Deleted Added
full compact
AsmPrinter.cpp (199989) AsmPrinter.cpp (200581)
1//===-- AsmPrinter.cpp - Common AsmPrinter code ---------------------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the AsmPrinter class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/CodeGen/AsmPrinter.h"
15#include "llvm/Assembly/Writer.h"
16#include "llvm/DerivedTypes.h"
17#include "llvm/Constants.h"
18#include "llvm/Module.h"
19#include "llvm/CodeGen/GCMetadataPrinter.h"
20#include "llvm/CodeGen/MachineConstantPool.h"
21#include "llvm/CodeGen/MachineFrameInfo.h"
22#include "llvm/CodeGen/MachineFunction.h"
23#include "llvm/CodeGen/MachineJumpTableInfo.h"
24#include "llvm/CodeGen/MachineLoopInfo.h"
25#include "llvm/CodeGen/MachineModuleInfo.h"
26#include "llvm/CodeGen/DwarfWriter.h"
27#include "llvm/Analysis/DebugInfo.h"
28#include "llvm/MC/MCContext.h"
29#include "llvm/MC/MCInst.h"
30#include "llvm/MC/MCSection.h"
31#include "llvm/MC/MCStreamer.h"
32#include "llvm/MC/MCSymbol.h"
33#include "llvm/Support/CommandLine.h"
34#include "llvm/Support/ErrorHandling.h"
35#include "llvm/Support/FormattedStream.h"
36#include "llvm/Support/Mangler.h"
37#include "llvm/MC/MCAsmInfo.h"
38#include "llvm/Target/TargetData.h"
39#include "llvm/Target/TargetInstrInfo.h"
40#include "llvm/Target/TargetLowering.h"
41#include "llvm/Target/TargetLoweringObjectFile.h"
42#include "llvm/Target/TargetOptions.h"
43#include "llvm/Target/TargetRegisterInfo.h"
44#include "llvm/ADT/SmallPtrSet.h"
45#include "llvm/ADT/SmallString.h"
46#include "llvm/ADT/StringExtras.h"
47#include <cerrno>
48using namespace llvm;
49
50static cl::opt<cl::boolOrDefault>
51AsmVerbose("asm-verbose", cl::desc("Add comments to directives."),
52 cl::init(cl::BOU_UNSET));
53
54char AsmPrinter::ID = 0;
55AsmPrinter::AsmPrinter(formatted_raw_ostream &o, TargetMachine &tm,
56 const MCAsmInfo *T, bool VDef)
57 : MachineFunctionPass(&ID), FunctionNumber(0), O(o),
58 TM(tm), MAI(T), TRI(tm.getRegisterInfo()),
59
60 OutContext(*new MCContext()),
61 // FIXME: Pass instprinter to streamer.
62 OutStreamer(*createAsmStreamer(OutContext, O, *T, 0)),
63
64 LastMI(0), LastFn(0), Counter(~0U),
65 PrevDLT(0, 0, ~0U, ~0U) {
66 DW = 0; MMI = 0;
67 switch (AsmVerbose) {
68 case cl::BOU_UNSET: VerboseAsm = VDef; break;
69 case cl::BOU_TRUE: VerboseAsm = true; break;
70 case cl::BOU_FALSE: VerboseAsm = false; break;
71 }
72}
73
74AsmPrinter::~AsmPrinter() {
75 for (gcp_iterator I = GCMetadataPrinters.begin(),
76 E = GCMetadataPrinters.end(); I != E; ++I)
77 delete I->second;
78
79 delete &OutStreamer;
80 delete &OutContext;
81}
82
83TargetLoweringObjectFile &AsmPrinter::getObjFileLowering() const {
84 return TM.getTargetLowering()->getObjFileLowering();
85}
86
87/// getCurrentSection() - Return the current section we are emitting to.
88const MCSection *AsmPrinter::getCurrentSection() const {
89 return OutStreamer.getCurrentSection();
90}
91
92
93void AsmPrinter::getAnalysisUsage(AnalysisUsage &AU) const {
94 AU.setPreservesAll();
95 MachineFunctionPass::getAnalysisUsage(AU);
96 AU.addRequired<GCModuleInfo>();
97 if (VerboseAsm)
98 AU.addRequired<MachineLoopInfo>();
99}
100
101bool AsmPrinter::doInitialization(Module &M) {
102 // Initialize TargetLoweringObjectFile.
103 const_cast<TargetLoweringObjectFile&>(getObjFileLowering())
104 .Initialize(OutContext, TM);
105
106 Mang = new Mangler(M, MAI->getGlobalPrefix(), MAI->getPrivateGlobalPrefix(),
107 MAI->getLinkerPrivateGlobalPrefix());
108
109 if (MAI->doesAllowQuotesInName())
110 Mang->setUseQuotes(true);
111
112 if (MAI->doesAllowNameToStartWithDigit())
113 Mang->setSymbolsCanStartWithDigit(true);
114
115 // Allow the target to emit any magic that it wants at the start of the file.
116 EmitStartOfAsmFile(M);
117
118 if (MAI->hasSingleParameterDotFile()) {
119 /* Very minimal debug info. It is ignored if we emit actual
120 debug info. If we don't, this at least helps the user find where
121 a function came from. */
122 O << "\t.file\t\"" << M.getModuleIdentifier() << "\"\n";
123 }
124
125 GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>();
126 assert(MI && "AsmPrinter didn't require GCModuleInfo?");
127 for (GCModuleInfo::iterator I = MI->begin(), E = MI->end(); I != E; ++I)
128 if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*I))
129 MP->beginAssembly(O, *this, *MAI);
130
131 if (!M.getModuleInlineAsm().empty())
132 O << MAI->getCommentString() << " Start of file scope inline assembly\n"
133 << M.getModuleInlineAsm()
134 << '\n' << MAI->getCommentString()
135 << " End of file scope inline assembly\n";
136
137 MMI = getAnalysisIfAvailable<MachineModuleInfo>();
138 if (MMI)
139 MMI->AnalyzeModule(M);
140 DW = getAnalysisIfAvailable<DwarfWriter>();
141 if (DW)
142 DW->BeginModule(&M, MMI, O, this, MAI);
143
144 return false;
145}
146
147bool AsmPrinter::doFinalization(Module &M) {
148 // Emit global variables.
149 for (Module::const_global_iterator I = M.global_begin(), E = M.global_end();
150 I != E; ++I)
151 PrintGlobalVariable(I);
152
153 // Emit final debug information.
154 if (MAI->doesSupportDebugInformation() || MAI->doesSupportExceptionHandling())
155 DW->EndModule();
156
157 // If the target wants to know about weak references, print them all.
158 if (MAI->getWeakRefDirective()) {
159 // FIXME: This is not lazy, it would be nice to only print weak references
160 // to stuff that is actually used. Note that doing so would require targets
161 // to notice uses in operands (due to constant exprs etc). This should
162 // happen with the MC stuff eventually.
163
164 // Print out module-level global variables here.
165 for (Module::const_global_iterator I = M.global_begin(), E = M.global_end();
166 I != E; ++I) {
167 if (I->hasExternalWeakLinkage())
168 O << MAI->getWeakRefDirective() << Mang->getMangledName(I) << '\n';
169 }
170
171 for (Module::const_iterator I = M.begin(), E = M.end(); I != E; ++I) {
172 if (I->hasExternalWeakLinkage())
173 O << MAI->getWeakRefDirective() << Mang->getMangledName(I) << '\n';
174 }
175 }
176
177 if (MAI->getSetDirective()) {
178 O << '\n';
179 for (Module::const_alias_iterator I = M.alias_begin(), E = M.alias_end();
180 I != E; ++I) {
181 std::string Name = Mang->getMangledName(I);
182
183 const GlobalValue *GV = cast<GlobalValue>(I->getAliasedGlobal());
184 std::string Target = Mang->getMangledName(GV);
185
186 if (I->hasExternalLinkage() || !MAI->getWeakRefDirective())
187 O << "\t.globl\t" << Name << '\n';
188 else if (I->hasWeakLinkage())
189 O << MAI->getWeakRefDirective() << Name << '\n';
190 else if (!I->hasLocalLinkage())
191 llvm_unreachable("Invalid alias linkage");
192
193 printVisibility(Name, I->getVisibility());
194
195 O << MAI->getSetDirective() << ' ' << Name << ", " << Target << '\n';
196 }
197 }
198
199 GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>();
200 assert(MI && "AsmPrinter didn't require GCModuleInfo?");
201 for (GCModuleInfo::iterator I = MI->end(), E = MI->begin(); I != E; )
202 if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*--I))
203 MP->finishAssembly(O, *this, *MAI);
204
205 // If we don't have any trampolines, then we don't require stack memory
206 // to be executable. Some targets have a directive to declare this.
207 Function *InitTrampolineIntrinsic = M.getFunction("llvm.init.trampoline");
208 if (!InitTrampolineIntrinsic || InitTrampolineIntrinsic->use_empty())
209 if (MAI->getNonexecutableStackDirective())
210 O << MAI->getNonexecutableStackDirective() << '\n';
211
212
213 // Allow the target to emit any magic that it wants at the end of the file,
214 // after everything else has gone out.
215 EmitEndOfAsmFile(M);
216
217 delete Mang; Mang = 0;
218 DW = 0; MMI = 0;
219
220 OutStreamer.Finish();
221 return false;
222}
223
224void AsmPrinter::SetupMachineFunction(MachineFunction &MF) {
225 // What's my mangled name?
226 CurrentFnName = Mang->getMangledName(MF.getFunction());
227 IncrementFunctionNumber();
228
229 if (VerboseAsm)
230 LI = &getAnalysis<MachineLoopInfo>();
231}
232
233namespace {
234 // SectionCPs - Keep track the alignment, constpool entries per Section.
235 struct SectionCPs {
236 const MCSection *S;
237 unsigned Alignment;
238 SmallVector<unsigned, 4> CPEs;
239 SectionCPs(const MCSection *s, unsigned a) : S(s), Alignment(a) {};
240 };
241}
242
243/// EmitConstantPool - Print to the current output stream assembly
244/// representations of the constants in the constant pool MCP. This is
245/// used to print out constants which have been "spilled to memory" by
246/// the code generator.
247///
248void AsmPrinter::EmitConstantPool(MachineConstantPool *MCP) {
249 const std::vector<MachineConstantPoolEntry> &CP = MCP->getConstants();
250 if (CP.empty()) return;
251
252 // Calculate sections for constant pool entries. We collect entries to go into
253 // the same section together to reduce amount of section switch statements.
254 SmallVector<SectionCPs, 4> CPSections;
255 for (unsigned i = 0, e = CP.size(); i != e; ++i) {
256 const MachineConstantPoolEntry &CPE = CP[i];
257 unsigned Align = CPE.getAlignment();
258
259 SectionKind Kind;
260 switch (CPE.getRelocationInfo()) {
261 default: llvm_unreachable("Unknown section kind");
262 case 2: Kind = SectionKind::getReadOnlyWithRel(); break;
263 case 1:
264 Kind = SectionKind::getReadOnlyWithRelLocal();
265 break;
266 case 0:
267 switch (TM.getTargetData()->getTypeAllocSize(CPE.getType())) {
268 case 4: Kind = SectionKind::getMergeableConst4(); break;
269 case 8: Kind = SectionKind::getMergeableConst8(); break;
270 case 16: Kind = SectionKind::getMergeableConst16();break;
271 default: Kind = SectionKind::getMergeableConst(); break;
272 }
273 }
274
275 const MCSection *S = getObjFileLowering().getSectionForConstant(Kind);
276
277 // The number of sections are small, just do a linear search from the
278 // last section to the first.
279 bool Found = false;
280 unsigned SecIdx = CPSections.size();
281 while (SecIdx != 0) {
282 if (CPSections[--SecIdx].S == S) {
283 Found = true;
284 break;
285 }
286 }
287 if (!Found) {
288 SecIdx = CPSections.size();
289 CPSections.push_back(SectionCPs(S, Align));
290 }
291
292 if (Align > CPSections[SecIdx].Alignment)
293 CPSections[SecIdx].Alignment = Align;
294 CPSections[SecIdx].CPEs.push_back(i);
295 }
296
297 // Now print stuff into the calculated sections.
298 for (unsigned i = 0, e = CPSections.size(); i != e; ++i) {
299 OutStreamer.SwitchSection(CPSections[i].S);
300 EmitAlignment(Log2_32(CPSections[i].Alignment));
301
302 unsigned Offset = 0;
303 for (unsigned j = 0, ee = CPSections[i].CPEs.size(); j != ee; ++j) {
304 unsigned CPI = CPSections[i].CPEs[j];
305 MachineConstantPoolEntry CPE = CP[CPI];
306
307 // Emit inter-object padding for alignment.
308 unsigned AlignMask = CPE.getAlignment() - 1;
309 unsigned NewOffset = (Offset + AlignMask) & ~AlignMask;
310 EmitZeros(NewOffset - Offset);
311
312 const Type *Ty = CPE.getType();
313 Offset = NewOffset + TM.getTargetData()->getTypeAllocSize(Ty);
314
315 O << MAI->getPrivateGlobalPrefix() << "CPI" << getFunctionNumber() << '_'
316 << CPI << ':';
317 if (VerboseAsm) {
318 O.PadToColumn(MAI->getCommentColumn());
319 O << MAI->getCommentString() << " constant ";
320 WriteTypeSymbolic(O, CPE.getType(), MF->getFunction()->getParent());
321 }
322 O << '\n';
323 if (CPE.isMachineConstantPoolEntry())
324 EmitMachineConstantPoolValue(CPE.Val.MachineCPVal);
325 else
326 EmitGlobalConstant(CPE.Val.ConstVal);
327 }
328 }
329}
330
331/// EmitJumpTableInfo - Print assembly representations of the jump tables used
332/// by the current function to the current output stream.
333///
334void AsmPrinter::EmitJumpTableInfo(MachineJumpTableInfo *MJTI,
335 MachineFunction &MF) {
336 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
337 if (JT.empty()) return;
338
339 bool IsPic = TM.getRelocationModel() == Reloc::PIC_;
340
341 // Pick the directive to use to print the jump table entries, and switch to
342 // the appropriate section.
343 TargetLowering *LoweringInfo = TM.getTargetLowering();
344
345 const Function *F = MF.getFunction();
346 bool JTInDiffSection = false;
347 if (F->isWeakForLinker() ||
348 (IsPic && !LoweringInfo->usesGlobalOffsetTable())) {
349 // In PIC mode, we need to emit the jump table to the same section as the
350 // function body itself, otherwise the label differences won't make sense.
351 // We should also do if the section name is NULL or function is declared in
352 // discardable section.
353 OutStreamer.SwitchSection(getObjFileLowering().SectionForGlobal(F, Mang,
354 TM));
355 } else {
356 // Otherwise, drop it in the readonly section.
357 const MCSection *ReadOnlySection =
358 getObjFileLowering().getSectionForConstant(SectionKind::getReadOnly());
359 OutStreamer.SwitchSection(ReadOnlySection);
360 JTInDiffSection = true;
361 }
362
363 EmitAlignment(Log2_32(MJTI->getAlignment()));
364
365 for (unsigned i = 0, e = JT.size(); i != e; ++i) {
366 const std::vector<MachineBasicBlock*> &JTBBs = JT[i].MBBs;
367
368 // If this jump table was deleted, ignore it.
369 if (JTBBs.empty()) continue;
370
371 // For PIC codegen, if possible we want to use the SetDirective to reduce
372 // the number of relocations the assembler will generate for the jump table.
373 // Set directives are all printed before the jump table itself.
374 SmallPtrSet<MachineBasicBlock*, 16> EmittedSets;
375 if (MAI->getSetDirective() && IsPic)
376 for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii)
377 if (EmittedSets.insert(JTBBs[ii]))
378 printPICJumpTableSetLabel(i, JTBBs[ii]);
379
380 // On some targets (e.g. Darwin) we want to emit two consequtive labels
381 // before each jump table. The first label is never referenced, but tells
382 // the assembler and linker the extents of the jump table object. The
383 // second label is actually referenced by the code.
384 if (JTInDiffSection && MAI->getLinkerPrivateGlobalPrefix()[0]) {
385 O << MAI->getLinkerPrivateGlobalPrefix()
386 << "JTI" << getFunctionNumber() << '_' << i << ":\n";
387 }
388
389 O << MAI->getPrivateGlobalPrefix() << "JTI" << getFunctionNumber()
390 << '_' << i << ":\n";
391
392 for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) {
393 printPICJumpTableEntry(MJTI, JTBBs[ii], i);
394 O << '\n';
395 }
396 }
397}
398
399void AsmPrinter::printPICJumpTableEntry(const MachineJumpTableInfo *MJTI,
400 const MachineBasicBlock *MBB,
401 unsigned uid) const {
402 bool isPIC = TM.getRelocationModel() == Reloc::PIC_;
403
404 // Use JumpTableDirective otherwise honor the entry size from the jump table
405 // info.
406 const char *JTEntryDirective = MAI->getJumpTableDirective(isPIC);
407 bool HadJTEntryDirective = JTEntryDirective != NULL;
408 if (!HadJTEntryDirective) {
409 JTEntryDirective = MJTI->getEntrySize() == 4 ?
410 MAI->getData32bitsDirective() : MAI->getData64bitsDirective();
411 }
412
413 O << JTEntryDirective << ' ';
414
415 // If we have emitted set directives for the jump table entries, print
416 // them rather than the entries themselves. If we're emitting PIC, then
417 // emit the table entries as differences between two text section labels.
418 // If we're emitting non-PIC code, then emit the entries as direct
419 // references to the target basic blocks.
420 if (!isPIC) {
421 GetMBBSymbol(MBB->getNumber())->print(O, MAI);
422 } else if (MAI->getSetDirective()) {
423 O << MAI->getPrivateGlobalPrefix() << getFunctionNumber()
424 << '_' << uid << "_set_" << MBB->getNumber();
425 } else {
426 GetMBBSymbol(MBB->getNumber())->print(O, MAI);
427 // If the arch uses custom Jump Table directives, don't calc relative to
428 // JT
429 if (!HadJTEntryDirective)
430 O << '-' << MAI->getPrivateGlobalPrefix() << "JTI"
431 << getFunctionNumber() << '_' << uid;
432 }
433}
434
435
436/// EmitSpecialLLVMGlobal - Check to see if the specified global is a
437/// special global used by LLVM. If so, emit it and return true, otherwise
438/// do nothing and return false.
439bool AsmPrinter::EmitSpecialLLVMGlobal(const GlobalVariable *GV) {
440 if (GV->getName() == "llvm.used") {
441 if (MAI->getUsedDirective() != 0) // No need to emit this at all.
442 EmitLLVMUsedList(GV->getInitializer());
443 return true;
444 }
445
446 // Ignore debug and non-emitted data. This handles llvm.compiler.used.
447 if (GV->getSection() == "llvm.metadata" ||
448 GV->hasAvailableExternallyLinkage())
449 return true;
450
451 if (!GV->hasAppendingLinkage()) return false;
452
453 assert(GV->hasInitializer() && "Not a special LLVM global!");
454
455 const TargetData *TD = TM.getTargetData();
456 unsigned Align = Log2_32(TD->getPointerPrefAlignment());
457 if (GV->getName() == "llvm.global_ctors") {
458 OutStreamer.SwitchSection(getObjFileLowering().getStaticCtorSection());
459 EmitAlignment(Align, 0);
460 EmitXXStructorList(GV->getInitializer());
461 return true;
462 }
463
464 if (GV->getName() == "llvm.global_dtors") {
465 OutStreamer.SwitchSection(getObjFileLowering().getStaticDtorSection());
466 EmitAlignment(Align, 0);
467 EmitXXStructorList(GV->getInitializer());
468 return true;
469 }
470
471 return false;
472}
473
474/// EmitLLVMUsedList - For targets that define a MAI::UsedDirective, mark each
475/// global in the specified llvm.used list for which emitUsedDirectiveFor
476/// is true, as being used with this directive.
477void AsmPrinter::EmitLLVMUsedList(Constant *List) {
478 const char *Directive = MAI->getUsedDirective();
479
480 // Should be an array of 'i8*'.
481 ConstantArray *InitList = dyn_cast<ConstantArray>(List);
482 if (InitList == 0) return;
483
484 for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) {
485 const GlobalValue *GV =
486 dyn_cast<GlobalValue>(InitList->getOperand(i)->stripPointerCasts());
487 if (GV && getObjFileLowering().shouldEmitUsedDirectiveFor(GV, Mang)) {
488 O << Directive;
489 EmitConstantValueOnly(InitList->getOperand(i));
490 O << '\n';
491 }
492 }
493}
494
495/// EmitXXStructorList - Emit the ctor or dtor list. This just prints out the
496/// function pointers, ignoring the init priority.
497void AsmPrinter::EmitXXStructorList(Constant *List) {
498 // Should be an array of '{ int, void ()* }' structs. The first value is the
499 // init priority, which we ignore.
500 if (!isa<ConstantArray>(List)) return;
501 ConstantArray *InitList = cast<ConstantArray>(List);
502 for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i)
503 if (ConstantStruct *CS = dyn_cast<ConstantStruct>(InitList->getOperand(i))){
504 if (CS->getNumOperands() != 2) return; // Not array of 2-element structs.
505
506 if (CS->getOperand(1)->isNullValue())
507 return; // Found a null terminator, exit printing.
508 // Emit the function pointer.
509 EmitGlobalConstant(CS->getOperand(1));
510 }
511}
512
513
514//===----------------------------------------------------------------------===//
515/// LEB 128 number encoding.
516
517/// PrintULEB128 - Print a series of hexadecimal values (separated by commas)
518/// representing an unsigned leb128 value.
519void AsmPrinter::PrintULEB128(unsigned Value) const {
520 char Buffer[20];
521 do {
522 unsigned char Byte = static_cast<unsigned char>(Value & 0x7f);
523 Value >>= 7;
524 if (Value) Byte |= 0x80;
525 O << "0x" << utohex_buffer(Byte, Buffer+20);
526 if (Value) O << ", ";
527 } while (Value);
528}
529
530/// PrintSLEB128 - Print a series of hexadecimal values (separated by commas)
531/// representing a signed leb128 value.
532void AsmPrinter::PrintSLEB128(int Value) const {
533 int Sign = Value >> (8 * sizeof(Value) - 1);
534 bool IsMore;
535 char Buffer[20];
536
537 do {
538 unsigned char Byte = static_cast<unsigned char>(Value & 0x7f);
539 Value >>= 7;
540 IsMore = Value != Sign || ((Byte ^ Sign) & 0x40) != 0;
541 if (IsMore) Byte |= 0x80;
542 O << "0x" << utohex_buffer(Byte, Buffer+20);
543 if (IsMore) O << ", ";
544 } while (IsMore);
545}
546
547//===--------------------------------------------------------------------===//
548// Emission and print routines
549//
550
551/// PrintHex - Print a value as a hexadecimal value.
552///
553void AsmPrinter::PrintHex(int Value) const {
554 char Buffer[20];
555 O << "0x" << utohex_buffer(static_cast<unsigned>(Value), Buffer+20);
556}
557
558/// EOL - Print a newline character to asm stream. If a comment is present
559/// then it will be printed first. Comments should not contain '\n'.
560void AsmPrinter::EOL() const {
561 O << '\n';
562}
563
564void AsmPrinter::EOL(const std::string &Comment) const {
565 if (VerboseAsm && !Comment.empty()) {
566 O.PadToColumn(MAI->getCommentColumn());
567 O << MAI->getCommentString()
568 << ' '
569 << Comment;
570 }
571 O << '\n';
572}
573
574void AsmPrinter::EOL(const char* Comment) const {
575 if (VerboseAsm && *Comment) {
576 O.PadToColumn(MAI->getCommentColumn());
577 O << MAI->getCommentString()
578 << ' '
579 << Comment;
580 }
581 O << '\n';
582}
583
584static const char *DecodeDWARFEncoding(unsigned Encoding) {
585 switch (Encoding) {
586 case dwarf::DW_EH_PE_absptr:
587 return "absptr";
588 case dwarf::DW_EH_PE_omit:
589 return "omit";
590 case dwarf::DW_EH_PE_pcrel:
591 return "pcrel";
592 case dwarf::DW_EH_PE_udata4:
593 return "udata4";
594 case dwarf::DW_EH_PE_udata8:
595 return "udata8";
596 case dwarf::DW_EH_PE_sdata4:
597 return "sdata4";
598 case dwarf::DW_EH_PE_sdata8:
599 return "sdata8";
600 case dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_udata4:
601 return "pcrel udata4";
602 case dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_sdata4:
603 return "pcrel sdata4";
604 case dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_udata8:
605 return "pcrel udata8";
606 case dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_sdata8:
607 return "pcrel sdata8";
608 case dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel |dwarf::DW_EH_PE_udata4:
609 return "indirect pcrel udata4";
610 case dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel |dwarf::DW_EH_PE_sdata4:
611 return "indirect pcrel sdata4";
612 case dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel |dwarf::DW_EH_PE_udata8:
613 return "indirect pcrel udata8";
614 case dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel |dwarf::DW_EH_PE_sdata8:
615 return "indirect pcrel sdata8";
616 }
617
618 return 0;
619}
620
621void AsmPrinter::EOL(const char *Comment, unsigned Encoding) const {
622 if (VerboseAsm && *Comment) {
623 O.PadToColumn(MAI->getCommentColumn());
624 O << MAI->getCommentString()
625 << ' '
626 << Comment;
627
628 if (const char *EncStr = DecodeDWARFEncoding(Encoding))
629 O << " (" << EncStr << ')';
630 }
631 O << '\n';
632}
633
634/// EmitULEB128Bytes - Emit an assembler byte data directive to compose an
635/// unsigned leb128 value.
636void AsmPrinter::EmitULEB128Bytes(unsigned Value) const {
637 if (MAI->hasLEB128()) {
638 O << "\t.uleb128\t"
639 << Value;
640 } else {
641 O << MAI->getData8bitsDirective();
642 PrintULEB128(Value);
643 }
644}
645
646/// EmitSLEB128Bytes - print an assembler byte data directive to compose a
647/// signed leb128 value.
648void AsmPrinter::EmitSLEB128Bytes(int Value) const {
649 if (MAI->hasLEB128()) {
650 O << "\t.sleb128\t"
651 << Value;
652 } else {
653 O << MAI->getData8bitsDirective();
654 PrintSLEB128(Value);
655 }
656}
657
658/// EmitInt8 - Emit a byte directive and value.
659///
660void AsmPrinter::EmitInt8(int Value) const {
661 O << MAI->getData8bitsDirective();
662 PrintHex(Value & 0xFF);
663}
664
665/// EmitInt16 - Emit a short directive and value.
666///
667void AsmPrinter::EmitInt16(int Value) const {
668 O << MAI->getData16bitsDirective();
669 PrintHex(Value & 0xFFFF);
670}
671
672/// EmitInt32 - Emit a long directive and value.
673///
674void AsmPrinter::EmitInt32(int Value) const {
675 O << MAI->getData32bitsDirective();
676 PrintHex(Value);
677}
678
679/// EmitInt64 - Emit a long long directive and value.
680///
681void AsmPrinter::EmitInt64(uint64_t Value) const {
682 if (MAI->getData64bitsDirective()) {
683 O << MAI->getData64bitsDirective();
684 PrintHex(Value);
685 } else {
686 if (TM.getTargetData()->isBigEndian()) {
687 EmitInt32(unsigned(Value >> 32)); O << '\n';
688 EmitInt32(unsigned(Value));
689 } else {
690 EmitInt32(unsigned(Value)); O << '\n';
691 EmitInt32(unsigned(Value >> 32));
692 }
693 }
694}
695
696/// toOctal - Convert the low order bits of X into an octal digit.
697///
698static inline char toOctal(int X) {
699 return (X&7)+'0';
700}
701
702/// printStringChar - Print a char, escaped if necessary.
703///
704static void printStringChar(formatted_raw_ostream &O, unsigned char C) {
705 if (C == '"') {
706 O << "\\\"";
707 } else if (C == '\\') {
708 O << "\\\\";
709 } else if (isprint((unsigned char)C)) {
710 O << C;
711 } else {
712 switch(C) {
713 case '\b': O << "\\b"; break;
714 case '\f': O << "\\f"; break;
715 case '\n': O << "\\n"; break;
716 case '\r': O << "\\r"; break;
717 case '\t': O << "\\t"; break;
718 default:
719 O << '\\';
720 O << toOctal(C >> 6);
721 O << toOctal(C >> 3);
722 O << toOctal(C >> 0);
723 break;
724 }
725 }
726}
727
728/// EmitString - Emit a string with quotes and a null terminator.
729/// Special characters are emitted properly.
730/// \literal (Eg. '\t') \endliteral
731void AsmPrinter::EmitString(const StringRef String) const {
732 EmitString(String.data(), String.size());
733}
734
735void AsmPrinter::EmitString(const char *String, unsigned Size) const {
736 const char* AscizDirective = MAI->getAscizDirective();
737 if (AscizDirective)
738 O << AscizDirective;
739 else
740 O << MAI->getAsciiDirective();
741 O << '\"';
742 for (unsigned i = 0; i < Size; ++i)
743 printStringChar(O, String[i]);
744 if (AscizDirective)
745 O << '\"';
746 else
747 O << "\\0\"";
748}
749
750
751/// EmitFile - Emit a .file directive.
752void AsmPrinter::EmitFile(unsigned Number, const std::string &Name) const {
753 O << "\t.file\t" << Number << " \"";
754 for (unsigned i = 0, N = Name.size(); i < N; ++i)
755 printStringChar(O, Name[i]);
756 O << '\"';
757}
758
759
760//===----------------------------------------------------------------------===//
761
762// EmitAlignment - Emit an alignment directive to the specified power of
763// two boundary. For example, if you pass in 3 here, you will get an 8
764// byte alignment. If a global value is specified, and if that global has
765// an explicit alignment requested, it will unconditionally override the
766// alignment request. However, if ForcedAlignBits is specified, this value
767// has final say: the ultimate alignment will be the max of ForcedAlignBits
768// and the alignment computed with NumBits and the global.
769//
770// The algorithm is:
771// Align = NumBits;
772// if (GV && GV->hasalignment) Align = GV->getalignment();
773// Align = std::max(Align, ForcedAlignBits);
774//
775void AsmPrinter::EmitAlignment(unsigned NumBits, const GlobalValue *GV,
776 unsigned ForcedAlignBits,
777 bool UseFillExpr) const {
778 if (GV && GV->getAlignment())
779 NumBits = Log2_32(GV->getAlignment());
780 NumBits = std::max(NumBits, ForcedAlignBits);
781
782 if (NumBits == 0) return; // No need to emit alignment.
783
784 unsigned FillValue = 0;
785 if (getCurrentSection()->getKind().isText())
786 FillValue = MAI->getTextAlignFillValue();
787
788 OutStreamer.EmitValueToAlignment(1 << NumBits, FillValue, 1, 0);
789}
790
791/// EmitZeros - Emit a block of zeros.
792///
793void AsmPrinter::EmitZeros(uint64_t NumZeros, unsigned AddrSpace) const {
794 if (NumZeros) {
795 if (MAI->getZeroDirective()) {
796 O << MAI->getZeroDirective() << NumZeros;
797 if (MAI->getZeroDirectiveSuffix())
798 O << MAI->getZeroDirectiveSuffix();
799 O << '\n';
800 } else {
801 for (; NumZeros; --NumZeros)
802 O << MAI->getData8bitsDirective(AddrSpace) << "0\n";
803 }
804 }
805}
806
807// Print out the specified constant, without a storage class. Only the
808// constants valid in constant expressions can occur here.
809void AsmPrinter::EmitConstantValueOnly(const Constant *CV) {
810 if (CV->isNullValue() || isa<UndefValue>(CV))
811 O << '0';
812 else if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
813 O << CI->getZExtValue();
814 } else if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV)) {
815 // This is a constant address for a global variable or function. Use the
816 // name of the variable or function as the address value.
817 O << Mang->getMangledName(GV);
818 } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) {
819 const TargetData *TD = TM.getTargetData();
820 unsigned Opcode = CE->getOpcode();
821 switch (Opcode) {
822 case Instruction::Trunc:
823 case Instruction::ZExt:
824 case Instruction::SExt:
825 case Instruction::FPTrunc:
826 case Instruction::FPExt:
827 case Instruction::UIToFP:
828 case Instruction::SIToFP:
829 case Instruction::FPToUI:
830 case Instruction::FPToSI:
831 llvm_unreachable("FIXME: Don't support this constant cast expr");
832 case Instruction::GetElementPtr: {
833 // generate a symbolic expression for the byte address
834 const Constant *ptrVal = CE->getOperand(0);
835 SmallVector<Value*, 8> idxVec(CE->op_begin()+1, CE->op_end());
836 if (int64_t Offset = TD->getIndexedOffset(ptrVal->getType(), &idxVec[0],
837 idxVec.size())) {
838 // Truncate/sext the offset to the pointer size.
839 if (TD->getPointerSizeInBits() != 64) {
840 int SExtAmount = 64-TD->getPointerSizeInBits();
841 Offset = (Offset << SExtAmount) >> SExtAmount;
842 }
843
844 if (Offset)
845 O << '(';
846 EmitConstantValueOnly(ptrVal);
847 if (Offset > 0)
848 O << ") + " << Offset;
849 else if (Offset < 0)
850 O << ") - " << -Offset;
851 } else {
852 EmitConstantValueOnly(ptrVal);
853 }
854 break;
855 }
856 case Instruction::BitCast:
857 return EmitConstantValueOnly(CE->getOperand(0));
858
859 case Instruction::IntToPtr: {
860 // Handle casts to pointers by changing them into casts to the appropriate
861 // integer type. This promotes constant folding and simplifies this code.
862 Constant *Op = CE->getOperand(0);
863 Op = ConstantExpr::getIntegerCast(Op, TD->getIntPtrType(CV->getContext()),
864 false/*ZExt*/);
865 return EmitConstantValueOnly(Op);
866 }
867
868
869 case Instruction::PtrToInt: {
870 // Support only foldable casts to/from pointers that can be eliminated by
871 // changing the pointer to the appropriately sized integer type.
872 Constant *Op = CE->getOperand(0);
873 const Type *Ty = CE->getType();
874
875 // We can emit the pointer value into this slot if the slot is an
876 // integer slot greater or equal to the size of the pointer.
877 if (TD->getTypeAllocSize(Ty) == TD->getTypeAllocSize(Op->getType()))
878 return EmitConstantValueOnly(Op);
879
880 O << "((";
881 EmitConstantValueOnly(Op);
882 APInt ptrMask =
883 APInt::getAllOnesValue(TD->getTypeAllocSizeInBits(Op->getType()));
884
885 SmallString<40> S;
886 ptrMask.toStringUnsigned(S);
887 O << ") & " << S.str() << ')';
888 break;
889 }
890 case Instruction::Add:
891 case Instruction::Sub:
892 case Instruction::And:
893 case Instruction::Or:
894 case Instruction::Xor:
895 O << '(';
896 EmitConstantValueOnly(CE->getOperand(0));
897 O << ')';
898 switch (Opcode) {
899 case Instruction::Add:
900 O << " + ";
901 break;
902 case Instruction::Sub:
903 O << " - ";
904 break;
905 case Instruction::And:
906 O << " & ";
907 break;
908 case Instruction::Or:
909 O << " | ";
910 break;
911 case Instruction::Xor:
912 O << " ^ ";
913 break;
914 default:
915 break;
916 }
917 O << '(';
918 EmitConstantValueOnly(CE->getOperand(1));
919 O << ')';
920 break;
921 default:
922 llvm_unreachable("Unsupported operator!");
923 }
924 } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(CV)) {
925 GetBlockAddressSymbol(BA)->print(O, MAI);
926 } else {
927 llvm_unreachable("Unknown constant value!");
928 }
929}
930
931/// printAsCString - Print the specified array as a C compatible string, only if
932/// the predicate isString is true.
933///
934static void printAsCString(formatted_raw_ostream &O, const ConstantArray *CVA,
935 unsigned LastElt) {
936 assert(CVA->isString() && "Array is not string compatible!");
937
938 O << '\"';
939 for (unsigned i = 0; i != LastElt; ++i) {
940 unsigned char C =
941 (unsigned char)cast<ConstantInt>(CVA->getOperand(i))->getZExtValue();
942 printStringChar(O, C);
943 }
944 O << '\"';
945}
946
947/// EmitString - Emit a zero-byte-terminated string constant.
948///
949void AsmPrinter::EmitString(const ConstantArray *CVA) const {
950 unsigned NumElts = CVA->getNumOperands();
951 if (MAI->getAscizDirective() && NumElts &&
952 cast<ConstantInt>(CVA->getOperand(NumElts-1))->getZExtValue() == 0) {
953 O << MAI->getAscizDirective();
954 printAsCString(O, CVA, NumElts-1);
955 } else {
956 O << MAI->getAsciiDirective();
957 printAsCString(O, CVA, NumElts);
958 }
959 O << '\n';
960}
961
962void AsmPrinter::EmitGlobalConstantArray(const ConstantArray *CVA,
963 unsigned AddrSpace) {
964 if (CVA->isString()) {
965 EmitString(CVA);
966 } else { // Not a string. Print the values in successive locations
967 for (unsigned i = 0, e = CVA->getNumOperands(); i != e; ++i)
968 EmitGlobalConstant(CVA->getOperand(i), AddrSpace);
969 }
970}
971
972void AsmPrinter::EmitGlobalConstantVector(const ConstantVector *CP) {
973 const VectorType *PTy = CP->getType();
974
975 for (unsigned I = 0, E = PTy->getNumElements(); I < E; ++I)
976 EmitGlobalConstant(CP->getOperand(I));
977}
978
979void AsmPrinter::EmitGlobalConstantStruct(const ConstantStruct *CVS,
980 unsigned AddrSpace) {
981 // Print the fields in successive locations. Pad to align if needed!
982 const TargetData *TD = TM.getTargetData();
983 unsigned Size = TD->getTypeAllocSize(CVS->getType());
984 const StructLayout *cvsLayout = TD->getStructLayout(CVS->getType());
985 uint64_t sizeSoFar = 0;
986 for (unsigned i = 0, e = CVS->getNumOperands(); i != e; ++i) {
987 const Constant* field = CVS->getOperand(i);
988
989 // Check if padding is needed and insert one or more 0s.
990 uint64_t fieldSize = TD->getTypeAllocSize(field->getType());
991 uint64_t padSize = ((i == e-1 ? Size : cvsLayout->getElementOffset(i+1))
992 - cvsLayout->getElementOffset(i)) - fieldSize;
993 sizeSoFar += fieldSize + padSize;
994
995 // Now print the actual field value.
996 EmitGlobalConstant(field, AddrSpace);
997
998 // Insert padding - this may include padding to increase the size of the
999 // current field up to the ABI size (if the struct is not packed) as well
1000 // as padding to ensure that the next field starts at the right offset.
1001 EmitZeros(padSize, AddrSpace);
1002 }
1003 assert(sizeSoFar == cvsLayout->getSizeInBytes() &&
1004 "Layout of constant struct may be incorrect!");
1005}
1006
1007void AsmPrinter::EmitGlobalConstantFP(const ConstantFP *CFP,
1008 unsigned AddrSpace) {
1009 // FP Constants are printed as integer constants to avoid losing
1010 // precision...
1011 LLVMContext &Context = CFP->getContext();
1012 const TargetData *TD = TM.getTargetData();
1013 if (CFP->getType()->isDoubleTy()) {
1014 double Val = CFP->getValueAPF().convertToDouble(); // for comment only
1015 uint64_t i = CFP->getValueAPF().bitcastToAPInt().getZExtValue();
1016 if (MAI->getData64bitsDirective(AddrSpace)) {
1017 O << MAI->getData64bitsDirective(AddrSpace) << i;
1018 if (VerboseAsm) {
1019 O.PadToColumn(MAI->getCommentColumn());
1020 O << MAI->getCommentString() << " double " << Val;
1021 }
1022 O << '\n';
1023 } else if (TD->isBigEndian()) {
1024 O << MAI->getData32bitsDirective(AddrSpace) << unsigned(i >> 32);
1025 if (VerboseAsm) {
1026 O.PadToColumn(MAI->getCommentColumn());
1027 O << MAI->getCommentString()
1028 << " most significant word of double " << Val;
1029 }
1030 O << '\n';
1031 O << MAI->getData32bitsDirective(AddrSpace) << unsigned(i);
1032 if (VerboseAsm) {
1033 O.PadToColumn(MAI->getCommentColumn());
1034 O << MAI->getCommentString()
1035 << " least significant word of double " << Val;
1036 }
1037 O << '\n';
1038 } else {
1039 O << MAI->getData32bitsDirective(AddrSpace) << unsigned(i);
1040 if (VerboseAsm) {
1041 O.PadToColumn(MAI->getCommentColumn());
1042 O << MAI->getCommentString()
1043 << " least significant word of double " << Val;
1044 }
1045 O << '\n';
1046 O << MAI->getData32bitsDirective(AddrSpace) << unsigned(i >> 32);
1047 if (VerboseAsm) {
1048 O.PadToColumn(MAI->getCommentColumn());
1049 O << MAI->getCommentString()
1050 << " most significant word of double " << Val;
1051 }
1052 O << '\n';
1053 }
1054 return;
1055 }
1056
1057 if (CFP->getType()->isFloatTy()) {
1058 float Val = CFP->getValueAPF().convertToFloat(); // for comment only
1059 O << MAI->getData32bitsDirective(AddrSpace)
1060 << CFP->getValueAPF().bitcastToAPInt().getZExtValue();
1061 if (VerboseAsm) {
1062 O.PadToColumn(MAI->getCommentColumn());
1063 O << MAI->getCommentString() << " float " << Val;
1064 }
1065 O << '\n';
1066 return;
1067 }
1068
1069 if (CFP->getType()->isX86_FP80Ty()) {
1070 // all long double variants are printed as hex
1071 // api needed to prevent premature destruction
1072 APInt api = CFP->getValueAPF().bitcastToAPInt();
1073 const uint64_t *p = api.getRawData();
1074 // Convert to double so we can print the approximate val as a comment.
1075 APFloat DoubleVal = CFP->getValueAPF();
1076 bool ignored;
1077 DoubleVal.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven,
1078 &ignored);
1079 if (TD->isBigEndian()) {
1080 O << MAI->getData16bitsDirective(AddrSpace) << uint16_t(p[1]);
1081 if (VerboseAsm) {
1082 O.PadToColumn(MAI->getCommentColumn());
1083 O << MAI->getCommentString()
1084 << " most significant halfword of x86_fp80 ~"
1085 << DoubleVal.convertToDouble();
1086 }
1087 O << '\n';
1088 O << MAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0] >> 48);
1089 if (VerboseAsm) {
1090 O.PadToColumn(MAI->getCommentColumn());
1091 O << MAI->getCommentString() << " next halfword";
1092 }
1093 O << '\n';
1094 O << MAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0] >> 32);
1095 if (VerboseAsm) {
1096 O.PadToColumn(MAI->getCommentColumn());
1097 O << MAI->getCommentString() << " next halfword";
1098 }
1099 O << '\n';
1100 O << MAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0] >> 16);
1101 if (VerboseAsm) {
1102 O.PadToColumn(MAI->getCommentColumn());
1103 O << MAI->getCommentString() << " next halfword";
1104 }
1105 O << '\n';
1106 O << MAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0]);
1107 if (VerboseAsm) {
1108 O.PadToColumn(MAI->getCommentColumn());
1109 O << MAI->getCommentString()
1110 << " least significant halfword";
1111 }
1112 O << '\n';
1113 } else {
1114 O << MAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0]);
1115 if (VerboseAsm) {
1116 O.PadToColumn(MAI->getCommentColumn());
1117 O << MAI->getCommentString()
1118 << " least significant halfword of x86_fp80 ~"
1119 << DoubleVal.convertToDouble();
1120 }
1121 O << '\n';
1122 O << MAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0] >> 16);
1123 if (VerboseAsm) {
1124 O.PadToColumn(MAI->getCommentColumn());
1125 O << MAI->getCommentString()
1126 << " next halfword";
1127 }
1128 O << '\n';
1129 O << MAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0] >> 32);
1130 if (VerboseAsm) {
1131 O.PadToColumn(MAI->getCommentColumn());
1132 O << MAI->getCommentString()
1133 << " next halfword";
1134 }
1135 O << '\n';
1136 O << MAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0] >> 48);
1137 if (VerboseAsm) {
1138 O.PadToColumn(MAI->getCommentColumn());
1139 O << MAI->getCommentString()
1140 << " next halfword";
1141 }
1142 O << '\n';
1143 O << MAI->getData16bitsDirective(AddrSpace) << uint16_t(p[1]);
1144 if (VerboseAsm) {
1145 O.PadToColumn(MAI->getCommentColumn());
1146 O << MAI->getCommentString()
1147 << " most significant halfword";
1148 }
1149 O << '\n';
1150 }
1151 EmitZeros(TD->getTypeAllocSize(Type::getX86_FP80Ty(Context)) -
1152 TD->getTypeStoreSize(Type::getX86_FP80Ty(Context)), AddrSpace);
1153 return;
1154 }
1155
1156 if (CFP->getType()->isPPC_FP128Ty()) {
1157 // all long double variants are printed as hex
1158 // api needed to prevent premature destruction
1159 APInt api = CFP->getValueAPF().bitcastToAPInt();
1160 const uint64_t *p = api.getRawData();
1161 if (TD->isBigEndian()) {
1162 O << MAI->getData32bitsDirective(AddrSpace) << uint32_t(p[0] >> 32);
1163 if (VerboseAsm) {
1164 O.PadToColumn(MAI->getCommentColumn());
1165 O << MAI->getCommentString()
1166 << " most significant word of ppc_fp128";
1167 }
1168 O << '\n';
1169 O << MAI->getData32bitsDirective(AddrSpace) << uint32_t(p[0]);
1170 if (VerboseAsm) {
1171 O.PadToColumn(MAI->getCommentColumn());
1172 O << MAI->getCommentString()
1173 << " next word";
1174 }
1175 O << '\n';
1176 O << MAI->getData32bitsDirective(AddrSpace) << uint32_t(p[1] >> 32);
1177 if (VerboseAsm) {
1178 O.PadToColumn(MAI->getCommentColumn());
1179 O << MAI->getCommentString()
1180 << " next word";
1181 }
1182 O << '\n';
1183 O << MAI->getData32bitsDirective(AddrSpace) << uint32_t(p[1]);
1184 if (VerboseAsm) {
1185 O.PadToColumn(MAI->getCommentColumn());
1186 O << MAI->getCommentString()
1187 << " least significant word";
1188 }
1189 O << '\n';
1190 } else {
1191 O << MAI->getData32bitsDirective(AddrSpace) << uint32_t(p[1]);
1192 if (VerboseAsm) {
1193 O.PadToColumn(MAI->getCommentColumn());
1194 O << MAI->getCommentString()
1195 << " least significant word of ppc_fp128";
1196 }
1197 O << '\n';
1198 O << MAI->getData32bitsDirective(AddrSpace) << uint32_t(p[1] >> 32);
1199 if (VerboseAsm) {
1200 O.PadToColumn(MAI->getCommentColumn());
1201 O << MAI->getCommentString()
1202 << " next word";
1203 }
1204 O << '\n';
1205 O << MAI->getData32bitsDirective(AddrSpace) << uint32_t(p[0]);
1206 if (VerboseAsm) {
1207 O.PadToColumn(MAI->getCommentColumn());
1208 O << MAI->getCommentString()
1209 << " next word";
1210 }
1211 O << '\n';
1212 O << MAI->getData32bitsDirective(AddrSpace) << uint32_t(p[0] >> 32);
1213 if (VerboseAsm) {
1214 O.PadToColumn(MAI->getCommentColumn());
1215 O << MAI->getCommentString()
1216 << " most significant word";
1217 }
1218 O << '\n';
1219 }
1220 return;
1221 } else llvm_unreachable("Floating point constant type not handled");
1222}
1223
1224void AsmPrinter::EmitGlobalConstantLargeInt(const ConstantInt *CI,
1225 unsigned AddrSpace) {
1226 const TargetData *TD = TM.getTargetData();
1227 unsigned BitWidth = CI->getBitWidth();
1228 assert(isPowerOf2_32(BitWidth) &&
1229 "Non-power-of-2-sized integers not handled!");
1230
1231 // We don't expect assemblers to support integer data directives
1232 // for more than 64 bits, so we emit the data in at most 64-bit
1233 // quantities at a time.
1234 const uint64_t *RawData = CI->getValue().getRawData();
1235 for (unsigned i = 0, e = BitWidth / 64; i != e; ++i) {
1236 uint64_t Val;
1237 if (TD->isBigEndian())
1238 Val = RawData[e - i - 1];
1239 else
1240 Val = RawData[i];
1241
1242 if (MAI->getData64bitsDirective(AddrSpace))
1243 O << MAI->getData64bitsDirective(AddrSpace) << Val << '\n';
1244 else if (TD->isBigEndian()) {
1245 O << MAI->getData32bitsDirective(AddrSpace) << unsigned(Val >> 32);
1246 if (VerboseAsm) {
1247 O.PadToColumn(MAI->getCommentColumn());
1248 O << MAI->getCommentString()
1249 << " most significant half of i64 " << Val;
1250 }
1251 O << '\n';
1252 O << MAI->getData32bitsDirective(AddrSpace) << unsigned(Val);
1253 if (VerboseAsm) {
1254 O.PadToColumn(MAI->getCommentColumn());
1255 O << MAI->getCommentString()
1256 << " least significant half of i64 " << Val;
1257 }
1258 O << '\n';
1259 } else {
1260 O << MAI->getData32bitsDirective(AddrSpace) << unsigned(Val);
1261 if (VerboseAsm) {
1262 O.PadToColumn(MAI->getCommentColumn());
1263 O << MAI->getCommentString()
1264 << " least significant half of i64 " << Val;
1265 }
1266 O << '\n';
1267 O << MAI->getData32bitsDirective(AddrSpace) << unsigned(Val >> 32);
1268 if (VerboseAsm) {
1269 O.PadToColumn(MAI->getCommentColumn());
1270 O << MAI->getCommentString()
1271 << " most significant half of i64 " << Val;
1272 }
1273 O << '\n';
1274 }
1275 }
1276}
1277
1278/// EmitGlobalConstant - Print a general LLVM constant to the .s file.
1279void AsmPrinter::EmitGlobalConstant(const Constant *CV, unsigned AddrSpace) {
1280 const TargetData *TD = TM.getTargetData();
1281 const Type *type = CV->getType();
1282 unsigned Size = TD->getTypeAllocSize(type);
1283
1284 if (CV->isNullValue() || isa<UndefValue>(CV)) {
1285 EmitZeros(Size, AddrSpace);
1286 return;
1287 } else if (const ConstantArray *CVA = dyn_cast<ConstantArray>(CV)) {
1288 EmitGlobalConstantArray(CVA , AddrSpace);
1289 return;
1290 } else if (const ConstantStruct *CVS = dyn_cast<ConstantStruct>(CV)) {
1291 EmitGlobalConstantStruct(CVS, AddrSpace);
1292 return;
1293 } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) {
1294 EmitGlobalConstantFP(CFP, AddrSpace);
1295 return;
1296 } else if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
1297 // Small integers are handled below; large integers are handled here.
1298 if (Size > 4) {
1299 EmitGlobalConstantLargeInt(CI, AddrSpace);
1300 return;
1301 }
1302 } else if (const ConstantVector *CP = dyn_cast<ConstantVector>(CV)) {
1303 EmitGlobalConstantVector(CP);
1304 return;
1305 }
1306
1307 printDataDirective(type, AddrSpace);
1308 EmitConstantValueOnly(CV);
1309 if (VerboseAsm) {
1310 if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
1311 SmallString<40> S;
1312 CI->getValue().toStringUnsigned(S, 16);
1313 O.PadToColumn(MAI->getCommentColumn());
1314 O << MAI->getCommentString() << " 0x" << S.str();
1315 }
1316 }
1317 O << '\n';
1318}
1319
1320void AsmPrinter::EmitMachineConstantPoolValue(MachineConstantPoolValue *MCPV) {
1321 // Target doesn't support this yet!
1322 llvm_unreachable("Target does not support EmitMachineConstantPoolValue");
1323}
1324
1325/// PrintSpecial - Print information related to the specified machine instr
1326/// that is independent of the operand, and may be independent of the instr
1327/// itself. This can be useful for portably encoding the comment character
1328/// or other bits of target-specific knowledge into the asmstrings. The
1329/// syntax used is ${:comment}. Targets can override this to add support
1330/// for their own strange codes.
1331void AsmPrinter::PrintSpecial(const MachineInstr *MI, const char *Code) const {
1332 if (!strcmp(Code, "private")) {
1333 O << MAI->getPrivateGlobalPrefix();
1334 } else if (!strcmp(Code, "comment")) {
1335 if (VerboseAsm)
1336 O << MAI->getCommentString();
1337 } else if (!strcmp(Code, "uid")) {
1338 // Comparing the address of MI isn't sufficient, because machineinstrs may
1339 // be allocated to the same address across functions.
1340 const Function *ThisF = MI->getParent()->getParent()->getFunction();
1341
1342 // If this is a new LastFn instruction, bump the counter.
1343 if (LastMI != MI || LastFn != ThisF) {
1344 ++Counter;
1345 LastMI = MI;
1346 LastFn = ThisF;
1347 }
1348 O << Counter;
1349 } else {
1350 std::string msg;
1351 raw_string_ostream Msg(msg);
1352 Msg << "Unknown special formatter '" << Code
1353 << "' for machine instr: " << *MI;
1354 llvm_report_error(Msg.str());
1355 }
1356}
1357
1358/// processDebugLoc - Processes the debug information of each machine
1359/// instruction's DebugLoc.
1360void AsmPrinter::processDebugLoc(const MachineInstr *MI,
1361 bool BeforePrintingInsn) {
1362 if (!MAI || !DW || !MAI->doesSupportDebugInformation()
1363 || !DW->ShouldEmitDwarfDebug())
1364 return;
1365 DebugLoc DL = MI->getDebugLoc();
1366 if (DL.isUnknown())
1367 return;
1368 DebugLocTuple CurDLT = MF->getDebugLocTuple(DL);
1369 if (CurDLT.Scope == 0)
1370 return;
1371
1372 if (BeforePrintingInsn) {
1373 if (CurDLT != PrevDLT) {
1374 unsigned L = DW->RecordSourceLine(CurDLT.Line, CurDLT.Col,
1375 CurDLT.Scope);
1376 printLabel(L);
1//===-- AsmPrinter.cpp - Common AsmPrinter code ---------------------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the AsmPrinter class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/CodeGen/AsmPrinter.h"
15#include "llvm/Assembly/Writer.h"
16#include "llvm/DerivedTypes.h"
17#include "llvm/Constants.h"
18#include "llvm/Module.h"
19#include "llvm/CodeGen/GCMetadataPrinter.h"
20#include "llvm/CodeGen/MachineConstantPool.h"
21#include "llvm/CodeGen/MachineFrameInfo.h"
22#include "llvm/CodeGen/MachineFunction.h"
23#include "llvm/CodeGen/MachineJumpTableInfo.h"
24#include "llvm/CodeGen/MachineLoopInfo.h"
25#include "llvm/CodeGen/MachineModuleInfo.h"
26#include "llvm/CodeGen/DwarfWriter.h"
27#include "llvm/Analysis/DebugInfo.h"
28#include "llvm/MC/MCContext.h"
29#include "llvm/MC/MCInst.h"
30#include "llvm/MC/MCSection.h"
31#include "llvm/MC/MCStreamer.h"
32#include "llvm/MC/MCSymbol.h"
33#include "llvm/Support/CommandLine.h"
34#include "llvm/Support/ErrorHandling.h"
35#include "llvm/Support/FormattedStream.h"
36#include "llvm/Support/Mangler.h"
37#include "llvm/MC/MCAsmInfo.h"
38#include "llvm/Target/TargetData.h"
39#include "llvm/Target/TargetInstrInfo.h"
40#include "llvm/Target/TargetLowering.h"
41#include "llvm/Target/TargetLoweringObjectFile.h"
42#include "llvm/Target/TargetOptions.h"
43#include "llvm/Target/TargetRegisterInfo.h"
44#include "llvm/ADT/SmallPtrSet.h"
45#include "llvm/ADT/SmallString.h"
46#include "llvm/ADT/StringExtras.h"
47#include <cerrno>
48using namespace llvm;
49
50static cl::opt<cl::boolOrDefault>
51AsmVerbose("asm-verbose", cl::desc("Add comments to directives."),
52 cl::init(cl::BOU_UNSET));
53
54char AsmPrinter::ID = 0;
55AsmPrinter::AsmPrinter(formatted_raw_ostream &o, TargetMachine &tm,
56 const MCAsmInfo *T, bool VDef)
57 : MachineFunctionPass(&ID), FunctionNumber(0), O(o),
58 TM(tm), MAI(T), TRI(tm.getRegisterInfo()),
59
60 OutContext(*new MCContext()),
61 // FIXME: Pass instprinter to streamer.
62 OutStreamer(*createAsmStreamer(OutContext, O, *T, 0)),
63
64 LastMI(0), LastFn(0), Counter(~0U),
65 PrevDLT(0, 0, ~0U, ~0U) {
66 DW = 0; MMI = 0;
67 switch (AsmVerbose) {
68 case cl::BOU_UNSET: VerboseAsm = VDef; break;
69 case cl::BOU_TRUE: VerboseAsm = true; break;
70 case cl::BOU_FALSE: VerboseAsm = false; break;
71 }
72}
73
74AsmPrinter::~AsmPrinter() {
75 for (gcp_iterator I = GCMetadataPrinters.begin(),
76 E = GCMetadataPrinters.end(); I != E; ++I)
77 delete I->second;
78
79 delete &OutStreamer;
80 delete &OutContext;
81}
82
83TargetLoweringObjectFile &AsmPrinter::getObjFileLowering() const {
84 return TM.getTargetLowering()->getObjFileLowering();
85}
86
87/// getCurrentSection() - Return the current section we are emitting to.
88const MCSection *AsmPrinter::getCurrentSection() const {
89 return OutStreamer.getCurrentSection();
90}
91
92
93void AsmPrinter::getAnalysisUsage(AnalysisUsage &AU) const {
94 AU.setPreservesAll();
95 MachineFunctionPass::getAnalysisUsage(AU);
96 AU.addRequired<GCModuleInfo>();
97 if (VerboseAsm)
98 AU.addRequired<MachineLoopInfo>();
99}
100
101bool AsmPrinter::doInitialization(Module &M) {
102 // Initialize TargetLoweringObjectFile.
103 const_cast<TargetLoweringObjectFile&>(getObjFileLowering())
104 .Initialize(OutContext, TM);
105
106 Mang = new Mangler(M, MAI->getGlobalPrefix(), MAI->getPrivateGlobalPrefix(),
107 MAI->getLinkerPrivateGlobalPrefix());
108
109 if (MAI->doesAllowQuotesInName())
110 Mang->setUseQuotes(true);
111
112 if (MAI->doesAllowNameToStartWithDigit())
113 Mang->setSymbolsCanStartWithDigit(true);
114
115 // Allow the target to emit any magic that it wants at the start of the file.
116 EmitStartOfAsmFile(M);
117
118 if (MAI->hasSingleParameterDotFile()) {
119 /* Very minimal debug info. It is ignored if we emit actual
120 debug info. If we don't, this at least helps the user find where
121 a function came from. */
122 O << "\t.file\t\"" << M.getModuleIdentifier() << "\"\n";
123 }
124
125 GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>();
126 assert(MI && "AsmPrinter didn't require GCModuleInfo?");
127 for (GCModuleInfo::iterator I = MI->begin(), E = MI->end(); I != E; ++I)
128 if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*I))
129 MP->beginAssembly(O, *this, *MAI);
130
131 if (!M.getModuleInlineAsm().empty())
132 O << MAI->getCommentString() << " Start of file scope inline assembly\n"
133 << M.getModuleInlineAsm()
134 << '\n' << MAI->getCommentString()
135 << " End of file scope inline assembly\n";
136
137 MMI = getAnalysisIfAvailable<MachineModuleInfo>();
138 if (MMI)
139 MMI->AnalyzeModule(M);
140 DW = getAnalysisIfAvailable<DwarfWriter>();
141 if (DW)
142 DW->BeginModule(&M, MMI, O, this, MAI);
143
144 return false;
145}
146
147bool AsmPrinter::doFinalization(Module &M) {
148 // Emit global variables.
149 for (Module::const_global_iterator I = M.global_begin(), E = M.global_end();
150 I != E; ++I)
151 PrintGlobalVariable(I);
152
153 // Emit final debug information.
154 if (MAI->doesSupportDebugInformation() || MAI->doesSupportExceptionHandling())
155 DW->EndModule();
156
157 // If the target wants to know about weak references, print them all.
158 if (MAI->getWeakRefDirective()) {
159 // FIXME: This is not lazy, it would be nice to only print weak references
160 // to stuff that is actually used. Note that doing so would require targets
161 // to notice uses in operands (due to constant exprs etc). This should
162 // happen with the MC stuff eventually.
163
164 // Print out module-level global variables here.
165 for (Module::const_global_iterator I = M.global_begin(), E = M.global_end();
166 I != E; ++I) {
167 if (I->hasExternalWeakLinkage())
168 O << MAI->getWeakRefDirective() << Mang->getMangledName(I) << '\n';
169 }
170
171 for (Module::const_iterator I = M.begin(), E = M.end(); I != E; ++I) {
172 if (I->hasExternalWeakLinkage())
173 O << MAI->getWeakRefDirective() << Mang->getMangledName(I) << '\n';
174 }
175 }
176
177 if (MAI->getSetDirective()) {
178 O << '\n';
179 for (Module::const_alias_iterator I = M.alias_begin(), E = M.alias_end();
180 I != E; ++I) {
181 std::string Name = Mang->getMangledName(I);
182
183 const GlobalValue *GV = cast<GlobalValue>(I->getAliasedGlobal());
184 std::string Target = Mang->getMangledName(GV);
185
186 if (I->hasExternalLinkage() || !MAI->getWeakRefDirective())
187 O << "\t.globl\t" << Name << '\n';
188 else if (I->hasWeakLinkage())
189 O << MAI->getWeakRefDirective() << Name << '\n';
190 else if (!I->hasLocalLinkage())
191 llvm_unreachable("Invalid alias linkage");
192
193 printVisibility(Name, I->getVisibility());
194
195 O << MAI->getSetDirective() << ' ' << Name << ", " << Target << '\n';
196 }
197 }
198
199 GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>();
200 assert(MI && "AsmPrinter didn't require GCModuleInfo?");
201 for (GCModuleInfo::iterator I = MI->end(), E = MI->begin(); I != E; )
202 if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*--I))
203 MP->finishAssembly(O, *this, *MAI);
204
205 // If we don't have any trampolines, then we don't require stack memory
206 // to be executable. Some targets have a directive to declare this.
207 Function *InitTrampolineIntrinsic = M.getFunction("llvm.init.trampoline");
208 if (!InitTrampolineIntrinsic || InitTrampolineIntrinsic->use_empty())
209 if (MAI->getNonexecutableStackDirective())
210 O << MAI->getNonexecutableStackDirective() << '\n';
211
212
213 // Allow the target to emit any magic that it wants at the end of the file,
214 // after everything else has gone out.
215 EmitEndOfAsmFile(M);
216
217 delete Mang; Mang = 0;
218 DW = 0; MMI = 0;
219
220 OutStreamer.Finish();
221 return false;
222}
223
224void AsmPrinter::SetupMachineFunction(MachineFunction &MF) {
225 // What's my mangled name?
226 CurrentFnName = Mang->getMangledName(MF.getFunction());
227 IncrementFunctionNumber();
228
229 if (VerboseAsm)
230 LI = &getAnalysis<MachineLoopInfo>();
231}
232
233namespace {
234 // SectionCPs - Keep track the alignment, constpool entries per Section.
235 struct SectionCPs {
236 const MCSection *S;
237 unsigned Alignment;
238 SmallVector<unsigned, 4> CPEs;
239 SectionCPs(const MCSection *s, unsigned a) : S(s), Alignment(a) {};
240 };
241}
242
243/// EmitConstantPool - Print to the current output stream assembly
244/// representations of the constants in the constant pool MCP. This is
245/// used to print out constants which have been "spilled to memory" by
246/// the code generator.
247///
248void AsmPrinter::EmitConstantPool(MachineConstantPool *MCP) {
249 const std::vector<MachineConstantPoolEntry> &CP = MCP->getConstants();
250 if (CP.empty()) return;
251
252 // Calculate sections for constant pool entries. We collect entries to go into
253 // the same section together to reduce amount of section switch statements.
254 SmallVector<SectionCPs, 4> CPSections;
255 for (unsigned i = 0, e = CP.size(); i != e; ++i) {
256 const MachineConstantPoolEntry &CPE = CP[i];
257 unsigned Align = CPE.getAlignment();
258
259 SectionKind Kind;
260 switch (CPE.getRelocationInfo()) {
261 default: llvm_unreachable("Unknown section kind");
262 case 2: Kind = SectionKind::getReadOnlyWithRel(); break;
263 case 1:
264 Kind = SectionKind::getReadOnlyWithRelLocal();
265 break;
266 case 0:
267 switch (TM.getTargetData()->getTypeAllocSize(CPE.getType())) {
268 case 4: Kind = SectionKind::getMergeableConst4(); break;
269 case 8: Kind = SectionKind::getMergeableConst8(); break;
270 case 16: Kind = SectionKind::getMergeableConst16();break;
271 default: Kind = SectionKind::getMergeableConst(); break;
272 }
273 }
274
275 const MCSection *S = getObjFileLowering().getSectionForConstant(Kind);
276
277 // The number of sections are small, just do a linear search from the
278 // last section to the first.
279 bool Found = false;
280 unsigned SecIdx = CPSections.size();
281 while (SecIdx != 0) {
282 if (CPSections[--SecIdx].S == S) {
283 Found = true;
284 break;
285 }
286 }
287 if (!Found) {
288 SecIdx = CPSections.size();
289 CPSections.push_back(SectionCPs(S, Align));
290 }
291
292 if (Align > CPSections[SecIdx].Alignment)
293 CPSections[SecIdx].Alignment = Align;
294 CPSections[SecIdx].CPEs.push_back(i);
295 }
296
297 // Now print stuff into the calculated sections.
298 for (unsigned i = 0, e = CPSections.size(); i != e; ++i) {
299 OutStreamer.SwitchSection(CPSections[i].S);
300 EmitAlignment(Log2_32(CPSections[i].Alignment));
301
302 unsigned Offset = 0;
303 for (unsigned j = 0, ee = CPSections[i].CPEs.size(); j != ee; ++j) {
304 unsigned CPI = CPSections[i].CPEs[j];
305 MachineConstantPoolEntry CPE = CP[CPI];
306
307 // Emit inter-object padding for alignment.
308 unsigned AlignMask = CPE.getAlignment() - 1;
309 unsigned NewOffset = (Offset + AlignMask) & ~AlignMask;
310 EmitZeros(NewOffset - Offset);
311
312 const Type *Ty = CPE.getType();
313 Offset = NewOffset + TM.getTargetData()->getTypeAllocSize(Ty);
314
315 O << MAI->getPrivateGlobalPrefix() << "CPI" << getFunctionNumber() << '_'
316 << CPI << ':';
317 if (VerboseAsm) {
318 O.PadToColumn(MAI->getCommentColumn());
319 O << MAI->getCommentString() << " constant ";
320 WriteTypeSymbolic(O, CPE.getType(), MF->getFunction()->getParent());
321 }
322 O << '\n';
323 if (CPE.isMachineConstantPoolEntry())
324 EmitMachineConstantPoolValue(CPE.Val.MachineCPVal);
325 else
326 EmitGlobalConstant(CPE.Val.ConstVal);
327 }
328 }
329}
330
331/// EmitJumpTableInfo - Print assembly representations of the jump tables used
332/// by the current function to the current output stream.
333///
334void AsmPrinter::EmitJumpTableInfo(MachineJumpTableInfo *MJTI,
335 MachineFunction &MF) {
336 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
337 if (JT.empty()) return;
338
339 bool IsPic = TM.getRelocationModel() == Reloc::PIC_;
340
341 // Pick the directive to use to print the jump table entries, and switch to
342 // the appropriate section.
343 TargetLowering *LoweringInfo = TM.getTargetLowering();
344
345 const Function *F = MF.getFunction();
346 bool JTInDiffSection = false;
347 if (F->isWeakForLinker() ||
348 (IsPic && !LoweringInfo->usesGlobalOffsetTable())) {
349 // In PIC mode, we need to emit the jump table to the same section as the
350 // function body itself, otherwise the label differences won't make sense.
351 // We should also do if the section name is NULL or function is declared in
352 // discardable section.
353 OutStreamer.SwitchSection(getObjFileLowering().SectionForGlobal(F, Mang,
354 TM));
355 } else {
356 // Otherwise, drop it in the readonly section.
357 const MCSection *ReadOnlySection =
358 getObjFileLowering().getSectionForConstant(SectionKind::getReadOnly());
359 OutStreamer.SwitchSection(ReadOnlySection);
360 JTInDiffSection = true;
361 }
362
363 EmitAlignment(Log2_32(MJTI->getAlignment()));
364
365 for (unsigned i = 0, e = JT.size(); i != e; ++i) {
366 const std::vector<MachineBasicBlock*> &JTBBs = JT[i].MBBs;
367
368 // If this jump table was deleted, ignore it.
369 if (JTBBs.empty()) continue;
370
371 // For PIC codegen, if possible we want to use the SetDirective to reduce
372 // the number of relocations the assembler will generate for the jump table.
373 // Set directives are all printed before the jump table itself.
374 SmallPtrSet<MachineBasicBlock*, 16> EmittedSets;
375 if (MAI->getSetDirective() && IsPic)
376 for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii)
377 if (EmittedSets.insert(JTBBs[ii]))
378 printPICJumpTableSetLabel(i, JTBBs[ii]);
379
380 // On some targets (e.g. Darwin) we want to emit two consequtive labels
381 // before each jump table. The first label is never referenced, but tells
382 // the assembler and linker the extents of the jump table object. The
383 // second label is actually referenced by the code.
384 if (JTInDiffSection && MAI->getLinkerPrivateGlobalPrefix()[0]) {
385 O << MAI->getLinkerPrivateGlobalPrefix()
386 << "JTI" << getFunctionNumber() << '_' << i << ":\n";
387 }
388
389 O << MAI->getPrivateGlobalPrefix() << "JTI" << getFunctionNumber()
390 << '_' << i << ":\n";
391
392 for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) {
393 printPICJumpTableEntry(MJTI, JTBBs[ii], i);
394 O << '\n';
395 }
396 }
397}
398
399void AsmPrinter::printPICJumpTableEntry(const MachineJumpTableInfo *MJTI,
400 const MachineBasicBlock *MBB,
401 unsigned uid) const {
402 bool isPIC = TM.getRelocationModel() == Reloc::PIC_;
403
404 // Use JumpTableDirective otherwise honor the entry size from the jump table
405 // info.
406 const char *JTEntryDirective = MAI->getJumpTableDirective(isPIC);
407 bool HadJTEntryDirective = JTEntryDirective != NULL;
408 if (!HadJTEntryDirective) {
409 JTEntryDirective = MJTI->getEntrySize() == 4 ?
410 MAI->getData32bitsDirective() : MAI->getData64bitsDirective();
411 }
412
413 O << JTEntryDirective << ' ';
414
415 // If we have emitted set directives for the jump table entries, print
416 // them rather than the entries themselves. If we're emitting PIC, then
417 // emit the table entries as differences between two text section labels.
418 // If we're emitting non-PIC code, then emit the entries as direct
419 // references to the target basic blocks.
420 if (!isPIC) {
421 GetMBBSymbol(MBB->getNumber())->print(O, MAI);
422 } else if (MAI->getSetDirective()) {
423 O << MAI->getPrivateGlobalPrefix() << getFunctionNumber()
424 << '_' << uid << "_set_" << MBB->getNumber();
425 } else {
426 GetMBBSymbol(MBB->getNumber())->print(O, MAI);
427 // If the arch uses custom Jump Table directives, don't calc relative to
428 // JT
429 if (!HadJTEntryDirective)
430 O << '-' << MAI->getPrivateGlobalPrefix() << "JTI"
431 << getFunctionNumber() << '_' << uid;
432 }
433}
434
435
436/// EmitSpecialLLVMGlobal - Check to see if the specified global is a
437/// special global used by LLVM. If so, emit it and return true, otherwise
438/// do nothing and return false.
439bool AsmPrinter::EmitSpecialLLVMGlobal(const GlobalVariable *GV) {
440 if (GV->getName() == "llvm.used") {
441 if (MAI->getUsedDirective() != 0) // No need to emit this at all.
442 EmitLLVMUsedList(GV->getInitializer());
443 return true;
444 }
445
446 // Ignore debug and non-emitted data. This handles llvm.compiler.used.
447 if (GV->getSection() == "llvm.metadata" ||
448 GV->hasAvailableExternallyLinkage())
449 return true;
450
451 if (!GV->hasAppendingLinkage()) return false;
452
453 assert(GV->hasInitializer() && "Not a special LLVM global!");
454
455 const TargetData *TD = TM.getTargetData();
456 unsigned Align = Log2_32(TD->getPointerPrefAlignment());
457 if (GV->getName() == "llvm.global_ctors") {
458 OutStreamer.SwitchSection(getObjFileLowering().getStaticCtorSection());
459 EmitAlignment(Align, 0);
460 EmitXXStructorList(GV->getInitializer());
461 return true;
462 }
463
464 if (GV->getName() == "llvm.global_dtors") {
465 OutStreamer.SwitchSection(getObjFileLowering().getStaticDtorSection());
466 EmitAlignment(Align, 0);
467 EmitXXStructorList(GV->getInitializer());
468 return true;
469 }
470
471 return false;
472}
473
474/// EmitLLVMUsedList - For targets that define a MAI::UsedDirective, mark each
475/// global in the specified llvm.used list for which emitUsedDirectiveFor
476/// is true, as being used with this directive.
477void AsmPrinter::EmitLLVMUsedList(Constant *List) {
478 const char *Directive = MAI->getUsedDirective();
479
480 // Should be an array of 'i8*'.
481 ConstantArray *InitList = dyn_cast<ConstantArray>(List);
482 if (InitList == 0) return;
483
484 for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) {
485 const GlobalValue *GV =
486 dyn_cast<GlobalValue>(InitList->getOperand(i)->stripPointerCasts());
487 if (GV && getObjFileLowering().shouldEmitUsedDirectiveFor(GV, Mang)) {
488 O << Directive;
489 EmitConstantValueOnly(InitList->getOperand(i));
490 O << '\n';
491 }
492 }
493}
494
495/// EmitXXStructorList - Emit the ctor or dtor list. This just prints out the
496/// function pointers, ignoring the init priority.
497void AsmPrinter::EmitXXStructorList(Constant *List) {
498 // Should be an array of '{ int, void ()* }' structs. The first value is the
499 // init priority, which we ignore.
500 if (!isa<ConstantArray>(List)) return;
501 ConstantArray *InitList = cast<ConstantArray>(List);
502 for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i)
503 if (ConstantStruct *CS = dyn_cast<ConstantStruct>(InitList->getOperand(i))){
504 if (CS->getNumOperands() != 2) return; // Not array of 2-element structs.
505
506 if (CS->getOperand(1)->isNullValue())
507 return; // Found a null terminator, exit printing.
508 // Emit the function pointer.
509 EmitGlobalConstant(CS->getOperand(1));
510 }
511}
512
513
514//===----------------------------------------------------------------------===//
515/// LEB 128 number encoding.
516
517/// PrintULEB128 - Print a series of hexadecimal values (separated by commas)
518/// representing an unsigned leb128 value.
519void AsmPrinter::PrintULEB128(unsigned Value) const {
520 char Buffer[20];
521 do {
522 unsigned char Byte = static_cast<unsigned char>(Value & 0x7f);
523 Value >>= 7;
524 if (Value) Byte |= 0x80;
525 O << "0x" << utohex_buffer(Byte, Buffer+20);
526 if (Value) O << ", ";
527 } while (Value);
528}
529
530/// PrintSLEB128 - Print a series of hexadecimal values (separated by commas)
531/// representing a signed leb128 value.
532void AsmPrinter::PrintSLEB128(int Value) const {
533 int Sign = Value >> (8 * sizeof(Value) - 1);
534 bool IsMore;
535 char Buffer[20];
536
537 do {
538 unsigned char Byte = static_cast<unsigned char>(Value & 0x7f);
539 Value >>= 7;
540 IsMore = Value != Sign || ((Byte ^ Sign) & 0x40) != 0;
541 if (IsMore) Byte |= 0x80;
542 O << "0x" << utohex_buffer(Byte, Buffer+20);
543 if (IsMore) O << ", ";
544 } while (IsMore);
545}
546
547//===--------------------------------------------------------------------===//
548// Emission and print routines
549//
550
551/// PrintHex - Print a value as a hexadecimal value.
552///
553void AsmPrinter::PrintHex(int Value) const {
554 char Buffer[20];
555 O << "0x" << utohex_buffer(static_cast<unsigned>(Value), Buffer+20);
556}
557
558/// EOL - Print a newline character to asm stream. If a comment is present
559/// then it will be printed first. Comments should not contain '\n'.
560void AsmPrinter::EOL() const {
561 O << '\n';
562}
563
564void AsmPrinter::EOL(const std::string &Comment) const {
565 if (VerboseAsm && !Comment.empty()) {
566 O.PadToColumn(MAI->getCommentColumn());
567 O << MAI->getCommentString()
568 << ' '
569 << Comment;
570 }
571 O << '\n';
572}
573
574void AsmPrinter::EOL(const char* Comment) const {
575 if (VerboseAsm && *Comment) {
576 O.PadToColumn(MAI->getCommentColumn());
577 O << MAI->getCommentString()
578 << ' '
579 << Comment;
580 }
581 O << '\n';
582}
583
584static const char *DecodeDWARFEncoding(unsigned Encoding) {
585 switch (Encoding) {
586 case dwarf::DW_EH_PE_absptr:
587 return "absptr";
588 case dwarf::DW_EH_PE_omit:
589 return "omit";
590 case dwarf::DW_EH_PE_pcrel:
591 return "pcrel";
592 case dwarf::DW_EH_PE_udata4:
593 return "udata4";
594 case dwarf::DW_EH_PE_udata8:
595 return "udata8";
596 case dwarf::DW_EH_PE_sdata4:
597 return "sdata4";
598 case dwarf::DW_EH_PE_sdata8:
599 return "sdata8";
600 case dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_udata4:
601 return "pcrel udata4";
602 case dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_sdata4:
603 return "pcrel sdata4";
604 case dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_udata8:
605 return "pcrel udata8";
606 case dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_sdata8:
607 return "pcrel sdata8";
608 case dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel |dwarf::DW_EH_PE_udata4:
609 return "indirect pcrel udata4";
610 case dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel |dwarf::DW_EH_PE_sdata4:
611 return "indirect pcrel sdata4";
612 case dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel |dwarf::DW_EH_PE_udata8:
613 return "indirect pcrel udata8";
614 case dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel |dwarf::DW_EH_PE_sdata8:
615 return "indirect pcrel sdata8";
616 }
617
618 return 0;
619}
620
621void AsmPrinter::EOL(const char *Comment, unsigned Encoding) const {
622 if (VerboseAsm && *Comment) {
623 O.PadToColumn(MAI->getCommentColumn());
624 O << MAI->getCommentString()
625 << ' '
626 << Comment;
627
628 if (const char *EncStr = DecodeDWARFEncoding(Encoding))
629 O << " (" << EncStr << ')';
630 }
631 O << '\n';
632}
633
634/// EmitULEB128Bytes - Emit an assembler byte data directive to compose an
635/// unsigned leb128 value.
636void AsmPrinter::EmitULEB128Bytes(unsigned Value) const {
637 if (MAI->hasLEB128()) {
638 O << "\t.uleb128\t"
639 << Value;
640 } else {
641 O << MAI->getData8bitsDirective();
642 PrintULEB128(Value);
643 }
644}
645
646/// EmitSLEB128Bytes - print an assembler byte data directive to compose a
647/// signed leb128 value.
648void AsmPrinter::EmitSLEB128Bytes(int Value) const {
649 if (MAI->hasLEB128()) {
650 O << "\t.sleb128\t"
651 << Value;
652 } else {
653 O << MAI->getData8bitsDirective();
654 PrintSLEB128(Value);
655 }
656}
657
658/// EmitInt8 - Emit a byte directive and value.
659///
660void AsmPrinter::EmitInt8(int Value) const {
661 O << MAI->getData8bitsDirective();
662 PrintHex(Value & 0xFF);
663}
664
665/// EmitInt16 - Emit a short directive and value.
666///
667void AsmPrinter::EmitInt16(int Value) const {
668 O << MAI->getData16bitsDirective();
669 PrintHex(Value & 0xFFFF);
670}
671
672/// EmitInt32 - Emit a long directive and value.
673///
674void AsmPrinter::EmitInt32(int Value) const {
675 O << MAI->getData32bitsDirective();
676 PrintHex(Value);
677}
678
679/// EmitInt64 - Emit a long long directive and value.
680///
681void AsmPrinter::EmitInt64(uint64_t Value) const {
682 if (MAI->getData64bitsDirective()) {
683 O << MAI->getData64bitsDirective();
684 PrintHex(Value);
685 } else {
686 if (TM.getTargetData()->isBigEndian()) {
687 EmitInt32(unsigned(Value >> 32)); O << '\n';
688 EmitInt32(unsigned(Value));
689 } else {
690 EmitInt32(unsigned(Value)); O << '\n';
691 EmitInt32(unsigned(Value >> 32));
692 }
693 }
694}
695
696/// toOctal - Convert the low order bits of X into an octal digit.
697///
698static inline char toOctal(int X) {
699 return (X&7)+'0';
700}
701
702/// printStringChar - Print a char, escaped if necessary.
703///
704static void printStringChar(formatted_raw_ostream &O, unsigned char C) {
705 if (C == '"') {
706 O << "\\\"";
707 } else if (C == '\\') {
708 O << "\\\\";
709 } else if (isprint((unsigned char)C)) {
710 O << C;
711 } else {
712 switch(C) {
713 case '\b': O << "\\b"; break;
714 case '\f': O << "\\f"; break;
715 case '\n': O << "\\n"; break;
716 case '\r': O << "\\r"; break;
717 case '\t': O << "\\t"; break;
718 default:
719 O << '\\';
720 O << toOctal(C >> 6);
721 O << toOctal(C >> 3);
722 O << toOctal(C >> 0);
723 break;
724 }
725 }
726}
727
728/// EmitString - Emit a string with quotes and a null terminator.
729/// Special characters are emitted properly.
730/// \literal (Eg. '\t') \endliteral
731void AsmPrinter::EmitString(const StringRef String) const {
732 EmitString(String.data(), String.size());
733}
734
735void AsmPrinter::EmitString(const char *String, unsigned Size) const {
736 const char* AscizDirective = MAI->getAscizDirective();
737 if (AscizDirective)
738 O << AscizDirective;
739 else
740 O << MAI->getAsciiDirective();
741 O << '\"';
742 for (unsigned i = 0; i < Size; ++i)
743 printStringChar(O, String[i]);
744 if (AscizDirective)
745 O << '\"';
746 else
747 O << "\\0\"";
748}
749
750
751/// EmitFile - Emit a .file directive.
752void AsmPrinter::EmitFile(unsigned Number, const std::string &Name) const {
753 O << "\t.file\t" << Number << " \"";
754 for (unsigned i = 0, N = Name.size(); i < N; ++i)
755 printStringChar(O, Name[i]);
756 O << '\"';
757}
758
759
760//===----------------------------------------------------------------------===//
761
762// EmitAlignment - Emit an alignment directive to the specified power of
763// two boundary. For example, if you pass in 3 here, you will get an 8
764// byte alignment. If a global value is specified, and if that global has
765// an explicit alignment requested, it will unconditionally override the
766// alignment request. However, if ForcedAlignBits is specified, this value
767// has final say: the ultimate alignment will be the max of ForcedAlignBits
768// and the alignment computed with NumBits and the global.
769//
770// The algorithm is:
771// Align = NumBits;
772// if (GV && GV->hasalignment) Align = GV->getalignment();
773// Align = std::max(Align, ForcedAlignBits);
774//
775void AsmPrinter::EmitAlignment(unsigned NumBits, const GlobalValue *GV,
776 unsigned ForcedAlignBits,
777 bool UseFillExpr) const {
778 if (GV && GV->getAlignment())
779 NumBits = Log2_32(GV->getAlignment());
780 NumBits = std::max(NumBits, ForcedAlignBits);
781
782 if (NumBits == 0) return; // No need to emit alignment.
783
784 unsigned FillValue = 0;
785 if (getCurrentSection()->getKind().isText())
786 FillValue = MAI->getTextAlignFillValue();
787
788 OutStreamer.EmitValueToAlignment(1 << NumBits, FillValue, 1, 0);
789}
790
791/// EmitZeros - Emit a block of zeros.
792///
793void AsmPrinter::EmitZeros(uint64_t NumZeros, unsigned AddrSpace) const {
794 if (NumZeros) {
795 if (MAI->getZeroDirective()) {
796 O << MAI->getZeroDirective() << NumZeros;
797 if (MAI->getZeroDirectiveSuffix())
798 O << MAI->getZeroDirectiveSuffix();
799 O << '\n';
800 } else {
801 for (; NumZeros; --NumZeros)
802 O << MAI->getData8bitsDirective(AddrSpace) << "0\n";
803 }
804 }
805}
806
807// Print out the specified constant, without a storage class. Only the
808// constants valid in constant expressions can occur here.
809void AsmPrinter::EmitConstantValueOnly(const Constant *CV) {
810 if (CV->isNullValue() || isa<UndefValue>(CV))
811 O << '0';
812 else if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
813 O << CI->getZExtValue();
814 } else if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV)) {
815 // This is a constant address for a global variable or function. Use the
816 // name of the variable or function as the address value.
817 O << Mang->getMangledName(GV);
818 } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) {
819 const TargetData *TD = TM.getTargetData();
820 unsigned Opcode = CE->getOpcode();
821 switch (Opcode) {
822 case Instruction::Trunc:
823 case Instruction::ZExt:
824 case Instruction::SExt:
825 case Instruction::FPTrunc:
826 case Instruction::FPExt:
827 case Instruction::UIToFP:
828 case Instruction::SIToFP:
829 case Instruction::FPToUI:
830 case Instruction::FPToSI:
831 llvm_unreachable("FIXME: Don't support this constant cast expr");
832 case Instruction::GetElementPtr: {
833 // generate a symbolic expression for the byte address
834 const Constant *ptrVal = CE->getOperand(0);
835 SmallVector<Value*, 8> idxVec(CE->op_begin()+1, CE->op_end());
836 if (int64_t Offset = TD->getIndexedOffset(ptrVal->getType(), &idxVec[0],
837 idxVec.size())) {
838 // Truncate/sext the offset to the pointer size.
839 if (TD->getPointerSizeInBits() != 64) {
840 int SExtAmount = 64-TD->getPointerSizeInBits();
841 Offset = (Offset << SExtAmount) >> SExtAmount;
842 }
843
844 if (Offset)
845 O << '(';
846 EmitConstantValueOnly(ptrVal);
847 if (Offset > 0)
848 O << ") + " << Offset;
849 else if (Offset < 0)
850 O << ") - " << -Offset;
851 } else {
852 EmitConstantValueOnly(ptrVal);
853 }
854 break;
855 }
856 case Instruction::BitCast:
857 return EmitConstantValueOnly(CE->getOperand(0));
858
859 case Instruction::IntToPtr: {
860 // Handle casts to pointers by changing them into casts to the appropriate
861 // integer type. This promotes constant folding and simplifies this code.
862 Constant *Op = CE->getOperand(0);
863 Op = ConstantExpr::getIntegerCast(Op, TD->getIntPtrType(CV->getContext()),
864 false/*ZExt*/);
865 return EmitConstantValueOnly(Op);
866 }
867
868
869 case Instruction::PtrToInt: {
870 // Support only foldable casts to/from pointers that can be eliminated by
871 // changing the pointer to the appropriately sized integer type.
872 Constant *Op = CE->getOperand(0);
873 const Type *Ty = CE->getType();
874
875 // We can emit the pointer value into this slot if the slot is an
876 // integer slot greater or equal to the size of the pointer.
877 if (TD->getTypeAllocSize(Ty) == TD->getTypeAllocSize(Op->getType()))
878 return EmitConstantValueOnly(Op);
879
880 O << "((";
881 EmitConstantValueOnly(Op);
882 APInt ptrMask =
883 APInt::getAllOnesValue(TD->getTypeAllocSizeInBits(Op->getType()));
884
885 SmallString<40> S;
886 ptrMask.toStringUnsigned(S);
887 O << ") & " << S.str() << ')';
888 break;
889 }
890 case Instruction::Add:
891 case Instruction::Sub:
892 case Instruction::And:
893 case Instruction::Or:
894 case Instruction::Xor:
895 O << '(';
896 EmitConstantValueOnly(CE->getOperand(0));
897 O << ')';
898 switch (Opcode) {
899 case Instruction::Add:
900 O << " + ";
901 break;
902 case Instruction::Sub:
903 O << " - ";
904 break;
905 case Instruction::And:
906 O << " & ";
907 break;
908 case Instruction::Or:
909 O << " | ";
910 break;
911 case Instruction::Xor:
912 O << " ^ ";
913 break;
914 default:
915 break;
916 }
917 O << '(';
918 EmitConstantValueOnly(CE->getOperand(1));
919 O << ')';
920 break;
921 default:
922 llvm_unreachable("Unsupported operator!");
923 }
924 } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(CV)) {
925 GetBlockAddressSymbol(BA)->print(O, MAI);
926 } else {
927 llvm_unreachable("Unknown constant value!");
928 }
929}
930
931/// printAsCString - Print the specified array as a C compatible string, only if
932/// the predicate isString is true.
933///
934static void printAsCString(formatted_raw_ostream &O, const ConstantArray *CVA,
935 unsigned LastElt) {
936 assert(CVA->isString() && "Array is not string compatible!");
937
938 O << '\"';
939 for (unsigned i = 0; i != LastElt; ++i) {
940 unsigned char C =
941 (unsigned char)cast<ConstantInt>(CVA->getOperand(i))->getZExtValue();
942 printStringChar(O, C);
943 }
944 O << '\"';
945}
946
947/// EmitString - Emit a zero-byte-terminated string constant.
948///
949void AsmPrinter::EmitString(const ConstantArray *CVA) const {
950 unsigned NumElts = CVA->getNumOperands();
951 if (MAI->getAscizDirective() && NumElts &&
952 cast<ConstantInt>(CVA->getOperand(NumElts-1))->getZExtValue() == 0) {
953 O << MAI->getAscizDirective();
954 printAsCString(O, CVA, NumElts-1);
955 } else {
956 O << MAI->getAsciiDirective();
957 printAsCString(O, CVA, NumElts);
958 }
959 O << '\n';
960}
961
962void AsmPrinter::EmitGlobalConstantArray(const ConstantArray *CVA,
963 unsigned AddrSpace) {
964 if (CVA->isString()) {
965 EmitString(CVA);
966 } else { // Not a string. Print the values in successive locations
967 for (unsigned i = 0, e = CVA->getNumOperands(); i != e; ++i)
968 EmitGlobalConstant(CVA->getOperand(i), AddrSpace);
969 }
970}
971
972void AsmPrinter::EmitGlobalConstantVector(const ConstantVector *CP) {
973 const VectorType *PTy = CP->getType();
974
975 for (unsigned I = 0, E = PTy->getNumElements(); I < E; ++I)
976 EmitGlobalConstant(CP->getOperand(I));
977}
978
979void AsmPrinter::EmitGlobalConstantStruct(const ConstantStruct *CVS,
980 unsigned AddrSpace) {
981 // Print the fields in successive locations. Pad to align if needed!
982 const TargetData *TD = TM.getTargetData();
983 unsigned Size = TD->getTypeAllocSize(CVS->getType());
984 const StructLayout *cvsLayout = TD->getStructLayout(CVS->getType());
985 uint64_t sizeSoFar = 0;
986 for (unsigned i = 0, e = CVS->getNumOperands(); i != e; ++i) {
987 const Constant* field = CVS->getOperand(i);
988
989 // Check if padding is needed and insert one or more 0s.
990 uint64_t fieldSize = TD->getTypeAllocSize(field->getType());
991 uint64_t padSize = ((i == e-1 ? Size : cvsLayout->getElementOffset(i+1))
992 - cvsLayout->getElementOffset(i)) - fieldSize;
993 sizeSoFar += fieldSize + padSize;
994
995 // Now print the actual field value.
996 EmitGlobalConstant(field, AddrSpace);
997
998 // Insert padding - this may include padding to increase the size of the
999 // current field up to the ABI size (if the struct is not packed) as well
1000 // as padding to ensure that the next field starts at the right offset.
1001 EmitZeros(padSize, AddrSpace);
1002 }
1003 assert(sizeSoFar == cvsLayout->getSizeInBytes() &&
1004 "Layout of constant struct may be incorrect!");
1005}
1006
1007void AsmPrinter::EmitGlobalConstantFP(const ConstantFP *CFP,
1008 unsigned AddrSpace) {
1009 // FP Constants are printed as integer constants to avoid losing
1010 // precision...
1011 LLVMContext &Context = CFP->getContext();
1012 const TargetData *TD = TM.getTargetData();
1013 if (CFP->getType()->isDoubleTy()) {
1014 double Val = CFP->getValueAPF().convertToDouble(); // for comment only
1015 uint64_t i = CFP->getValueAPF().bitcastToAPInt().getZExtValue();
1016 if (MAI->getData64bitsDirective(AddrSpace)) {
1017 O << MAI->getData64bitsDirective(AddrSpace) << i;
1018 if (VerboseAsm) {
1019 O.PadToColumn(MAI->getCommentColumn());
1020 O << MAI->getCommentString() << " double " << Val;
1021 }
1022 O << '\n';
1023 } else if (TD->isBigEndian()) {
1024 O << MAI->getData32bitsDirective(AddrSpace) << unsigned(i >> 32);
1025 if (VerboseAsm) {
1026 O.PadToColumn(MAI->getCommentColumn());
1027 O << MAI->getCommentString()
1028 << " most significant word of double " << Val;
1029 }
1030 O << '\n';
1031 O << MAI->getData32bitsDirective(AddrSpace) << unsigned(i);
1032 if (VerboseAsm) {
1033 O.PadToColumn(MAI->getCommentColumn());
1034 O << MAI->getCommentString()
1035 << " least significant word of double " << Val;
1036 }
1037 O << '\n';
1038 } else {
1039 O << MAI->getData32bitsDirective(AddrSpace) << unsigned(i);
1040 if (VerboseAsm) {
1041 O.PadToColumn(MAI->getCommentColumn());
1042 O << MAI->getCommentString()
1043 << " least significant word of double " << Val;
1044 }
1045 O << '\n';
1046 O << MAI->getData32bitsDirective(AddrSpace) << unsigned(i >> 32);
1047 if (VerboseAsm) {
1048 O.PadToColumn(MAI->getCommentColumn());
1049 O << MAI->getCommentString()
1050 << " most significant word of double " << Val;
1051 }
1052 O << '\n';
1053 }
1054 return;
1055 }
1056
1057 if (CFP->getType()->isFloatTy()) {
1058 float Val = CFP->getValueAPF().convertToFloat(); // for comment only
1059 O << MAI->getData32bitsDirective(AddrSpace)
1060 << CFP->getValueAPF().bitcastToAPInt().getZExtValue();
1061 if (VerboseAsm) {
1062 O.PadToColumn(MAI->getCommentColumn());
1063 O << MAI->getCommentString() << " float " << Val;
1064 }
1065 O << '\n';
1066 return;
1067 }
1068
1069 if (CFP->getType()->isX86_FP80Ty()) {
1070 // all long double variants are printed as hex
1071 // api needed to prevent premature destruction
1072 APInt api = CFP->getValueAPF().bitcastToAPInt();
1073 const uint64_t *p = api.getRawData();
1074 // Convert to double so we can print the approximate val as a comment.
1075 APFloat DoubleVal = CFP->getValueAPF();
1076 bool ignored;
1077 DoubleVal.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven,
1078 &ignored);
1079 if (TD->isBigEndian()) {
1080 O << MAI->getData16bitsDirective(AddrSpace) << uint16_t(p[1]);
1081 if (VerboseAsm) {
1082 O.PadToColumn(MAI->getCommentColumn());
1083 O << MAI->getCommentString()
1084 << " most significant halfword of x86_fp80 ~"
1085 << DoubleVal.convertToDouble();
1086 }
1087 O << '\n';
1088 O << MAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0] >> 48);
1089 if (VerboseAsm) {
1090 O.PadToColumn(MAI->getCommentColumn());
1091 O << MAI->getCommentString() << " next halfword";
1092 }
1093 O << '\n';
1094 O << MAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0] >> 32);
1095 if (VerboseAsm) {
1096 O.PadToColumn(MAI->getCommentColumn());
1097 O << MAI->getCommentString() << " next halfword";
1098 }
1099 O << '\n';
1100 O << MAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0] >> 16);
1101 if (VerboseAsm) {
1102 O.PadToColumn(MAI->getCommentColumn());
1103 O << MAI->getCommentString() << " next halfword";
1104 }
1105 O << '\n';
1106 O << MAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0]);
1107 if (VerboseAsm) {
1108 O.PadToColumn(MAI->getCommentColumn());
1109 O << MAI->getCommentString()
1110 << " least significant halfword";
1111 }
1112 O << '\n';
1113 } else {
1114 O << MAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0]);
1115 if (VerboseAsm) {
1116 O.PadToColumn(MAI->getCommentColumn());
1117 O << MAI->getCommentString()
1118 << " least significant halfword of x86_fp80 ~"
1119 << DoubleVal.convertToDouble();
1120 }
1121 O << '\n';
1122 O << MAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0] >> 16);
1123 if (VerboseAsm) {
1124 O.PadToColumn(MAI->getCommentColumn());
1125 O << MAI->getCommentString()
1126 << " next halfword";
1127 }
1128 O << '\n';
1129 O << MAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0] >> 32);
1130 if (VerboseAsm) {
1131 O.PadToColumn(MAI->getCommentColumn());
1132 O << MAI->getCommentString()
1133 << " next halfword";
1134 }
1135 O << '\n';
1136 O << MAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0] >> 48);
1137 if (VerboseAsm) {
1138 O.PadToColumn(MAI->getCommentColumn());
1139 O << MAI->getCommentString()
1140 << " next halfword";
1141 }
1142 O << '\n';
1143 O << MAI->getData16bitsDirective(AddrSpace) << uint16_t(p[1]);
1144 if (VerboseAsm) {
1145 O.PadToColumn(MAI->getCommentColumn());
1146 O << MAI->getCommentString()
1147 << " most significant halfword";
1148 }
1149 O << '\n';
1150 }
1151 EmitZeros(TD->getTypeAllocSize(Type::getX86_FP80Ty(Context)) -
1152 TD->getTypeStoreSize(Type::getX86_FP80Ty(Context)), AddrSpace);
1153 return;
1154 }
1155
1156 if (CFP->getType()->isPPC_FP128Ty()) {
1157 // all long double variants are printed as hex
1158 // api needed to prevent premature destruction
1159 APInt api = CFP->getValueAPF().bitcastToAPInt();
1160 const uint64_t *p = api.getRawData();
1161 if (TD->isBigEndian()) {
1162 O << MAI->getData32bitsDirective(AddrSpace) << uint32_t(p[0] >> 32);
1163 if (VerboseAsm) {
1164 O.PadToColumn(MAI->getCommentColumn());
1165 O << MAI->getCommentString()
1166 << " most significant word of ppc_fp128";
1167 }
1168 O << '\n';
1169 O << MAI->getData32bitsDirective(AddrSpace) << uint32_t(p[0]);
1170 if (VerboseAsm) {
1171 O.PadToColumn(MAI->getCommentColumn());
1172 O << MAI->getCommentString()
1173 << " next word";
1174 }
1175 O << '\n';
1176 O << MAI->getData32bitsDirective(AddrSpace) << uint32_t(p[1] >> 32);
1177 if (VerboseAsm) {
1178 O.PadToColumn(MAI->getCommentColumn());
1179 O << MAI->getCommentString()
1180 << " next word";
1181 }
1182 O << '\n';
1183 O << MAI->getData32bitsDirective(AddrSpace) << uint32_t(p[1]);
1184 if (VerboseAsm) {
1185 O.PadToColumn(MAI->getCommentColumn());
1186 O << MAI->getCommentString()
1187 << " least significant word";
1188 }
1189 O << '\n';
1190 } else {
1191 O << MAI->getData32bitsDirective(AddrSpace) << uint32_t(p[1]);
1192 if (VerboseAsm) {
1193 O.PadToColumn(MAI->getCommentColumn());
1194 O << MAI->getCommentString()
1195 << " least significant word of ppc_fp128";
1196 }
1197 O << '\n';
1198 O << MAI->getData32bitsDirective(AddrSpace) << uint32_t(p[1] >> 32);
1199 if (VerboseAsm) {
1200 O.PadToColumn(MAI->getCommentColumn());
1201 O << MAI->getCommentString()
1202 << " next word";
1203 }
1204 O << '\n';
1205 O << MAI->getData32bitsDirective(AddrSpace) << uint32_t(p[0]);
1206 if (VerboseAsm) {
1207 O.PadToColumn(MAI->getCommentColumn());
1208 O << MAI->getCommentString()
1209 << " next word";
1210 }
1211 O << '\n';
1212 O << MAI->getData32bitsDirective(AddrSpace) << uint32_t(p[0] >> 32);
1213 if (VerboseAsm) {
1214 O.PadToColumn(MAI->getCommentColumn());
1215 O << MAI->getCommentString()
1216 << " most significant word";
1217 }
1218 O << '\n';
1219 }
1220 return;
1221 } else llvm_unreachable("Floating point constant type not handled");
1222}
1223
1224void AsmPrinter::EmitGlobalConstantLargeInt(const ConstantInt *CI,
1225 unsigned AddrSpace) {
1226 const TargetData *TD = TM.getTargetData();
1227 unsigned BitWidth = CI->getBitWidth();
1228 assert(isPowerOf2_32(BitWidth) &&
1229 "Non-power-of-2-sized integers not handled!");
1230
1231 // We don't expect assemblers to support integer data directives
1232 // for more than 64 bits, so we emit the data in at most 64-bit
1233 // quantities at a time.
1234 const uint64_t *RawData = CI->getValue().getRawData();
1235 for (unsigned i = 0, e = BitWidth / 64; i != e; ++i) {
1236 uint64_t Val;
1237 if (TD->isBigEndian())
1238 Val = RawData[e - i - 1];
1239 else
1240 Val = RawData[i];
1241
1242 if (MAI->getData64bitsDirective(AddrSpace))
1243 O << MAI->getData64bitsDirective(AddrSpace) << Val << '\n';
1244 else if (TD->isBigEndian()) {
1245 O << MAI->getData32bitsDirective(AddrSpace) << unsigned(Val >> 32);
1246 if (VerboseAsm) {
1247 O.PadToColumn(MAI->getCommentColumn());
1248 O << MAI->getCommentString()
1249 << " most significant half of i64 " << Val;
1250 }
1251 O << '\n';
1252 O << MAI->getData32bitsDirective(AddrSpace) << unsigned(Val);
1253 if (VerboseAsm) {
1254 O.PadToColumn(MAI->getCommentColumn());
1255 O << MAI->getCommentString()
1256 << " least significant half of i64 " << Val;
1257 }
1258 O << '\n';
1259 } else {
1260 O << MAI->getData32bitsDirective(AddrSpace) << unsigned(Val);
1261 if (VerboseAsm) {
1262 O.PadToColumn(MAI->getCommentColumn());
1263 O << MAI->getCommentString()
1264 << " least significant half of i64 " << Val;
1265 }
1266 O << '\n';
1267 O << MAI->getData32bitsDirective(AddrSpace) << unsigned(Val >> 32);
1268 if (VerboseAsm) {
1269 O.PadToColumn(MAI->getCommentColumn());
1270 O << MAI->getCommentString()
1271 << " most significant half of i64 " << Val;
1272 }
1273 O << '\n';
1274 }
1275 }
1276}
1277
1278/// EmitGlobalConstant - Print a general LLVM constant to the .s file.
1279void AsmPrinter::EmitGlobalConstant(const Constant *CV, unsigned AddrSpace) {
1280 const TargetData *TD = TM.getTargetData();
1281 const Type *type = CV->getType();
1282 unsigned Size = TD->getTypeAllocSize(type);
1283
1284 if (CV->isNullValue() || isa<UndefValue>(CV)) {
1285 EmitZeros(Size, AddrSpace);
1286 return;
1287 } else if (const ConstantArray *CVA = dyn_cast<ConstantArray>(CV)) {
1288 EmitGlobalConstantArray(CVA , AddrSpace);
1289 return;
1290 } else if (const ConstantStruct *CVS = dyn_cast<ConstantStruct>(CV)) {
1291 EmitGlobalConstantStruct(CVS, AddrSpace);
1292 return;
1293 } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) {
1294 EmitGlobalConstantFP(CFP, AddrSpace);
1295 return;
1296 } else if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
1297 // Small integers are handled below; large integers are handled here.
1298 if (Size > 4) {
1299 EmitGlobalConstantLargeInt(CI, AddrSpace);
1300 return;
1301 }
1302 } else if (const ConstantVector *CP = dyn_cast<ConstantVector>(CV)) {
1303 EmitGlobalConstantVector(CP);
1304 return;
1305 }
1306
1307 printDataDirective(type, AddrSpace);
1308 EmitConstantValueOnly(CV);
1309 if (VerboseAsm) {
1310 if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
1311 SmallString<40> S;
1312 CI->getValue().toStringUnsigned(S, 16);
1313 O.PadToColumn(MAI->getCommentColumn());
1314 O << MAI->getCommentString() << " 0x" << S.str();
1315 }
1316 }
1317 O << '\n';
1318}
1319
1320void AsmPrinter::EmitMachineConstantPoolValue(MachineConstantPoolValue *MCPV) {
1321 // Target doesn't support this yet!
1322 llvm_unreachable("Target does not support EmitMachineConstantPoolValue");
1323}
1324
1325/// PrintSpecial - Print information related to the specified machine instr
1326/// that is independent of the operand, and may be independent of the instr
1327/// itself. This can be useful for portably encoding the comment character
1328/// or other bits of target-specific knowledge into the asmstrings. The
1329/// syntax used is ${:comment}. Targets can override this to add support
1330/// for their own strange codes.
1331void AsmPrinter::PrintSpecial(const MachineInstr *MI, const char *Code) const {
1332 if (!strcmp(Code, "private")) {
1333 O << MAI->getPrivateGlobalPrefix();
1334 } else if (!strcmp(Code, "comment")) {
1335 if (VerboseAsm)
1336 O << MAI->getCommentString();
1337 } else if (!strcmp(Code, "uid")) {
1338 // Comparing the address of MI isn't sufficient, because machineinstrs may
1339 // be allocated to the same address across functions.
1340 const Function *ThisF = MI->getParent()->getParent()->getFunction();
1341
1342 // If this is a new LastFn instruction, bump the counter.
1343 if (LastMI != MI || LastFn != ThisF) {
1344 ++Counter;
1345 LastMI = MI;
1346 LastFn = ThisF;
1347 }
1348 O << Counter;
1349 } else {
1350 std::string msg;
1351 raw_string_ostream Msg(msg);
1352 Msg << "Unknown special formatter '" << Code
1353 << "' for machine instr: " << *MI;
1354 llvm_report_error(Msg.str());
1355 }
1356}
1357
1358/// processDebugLoc - Processes the debug information of each machine
1359/// instruction's DebugLoc.
1360void AsmPrinter::processDebugLoc(const MachineInstr *MI,
1361 bool BeforePrintingInsn) {
1362 if (!MAI || !DW || !MAI->doesSupportDebugInformation()
1363 || !DW->ShouldEmitDwarfDebug())
1364 return;
1365 DebugLoc DL = MI->getDebugLoc();
1366 if (DL.isUnknown())
1367 return;
1368 DebugLocTuple CurDLT = MF->getDebugLocTuple(DL);
1369 if (CurDLT.Scope == 0)
1370 return;
1371
1372 if (BeforePrintingInsn) {
1373 if (CurDLT != PrevDLT) {
1374 unsigned L = DW->RecordSourceLine(CurDLT.Line, CurDLT.Col,
1375 CurDLT.Scope);
1376 printLabel(L);
1377 O << '\n';
1377 DW->BeginScope(MI, L);
1378 PrevDLT = CurDLT;
1379 }
1380 } else {
1381 // After printing instruction
1382 DW->EndScope(MI);
1383 }
1384}
1385
1386
1387/// printInlineAsm - This method formats and prints the specified machine
1388/// instruction that is an inline asm.
1389void AsmPrinter::printInlineAsm(const MachineInstr *MI) const {
1390 unsigned NumOperands = MI->getNumOperands();
1391
1392 // Count the number of register definitions.
1393 unsigned NumDefs = 0;
1394 for (; MI->getOperand(NumDefs).isReg() && MI->getOperand(NumDefs).isDef();
1395 ++NumDefs)
1396 assert(NumDefs != NumOperands-1 && "No asm string?");
1397
1398 assert(MI->getOperand(NumDefs).isSymbol() && "No asm string?");
1399
1400 // Disassemble the AsmStr, printing out the literal pieces, the operands, etc.
1401 const char *AsmStr = MI->getOperand(NumDefs).getSymbolName();
1402
1403 O << '\t';
1404
1405 // If this asmstr is empty, just print the #APP/#NOAPP markers.
1406 // These are useful to see where empty asm's wound up.
1407 if (AsmStr[0] == 0) {
1408 O << MAI->getCommentString() << MAI->getInlineAsmStart() << "\n\t";
1409 O << MAI->getCommentString() << MAI->getInlineAsmEnd() << '\n';
1410 return;
1411 }
1412
1413 O << MAI->getCommentString() << MAI->getInlineAsmStart() << "\n\t";
1414
1415 // The variant of the current asmprinter.
1416 int AsmPrinterVariant = MAI->getAssemblerDialect();
1417
1418 int CurVariant = -1; // The number of the {.|.|.} region we are in.
1419 const char *LastEmitted = AsmStr; // One past the last character emitted.
1420
1421 while (*LastEmitted) {
1422 switch (*LastEmitted) {
1423 default: {
1424 // Not a special case, emit the string section literally.
1425 const char *LiteralEnd = LastEmitted+1;
1426 while (*LiteralEnd && *LiteralEnd != '{' && *LiteralEnd != '|' &&
1427 *LiteralEnd != '}' && *LiteralEnd != '$' && *LiteralEnd != '\n')
1428 ++LiteralEnd;
1429 if (CurVariant == -1 || CurVariant == AsmPrinterVariant)
1430 O.write(LastEmitted, LiteralEnd-LastEmitted);
1431 LastEmitted = LiteralEnd;
1432 break;
1433 }
1434 case '\n':
1435 ++LastEmitted; // Consume newline character.
1436 O << '\n'; // Indent code with newline.
1437 break;
1438 case '$': {
1439 ++LastEmitted; // Consume '$' character.
1440 bool Done = true;
1441
1442 // Handle escapes.
1443 switch (*LastEmitted) {
1444 default: Done = false; break;
1445 case '$': // $$ -> $
1446 if (CurVariant == -1 || CurVariant == AsmPrinterVariant)
1447 O << '$';
1448 ++LastEmitted; // Consume second '$' character.
1449 break;
1450 case '(': // $( -> same as GCC's { character.
1451 ++LastEmitted; // Consume '(' character.
1452 if (CurVariant != -1) {
1453 llvm_report_error("Nested variants found in inline asm string: '"
1454 + std::string(AsmStr) + "'");
1455 }
1456 CurVariant = 0; // We're in the first variant now.
1457 break;
1458 case '|':
1459 ++LastEmitted; // consume '|' character.
1460 if (CurVariant == -1)
1461 O << '|'; // this is gcc's behavior for | outside a variant
1462 else
1463 ++CurVariant; // We're in the next variant.
1464 break;
1465 case ')': // $) -> same as GCC's } char.
1466 ++LastEmitted; // consume ')' character.
1467 if (CurVariant == -1)
1468 O << '}'; // this is gcc's behavior for } outside a variant
1469 else
1470 CurVariant = -1;
1471 break;
1472 }
1473 if (Done) break;
1474
1475 bool HasCurlyBraces = false;
1476 if (*LastEmitted == '{') { // ${variable}
1477 ++LastEmitted; // Consume '{' character.
1478 HasCurlyBraces = true;
1479 }
1480
1481 // If we have ${:foo}, then this is not a real operand reference, it is a
1482 // "magic" string reference, just like in .td files. Arrange to call
1483 // PrintSpecial.
1484 if (HasCurlyBraces && *LastEmitted == ':') {
1485 ++LastEmitted;
1486 const char *StrStart = LastEmitted;
1487 const char *StrEnd = strchr(StrStart, '}');
1488 if (StrEnd == 0) {
1489 llvm_report_error("Unterminated ${:foo} operand in inline asm string: '"
1490 + std::string(AsmStr) + "'");
1491 }
1492
1493 std::string Val(StrStart, StrEnd);
1494 PrintSpecial(MI, Val.c_str());
1495 LastEmitted = StrEnd+1;
1496 break;
1497 }
1498
1499 const char *IDStart = LastEmitted;
1500 char *IDEnd;
1501 errno = 0;
1502 long Val = strtol(IDStart, &IDEnd, 10); // We only accept numbers for IDs.
1503 if (!isdigit(*IDStart) || (Val == 0 && errno == EINVAL)) {
1504 llvm_report_error("Bad $ operand number in inline asm string: '"
1505 + std::string(AsmStr) + "'");
1506 }
1507 LastEmitted = IDEnd;
1508
1509 char Modifier[2] = { 0, 0 };
1510
1511 if (HasCurlyBraces) {
1512 // If we have curly braces, check for a modifier character. This
1513 // supports syntax like ${0:u}, which correspond to "%u0" in GCC asm.
1514 if (*LastEmitted == ':') {
1515 ++LastEmitted; // Consume ':' character.
1516 if (*LastEmitted == 0) {
1517 llvm_report_error("Bad ${:} expression in inline asm string: '"
1518 + std::string(AsmStr) + "'");
1519 }
1520
1521 Modifier[0] = *LastEmitted;
1522 ++LastEmitted; // Consume modifier character.
1523 }
1524
1525 if (*LastEmitted != '}') {
1526 llvm_report_error("Bad ${} expression in inline asm string: '"
1527 + std::string(AsmStr) + "'");
1528 }
1529 ++LastEmitted; // Consume '}' character.
1530 }
1531
1532 if ((unsigned)Val >= NumOperands-1) {
1533 llvm_report_error("Invalid $ operand number in inline asm string: '"
1534 + std::string(AsmStr) + "'");
1535 }
1536
1537 // Okay, we finally have a value number. Ask the target to print this
1538 // operand!
1539 if (CurVariant == -1 || CurVariant == AsmPrinterVariant) {
1540 unsigned OpNo = 1;
1541
1542 bool Error = false;
1543
1544 // Scan to find the machine operand number for the operand.
1545 for (; Val; --Val) {
1546 if (OpNo >= MI->getNumOperands()) break;
1547 unsigned OpFlags = MI->getOperand(OpNo).getImm();
1548 OpNo += InlineAsm::getNumOperandRegisters(OpFlags) + 1;
1549 }
1550
1551 if (OpNo >= MI->getNumOperands()) {
1552 Error = true;
1553 } else {
1554 unsigned OpFlags = MI->getOperand(OpNo).getImm();
1555 ++OpNo; // Skip over the ID number.
1556
1557 if (Modifier[0]=='l') // labels are target independent
1558 GetMBBSymbol(MI->getOperand(OpNo).getMBB()
1559 ->getNumber())->print(O, MAI);
1560 else {
1561 AsmPrinter *AP = const_cast<AsmPrinter*>(this);
1562 if ((OpFlags & 7) == 4) {
1563 Error = AP->PrintAsmMemoryOperand(MI, OpNo, AsmPrinterVariant,
1564 Modifier[0] ? Modifier : 0);
1565 } else {
1566 Error = AP->PrintAsmOperand(MI, OpNo, AsmPrinterVariant,
1567 Modifier[0] ? Modifier : 0);
1568 }
1569 }
1570 }
1571 if (Error) {
1572 std::string msg;
1573 raw_string_ostream Msg(msg);
1574 Msg << "Invalid operand found in inline asm: '"
1575 << AsmStr << "'\n";
1576 MI->print(Msg);
1577 llvm_report_error(Msg.str());
1578 }
1579 }
1580 break;
1581 }
1582 }
1583 }
1584 O << "\n\t" << MAI->getCommentString() << MAI->getInlineAsmEnd();
1585}
1586
1587/// printImplicitDef - This method prints the specified machine instruction
1588/// that is an implicit def.
1589void AsmPrinter::printImplicitDef(const MachineInstr *MI) const {
1590 if (!VerboseAsm) return;
1591 O.PadToColumn(MAI->getCommentColumn());
1592 O << MAI->getCommentString() << " implicit-def: "
1593 << TRI->getName(MI->getOperand(0).getReg());
1594}
1595
1596void AsmPrinter::printKill(const MachineInstr *MI) const {
1597 if (!VerboseAsm) return;
1598 O.PadToColumn(MAI->getCommentColumn());
1599 O << MAI->getCommentString() << " kill:";
1600 for (unsigned n = 0, e = MI->getNumOperands(); n != e; ++n) {
1601 const MachineOperand &op = MI->getOperand(n);
1602 assert(op.isReg() && "KILL instruction must have only register operands");
1603 O << ' ' << TRI->getName(op.getReg()) << (op.isDef() ? "<def>" : "<kill>");
1604 }
1605}
1606
1607/// printLabel - This method prints a local label used by debug and
1608/// exception handling tables.
1609void AsmPrinter::printLabel(const MachineInstr *MI) const {
1610 printLabel(MI->getOperand(0).getImm());
1611}
1612
1613void AsmPrinter::printLabel(unsigned Id) const {
1614 O << MAI->getPrivateGlobalPrefix() << "label" << Id << ':';
1615}
1616
1617/// PrintAsmOperand - Print the specified operand of MI, an INLINEASM
1618/// instruction, using the specified assembler variant. Targets should
1619/// overried this to format as appropriate.
1620bool AsmPrinter::PrintAsmOperand(const MachineInstr *MI, unsigned OpNo,
1621 unsigned AsmVariant, const char *ExtraCode) {
1622 // Target doesn't support this yet!
1623 return true;
1624}
1625
1626bool AsmPrinter::PrintAsmMemoryOperand(const MachineInstr *MI, unsigned OpNo,
1627 unsigned AsmVariant,
1628 const char *ExtraCode) {
1629 // Target doesn't support this yet!
1630 return true;
1631}
1632
1633MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BlockAddress *BA,
1634 const char *Suffix) const {
1635 return GetBlockAddressSymbol(BA->getFunction(), BA->getBasicBlock(), Suffix);
1636}
1637
1638MCSymbol *AsmPrinter::GetBlockAddressSymbol(const Function *F,
1639 const BasicBlock *BB,
1640 const char *Suffix) const {
1641 assert(BB->hasName() &&
1642 "Address of anonymous basic block not supported yet!");
1643
1644 // This code must use the function name itself, and not the function number,
1645 // since it must be possible to generate the label name from within other
1646 // functions.
1647 std::string FuncName = Mang->getMangledName(F);
1648
1649 SmallString<60> Name;
1650 raw_svector_ostream(Name) << MAI->getPrivateGlobalPrefix() << "BA"
1651 << FuncName.size() << '_' << FuncName << '_'
1652 << Mang->makeNameProper(BB->getName())
1653 << Suffix;
1654
1655 return OutContext.GetOrCreateSymbol(Name.str());
1656}
1657
1658MCSymbol *AsmPrinter::GetMBBSymbol(unsigned MBBID) const {
1659 SmallString<60> Name;
1660 raw_svector_ostream(Name) << MAI->getPrivateGlobalPrefix() << "BB"
1661 << getFunctionNumber() << '_' << MBBID;
1662
1663 return OutContext.GetOrCreateSymbol(Name.str());
1664}
1665
1666
1667/// EmitBasicBlockStart - This method prints the label for the specified
1668/// MachineBasicBlock, an alignment (if present) and a comment describing
1669/// it if appropriate.
1670void AsmPrinter::EmitBasicBlockStart(const MachineBasicBlock *MBB) const {
1671 // Emit an alignment directive for this block, if needed.
1672 if (unsigned Align = MBB->getAlignment())
1673 EmitAlignment(Log2_32(Align));
1674
1675 // If the block has its address taken, emit a special label to satisfy
1676 // references to the block. This is done so that we don't need to
1677 // remember the number of this label, and so that we can make
1678 // forward references to labels without knowing what their numbers
1679 // will be.
1680 if (MBB->hasAddressTaken()) {
1681 GetBlockAddressSymbol(MBB->getBasicBlock()->getParent(),
1682 MBB->getBasicBlock())->print(O, MAI);
1683 O << ':';
1684 if (VerboseAsm) {
1685 O.PadToColumn(MAI->getCommentColumn());
1686 O << MAI->getCommentString() << " Address Taken";
1687 }
1688 O << '\n';
1689 }
1690
1691 // Print the main label for the block.
1692 if (MBB->pred_empty() || MBB->isOnlyReachableByFallthrough()) {
1693 if (VerboseAsm)
1694 O << MAI->getCommentString() << " BB#" << MBB->getNumber() << ':';
1695 } else {
1696 GetMBBSymbol(MBB->getNumber())->print(O, MAI);
1697 O << ':';
1698 if (!VerboseAsm)
1699 O << '\n';
1700 }
1701
1702 // Print some comments to accompany the label.
1703 if (VerboseAsm) {
1704 if (const BasicBlock *BB = MBB->getBasicBlock())
1705 if (BB->hasName()) {
1706 O.PadToColumn(MAI->getCommentColumn());
1707 O << MAI->getCommentString() << ' ';
1708 WriteAsOperand(O, BB, /*PrintType=*/false);
1709 }
1710
1711 EmitComments(*MBB);
1712 O << '\n';
1713 }
1714}
1715
1716/// printPICJumpTableSetLabel - This method prints a set label for the
1717/// specified MachineBasicBlock for a jumptable entry.
1718void AsmPrinter::printPICJumpTableSetLabel(unsigned uid,
1719 const MachineBasicBlock *MBB) const {
1720 if (!MAI->getSetDirective())
1721 return;
1722
1723 O << MAI->getSetDirective() << ' ' << MAI->getPrivateGlobalPrefix()
1724 << getFunctionNumber() << '_' << uid << "_set_" << MBB->getNumber() << ',';
1725 GetMBBSymbol(MBB->getNumber())->print(O, MAI);
1726 O << '-' << MAI->getPrivateGlobalPrefix() << "JTI" << getFunctionNumber()
1727 << '_' << uid << '\n';
1728}
1729
1730void AsmPrinter::printPICJumpTableSetLabel(unsigned uid, unsigned uid2,
1731 const MachineBasicBlock *MBB) const {
1732 if (!MAI->getSetDirective())
1733 return;
1734
1735 O << MAI->getSetDirective() << ' ' << MAI->getPrivateGlobalPrefix()
1736 << getFunctionNumber() << '_' << uid << '_' << uid2
1737 << "_set_" << MBB->getNumber() << ',';
1738 GetMBBSymbol(MBB->getNumber())->print(O, MAI);
1739 O << '-' << MAI->getPrivateGlobalPrefix() << "JTI" << getFunctionNumber()
1740 << '_' << uid << '_' << uid2 << '\n';
1741}
1742
1743/// printDataDirective - This method prints the asm directive for the
1744/// specified type.
1745void AsmPrinter::printDataDirective(const Type *type, unsigned AddrSpace) {
1746 const TargetData *TD = TM.getTargetData();
1747 switch (type->getTypeID()) {
1748 case Type::FloatTyID: case Type::DoubleTyID:
1749 case Type::X86_FP80TyID: case Type::FP128TyID: case Type::PPC_FP128TyID:
1750 assert(0 && "Should have already output floating point constant.");
1751 default:
1752 assert(0 && "Can't handle printing this type of thing");
1753 case Type::IntegerTyID: {
1754 unsigned BitWidth = cast<IntegerType>(type)->getBitWidth();
1755 if (BitWidth <= 8)
1756 O << MAI->getData8bitsDirective(AddrSpace);
1757 else if (BitWidth <= 16)
1758 O << MAI->getData16bitsDirective(AddrSpace);
1759 else if (BitWidth <= 32)
1760 O << MAI->getData32bitsDirective(AddrSpace);
1761 else if (BitWidth <= 64) {
1762 assert(MAI->getData64bitsDirective(AddrSpace) &&
1763 "Target cannot handle 64-bit constant exprs!");
1764 O << MAI->getData64bitsDirective(AddrSpace);
1765 } else {
1766 llvm_unreachable("Target cannot handle given data directive width!");
1767 }
1768 break;
1769 }
1770 case Type::PointerTyID:
1771 if (TD->getPointerSize() == 8) {
1772 assert(MAI->getData64bitsDirective(AddrSpace) &&
1773 "Target cannot handle 64-bit pointer exprs!");
1774 O << MAI->getData64bitsDirective(AddrSpace);
1775 } else if (TD->getPointerSize() == 2) {
1776 O << MAI->getData16bitsDirective(AddrSpace);
1777 } else if (TD->getPointerSize() == 1) {
1778 O << MAI->getData8bitsDirective(AddrSpace);
1779 } else {
1780 O << MAI->getData32bitsDirective(AddrSpace);
1781 }
1782 break;
1783 }
1784}
1785
1786void AsmPrinter::printVisibility(const std::string& Name,
1787 unsigned Visibility) const {
1788 if (Visibility == GlobalValue::HiddenVisibility) {
1789 if (const char *Directive = MAI->getHiddenDirective())
1790 O << Directive << Name << '\n';
1791 } else if (Visibility == GlobalValue::ProtectedVisibility) {
1792 if (const char *Directive = MAI->getProtectedDirective())
1793 O << Directive << Name << '\n';
1794 }
1795}
1796
1797void AsmPrinter::printOffset(int64_t Offset) const {
1798 if (Offset > 0)
1799 O << '+' << Offset;
1800 else if (Offset < 0)
1801 O << Offset;
1802}
1803
1804GCMetadataPrinter *AsmPrinter::GetOrCreateGCPrinter(GCStrategy *S) {
1805 if (!S->usesMetadata())
1806 return 0;
1807
1808 gcp_iterator GCPI = GCMetadataPrinters.find(S);
1809 if (GCPI != GCMetadataPrinters.end())
1810 return GCPI->second;
1811
1812 const char *Name = S->getName().c_str();
1813
1814 for (GCMetadataPrinterRegistry::iterator
1815 I = GCMetadataPrinterRegistry::begin(),
1816 E = GCMetadataPrinterRegistry::end(); I != E; ++I)
1817 if (strcmp(Name, I->getName()) == 0) {
1818 GCMetadataPrinter *GMP = I->instantiate();
1819 GMP->S = S;
1820 GCMetadataPrinters.insert(std::make_pair(S, GMP));
1821 return GMP;
1822 }
1823
1824 errs() << "no GCMetadataPrinter registered for GC: " << Name << "\n";
1825 llvm_unreachable(0);
1826}
1827
1828/// EmitComments - Pretty-print comments for instructions
1829void AsmPrinter::EmitComments(const MachineInstr &MI) const {
1830 if (!VerboseAsm)
1831 return;
1832
1833 bool Newline = false;
1834
1835 if (!MI.getDebugLoc().isUnknown()) {
1836 DebugLocTuple DLT = MF->getDebugLocTuple(MI.getDebugLoc());
1837
1838 // Print source line info.
1839 O.PadToColumn(MAI->getCommentColumn());
1378 DW->BeginScope(MI, L);
1379 PrevDLT = CurDLT;
1380 }
1381 } else {
1382 // After printing instruction
1383 DW->EndScope(MI);
1384 }
1385}
1386
1387
1388/// printInlineAsm - This method formats and prints the specified machine
1389/// instruction that is an inline asm.
1390void AsmPrinter::printInlineAsm(const MachineInstr *MI) const {
1391 unsigned NumOperands = MI->getNumOperands();
1392
1393 // Count the number of register definitions.
1394 unsigned NumDefs = 0;
1395 for (; MI->getOperand(NumDefs).isReg() && MI->getOperand(NumDefs).isDef();
1396 ++NumDefs)
1397 assert(NumDefs != NumOperands-1 && "No asm string?");
1398
1399 assert(MI->getOperand(NumDefs).isSymbol() && "No asm string?");
1400
1401 // Disassemble the AsmStr, printing out the literal pieces, the operands, etc.
1402 const char *AsmStr = MI->getOperand(NumDefs).getSymbolName();
1403
1404 O << '\t';
1405
1406 // If this asmstr is empty, just print the #APP/#NOAPP markers.
1407 // These are useful to see where empty asm's wound up.
1408 if (AsmStr[0] == 0) {
1409 O << MAI->getCommentString() << MAI->getInlineAsmStart() << "\n\t";
1410 O << MAI->getCommentString() << MAI->getInlineAsmEnd() << '\n';
1411 return;
1412 }
1413
1414 O << MAI->getCommentString() << MAI->getInlineAsmStart() << "\n\t";
1415
1416 // The variant of the current asmprinter.
1417 int AsmPrinterVariant = MAI->getAssemblerDialect();
1418
1419 int CurVariant = -1; // The number of the {.|.|.} region we are in.
1420 const char *LastEmitted = AsmStr; // One past the last character emitted.
1421
1422 while (*LastEmitted) {
1423 switch (*LastEmitted) {
1424 default: {
1425 // Not a special case, emit the string section literally.
1426 const char *LiteralEnd = LastEmitted+1;
1427 while (*LiteralEnd && *LiteralEnd != '{' && *LiteralEnd != '|' &&
1428 *LiteralEnd != '}' && *LiteralEnd != '$' && *LiteralEnd != '\n')
1429 ++LiteralEnd;
1430 if (CurVariant == -1 || CurVariant == AsmPrinterVariant)
1431 O.write(LastEmitted, LiteralEnd-LastEmitted);
1432 LastEmitted = LiteralEnd;
1433 break;
1434 }
1435 case '\n':
1436 ++LastEmitted; // Consume newline character.
1437 O << '\n'; // Indent code with newline.
1438 break;
1439 case '$': {
1440 ++LastEmitted; // Consume '$' character.
1441 bool Done = true;
1442
1443 // Handle escapes.
1444 switch (*LastEmitted) {
1445 default: Done = false; break;
1446 case '$': // $$ -> $
1447 if (CurVariant == -1 || CurVariant == AsmPrinterVariant)
1448 O << '$';
1449 ++LastEmitted; // Consume second '$' character.
1450 break;
1451 case '(': // $( -> same as GCC's { character.
1452 ++LastEmitted; // Consume '(' character.
1453 if (CurVariant != -1) {
1454 llvm_report_error("Nested variants found in inline asm string: '"
1455 + std::string(AsmStr) + "'");
1456 }
1457 CurVariant = 0; // We're in the first variant now.
1458 break;
1459 case '|':
1460 ++LastEmitted; // consume '|' character.
1461 if (CurVariant == -1)
1462 O << '|'; // this is gcc's behavior for | outside a variant
1463 else
1464 ++CurVariant; // We're in the next variant.
1465 break;
1466 case ')': // $) -> same as GCC's } char.
1467 ++LastEmitted; // consume ')' character.
1468 if (CurVariant == -1)
1469 O << '}'; // this is gcc's behavior for } outside a variant
1470 else
1471 CurVariant = -1;
1472 break;
1473 }
1474 if (Done) break;
1475
1476 bool HasCurlyBraces = false;
1477 if (*LastEmitted == '{') { // ${variable}
1478 ++LastEmitted; // Consume '{' character.
1479 HasCurlyBraces = true;
1480 }
1481
1482 // If we have ${:foo}, then this is not a real operand reference, it is a
1483 // "magic" string reference, just like in .td files. Arrange to call
1484 // PrintSpecial.
1485 if (HasCurlyBraces && *LastEmitted == ':') {
1486 ++LastEmitted;
1487 const char *StrStart = LastEmitted;
1488 const char *StrEnd = strchr(StrStart, '}');
1489 if (StrEnd == 0) {
1490 llvm_report_error("Unterminated ${:foo} operand in inline asm string: '"
1491 + std::string(AsmStr) + "'");
1492 }
1493
1494 std::string Val(StrStart, StrEnd);
1495 PrintSpecial(MI, Val.c_str());
1496 LastEmitted = StrEnd+1;
1497 break;
1498 }
1499
1500 const char *IDStart = LastEmitted;
1501 char *IDEnd;
1502 errno = 0;
1503 long Val = strtol(IDStart, &IDEnd, 10); // We only accept numbers for IDs.
1504 if (!isdigit(*IDStart) || (Val == 0 && errno == EINVAL)) {
1505 llvm_report_error("Bad $ operand number in inline asm string: '"
1506 + std::string(AsmStr) + "'");
1507 }
1508 LastEmitted = IDEnd;
1509
1510 char Modifier[2] = { 0, 0 };
1511
1512 if (HasCurlyBraces) {
1513 // If we have curly braces, check for a modifier character. This
1514 // supports syntax like ${0:u}, which correspond to "%u0" in GCC asm.
1515 if (*LastEmitted == ':') {
1516 ++LastEmitted; // Consume ':' character.
1517 if (*LastEmitted == 0) {
1518 llvm_report_error("Bad ${:} expression in inline asm string: '"
1519 + std::string(AsmStr) + "'");
1520 }
1521
1522 Modifier[0] = *LastEmitted;
1523 ++LastEmitted; // Consume modifier character.
1524 }
1525
1526 if (*LastEmitted != '}') {
1527 llvm_report_error("Bad ${} expression in inline asm string: '"
1528 + std::string(AsmStr) + "'");
1529 }
1530 ++LastEmitted; // Consume '}' character.
1531 }
1532
1533 if ((unsigned)Val >= NumOperands-1) {
1534 llvm_report_error("Invalid $ operand number in inline asm string: '"
1535 + std::string(AsmStr) + "'");
1536 }
1537
1538 // Okay, we finally have a value number. Ask the target to print this
1539 // operand!
1540 if (CurVariant == -1 || CurVariant == AsmPrinterVariant) {
1541 unsigned OpNo = 1;
1542
1543 bool Error = false;
1544
1545 // Scan to find the machine operand number for the operand.
1546 for (; Val; --Val) {
1547 if (OpNo >= MI->getNumOperands()) break;
1548 unsigned OpFlags = MI->getOperand(OpNo).getImm();
1549 OpNo += InlineAsm::getNumOperandRegisters(OpFlags) + 1;
1550 }
1551
1552 if (OpNo >= MI->getNumOperands()) {
1553 Error = true;
1554 } else {
1555 unsigned OpFlags = MI->getOperand(OpNo).getImm();
1556 ++OpNo; // Skip over the ID number.
1557
1558 if (Modifier[0]=='l') // labels are target independent
1559 GetMBBSymbol(MI->getOperand(OpNo).getMBB()
1560 ->getNumber())->print(O, MAI);
1561 else {
1562 AsmPrinter *AP = const_cast<AsmPrinter*>(this);
1563 if ((OpFlags & 7) == 4) {
1564 Error = AP->PrintAsmMemoryOperand(MI, OpNo, AsmPrinterVariant,
1565 Modifier[0] ? Modifier : 0);
1566 } else {
1567 Error = AP->PrintAsmOperand(MI, OpNo, AsmPrinterVariant,
1568 Modifier[0] ? Modifier : 0);
1569 }
1570 }
1571 }
1572 if (Error) {
1573 std::string msg;
1574 raw_string_ostream Msg(msg);
1575 Msg << "Invalid operand found in inline asm: '"
1576 << AsmStr << "'\n";
1577 MI->print(Msg);
1578 llvm_report_error(Msg.str());
1579 }
1580 }
1581 break;
1582 }
1583 }
1584 }
1585 O << "\n\t" << MAI->getCommentString() << MAI->getInlineAsmEnd();
1586}
1587
1588/// printImplicitDef - This method prints the specified machine instruction
1589/// that is an implicit def.
1590void AsmPrinter::printImplicitDef(const MachineInstr *MI) const {
1591 if (!VerboseAsm) return;
1592 O.PadToColumn(MAI->getCommentColumn());
1593 O << MAI->getCommentString() << " implicit-def: "
1594 << TRI->getName(MI->getOperand(0).getReg());
1595}
1596
1597void AsmPrinter::printKill(const MachineInstr *MI) const {
1598 if (!VerboseAsm) return;
1599 O.PadToColumn(MAI->getCommentColumn());
1600 O << MAI->getCommentString() << " kill:";
1601 for (unsigned n = 0, e = MI->getNumOperands(); n != e; ++n) {
1602 const MachineOperand &op = MI->getOperand(n);
1603 assert(op.isReg() && "KILL instruction must have only register operands");
1604 O << ' ' << TRI->getName(op.getReg()) << (op.isDef() ? "<def>" : "<kill>");
1605 }
1606}
1607
1608/// printLabel - This method prints a local label used by debug and
1609/// exception handling tables.
1610void AsmPrinter::printLabel(const MachineInstr *MI) const {
1611 printLabel(MI->getOperand(0).getImm());
1612}
1613
1614void AsmPrinter::printLabel(unsigned Id) const {
1615 O << MAI->getPrivateGlobalPrefix() << "label" << Id << ':';
1616}
1617
1618/// PrintAsmOperand - Print the specified operand of MI, an INLINEASM
1619/// instruction, using the specified assembler variant. Targets should
1620/// overried this to format as appropriate.
1621bool AsmPrinter::PrintAsmOperand(const MachineInstr *MI, unsigned OpNo,
1622 unsigned AsmVariant, const char *ExtraCode) {
1623 // Target doesn't support this yet!
1624 return true;
1625}
1626
1627bool AsmPrinter::PrintAsmMemoryOperand(const MachineInstr *MI, unsigned OpNo,
1628 unsigned AsmVariant,
1629 const char *ExtraCode) {
1630 // Target doesn't support this yet!
1631 return true;
1632}
1633
1634MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BlockAddress *BA,
1635 const char *Suffix) const {
1636 return GetBlockAddressSymbol(BA->getFunction(), BA->getBasicBlock(), Suffix);
1637}
1638
1639MCSymbol *AsmPrinter::GetBlockAddressSymbol(const Function *F,
1640 const BasicBlock *BB,
1641 const char *Suffix) const {
1642 assert(BB->hasName() &&
1643 "Address of anonymous basic block not supported yet!");
1644
1645 // This code must use the function name itself, and not the function number,
1646 // since it must be possible to generate the label name from within other
1647 // functions.
1648 std::string FuncName = Mang->getMangledName(F);
1649
1650 SmallString<60> Name;
1651 raw_svector_ostream(Name) << MAI->getPrivateGlobalPrefix() << "BA"
1652 << FuncName.size() << '_' << FuncName << '_'
1653 << Mang->makeNameProper(BB->getName())
1654 << Suffix;
1655
1656 return OutContext.GetOrCreateSymbol(Name.str());
1657}
1658
1659MCSymbol *AsmPrinter::GetMBBSymbol(unsigned MBBID) const {
1660 SmallString<60> Name;
1661 raw_svector_ostream(Name) << MAI->getPrivateGlobalPrefix() << "BB"
1662 << getFunctionNumber() << '_' << MBBID;
1663
1664 return OutContext.GetOrCreateSymbol(Name.str());
1665}
1666
1667
1668/// EmitBasicBlockStart - This method prints the label for the specified
1669/// MachineBasicBlock, an alignment (if present) and a comment describing
1670/// it if appropriate.
1671void AsmPrinter::EmitBasicBlockStart(const MachineBasicBlock *MBB) const {
1672 // Emit an alignment directive for this block, if needed.
1673 if (unsigned Align = MBB->getAlignment())
1674 EmitAlignment(Log2_32(Align));
1675
1676 // If the block has its address taken, emit a special label to satisfy
1677 // references to the block. This is done so that we don't need to
1678 // remember the number of this label, and so that we can make
1679 // forward references to labels without knowing what their numbers
1680 // will be.
1681 if (MBB->hasAddressTaken()) {
1682 GetBlockAddressSymbol(MBB->getBasicBlock()->getParent(),
1683 MBB->getBasicBlock())->print(O, MAI);
1684 O << ':';
1685 if (VerboseAsm) {
1686 O.PadToColumn(MAI->getCommentColumn());
1687 O << MAI->getCommentString() << " Address Taken";
1688 }
1689 O << '\n';
1690 }
1691
1692 // Print the main label for the block.
1693 if (MBB->pred_empty() || MBB->isOnlyReachableByFallthrough()) {
1694 if (VerboseAsm)
1695 O << MAI->getCommentString() << " BB#" << MBB->getNumber() << ':';
1696 } else {
1697 GetMBBSymbol(MBB->getNumber())->print(O, MAI);
1698 O << ':';
1699 if (!VerboseAsm)
1700 O << '\n';
1701 }
1702
1703 // Print some comments to accompany the label.
1704 if (VerboseAsm) {
1705 if (const BasicBlock *BB = MBB->getBasicBlock())
1706 if (BB->hasName()) {
1707 O.PadToColumn(MAI->getCommentColumn());
1708 O << MAI->getCommentString() << ' ';
1709 WriteAsOperand(O, BB, /*PrintType=*/false);
1710 }
1711
1712 EmitComments(*MBB);
1713 O << '\n';
1714 }
1715}
1716
1717/// printPICJumpTableSetLabel - This method prints a set label for the
1718/// specified MachineBasicBlock for a jumptable entry.
1719void AsmPrinter::printPICJumpTableSetLabel(unsigned uid,
1720 const MachineBasicBlock *MBB) const {
1721 if (!MAI->getSetDirective())
1722 return;
1723
1724 O << MAI->getSetDirective() << ' ' << MAI->getPrivateGlobalPrefix()
1725 << getFunctionNumber() << '_' << uid << "_set_" << MBB->getNumber() << ',';
1726 GetMBBSymbol(MBB->getNumber())->print(O, MAI);
1727 O << '-' << MAI->getPrivateGlobalPrefix() << "JTI" << getFunctionNumber()
1728 << '_' << uid << '\n';
1729}
1730
1731void AsmPrinter::printPICJumpTableSetLabel(unsigned uid, unsigned uid2,
1732 const MachineBasicBlock *MBB) const {
1733 if (!MAI->getSetDirective())
1734 return;
1735
1736 O << MAI->getSetDirective() << ' ' << MAI->getPrivateGlobalPrefix()
1737 << getFunctionNumber() << '_' << uid << '_' << uid2
1738 << "_set_" << MBB->getNumber() << ',';
1739 GetMBBSymbol(MBB->getNumber())->print(O, MAI);
1740 O << '-' << MAI->getPrivateGlobalPrefix() << "JTI" << getFunctionNumber()
1741 << '_' << uid << '_' << uid2 << '\n';
1742}
1743
1744/// printDataDirective - This method prints the asm directive for the
1745/// specified type.
1746void AsmPrinter::printDataDirective(const Type *type, unsigned AddrSpace) {
1747 const TargetData *TD = TM.getTargetData();
1748 switch (type->getTypeID()) {
1749 case Type::FloatTyID: case Type::DoubleTyID:
1750 case Type::X86_FP80TyID: case Type::FP128TyID: case Type::PPC_FP128TyID:
1751 assert(0 && "Should have already output floating point constant.");
1752 default:
1753 assert(0 && "Can't handle printing this type of thing");
1754 case Type::IntegerTyID: {
1755 unsigned BitWidth = cast<IntegerType>(type)->getBitWidth();
1756 if (BitWidth <= 8)
1757 O << MAI->getData8bitsDirective(AddrSpace);
1758 else if (BitWidth <= 16)
1759 O << MAI->getData16bitsDirective(AddrSpace);
1760 else if (BitWidth <= 32)
1761 O << MAI->getData32bitsDirective(AddrSpace);
1762 else if (BitWidth <= 64) {
1763 assert(MAI->getData64bitsDirective(AddrSpace) &&
1764 "Target cannot handle 64-bit constant exprs!");
1765 O << MAI->getData64bitsDirective(AddrSpace);
1766 } else {
1767 llvm_unreachable("Target cannot handle given data directive width!");
1768 }
1769 break;
1770 }
1771 case Type::PointerTyID:
1772 if (TD->getPointerSize() == 8) {
1773 assert(MAI->getData64bitsDirective(AddrSpace) &&
1774 "Target cannot handle 64-bit pointer exprs!");
1775 O << MAI->getData64bitsDirective(AddrSpace);
1776 } else if (TD->getPointerSize() == 2) {
1777 O << MAI->getData16bitsDirective(AddrSpace);
1778 } else if (TD->getPointerSize() == 1) {
1779 O << MAI->getData8bitsDirective(AddrSpace);
1780 } else {
1781 O << MAI->getData32bitsDirective(AddrSpace);
1782 }
1783 break;
1784 }
1785}
1786
1787void AsmPrinter::printVisibility(const std::string& Name,
1788 unsigned Visibility) const {
1789 if (Visibility == GlobalValue::HiddenVisibility) {
1790 if (const char *Directive = MAI->getHiddenDirective())
1791 O << Directive << Name << '\n';
1792 } else if (Visibility == GlobalValue::ProtectedVisibility) {
1793 if (const char *Directive = MAI->getProtectedDirective())
1794 O << Directive << Name << '\n';
1795 }
1796}
1797
1798void AsmPrinter::printOffset(int64_t Offset) const {
1799 if (Offset > 0)
1800 O << '+' << Offset;
1801 else if (Offset < 0)
1802 O << Offset;
1803}
1804
1805GCMetadataPrinter *AsmPrinter::GetOrCreateGCPrinter(GCStrategy *S) {
1806 if (!S->usesMetadata())
1807 return 0;
1808
1809 gcp_iterator GCPI = GCMetadataPrinters.find(S);
1810 if (GCPI != GCMetadataPrinters.end())
1811 return GCPI->second;
1812
1813 const char *Name = S->getName().c_str();
1814
1815 for (GCMetadataPrinterRegistry::iterator
1816 I = GCMetadataPrinterRegistry::begin(),
1817 E = GCMetadataPrinterRegistry::end(); I != E; ++I)
1818 if (strcmp(Name, I->getName()) == 0) {
1819 GCMetadataPrinter *GMP = I->instantiate();
1820 GMP->S = S;
1821 GCMetadataPrinters.insert(std::make_pair(S, GMP));
1822 return GMP;
1823 }
1824
1825 errs() << "no GCMetadataPrinter registered for GC: " << Name << "\n";
1826 llvm_unreachable(0);
1827}
1828
1829/// EmitComments - Pretty-print comments for instructions
1830void AsmPrinter::EmitComments(const MachineInstr &MI) const {
1831 if (!VerboseAsm)
1832 return;
1833
1834 bool Newline = false;
1835
1836 if (!MI.getDebugLoc().isUnknown()) {
1837 DebugLocTuple DLT = MF->getDebugLocTuple(MI.getDebugLoc());
1838
1839 // Print source line info.
1840 O.PadToColumn(MAI->getCommentColumn());
1840 O << MAI->getCommentString() << " SrcLine ";
1841 if (DLT.Scope) {
1842 DICompileUnit CU(DLT.Scope);
1843 if (!CU.isNull())
1844 O << CU.getFilename() << " ";
1845 }
1846 O << DLT.Line;
1841 O << MAI->getCommentString() << ' ';
1842 DIScope Scope(DLT.Scope);
1843 // Omit the directory, because it's likely to be long and uninteresting.
1844 if (!Scope.isNull())
1845 O << Scope.getFilename();
1846 else
1847 O << "<unknown>";
1848 O << ':' << DLT.Line;
1847 if (DLT.Col != 0)
1849 if (DLT.Col != 0)
1848 O << ":" << DLT.Col;
1850 O << ':' << DLT.Col;
1849 Newline = true;
1850 }
1851
1852 // Check for spills and reloads
1853 int FI;
1854
1855 const MachineFrameInfo *FrameInfo =
1856 MI.getParent()->getParent()->getFrameInfo();
1857
1858 // We assume a single instruction only has a spill or reload, not
1859 // both.
1851 Newline = true;
1852 }
1853
1854 // Check for spills and reloads
1855 int FI;
1856
1857 const MachineFrameInfo *FrameInfo =
1858 MI.getParent()->getParent()->getFrameInfo();
1859
1860 // We assume a single instruction only has a spill or reload, not
1861 // both.
1862 const MachineMemOperand *MMO;
1860 if (TM.getInstrInfo()->isLoadFromStackSlotPostFE(&MI, FI)) {
1861 if (FrameInfo->isSpillSlotObjectIndex(FI)) {
1863 if (TM.getInstrInfo()->isLoadFromStackSlotPostFE(&MI, FI)) {
1864 if (FrameInfo->isSpillSlotObjectIndex(FI)) {
1865 MMO = *MI.memoperands_begin();
1862 if (Newline) O << '\n';
1863 O.PadToColumn(MAI->getCommentColumn());
1866 if (Newline) O << '\n';
1867 O.PadToColumn(MAI->getCommentColumn());
1864 O << MAI->getCommentString() << " Reload";
1868 O << MAI->getCommentString() << ' ' << MMO->getSize() << "-byte Reload";
1865 Newline = true;
1866 }
1867 }
1869 Newline = true;
1870 }
1871 }
1868 else if (TM.getInstrInfo()->hasLoadFromStackSlot(&MI, FI)) {
1872 else if (TM.getInstrInfo()->hasLoadFromStackSlot(&MI, MMO, FI)) {
1869 if (FrameInfo->isSpillSlotObjectIndex(FI)) {
1870 if (Newline) O << '\n';
1871 O.PadToColumn(MAI->getCommentColumn());
1873 if (FrameInfo->isSpillSlotObjectIndex(FI)) {
1874 if (Newline) O << '\n';
1875 O.PadToColumn(MAI->getCommentColumn());
1872 O << MAI->getCommentString() << " Folded Reload";
1876 O << MAI->getCommentString() << ' '
1877 << MMO->getSize() << "-byte Folded Reload";
1873 Newline = true;
1874 }
1875 }
1876 else if (TM.getInstrInfo()->isStoreToStackSlotPostFE(&MI, FI)) {
1877 if (FrameInfo->isSpillSlotObjectIndex(FI)) {
1878 Newline = true;
1879 }
1880 }
1881 else if (TM.getInstrInfo()->isStoreToStackSlotPostFE(&MI, FI)) {
1882 if (FrameInfo->isSpillSlotObjectIndex(FI)) {
1883 MMO = *MI.memoperands_begin();
1878 if (Newline) O << '\n';
1879 O.PadToColumn(MAI->getCommentColumn());
1884 if (Newline) O << '\n';
1885 O.PadToColumn(MAI->getCommentColumn());
1880 O << MAI->getCommentString() << " Spill";
1886 O << MAI->getCommentString() << ' ' << MMO->getSize() << "-byte Spill";
1881 Newline = true;
1882 }
1883 }
1887 Newline = true;
1888 }
1889 }
1884 else if (TM.getInstrInfo()->hasStoreToStackSlot(&MI, FI)) {
1890 else if (TM.getInstrInfo()->hasStoreToStackSlot(&MI, MMO, FI)) {
1885 if (FrameInfo->isSpillSlotObjectIndex(FI)) {
1886 if (Newline) O << '\n';
1887 O.PadToColumn(MAI->getCommentColumn());
1891 if (FrameInfo->isSpillSlotObjectIndex(FI)) {
1892 if (Newline) O << '\n';
1893 O.PadToColumn(MAI->getCommentColumn());
1888 O << MAI->getCommentString() << " Folded Spill";
1894 O << MAI->getCommentString() << ' '
1895 << MMO->getSize() << "-byte Folded Spill";
1889 Newline = true;
1890 }
1891 }
1892
1893 // Check for spill-induced copies
1894 unsigned SrcReg, DstReg, SrcSubIdx, DstSubIdx;
1895 if (TM.getInstrInfo()->isMoveInstr(MI, SrcReg, DstReg,
1896 SrcSubIdx, DstSubIdx)) {
1897 if (MI.getAsmPrinterFlag(ReloadReuse)) {
1898 if (Newline) O << '\n';
1899 O.PadToColumn(MAI->getCommentColumn());
1900 O << MAI->getCommentString() << " Reload Reuse";
1901 Newline = true;
1902 }
1903 }
1904}
1905
1906/// PrintChildLoopComment - Print comments about child loops within
1907/// the loop for this basic block, with nesting.
1908///
1909static void PrintChildLoopComment(formatted_raw_ostream &O,
1910 const MachineLoop *loop,
1911 const MCAsmInfo *MAI,
1912 int FunctionNumber) {
1913 // Add child loop information
1914 for(MachineLoop::iterator cl = loop->begin(),
1915 clend = loop->end();
1916 cl != clend;
1917 ++cl) {
1918 MachineBasicBlock *Header = (*cl)->getHeader();
1919 assert(Header && "No header for loop");
1920
1921 O << '\n';
1922 O.PadToColumn(MAI->getCommentColumn());
1923
1924 O << MAI->getCommentString();
1925 O.indent(((*cl)->getLoopDepth()-1)*2)
1926 << " Child Loop BB" << FunctionNumber << "_"
1927 << Header->getNumber() << " Depth " << (*cl)->getLoopDepth();
1928
1929 PrintChildLoopComment(O, *cl, MAI, FunctionNumber);
1930 }
1931}
1932
1933/// EmitComments - Pretty-print comments for basic blocks
1934void AsmPrinter::EmitComments(const MachineBasicBlock &MBB) const {
1935 if (VerboseAsm) {
1936 // Add loop depth information
1937 const MachineLoop *loop = LI->getLoopFor(&MBB);
1938
1939 if (loop) {
1940 // Print a newline after bb# annotation.
1941 O << "\n";
1942 O.PadToColumn(MAI->getCommentColumn());
1943 O << MAI->getCommentString() << " Loop Depth " << loop->getLoopDepth()
1944 << '\n';
1945
1946 O.PadToColumn(MAI->getCommentColumn());
1947
1948 MachineBasicBlock *Header = loop->getHeader();
1949 assert(Header && "No header for loop");
1950
1951 if (Header == &MBB) {
1952 O << MAI->getCommentString() << " Loop Header";
1953 PrintChildLoopComment(O, loop, MAI, getFunctionNumber());
1954 }
1955 else {
1956 O << MAI->getCommentString() << " Loop Header is BB"
1957 << getFunctionNumber() << "_" << loop->getHeader()->getNumber();
1958 }
1959
1960 if (loop->empty()) {
1961 O << '\n';
1962 O.PadToColumn(MAI->getCommentColumn());
1963 O << MAI->getCommentString() << " Inner Loop";
1964 }
1965
1966 // Add parent loop information
1967 for (const MachineLoop *CurLoop = loop->getParentLoop();
1968 CurLoop;
1969 CurLoop = CurLoop->getParentLoop()) {
1970 MachineBasicBlock *Header = CurLoop->getHeader();
1971 assert(Header && "No header for loop");
1972
1973 O << '\n';
1974 O.PadToColumn(MAI->getCommentColumn());
1975 O << MAI->getCommentString();
1976 O.indent((CurLoop->getLoopDepth()-1)*2)
1977 << " Inside Loop BB" << getFunctionNumber() << "_"
1978 << Header->getNumber() << " Depth " << CurLoop->getLoopDepth();
1979 }
1980 }
1981 }
1982}
1896 Newline = true;
1897 }
1898 }
1899
1900 // Check for spill-induced copies
1901 unsigned SrcReg, DstReg, SrcSubIdx, DstSubIdx;
1902 if (TM.getInstrInfo()->isMoveInstr(MI, SrcReg, DstReg,
1903 SrcSubIdx, DstSubIdx)) {
1904 if (MI.getAsmPrinterFlag(ReloadReuse)) {
1905 if (Newline) O << '\n';
1906 O.PadToColumn(MAI->getCommentColumn());
1907 O << MAI->getCommentString() << " Reload Reuse";
1908 Newline = true;
1909 }
1910 }
1911}
1912
1913/// PrintChildLoopComment - Print comments about child loops within
1914/// the loop for this basic block, with nesting.
1915///
1916static void PrintChildLoopComment(formatted_raw_ostream &O,
1917 const MachineLoop *loop,
1918 const MCAsmInfo *MAI,
1919 int FunctionNumber) {
1920 // Add child loop information
1921 for(MachineLoop::iterator cl = loop->begin(),
1922 clend = loop->end();
1923 cl != clend;
1924 ++cl) {
1925 MachineBasicBlock *Header = (*cl)->getHeader();
1926 assert(Header && "No header for loop");
1927
1928 O << '\n';
1929 O.PadToColumn(MAI->getCommentColumn());
1930
1931 O << MAI->getCommentString();
1932 O.indent(((*cl)->getLoopDepth()-1)*2)
1933 << " Child Loop BB" << FunctionNumber << "_"
1934 << Header->getNumber() << " Depth " << (*cl)->getLoopDepth();
1935
1936 PrintChildLoopComment(O, *cl, MAI, FunctionNumber);
1937 }
1938}
1939
1940/// EmitComments - Pretty-print comments for basic blocks
1941void AsmPrinter::EmitComments(const MachineBasicBlock &MBB) const {
1942 if (VerboseAsm) {
1943 // Add loop depth information
1944 const MachineLoop *loop = LI->getLoopFor(&MBB);
1945
1946 if (loop) {
1947 // Print a newline after bb# annotation.
1948 O << "\n";
1949 O.PadToColumn(MAI->getCommentColumn());
1950 O << MAI->getCommentString() << " Loop Depth " << loop->getLoopDepth()
1951 << '\n';
1952
1953 O.PadToColumn(MAI->getCommentColumn());
1954
1955 MachineBasicBlock *Header = loop->getHeader();
1956 assert(Header && "No header for loop");
1957
1958 if (Header == &MBB) {
1959 O << MAI->getCommentString() << " Loop Header";
1960 PrintChildLoopComment(O, loop, MAI, getFunctionNumber());
1961 }
1962 else {
1963 O << MAI->getCommentString() << " Loop Header is BB"
1964 << getFunctionNumber() << "_" << loop->getHeader()->getNumber();
1965 }
1966
1967 if (loop->empty()) {
1968 O << '\n';
1969 O.PadToColumn(MAI->getCommentColumn());
1970 O << MAI->getCommentString() << " Inner Loop";
1971 }
1972
1973 // Add parent loop information
1974 for (const MachineLoop *CurLoop = loop->getParentLoop();
1975 CurLoop;
1976 CurLoop = CurLoop->getParentLoop()) {
1977 MachineBasicBlock *Header = CurLoop->getHeader();
1978 assert(Header && "No header for loop");
1979
1980 O << '\n';
1981 O.PadToColumn(MAI->getCommentColumn());
1982 O << MAI->getCommentString();
1983 O.indent((CurLoop->getLoopDepth()-1)*2)
1984 << " Inside Loop BB" << getFunctionNumber() << "_"
1985 << Header->getNumber() << " Depth " << CurLoop->getLoopDepth();
1986 }
1987 }
1988 }
1989}