcode() != ISD::UNDEF) {
10079 Base = V->getOperand(i);
10080 break;
10081 }
10082 }
10083 // Splat of <u, u, u, u>, return <u, u, u, u>
10084 if (!Base.getNode())
10085 return N0;
10086 for (unsigned i = 0; i != NumElts; ++i) {
10087 if (V->getOperand(i) != Base) {
10088 AllSame = false;
10089 break;
10090 }
10091 }
10092 // Splat of <x, x, x, x>, return <x, x, x, x>
10093 if (AllSame)
10094 return N0;
10095 }
10096 }
10097
10098 if (N0.getOpcode() == ISD::CONCAT_VECTORS &&
10099 Level < AfterLegalizeVectorOps &&
10100 (N1.getOpcode() == ISD::UNDEF ||
10101 (N1.getOpcode() == ISD::CONCAT_VECTORS &&
10102 N0.getOperand(0).getValueType() == N1.getOperand(0).getValueType()))) {
10103 SDValue V = partitionShuffleOfConcats(N, DAG);
10104
10105 if (V.getNode())
10106 return V;
10107 }
10108
10109 // If this shuffle node is simply a swizzle of another shuffle node,
10110 // and it reverses the swizzle of the previous shuffle then we can
10111 // optimize shuffle(shuffle(x, undef), undef) -> x.
10112 if (N0.getOpcode() == ISD::VECTOR_SHUFFLE && Level < AfterLegalizeDAG &&
10113 N1.getOpcode() == ISD::UNDEF) {
10114
10115 ShuffleVectorSDNode *OtherSV = cast<ShuffleVectorSDNode>(N0);
10116
10117 // Shuffle nodes can only reverse shuffles with a single non-undef value.
10118 if (N0.getOperand(1).getOpcode() != ISD::UNDEF)
10119 return SDValue();
10120
10121 // The incoming shuffle must be of the same type as the result of the
10122 // current shuffle.
10123 assert(OtherSV->getOperand(0).getValueType() == VT &&
10124 "Shuffle types don't match");
10125
10126 for (unsigned i = 0; i != NumElts; ++i) {
10127 int Idx = SVN->getMaskElt(i);
10128 assert(Idx < (int)NumElts && "Index references undef operand");
10129 // Next, this index comes from the first value, which is the incoming
10130 // shuffle. Adopt the incoming index.
10131 if (Idx >= 0)
10132 Idx = OtherSV->getMaskElt(Idx);
10133
10134 // The combined shuffle must map each index to itself.
10135 if (Idx >= 0 && (unsigned)Idx != i)
10136 return SDValue();
10137 }
10138
10139 return OtherSV->getOperand(0);
10140 }
10141
10142 return SDValue();
10143}
10144
10145/// XformToShuffleWithZero - Returns a vector_shuffle if it able to transform
10146/// an AND to a vector_shuffle with the destination vector and a zero vector.
10147/// e.g. AND V, <0xffffffff, 0, 0xffffffff, 0>. ==>
10148/// vector_shuffle V, Zero, <0, 4, 2, 4>
10149SDValue DAGCombiner::XformToShuffleWithZero(SDNode *N) {
10150 EVT VT = N->getValueType(0);
10151 SDLoc dl(N);
10152 SDValue LHS = N->getOperand(0);
10153 SDValue RHS = N->getOperand(1);
10154 if (N->getOpcode() == ISD::AND) {
10155 if (RHS.getOpcode() == ISD::BITCAST)
10156 RHS = RHS.getOperand(0);
10157 if (RHS.getOpcode() == ISD::BUILD_VECTOR) {
10158 SmallVector<int, 8> Indices;
10159 unsigned NumElts = RHS.getNumOperands();
10160 for (unsigned i = 0; i != NumElts; ++i) {
10161 SDValue Elt = RHS.getOperand(i);
10162 if (!isa<ConstantSDNode>(Elt))
10163 return SDValue();
10164
10165 if (cast<ConstantSDNode>(Elt)->isAllOnesValue())
10166 Indices.push_back(i);
10167 else if (cast<ConstantSDNode>(Elt)->isNullValue())
10168 Indices.push_back(NumElts);
10169 else
10170 return SDValue();
10171 }
10172
10173 // Let's see if the target supports this vector_shuffle.
10174 EVT RVT = RHS.getValueType();
10175 if (!TLI.isVectorClearMaskLegal(Indices, RVT))
10176 return SDValue();
10177
10178 // Return the new VECTOR_SHUFFLE node.
10179 EVT EltVT = RVT.getVectorElementType();
10180 SmallVector<SDValue,8> ZeroOps(RVT.getVectorNumElements(),
10181 DAG.getConstant(0, EltVT));
10182 SDValue Zero = DAG.getNode(ISD::BUILD_VECTOR, SDLoc(N),
10183 RVT, &ZeroOps[0], ZeroOps.size());
10184 LHS = DAG.getNode(ISD::BITCAST, dl, RVT, LHS);
10185 SDValue Shuf = DAG.getVectorShuffle(RVT, dl, LHS, Zero, &Indices[0]);
10186 return DAG.getNode(ISD::BITCAST, dl, VT, Shuf);
10187 }
10188 }
10189
10190 return SDValue();
10191}
10192
10193/// SimplifyVBinOp - Visit a binary vector operation, like ADD.
10194SDValue DAGCombiner::SimplifyVBinOp(SDNode *N) {
10195 assert(N->getValueType(0).isVector() &&
10196 "SimplifyVBinOp only works on vectors!");
10197
10198 SDValue LHS = N->getOperand(0);
10199 SDValue RHS = N->getOperand(1);
10200 SDValue Shuffle = XformToShuffleWithZero(N);
10201 if (Shuffle.getNode()) return Shuffle;
10202
10203 // If the LHS and RHS are BUILD_VECTOR nodes, see if we can constant fold
10204 // this operation.
10205 if (LHS.getOpcode() == ISD::BUILD_VECTOR &&
10206 RHS.getOpcode() == ISD::BUILD_VECTOR) {
10207 SmallVector<SDValue, 8> Ops;
10208 for (unsigned i = 0, e = LHS.getNumOperands(); i != e; ++i) {
10209 SDValue LHSOp = LHS.getOperand(i);
10210 SDValue RHSOp = RHS.getOperand(i);
10211 // If these two elements can't be folded, bail out.
10212 if ((LHSOp.getOpcode() != ISD::UNDEF &&
10213 LHSOp.getOpcode() != ISD::Constant &&
10214 LHSOp.getOpcode() != ISD::ConstantFP) ||
10215 (RHSOp.getOpcode() != ISD::UNDEF &&
10216 RHSOp.getOpcode() != ISD::Constant &&
10217 RHSOp.getOpcode() != ISD::ConstantFP))
10218 break;
10219
10220 // Can't fold divide by zero.
10221 if (N->getOpcode() == ISD::SDIV || N->getOpcode() == ISD::UDIV ||
10222 N->getOpcode() == ISD::FDIV) {
10223 if ((RHSOp.getOpcode() == ISD::Constant &&
10224 cast<ConstantSDNode>(RHSOp.getNode())->isNullValue()) ||
10225 (RHSOp.getOpcode() == ISD::ConstantFP &&
10226 cast<ConstantFPSDNode>(RHSOp.getNode())->getValueAPF().isZero()))
10227 break;
10228 }
10229
10230 EVT VT = LHSOp.getValueType();
10231 EVT RVT = RHSOp.getValueType();
10232 if (RVT != VT) {
10233 // Integer BUILD_VECTOR operands may have types larger than the element
10234 // size (e.g., when the element type is not legal). Prior to type
10235 // legalization, the types may not match between the two BUILD_VECTORS.
10236 // Truncate one of the operands to make them match.
10237 if (RVT.getSizeInBits() > VT.getSizeInBits()) {
10238 RHSOp = DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, RHSOp);
10239 } else {
10240 LHSOp = DAG.getNode(ISD::TRUNCATE, SDLoc(N), RVT, LHSOp);
10241 VT = RVT;
10242 }
10243 }
10244 SDValue FoldOp = DAG.getNode(N->getOpcode(), SDLoc(LHS), VT,
10245 LHSOp, RHSOp);
10246 if (FoldOp.getOpcode() != ISD::UNDEF &&
10247 FoldOp.getOpcode() != ISD::Constant &&
10248 FoldOp.getOpcode() != ISD::ConstantFP)
10249 break;
10250 Ops.push_back(FoldOp);
10251 AddToWorkList(FoldOp.getNode());
10252 }
10253
10254 if (Ops.size() == LHS.getNumOperands())
10255 return DAG.getNode(ISD::BUILD_VECTOR, SDLoc(N),
10256 LHS.getValueType(), &Ops[0], Ops.size());
10257 }
10258
10259 return SDValue();
10260}
10261
10262/// SimplifyVUnaryOp - Visit a binary vector operation, like FABS/FNEG.
10263SDValue DAGCombiner::SimplifyVUnaryOp(SDNode *N) {
10264 assert(N->getValueType(0).isVector() &&
10265 "SimplifyVUnaryOp only works on vectors!");
10266
10267 SDValue N0 = N->getOperand(0);
10268
10269 if (N0.getOpcode() != ISD::BUILD_VECTOR)
10270 return SDValue();
10271
10272 // Operand is a BUILD_VECTOR node, see if we can constant fold it.
10273 SmallVector<SDValue, 8> Ops;
10274 for (unsigned i = 0, e = N0.getNumOperands(); i != e; ++i) {
10275 SDValue Op = N0.getOperand(i);
10276 if (Op.getOpcode() != ISD::UNDEF &&
10277 Op.getOpcode() != ISD::ConstantFP)
10278 break;
10279 EVT EltVT = Op.getValueType();
10280 SDValue FoldOp = DAG.getNode(N->getOpcode(), SDLoc(N0), EltVT, Op);
10281 if (FoldOp.getOpcode() != ISD::UNDEF &&
10282 FoldOp.getOpcode() != ISD::ConstantFP)
10283 break;
10284 Ops.push_back(FoldOp);
10285 AddToWorkList(FoldOp.getNode());
10286 }
10287
10288 if (Ops.size() != N0.getNumOperands())
10289 return SDValue();
10290
10291 return DAG.getNode(ISD::BUILD_VECTOR, SDLoc(N),
10292 N0.getValueType(), &Ops[0], Ops.size());
10293}
10294
10295SDValue DAGCombiner::SimplifySelect(SDLoc DL, SDValue N0,
10296 SDValue N1, SDValue N2){
10297 assert(N0.getOpcode() ==ISD::SETCC && "First argument must be a SetCC node!");
10298
10299 SDValue SCC = SimplifySelectCC(DL, N0.getOperand(0), N0.getOperand(1), N1, N2,
10300 cast<CondCodeSDNode>(N0.getOperand(2))->get());
10301
10302 // If we got a simplified select_cc node back from SimplifySelectCC, then
10303 // break it down into a new SETCC node, and a new SELECT node, and then return
10304 // the SELECT node, since we were called with a SELECT node.
10305 if (SCC.getNode()) {
10306 // Check to see if we got a select_cc back (to turn into setcc/select).
10307 // Otherwise, just return whatever node we got back, like fabs.
10308 if (SCC.getOpcode() == ISD::SELECT_CC) {
10309 SDValue SETCC = DAG.getNode(ISD::SETCC, SDLoc(N0),
10310 N0.getValueType(),
10311 SCC.getOperand(0), SCC.getOperand(1),
10312 SCC.getOperand(4));
10313 AddToWorkList(SETCC.getNode());
10314 return DAG.getSelect(SDLoc(SCC), SCC.getValueType(),
10315 SCC.getOperand(2), SCC.getOperand(3), SETCC);
10316 }
10317
10318 return SCC;
10319 }
10320 return SDValue();
10321}
10322
10323/// SimplifySelectOps - Given a SELECT or a SELECT_CC node, where LHS and RHS
10324/// are the two values being selected between, see if we can simplify the
10325/// select. Callers of this should assume that TheSelect is deleted if this
10326/// returns true. As such, they should return the appropriate thing (e.g. the
10327/// node) back to the top-level of the DAG combiner loop to avoid it being
10328/// looked at.
10329bool DAGCombiner::SimplifySelectOps(SDNode *TheSelect, SDValue LHS,
10330 SDValue RHS) {
10331
10332 // Cannot simplify select with vector condition
10333 if (TheSelect->getOperand(0).getValueType().isVector()) return false;
10334
10335 // If this is a select from two identical things, try to pull the operation
10336 // through the select.
10337 if (LHS.getOpcode() != RHS.getOpcode() ||
10338 !LHS.hasOneUse() || !RHS.hasOneUse())
10339 return false;
10340
10341 // If this is a load and the token chain is identical, replace the select
10342 // of two loads with a load through a select of the address to load from.
10343 // This triggers in things like "select bool X, 10.0, 123.0" after the FP
10344 // constants have been dropped into the constant pool.
10345 if (LHS.getOpcode() == ISD::LOAD) {
10346 LoadSDNode *LLD = cast<LoadSDNode>(LHS);
10347 LoadSDNode *RLD = cast<LoadSDNode>(RHS);
10348
10349 // Token chains must be identical.
10350 if (LHS.getOperand(0) != RHS.getOperand(0) ||
10351 // Do not let this transformation reduce the number of volatile loads.
10352 LLD->isVolatile() || RLD->isVolatile() ||
10353 // If this is an EXTLOAD, the VT's must match.
10354 LLD->getMemoryVT() != RLD->getMemoryVT() ||
10355 // If this is an EXTLOAD, the kind of extension must match.
10356 (LLD->getExtensionType() != RLD->getExtensionType() &&
10357 // The only exception is if one of the extensions is anyext.
10358 LLD->getExtensionType() != ISD::EXTLOAD &&
10359 RLD->getExtensionType() != ISD::EXTLOAD) ||
10360 // FIXME: this discards src value information. This is
10361 // over-conservative. It would be beneficial to be able to remember
10362 // both potential memory locations. Since we are discarding
10363 // src value info, don't do the transformation if the memory
10364 // locations are not in the default address space.
10365 LLD->getPointerInfo().getAddrSpace() != 0 ||
10366 RLD->getPointerInfo().getAddrSpace() != 0 ||
10367 !TLI.isOperationLegalOrCustom(TheSelect->getOpcode(),
10368 LLD->getBasePtr().getValueType()))
10369 return false;
10370
10371 // Check that the select condition doesn't reach either load. If so,
10372 // folding this will induce a cycle into the DAG. If not, this is safe to
10373 // xform, so create a select of the addresses.
10374 SDValue Addr;
10375 if (TheSelect->getOpcode() == ISD::SELECT) {
10376 SDNode *CondNode = TheSelect->getOperand(0).getNode();
10377 if ((LLD->hasAnyUseOfValue(1) && LLD->isPredecessorOf(CondNode)) ||
10378 (RLD->hasAnyUseOfValue(1) && RLD->isPredecessorOf(CondNode)))
10379 return false;
10380 // The loads must not depend on one another.
10381 if (LLD->isPredecessorOf(RLD) ||
10382 RLD->isPredecessorOf(LLD))
10383 return false;
10384 Addr = DAG.getSelect(SDLoc(TheSelect),
10385 LLD->getBasePtr().getValueType(),
10386 TheSelect->getOperand(0), LLD->getBasePtr(),
10387 RLD->getBasePtr());
10388 } else { // Otherwise SELECT_CC
10389 SDNode *CondLHS = TheSelect->getOperand(0).getNode();
10390 SDNode *CondRHS = TheSelect->getOperand(1).getNode();
10391
10392 if ((LLD->hasAnyUseOfValue(1) &&
10393 (LLD->isPredecessorOf(CondLHS) || LLD->isPredecessorOf(CondRHS))) ||
10394 (RLD->hasAnyUseOfValue(1) &&
10395 (RLD->isPredecessorOf(CondLHS) || RLD->isPredecessorOf(CondRHS))))
10396 return false;
10397
10398 Addr = DAG.getNode(ISD::SELECT_CC, SDLoc(TheSelect),
10399 LLD->getBasePtr().getValueType(),
10400 TheSelect->getOperand(0),
10401 TheSelect->getOperand(1),
10402 LLD->getBasePtr(), RLD->getBasePtr(),
10403 TheSelect->getOperand(4));
10404 }
10405
10406 SDValue Load;
10407 if (LLD->getExtensionType() == ISD::NON_EXTLOAD) {
10408 Load = DAG.getLoad(TheSelect->getValueType(0),
10409 SDLoc(TheSelect),
10410 // FIXME: Discards pointer and TBAA info.
10411 LLD->getChain(), Addr, MachinePointerInfo(),
10412 LLD->isVolatile(), LLD->isNonTemporal(),
10413 LLD->isInvariant(), LLD->getAlignment());
10414 } else {
10415 Load = DAG.getExtLoad(LLD->getExtensionType() == ISD::EXTLOAD ?
10416 RLD->getExtensionType() : LLD->getExtensionType(),
10417 SDLoc(TheSelect),
10418 TheSelect->getValueType(0),
10419 // FIXME: Discards pointer and TBAA info.
10420 LLD->getChain(), Addr, MachinePointerInfo(),
10421 LLD->getMemoryVT(), LLD->isVolatile(),
10422 LLD->isNonTemporal(), LLD->getAlignment());
10423 }
10424
10425 // Users of the select now use the result of the load.
10426 CombineTo(TheSelect, Load);
10427
10428 // Users of the old loads now use the new load's chain. We know the
10429 // old-load value is dead now.
10430 CombineTo(LHS.getNode(), Load.getValue(0), Load.getValue(1));
10431 CombineTo(RHS.getNode(), Load.getValue(0), Load.getValue(1));
10432 return true;
10433 }
10434
10435 return false;
10436}
10437
10438/// SimplifySelectCC - Simplify an expression of the form (N0 cond N1) ? N2 : N3
10439/// where 'cond' is the comparison specified by CC.
10440SDValue DAGCombiner::SimplifySelectCC(SDLoc DL, SDValue N0, SDValue N1,
10441 SDValue N2, SDValue N3,
10442 ISD::CondCode CC, bool NotExtCompare) {
10443 // (x ? y : y) -> y.
10444 if (N2 == N3) return N2;
10445
10446 EVT VT = N2.getValueType();
10447 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
10448 ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode());
10449 ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N3.getNode());
10450
10451 // Determine if the condition we're dealing with is constant
10452 SDValue SCC = SimplifySetCC(getSetCCResultType(N0.getValueType()),
10453 N0, N1, CC, DL, false);
10454 if (SCC.getNode()) AddToWorkList(SCC.getNode());
10455 ConstantSDNode *SCCC = dyn_cast_or_null<ConstantSDNode>(SCC.getNode());
10456
10457 // fold select_cc true, x, y -> x
10458 if (SCCC && !SCCC->isNullValue())
10459 return N2;
10460 // fold select_cc false, x, y -> y
10461 if (SCCC && SCCC->isNullValue())
10462 return N3;
10463
10464 // Check to see if we can simplify the select into an fabs node
10465 if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N1)) {
10466 // Allow either -0.0 or 0.0
10467 if (CFP->getValueAPF().isZero()) {
10468 // select (setg[te] X, +/-0.0), X, fneg(X) -> fabs
10469 if ((CC == ISD::SETGE || CC == ISD::SETGT) &&
10470 N0 == N2 && N3.getOpcode() == ISD::FNEG &&
10471 N2 == N3.getOperand(0))
10472 return DAG.getNode(ISD::FABS, DL, VT, N0);
10473
10474 // select (setl[te] X, +/-0.0), fneg(X), X -> fabs
10475 if ((CC == ISD::SETLT || CC == ISD::SETLE) &&
10476 N0 == N3 && N2.getOpcode() == ISD::FNEG &&
10477 N2.getOperand(0) == N3)
10478 return DAG.getNode(ISD::FABS, DL, VT, N3);
10479 }
10480 }
10481
10482 // Turn "(a cond b) ? 1.0f : 2.0f" into "load (tmp + ((a cond b) ? 0 : 4)"
10483 // where "tmp" is a constant pool entry containing an array with 1.0 and 2.0
10484 // in it. This is a win when the constant is not otherwise available because
10485 // it replaces two constant pool loads with one. We only do this if the FP
10486 // type is known to be legal, because if it isn't, then we are before legalize
10487 // types an we want the other legalization to happen first (e.g. to avoid
10488 // messing with soft float) and if the ConstantFP is not legal, because if
10489 // it is legal, we may not need to store the FP constant in a constant pool.
10490 if (ConstantFPSDNode *TV = dyn_cast<ConstantFPSDNode>(N2))
10491 if (ConstantFPSDNode *FV = dyn_cast<ConstantFPSDNode>(N3)) {
10492 if (TLI.isTypeLegal(N2.getValueType()) &&
10493 (TLI.getOperationAction(ISD::ConstantFP, N2.getValueType()) !=
10494 TargetLowering::Legal) &&
10495 // If both constants have multiple uses, then we won't need to do an
10496 // extra load, they are likely around in registers for other users.
10497 (TV->hasOneUse() || FV->hasOneUse())) {
10498 Constant *Elts[] = {
10499 const_cast<ConstantFP*>(FV->getConstantFPValue()),
10500 const_cast<ConstantFP*>(TV->getConstantFPValue())
10501 };
10502 Type *FPTy = Elts[0]->getType();
10503 const DataLayout &TD = *TLI.getDataLayout();
10504
10505 // Create a ConstantArray of the two constants.
10506 Constant *CA = ConstantArray::get(ArrayType::get(FPTy, 2), Elts);
10507 SDValue CPIdx = DAG.getConstantPool(CA, TLI.getPointerTy(),
10508 TD.getPrefTypeAlignment(FPTy));
10509 unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment();
10510
10511 // Get the offsets to the 0 and 1 element of the array so that we can
10512 // select between them.
10513 SDValue Zero = DAG.getIntPtrConstant(0);
10514 unsigned EltSize = (unsigned)TD.getTypeAllocSize(Elts[0]->getType());
10515 SDValue One = DAG.getIntPtrConstant(EltSize);
10516
10517 SDValue Cond = DAG.getSetCC(DL,
10518 getSetCCResultType(N0.getValueType()),
10519 N0, N1, CC);
10520 AddToWorkList(Cond.getNode());
10521 SDValue CstOffset = DAG.getSelect(DL, Zero.getValueType(),
10522 Cond, One, Zero);
10523 AddToWorkList(CstOffset.getNode());
10524 CPIdx = DAG.getNode(ISD::ADD, DL, CPIdx.getValueType(), CPIdx,
10525 CstOffset);
10526 AddToWorkList(CPIdx.getNode());
10527 return DAG.getLoad(TV->getValueType(0), DL, DAG.getEntryNode(), CPIdx,
10528 MachinePointerInfo::getConstantPool(), false,
10529 false, false, Alignment);
10530
10531 }
10532 }
10533
10534 // Check to see if we can perform the "gzip trick", transforming
10535 // (select_cc setlt X, 0, A, 0) -> (and (sra X, (sub size(X), 1), A)
10536 if (N1C && N3C && N3C->isNullValue() && CC == ISD::SETLT &&
10537 (N1C->isNullValue() || // (a < 0) ? b : 0
10538 (N1C->getAPIntValue() == 1 && N0 == N2))) { // (a < 1) ? a : 0
10539 EVT XType = N0.getValueType();
10540 EVT AType = N2.getValueType();
10541 if (XType.bitsGE(AType)) {
10542 // and (sra X, size(X)-1, A) -> "and (srl X, C2), A" iff A is a
10543 // single-bit constant.
10544 if (N2C && ((N2C->getAPIntValue() & (N2C->getAPIntValue()-1)) == 0)) {
10545 unsigned ShCtV = N2C->getAPIntValue().logBase2();
10546 ShCtV = XType.getSizeInBits()-ShCtV-1;
10547 SDValue ShCt = DAG.getConstant(ShCtV,
10548 getShiftAmountTy(N0.getValueType()));
10549 SDValue Shift = DAG.getNode(ISD::SRL, SDLoc(N0),
10550 XType, N0, ShCt);
10551 AddToWorkList(Shift.getNode());
10552
10553 if (XType.bitsGT(AType)) {
10554 Shift = DAG.getNode(ISD::TRUNCATE, DL, AType, Shift);
10555 AddToWorkList(Shift.getNode());
10556 }
10557
10558 return DAG.getNode(ISD::AND, DL, AType, Shift, N2);
10559 }
10560
10561 SDValue Shift = DAG.getNode(ISD::SRA, SDLoc(N0),
10562 XType, N0,
10563 DAG.getConstant(XType.getSizeInBits()-1,
10564 getShiftAmountTy(N0.getValueType())));
10565 AddToWorkList(Shift.getNode());
10566
10567 if (XType.bitsGT(AType)) {
10568 Shift = DAG.getNode(ISD::TRUNCATE, DL, AType, Shift);
10569 AddToWorkList(Shift.getNode());
10570 }
10571
10572 return DAG.getNode(ISD::AND, DL, AType, Shift, N2);
10573 }
10574 }
10575
10576 // fold (select_cc seteq (and x, y), 0, 0, A) -> (and (shr (shl x)) A)
10577 // where y is has a single bit set.
10578 // A plaintext description would be, we can turn the SELECT_CC into an AND
10579 // when the condition can be materialized as an all-ones register. Any
10580 // single bit-test can be materialized as an all-ones register with
10581 // shift-left and shift-right-arith.
10582 if (CC == ISD::SETEQ && N0->getOpcode() == ISD::AND &&
10583 N0->getValueType(0) == VT &&
10584 N1C && N1C->isNullValue() &&
10585 N2C && N2C->isNullValue()) {
10586 SDValue AndLHS = N0->getOperand(0);
10587 ConstantSDNode *ConstAndRHS = dyn_cast<ConstantSDNode>(N0->getOperand(1));
10588 if (ConstAndRHS && ConstAndRHS->getAPIntValue().countPopulation() == 1) {
10589 // Shift the tested bit over the sign bit.
10590 APInt AndMask = ConstAndRHS->getAPIntValue();
10591 SDValue ShlAmt =
10592 DAG.getConstant(AndMask.countLeadingZeros(),
10593 getShiftAmountTy(AndLHS.getValueType()));
10594 SDValue Shl = DAG.getNode(ISD::SHL, SDLoc(N0), VT, AndLHS, ShlAmt);
10595
10596 // Now arithmetic right shift it all the way over, so the result is either
10597 // all-ones, or zero.
10598 SDValue ShrAmt =
10599 DAG.getConstant(AndMask.getBitWidth()-1,
10600 getShiftAmountTy(Shl.getValueType()));
10601 SDValue Shr = DAG.getNode(ISD::SRA, SDLoc(N0), VT, Shl, ShrAmt);
10602
10603 return DAG.getNode(ISD::AND, DL, VT, Shr, N3);
10604 }
10605 }
10606
10607 // fold select C, 16, 0 -> shl C, 4
10608 if (N2C && N3C && N3C->isNullValue() && N2C->getAPIntValue().isPowerOf2() &&
10609 TLI.getBooleanContents(N0.getValueType().isVector()) ==
10610 TargetLowering::ZeroOrOneBooleanContent) {
10611
10612 // If the caller doesn't want us to simplify this into a zext of a compare,
10613 // don't do it.
10614 if (NotExtCompare && N2C->getAPIntValue() == 1)
10615 return SDValue();
10616
10617 // Get a SetCC of the condition
10618 // NOTE: Don't create a SETCC if it's not legal on this target.
10619 if (!LegalOperations ||
10620 TLI.isOperationLegal(ISD::SETCC,
10621 LegalTypes ? getSetCCResultType(N0.getValueType()) : MVT::i1)) {
10622 SDValue Temp, SCC;
10623 // cast from setcc result type to select result type
10624 if (LegalTypes) {
10625 SCC = DAG.getSetCC(DL, getSetCCResultType(N0.getValueType()),
10626 N0, N1, CC);
10627 if (N2.getValueType().bitsLT(SCC.getValueType()))
10628 Temp = DAG.getZeroExtendInReg(SCC, SDLoc(N2),
10629 N2.getValueType());
10630 else
10631 Temp = DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N2),
10632 N2.getValueType(), SCC);
10633 } else {
10634 SCC = DAG.getSetCC(SDLoc(N0), MVT::i1, N0, N1, CC);
10635 Temp = DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N2),
10636 N2.getValueType(), SCC);
10637 }
10638
10639 AddToWorkList(SCC.getNode());
10640 AddToWorkList(Temp.getNode());
10641
10642 if (N2C->getAPIntValue() == 1)
10643 return Temp;
10644
10645 // shl setcc result by log2 n2c
10646 return DAG.getNode(
10647 ISD::SHL, DL, N2.getValueType(), Temp,
10648 DAG.getConstant(N2C->getAPIntValue().logBase2(),
10649 getShiftAmountTy(Temp.getValueType())));
10650 }
10651 }
10652
10653 // Check to see if this is the equivalent of setcc
10654 // FIXME: Turn all of these into setcc if setcc if setcc is legal
10655 // otherwise, go ahead with the folds.
10656 if (0 && N3C && N3C->isNullValue() && N2C && (N2C->getAPIntValue() == 1ULL)) {
10657 EVT XType = N0.getValueType();
10658 if (!LegalOperations ||
10659 TLI.isOperationLegal(ISD::SETCC, getSetCCResultType(XType))) {
10660 SDValue Res = DAG.getSetCC(DL, getSetCCResultType(XType), N0, N1, CC);
10661 if (Res.getValueType() != VT)
10662 Res = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, Res);
10663 return Res;
10664 }
10665
10666 // fold (seteq X, 0) -> (srl (ctlz X, log2(size(X))))
10667 if (N1C && N1C->isNullValue() && CC == ISD::SETEQ &&
10668 (!LegalOperations ||
10669 TLI.isOperationLegal(ISD::CTLZ, XType))) {
10670 SDValue Ctlz = DAG.getNode(ISD::CTLZ, SDLoc(N0), XType, N0);
10671 return DAG.getNode(ISD::SRL, DL, XType, Ctlz,
10672 DAG.getConstant(Log2_32(XType.getSizeInBits()),
10673 getShiftAmountTy(Ctlz.getValueType())));
10674 }
10675 // fold (setgt X, 0) -> (srl (and (-X, ~X), size(X)-1))
10676 if (N1C && N1C->isNullValue() && CC == ISD::SETGT) {
10677 SDValue NegN0 = DAG.getNode(ISD::SUB, SDLoc(N0),
10678 XType, DAG.getConstant(0, XType), N0);
10679 SDValue NotN0 = DAG.getNOT(SDLoc(N0), N0, XType);
10680 return DAG.getNode(ISD::SRL, DL, XType,
10681 DAG.getNode(ISD::AND, DL, XType, NegN0, NotN0),
10682 DAG.getConstant(XType.getSizeInBits()-1,
10683 getShiftAmountTy(XType)));
10684 }
10685 // fold (setgt X, -1) -> (xor (srl (X, size(X)-1), 1))
10686 if (N1C && N1C->isAllOnesValue() && CC == ISD::SETGT) {
10687 SDValue Sign = DAG.getNode(ISD::SRL, SDLoc(N0), XType, N0,
10688 DAG.getConstant(XType.getSizeInBits()-1,
10689 getShiftAmountTy(N0.getValueType())));
10690 return DAG.getNode(ISD::XOR, DL, XType, Sign, DAG.getConstant(1, XType));
10691 }
10692 }
10693
10694 // Check to see if this is an integer abs.
10695 // select_cc setg[te] X, 0, X, -X ->
10696 // select_cc setgt X, -1, X, -X ->
10697 // select_cc setl[te] X, 0, -X, X ->
10698 // select_cc setlt X, 1, -X, X ->
10699 // Y = sra (X, size(X)-1); xor (add (X, Y), Y)
10700 if (N1C) {
10701 ConstantSDNode *SubC = NULL;
10702 if (((N1C->isNullValue() && (CC == ISD::SETGT || CC == ISD::SETGE)) ||
10703 (N1C->isAllOnesValue() && CC == ISD::SETGT)) &&
10704 N0 == N2 && N3.getOpcode() == ISD::SUB && N0 == N3.getOperand(1))
10705 SubC = dyn_cast<ConstantSDNode>(N3.getOperand(0));
10706 else if (((N1C->isNullValue() && (CC == ISD::SETLT || CC == ISD::SETLE)) ||
10707 (N1C->isOne() && CC == ISD::SETLT)) &&
10708 N0 == N3 && N2.getOpcode() == ISD::SUB && N0 == N2.getOperand(1))
10709 SubC = dyn_cast<ConstantSDNode>(N2.getOperand(0));
10710
10711 EVT XType = N0.getValueType();
10712 if (SubC && SubC->isNullValue() && XType.isInteger()) {
10713 SDValue Shift = DAG.getNode(ISD::SRA, SDLoc(N0), XType,
10714 N0,
10715 DAG.getConstant(XType.getSizeInBits()-1,
10716 getShiftAmountTy(N0.getValueType())));
10717 SDValue Add = DAG.getNode(ISD::ADD, SDLoc(N0),
10718 XType, N0, Shift);
10719 AddToWorkList(Shift.getNode());
10720 AddToWorkList(Add.getNode());
10721 return DAG.getNode(ISD::XOR, DL, XType, Add, Shift);
10722 }
10723 }
10724
10725 return SDValue();
10726}
10727
10728/// SimplifySetCC - This is a stub for TargetLowering::SimplifySetCC.
10729SDValue DAGCombiner::SimplifySetCC(EVT VT, SDValue N0,
10730 SDValue N1, ISD::CondCode Cond,
10731 SDLoc DL, bool foldBooleans) {
10732 TargetLowering::DAGCombinerInfo
10733 DagCombineInfo(DAG, Level, false, this);
10734 return TLI.SimplifySetCC(VT, N0, N1, Cond, foldBooleans, DagCombineInfo, DL);
10735}
10736
10737/// BuildSDIVSequence - Given an ISD::SDIV node expressing a divide by constant,
10738/// return a DAG expression to select that will generate the same value by
10739/// multiplying by a magic number. See:
10740/// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
10741SDValue DAGCombiner::BuildSDIV(SDNode *N) {
10742 std::vector<SDNode*> Built;
10743 SDValue S = TLI.BuildSDIV(N, DAG, LegalOperations, &Built);
10744
10745 for (std::vector<SDNode*>::iterator ii = Built.begin(), ee = Built.end();
10746 ii != ee; ++ii)
10747 AddToWorkList(*ii);
10748 return S;
10749}
10750
10751/// BuildUDIVSequence - Given an ISD::UDIV node expressing a divide by constant,
10752/// return a DAG expression to select that will generate the same value by
10753/// multiplying by a magic number. See:
10754/// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
10755SDValue DAGCombiner::BuildUDIV(SDNode *N) {
10756 std::vector<SDNode*> Built;
10757 SDValue S = TLI.BuildUDIV(N, DAG, LegalOperations, &Built);
10758
10759 for (std::vector<SDNode*>::iterator ii = Built.begin(), ee = Built.end();
10760 ii != ee; ++ii)
10761 AddToWorkList(*ii);
10762 return S;
10763}
10764
10765/// FindBaseOffset - Return true if base is a frame index, which is known not
10766// to alias with anything but itself. Provides base object and offset as
10767// results.
10768static bool FindBaseOffset(SDValue Ptr, SDValue &Base, int64_t &Offset,
10769 const GlobalValue *&GV, const void *&CV) {
10770 // Assume it is a primitive operation.
10771 Base = Ptr; Offset = 0; GV = 0; CV = 0;
10772
10773 // If it's an adding a simple constant then integrate the offset.
10774 if (Base.getOpcode() == ISD::ADD) {
10775 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Base.getOperand(1))) {
10776 Base = Base.getOperand(0);
10777 Offset += C->getZExtValue();
10778 }
10779 }
10780
10781 // Return the underlying GlobalValue, and update the Offset. Return false
10782 // for GlobalAddressSDNode since the same GlobalAddress may be represented
10783 // by multiple nodes with different offsets.
10784 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Base)) {
10785 GV = G->getGlobal();
10786 Offset += G->getOffset();
10787 return false;
10788 }
10789
10790 // Return the underlying Constant value, and update the Offset. Return false
10791 // for ConstantSDNodes since the same constant pool entry may be represented
10792 // by multiple nodes with different offsets.
10793 if (ConstantPoolSDNode *C = dyn_cast<ConstantPoolSDNode>(Base)) {
10794 CV = C->isMachineConstantPoolEntry() ? (const void *)C->getMachineCPVal()
10795 : (const void *)C->getConstVal();
10796 Offset += C->getOffset();
10797 return false;
10798 }
10799 // If it's any of the following then it can't alias with anything but itself.
10800 return isa<FrameIndexSDNode>(Base);
10801}
10802
10803/// isAlias - Return true if there is any possibility that the two addresses
10804/// overlap.
10805bool DAGCombiner::isAlias(SDValue Ptr1, int64_t Size1, bool IsVolatile1,
10806 const Value *SrcValue1, int SrcValueOffset1,
10807 unsigned SrcValueAlign1,
10808 const MDNode *TBAAInfo1,
10809 SDValue Ptr2, int64_t Size2, bool IsVolatile2,
10810 const Value *SrcValue2, int SrcValueOffset2,
10811 unsigned SrcValueAlign2,
10812 const MDNode *TBAAInfo2) const {
10813 // If they are the same then they must be aliases.
10814 if (Ptr1 == Ptr2) return true;
10815
10816 // If they are both volatile then they cannot be reordered.
10817 if (IsVolatile1 && IsVolatile2) return true;
10818
10819 // Gather base node and offset information.
10820 SDValue Base1, Base2;
10821 int64_t Offset1, Offset2;
10822 const GlobalValue *GV1, *GV2;
10823 const void *CV1, *CV2;
10824 bool isFrameIndex1 = FindBaseOffset(Ptr1, Base1, Offset1, GV1, CV1);
10825 bool isFrameIndex2 = FindBaseOffset(Ptr2, Base2, Offset2, GV2, CV2);
10826
10827 // If they have a same base address then check to see if they overlap.
10828 if (Base1 == Base2 || (GV1 && (GV1 == GV2)) || (CV1 && (CV1 == CV2)))
10829 return !((Offset1 + Size1) <= Offset2 || (Offset2 + Size2) <= Offset1);
10830
10831 // It is possible for different frame indices to alias each other, mostly
10832 // when tail call optimization reuses return address slots for arguments.
10833 // To catch this case, look up the actual index of frame indices to compute
10834 // the real alias relationship.
10835 if (isFrameIndex1 && isFrameIndex2) {
10836 MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
10837 Offset1 += MFI->getObjectOffset(cast<FrameIndexSDNode>(Base1)->getIndex());
10838 Offset2 += MFI->getObjectOffset(cast<FrameIndexSDNode>(Base2)->getIndex());
10839 return !((Offset1 + Size1) <= Offset2 || (Offset2 + Size2) <= Offset1);
10840 }
10841
10842 // Otherwise, if we know what the bases are, and they aren't identical, then
10843 // we know they cannot alias.
10844 if ((isFrameIndex1 || CV1 || GV1) && (isFrameIndex2 || CV2 || GV2))
10845 return false;
10846
10847 // If we know required SrcValue1 and SrcValue2 have relatively large alignment
10848 // compared to the size and offset of the access, we may be able to prove they
10849 // do not alias. This check is conservative for now to catch cases created by
10850 // splitting vector types.
10851 if ((SrcValueAlign1 == SrcValueAlign2) &&
10852 (SrcValueOffset1 != SrcValueOffset2) &&
10853 (Size1 == Size2) && (SrcValueAlign1 > Size1)) {
10854 int64_t OffAlign1 = SrcValueOffset1 % SrcValueAlign1;
10855 int64_t OffAlign2 = SrcValueOffset2 % SrcValueAlign1;
10856
10857 // There is no overlap between these relatively aligned accesses of similar
10858 // size, return no alias.
10859 if ((OffAlign1 + Size1) <= OffAlign2 || (OffAlign2 + Size2) <= OffAlign1)
10860 return false;
10861 }
10862
10863 bool UseAA = CombinerGlobalAA.getNumOccurrences() > 0 ? CombinerGlobalAA :
10864 TLI.getTargetMachine().getSubtarget<TargetSubtargetInfo>().useAA();
10865 if (UseAA && SrcValue1 && SrcValue2) {
10866 // Use alias analysis information.
10867 int64_t MinOffset = std::min(SrcValueOffset1, SrcValueOffset2);
10868 int64_t Overlap1 = Size1 + SrcValueOffset1 - MinOffset;
10869 int64_t Overlap2 = Size2 + SrcValueOffset2 - MinOffset;
10870 AliasAnalysis::AliasResult AAResult =
10871 AA.alias(AliasAnalysis::Location(SrcValue1, Overlap1, TBAAInfo1),
10872 AliasAnalysis::Location(SrcValue2, Overlap2, TBAAInfo2));
10873 if (AAResult == AliasAnalysis::NoAlias)
10874 return false;
10875 }
10876
10877 // Otherwise we have to assume they alias.
10878 return true;
10879}
10880
10881bool DAGCombiner::isAlias(LSBaseSDNode *Op0, LSBaseSDNode *Op1) {
10882 SDValue Ptr0, Ptr1;
10883 int64_t Size0, Size1;
10884 bool IsVolatile0, IsVolatile1;
10885 const Value *SrcValue0, *SrcValue1;
10886 int SrcValueOffset0, SrcValueOffset1;
10887 unsigned SrcValueAlign0, SrcValueAlign1;
10888 const MDNode *SrcTBAAInfo0, *SrcTBAAInfo1;
10889 FindAliasInfo(Op0, Ptr0, Size0, IsVolatile0, SrcValue0, SrcValueOffset0,
10890 SrcValueAlign0, SrcTBAAInfo0);
10891 FindAliasInfo(Op1, Ptr1, Size1, IsVolatile1, SrcValue1, SrcValueOffset1,
10892 SrcValueAlign1, SrcTBAAInfo1);
10893 return isAlias(Ptr0, Size0, IsVolatile0, SrcValue0, SrcValueOffset0,
10894 SrcValueAlign0, SrcTBAAInfo0,
10895 Ptr1, Size1, IsVolatile1, SrcValue1, SrcValueOffset1,
10896 SrcValueAlign1, SrcTBAAInfo1);
10897}
10898
10899/// FindAliasInfo - Extracts the relevant alias information from the memory
10900/// node. Returns true if the operand was a nonvolatile load.
10901bool DAGCombiner::FindAliasInfo(SDNode *N,
10902 SDValue &Ptr, int64_t &Size, bool &IsVolatile,
10903 const Value *&SrcValue,
10904 int &SrcValueOffset,
10905 unsigned &SrcValueAlign,
10906 const MDNode *&TBAAInfo) const {
10907 LSBaseSDNode *LS = cast<LSBaseSDNode>(N);
10908
10909 Ptr = LS->getBasePtr();
10910 Size = LS->getMemoryVT().getSizeInBits() >> 3;
10911 IsVolatile = LS->isVolatile();
10912 SrcValue = LS->getSrcValue();
10913 SrcValueOffset = LS->getSrcValueOffset();
10914 SrcValueAlign = LS->getOriginalAlignment();
10915 TBAAInfo = LS->getTBAAInfo();
10916 return isa<LoadSDNode>(LS) && !IsVolatile;
10917}
10918
10919/// GatherAllAliases - Walk up chain skipping non-aliasing memory nodes,
10920/// looking for aliasing nodes and adding them to the Aliases vector.
10921void DAGCombiner::GatherAllAliases(SDNode *N, SDValue OriginalChain,
10922 SmallVectorImpl<SDValue> &Aliases) {
10923 SmallVector<SDValue, 8> Chains; // List of chains to visit.
10924 SmallPtrSet<SDNode *, 16> Visited; // Visited node set.
10925
10926 // Get alias information for node.
10927 SDValue Ptr;
10928 int64_t Size;
10929 bool IsVolatile;
10930 const Value *SrcValue;
10931 int SrcValueOffset;
10932 unsigned SrcValueAlign;
10933 const MDNode *SrcTBAAInfo;
10934 bool IsLoad = FindAliasInfo(N, Ptr, Size, IsVolatile, SrcValue,
10935 SrcValueOffset, SrcValueAlign, SrcTBAAInfo);
10936
10937 // Starting off.
10938 Chains.push_back(OriginalChain);
10939 unsigned Depth = 0;
10940
10941 // Look at each chain and determine if it is an alias. If so, add it to the
10942 // aliases list. If not, then continue up the chain looking for the next
10943 // candidate.
10944 while (!Chains.empty()) {
10945 SDValue Chain = Chains.back();
10946 Chains.pop_back();
10947
10948 // For TokenFactor nodes, look at each operand and only continue up the
10949 // chain until we find two aliases. If we've seen two aliases, assume we'll
10950 // find more and revert to original chain since the xform is unlikely to be
10951 // profitable.
10952 //
10953 // FIXME: The depth check could be made to return the last non-aliasing
10954 // chain we found before we hit a tokenfactor rather than the original
10955 // chain.
10956 if (Depth > 6 || Aliases.size() == 2) {
10957 Aliases.clear();
10958 Aliases.push_back(OriginalChain);
10959 break;
10960 }
10961
10962 // Don't bother if we've been before.
10963 if (!Visited.insert(Chain.getNode()))
10964 continue;
10965
10966 switch (Chain.getOpcode()) {
10967 case ISD::EntryToken:
10968 // Entry token is ideal chain operand, but handled in FindBetterChain.
10969 break;
10970
10971 case ISD::LOAD:
10972 case ISD::STORE: {
10973 // Get alias information for Chain.
10974 SDValue OpPtr;
10975 int64_t OpSize;
10976 bool OpIsVolatile;
10977 const Value *OpSrcValue;
10978 int OpSrcValueOffset;
10979 unsigned OpSrcValueAlign;
10980 const MDNode *OpSrcTBAAInfo;
10981 bool IsOpLoad = FindAliasInfo(Chain.getNode(), OpPtr, OpSize,
10982 OpIsVolatile, OpSrcValue, OpSrcValueOffset,
10983 OpSrcValueAlign,
10984 OpSrcTBAAInfo);
10985
10986 // If chain is alias then stop here.
10987 if (!(IsLoad && IsOpLoad) &&
10988 isAlias(Ptr, Size, IsVolatile, SrcValue, SrcValueOffset,
10989 SrcValueAlign, SrcTBAAInfo,
10990 OpPtr, OpSize, OpIsVolatile, OpSrcValue, OpSrcValueOffset,
10991 OpSrcValueAlign, OpSrcTBAAInfo)) {
10992 Aliases.push_back(Chain);
10993 } else {
10994 // Look further up the chain.
10995 Chains.push_back(Chain.getOperand(0));
10996 ++Depth;
10997 }
10998 break;
10999 }
11000
11001 case ISD::TokenFactor:
11002 // We have to check each of the operands of the token factor for "small"
11003 // token factors, so we queue them up. Adding the operands to the queue
11004 // (stack) in reverse order maintains the original order and increases the
11005 // likelihood that getNode will find a matching token factor (CSE.)
11006 if (Chain.getNumOperands() > 16) {
11007 Aliases.push_back(Chain);
11008 break;
11009 }
11010 for (unsigned n = Chain.getNumOperands(); n;)
11011 Chains.push_back(Chain.getOperand(--n));
11012 ++Depth;
11013 break;
11014
11015 default:
11016 // For all other instructions we will just have to take what we can get.
11017 Aliases.push_back(Chain);
11018 break;
11019 }
11020 }
11021}
11022
11023/// FindBetterChain - Walk up chain skipping non-aliasing memory nodes, looking
11024/// for a better chain (aliasing node.)
11025SDValue DAGCombiner::FindBetterChain(SDNode *N, SDValue OldChain) {
11026 SmallVector<SDValue, 8> Aliases; // Ops for replacing token factor.
11027
11028 // Accumulate all the aliases to this node.
11029 GatherAllAliases(N, OldChain, Aliases);
11030
11031 // If no operands then chain to entry token.
11032 if (Aliases.size() == 0)
11033 return DAG.getEntryNode();
11034
11035 // If a single operand then chain to it. We don't need to revisit it.
11036 if (Aliases.size() == 1)
11037 return Aliases[0];
11038
11039 // Construct a custom tailored token factor.
11040 return DAG.getNode(ISD::TokenFactor, SDLoc(N), MVT::Other,
11041 &Aliases[0], Aliases.size());
11042}
11043
11044// SelectionDAG::Combine - This is the entry point for the file.
11045//
11046void SelectionDAG::Combine(CombineLevel Level, AliasAnalysis &AA,
11047 CodeGenOpt::Level OptLevel) {
11048 /// run - This is the main entry point to this class.
11049 ///
11050 DAGCombiner(*this, AA, OptLevel).Run(Level);
11051}
8554 }
8555};
8556
8557bool DAGCombiner::MergeConsecutiveStores(StoreSDNode* St) {
8558 EVT MemVT = St->getMemoryVT();
8559 int64_t ElementSizeBytes = MemVT.getSizeInBits()/8;
8560 bool NoVectors = DAG.getMachineFunction().getFunction()->getAttributes().
8561 hasAttribute(AttributeSet::FunctionIndex, Attribute::NoImplicitFloat);
8562
8563 // Don't merge vectors into wider inputs.
8564 if (MemVT.isVector() || !MemVT.isSimple())
8565 return false;
8566
8567 // Perform an early exit check. Do not bother looking at stored values that
8568 // are not constants or loads.
8569 SDValue StoredVal = St->getValue();
8570 bool IsLoadSrc = isa<LoadSDNode>(StoredVal);
8571 if (!isa<ConstantSDNode>(StoredVal) && !isa<ConstantFPSDNode>(StoredVal) &&
8572 !IsLoadSrc)
8573 return false;
8574
8575 // Only look at ends of store sequences.
8576 SDValue Chain = SDValue(St, 1);
8577 if (Chain->hasOneUse() && Chain->use_begin()->getOpcode() == ISD::STORE)
8578 return false;
8579
8580 // This holds the base pointer, index, and the offset in bytes from the base
8581 // pointer.
8582 BaseIndexOffset BasePtr = BaseIndexOffset::match(St->getBasePtr());
8583
8584 // We must have a base and an offset.
8585 if (!BasePtr.Base.getNode())
8586 return false;
8587
8588 // Do not handle stores to undef base pointers.
8589 if (BasePtr.Base.getOpcode() == ISD::UNDEF)
8590 return false;
8591
8592 // Save the LoadSDNodes that we find in the chain.
8593 // We need to make sure that these nodes do not interfere with
8594 // any of the store nodes.
8595 SmallVector<LSBaseSDNode*, 8> AliasLoadNodes;
8596
8597 // Save the StoreSDNodes that we find in the chain.
8598 SmallVector<MemOpLink, 8> StoreNodes;
8599
8600 // Walk up the chain and look for nodes with offsets from the same
8601 // base pointer. Stop when reaching an instruction with a different kind
8602 // or instruction which has a different base pointer.
8603 unsigned Seq = 0;
8604 StoreSDNode *Index = St;
8605 while (Index) {
8606 // If the chain has more than one use, then we can't reorder the mem ops.
8607 if (Index != St && !SDValue(Index, 1)->hasOneUse())
8608 break;
8609
8610 // Find the base pointer and offset for this memory node.
8611 BaseIndexOffset Ptr = BaseIndexOffset::match(Index->getBasePtr());
8612
8613 // Check that the base pointer is the same as the original one.
8614 if (!Ptr.equalBaseIndex(BasePtr))
8615 break;
8616
8617 // Check that the alignment is the same.
8618 if (Index->getAlignment() != St->getAlignment())
8619 break;
8620
8621 // The memory operands must not be volatile.
8622 if (Index->isVolatile() || Index->isIndexed())
8623 break;
8624
8625 // No truncation.
8626 if (StoreSDNode *St = dyn_cast<StoreSDNode>(Index))
8627 if (St->isTruncatingStore())
8628 break;
8629
8630 // The stored memory type must be the same.
8631 if (Index->getMemoryVT() != MemVT)
8632 break;
8633
8634 // We do not allow unaligned stores because we want to prevent overriding
8635 // stores.
8636 if (Index->getAlignment()*8 != MemVT.getSizeInBits())
8637 break;
8638
8639 // We found a potential memory operand to merge.
8640 StoreNodes.push_back(MemOpLink(Index, Ptr.Offset, Seq++));
8641
8642 // Find the next memory operand in the chain. If the next operand in the
8643 // chain is a store then move up and continue the scan with the next
8644 // memory operand. If the next operand is a load save it and use alias
8645 // information to check if it interferes with anything.
8646 SDNode *NextInChain = Index->getChain().getNode();
8647 while (1) {
8648 if (StoreSDNode *STn = dyn_cast<StoreSDNode>(NextInChain)) {
8649 // We found a store node. Use it for the next iteration.
8650 Index = STn;
8651 break;
8652 } else if (LoadSDNode *Ldn = dyn_cast<LoadSDNode>(NextInChain)) {
8653 if (Ldn->isVolatile()) {
8654 Index = NULL;
8655 break;
8656 }
8657
8658 // Save the load node for later. Continue the scan.
8659 AliasLoadNodes.push_back(Ldn);
8660 NextInChain = Ldn->getChain().getNode();
8661 continue;
8662 } else {
8663 Index = NULL;
8664 break;
8665 }
8666 }
8667 }
8668
8669 // Check if there is anything to merge.
8670 if (StoreNodes.size() < 2)
8671 return false;
8672
8673 // Sort the memory operands according to their distance from the base pointer.
8674 std::sort(StoreNodes.begin(), StoreNodes.end(),
8675 ConsecutiveMemoryChainSorter());
8676
8677 // Scan the memory operations on the chain and find the first non-consecutive
8678 // store memory address.
8679 unsigned LastConsecutiveStore = 0;
8680 int64_t StartAddress = StoreNodes[0].OffsetFromBase;
8681 for (unsigned i = 0, e = StoreNodes.size(); i < e; ++i) {
8682
8683 // Check that the addresses are consecutive starting from the second
8684 // element in the list of stores.
8685 if (i > 0) {
8686 int64_t CurrAddress = StoreNodes[i].OffsetFromBase;
8687 if (CurrAddress - StartAddress != (ElementSizeBytes * i))
8688 break;
8689 }
8690
8691 bool Alias = false;
8692 // Check if this store interferes with any of the loads that we found.
8693 for (unsigned ld = 0, lde = AliasLoadNodes.size(); ld < lde; ++ld)
8694 if (isAlias(AliasLoadNodes[ld], StoreNodes[i].MemNode)) {
8695 Alias = true;
8696 break;
8697 }
8698 // We found a load that alias with this store. Stop the sequence.
8699 if (Alias)
8700 break;
8701
8702 // Mark this node as useful.
8703 LastConsecutiveStore = i;
8704 }
8705
8706 // The node with the lowest store address.
8707 LSBaseSDNode *FirstInChain = StoreNodes[0].MemNode;
8708
8709 // Store the constants into memory as one consecutive store.
8710 if (!IsLoadSrc) {
8711 unsigned LastLegalType = 0;
8712 unsigned LastLegalVectorType = 0;
8713 bool NonZero = false;
8714 for (unsigned i=0; i<LastConsecutiveStore+1; ++i) {
8715 StoreSDNode *St = cast<StoreSDNode>(StoreNodes[i].MemNode);
8716 SDValue StoredVal = St->getValue();
8717
8718 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(StoredVal)) {
8719 NonZero |= !C->isNullValue();
8720 } else if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(StoredVal)) {
8721 NonZero |= !C->getConstantFPValue()->isNullValue();
8722 } else {
8723 // Non constant.
8724 break;
8725 }
8726
8727 // Find a legal type for the constant store.
8728 unsigned StoreBW = (i+1) * ElementSizeBytes * 8;
8729 EVT StoreTy = EVT::getIntegerVT(*DAG.getContext(), StoreBW);
8730 if (TLI.isTypeLegal(StoreTy))
8731 LastLegalType = i+1;
8732 // Or check whether a truncstore is legal.
8733 else if (TLI.getTypeAction(*DAG.getContext(), StoreTy) ==
8734 TargetLowering::TypePromoteInteger) {
8735 EVT LegalizedStoredValueTy =
8736 TLI.getTypeToTransformTo(*DAG.getContext(), StoredVal.getValueType());
8737 if (TLI.isTruncStoreLegal(LegalizedStoredValueTy, StoreTy))
8738 LastLegalType = i+1;
8739 }
8740
8741 // Find a legal type for the vector store.
8742 EVT Ty = EVT::getVectorVT(*DAG.getContext(), MemVT, i+1);
8743 if (TLI.isTypeLegal(Ty))
8744 LastLegalVectorType = i + 1;
8745 }
8746
8747 // We only use vectors if the constant is known to be zero and the
8748 // function is not marked with the noimplicitfloat attribute.
8749 if (NonZero || NoVectors)
8750 LastLegalVectorType = 0;
8751
8752 // Check if we found a legal integer type to store.
8753 if (LastLegalType == 0 && LastLegalVectorType == 0)
8754 return false;
8755
8756 bool UseVector = (LastLegalVectorType > LastLegalType) && !NoVectors;
8757 unsigned NumElem = UseVector ? LastLegalVectorType : LastLegalType;
8758
8759 // Make sure we have something to merge.
8760 if (NumElem < 2)
8761 return false;
8762
8763 unsigned EarliestNodeUsed = 0;
8764 for (unsigned i=0; i < NumElem; ++i) {
8765 // Find a chain for the new wide-store operand. Notice that some
8766 // of the store nodes that we found may not be selected for inclusion
8767 // in the wide store. The chain we use needs to be the chain of the
8768 // earliest store node which is *used* and replaced by the wide store.
8769 if (StoreNodes[i].SequenceNum > StoreNodes[EarliestNodeUsed].SequenceNum)
8770 EarliestNodeUsed = i;
8771 }
8772
8773 // The earliest Node in the DAG.
8774 LSBaseSDNode *EarliestOp = StoreNodes[EarliestNodeUsed].MemNode;
8775 SDLoc DL(StoreNodes[0].MemNode);
8776
8777 SDValue StoredVal;
8778 if (UseVector) {
8779 // Find a legal type for the vector store.
8780 EVT Ty = EVT::getVectorVT(*DAG.getContext(), MemVT, NumElem);
8781 assert(TLI.isTypeLegal(Ty) && "Illegal vector store");
8782 StoredVal = DAG.getConstant(0, Ty);
8783 } else {
8784 unsigned StoreBW = NumElem * ElementSizeBytes * 8;
8785 APInt StoreInt(StoreBW, 0);
8786
8787 // Construct a single integer constant which is made of the smaller
8788 // constant inputs.
8789 bool IsLE = TLI.isLittleEndian();
8790 for (unsigned i = 0; i < NumElem ; ++i) {
8791 unsigned Idx = IsLE ?(NumElem - 1 - i) : i;
8792 StoreSDNode *St = cast<StoreSDNode>(StoreNodes[Idx].MemNode);
8793 SDValue Val = St->getValue();
8794 StoreInt<<=ElementSizeBytes*8;
8795 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val)) {
8796 StoreInt|=C->getAPIntValue().zext(StoreBW);
8797 } else if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Val)) {
8798 StoreInt|= C->getValueAPF().bitcastToAPInt().zext(StoreBW);
8799 } else {
8800 assert(false && "Invalid constant element type");
8801 }
8802 }
8803
8804 // Create the new Load and Store operations.
8805 EVT StoreTy = EVT::getIntegerVT(*DAG.getContext(), StoreBW);
8806 StoredVal = DAG.getConstant(StoreInt, StoreTy);
8807 }
8808
8809 SDValue NewStore = DAG.getStore(EarliestOp->getChain(), DL, StoredVal,
8810 FirstInChain->getBasePtr(),
8811 FirstInChain->getPointerInfo(),
8812 false, false,
8813 FirstInChain->getAlignment());
8814
8815 // Replace the first store with the new store
8816 CombineTo(EarliestOp, NewStore);
8817 // Erase all other stores.
8818 for (unsigned i = 0; i < NumElem ; ++i) {
8819 if (StoreNodes[i].MemNode == EarliestOp)
8820 continue;
8821 StoreSDNode *St = cast<StoreSDNode>(StoreNodes[i].MemNode);
8822 // ReplaceAllUsesWith will replace all uses that existed when it was
8823 // called, but graph optimizations may cause new ones to appear. For
8824 // example, the case in pr14333 looks like
8825 //
8826 // St's chain -> St -> another store -> X
8827 //
8828 // And the only difference from St to the other store is the chain.
8829 // When we change it's chain to be St's chain they become identical,
8830 // get CSEed and the net result is that X is now a use of St.
8831 // Since we know that St is redundant, just iterate.
8832 while (!St->use_empty())
8833 DAG.ReplaceAllUsesWith(SDValue(St, 0), St->getChain());
8834 removeFromWorkList(St);
8835 DAG.DeleteNode(St);
8836 }
8837
8838 return true;
8839 }
8840
8841 // Below we handle the case of multiple consecutive stores that
8842 // come from multiple consecutive loads. We merge them into a single
8843 // wide load and a single wide store.
8844
8845 // Look for load nodes which are used by the stored values.
8846 SmallVector<MemOpLink, 8> LoadNodes;
8847
8848 // Find acceptable loads. Loads need to have the same chain (token factor),
8849 // must not be zext, volatile, indexed, and they must be consecutive.
8850 BaseIndexOffset LdBasePtr;
8851 for (unsigned i=0; i<LastConsecutiveStore+1; ++i) {
8852 StoreSDNode *St = cast<StoreSDNode>(StoreNodes[i].MemNode);
8853 LoadSDNode *Ld = dyn_cast<LoadSDNode>(St->getValue());
8854 if (!Ld) break;
8855
8856 // Loads must only have one use.
8857 if (!Ld->hasNUsesOfValue(1, 0))
8858 break;
8859
8860 // Check that the alignment is the same as the stores.
8861 if (Ld->getAlignment() != St->getAlignment())
8862 break;
8863
8864 // The memory operands must not be volatile.
8865 if (Ld->isVolatile() || Ld->isIndexed())
8866 break;
8867
8868 // We do not accept ext loads.
8869 if (Ld->getExtensionType() != ISD::NON_EXTLOAD)
8870 break;
8871
8872 // The stored memory type must be the same.
8873 if (Ld->getMemoryVT() != MemVT)
8874 break;
8875
8876 BaseIndexOffset LdPtr = BaseIndexOffset::match(Ld->getBasePtr());
8877 // If this is not the first ptr that we check.
8878 if (LdBasePtr.Base.getNode()) {
8879 // The base ptr must be the same.
8880 if (!LdPtr.equalBaseIndex(LdBasePtr))
8881 break;
8882 } else {
8883 // Check that all other base pointers are the same as this one.
8884 LdBasePtr = LdPtr;
8885 }
8886
8887 // We found a potential memory operand to merge.
8888 LoadNodes.push_back(MemOpLink(Ld, LdPtr.Offset, 0));
8889 }
8890
8891 if (LoadNodes.size() < 2)
8892 return false;
8893
8894 // Scan the memory operations on the chain and find the first non-consecutive
8895 // load memory address. These variables hold the index in the store node
8896 // array.
8897 unsigned LastConsecutiveLoad = 0;
8898 // This variable refers to the size and not index in the array.
8899 unsigned LastLegalVectorType = 0;
8900 unsigned LastLegalIntegerType = 0;
8901 StartAddress = LoadNodes[0].OffsetFromBase;
8902 SDValue FirstChain = LoadNodes[0].MemNode->getChain();
8903 for (unsigned i = 1; i < LoadNodes.size(); ++i) {
8904 // All loads much share the same chain.
8905 if (LoadNodes[i].MemNode->getChain() != FirstChain)
8906 break;
8907
8908 int64_t CurrAddress = LoadNodes[i].OffsetFromBase;
8909 if (CurrAddress - StartAddress != (ElementSizeBytes * i))
8910 break;
8911 LastConsecutiveLoad = i;
8912
8913 // Find a legal type for the vector store.
8914 EVT StoreTy = EVT::getVectorVT(*DAG.getContext(), MemVT, i+1);
8915 if (TLI.isTypeLegal(StoreTy))
8916 LastLegalVectorType = i + 1;
8917
8918 // Find a legal type for the integer store.
8919 unsigned StoreBW = (i+1) * ElementSizeBytes * 8;
8920 StoreTy = EVT::getIntegerVT(*DAG.getContext(), StoreBW);
8921 if (TLI.isTypeLegal(StoreTy))
8922 LastLegalIntegerType = i + 1;
8923 // Or check whether a truncstore and extload is legal.
8924 else if (TLI.getTypeAction(*DAG.getContext(), StoreTy) ==
8925 TargetLowering::TypePromoteInteger) {
8926 EVT LegalizedStoredValueTy =
8927 TLI.getTypeToTransformTo(*DAG.getContext(), StoreTy);
8928 if (TLI.isTruncStoreLegal(LegalizedStoredValueTy, StoreTy) &&
8929 TLI.isLoadExtLegal(ISD::ZEXTLOAD, StoreTy) &&
8930 TLI.isLoadExtLegal(ISD::SEXTLOAD, StoreTy) &&
8931 TLI.isLoadExtLegal(ISD::EXTLOAD, StoreTy))
8932 LastLegalIntegerType = i+1;
8933 }
8934 }
8935
8936 // Only use vector types if the vector type is larger than the integer type.
8937 // If they are the same, use integers.
8938 bool UseVectorTy = LastLegalVectorType > LastLegalIntegerType && !NoVectors;
8939 unsigned LastLegalType = std::max(LastLegalVectorType, LastLegalIntegerType);
8940
8941 // We add +1 here because the LastXXX variables refer to location while
8942 // the NumElem refers to array/index size.
8943 unsigned NumElem = std::min(LastConsecutiveStore, LastConsecutiveLoad) + 1;
8944 NumElem = std::min(LastLegalType, NumElem);
8945
8946 if (NumElem < 2)
8947 return false;
8948
8949 // The earliest Node in the DAG.
8950 unsigned EarliestNodeUsed = 0;
8951 LSBaseSDNode *EarliestOp = StoreNodes[EarliestNodeUsed].MemNode;
8952 for (unsigned i=1; i<NumElem; ++i) {
8953 // Find a chain for the new wide-store operand. Notice that some
8954 // of the store nodes that we found may not be selected for inclusion
8955 // in the wide store. The chain we use needs to be the chain of the
8956 // earliest store node which is *used* and replaced by the wide store.
8957 if (StoreNodes[i].SequenceNum > StoreNodes[EarliestNodeUsed].SequenceNum)
8958 EarliestNodeUsed = i;
8959 }
8960
8961 // Find if it is better to use vectors or integers to load and store
8962 // to memory.
8963 EVT JointMemOpVT;
8964 if (UseVectorTy) {
8965 JointMemOpVT = EVT::getVectorVT(*DAG.getContext(), MemVT, NumElem);
8966 } else {
8967 unsigned StoreBW = NumElem * ElementSizeBytes * 8;
8968 JointMemOpVT = EVT::getIntegerVT(*DAG.getContext(), StoreBW);
8969 }
8970
8971 SDLoc LoadDL(LoadNodes[0].MemNode);
8972 SDLoc StoreDL(StoreNodes[0].MemNode);
8973
8974 LoadSDNode *FirstLoad = cast<LoadSDNode>(LoadNodes[0].MemNode);
8975 SDValue NewLoad = DAG.getLoad(JointMemOpVT, LoadDL,
8976 FirstLoad->getChain(),
8977 FirstLoad->getBasePtr(),
8978 FirstLoad->getPointerInfo(),
8979 false, false, false,
8980 FirstLoad->getAlignment());
8981
8982 SDValue NewStore = DAG.getStore(EarliestOp->getChain(), StoreDL, NewLoad,
8983 FirstInChain->getBasePtr(),
8984 FirstInChain->getPointerInfo(), false, false,
8985 FirstInChain->getAlignment());
8986
8987 // Replace one of the loads with the new load.
8988 LoadSDNode *Ld = cast<LoadSDNode>(LoadNodes[0].MemNode);
8989 DAG.ReplaceAllUsesOfValueWith(SDValue(Ld, 1),
8990 SDValue(NewLoad.getNode(), 1));
8991
8992 // Remove the rest of the load chains.
8993 for (unsigned i = 1; i < NumElem ; ++i) {
8994 // Replace all chain users of the old load nodes with the chain of the new
8995 // load node.
8996 LoadSDNode *Ld = cast<LoadSDNode>(LoadNodes[i].MemNode);
8997 DAG.ReplaceAllUsesOfValueWith(SDValue(Ld, 1), Ld->getChain());
8998 }
8999
9000 // Replace the first store with the new store.
9001 CombineTo(EarliestOp, NewStore);
9002 // Erase all other stores.
9003 for (unsigned i = 0; i < NumElem ; ++i) {
9004 // Remove all Store nodes.
9005 if (StoreNodes[i].MemNode == EarliestOp)
9006 continue;
9007 StoreSDNode *St = cast<StoreSDNode>(StoreNodes[i].MemNode);
9008 DAG.ReplaceAllUsesOfValueWith(SDValue(St, 0), St->getChain());
9009 removeFromWorkList(St);
9010 DAG.DeleteNode(St);
9011 }
9012
9013 return true;
9014}
9015
9016SDValue DAGCombiner::visitSTORE(SDNode *N) {
9017 StoreSDNode *ST = cast<StoreSDNode>(N);
9018 SDValue Chain = ST->getChain();
9019 SDValue Value = ST->getValue();
9020 SDValue Ptr = ST->getBasePtr();
9021
9022 // If this is a store of a bit convert, store the input value if the
9023 // resultant store does not need a higher alignment than the original.
9024 if (Value.getOpcode() == ISD::BITCAST && !ST->isTruncatingStore() &&
9025 ST->isUnindexed()) {
9026 unsigned OrigAlign = ST->getAlignment();
9027 EVT SVT = Value.getOperand(0).getValueType();
9028 unsigned Align = TLI.getDataLayout()->
9029 getABITypeAlignment(SVT.getTypeForEVT(*DAG.getContext()));
9030 if (Align <= OrigAlign &&
9031 ((!LegalOperations && !ST->isVolatile()) ||
9032 TLI.isOperationLegalOrCustom(ISD::STORE, SVT)))
9033 return DAG.getStore(Chain, SDLoc(N), Value.getOperand(0),
9034 Ptr, ST->getPointerInfo(), ST->isVolatile(),
9035 ST->isNonTemporal(), OrigAlign,
9036 ST->getTBAAInfo());
9037 }
9038
9039 // Turn 'store undef, Ptr' -> nothing.
9040 if (Value.getOpcode() == ISD::UNDEF && ST->isUnindexed())
9041 return Chain;
9042
9043 // Turn 'store float 1.0, Ptr' -> 'store int 0x12345678, Ptr'
9044 if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Value)) {
9045 // NOTE: If the original store is volatile, this transform must not increase
9046 // the number of stores. For example, on x86-32 an f64 can be stored in one
9047 // processor operation but an i64 (which is not legal) requires two. So the
9048 // transform should not be done in this case.
9049 if (Value.getOpcode() != ISD::TargetConstantFP) {
9050 SDValue Tmp;
9051 switch (CFP->getSimpleValueType(0).SimpleTy) {
9052 default: llvm_unreachable("Unknown FP type");
9053 case MVT::f16: // We don't do this for these yet.
9054 case MVT::f80:
9055 case MVT::f128:
9056 case MVT::ppcf128:
9057 break;
9058 case MVT::f32:
9059 if ((isTypeLegal(MVT::i32) && !LegalOperations && !ST->isVolatile()) ||
9060 TLI.isOperationLegalOrCustom(ISD::STORE, MVT::i32)) {
9061 Tmp = DAG.getConstant((uint32_t)CFP->getValueAPF().
9062 bitcastToAPInt().getZExtValue(), MVT::i32);
9063 return DAG.getStore(Chain, SDLoc(N), Tmp,
9064 Ptr, ST->getMemOperand());
9065 }
9066 break;
9067 case MVT::f64:
9068 if ((TLI.isTypeLegal(MVT::i64) && !LegalOperations &&
9069 !ST->isVolatile()) ||
9070 TLI.isOperationLegalOrCustom(ISD::STORE, MVT::i64)) {
9071 Tmp = DAG.getConstant(CFP->getValueAPF().bitcastToAPInt().
9072 getZExtValue(), MVT::i64);
9073 return DAG.getStore(Chain, SDLoc(N), Tmp,
9074 Ptr, ST->getMemOperand());
9075 }
9076
9077 if (!ST->isVolatile() &&
9078 TLI.isOperationLegalOrCustom(ISD::STORE, MVT::i32)) {
9079 // Many FP stores are not made apparent until after legalize, e.g. for
9080 // argument passing. Since this is so common, custom legalize the
9081 // 64-bit integer store into two 32-bit stores.
9082 uint64_t Val = CFP->getValueAPF().bitcastToAPInt().getZExtValue();
9083 SDValue Lo = DAG.getConstant(Val & 0xFFFFFFFF, MVT::i32);
9084 SDValue Hi = DAG.getConstant(Val >> 32, MVT::i32);
9085 if (TLI.isBigEndian()) std::swap(Lo, Hi);
9086
9087 unsigned Alignment = ST->getAlignment();
9088 bool isVolatile = ST->isVolatile();
9089 bool isNonTemporal = ST->isNonTemporal();
9090 const MDNode *TBAAInfo = ST->getTBAAInfo();
9091
9092 SDValue St0 = DAG.getStore(Chain, SDLoc(ST), Lo,
9093 Ptr, ST->getPointerInfo(),
9094 isVolatile, isNonTemporal,
9095 ST->getAlignment(), TBAAInfo);
9096 Ptr = DAG.getNode(ISD::ADD, SDLoc(N), Ptr.getValueType(), Ptr,
9097 DAG.getConstant(4, Ptr.getValueType()));
9098 Alignment = MinAlign(Alignment, 4U);
9099 SDValue St1 = DAG.getStore(Chain, SDLoc(ST), Hi,
9100 Ptr, ST->getPointerInfo().getWithOffset(4),
9101 isVolatile, isNonTemporal,
9102 Alignment, TBAAInfo);
9103 return DAG.getNode(ISD::TokenFactor, SDLoc(N), MVT::Other,
9104 St0, St1);
9105 }
9106
9107 break;
9108 }
9109 }
9110 }
9111
9112 // Try to infer better alignment information than the store already has.
9113 if (OptLevel != CodeGenOpt::None && ST->isUnindexed()) {
9114 if (unsigned Align = DAG.InferPtrAlignment(Ptr)) {
9115 if (Align > ST->getAlignment())
9116 return DAG.getTruncStore(Chain, SDLoc(N), Value,
9117 Ptr, ST->getPointerInfo(), ST->getMemoryVT(),
9118 ST->isVolatile(), ST->isNonTemporal(), Align,
9119 ST->getTBAAInfo());
9120 }
9121 }
9122
9123 // Try transforming a pair floating point load / store ops to integer
9124 // load / store ops.
9125 SDValue NewST = TransformFPLoadStorePair(N);
9126 if (NewST.getNode())
9127 return NewST;
9128
9129 bool UseAA = CombinerAA.getNumOccurrences() > 0 ? CombinerAA :
9130 TLI.getTargetMachine().getSubtarget<TargetSubtargetInfo>().useAA();
9131 if (UseAA) {
9132 // Walk up chain skipping non-aliasing memory nodes.
9133 SDValue BetterChain = FindBetterChain(N, Chain);
9134
9135 // If there is a better chain.
9136 if (Chain != BetterChain) {
9137 SDValue ReplStore;
9138
9139 // Replace the chain to avoid dependency.
9140 if (ST->isTruncatingStore()) {
9141 ReplStore = DAG.getTruncStore(BetterChain, SDLoc(N), Value, Ptr,
9142 ST->getMemoryVT(), ST->getMemOperand());
9143 } else {
9144 ReplStore = DAG.getStore(BetterChain, SDLoc(N), Value, Ptr,
9145 ST->getMemOperand());
9146 }
9147
9148 // Create token to keep both nodes around.
9149 SDValue Token = DAG.getNode(ISD::TokenFactor, SDLoc(N),
9150 MVT::Other, Chain, ReplStore);
9151
9152 // Make sure the new and old chains are cleaned up.
9153 AddToWorkList(Token.getNode());
9154
9155 // Don't add users to work list.
9156 return CombineTo(N, Token, false);
9157 }
9158 }
9159
9160 // Try transforming N to an indexed store.
9161 if (CombineToPreIndexedLoadStore(N) || CombineToPostIndexedLoadStore(N))
9162 return SDValue(N, 0);
9163
9164 // FIXME: is there such a thing as a truncating indexed store?
9165 if (ST->isTruncatingStore() && ST->isUnindexed() &&
9166 Value.getValueType().isInteger()) {
9167 // See if we can simplify the input to this truncstore with knowledge that
9168 // only the low bits are being used. For example:
9169 // "truncstore (or (shl x, 8), y), i8" -> "truncstore y, i8"
9170 SDValue Shorter =
9171 GetDemandedBits(Value,
9172 APInt::getLowBitsSet(
9173 Value.getValueType().getScalarType().getSizeInBits(),
9174 ST->getMemoryVT().getScalarType().getSizeInBits()));
9175 AddToWorkList(Value.getNode());
9176 if (Shorter.getNode())
9177 return DAG.getTruncStore(Chain, SDLoc(N), Shorter,
9178 Ptr, ST->getMemoryVT(), ST->getMemOperand());
9179
9180 // Otherwise, see if we can simplify the operation with
9181 // SimplifyDemandedBits, which only works if the value has a single use.
9182 if (SimplifyDemandedBits(Value,
9183 APInt::getLowBitsSet(
9184 Value.getValueType().getScalarType().getSizeInBits(),
9185 ST->getMemoryVT().getScalarType().getSizeInBits())))
9186 return SDValue(N, 0);
9187 }
9188
9189 // If this is a load followed by a store to the same location, then the store
9190 // is dead/noop.
9191 if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Value)) {
9192 if (Ld->getBasePtr() == Ptr && ST->getMemoryVT() == Ld->getMemoryVT() &&
9193 ST->isUnindexed() && !ST->isVolatile() &&
9194 // There can't be any side effects between the load and store, such as
9195 // a call or store.
9196 Chain.reachesChainWithoutSideEffects(SDValue(Ld, 1))) {
9197 // The store is dead, remove it.
9198 return Chain;
9199 }
9200 }
9201
9202 // If this is an FP_ROUND or TRUNC followed by a store, fold this into a
9203 // truncating store. We can do this even if this is already a truncstore.
9204 if ((Value.getOpcode() == ISD::FP_ROUND || Value.getOpcode() == ISD::TRUNCATE)
9205 && Value.getNode()->hasOneUse() && ST->isUnindexed() &&
9206 TLI.isTruncStoreLegal(Value.getOperand(0).getValueType(),
9207 ST->getMemoryVT())) {
9208 return DAG.getTruncStore(Chain, SDLoc(N), Value.getOperand(0),
9209 Ptr, ST->getMemoryVT(), ST->getMemOperand());
9210 }
9211
9212 // Only perform this optimization before the types are legal, because we
9213 // don't want to perform this optimization on every DAGCombine invocation.
9214 if (!LegalTypes) {
9215 bool EverChanged = false;
9216
9217 do {
9218 // There can be multiple store sequences on the same chain.
9219 // Keep trying to merge store sequences until we are unable to do so
9220 // or until we merge the last store on the chain.
9221 bool Changed = MergeConsecutiveStores(ST);
9222 EverChanged |= Changed;
9223 if (!Changed) break;
9224 } while (ST->getOpcode() != ISD::DELETED_NODE);
9225
9226 if (EverChanged)
9227 return SDValue(N, 0);
9228 }
9229
9230 return ReduceLoadOpStoreWidth(N);
9231}
9232
9233SDValue DAGCombiner::visitINSERT_VECTOR_ELT(SDNode *N) {
9234 SDValue InVec = N->getOperand(0);
9235 SDValue InVal = N->getOperand(1);
9236 SDValue EltNo = N->getOperand(2);
9237 SDLoc dl(N);
9238
9239 // If the inserted element is an UNDEF, just use the input vector.
9240 if (InVal.getOpcode() == ISD::UNDEF)
9241 return InVec;
9242
9243 EVT VT = InVec.getValueType();
9244
9245 // If we can't generate a legal BUILD_VECTOR, exit
9246 if (LegalOperations && !TLI.isOperationLegal(ISD::BUILD_VECTOR, VT))
9247 return SDValue();
9248
9249 // Check that we know which element is being inserted
9250 if (!isa<ConstantSDNode>(EltNo))
9251 return SDValue();
9252 unsigned Elt = cast<ConstantSDNode>(EltNo)->getZExtValue();
9253
9254 // Check that the operand is a BUILD_VECTOR (or UNDEF, which can essentially
9255 // be converted to a BUILD_VECTOR). Fill in the Ops vector with the
9256 // vector elements.
9257 SmallVector<SDValue, 8> Ops;
9258 // Do not combine these two vectors if the output vector will not replace
9259 // the input vector.
9260 if (InVec.getOpcode() == ISD::BUILD_VECTOR && InVec.hasOneUse()) {
9261 Ops.append(InVec.getNode()->op_begin(),
9262 InVec.getNode()->op_end());
9263 } else if (InVec.getOpcode() == ISD::UNDEF) {
9264 unsigned NElts = VT.getVectorNumElements();
9265 Ops.append(NElts, DAG.getUNDEF(InVal.getValueType()));
9266 } else {
9267 return SDValue();
9268 }
9269
9270 // Insert the element
9271 if (Elt < Ops.size()) {
9272 // All the operands of BUILD_VECTOR must have the same type;
9273 // we enforce that here.
9274 EVT OpVT = Ops[0].getValueType();
9275 if (InVal.getValueType() != OpVT)
9276 InVal = OpVT.bitsGT(InVal.getValueType()) ?
9277 DAG.getNode(ISD::ANY_EXTEND, dl, OpVT, InVal) :
9278 DAG.getNode(ISD::TRUNCATE, dl, OpVT, InVal);
9279 Ops[Elt] = InVal;
9280 }
9281
9282 // Return the new vector
9283 return DAG.getNode(ISD::BUILD_VECTOR, dl,
9284 VT, &Ops[0], Ops.size());
9285}
9286
9287SDValue DAGCombiner::visitEXTRACT_VECTOR_ELT(SDNode *N) {
9288 // (vextract (scalar_to_vector val, 0) -> val
9289 SDValue InVec = N->getOperand(0);
9290 EVT VT = InVec.getValueType();
9291 EVT NVT = N->getValueType(0);
9292
9293 if (InVec.getOpcode() == ISD::SCALAR_TO_VECTOR) {
9294 // Check if the result type doesn't match the inserted element type. A
9295 // SCALAR_TO_VECTOR may truncate the inserted element and the
9296 // EXTRACT_VECTOR_ELT may widen the extracted vector.
9297 SDValue InOp = InVec.getOperand(0);
9298 if (InOp.getValueType() != NVT) {
9299 assert(InOp.getValueType().isInteger() && NVT.isInteger());
9300 return DAG.getSExtOrTrunc(InOp, SDLoc(InVec), NVT);
9301 }
9302 return InOp;
9303 }
9304
9305 SDValue EltNo = N->getOperand(1);
9306 bool ConstEltNo = isa<ConstantSDNode>(EltNo);
9307
9308 // Transform: (EXTRACT_VECTOR_ELT( VECTOR_SHUFFLE )) -> EXTRACT_VECTOR_ELT.
9309 // We only perform this optimization before the op legalization phase because
9310 // we may introduce new vector instructions which are not backed by TD
9311 // patterns. For example on AVX, extracting elements from a wide vector
9312 // without using extract_subvector.
9313 if (InVec.getOpcode() == ISD::VECTOR_SHUFFLE
9314 && ConstEltNo && !LegalOperations) {
9315 int Elt = cast<ConstantSDNode>(EltNo)->getZExtValue();
9316 int NumElem = VT.getVectorNumElements();
9317 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(InVec);
9318 // Find the new index to extract from.
9319 int OrigElt = SVOp->getMaskElt(Elt);
9320
9321 // Extracting an undef index is undef.
9322 if (OrigElt == -1)
9323 return DAG.getUNDEF(NVT);
9324
9325 // Select the right vector half to extract from.
9326 if (OrigElt < NumElem) {
9327 InVec = InVec->getOperand(0);
9328 } else {
9329 InVec = InVec->getOperand(1);
9330 OrigElt -= NumElem;
9331 }
9332
9333 EVT IndexTy = TLI.getVectorIdxTy();
9334 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(N), NVT,
9335 InVec, DAG.getConstant(OrigElt, IndexTy));
9336 }
9337
9338 // Perform only after legalization to ensure build_vector / vector_shuffle
9339 // optimizations have already been done.
9340 if (!LegalOperations) return SDValue();
9341
9342 // (vextract (v4f32 load $addr), c) -> (f32 load $addr+c*size)
9343 // (vextract (v4f32 s2v (f32 load $addr)), c) -> (f32 load $addr+c*size)
9344 // (vextract (v4f32 shuffle (load $addr), <1,u,u,u>), 0) -> (f32 load $addr)
9345
9346 if (ConstEltNo) {
9347 int Elt = cast<ConstantSDNode>(EltNo)->getZExtValue();
9348 bool NewLoad = false;
9349 bool BCNumEltsChanged = false;
9350 EVT ExtVT = VT.getVectorElementType();
9351 EVT LVT = ExtVT;
9352
9353 // If the result of load has to be truncated, then it's not necessarily
9354 // profitable.
9355 if (NVT.bitsLT(LVT) && !TLI.isTruncateFree(LVT, NVT))
9356 return SDValue();
9357
9358 if (InVec.getOpcode() == ISD::BITCAST) {
9359 // Don't duplicate a load with other uses.
9360 if (!InVec.hasOneUse())
9361 return SDValue();
9362
9363 EVT BCVT = InVec.getOperand(0).getValueType();
9364 if (!BCVT.isVector() || ExtVT.bitsGT(BCVT.getVectorElementType()))
9365 return SDValue();
9366 if (VT.getVectorNumElements() != BCVT.getVectorNumElements())
9367 BCNumEltsChanged = true;
9368 InVec = InVec.getOperand(0);
9369 ExtVT = BCVT.getVectorElementType();
9370 NewLoad = true;
9371 }
9372
9373 LoadSDNode *LN0 = NULL;
9374 const ShuffleVectorSDNode *SVN = NULL;
9375 if (ISD::isNormalLoad(InVec.getNode())) {
9376 LN0 = cast<LoadSDNode>(InVec);
9377 } else if (InVec.getOpcode() == ISD::SCALAR_TO_VECTOR &&
9378 InVec.getOperand(0).getValueType() == ExtVT &&
9379 ISD::isNormalLoad(InVec.getOperand(0).getNode())) {
9380 // Don't duplicate a load with other uses.
9381 if (!InVec.hasOneUse())
9382 return SDValue();
9383
9384 LN0 = cast<LoadSDNode>(InVec.getOperand(0));
9385 } else if ((SVN = dyn_cast<ShuffleVectorSDNode>(InVec))) {
9386 // (vextract (vector_shuffle (load $addr), v2, <1, u, u, u>), 1)
9387 // =>
9388 // (load $addr+1*size)
9389
9390 // Don't duplicate a load with other uses.
9391 if (!InVec.hasOneUse())
9392 return SDValue();
9393
9394 // If the bit convert changed the number of elements, it is unsafe
9395 // to examine the mask.
9396 if (BCNumEltsChanged)
9397 return SDValue();
9398
9399 // Select the input vector, guarding against out of range extract vector.
9400 unsigned NumElems = VT.getVectorNumElements();
9401 int Idx = (Elt > (int)NumElems) ? -1 : SVN->getMaskElt(Elt);
9402 InVec = (Idx < (int)NumElems) ? InVec.getOperand(0) : InVec.getOperand(1);
9403
9404 if (InVec.getOpcode() == ISD::BITCAST) {
9405 // Don't duplicate a load with other uses.
9406 if (!InVec.hasOneUse())
9407 return SDValue();
9408
9409 InVec = InVec.getOperand(0);
9410 }
9411 if (ISD::isNormalLoad(InVec.getNode())) {
9412 LN0 = cast<LoadSDNode>(InVec);
9413 Elt = (Idx < (int)NumElems) ? Idx : Idx - (int)NumElems;
9414 }
9415 }
9416
9417 // Make sure we found a non-volatile load and the extractelement is
9418 // the only use.
9419 if (!LN0 || !LN0->hasNUsesOfValue(1,0) || LN0->isVolatile())
9420 return SDValue();
9421
9422 // If Idx was -1 above, Elt is going to be -1, so just return undef.
9423 if (Elt == -1)
9424 return DAG.getUNDEF(LVT);
9425
9426 unsigned Align = LN0->getAlignment();
9427 if (NewLoad) {
9428 // Check the resultant load doesn't need a higher alignment than the
9429 // original load.
9430 unsigned NewAlign =
9431 TLI.getDataLayout()
9432 ->getABITypeAlignment(LVT.getTypeForEVT(*DAG.getContext()));
9433
9434 if (NewAlign > Align || !TLI.isOperationLegalOrCustom(ISD::LOAD, LVT))
9435 return SDValue();
9436
9437 Align = NewAlign;
9438 }
9439
9440 SDValue NewPtr = LN0->getBasePtr();
9441 unsigned PtrOff = 0;
9442
9443 if (Elt) {
9444 PtrOff = LVT.getSizeInBits() * Elt / 8;
9445 EVT PtrType = NewPtr.getValueType();
9446 if (TLI.isBigEndian())
9447 PtrOff = VT.getSizeInBits() / 8 - PtrOff;
9448 NewPtr = DAG.getNode(ISD::ADD, SDLoc(N), PtrType, NewPtr,
9449 DAG.getConstant(PtrOff, PtrType));
9450 }
9451
9452 // The replacement we need to do here is a little tricky: we need to
9453 // replace an extractelement of a load with a load.
9454 // Use ReplaceAllUsesOfValuesWith to do the replacement.
9455 // Note that this replacement assumes that the extractvalue is the only
9456 // use of the load; that's okay because we don't want to perform this
9457 // transformation in other cases anyway.
9458 SDValue Load;
9459 SDValue Chain;
9460 if (NVT.bitsGT(LVT)) {
9461 // If the result type of vextract is wider than the load, then issue an
9462 // extending load instead.
9463 ISD::LoadExtType ExtType = TLI.isLoadExtLegal(ISD::ZEXTLOAD, LVT)
9464 ? ISD::ZEXTLOAD : ISD::EXTLOAD;
9465 Load = DAG.getExtLoad(ExtType, SDLoc(N), NVT, LN0->getChain(),
9466 NewPtr, LN0->getPointerInfo().getWithOffset(PtrOff),
9467 LVT, LN0->isVolatile(), LN0->isNonTemporal(),
9468 Align, LN0->getTBAAInfo());
9469 Chain = Load.getValue(1);
9470 } else {
9471 Load = DAG.getLoad(LVT, SDLoc(N), LN0->getChain(), NewPtr,
9472 LN0->getPointerInfo().getWithOffset(PtrOff),
9473 LN0->isVolatile(), LN0->isNonTemporal(),
9474 LN0->isInvariant(), Align, LN0->getTBAAInfo());
9475 Chain = Load.getValue(1);
9476 if (NVT.bitsLT(LVT))
9477 Load = DAG.getNode(ISD::TRUNCATE, SDLoc(N), NVT, Load);
9478 else
9479 Load = DAG.getNode(ISD::BITCAST, SDLoc(N), NVT, Load);
9480 }
9481 WorkListRemover DeadNodes(*this);
9482 SDValue From[] = { SDValue(N, 0), SDValue(LN0,1) };
9483 SDValue To[] = { Load, Chain };
9484 DAG.ReplaceAllUsesOfValuesWith(From, To, 2);
9485 // Since we're explcitly calling ReplaceAllUses, add the new node to the
9486 // worklist explicitly as well.
9487 AddToWorkList(Load.getNode());
9488 AddUsersToWorkList(Load.getNode()); // Add users too
9489 // Make sure to revisit this node to clean it up; it will usually be dead.
9490 AddToWorkList(N);
9491 return SDValue(N, 0);
9492 }
9493
9494 return SDValue();
9495}
9496
9497// Simplify (build_vec (ext )) to (bitcast (build_vec ))
9498SDValue DAGCombiner::reduceBuildVecExtToExtBuildVec(SDNode *N) {
9499 // We perform this optimization post type-legalization because
9500 // the type-legalizer often scalarizes integer-promoted vectors.
9501 // Performing this optimization before may create bit-casts which
9502 // will be type-legalized to complex code sequences.
9503 // We perform this optimization only before the operation legalizer because we
9504 // may introduce illegal operations.
9505 if (Level != AfterLegalizeVectorOps && Level != AfterLegalizeTypes)
9506 return SDValue();
9507
9508 unsigned NumInScalars = N->getNumOperands();
9509 SDLoc dl(N);
9510 EVT VT = N->getValueType(0);
9511
9512 // Check to see if this is a BUILD_VECTOR of a bunch of values
9513 // which come from any_extend or zero_extend nodes. If so, we can create
9514 // a new BUILD_VECTOR using bit-casts which may enable other BUILD_VECTOR
9515 // optimizations. We do not handle sign-extend because we can't fill the sign
9516 // using shuffles.
9517 EVT SourceType = MVT::Other;
9518 bool AllAnyExt = true;
9519
9520 for (unsigned i = 0; i != NumInScalars; ++i) {
9521 SDValue In = N->getOperand(i);
9522 // Ignore undef inputs.
9523 if (In.getOpcode() == ISD::UNDEF) continue;
9524
9525 bool AnyExt = In.getOpcode() == ISD::ANY_EXTEND;
9526 bool ZeroExt = In.getOpcode() == ISD::ZERO_EXTEND;
9527
9528 // Abort if the element is not an extension.
9529 if (!ZeroExt && !AnyExt) {
9530 SourceType = MVT::Other;
9531 break;
9532 }
9533
9534 // The input is a ZeroExt or AnyExt. Check the original type.
9535 EVT InTy = In.getOperand(0).getValueType();
9536
9537 // Check that all of the widened source types are the same.
9538 if (SourceType == MVT::Other)
9539 // First time.
9540 SourceType = InTy;
9541 else if (InTy != SourceType) {
9542 // Multiple income types. Abort.
9543 SourceType = MVT::Other;
9544 break;
9545 }
9546
9547 // Check if all of the extends are ANY_EXTENDs.
9548 AllAnyExt &= AnyExt;
9549 }
9550
9551 // In order to have valid types, all of the inputs must be extended from the
9552 // same source type and all of the inputs must be any or zero extend.
9553 // Scalar sizes must be a power of two.
9554 EVT OutScalarTy = VT.getScalarType();
9555 bool ValidTypes = SourceType != MVT::Other &&
9556 isPowerOf2_32(OutScalarTy.getSizeInBits()) &&
9557 isPowerOf2_32(SourceType.getSizeInBits());
9558
9559 // Create a new simpler BUILD_VECTOR sequence which other optimizations can
9560 // turn into a single shuffle instruction.
9561 if (!ValidTypes)
9562 return SDValue();
9563
9564 bool isLE = TLI.isLittleEndian();
9565 unsigned ElemRatio = OutScalarTy.getSizeInBits()/SourceType.getSizeInBits();
9566 assert(ElemRatio > 1 && "Invalid element size ratio");
9567 SDValue Filler = AllAnyExt ? DAG.getUNDEF(SourceType):
9568 DAG.getConstant(0, SourceType);
9569
9570 unsigned NewBVElems = ElemRatio * VT.getVectorNumElements();
9571 SmallVector<SDValue, 8> Ops(NewBVElems, Filler);
9572
9573 // Populate the new build_vector
9574 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
9575 SDValue Cast = N->getOperand(i);
9576 assert((Cast.getOpcode() == ISD::ANY_EXTEND ||
9577 Cast.getOpcode() == ISD::ZERO_EXTEND ||
9578 Cast.getOpcode() == ISD::UNDEF) && "Invalid cast opcode");
9579 SDValue In;
9580 if (Cast.getOpcode() == ISD::UNDEF)
9581 In = DAG.getUNDEF(SourceType);
9582 else
9583 In = Cast->getOperand(0);
9584 unsigned Index = isLE ? (i * ElemRatio) :
9585 (i * ElemRatio + (ElemRatio - 1));
9586
9587 assert(Index < Ops.size() && "Invalid index");
9588 Ops[Index] = In;
9589 }
9590
9591 // The type of the new BUILD_VECTOR node.
9592 EVT VecVT = EVT::getVectorVT(*DAG.getContext(), SourceType, NewBVElems);
9593 assert(VecVT.getSizeInBits() == VT.getSizeInBits() &&
9594 "Invalid vector size");
9595 // Check if the new vector type is legal.
9596 if (!isTypeLegal(VecVT)) return SDValue();
9597
9598 // Make the new BUILD_VECTOR.
9599 SDValue BV = DAG.getNode(ISD::BUILD_VECTOR, dl, VecVT, &Ops[0], Ops.size());
9600
9601 // The new BUILD_VECTOR node has the potential to be further optimized.
9602 AddToWorkList(BV.getNode());
9603 // Bitcast to the desired type.
9604 return DAG.getNode(ISD::BITCAST, dl, VT, BV);
9605}
9606
9607SDValue DAGCombiner::reduceBuildVecConvertToConvertBuildVec(SDNode *N) {
9608 EVT VT = N->getValueType(0);
9609
9610 unsigned NumInScalars = N->getNumOperands();
9611 SDLoc dl(N);
9612
9613 EVT SrcVT = MVT::Other;
9614 unsigned Opcode = ISD::DELETED_NODE;
9615 unsigned NumDefs = 0;
9616
9617 for (unsigned i = 0; i != NumInScalars; ++i) {
9618 SDValue In = N->getOperand(i);
9619 unsigned Opc = In.getOpcode();
9620
9621 if (Opc == ISD::UNDEF)
9622 continue;
9623
9624 // If all scalar values are floats and converted from integers.
9625 if (Opcode == ISD::DELETED_NODE &&
9626 (Opc == ISD::UINT_TO_FP || Opc == ISD::SINT_TO_FP)) {
9627 Opcode = Opc;
9628 }
9629
9630 if (Opc != Opcode)
9631 return SDValue();
9632
9633 EVT InVT = In.getOperand(0).getValueType();
9634
9635 // If all scalar values are typed differently, bail out. It's chosen to
9636 // simplify BUILD_VECTOR of integer types.
9637 if (SrcVT == MVT::Other)
9638 SrcVT = InVT;
9639 if (SrcVT != InVT)
9640 return SDValue();
9641 NumDefs++;
9642 }
9643
9644 // If the vector has just one element defined, it's not worth to fold it into
9645 // a vectorized one.
9646 if (NumDefs < 2)
9647 return SDValue();
9648
9649 assert((Opcode == ISD::UINT_TO_FP || Opcode == ISD::SINT_TO_FP)
9650 && "Should only handle conversion from integer to float.");
9651 assert(SrcVT != MVT::Other && "Cannot determine source type!");
9652
9653 EVT NVT = EVT::getVectorVT(*DAG.getContext(), SrcVT, NumInScalars);
9654
9655 if (!TLI.isOperationLegalOrCustom(Opcode, NVT))
9656 return SDValue();
9657
9658 SmallVector<SDValue, 8> Opnds;
9659 for (unsigned i = 0; i != NumInScalars; ++i) {
9660 SDValue In = N->getOperand(i);
9661
9662 if (In.getOpcode() == ISD::UNDEF)
9663 Opnds.push_back(DAG.getUNDEF(SrcVT));
9664 else
9665 Opnds.push_back(In.getOperand(0));
9666 }
9667 SDValue BV = DAG.getNode(ISD::BUILD_VECTOR, dl, NVT,
9668 &Opnds[0], Opnds.size());
9669 AddToWorkList(BV.getNode());
9670
9671 return DAG.getNode(Opcode, dl, VT, BV);
9672}
9673
9674SDValue DAGCombiner::visitBUILD_VECTOR(SDNode *N) {
9675 unsigned NumInScalars = N->getNumOperands();
9676 SDLoc dl(N);
9677 EVT VT = N->getValueType(0);
9678
9679 // A vector built entirely of undefs is undef.
9680 if (ISD::allOperandsUndef(N))
9681 return DAG.getUNDEF(VT);
9682
9683 SDValue V = reduceBuildVecExtToExtBuildVec(N);
9684 if (V.getNode())
9685 return V;
9686
9687 V = reduceBuildVecConvertToConvertBuildVec(N);
9688 if (V.getNode())
9689 return V;
9690
9691 // Check to see if this is a BUILD_VECTOR of a bunch of EXTRACT_VECTOR_ELT
9692 // operations. If so, and if the EXTRACT_VECTOR_ELT vector inputs come from
9693 // at most two distinct vectors, turn this into a shuffle node.
9694
9695 // May only combine to shuffle after legalize if shuffle is legal.
9696 if (LegalOperations &&
9697 !TLI.isOperationLegalOrCustom(ISD::VECTOR_SHUFFLE, VT))
9698 return SDValue();
9699
9700 SDValue VecIn1, VecIn2;
9701 for (unsigned i = 0; i != NumInScalars; ++i) {
9702 // Ignore undef inputs.
9703 if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
9704
9705 // If this input is something other than a EXTRACT_VECTOR_ELT with a
9706 // constant index, bail out.
9707 if (N->getOperand(i).getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
9708 !isa<ConstantSDNode>(N->getOperand(i).getOperand(1))) {
9709 VecIn1 = VecIn2 = SDValue(0, 0);
9710 break;
9711 }
9712
9713 // We allow up to two distinct input vectors.
9714 SDValue ExtractedFromVec = N->getOperand(i).getOperand(0);
9715 if (ExtractedFromVec == VecIn1 || ExtractedFromVec == VecIn2)
9716 continue;
9717
9718 if (VecIn1.getNode() == 0) {
9719 VecIn1 = ExtractedFromVec;
9720 } else if (VecIn2.getNode() == 0) {
9721 VecIn2 = ExtractedFromVec;
9722 } else {
9723 // Too many inputs.
9724 VecIn1 = VecIn2 = SDValue(0, 0);
9725 break;
9726 }
9727 }
9728
9729 // If everything is good, we can make a shuffle operation.
9730 if (VecIn1.getNode()) {
9731 SmallVector<int, 8> Mask;
9732 for (unsigned i = 0; i != NumInScalars; ++i) {
9733 if (N->getOperand(i).getOpcode() == ISD::UNDEF) {
9734 Mask.push_back(-1);
9735 continue;
9736 }
9737
9738 // If extracting from the first vector, just use the index directly.
9739 SDValue Extract = N->getOperand(i);
9740 SDValue ExtVal = Extract.getOperand(1);
9741 if (Extract.getOperand(0) == VecIn1) {
9742 unsigned ExtIndex = cast<ConstantSDNode>(ExtVal)->getZExtValue();
9743 if (ExtIndex > VT.getVectorNumElements())
9744 return SDValue();
9745
9746 Mask.push_back(ExtIndex);
9747 continue;
9748 }
9749
9750 // Otherwise, use InIdx + VecSize
9751 unsigned Idx = cast<ConstantSDNode>(ExtVal)->getZExtValue();
9752 Mask.push_back(Idx+NumInScalars);
9753 }
9754
9755 // We can't generate a shuffle node with mismatched input and output types.
9756 // Attempt to transform a single input vector to the correct type.
9757 if ((VT != VecIn1.getValueType())) {
9758 // We don't support shuffeling between TWO values of different types.
9759 if (VecIn2.getNode() != 0)
9760 return SDValue();
9761
9762 // We only support widening of vectors which are half the size of the
9763 // output registers. For example XMM->YMM widening on X86 with AVX.
9764 if (VecIn1.getValueType().getSizeInBits()*2 != VT.getSizeInBits())
9765 return SDValue();
9766
9767 // If the input vector type has a different base type to the output
9768 // vector type, bail out.
9769 if (VecIn1.getValueType().getVectorElementType() !=
9770 VT.getVectorElementType())
9771 return SDValue();
9772
9773 // Widen the input vector by adding undef values.
9774 VecIn1 = DAG.getNode(ISD::CONCAT_VECTORS, dl, VT,
9775 VecIn1, DAG.getUNDEF(VecIn1.getValueType()));
9776 }
9777
9778 // If VecIn2 is unused then change it to undef.
9779 VecIn2 = VecIn2.getNode() ? VecIn2 : DAG.getUNDEF(VT);
9780
9781 // Check that we were able to transform all incoming values to the same
9782 // type.
9783 if (VecIn2.getValueType() != VecIn1.getValueType() ||
9784 VecIn1.getValueType() != VT)
9785 return SDValue();
9786
9787 // Only type-legal BUILD_VECTOR nodes are converted to shuffle nodes.
9788 if (!isTypeLegal(VT))
9789 return SDValue();
9790
9791 // Return the new VECTOR_SHUFFLE node.
9792 SDValue Ops[2];
9793 Ops[0] = VecIn1;
9794 Ops[1] = VecIn2;
9795 return DAG.getVectorShuffle(VT, dl, Ops[0], Ops[1], &Mask[0]);
9796 }
9797
9798 return SDValue();
9799}
9800
9801SDValue DAGCombiner::visitCONCAT_VECTORS(SDNode *N) {
9802 // TODO: Check to see if this is a CONCAT_VECTORS of a bunch of
9803 // EXTRACT_SUBVECTOR operations. If so, and if the EXTRACT_SUBVECTOR vector
9804 // inputs come from at most two distinct vectors, turn this into a shuffle
9805 // node.
9806
9807 // If we only have one input vector, we don't need to do any concatenation.
9808 if (N->getNumOperands() == 1)
9809 return N->getOperand(0);
9810
9811 // Check if all of the operands are undefs.
9812 EVT VT = N->getValueType(0);
9813 if (ISD::allOperandsUndef(N))
9814 return DAG.getUNDEF(VT);
9815
9816 // Optimize concat_vectors where one of the vectors is undef.
9817 if (N->getNumOperands() == 2 &&
9818 N->getOperand(1)->getOpcode() == ISD::UNDEF) {
9819 SDValue In = N->getOperand(0);
9820 assert(In.getValueType().isVector() && "Must concat vectors");
9821
9822 // Transform: concat_vectors(scalar, undef) -> scalar_to_vector(sclr).
9823 if (In->getOpcode() == ISD::BITCAST &&
9824 !In->getOperand(0)->getValueType(0).isVector()) {
9825 SDValue Scalar = In->getOperand(0);
9826 EVT SclTy = Scalar->getValueType(0);
9827
9828 if (!SclTy.isFloatingPoint() && !SclTy.isInteger())
9829 return SDValue();
9830
9831 EVT NVT = EVT::getVectorVT(*DAG.getContext(), SclTy,
9832 VT.getSizeInBits() / SclTy.getSizeInBits());
9833 if (!TLI.isTypeLegal(NVT) || !TLI.isTypeLegal(Scalar.getValueType()))
9834 return SDValue();
9835
9836 SDLoc dl = SDLoc(N);
9837 SDValue Res = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, NVT, Scalar);
9838 return DAG.getNode(ISD::BITCAST, dl, VT, Res);
9839 }
9840 }
9841
9842 // Type legalization of vectors and DAG canonicalization of SHUFFLE_VECTOR
9843 // nodes often generate nop CONCAT_VECTOR nodes.
9844 // Scan the CONCAT_VECTOR operands and look for a CONCAT operations that
9845 // place the incoming vectors at the exact same location.
9846 SDValue SingleSource = SDValue();
9847 unsigned PartNumElem = N->getOperand(0).getValueType().getVectorNumElements();
9848
9849 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
9850 SDValue Op = N->getOperand(i);
9851
9852 if (Op.getOpcode() == ISD::UNDEF)
9853 continue;
9854
9855 // Check if this is the identity extract:
9856 if (Op.getOpcode() != ISD::EXTRACT_SUBVECTOR)
9857 return SDValue();
9858
9859 // Find the single incoming vector for the extract_subvector.
9860 if (SingleSource.getNode()) {
9861 if (Op.getOperand(0) != SingleSource)
9862 return SDValue();
9863 } else {
9864 SingleSource = Op.getOperand(0);
9865
9866 // Check the source type is the same as the type of the result.
9867 // If not, this concat may extend the vector, so we can not
9868 // optimize it away.
9869 if (SingleSource.getValueType() != N->getValueType(0))
9870 return SDValue();
9871 }
9872
9873 unsigned IdentityIndex = i * PartNumElem;
9874 ConstantSDNode *CS = dyn_cast<ConstantSDNode>(Op.getOperand(1));
9875 // The extract index must be constant.
9876 if (!CS)
9877 return SDValue();
9878
9879 // Check that we are reading from the identity index.
9880 if (CS->getZExtValue() != IdentityIndex)
9881 return SDValue();
9882 }
9883
9884 if (SingleSource.getNode())
9885 return SingleSource;
9886
9887 return SDValue();
9888}
9889
9890SDValue DAGCombiner::visitEXTRACT_SUBVECTOR(SDNode* N) {
9891 EVT NVT = N->getValueType(0);
9892 SDValue V = N->getOperand(0);
9893
9894 if (V->getOpcode() == ISD::CONCAT_VECTORS) {
9895 // Combine:
9896 // (extract_subvec (concat V1, V2, ...), i)
9897 // Into:
9898 // Vi if possible
9899 // Only operand 0 is checked as 'concat' assumes all inputs of the same
9900 // type.
9901 if (V->getOperand(0).getValueType() != NVT)
9902 return SDValue();
9903 unsigned Idx = dyn_cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
9904 unsigned NumElems = NVT.getVectorNumElements();
9905 assert((Idx % NumElems) == 0 &&
9906 "IDX in concat is not a multiple of the result vector length.");
9907 return V->getOperand(Idx / NumElems);
9908 }
9909
9910 // Skip bitcasting
9911 if (V->getOpcode() == ISD::BITCAST)
9912 V = V.getOperand(0);
9913
9914 if (V->getOpcode() == ISD::INSERT_SUBVECTOR) {
9915 SDLoc dl(N);
9916 // Handle only simple case where vector being inserted and vector
9917 // being extracted are of same type, and are half size of larger vectors.
9918 EVT BigVT = V->getOperand(0).getValueType();
9919 EVT SmallVT = V->getOperand(1).getValueType();
9920 if (!NVT.bitsEq(SmallVT) || NVT.getSizeInBits()*2 != BigVT.getSizeInBits())
9921 return SDValue();
9922
9923 // Only handle cases where both indexes are constants with the same type.
9924 ConstantSDNode *ExtIdx = dyn_cast<ConstantSDNode>(N->getOperand(1));
9925 ConstantSDNode *InsIdx = dyn_cast<ConstantSDNode>(V->getOperand(2));
9926
9927 if (InsIdx && ExtIdx &&
9928 InsIdx->getValueType(0).getSizeInBits() <= 64 &&
9929 ExtIdx->getValueType(0).getSizeInBits() <= 64) {
9930 // Combine:
9931 // (extract_subvec (insert_subvec V1, V2, InsIdx), ExtIdx)
9932 // Into:
9933 // indices are equal or bit offsets are equal => V1
9934 // otherwise => (extract_subvec V1, ExtIdx)
9935 if (InsIdx->getZExtValue() * SmallVT.getScalarType().getSizeInBits() ==
9936 ExtIdx->getZExtValue() * NVT.getScalarType().getSizeInBits())
9937 return DAG.getNode(ISD::BITCAST, dl, NVT, V->getOperand(1));
9938 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, NVT,
9939 DAG.getNode(ISD::BITCAST, dl,
9940 N->getOperand(0).getValueType(),
9941 V->getOperand(0)), N->getOperand(1));
9942 }
9943 }
9944
9945 return SDValue();
9946}
9947
9948// Tries to turn a shuffle of two CONCAT_VECTORS into a single concat.
9949static SDValue partitionShuffleOfConcats(SDNode *N, SelectionDAG &DAG) {
9950 EVT VT = N->getValueType(0);
9951 unsigned NumElts = VT.getVectorNumElements();
9952
9953 SDValue N0 = N->getOperand(0);
9954 SDValue N1 = N->getOperand(1);
9955 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
9956
9957 SmallVector<SDValue, 4> Ops;
9958 EVT ConcatVT = N0.getOperand(0).getValueType();
9959 unsigned NumElemsPerConcat = ConcatVT.getVectorNumElements();
9960 unsigned NumConcats = NumElts / NumElemsPerConcat;
9961
9962 // Look at every vector that's inserted. We're looking for exact
9963 // subvector-sized copies from a concatenated vector
9964 for (unsigned I = 0; I != NumConcats; ++I) {
9965 // Make sure we're dealing with a copy.
9966 unsigned Begin = I * NumElemsPerConcat;
9967 bool AllUndef = true, NoUndef = true;
9968 for (unsigned J = Begin; J != Begin + NumElemsPerConcat; ++J) {
9969 if (SVN->getMaskElt(J) >= 0)
9970 AllUndef = false;
9971 else
9972 NoUndef = false;
9973 }
9974
9975 if (NoUndef) {
9976 if (SVN->getMaskElt(Begin) % NumElemsPerConcat != 0)
9977 return SDValue();
9978
9979 for (unsigned J = 1; J != NumElemsPerConcat; ++J)
9980 if (SVN->getMaskElt(Begin + J - 1) + 1 != SVN->getMaskElt(Begin + J))
9981 return SDValue();
9982
9983 unsigned FirstElt = SVN->getMaskElt(Begin) / NumElemsPerConcat;
9984 if (FirstElt < N0.getNumOperands())
9985 Ops.push_back(N0.getOperand(FirstElt));
9986 else
9987 Ops.push_back(N1.getOperand(FirstElt - N0.getNumOperands()));
9988
9989 } else if (AllUndef) {
9990 Ops.push_back(DAG.getUNDEF(N0.getOperand(0).getValueType()));
9991 } else { // Mixed with general masks and undefs, can't do optimization.
9992 return SDValue();
9993 }
9994 }
9995
9996 return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), VT, Ops.data(),
9997 Ops.size());
9998}
9999
10000SDValue DAGCombiner::visitVECTOR_SHUFFLE(SDNode *N) {
10001 EVT VT = N->getValueType(0);
10002 unsigned NumElts = VT.getVectorNumElements();
10003
10004 SDValue N0 = N->getOperand(0);
10005 SDValue N1 = N->getOperand(1);
10006
10007 assert(N0.getValueType() == VT && "Vector shuffle must be normalized in DAG");
10008
10009 // Canonicalize shuffle undef, undef -> undef
10010 if (N0.getOpcode() == ISD::UNDEF && N1.getOpcode() == ISD::UNDEF)
10011 return DAG.getUNDEF(VT);
10012
10013 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
10014
10015 // Canonicalize shuffle v, v -> v, undef
10016 if (N0 == N1) {
10017 SmallVector<int, 8> NewMask;
10018 for (unsigned i = 0; i != NumElts; ++i) {
10019 int Idx = SVN->getMaskElt(i);
10020 if (Idx >= (int)NumElts) Idx -= NumElts;
10021 NewMask.push_back(Idx);
10022 }
10023 return DAG.getVectorShuffle(VT, SDLoc(N), N0, DAG.getUNDEF(VT),
10024 &NewMask[0]);
10025 }
10026
10027 // Canonicalize shuffle undef, v -> v, undef. Commute the shuffle mask.
10028 if (N0.getOpcode() == ISD::UNDEF) {
10029 SmallVector<int, 8> NewMask;
10030 for (unsigned i = 0; i != NumElts; ++i) {
10031 int Idx = SVN->getMaskElt(i);
10032 if (Idx >= 0) {
10033 if (Idx >= (int)NumElts)
10034 Idx -= NumElts;
10035 else
10036 Idx = -1; // remove reference to lhs
10037 }
10038 NewMask.push_back(Idx);
10039 }
10040 return DAG.getVectorShuffle(VT, SDLoc(N), N1, DAG.getUNDEF(VT),
10041 &NewMask[0]);
10042 }
10043
10044 // Remove references to rhs if it is undef
10045 if (N1.getOpcode() == ISD::UNDEF) {
10046 bool Changed = false;
10047 SmallVector<int, 8> NewMask;
10048 for (unsigned i = 0; i != NumElts; ++i) {
10049 int Idx = SVN->getMaskElt(i);
10050 if (Idx >= (int)NumElts) {
10051 Idx = -1;
10052 Changed = true;
10053 }
10054 NewMask.push_back(Idx);
10055 }
10056 if (Changed)
10057 return DAG.getVectorShuffle(VT, SDLoc(N), N0, N1, &NewMask[0]);
10058 }
10059
10060 // If it is a splat, check if the argument vector is another splat or a
10061 // build_vector with all scalar elements the same.
10062 if (SVN->isSplat() && SVN->getSplatIndex() < (int)NumElts) {
10063 SDNode *V = N0.getNode();
10064
10065 // If this is a bit convert that changes the element type of the vector but
10066 // not the number of vector elements, look through it. Be careful not to
10067 // look though conversions that change things like v4f32 to v2f64.
10068 if (V->getOpcode() == ISD::BITCAST) {
10069 SDValue ConvInput = V->getOperand(0);
10070 if (ConvInput.getValueType().isVector() &&
10071 ConvInput.getValueType().getVectorNumElements() == NumElts)
10072 V = ConvInput.getNode();
10073 }
10074
10075 if (V->getOpcode() == ISD::BUILD_VECTOR) {
10076 assert(V->getNumOperands() == NumElts &&
10077 "BUILD_VECTOR has wrong number of operands");
10078 SDValue Base;
10079 bool AllSame = true;
10080 for (unsigned i = 0; i != NumElts; ++i) {
10081 if (V->getOperand(i).getOpcode() != ISD::UNDEF) {
10082 Base = V->getOperand(i);
10083 break;
10084 }
10085 }
10086 // Splat of <u, u, u, u>, return <u, u, u, u>
10087 if (!Base.getNode())
10088 return N0;
10089 for (unsigned i = 0; i != NumElts; ++i) {
10090 if (V->getOperand(i) != Base) {
10091 AllSame = false;
10092 break;
10093 }
10094 }
10095 // Splat of <x, x, x, x>, return <x, x, x, x>
10096 if (AllSame)
10097 return N0;
10098 }
10099 }
10100
10101 if (N0.getOpcode() == ISD::CONCAT_VECTORS &&
10102 Level < AfterLegalizeVectorOps &&
10103 (N1.getOpcode() == ISD::UNDEF ||
10104 (N1.getOpcode() == ISD::CONCAT_VECTORS &&
10105 N0.getOperand(0).getValueType() == N1.getOperand(0).getValueType()))) {
10106 SDValue V = partitionShuffleOfConcats(N, DAG);
10107
10108 if (V.getNode())
10109 return V;
10110 }
10111
10112 // If this shuffle node is simply a swizzle of another shuffle node,
10113 // and it reverses the swizzle of the previous shuffle then we can
10114 // optimize shuffle(shuffle(x, undef), undef) -> x.
10115 if (N0.getOpcode() == ISD::VECTOR_SHUFFLE && Level < AfterLegalizeDAG &&
10116 N1.getOpcode() == ISD::UNDEF) {
10117
10118 ShuffleVectorSDNode *OtherSV = cast<ShuffleVectorSDNode>(N0);
10119
10120 // Shuffle nodes can only reverse shuffles with a single non-undef value.
10121 if (N0.getOperand(1).getOpcode() != ISD::UNDEF)
10122 return SDValue();
10123
10124 // The incoming shuffle must be of the same type as the result of the
10125 // current shuffle.
10126 assert(OtherSV->getOperand(0).getValueType() == VT &&
10127 "Shuffle types don't match");
10128
10129 for (unsigned i = 0; i != NumElts; ++i) {
10130 int Idx = SVN->getMaskElt(i);
10131 assert(Idx < (int)NumElts && "Index references undef operand");
10132 // Next, this index comes from the first value, which is the incoming
10133 // shuffle. Adopt the incoming index.
10134 if (Idx >= 0)
10135 Idx = OtherSV->getMaskElt(Idx);
10136
10137 // The combined shuffle must map each index to itself.
10138 if (Idx >= 0 && (unsigned)Idx != i)
10139 return SDValue();
10140 }
10141
10142 return OtherSV->getOperand(0);
10143 }
10144
10145 return SDValue();
10146}
10147
10148/// XformToShuffleWithZero - Returns a vector_shuffle if it able to transform
10149/// an AND to a vector_shuffle with the destination vector and a zero vector.
10150/// e.g. AND V, <0xffffffff, 0, 0xffffffff, 0>. ==>
10151/// vector_shuffle V, Zero, <0, 4, 2, 4>
10152SDValue DAGCombiner::XformToShuffleWithZero(SDNode *N) {
10153 EVT VT = N->getValueType(0);
10154 SDLoc dl(N);
10155 SDValue LHS = N->getOperand(0);
10156 SDValue RHS = N->getOperand(1);
10157 if (N->getOpcode() == ISD::AND) {
10158 if (RHS.getOpcode() == ISD::BITCAST)
10159 RHS = RHS.getOperand(0);
10160 if (RHS.getOpcode() == ISD::BUILD_VECTOR) {
10161 SmallVector<int, 8> Indices;
10162 unsigned NumElts = RHS.getNumOperands();
10163 for (unsigned i = 0; i != NumElts; ++i) {
10164 SDValue Elt = RHS.getOperand(i);
10165 if (!isa<ConstantSDNode>(Elt))
10166 return SDValue();
10167
10168 if (cast<ConstantSDNode>(Elt)->isAllOnesValue())
10169 Indices.push_back(i);
10170 else if (cast<ConstantSDNode>(Elt)->isNullValue())
10171 Indices.push_back(NumElts);
10172 else
10173 return SDValue();
10174 }
10175
10176 // Let's see if the target supports this vector_shuffle.
10177 EVT RVT = RHS.getValueType();
10178 if (!TLI.isVectorClearMaskLegal(Indices, RVT))
10179 return SDValue();
10180
10181 // Return the new VECTOR_SHUFFLE node.
10182 EVT EltVT = RVT.getVectorElementType();
10183 SmallVector<SDValue,8> ZeroOps(RVT.getVectorNumElements(),
10184 DAG.getConstant(0, EltVT));
10185 SDValue Zero = DAG.getNode(ISD::BUILD_VECTOR, SDLoc(N),
10186 RVT, &ZeroOps[0], ZeroOps.size());
10187 LHS = DAG.getNode(ISD::BITCAST, dl, RVT, LHS);
10188 SDValue Shuf = DAG.getVectorShuffle(RVT, dl, LHS, Zero, &Indices[0]);
10189 return DAG.getNode(ISD::BITCAST, dl, VT, Shuf);
10190 }
10191 }
10192
10193 return SDValue();
10194}
10195
10196/// SimplifyVBinOp - Visit a binary vector operation, like ADD.
10197SDValue DAGCombiner::SimplifyVBinOp(SDNode *N) {
10198 assert(N->getValueType(0).isVector() &&
10199 "SimplifyVBinOp only works on vectors!");
10200
10201 SDValue LHS = N->getOperand(0);
10202 SDValue RHS = N->getOperand(1);
10203 SDValue Shuffle = XformToShuffleWithZero(N);
10204 if (Shuffle.getNode()) return Shuffle;
10205
10206 // If the LHS and RHS are BUILD_VECTOR nodes, see if we can constant fold
10207 // this operation.
10208 if (LHS.getOpcode() == ISD::BUILD_VECTOR &&
10209 RHS.getOpcode() == ISD::BUILD_VECTOR) {
10210 SmallVector<SDValue, 8> Ops;
10211 for (unsigned i = 0, e = LHS.getNumOperands(); i != e; ++i) {
10212 SDValue LHSOp = LHS.getOperand(i);
10213 SDValue RHSOp = RHS.getOperand(i);
10214 // If these two elements can't be folded, bail out.
10215 if ((LHSOp.getOpcode() != ISD::UNDEF &&
10216 LHSOp.getOpcode() != ISD::Constant &&
10217 LHSOp.getOpcode() != ISD::ConstantFP) ||
10218 (RHSOp.getOpcode() != ISD::UNDEF &&
10219 RHSOp.getOpcode() != ISD::Constant &&
10220 RHSOp.getOpcode() != ISD::ConstantFP))
10221 break;
10222
10223 // Can't fold divide by zero.
10224 if (N->getOpcode() == ISD::SDIV || N->getOpcode() == ISD::UDIV ||
10225 N->getOpcode() == ISD::FDIV) {
10226 if ((RHSOp.getOpcode() == ISD::Constant &&
10227 cast<ConstantSDNode>(RHSOp.getNode())->isNullValue()) ||
10228 (RHSOp.getOpcode() == ISD::ConstantFP &&
10229 cast<ConstantFPSDNode>(RHSOp.getNode())->getValueAPF().isZero()))
10230 break;
10231 }
10232
10233 EVT VT = LHSOp.getValueType();
10234 EVT RVT = RHSOp.getValueType();
10235 if (RVT != VT) {
10236 // Integer BUILD_VECTOR operands may have types larger than the element
10237 // size (e.g., when the element type is not legal). Prior to type
10238 // legalization, the types may not match between the two BUILD_VECTORS.
10239 // Truncate one of the operands to make them match.
10240 if (RVT.getSizeInBits() > VT.getSizeInBits()) {
10241 RHSOp = DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, RHSOp);
10242 } else {
10243 LHSOp = DAG.getNode(ISD::TRUNCATE, SDLoc(N), RVT, LHSOp);
10244 VT = RVT;
10245 }
10246 }
10247 SDValue FoldOp = DAG.getNode(N->getOpcode(), SDLoc(LHS), VT,
10248 LHSOp, RHSOp);
10249 if (FoldOp.getOpcode() != ISD::UNDEF &&
10250 FoldOp.getOpcode() != ISD::Constant &&
10251 FoldOp.getOpcode() != ISD::ConstantFP)
10252 break;
10253 Ops.push_back(FoldOp);
10254 AddToWorkList(FoldOp.getNode());
10255 }
10256
10257 if (Ops.size() == LHS.getNumOperands())
10258 return DAG.getNode(ISD::BUILD_VECTOR, SDLoc(N),
10259 LHS.getValueType(), &Ops[0], Ops.size());
10260 }
10261
10262 return SDValue();
10263}
10264
10265/// SimplifyVUnaryOp - Visit a binary vector operation, like FABS/FNEG.
10266SDValue DAGCombiner::SimplifyVUnaryOp(SDNode *N) {
10267 assert(N->getValueType(0).isVector() &&
10268 "SimplifyVUnaryOp only works on vectors!");
10269
10270 SDValue N0 = N->getOperand(0);
10271
10272 if (N0.getOpcode() != ISD::BUILD_VECTOR)
10273 return SDValue();
10274
10275 // Operand is a BUILD_VECTOR node, see if we can constant fold it.
10276 SmallVector<SDValue, 8> Ops;
10277 for (unsigned i = 0, e = N0.getNumOperands(); i != e; ++i) {
10278 SDValue Op = N0.getOperand(i);
10279 if (Op.getOpcode() != ISD::UNDEF &&
10280 Op.getOpcode() != ISD::ConstantFP)
10281 break;
10282 EVT EltVT = Op.getValueType();
10283 SDValue FoldOp = DAG.getNode(N->getOpcode(), SDLoc(N0), EltVT, Op);
10284 if (FoldOp.getOpcode() != ISD::UNDEF &&
10285 FoldOp.getOpcode() != ISD::ConstantFP)
10286 break;
10287 Ops.push_back(FoldOp);
10288 AddToWorkList(FoldOp.getNode());
10289 }
10290
10291 if (Ops.size() != N0.getNumOperands())
10292 return SDValue();
10293
10294 return DAG.getNode(ISD::BUILD_VECTOR, SDLoc(N),
10295 N0.getValueType(), &Ops[0], Ops.size());
10296}
10297
10298SDValue DAGCombiner::SimplifySelect(SDLoc DL, SDValue N0,
10299 SDValue N1, SDValue N2){
10300 assert(N0.getOpcode() ==ISD::SETCC && "First argument must be a SetCC node!");
10301
10302 SDValue SCC = SimplifySelectCC(DL, N0.getOperand(0), N0.getOperand(1), N1, N2,
10303 cast<CondCodeSDNode>(N0.getOperand(2))->get());
10304
10305 // If we got a simplified select_cc node back from SimplifySelectCC, then
10306 // break it down into a new SETCC node, and a new SELECT node, and then return
10307 // the SELECT node, since we were called with a SELECT node.
10308 if (SCC.getNode()) {
10309 // Check to see if we got a select_cc back (to turn into setcc/select).
10310 // Otherwise, just return whatever node we got back, like fabs.
10311 if (SCC.getOpcode() == ISD::SELECT_CC) {
10312 SDValue SETCC = DAG.getNode(ISD::SETCC, SDLoc(N0),
10313 N0.getValueType(),
10314 SCC.getOperand(0), SCC.getOperand(1),
10315 SCC.getOperand(4));
10316 AddToWorkList(SETCC.getNode());
10317 return DAG.getSelect(SDLoc(SCC), SCC.getValueType(),
10318 SCC.getOperand(2), SCC.getOperand(3), SETCC);
10319 }
10320
10321 return SCC;
10322 }
10323 return SDValue();
10324}
10325
10326/// SimplifySelectOps - Given a SELECT or a SELECT_CC node, where LHS and RHS
10327/// are the two values being selected between, see if we can simplify the
10328/// select. Callers of this should assume that TheSelect is deleted if this
10329/// returns true. As such, they should return the appropriate thing (e.g. the
10330/// node) back to the top-level of the DAG combiner loop to avoid it being
10331/// looked at.
10332bool DAGCombiner::SimplifySelectOps(SDNode *TheSelect, SDValue LHS,
10333 SDValue RHS) {
10334
10335 // Cannot simplify select with vector condition
10336 if (TheSelect->getOperand(0).getValueType().isVector()) return false;
10337
10338 // If this is a select from two identical things, try to pull the operation
10339 // through the select.
10340 if (LHS.getOpcode() != RHS.getOpcode() ||
10341 !LHS.hasOneUse() || !RHS.hasOneUse())
10342 return false;
10343
10344 // If this is a load and the token chain is identical, replace the select
10345 // of two loads with a load through a select of the address to load from.
10346 // This triggers in things like "select bool X, 10.0, 123.0" after the FP
10347 // constants have been dropped into the constant pool.
10348 if (LHS.getOpcode() == ISD::LOAD) {
10349 LoadSDNode *LLD = cast<LoadSDNode>(LHS);
10350 LoadSDNode *RLD = cast<LoadSDNode>(RHS);
10351
10352 // Token chains must be identical.
10353 if (LHS.getOperand(0) != RHS.getOperand(0) ||
10354 // Do not let this transformation reduce the number of volatile loads.
10355 LLD->isVolatile() || RLD->isVolatile() ||
10356 // If this is an EXTLOAD, the VT's must match.
10357 LLD->getMemoryVT() != RLD->getMemoryVT() ||
10358 // If this is an EXTLOAD, the kind of extension must match.
10359 (LLD->getExtensionType() != RLD->getExtensionType() &&
10360 // The only exception is if one of the extensions is anyext.
10361 LLD->getExtensionType() != ISD::EXTLOAD &&
10362 RLD->getExtensionType() != ISD::EXTLOAD) ||
10363 // FIXME: this discards src value information. This is
10364 // over-conservative. It would be beneficial to be able to remember
10365 // both potential memory locations. Since we are discarding
10366 // src value info, don't do the transformation if the memory
10367 // locations are not in the default address space.
10368 LLD->getPointerInfo().getAddrSpace() != 0 ||
10369 RLD->getPointerInfo().getAddrSpace() != 0 ||
10370 !TLI.isOperationLegalOrCustom(TheSelect->getOpcode(),
10371 LLD->getBasePtr().getValueType()))
10372 return false;
10373
10374 // Check that the select condition doesn't reach either load. If so,
10375 // folding this will induce a cycle into the DAG. If not, this is safe to
10376 // xform, so create a select of the addresses.
10377 SDValue Addr;
10378 if (TheSelect->getOpcode() == ISD::SELECT) {
10379 SDNode *CondNode = TheSelect->getOperand(0).getNode();
10380 if ((LLD->hasAnyUseOfValue(1) && LLD->isPredecessorOf(CondNode)) ||
10381 (RLD->hasAnyUseOfValue(1) && RLD->isPredecessorOf(CondNode)))
10382 return false;
10383 // The loads must not depend on one another.
10384 if (LLD->isPredecessorOf(RLD) ||
10385 RLD->isPredecessorOf(LLD))
10386 return false;
10387 Addr = DAG.getSelect(SDLoc(TheSelect),
10388 LLD->getBasePtr().getValueType(),
10389 TheSelect->getOperand(0), LLD->getBasePtr(),
10390 RLD->getBasePtr());
10391 } else { // Otherwise SELECT_CC
10392 SDNode *CondLHS = TheSelect->getOperand(0).getNode();
10393 SDNode *CondRHS = TheSelect->getOperand(1).getNode();
10394
10395 if ((LLD->hasAnyUseOfValue(1) &&
10396 (LLD->isPredecessorOf(CondLHS) || LLD->isPredecessorOf(CondRHS))) ||
10397 (RLD->hasAnyUseOfValue(1) &&
10398 (RLD->isPredecessorOf(CondLHS) || RLD->isPredecessorOf(CondRHS))))
10399 return false;
10400
10401 Addr = DAG.getNode(ISD::SELECT_CC, SDLoc(TheSelect),
10402 LLD->getBasePtr().getValueType(),
10403 TheSelect->getOperand(0),
10404 TheSelect->getOperand(1),
10405 LLD->getBasePtr(), RLD->getBasePtr(),
10406 TheSelect->getOperand(4));
10407 }
10408
10409 SDValue Load;
10410 if (LLD->getExtensionType() == ISD::NON_EXTLOAD) {
10411 Load = DAG.getLoad(TheSelect->getValueType(0),
10412 SDLoc(TheSelect),
10413 // FIXME: Discards pointer and TBAA info.
10414 LLD->getChain(), Addr, MachinePointerInfo(),
10415 LLD->isVolatile(), LLD->isNonTemporal(),
10416 LLD->isInvariant(), LLD->getAlignment());
10417 } else {
10418 Load = DAG.getExtLoad(LLD->getExtensionType() == ISD::EXTLOAD ?
10419 RLD->getExtensionType() : LLD->getExtensionType(),
10420 SDLoc(TheSelect),
10421 TheSelect->getValueType(0),
10422 // FIXME: Discards pointer and TBAA info.
10423 LLD->getChain(), Addr, MachinePointerInfo(),
10424 LLD->getMemoryVT(), LLD->isVolatile(),
10425 LLD->isNonTemporal(), LLD->getAlignment());
10426 }
10427
10428 // Users of the select now use the result of the load.
10429 CombineTo(TheSelect, Load);
10430
10431 // Users of the old loads now use the new load's chain. We know the
10432 // old-load value is dead now.
10433 CombineTo(LHS.getNode(), Load.getValue(0), Load.getValue(1));
10434 CombineTo(RHS.getNode(), Load.getValue(0), Load.getValue(1));
10435 return true;
10436 }
10437
10438 return false;
10439}
10440
10441/// SimplifySelectCC - Simplify an expression of the form (N0 cond N1) ? N2 : N3
10442/// where 'cond' is the comparison specified by CC.
10443SDValue DAGCombiner::SimplifySelectCC(SDLoc DL, SDValue N0, SDValue N1,
10444 SDValue N2, SDValue N3,
10445 ISD::CondCode CC, bool NotExtCompare) {
10446 // (x ? y : y) -> y.
10447 if (N2 == N3) return N2;
10448
10449 EVT VT = N2.getValueType();
10450 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
10451 ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode());
10452 ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N3.getNode());
10453
10454 // Determine if the condition we're dealing with is constant
10455 SDValue SCC = SimplifySetCC(getSetCCResultType(N0.getValueType()),
10456 N0, N1, CC, DL, false);
10457 if (SCC.getNode()) AddToWorkList(SCC.getNode());
10458 ConstantSDNode *SCCC = dyn_cast_or_null<ConstantSDNode>(SCC.getNode());
10459
10460 // fold select_cc true, x, y -> x
10461 if (SCCC && !SCCC->isNullValue())
10462 return N2;
10463 // fold select_cc false, x, y -> y
10464 if (SCCC && SCCC->isNullValue())
10465 return N3;
10466
10467 // Check to see if we can simplify the select into an fabs node
10468 if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N1)) {
10469 // Allow either -0.0 or 0.0
10470 if (CFP->getValueAPF().isZero()) {
10471 // select (setg[te] X, +/-0.0), X, fneg(X) -> fabs
10472 if ((CC == ISD::SETGE || CC == ISD::SETGT) &&
10473 N0 == N2 && N3.getOpcode() == ISD::FNEG &&
10474 N2 == N3.getOperand(0))
10475 return DAG.getNode(ISD::FABS, DL, VT, N0);
10476
10477 // select (setl[te] X, +/-0.0), fneg(X), X -> fabs
10478 if ((CC == ISD::SETLT || CC == ISD::SETLE) &&
10479 N0 == N3 && N2.getOpcode() == ISD::FNEG &&
10480 N2.getOperand(0) == N3)
10481 return DAG.getNode(ISD::FABS, DL, VT, N3);
10482 }
10483 }
10484
10485 // Turn "(a cond b) ? 1.0f : 2.0f" into "load (tmp + ((a cond b) ? 0 : 4)"
10486 // where "tmp" is a constant pool entry containing an array with 1.0 and 2.0
10487 // in it. This is a win when the constant is not otherwise available because
10488 // it replaces two constant pool loads with one. We only do this if the FP
10489 // type is known to be legal, because if it isn't, then we are before legalize
10490 // types an we want the other legalization to happen first (e.g. to avoid
10491 // messing with soft float) and if the ConstantFP is not legal, because if
10492 // it is legal, we may not need to store the FP constant in a constant pool.
10493 if (ConstantFPSDNode *TV = dyn_cast<ConstantFPSDNode>(N2))
10494 if (ConstantFPSDNode *FV = dyn_cast<ConstantFPSDNode>(N3)) {
10495 if (TLI.isTypeLegal(N2.getValueType()) &&
10496 (TLI.getOperationAction(ISD::ConstantFP, N2.getValueType()) !=
10497 TargetLowering::Legal) &&
10498 // If both constants have multiple uses, then we won't need to do an
10499 // extra load, they are likely around in registers for other users.
10500 (TV->hasOneUse() || FV->hasOneUse())) {
10501 Constant *Elts[] = {
10502 const_cast<ConstantFP*>(FV->getConstantFPValue()),
10503 const_cast<ConstantFP*>(TV->getConstantFPValue())
10504 };
10505 Type *FPTy = Elts[0]->getType();
10506 const DataLayout &TD = *TLI.getDataLayout();
10507
10508 // Create a ConstantArray of the two constants.
10509 Constant *CA = ConstantArray::get(ArrayType::get(FPTy, 2), Elts);
10510 SDValue CPIdx = DAG.getConstantPool(CA, TLI.getPointerTy(),
10511 TD.getPrefTypeAlignment(FPTy));
10512 unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment();
10513
10514 // Get the offsets to the 0 and 1 element of the array so that we can
10515 // select between them.
10516 SDValue Zero = DAG.getIntPtrConstant(0);
10517 unsigned EltSize = (unsigned)TD.getTypeAllocSize(Elts[0]->getType());
10518 SDValue One = DAG.getIntPtrConstant(EltSize);
10519
10520 SDValue Cond = DAG.getSetCC(DL,
10521 getSetCCResultType(N0.getValueType()),
10522 N0, N1, CC);
10523 AddToWorkList(Cond.getNode());
10524 SDValue CstOffset = DAG.getSelect(DL, Zero.getValueType(),
10525 Cond, One, Zero);
10526 AddToWorkList(CstOffset.getNode());
10527 CPIdx = DAG.getNode(ISD::ADD, DL, CPIdx.getValueType(), CPIdx,
10528 CstOffset);
10529 AddToWorkList(CPIdx.getNode());
10530 return DAG.getLoad(TV->getValueType(0), DL, DAG.getEntryNode(), CPIdx,
10531 MachinePointerInfo::getConstantPool(), false,
10532 false, false, Alignment);
10533
10534 }
10535 }
10536
10537 // Check to see if we can perform the "gzip trick", transforming
10538 // (select_cc setlt X, 0, A, 0) -> (and (sra X, (sub size(X), 1), A)
10539 if (N1C && N3C && N3C->isNullValue() && CC == ISD::SETLT &&
10540 (N1C->isNullValue() || // (a < 0) ? b : 0
10541 (N1C->getAPIntValue() == 1 && N0 == N2))) { // (a < 1) ? a : 0
10542 EVT XType = N0.getValueType();
10543 EVT AType = N2.getValueType();
10544 if (XType.bitsGE(AType)) {
10545 // and (sra X, size(X)-1, A) -> "and (srl X, C2), A" iff A is a
10546 // single-bit constant.
10547 if (N2C && ((N2C->getAPIntValue() & (N2C->getAPIntValue()-1)) == 0)) {
10548 unsigned ShCtV = N2C->getAPIntValue().logBase2();
10549 ShCtV = XType.getSizeInBits()-ShCtV-1;
10550 SDValue ShCt = DAG.getConstant(ShCtV,
10551 getShiftAmountTy(N0.getValueType()));
10552 SDValue Shift = DAG.getNode(ISD::SRL, SDLoc(N0),
10553 XType, N0, ShCt);
10554 AddToWorkList(Shift.getNode());
10555
10556 if (XType.bitsGT(AType)) {
10557 Shift = DAG.getNode(ISD::TRUNCATE, DL, AType, Shift);
10558 AddToWorkList(Shift.getNode());
10559 }
10560
10561 return DAG.getNode(ISD::AND, DL, AType, Shift, N2);
10562 }
10563
10564 SDValue Shift = DAG.getNode(ISD::SRA, SDLoc(N0),
10565 XType, N0,
10566 DAG.getConstant(XType.getSizeInBits()-1,
10567 getShiftAmountTy(N0.getValueType())));
10568 AddToWorkList(Shift.getNode());
10569
10570 if (XType.bitsGT(AType)) {
10571 Shift = DAG.getNode(ISD::TRUNCATE, DL, AType, Shift);
10572 AddToWorkList(Shift.getNode());
10573 }
10574
10575 return DAG.getNode(ISD::AND, DL, AType, Shift, N2);
10576 }
10577 }
10578
10579 // fold (select_cc seteq (and x, y), 0, 0, A) -> (and (shr (shl x)) A)
10580 // where y is has a single bit set.
10581 // A plaintext description would be, we can turn the SELECT_CC into an AND
10582 // when the condition can be materialized as an all-ones register. Any
10583 // single bit-test can be materialized as an all-ones register with
10584 // shift-left and shift-right-arith.
10585 if (CC == ISD::SETEQ && N0->getOpcode() == ISD::AND &&
10586 N0->getValueType(0) == VT &&
10587 N1C && N1C->isNullValue() &&
10588 N2C && N2C->isNullValue()) {
10589 SDValue AndLHS = N0->getOperand(0);
10590 ConstantSDNode *ConstAndRHS = dyn_cast<ConstantSDNode>(N0->getOperand(1));
10591 if (ConstAndRHS && ConstAndRHS->getAPIntValue().countPopulation() == 1) {
10592 // Shift the tested bit over the sign bit.
10593 APInt AndMask = ConstAndRHS->getAPIntValue();
10594 SDValue ShlAmt =
10595 DAG.getConstant(AndMask.countLeadingZeros(),
10596 getShiftAmountTy(AndLHS.getValueType()));
10597 SDValue Shl = DAG.getNode(ISD::SHL, SDLoc(N0), VT, AndLHS, ShlAmt);
10598
10599 // Now arithmetic right shift it all the way over, so the result is either
10600 // all-ones, or zero.
10601 SDValue ShrAmt =
10602 DAG.getConstant(AndMask.getBitWidth()-1,
10603 getShiftAmountTy(Shl.getValueType()));
10604 SDValue Shr = DAG.getNode(ISD::SRA, SDLoc(N0), VT, Shl, ShrAmt);
10605
10606 return DAG.getNode(ISD::AND, DL, VT, Shr, N3);
10607 }
10608 }
10609
10610 // fold select C, 16, 0 -> shl C, 4
10611 if (N2C && N3C && N3C->isNullValue() && N2C->getAPIntValue().isPowerOf2() &&
10612 TLI.getBooleanContents(N0.getValueType().isVector()) ==
10613 TargetLowering::ZeroOrOneBooleanContent) {
10614
10615 // If the caller doesn't want us to simplify this into a zext of a compare,
10616 // don't do it.
10617 if (NotExtCompare && N2C->getAPIntValue() == 1)
10618 return SDValue();
10619
10620 // Get a SetCC of the condition
10621 // NOTE: Don't create a SETCC if it's not legal on this target.
10622 if (!LegalOperations ||
10623 TLI.isOperationLegal(ISD::SETCC,
10624 LegalTypes ? getSetCCResultType(N0.getValueType()) : MVT::i1)) {
10625 SDValue Temp, SCC;
10626 // cast from setcc result type to select result type
10627 if (LegalTypes) {
10628 SCC = DAG.getSetCC(DL, getSetCCResultType(N0.getValueType()),
10629 N0, N1, CC);
10630 if (N2.getValueType().bitsLT(SCC.getValueType()))
10631 Temp = DAG.getZeroExtendInReg(SCC, SDLoc(N2),
10632 N2.getValueType());
10633 else
10634 Temp = DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N2),
10635 N2.getValueType(), SCC);
10636 } else {
10637 SCC = DAG.getSetCC(SDLoc(N0), MVT::i1, N0, N1, CC);
10638 Temp = DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N2),
10639 N2.getValueType(), SCC);
10640 }
10641
10642 AddToWorkList(SCC.getNode());
10643 AddToWorkList(Temp.getNode());
10644
10645 if (N2C->getAPIntValue() == 1)
10646 return Temp;
10647
10648 // shl setcc result by log2 n2c
10649 return DAG.getNode(
10650 ISD::SHL, DL, N2.getValueType(), Temp,
10651 DAG.getConstant(N2C->getAPIntValue().logBase2(),
10652 getShiftAmountTy(Temp.getValueType())));
10653 }
10654 }
10655
10656 // Check to see if this is the equivalent of setcc
10657 // FIXME: Turn all of these into setcc if setcc if setcc is legal
10658 // otherwise, go ahead with the folds.
10659 if (0 && N3C && N3C->isNullValue() && N2C && (N2C->getAPIntValue() == 1ULL)) {
10660 EVT XType = N0.getValueType();
10661 if (!LegalOperations ||
10662 TLI.isOperationLegal(ISD::SETCC, getSetCCResultType(XType))) {
10663 SDValue Res = DAG.getSetCC(DL, getSetCCResultType(XType), N0, N1, CC);
10664 if (Res.getValueType() != VT)
10665 Res = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, Res);
10666 return Res;
10667 }
10668
10669 // fold (seteq X, 0) -> (srl (ctlz X, log2(size(X))))
10670 if (N1C && N1C->isNullValue() && CC == ISD::SETEQ &&
10671 (!LegalOperations ||
10672 TLI.isOperationLegal(ISD::CTLZ, XType))) {
10673 SDValue Ctlz = DAG.getNode(ISD::CTLZ, SDLoc(N0), XType, N0);
10674 return DAG.getNode(ISD::SRL, DL, XType, Ctlz,
10675 DAG.getConstant(Log2_32(XType.getSizeInBits()),
10676 getShiftAmountTy(Ctlz.getValueType())));
10677 }
10678 // fold (setgt X, 0) -> (srl (and (-X, ~X), size(X)-1))
10679 if (N1C && N1C->isNullValue() && CC == ISD::SETGT) {
10680 SDValue NegN0 = DAG.getNode(ISD::SUB, SDLoc(N0),
10681 XType, DAG.getConstant(0, XType), N0);
10682 SDValue NotN0 = DAG.getNOT(SDLoc(N0), N0, XType);
10683 return DAG.getNode(ISD::SRL, DL, XType,
10684 DAG.getNode(ISD::AND, DL, XType, NegN0, NotN0),
10685 DAG.getConstant(XType.getSizeInBits()-1,
10686 getShiftAmountTy(XType)));
10687 }
10688 // fold (setgt X, -1) -> (xor (srl (X, size(X)-1), 1))
10689 if (N1C && N1C->isAllOnesValue() && CC == ISD::SETGT) {
10690 SDValue Sign = DAG.getNode(ISD::SRL, SDLoc(N0), XType, N0,
10691 DAG.getConstant(XType.getSizeInBits()-1,
10692 getShiftAmountTy(N0.getValueType())));
10693 return DAG.getNode(ISD::XOR, DL, XType, Sign, DAG.getConstant(1, XType));
10694 }
10695 }
10696
10697 // Check to see if this is an integer abs.
10698 // select_cc setg[te] X, 0, X, -X ->
10699 // select_cc setgt X, -1, X, -X ->
10700 // select_cc setl[te] X, 0, -X, X ->
10701 // select_cc setlt X, 1, -X, X ->
10702 // Y = sra (X, size(X)-1); xor (add (X, Y), Y)
10703 if (N1C) {
10704 ConstantSDNode *SubC = NULL;
10705 if (((N1C->isNullValue() && (CC == ISD::SETGT || CC == ISD::SETGE)) ||
10706 (N1C->isAllOnesValue() && CC == ISD::SETGT)) &&
10707 N0 == N2 && N3.getOpcode() == ISD::SUB && N0 == N3.getOperand(1))
10708 SubC = dyn_cast<ConstantSDNode>(N3.getOperand(0));
10709 else if (((N1C->isNullValue() && (CC == ISD::SETLT || CC == ISD::SETLE)) ||
10710 (N1C->isOne() && CC == ISD::SETLT)) &&
10711 N0 == N3 && N2.getOpcode() == ISD::SUB && N0 == N2.getOperand(1))
10712 SubC = dyn_cast<ConstantSDNode>(N2.getOperand(0));
10713
10714 EVT XType = N0.getValueType();
10715 if (SubC && SubC->isNullValue() && XType.isInteger()) {
10716 SDValue Shift = DAG.getNode(ISD::SRA, SDLoc(N0), XType,
10717 N0,
10718 DAG.getConstant(XType.getSizeInBits()-1,
10719 getShiftAmountTy(N0.getValueType())));
10720 SDValue Add = DAG.getNode(ISD::ADD, SDLoc(N0),
10721 XType, N0, Shift);
10722 AddToWorkList(Shift.getNode());
10723 AddToWorkList(Add.getNode());
10724 return DAG.getNode(ISD::XOR, DL, XType, Add, Shift);
10725 }
10726 }
10727
10728 return SDValue();
10729}
10730
10731/// SimplifySetCC - This is a stub for TargetLowering::SimplifySetCC.
10732SDValue DAGCombiner::SimplifySetCC(EVT VT, SDValue N0,
10733 SDValue N1, ISD::CondCode Cond,
10734 SDLoc DL, bool foldBooleans) {
10735 TargetLowering::DAGCombinerInfo
10736 DagCombineInfo(DAG, Level, false, this);
10737 return TLI.SimplifySetCC(VT, N0, N1, Cond, foldBooleans, DagCombineInfo, DL);
10738}
10739
10740/// BuildSDIVSequence - Given an ISD::SDIV node expressing a divide by constant,
10741/// return a DAG expression to select that will generate the same value by
10742/// multiplying by a magic number. See:
10743/// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
10744SDValue DAGCombiner::BuildSDIV(SDNode *N) {
10745 std::vector<SDNode*> Built;
10746 SDValue S = TLI.BuildSDIV(N, DAG, LegalOperations, &Built);
10747
10748 for (std::vector<SDNode*>::iterator ii = Built.begin(), ee = Built.end();
10749 ii != ee; ++ii)
10750 AddToWorkList(*ii);
10751 return S;
10752}
10753
10754/// BuildUDIVSequence - Given an ISD::UDIV node expressing a divide by constant,
10755/// return a DAG expression to select that will generate the same value by
10756/// multiplying by a magic number. See:
10757/// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
10758SDValue DAGCombiner::BuildUDIV(SDNode *N) {
10759 std::vector<SDNode*> Built;
10760 SDValue S = TLI.BuildUDIV(N, DAG, LegalOperations, &Built);
10761
10762 for (std::vector<SDNode*>::iterator ii = Built.begin(), ee = Built.end();
10763 ii != ee; ++ii)
10764 AddToWorkList(*ii);
10765 return S;
10766}
10767
10768/// FindBaseOffset - Return true if base is a frame index, which is known not
10769// to alias with anything but itself. Provides base object and offset as
10770// results.
10771static bool FindBaseOffset(SDValue Ptr, SDValue &Base, int64_t &Offset,
10772 const GlobalValue *&GV, const void *&CV) {
10773 // Assume it is a primitive operation.
10774 Base = Ptr; Offset = 0; GV = 0; CV = 0;
10775
10776 // If it's an adding a simple constant then integrate the offset.
10777 if (Base.getOpcode() == ISD::ADD) {
10778 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Base.getOperand(1))) {
10779 Base = Base.getOperand(0);
10780 Offset += C->getZExtValue();
10781 }
10782 }
10783
10784 // Return the underlying GlobalValue, and update the Offset. Return false
10785 // for GlobalAddressSDNode since the same GlobalAddress may be represented
10786 // by multiple nodes with different offsets.
10787 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Base)) {
10788 GV = G->getGlobal();
10789 Offset += G->getOffset();
10790 return false;
10791 }
10792
10793 // Return the underlying Constant value, and update the Offset. Return false
10794 // for ConstantSDNodes since the same constant pool entry may be represented
10795 // by multiple nodes with different offsets.
10796 if (ConstantPoolSDNode *C = dyn_cast<ConstantPoolSDNode>(Base)) {
10797 CV = C->isMachineConstantPoolEntry() ? (const void *)C->getMachineCPVal()
10798 : (const void *)C->getConstVal();
10799 Offset += C->getOffset();
10800 return false;
10801 }
10802 // If it's any of the following then it can't alias with anything but itself.
10803 return isa<FrameIndexSDNode>(Base);
10804}
10805
10806/// isAlias - Return true if there is any possibility that the two addresses
10807/// overlap.
10808bool DAGCombiner::isAlias(SDValue Ptr1, int64_t Size1, bool IsVolatile1,
10809 const Value *SrcValue1, int SrcValueOffset1,
10810 unsigned SrcValueAlign1,
10811 const MDNode *TBAAInfo1,
10812 SDValue Ptr2, int64_t Size2, bool IsVolatile2,
10813 const Value *SrcValue2, int SrcValueOffset2,
10814 unsigned SrcValueAlign2,
10815 const MDNode *TBAAInfo2) const {
10816 // If they are the same then they must be aliases.
10817 if (Ptr1 == Ptr2) return true;
10818
10819 // If they are both volatile then they cannot be reordered.
10820 if (IsVolatile1 && IsVolatile2) return true;
10821
10822 // Gather base node and offset information.
10823 SDValue Base1, Base2;
10824 int64_t Offset1, Offset2;
10825 const GlobalValue *GV1, *GV2;
10826 const void *CV1, *CV2;
10827 bool isFrameIndex1 = FindBaseOffset(Ptr1, Base1, Offset1, GV1, CV1);
10828 bool isFrameIndex2 = FindBaseOffset(Ptr2, Base2, Offset2, GV2, CV2);
10829
10830 // If they have a same base address then check to see if they overlap.
10831 if (Base1 == Base2 || (GV1 && (GV1 == GV2)) || (CV1 && (CV1 == CV2)))
10832 return !((Offset1 + Size1) <= Offset2 || (Offset2 + Size2) <= Offset1);
10833
10834 // It is possible for different frame indices to alias each other, mostly
10835 // when tail call optimization reuses return address slots for arguments.
10836 // To catch this case, look up the actual index of frame indices to compute
10837 // the real alias relationship.
10838 if (isFrameIndex1 && isFrameIndex2) {
10839 MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
10840 Offset1 += MFI->getObjectOffset(cast<FrameIndexSDNode>(Base1)->getIndex());
10841 Offset2 += MFI->getObjectOffset(cast<FrameIndexSDNode>(Base2)->getIndex());
10842 return !((Offset1 + Size1) <= Offset2 || (Offset2 + Size2) <= Offset1);
10843 }
10844
10845 // Otherwise, if we know what the bases are, and they aren't identical, then
10846 // we know they cannot alias.
10847 if ((isFrameIndex1 || CV1 || GV1) && (isFrameIndex2 || CV2 || GV2))
10848 return false;
10849
10850 // If we know required SrcValue1 and SrcValue2 have relatively large alignment
10851 // compared to the size and offset of the access, we may be able to prove they
10852 // do not alias. This check is conservative for now to catch cases created by
10853 // splitting vector types.
10854 if ((SrcValueAlign1 == SrcValueAlign2) &&
10855 (SrcValueOffset1 != SrcValueOffset2) &&
10856 (Size1 == Size2) && (SrcValueAlign1 > Size1)) {
10857 int64_t OffAlign1 = SrcValueOffset1 % SrcValueAlign1;
10858 int64_t OffAlign2 = SrcValueOffset2 % SrcValueAlign1;
10859
10860 // There is no overlap between these relatively aligned accesses of similar
10861 // size, return no alias.
10862 if ((OffAlign1 + Size1) <= OffAlign2 || (OffAlign2 + Size2) <= OffAlign1)
10863 return false;
10864 }
10865
10866 bool UseAA = CombinerGlobalAA.getNumOccurrences() > 0 ? CombinerGlobalAA :
10867 TLI.getTargetMachine().getSubtarget<TargetSubtargetInfo>().useAA();
10868 if (UseAA && SrcValue1 && SrcValue2) {
10869 // Use alias analysis information.
10870 int64_t MinOffset = std::min(SrcValueOffset1, SrcValueOffset2);
10871 int64_t Overlap1 = Size1 + SrcValueOffset1 - MinOffset;
10872 int64_t Overlap2 = Size2 + SrcValueOffset2 - MinOffset;
10873 AliasAnalysis::AliasResult AAResult =
10874 AA.alias(AliasAnalysis::Location(SrcValue1, Overlap1, TBAAInfo1),
10875 AliasAnalysis::Location(SrcValue2, Overlap2, TBAAInfo2));
10876 if (AAResult == AliasAnalysis::NoAlias)
10877 return false;
10878 }
10879
10880 // Otherwise we have to assume they alias.
10881 return true;
10882}
10883
10884bool DAGCombiner::isAlias(LSBaseSDNode *Op0, LSBaseSDNode *Op1) {
10885 SDValue Ptr0, Ptr1;
10886 int64_t Size0, Size1;
10887 bool IsVolatile0, IsVolatile1;
10888 const Value *SrcValue0, *SrcValue1;
10889 int SrcValueOffset0, SrcValueOffset1;
10890 unsigned SrcValueAlign0, SrcValueAlign1;
10891 const MDNode *SrcTBAAInfo0, *SrcTBAAInfo1;
10892 FindAliasInfo(Op0, Ptr0, Size0, IsVolatile0, SrcValue0, SrcValueOffset0,
10893 SrcValueAlign0, SrcTBAAInfo0);
10894 FindAliasInfo(Op1, Ptr1, Size1, IsVolatile1, SrcValue1, SrcValueOffset1,
10895 SrcValueAlign1, SrcTBAAInfo1);
10896 return isAlias(Ptr0, Size0, IsVolatile0, SrcValue0, SrcValueOffset0,
10897 SrcValueAlign0, SrcTBAAInfo0,
10898 Ptr1, Size1, IsVolatile1, SrcValue1, SrcValueOffset1,
10899 SrcValueAlign1, SrcTBAAInfo1);
10900}
10901
10902/// FindAliasInfo - Extracts the relevant alias information from the memory
10903/// node. Returns true if the operand was a nonvolatile load.
10904bool DAGCombiner::FindAliasInfo(SDNode *N,
10905 SDValue &Ptr, int64_t &Size, bool &IsVolatile,
10906 const Value *&SrcValue,
10907 int &SrcValueOffset,
10908 unsigned &SrcValueAlign,
10909 const MDNode *&TBAAInfo) const {
10910 LSBaseSDNode *LS = cast<LSBaseSDNode>(N);
10911
10912 Ptr = LS->getBasePtr();
10913 Size = LS->getMemoryVT().getSizeInBits() >> 3;
10914 IsVolatile = LS->isVolatile();
10915 SrcValue = LS->getSrcValue();
10916 SrcValueOffset = LS->getSrcValueOffset();
10917 SrcValueAlign = LS->getOriginalAlignment();
10918 TBAAInfo = LS->getTBAAInfo();
10919 return isa<LoadSDNode>(LS) && !IsVolatile;
10920}
10921
10922/// GatherAllAliases - Walk up chain skipping non-aliasing memory nodes,
10923/// looking for aliasing nodes and adding them to the Aliases vector.
10924void DAGCombiner::GatherAllAliases(SDNode *N, SDValue OriginalChain,
10925 SmallVectorImpl<SDValue> &Aliases) {
10926 SmallVector<SDValue, 8> Chains; // List of chains to visit.
10927 SmallPtrSet<SDNode *, 16> Visited; // Visited node set.
10928
10929 // Get alias information for node.
10930 SDValue Ptr;
10931 int64_t Size;
10932 bool IsVolatile;
10933 const Value *SrcValue;
10934 int SrcValueOffset;
10935 unsigned SrcValueAlign;
10936 const MDNode *SrcTBAAInfo;
10937 bool IsLoad = FindAliasInfo(N, Ptr, Size, IsVolatile, SrcValue,
10938 SrcValueOffset, SrcValueAlign, SrcTBAAInfo);
10939
10940 // Starting off.
10941 Chains.push_back(OriginalChain);
10942 unsigned Depth = 0;
10943
10944 // Look at each chain and determine if it is an alias. If so, add it to the
10945 // aliases list. If not, then continue up the chain looking for the next
10946 // candidate.
10947 while (!Chains.empty()) {
10948 SDValue Chain = Chains.back();
10949 Chains.pop_back();
10950
10951 // For TokenFactor nodes, look at each operand and only continue up the
10952 // chain until we find two aliases. If we've seen two aliases, assume we'll
10953 // find more and revert to original chain since the xform is unlikely to be
10954 // profitable.
10955 //
10956 // FIXME: The depth check could be made to return the last non-aliasing
10957 // chain we found before we hit a tokenfactor rather than the original
10958 // chain.
10959 if (Depth > 6 || Aliases.size() == 2) {
10960 Aliases.clear();
10961 Aliases.push_back(OriginalChain);
10962 break;
10963 }
10964
10965 // Don't bother if we've been before.
10966 if (!Visited.insert(Chain.getNode()))
10967 continue;
10968
10969 switch (Chain.getOpcode()) {
10970 case ISD::EntryToken:
10971 // Entry token is ideal chain operand, but handled in FindBetterChain.
10972 break;
10973
10974 case ISD::LOAD:
10975 case ISD::STORE: {
10976 // Get alias information for Chain.
10977 SDValue OpPtr;
10978 int64_t OpSize;
10979 bool OpIsVolatile;
10980 const Value *OpSrcValue;
10981 int OpSrcValueOffset;
10982 unsigned OpSrcValueAlign;
10983 const MDNode *OpSrcTBAAInfo;
10984 bool IsOpLoad = FindAliasInfo(Chain.getNode(), OpPtr, OpSize,
10985 OpIsVolatile, OpSrcValue, OpSrcValueOffset,
10986 OpSrcValueAlign,
10987 OpSrcTBAAInfo);
10988
10989 // If chain is alias then stop here.
10990 if (!(IsLoad && IsOpLoad) &&
10991 isAlias(Ptr, Size, IsVolatile, SrcValue, SrcValueOffset,
10992 SrcValueAlign, SrcTBAAInfo,
10993 OpPtr, OpSize, OpIsVolatile, OpSrcValue, OpSrcValueOffset,
10994 OpSrcValueAlign, OpSrcTBAAInfo)) {
10995 Aliases.push_back(Chain);
10996 } else {
10997 // Look further up the chain.
10998 Chains.push_back(Chain.getOperand(0));
10999 ++Depth;
11000 }
11001 break;
11002 }
11003
11004 case ISD::TokenFactor:
11005 // We have to check each of the operands of the token factor for "small"
11006 // token factors, so we queue them up. Adding the operands to the queue
11007 // (stack) in reverse order maintains the original order and increases the
11008 // likelihood that getNode will find a matching token factor (CSE.)
11009 if (Chain.getNumOperands() > 16) {
11010 Aliases.push_back(Chain);
11011 break;
11012 }
11013 for (unsigned n = Chain.getNumOperands(); n;)
11014 Chains.push_back(Chain.getOperand(--n));
11015 ++Depth;
11016 break;
11017
11018 default:
11019 // For all other instructions we will just have to take what we can get.
11020 Aliases.push_back(Chain);
11021 break;
11022 }
11023 }
11024}
11025
11026/// FindBetterChain - Walk up chain skipping non-aliasing memory nodes, looking
11027/// for a better chain (aliasing node.)
11028SDValue DAGCombiner::FindBetterChain(SDNode *N, SDValue OldChain) {
11029 SmallVector<SDValue, 8> Aliases; // Ops for replacing token factor.
11030
11031 // Accumulate all the aliases to this node.
11032 GatherAllAliases(N, OldChain, Aliases);
11033
11034 // If no operands then chain to entry token.
11035 if (Aliases.size() == 0)
11036 return DAG.getEntryNode();
11037
11038 // If a single operand then chain to it. We don't need to revisit it.
11039 if (Aliases.size() == 1)
11040 return Aliases[0];
11041
11042 // Construct a custom tailored token factor.
11043 return DAG.getNode(ISD::TokenFactor, SDLoc(N), MVT::Other,
11044 &Aliases[0], Aliases.size());
11045}
11046
11047// SelectionDAG::Combine - This is the entry point for the file.
11048//
11049void SelectionDAG::Combine(CombineLevel Level, AliasAnalysis &AA,
11050 CodeGenOpt::Level OptLevel) {
11051 /// run - This is the main entry point to this class.
11052 ///
11053 DAGCombiner(*this, AA, OptLevel).Run(Level);
11054}