Deleted Added
full compact
LLParser.cpp (193323) LLParser.cpp (193574)
1//===-- LLParser.cpp - Parser Class ---------------------------------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the parser class for .ll files.
11//
12//===----------------------------------------------------------------------===//
13
14#include "LLParser.h"
15#include "llvm/AutoUpgrade.h"
16#include "llvm/CallingConv.h"
17#include "llvm/Constants.h"
18#include "llvm/DerivedTypes.h"
19#include "llvm/InlineAsm.h"
20#include "llvm/Instructions.h"
21#include "llvm/MDNode.h"
22#include "llvm/Module.h"
23#include "llvm/ValueSymbolTable.h"
24#include "llvm/ADT/SmallPtrSet.h"
25#include "llvm/ADT/StringExtras.h"
26#include "llvm/Support/raw_ostream.h"
27using namespace llvm;
28
29namespace llvm {
30 /// ValID - Represents a reference of a definition of some sort with no type.
31 /// There are several cases where we have to parse the value but where the
32 /// type can depend on later context. This may either be a numeric reference
33 /// or a symbolic (%var) reference. This is just a discriminated union.
34 struct ValID {
35 enum {
36 t_LocalID, t_GlobalID, // ID in UIntVal.
37 t_LocalName, t_GlobalName, // Name in StrVal.
38 t_APSInt, t_APFloat, // Value in APSIntVal/APFloatVal.
39 t_Null, t_Undef, t_Zero, // No value.
40 t_EmptyArray, // No value: []
41 t_Constant, // Value in ConstantVal.
42 t_InlineAsm // Value in StrVal/StrVal2/UIntVal.
43 } Kind;
44
45 LLParser::LocTy Loc;
46 unsigned UIntVal;
47 std::string StrVal, StrVal2;
48 APSInt APSIntVal;
49 APFloat APFloatVal;
50 Constant *ConstantVal;
51 ValID() : APFloatVal(0.0) {}
52 };
53}
54
55/// Run: module ::= toplevelentity*
56bool LLParser::Run() {
57 // Prime the lexer.
58 Lex.Lex();
59
60 return ParseTopLevelEntities() ||
61 ValidateEndOfModule();
62}
63
64/// ValidateEndOfModule - Do final validity and sanity checks at the end of the
65/// module.
66bool LLParser::ValidateEndOfModule() {
67 if (!ForwardRefTypes.empty())
68 return Error(ForwardRefTypes.begin()->second.second,
69 "use of undefined type named '" +
70 ForwardRefTypes.begin()->first + "'");
71 if (!ForwardRefTypeIDs.empty())
72 return Error(ForwardRefTypeIDs.begin()->second.second,
73 "use of undefined type '%" +
74 utostr(ForwardRefTypeIDs.begin()->first) + "'");
75
76 if (!ForwardRefVals.empty())
77 return Error(ForwardRefVals.begin()->second.second,
78 "use of undefined value '@" + ForwardRefVals.begin()->first +
79 "'");
80
81 if (!ForwardRefValIDs.empty())
82 return Error(ForwardRefValIDs.begin()->second.second,
83 "use of undefined value '@" +
84 utostr(ForwardRefValIDs.begin()->first) + "'");
85
86 // Look for intrinsic functions and CallInst that need to be upgraded
87 for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; )
88 UpgradeCallsToIntrinsic(FI++); // must be post-increment, as we remove
89
90 return false;
91}
92
93//===----------------------------------------------------------------------===//
94// Top-Level Entities
95//===----------------------------------------------------------------------===//
96
97bool LLParser::ParseTopLevelEntities() {
98 while (1) {
99 switch (Lex.getKind()) {
100 default: return TokError("expected top-level entity");
101 case lltok::Eof: return false;
102 //case lltok::kw_define:
103 case lltok::kw_declare: if (ParseDeclare()) return true; break;
104 case lltok::kw_define: if (ParseDefine()) return true; break;
105 case lltok::kw_module: if (ParseModuleAsm()) return true; break;
106 case lltok::kw_target: if (ParseTargetDefinition()) return true; break;
107 case lltok::kw_deplibs: if (ParseDepLibs()) return true; break;
108 case lltok::kw_type: if (ParseUnnamedType()) return true; break;
109 case lltok::StringConstant: // FIXME: REMOVE IN LLVM 3.0
110 case lltok::LocalVar: if (ParseNamedType()) return true; break;
111 case lltok::GlobalVar: if (ParseNamedGlobal()) return true; break;
112
113 // The Global variable production with no name can have many different
114 // optional leading prefixes, the production is:
115 // GlobalVar ::= OptionalLinkage OptionalVisibility OptionalThreadLocal
116 // OptionalAddrSpace ('constant'|'global') ...
117 case lltok::kw_private: // OptionalLinkage
118 case lltok::kw_internal: // OptionalLinkage
119 case lltok::kw_weak: // OptionalLinkage
120 case lltok::kw_weak_odr: // OptionalLinkage
121 case lltok::kw_linkonce: // OptionalLinkage
122 case lltok::kw_linkonce_odr: // OptionalLinkage
123 case lltok::kw_appending: // OptionalLinkage
124 case lltok::kw_dllexport: // OptionalLinkage
125 case lltok::kw_common: // OptionalLinkage
126 case lltok::kw_dllimport: // OptionalLinkage
127 case lltok::kw_extern_weak: // OptionalLinkage
128 case lltok::kw_external: { // OptionalLinkage
129 unsigned Linkage, Visibility;
130 if (ParseOptionalLinkage(Linkage) ||
131 ParseOptionalVisibility(Visibility) ||
132 ParseGlobal("", 0, Linkage, true, Visibility))
133 return true;
134 break;
135 }
136 case lltok::kw_default: // OptionalVisibility
137 case lltok::kw_hidden: // OptionalVisibility
138 case lltok::kw_protected: { // OptionalVisibility
139 unsigned Visibility;
140 if (ParseOptionalVisibility(Visibility) ||
141 ParseGlobal("", 0, 0, false, Visibility))
142 return true;
143 break;
144 }
145
146 case lltok::kw_thread_local: // OptionalThreadLocal
147 case lltok::kw_addrspace: // OptionalAddrSpace
148 case lltok::kw_constant: // GlobalType
149 case lltok::kw_global: // GlobalType
150 if (ParseGlobal("", 0, 0, false, 0)) return true;
151 break;
152 }
153 }
154}
155
156
157/// toplevelentity
158/// ::= 'module' 'asm' STRINGCONSTANT
159bool LLParser::ParseModuleAsm() {
160 assert(Lex.getKind() == lltok::kw_module);
161 Lex.Lex();
162
163 std::string AsmStr;
164 if (ParseToken(lltok::kw_asm, "expected 'module asm'") ||
165 ParseStringConstant(AsmStr)) return true;
166
167 const std::string &AsmSoFar = M->getModuleInlineAsm();
168 if (AsmSoFar.empty())
169 M->setModuleInlineAsm(AsmStr);
170 else
171 M->setModuleInlineAsm(AsmSoFar+"\n"+AsmStr);
172 return false;
173}
174
175/// toplevelentity
176/// ::= 'target' 'triple' '=' STRINGCONSTANT
177/// ::= 'target' 'datalayout' '=' STRINGCONSTANT
178bool LLParser::ParseTargetDefinition() {
179 assert(Lex.getKind() == lltok::kw_target);
180 std::string Str;
181 switch (Lex.Lex()) {
182 default: return TokError("unknown target property");
183 case lltok::kw_triple:
184 Lex.Lex();
185 if (ParseToken(lltok::equal, "expected '=' after target triple") ||
186 ParseStringConstant(Str))
187 return true;
188 M->setTargetTriple(Str);
189 return false;
190 case lltok::kw_datalayout:
191 Lex.Lex();
192 if (ParseToken(lltok::equal, "expected '=' after target datalayout") ||
193 ParseStringConstant(Str))
194 return true;
195 M->setDataLayout(Str);
196 return false;
197 }
198}
199
200/// toplevelentity
201/// ::= 'deplibs' '=' '[' ']'
202/// ::= 'deplibs' '=' '[' STRINGCONSTANT (',' STRINGCONSTANT)* ']'
203bool LLParser::ParseDepLibs() {
204 assert(Lex.getKind() == lltok::kw_deplibs);
205 Lex.Lex();
206 if (ParseToken(lltok::equal, "expected '=' after deplibs") ||
207 ParseToken(lltok::lsquare, "expected '=' after deplibs"))
208 return true;
209
210 if (EatIfPresent(lltok::rsquare))
211 return false;
212
213 std::string Str;
214 if (ParseStringConstant(Str)) return true;
215 M->addLibrary(Str);
216
217 while (EatIfPresent(lltok::comma)) {
218 if (ParseStringConstant(Str)) return true;
219 M->addLibrary(Str);
220 }
221
222 return ParseToken(lltok::rsquare, "expected ']' at end of list");
223}
224
225/// toplevelentity
226/// ::= 'type' type
227bool LLParser::ParseUnnamedType() {
228 assert(Lex.getKind() == lltok::kw_type);
229 LocTy TypeLoc = Lex.getLoc();
230 Lex.Lex(); // eat kw_type
231
232 PATypeHolder Ty(Type::VoidTy);
233 if (ParseType(Ty)) return true;
234
235 unsigned TypeID = NumberedTypes.size();
236
237 // See if this type was previously referenced.
238 std::map<unsigned, std::pair<PATypeHolder, LocTy> >::iterator
239 FI = ForwardRefTypeIDs.find(TypeID);
240 if (FI != ForwardRefTypeIDs.end()) {
241 if (FI->second.first.get() == Ty)
242 return Error(TypeLoc, "self referential type is invalid");
243
244 cast<DerivedType>(FI->second.first.get())->refineAbstractTypeTo(Ty);
245 Ty = FI->second.first.get();
246 ForwardRefTypeIDs.erase(FI);
247 }
248
249 NumberedTypes.push_back(Ty);
250
251 return false;
252}
253
254/// toplevelentity
255/// ::= LocalVar '=' 'type' type
256bool LLParser::ParseNamedType() {
257 std::string Name = Lex.getStrVal();
258 LocTy NameLoc = Lex.getLoc();
259 Lex.Lex(); // eat LocalVar.
260
261 PATypeHolder Ty(Type::VoidTy);
262
263 if (ParseToken(lltok::equal, "expected '=' after name") ||
264 ParseToken(lltok::kw_type, "expected 'type' after name") ||
265 ParseType(Ty))
266 return true;
267
268 // Set the type name, checking for conflicts as we do so.
269 bool AlreadyExists = M->addTypeName(Name, Ty);
270 if (!AlreadyExists) return false;
271
272 // See if this type is a forward reference. We need to eagerly resolve
273 // types to allow recursive type redefinitions below.
274 std::map<std::string, std::pair<PATypeHolder, LocTy> >::iterator
275 FI = ForwardRefTypes.find(Name);
276 if (FI != ForwardRefTypes.end()) {
277 if (FI->second.first.get() == Ty)
278 return Error(NameLoc, "self referential type is invalid");
279
280 cast<DerivedType>(FI->second.first.get())->refineAbstractTypeTo(Ty);
281 Ty = FI->second.first.get();
282 ForwardRefTypes.erase(FI);
283 }
284
285 // Inserting a name that is already defined, get the existing name.
286 const Type *Existing = M->getTypeByName(Name);
287 assert(Existing && "Conflict but no matching type?!");
288
289 // Otherwise, this is an attempt to redefine a type. That's okay if
290 // the redefinition is identical to the original.
291 // FIXME: REMOVE REDEFINITIONS IN LLVM 3.0
292 if (Existing == Ty) return false;
293
294 // Any other kind of (non-equivalent) redefinition is an error.
295 return Error(NameLoc, "redefinition of type named '" + Name + "' of type '" +
296 Ty->getDescription() + "'");
297}
298
299
300/// toplevelentity
301/// ::= 'declare' FunctionHeader
302bool LLParser::ParseDeclare() {
303 assert(Lex.getKind() == lltok::kw_declare);
304 Lex.Lex();
305
306 Function *F;
307 return ParseFunctionHeader(F, false);
308}
309
310/// toplevelentity
311/// ::= 'define' FunctionHeader '{' ...
312bool LLParser::ParseDefine() {
313 assert(Lex.getKind() == lltok::kw_define);
314 Lex.Lex();
315
316 Function *F;
317 return ParseFunctionHeader(F, true) ||
318 ParseFunctionBody(*F);
319}
320
321/// ParseGlobalType
322/// ::= 'constant'
323/// ::= 'global'
324bool LLParser::ParseGlobalType(bool &IsConstant) {
325 if (Lex.getKind() == lltok::kw_constant)
326 IsConstant = true;
327 else if (Lex.getKind() == lltok::kw_global)
328 IsConstant = false;
329 else {
330 IsConstant = false;
331 return TokError("expected 'global' or 'constant'");
332 }
333 Lex.Lex();
334 return false;
335}
336
337/// ParseNamedGlobal:
338/// GlobalVar '=' OptionalVisibility ALIAS ...
339/// GlobalVar '=' OptionalLinkage OptionalVisibility ... -> global variable
340bool LLParser::ParseNamedGlobal() {
341 assert(Lex.getKind() == lltok::GlobalVar);
342 LocTy NameLoc = Lex.getLoc();
343 std::string Name = Lex.getStrVal();
344 Lex.Lex();
345
346 bool HasLinkage;
347 unsigned Linkage, Visibility;
348 if (ParseToken(lltok::equal, "expected '=' in global variable") ||
349 ParseOptionalLinkage(Linkage, HasLinkage) ||
350 ParseOptionalVisibility(Visibility))
351 return true;
352
353 if (HasLinkage || Lex.getKind() != lltok::kw_alias)
354 return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility);
355 return ParseAlias(Name, NameLoc, Visibility);
356}
357
358/// ParseAlias:
359/// ::= GlobalVar '=' OptionalVisibility 'alias' OptionalLinkage Aliasee
360/// Aliasee
361/// ::= TypeAndValue
362/// ::= 'bitcast' '(' TypeAndValue 'to' Type ')'
363/// ::= 'getelementptr' '(' ... ')'
364///
365/// Everything through visibility has already been parsed.
366///
367bool LLParser::ParseAlias(const std::string &Name, LocTy NameLoc,
368 unsigned Visibility) {
369 assert(Lex.getKind() == lltok::kw_alias);
370 Lex.Lex();
371 unsigned Linkage;
372 LocTy LinkageLoc = Lex.getLoc();
373 if (ParseOptionalLinkage(Linkage))
374 return true;
375
376 if (Linkage != GlobalValue::ExternalLinkage &&
377 Linkage != GlobalValue::WeakAnyLinkage &&
378 Linkage != GlobalValue::WeakODRLinkage &&
379 Linkage != GlobalValue::InternalLinkage &&
380 Linkage != GlobalValue::PrivateLinkage)
381 return Error(LinkageLoc, "invalid linkage type for alias");
382
383 Constant *Aliasee;
384 LocTy AliaseeLoc = Lex.getLoc();
385 if (Lex.getKind() != lltok::kw_bitcast &&
386 Lex.getKind() != lltok::kw_getelementptr) {
387 if (ParseGlobalTypeAndValue(Aliasee)) return true;
388 } else {
389 // The bitcast dest type is not present, it is implied by the dest type.
390 ValID ID;
391 if (ParseValID(ID)) return true;
392 if (ID.Kind != ValID::t_Constant)
393 return Error(AliaseeLoc, "invalid aliasee");
394 Aliasee = ID.ConstantVal;
395 }
396
397 if (!isa<PointerType>(Aliasee->getType()))
398 return Error(AliaseeLoc, "alias must have pointer type");
399
400 // Okay, create the alias but do not insert it into the module yet.
401 GlobalAlias* GA = new GlobalAlias(Aliasee->getType(),
402 (GlobalValue::LinkageTypes)Linkage, Name,
403 Aliasee);
404 GA->setVisibility((GlobalValue::VisibilityTypes)Visibility);
405
406 // See if this value already exists in the symbol table. If so, it is either
407 // a redefinition or a definition of a forward reference.
408 if (GlobalValue *Val =
409 cast_or_null<GlobalValue>(M->getValueSymbolTable().lookup(Name))) {
410 // See if this was a redefinition. If so, there is no entry in
411 // ForwardRefVals.
412 std::map<std::string, std::pair<GlobalValue*, LocTy> >::iterator
413 I = ForwardRefVals.find(Name);
414 if (I == ForwardRefVals.end())
415 return Error(NameLoc, "redefinition of global named '@" + Name + "'");
416
417 // Otherwise, this was a definition of forward ref. Verify that types
418 // agree.
419 if (Val->getType() != GA->getType())
420 return Error(NameLoc,
421 "forward reference and definition of alias have different types");
422
423 // If they agree, just RAUW the old value with the alias and remove the
424 // forward ref info.
425 Val->replaceAllUsesWith(GA);
426 Val->eraseFromParent();
427 ForwardRefVals.erase(I);
428 }
429
430 // Insert into the module, we know its name won't collide now.
431 M->getAliasList().push_back(GA);
432 assert(GA->getNameStr() == Name && "Should not be a name conflict!");
433
434 return false;
435}
436
437/// ParseGlobal
438/// ::= GlobalVar '=' OptionalLinkage OptionalVisibility OptionalThreadLocal
439/// OptionalAddrSpace GlobalType Type Const
440/// ::= OptionalLinkage OptionalVisibility OptionalThreadLocal
441/// OptionalAddrSpace GlobalType Type Const
442///
443/// Everything through visibility has been parsed already.
444///
445bool LLParser::ParseGlobal(const std::string &Name, LocTy NameLoc,
446 unsigned Linkage, bool HasLinkage,
447 unsigned Visibility) {
448 unsigned AddrSpace;
449 bool ThreadLocal, IsConstant;
450 LocTy TyLoc;
451
452 PATypeHolder Ty(Type::VoidTy);
453 if (ParseOptionalToken(lltok::kw_thread_local, ThreadLocal) ||
454 ParseOptionalAddrSpace(AddrSpace) ||
455 ParseGlobalType(IsConstant) ||
456 ParseType(Ty, TyLoc))
457 return true;
458
459 // If the linkage is specified and is external, then no initializer is
460 // present.
461 Constant *Init = 0;
462 if (!HasLinkage || (Linkage != GlobalValue::DLLImportLinkage &&
463 Linkage != GlobalValue::ExternalWeakLinkage &&
464 Linkage != GlobalValue::ExternalLinkage)) {
465 if (ParseGlobalValue(Ty, Init))
466 return true;
467 }
468
469 if (isa<FunctionType>(Ty) || Ty == Type::LabelTy)
470 return Error(TyLoc, "invalid type for global variable");
471
472 GlobalVariable *GV = 0;
473
474 // See if the global was forward referenced, if so, use the global.
475 if (!Name.empty()) {
476 if ((GV = M->getGlobalVariable(Name, true)) &&
477 !ForwardRefVals.erase(Name))
478 return Error(NameLoc, "redefinition of global '@" + Name + "'");
479 } else {
480 std::map<unsigned, std::pair<GlobalValue*, LocTy> >::iterator
481 I = ForwardRefValIDs.find(NumberedVals.size());
482 if (I != ForwardRefValIDs.end()) {
483 GV = cast<GlobalVariable>(I->second.first);
484 ForwardRefValIDs.erase(I);
485 }
486 }
487
488 if (GV == 0) {
489 GV = new GlobalVariable(Ty, false, GlobalValue::ExternalLinkage, 0, Name,
490 M, false, AddrSpace);
491 } else {
492 if (GV->getType()->getElementType() != Ty)
493 return Error(TyLoc,
494 "forward reference and definition of global have different types");
495
496 // Move the forward-reference to the correct spot in the module.
497 M->getGlobalList().splice(M->global_end(), M->getGlobalList(), GV);
498 }
499
500 if (Name.empty())
501 NumberedVals.push_back(GV);
502
503 // Set the parsed properties on the global.
504 if (Init)
505 GV->setInitializer(Init);
506 GV->setConstant(IsConstant);
507 GV->setLinkage((GlobalValue::LinkageTypes)Linkage);
508 GV->setVisibility((GlobalValue::VisibilityTypes)Visibility);
509 GV->setThreadLocal(ThreadLocal);
510
511 // Parse attributes on the global.
512 while (Lex.getKind() == lltok::comma) {
513 Lex.Lex();
514
515 if (Lex.getKind() == lltok::kw_section) {
516 Lex.Lex();
517 GV->setSection(Lex.getStrVal());
518 if (ParseToken(lltok::StringConstant, "expected global section string"))
519 return true;
520 } else if (Lex.getKind() == lltok::kw_align) {
521 unsigned Alignment;
522 if (ParseOptionalAlignment(Alignment)) return true;
523 GV->setAlignment(Alignment);
524 } else {
525 TokError("unknown global variable property!");
526 }
527 }
528
529 return false;
530}
531
532
533//===----------------------------------------------------------------------===//
534// GlobalValue Reference/Resolution Routines.
535//===----------------------------------------------------------------------===//
536
537/// GetGlobalVal - Get a value with the specified name or ID, creating a
538/// forward reference record if needed. This can return null if the value
539/// exists but does not have the right type.
540GlobalValue *LLParser::GetGlobalVal(const std::string &Name, const Type *Ty,
541 LocTy Loc) {
542 const PointerType *PTy = dyn_cast<PointerType>(Ty);
543 if (PTy == 0) {
544 Error(Loc, "global variable reference must have pointer type");
545 return 0;
546 }
547
548 // Look this name up in the normal function symbol table.
549 GlobalValue *Val =
550 cast_or_null<GlobalValue>(M->getValueSymbolTable().lookup(Name));
551
552 // If this is a forward reference for the value, see if we already created a
553 // forward ref record.
554 if (Val == 0) {
555 std::map<std::string, std::pair<GlobalValue*, LocTy> >::iterator
556 I = ForwardRefVals.find(Name);
557 if (I != ForwardRefVals.end())
558 Val = I->second.first;
559 }
560
561 // If we have the value in the symbol table or fwd-ref table, return it.
562 if (Val) {
563 if (Val->getType() == Ty) return Val;
564 Error(Loc, "'@" + Name + "' defined with type '" +
565 Val->getType()->getDescription() + "'");
566 return 0;
567 }
568
569 // Otherwise, create a new forward reference for this value and remember it.
570 GlobalValue *FwdVal;
571 if (const FunctionType *FT = dyn_cast<FunctionType>(PTy->getElementType())) {
572 // Function types can return opaque but functions can't.
573 if (isa<OpaqueType>(FT->getReturnType())) {
574 Error(Loc, "function may not return opaque type");
575 return 0;
576 }
577
578 FwdVal = Function::Create(FT, GlobalValue::ExternalWeakLinkage, Name, M);
579 } else {
580 FwdVal = new GlobalVariable(PTy->getElementType(), false,
581 GlobalValue::ExternalWeakLinkage, 0, Name, M);
582 }
583
584 ForwardRefVals[Name] = std::make_pair(FwdVal, Loc);
585 return FwdVal;
586}
587
588GlobalValue *LLParser::GetGlobalVal(unsigned ID, const Type *Ty, LocTy Loc) {
589 const PointerType *PTy = dyn_cast<PointerType>(Ty);
590 if (PTy == 0) {
591 Error(Loc, "global variable reference must have pointer type");
592 return 0;
593 }
594
595 GlobalValue *Val = ID < NumberedVals.size() ? NumberedVals[ID] : 0;
596
597 // If this is a forward reference for the value, see if we already created a
598 // forward ref record.
599 if (Val == 0) {
600 std::map<unsigned, std::pair<GlobalValue*, LocTy> >::iterator
601 I = ForwardRefValIDs.find(ID);
602 if (I != ForwardRefValIDs.end())
603 Val = I->second.first;
604 }
605
606 // If we have the value in the symbol table or fwd-ref table, return it.
607 if (Val) {
608 if (Val->getType() == Ty) return Val;
609 Error(Loc, "'@" + utostr(ID) + "' defined with type '" +
610 Val->getType()->getDescription() + "'");
611 return 0;
612 }
613
614 // Otherwise, create a new forward reference for this value and remember it.
615 GlobalValue *FwdVal;
616 if (const FunctionType *FT = dyn_cast<FunctionType>(PTy->getElementType())) {
617 // Function types can return opaque but functions can't.
618 if (isa<OpaqueType>(FT->getReturnType())) {
619 Error(Loc, "function may not return opaque type");
620 return 0;
621 }
622 FwdVal = Function::Create(FT, GlobalValue::ExternalWeakLinkage, "", M);
623 } else {
624 FwdVal = new GlobalVariable(PTy->getElementType(), false,
625 GlobalValue::ExternalWeakLinkage, 0, "", M);
626 }
627
628 ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc);
629 return FwdVal;
630}
631
632
633//===----------------------------------------------------------------------===//
634// Helper Routines.
635//===----------------------------------------------------------------------===//
636
637/// ParseToken - If the current token has the specified kind, eat it and return
638/// success. Otherwise, emit the specified error and return failure.
639bool LLParser::ParseToken(lltok::Kind T, const char *ErrMsg) {
640 if (Lex.getKind() != T)
641 return TokError(ErrMsg);
642 Lex.Lex();
643 return false;
644}
645
646/// ParseStringConstant
647/// ::= StringConstant
648bool LLParser::ParseStringConstant(std::string &Result) {
649 if (Lex.getKind() != lltok::StringConstant)
650 return TokError("expected string constant");
651 Result = Lex.getStrVal();
652 Lex.Lex();
653 return false;
654}
655
656/// ParseUInt32
657/// ::= uint32
658bool LLParser::ParseUInt32(unsigned &Val) {
659 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
660 return TokError("expected integer");
661 uint64_t Val64 = Lex.getAPSIntVal().getLimitedValue(0xFFFFFFFFULL+1);
662 if (Val64 != unsigned(Val64))
663 return TokError("expected 32-bit integer (too large)");
664 Val = Val64;
665 Lex.Lex();
666 return false;
667}
668
669
670/// ParseOptionalAddrSpace
671/// := /*empty*/
672/// := 'addrspace' '(' uint32 ')'
673bool LLParser::ParseOptionalAddrSpace(unsigned &AddrSpace) {
674 AddrSpace = 0;
675 if (!EatIfPresent(lltok::kw_addrspace))
676 return false;
677 return ParseToken(lltok::lparen, "expected '(' in address space") ||
678 ParseUInt32(AddrSpace) ||
679 ParseToken(lltok::rparen, "expected ')' in address space");
680}
681
682/// ParseOptionalAttrs - Parse a potentially empty attribute list. AttrKind
683/// indicates what kind of attribute list this is: 0: function arg, 1: result,
684/// 2: function attr.
685/// 3: function arg after value: FIXME: REMOVE IN LLVM 3.0
686bool LLParser::ParseOptionalAttrs(unsigned &Attrs, unsigned AttrKind) {
687 Attrs = Attribute::None;
688 LocTy AttrLoc = Lex.getLoc();
689
690 while (1) {
691 switch (Lex.getKind()) {
692 case lltok::kw_sext:
693 case lltok::kw_zext:
694 // Treat these as signext/zeroext if they occur in the argument list after
695 // the value, as in "call i8 @foo(i8 10 sext)". If they occur before the
696 // value, as in "call i8 @foo(i8 sext (" then it is part of a constant
697 // expr.
698 // FIXME: REMOVE THIS IN LLVM 3.0
699 if (AttrKind == 3) {
700 if (Lex.getKind() == lltok::kw_sext)
701 Attrs |= Attribute::SExt;
702 else
703 Attrs |= Attribute::ZExt;
704 break;
705 }
706 // FALL THROUGH.
707 default: // End of attributes.
708 if (AttrKind != 2 && (Attrs & Attribute::FunctionOnly))
709 return Error(AttrLoc, "invalid use of function-only attribute");
710
711 if (AttrKind != 0 && AttrKind != 3 && (Attrs & Attribute::ParameterOnly))
712 return Error(AttrLoc, "invalid use of parameter-only attribute");
713
714 return false;
1//===-- LLParser.cpp - Parser Class ---------------------------------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the parser class for .ll files.
11//
12//===----------------------------------------------------------------------===//
13
14#include "LLParser.h"
15#include "llvm/AutoUpgrade.h"
16#include "llvm/CallingConv.h"
17#include "llvm/Constants.h"
18#include "llvm/DerivedTypes.h"
19#include "llvm/InlineAsm.h"
20#include "llvm/Instructions.h"
21#include "llvm/MDNode.h"
22#include "llvm/Module.h"
23#include "llvm/ValueSymbolTable.h"
24#include "llvm/ADT/SmallPtrSet.h"
25#include "llvm/ADT/StringExtras.h"
26#include "llvm/Support/raw_ostream.h"
27using namespace llvm;
28
29namespace llvm {
30 /// ValID - Represents a reference of a definition of some sort with no type.
31 /// There are several cases where we have to parse the value but where the
32 /// type can depend on later context. This may either be a numeric reference
33 /// or a symbolic (%var) reference. This is just a discriminated union.
34 struct ValID {
35 enum {
36 t_LocalID, t_GlobalID, // ID in UIntVal.
37 t_LocalName, t_GlobalName, // Name in StrVal.
38 t_APSInt, t_APFloat, // Value in APSIntVal/APFloatVal.
39 t_Null, t_Undef, t_Zero, // No value.
40 t_EmptyArray, // No value: []
41 t_Constant, // Value in ConstantVal.
42 t_InlineAsm // Value in StrVal/StrVal2/UIntVal.
43 } Kind;
44
45 LLParser::LocTy Loc;
46 unsigned UIntVal;
47 std::string StrVal, StrVal2;
48 APSInt APSIntVal;
49 APFloat APFloatVal;
50 Constant *ConstantVal;
51 ValID() : APFloatVal(0.0) {}
52 };
53}
54
55/// Run: module ::= toplevelentity*
56bool LLParser::Run() {
57 // Prime the lexer.
58 Lex.Lex();
59
60 return ParseTopLevelEntities() ||
61 ValidateEndOfModule();
62}
63
64/// ValidateEndOfModule - Do final validity and sanity checks at the end of the
65/// module.
66bool LLParser::ValidateEndOfModule() {
67 if (!ForwardRefTypes.empty())
68 return Error(ForwardRefTypes.begin()->second.second,
69 "use of undefined type named '" +
70 ForwardRefTypes.begin()->first + "'");
71 if (!ForwardRefTypeIDs.empty())
72 return Error(ForwardRefTypeIDs.begin()->second.second,
73 "use of undefined type '%" +
74 utostr(ForwardRefTypeIDs.begin()->first) + "'");
75
76 if (!ForwardRefVals.empty())
77 return Error(ForwardRefVals.begin()->second.second,
78 "use of undefined value '@" + ForwardRefVals.begin()->first +
79 "'");
80
81 if (!ForwardRefValIDs.empty())
82 return Error(ForwardRefValIDs.begin()->second.second,
83 "use of undefined value '@" +
84 utostr(ForwardRefValIDs.begin()->first) + "'");
85
86 // Look for intrinsic functions and CallInst that need to be upgraded
87 for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; )
88 UpgradeCallsToIntrinsic(FI++); // must be post-increment, as we remove
89
90 return false;
91}
92
93//===----------------------------------------------------------------------===//
94// Top-Level Entities
95//===----------------------------------------------------------------------===//
96
97bool LLParser::ParseTopLevelEntities() {
98 while (1) {
99 switch (Lex.getKind()) {
100 default: return TokError("expected top-level entity");
101 case lltok::Eof: return false;
102 //case lltok::kw_define:
103 case lltok::kw_declare: if (ParseDeclare()) return true; break;
104 case lltok::kw_define: if (ParseDefine()) return true; break;
105 case lltok::kw_module: if (ParseModuleAsm()) return true; break;
106 case lltok::kw_target: if (ParseTargetDefinition()) return true; break;
107 case lltok::kw_deplibs: if (ParseDepLibs()) return true; break;
108 case lltok::kw_type: if (ParseUnnamedType()) return true; break;
109 case lltok::StringConstant: // FIXME: REMOVE IN LLVM 3.0
110 case lltok::LocalVar: if (ParseNamedType()) return true; break;
111 case lltok::GlobalVar: if (ParseNamedGlobal()) return true; break;
112
113 // The Global variable production with no name can have many different
114 // optional leading prefixes, the production is:
115 // GlobalVar ::= OptionalLinkage OptionalVisibility OptionalThreadLocal
116 // OptionalAddrSpace ('constant'|'global') ...
117 case lltok::kw_private: // OptionalLinkage
118 case lltok::kw_internal: // OptionalLinkage
119 case lltok::kw_weak: // OptionalLinkage
120 case lltok::kw_weak_odr: // OptionalLinkage
121 case lltok::kw_linkonce: // OptionalLinkage
122 case lltok::kw_linkonce_odr: // OptionalLinkage
123 case lltok::kw_appending: // OptionalLinkage
124 case lltok::kw_dllexport: // OptionalLinkage
125 case lltok::kw_common: // OptionalLinkage
126 case lltok::kw_dllimport: // OptionalLinkage
127 case lltok::kw_extern_weak: // OptionalLinkage
128 case lltok::kw_external: { // OptionalLinkage
129 unsigned Linkage, Visibility;
130 if (ParseOptionalLinkage(Linkage) ||
131 ParseOptionalVisibility(Visibility) ||
132 ParseGlobal("", 0, Linkage, true, Visibility))
133 return true;
134 break;
135 }
136 case lltok::kw_default: // OptionalVisibility
137 case lltok::kw_hidden: // OptionalVisibility
138 case lltok::kw_protected: { // OptionalVisibility
139 unsigned Visibility;
140 if (ParseOptionalVisibility(Visibility) ||
141 ParseGlobal("", 0, 0, false, Visibility))
142 return true;
143 break;
144 }
145
146 case lltok::kw_thread_local: // OptionalThreadLocal
147 case lltok::kw_addrspace: // OptionalAddrSpace
148 case lltok::kw_constant: // GlobalType
149 case lltok::kw_global: // GlobalType
150 if (ParseGlobal("", 0, 0, false, 0)) return true;
151 break;
152 }
153 }
154}
155
156
157/// toplevelentity
158/// ::= 'module' 'asm' STRINGCONSTANT
159bool LLParser::ParseModuleAsm() {
160 assert(Lex.getKind() == lltok::kw_module);
161 Lex.Lex();
162
163 std::string AsmStr;
164 if (ParseToken(lltok::kw_asm, "expected 'module asm'") ||
165 ParseStringConstant(AsmStr)) return true;
166
167 const std::string &AsmSoFar = M->getModuleInlineAsm();
168 if (AsmSoFar.empty())
169 M->setModuleInlineAsm(AsmStr);
170 else
171 M->setModuleInlineAsm(AsmSoFar+"\n"+AsmStr);
172 return false;
173}
174
175/// toplevelentity
176/// ::= 'target' 'triple' '=' STRINGCONSTANT
177/// ::= 'target' 'datalayout' '=' STRINGCONSTANT
178bool LLParser::ParseTargetDefinition() {
179 assert(Lex.getKind() == lltok::kw_target);
180 std::string Str;
181 switch (Lex.Lex()) {
182 default: return TokError("unknown target property");
183 case lltok::kw_triple:
184 Lex.Lex();
185 if (ParseToken(lltok::equal, "expected '=' after target triple") ||
186 ParseStringConstant(Str))
187 return true;
188 M->setTargetTriple(Str);
189 return false;
190 case lltok::kw_datalayout:
191 Lex.Lex();
192 if (ParseToken(lltok::equal, "expected '=' after target datalayout") ||
193 ParseStringConstant(Str))
194 return true;
195 M->setDataLayout(Str);
196 return false;
197 }
198}
199
200/// toplevelentity
201/// ::= 'deplibs' '=' '[' ']'
202/// ::= 'deplibs' '=' '[' STRINGCONSTANT (',' STRINGCONSTANT)* ']'
203bool LLParser::ParseDepLibs() {
204 assert(Lex.getKind() == lltok::kw_deplibs);
205 Lex.Lex();
206 if (ParseToken(lltok::equal, "expected '=' after deplibs") ||
207 ParseToken(lltok::lsquare, "expected '=' after deplibs"))
208 return true;
209
210 if (EatIfPresent(lltok::rsquare))
211 return false;
212
213 std::string Str;
214 if (ParseStringConstant(Str)) return true;
215 M->addLibrary(Str);
216
217 while (EatIfPresent(lltok::comma)) {
218 if (ParseStringConstant(Str)) return true;
219 M->addLibrary(Str);
220 }
221
222 return ParseToken(lltok::rsquare, "expected ']' at end of list");
223}
224
225/// toplevelentity
226/// ::= 'type' type
227bool LLParser::ParseUnnamedType() {
228 assert(Lex.getKind() == lltok::kw_type);
229 LocTy TypeLoc = Lex.getLoc();
230 Lex.Lex(); // eat kw_type
231
232 PATypeHolder Ty(Type::VoidTy);
233 if (ParseType(Ty)) return true;
234
235 unsigned TypeID = NumberedTypes.size();
236
237 // See if this type was previously referenced.
238 std::map<unsigned, std::pair<PATypeHolder, LocTy> >::iterator
239 FI = ForwardRefTypeIDs.find(TypeID);
240 if (FI != ForwardRefTypeIDs.end()) {
241 if (FI->second.first.get() == Ty)
242 return Error(TypeLoc, "self referential type is invalid");
243
244 cast<DerivedType>(FI->second.first.get())->refineAbstractTypeTo(Ty);
245 Ty = FI->second.first.get();
246 ForwardRefTypeIDs.erase(FI);
247 }
248
249 NumberedTypes.push_back(Ty);
250
251 return false;
252}
253
254/// toplevelentity
255/// ::= LocalVar '=' 'type' type
256bool LLParser::ParseNamedType() {
257 std::string Name = Lex.getStrVal();
258 LocTy NameLoc = Lex.getLoc();
259 Lex.Lex(); // eat LocalVar.
260
261 PATypeHolder Ty(Type::VoidTy);
262
263 if (ParseToken(lltok::equal, "expected '=' after name") ||
264 ParseToken(lltok::kw_type, "expected 'type' after name") ||
265 ParseType(Ty))
266 return true;
267
268 // Set the type name, checking for conflicts as we do so.
269 bool AlreadyExists = M->addTypeName(Name, Ty);
270 if (!AlreadyExists) return false;
271
272 // See if this type is a forward reference. We need to eagerly resolve
273 // types to allow recursive type redefinitions below.
274 std::map<std::string, std::pair<PATypeHolder, LocTy> >::iterator
275 FI = ForwardRefTypes.find(Name);
276 if (FI != ForwardRefTypes.end()) {
277 if (FI->second.first.get() == Ty)
278 return Error(NameLoc, "self referential type is invalid");
279
280 cast<DerivedType>(FI->second.first.get())->refineAbstractTypeTo(Ty);
281 Ty = FI->second.first.get();
282 ForwardRefTypes.erase(FI);
283 }
284
285 // Inserting a name that is already defined, get the existing name.
286 const Type *Existing = M->getTypeByName(Name);
287 assert(Existing && "Conflict but no matching type?!");
288
289 // Otherwise, this is an attempt to redefine a type. That's okay if
290 // the redefinition is identical to the original.
291 // FIXME: REMOVE REDEFINITIONS IN LLVM 3.0
292 if (Existing == Ty) return false;
293
294 // Any other kind of (non-equivalent) redefinition is an error.
295 return Error(NameLoc, "redefinition of type named '" + Name + "' of type '" +
296 Ty->getDescription() + "'");
297}
298
299
300/// toplevelentity
301/// ::= 'declare' FunctionHeader
302bool LLParser::ParseDeclare() {
303 assert(Lex.getKind() == lltok::kw_declare);
304 Lex.Lex();
305
306 Function *F;
307 return ParseFunctionHeader(F, false);
308}
309
310/// toplevelentity
311/// ::= 'define' FunctionHeader '{' ...
312bool LLParser::ParseDefine() {
313 assert(Lex.getKind() == lltok::kw_define);
314 Lex.Lex();
315
316 Function *F;
317 return ParseFunctionHeader(F, true) ||
318 ParseFunctionBody(*F);
319}
320
321/// ParseGlobalType
322/// ::= 'constant'
323/// ::= 'global'
324bool LLParser::ParseGlobalType(bool &IsConstant) {
325 if (Lex.getKind() == lltok::kw_constant)
326 IsConstant = true;
327 else if (Lex.getKind() == lltok::kw_global)
328 IsConstant = false;
329 else {
330 IsConstant = false;
331 return TokError("expected 'global' or 'constant'");
332 }
333 Lex.Lex();
334 return false;
335}
336
337/// ParseNamedGlobal:
338/// GlobalVar '=' OptionalVisibility ALIAS ...
339/// GlobalVar '=' OptionalLinkage OptionalVisibility ... -> global variable
340bool LLParser::ParseNamedGlobal() {
341 assert(Lex.getKind() == lltok::GlobalVar);
342 LocTy NameLoc = Lex.getLoc();
343 std::string Name = Lex.getStrVal();
344 Lex.Lex();
345
346 bool HasLinkage;
347 unsigned Linkage, Visibility;
348 if (ParseToken(lltok::equal, "expected '=' in global variable") ||
349 ParseOptionalLinkage(Linkage, HasLinkage) ||
350 ParseOptionalVisibility(Visibility))
351 return true;
352
353 if (HasLinkage || Lex.getKind() != lltok::kw_alias)
354 return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility);
355 return ParseAlias(Name, NameLoc, Visibility);
356}
357
358/// ParseAlias:
359/// ::= GlobalVar '=' OptionalVisibility 'alias' OptionalLinkage Aliasee
360/// Aliasee
361/// ::= TypeAndValue
362/// ::= 'bitcast' '(' TypeAndValue 'to' Type ')'
363/// ::= 'getelementptr' '(' ... ')'
364///
365/// Everything through visibility has already been parsed.
366///
367bool LLParser::ParseAlias(const std::string &Name, LocTy NameLoc,
368 unsigned Visibility) {
369 assert(Lex.getKind() == lltok::kw_alias);
370 Lex.Lex();
371 unsigned Linkage;
372 LocTy LinkageLoc = Lex.getLoc();
373 if (ParseOptionalLinkage(Linkage))
374 return true;
375
376 if (Linkage != GlobalValue::ExternalLinkage &&
377 Linkage != GlobalValue::WeakAnyLinkage &&
378 Linkage != GlobalValue::WeakODRLinkage &&
379 Linkage != GlobalValue::InternalLinkage &&
380 Linkage != GlobalValue::PrivateLinkage)
381 return Error(LinkageLoc, "invalid linkage type for alias");
382
383 Constant *Aliasee;
384 LocTy AliaseeLoc = Lex.getLoc();
385 if (Lex.getKind() != lltok::kw_bitcast &&
386 Lex.getKind() != lltok::kw_getelementptr) {
387 if (ParseGlobalTypeAndValue(Aliasee)) return true;
388 } else {
389 // The bitcast dest type is not present, it is implied by the dest type.
390 ValID ID;
391 if (ParseValID(ID)) return true;
392 if (ID.Kind != ValID::t_Constant)
393 return Error(AliaseeLoc, "invalid aliasee");
394 Aliasee = ID.ConstantVal;
395 }
396
397 if (!isa<PointerType>(Aliasee->getType()))
398 return Error(AliaseeLoc, "alias must have pointer type");
399
400 // Okay, create the alias but do not insert it into the module yet.
401 GlobalAlias* GA = new GlobalAlias(Aliasee->getType(),
402 (GlobalValue::LinkageTypes)Linkage, Name,
403 Aliasee);
404 GA->setVisibility((GlobalValue::VisibilityTypes)Visibility);
405
406 // See if this value already exists in the symbol table. If so, it is either
407 // a redefinition or a definition of a forward reference.
408 if (GlobalValue *Val =
409 cast_or_null<GlobalValue>(M->getValueSymbolTable().lookup(Name))) {
410 // See if this was a redefinition. If so, there is no entry in
411 // ForwardRefVals.
412 std::map<std::string, std::pair<GlobalValue*, LocTy> >::iterator
413 I = ForwardRefVals.find(Name);
414 if (I == ForwardRefVals.end())
415 return Error(NameLoc, "redefinition of global named '@" + Name + "'");
416
417 // Otherwise, this was a definition of forward ref. Verify that types
418 // agree.
419 if (Val->getType() != GA->getType())
420 return Error(NameLoc,
421 "forward reference and definition of alias have different types");
422
423 // If they agree, just RAUW the old value with the alias and remove the
424 // forward ref info.
425 Val->replaceAllUsesWith(GA);
426 Val->eraseFromParent();
427 ForwardRefVals.erase(I);
428 }
429
430 // Insert into the module, we know its name won't collide now.
431 M->getAliasList().push_back(GA);
432 assert(GA->getNameStr() == Name && "Should not be a name conflict!");
433
434 return false;
435}
436
437/// ParseGlobal
438/// ::= GlobalVar '=' OptionalLinkage OptionalVisibility OptionalThreadLocal
439/// OptionalAddrSpace GlobalType Type Const
440/// ::= OptionalLinkage OptionalVisibility OptionalThreadLocal
441/// OptionalAddrSpace GlobalType Type Const
442///
443/// Everything through visibility has been parsed already.
444///
445bool LLParser::ParseGlobal(const std::string &Name, LocTy NameLoc,
446 unsigned Linkage, bool HasLinkage,
447 unsigned Visibility) {
448 unsigned AddrSpace;
449 bool ThreadLocal, IsConstant;
450 LocTy TyLoc;
451
452 PATypeHolder Ty(Type::VoidTy);
453 if (ParseOptionalToken(lltok::kw_thread_local, ThreadLocal) ||
454 ParseOptionalAddrSpace(AddrSpace) ||
455 ParseGlobalType(IsConstant) ||
456 ParseType(Ty, TyLoc))
457 return true;
458
459 // If the linkage is specified and is external, then no initializer is
460 // present.
461 Constant *Init = 0;
462 if (!HasLinkage || (Linkage != GlobalValue::DLLImportLinkage &&
463 Linkage != GlobalValue::ExternalWeakLinkage &&
464 Linkage != GlobalValue::ExternalLinkage)) {
465 if (ParseGlobalValue(Ty, Init))
466 return true;
467 }
468
469 if (isa<FunctionType>(Ty) || Ty == Type::LabelTy)
470 return Error(TyLoc, "invalid type for global variable");
471
472 GlobalVariable *GV = 0;
473
474 // See if the global was forward referenced, if so, use the global.
475 if (!Name.empty()) {
476 if ((GV = M->getGlobalVariable(Name, true)) &&
477 !ForwardRefVals.erase(Name))
478 return Error(NameLoc, "redefinition of global '@" + Name + "'");
479 } else {
480 std::map<unsigned, std::pair<GlobalValue*, LocTy> >::iterator
481 I = ForwardRefValIDs.find(NumberedVals.size());
482 if (I != ForwardRefValIDs.end()) {
483 GV = cast<GlobalVariable>(I->second.first);
484 ForwardRefValIDs.erase(I);
485 }
486 }
487
488 if (GV == 0) {
489 GV = new GlobalVariable(Ty, false, GlobalValue::ExternalLinkage, 0, Name,
490 M, false, AddrSpace);
491 } else {
492 if (GV->getType()->getElementType() != Ty)
493 return Error(TyLoc,
494 "forward reference and definition of global have different types");
495
496 // Move the forward-reference to the correct spot in the module.
497 M->getGlobalList().splice(M->global_end(), M->getGlobalList(), GV);
498 }
499
500 if (Name.empty())
501 NumberedVals.push_back(GV);
502
503 // Set the parsed properties on the global.
504 if (Init)
505 GV->setInitializer(Init);
506 GV->setConstant(IsConstant);
507 GV->setLinkage((GlobalValue::LinkageTypes)Linkage);
508 GV->setVisibility((GlobalValue::VisibilityTypes)Visibility);
509 GV->setThreadLocal(ThreadLocal);
510
511 // Parse attributes on the global.
512 while (Lex.getKind() == lltok::comma) {
513 Lex.Lex();
514
515 if (Lex.getKind() == lltok::kw_section) {
516 Lex.Lex();
517 GV->setSection(Lex.getStrVal());
518 if (ParseToken(lltok::StringConstant, "expected global section string"))
519 return true;
520 } else if (Lex.getKind() == lltok::kw_align) {
521 unsigned Alignment;
522 if (ParseOptionalAlignment(Alignment)) return true;
523 GV->setAlignment(Alignment);
524 } else {
525 TokError("unknown global variable property!");
526 }
527 }
528
529 return false;
530}
531
532
533//===----------------------------------------------------------------------===//
534// GlobalValue Reference/Resolution Routines.
535//===----------------------------------------------------------------------===//
536
537/// GetGlobalVal - Get a value with the specified name or ID, creating a
538/// forward reference record if needed. This can return null if the value
539/// exists but does not have the right type.
540GlobalValue *LLParser::GetGlobalVal(const std::string &Name, const Type *Ty,
541 LocTy Loc) {
542 const PointerType *PTy = dyn_cast<PointerType>(Ty);
543 if (PTy == 0) {
544 Error(Loc, "global variable reference must have pointer type");
545 return 0;
546 }
547
548 // Look this name up in the normal function symbol table.
549 GlobalValue *Val =
550 cast_or_null<GlobalValue>(M->getValueSymbolTable().lookup(Name));
551
552 // If this is a forward reference for the value, see if we already created a
553 // forward ref record.
554 if (Val == 0) {
555 std::map<std::string, std::pair<GlobalValue*, LocTy> >::iterator
556 I = ForwardRefVals.find(Name);
557 if (I != ForwardRefVals.end())
558 Val = I->second.first;
559 }
560
561 // If we have the value in the symbol table or fwd-ref table, return it.
562 if (Val) {
563 if (Val->getType() == Ty) return Val;
564 Error(Loc, "'@" + Name + "' defined with type '" +
565 Val->getType()->getDescription() + "'");
566 return 0;
567 }
568
569 // Otherwise, create a new forward reference for this value and remember it.
570 GlobalValue *FwdVal;
571 if (const FunctionType *FT = dyn_cast<FunctionType>(PTy->getElementType())) {
572 // Function types can return opaque but functions can't.
573 if (isa<OpaqueType>(FT->getReturnType())) {
574 Error(Loc, "function may not return opaque type");
575 return 0;
576 }
577
578 FwdVal = Function::Create(FT, GlobalValue::ExternalWeakLinkage, Name, M);
579 } else {
580 FwdVal = new GlobalVariable(PTy->getElementType(), false,
581 GlobalValue::ExternalWeakLinkage, 0, Name, M);
582 }
583
584 ForwardRefVals[Name] = std::make_pair(FwdVal, Loc);
585 return FwdVal;
586}
587
588GlobalValue *LLParser::GetGlobalVal(unsigned ID, const Type *Ty, LocTy Loc) {
589 const PointerType *PTy = dyn_cast<PointerType>(Ty);
590 if (PTy == 0) {
591 Error(Loc, "global variable reference must have pointer type");
592 return 0;
593 }
594
595 GlobalValue *Val = ID < NumberedVals.size() ? NumberedVals[ID] : 0;
596
597 // If this is a forward reference for the value, see if we already created a
598 // forward ref record.
599 if (Val == 0) {
600 std::map<unsigned, std::pair<GlobalValue*, LocTy> >::iterator
601 I = ForwardRefValIDs.find(ID);
602 if (I != ForwardRefValIDs.end())
603 Val = I->second.first;
604 }
605
606 // If we have the value in the symbol table or fwd-ref table, return it.
607 if (Val) {
608 if (Val->getType() == Ty) return Val;
609 Error(Loc, "'@" + utostr(ID) + "' defined with type '" +
610 Val->getType()->getDescription() + "'");
611 return 0;
612 }
613
614 // Otherwise, create a new forward reference for this value and remember it.
615 GlobalValue *FwdVal;
616 if (const FunctionType *FT = dyn_cast<FunctionType>(PTy->getElementType())) {
617 // Function types can return opaque but functions can't.
618 if (isa<OpaqueType>(FT->getReturnType())) {
619 Error(Loc, "function may not return opaque type");
620 return 0;
621 }
622 FwdVal = Function::Create(FT, GlobalValue::ExternalWeakLinkage, "", M);
623 } else {
624 FwdVal = new GlobalVariable(PTy->getElementType(), false,
625 GlobalValue::ExternalWeakLinkage, 0, "", M);
626 }
627
628 ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc);
629 return FwdVal;
630}
631
632
633//===----------------------------------------------------------------------===//
634// Helper Routines.
635//===----------------------------------------------------------------------===//
636
637/// ParseToken - If the current token has the specified kind, eat it and return
638/// success. Otherwise, emit the specified error and return failure.
639bool LLParser::ParseToken(lltok::Kind T, const char *ErrMsg) {
640 if (Lex.getKind() != T)
641 return TokError(ErrMsg);
642 Lex.Lex();
643 return false;
644}
645
646/// ParseStringConstant
647/// ::= StringConstant
648bool LLParser::ParseStringConstant(std::string &Result) {
649 if (Lex.getKind() != lltok::StringConstant)
650 return TokError("expected string constant");
651 Result = Lex.getStrVal();
652 Lex.Lex();
653 return false;
654}
655
656/// ParseUInt32
657/// ::= uint32
658bool LLParser::ParseUInt32(unsigned &Val) {
659 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
660 return TokError("expected integer");
661 uint64_t Val64 = Lex.getAPSIntVal().getLimitedValue(0xFFFFFFFFULL+1);
662 if (Val64 != unsigned(Val64))
663 return TokError("expected 32-bit integer (too large)");
664 Val = Val64;
665 Lex.Lex();
666 return false;
667}
668
669
670/// ParseOptionalAddrSpace
671/// := /*empty*/
672/// := 'addrspace' '(' uint32 ')'
673bool LLParser::ParseOptionalAddrSpace(unsigned &AddrSpace) {
674 AddrSpace = 0;
675 if (!EatIfPresent(lltok::kw_addrspace))
676 return false;
677 return ParseToken(lltok::lparen, "expected '(' in address space") ||
678 ParseUInt32(AddrSpace) ||
679 ParseToken(lltok::rparen, "expected ')' in address space");
680}
681
682/// ParseOptionalAttrs - Parse a potentially empty attribute list. AttrKind
683/// indicates what kind of attribute list this is: 0: function arg, 1: result,
684/// 2: function attr.
685/// 3: function arg after value: FIXME: REMOVE IN LLVM 3.0
686bool LLParser::ParseOptionalAttrs(unsigned &Attrs, unsigned AttrKind) {
687 Attrs = Attribute::None;
688 LocTy AttrLoc = Lex.getLoc();
689
690 while (1) {
691 switch (Lex.getKind()) {
692 case lltok::kw_sext:
693 case lltok::kw_zext:
694 // Treat these as signext/zeroext if they occur in the argument list after
695 // the value, as in "call i8 @foo(i8 10 sext)". If they occur before the
696 // value, as in "call i8 @foo(i8 sext (" then it is part of a constant
697 // expr.
698 // FIXME: REMOVE THIS IN LLVM 3.0
699 if (AttrKind == 3) {
700 if (Lex.getKind() == lltok::kw_sext)
701 Attrs |= Attribute::SExt;
702 else
703 Attrs |= Attribute::ZExt;
704 break;
705 }
706 // FALL THROUGH.
707 default: // End of attributes.
708 if (AttrKind != 2 && (Attrs & Attribute::FunctionOnly))
709 return Error(AttrLoc, "invalid use of function-only attribute");
710
711 if (AttrKind != 0 && AttrKind != 3 && (Attrs & Attribute::ParameterOnly))
712 return Error(AttrLoc, "invalid use of parameter-only attribute");
713
714 return false;
715 case lltok::kw_zeroext: Attrs |= Attribute::ZExt; break;
716 case lltok::kw_signext: Attrs |= Attribute::SExt; break;
717 case lltok::kw_inreg: Attrs |= Attribute::InReg; break;
718 case lltok::kw_sret: Attrs |= Attribute::StructRet; break;
719 case lltok::kw_noalias: Attrs |= Attribute::NoAlias; break;
720 case lltok::kw_nocapture: Attrs |= Attribute::NoCapture; break;
721 case lltok::kw_byval: Attrs |= Attribute::ByVal; break;
722 case lltok::kw_nest: Attrs |= Attribute::Nest; break;
715 case lltok::kw_zeroext: Attrs |= Attribute::ZExt; break;
716 case lltok::kw_signext: Attrs |= Attribute::SExt; break;
717 case lltok::kw_inreg: Attrs |= Attribute::InReg; break;
718 case lltok::kw_sret: Attrs |= Attribute::StructRet; break;
719 case lltok::kw_noalias: Attrs |= Attribute::NoAlias; break;
720 case lltok::kw_nocapture: Attrs |= Attribute::NoCapture; break;
721 case lltok::kw_byval: Attrs |= Attribute::ByVal; break;
722 case lltok::kw_nest: Attrs |= Attribute::Nest; break;
723
723
724 case lltok::kw_noreturn: Attrs |= Attribute::NoReturn; break;
725 case lltok::kw_nounwind: Attrs |= Attribute::NoUnwind; break;
726 case lltok::kw_noinline: Attrs |= Attribute::NoInline; break;
727 case lltok::kw_readnone: Attrs |= Attribute::ReadNone; break;
728 case lltok::kw_readonly: Attrs |= Attribute::ReadOnly; break;
729 case lltok::kw_alwaysinline: Attrs |= Attribute::AlwaysInline; break;
730 case lltok::kw_optsize: Attrs |= Attribute::OptimizeForSize; break;
731 case lltok::kw_ssp: Attrs |= Attribute::StackProtect; break;
732 case lltok::kw_sspreq: Attrs |= Attribute::StackProtectReq; break;
733
724 case lltok::kw_noreturn: Attrs |= Attribute::NoReturn; break;
725 case lltok::kw_nounwind: Attrs |= Attribute::NoUnwind; break;
726 case lltok::kw_noinline: Attrs |= Attribute::NoInline; break;
727 case lltok::kw_readnone: Attrs |= Attribute::ReadNone; break;
728 case lltok::kw_readonly: Attrs |= Attribute::ReadOnly; break;
729 case lltok::kw_alwaysinline: Attrs |= Attribute::AlwaysInline; break;
730 case lltok::kw_optsize: Attrs |= Attribute::OptimizeForSize; break;
731 case lltok::kw_ssp: Attrs |= Attribute::StackProtect; break;
732 case lltok::kw_sspreq: Attrs |= Attribute::StackProtectReq; break;
733 case lltok::kw_noredzone: Attrs |= Attribute::NoRedZone; break;
734 case lltok::kw_noimplicitfloat: Attrs |= Attribute::NoImplicitFloat; break;
734
735 case lltok::kw_align: {
736 unsigned Alignment;
737 if (ParseOptionalAlignment(Alignment))
738 return true;
739 Attrs |= Attribute::constructAlignmentFromInt(Alignment);
740 continue;
741 }
742 }
743 Lex.Lex();
744 }
745}
746
747/// ParseOptionalLinkage
748/// ::= /*empty*/
749/// ::= 'private'
750/// ::= 'internal'
751/// ::= 'weak'
752/// ::= 'weak_odr'
753/// ::= 'linkonce'
754/// ::= 'linkonce_odr'
755/// ::= 'appending'
756/// ::= 'dllexport'
757/// ::= 'common'
758/// ::= 'dllimport'
759/// ::= 'extern_weak'
760/// ::= 'external'
761bool LLParser::ParseOptionalLinkage(unsigned &Res, bool &HasLinkage) {
762 HasLinkage = false;
763 switch (Lex.getKind()) {
764 default: Res = GlobalValue::ExternalLinkage; return false;
765 case lltok::kw_private: Res = GlobalValue::PrivateLinkage; break;
766 case lltok::kw_internal: Res = GlobalValue::InternalLinkage; break;
767 case lltok::kw_weak: Res = GlobalValue::WeakAnyLinkage; break;
768 case lltok::kw_weak_odr: Res = GlobalValue::WeakODRLinkage; break;
769 case lltok::kw_linkonce: Res = GlobalValue::LinkOnceAnyLinkage; break;
770 case lltok::kw_linkonce_odr: Res = GlobalValue::LinkOnceODRLinkage; break;
771 case lltok::kw_available_externally:
772 Res = GlobalValue::AvailableExternallyLinkage;
773 break;
774 case lltok::kw_appending: Res = GlobalValue::AppendingLinkage; break;
775 case lltok::kw_dllexport: Res = GlobalValue::DLLExportLinkage; break;
776 case lltok::kw_common: Res = GlobalValue::CommonLinkage; break;
777 case lltok::kw_dllimport: Res = GlobalValue::DLLImportLinkage; break;
778 case lltok::kw_extern_weak: Res = GlobalValue::ExternalWeakLinkage; break;
779 case lltok::kw_external: Res = GlobalValue::ExternalLinkage; break;
780 }
781 Lex.Lex();
782 HasLinkage = true;
783 return false;
784}
785
786/// ParseOptionalVisibility
787/// ::= /*empty*/
788/// ::= 'default'
789/// ::= 'hidden'
790/// ::= 'protected'
791///
792bool LLParser::ParseOptionalVisibility(unsigned &Res) {
793 switch (Lex.getKind()) {
794 default: Res = GlobalValue::DefaultVisibility; return false;
795 case lltok::kw_default: Res = GlobalValue::DefaultVisibility; break;
796 case lltok::kw_hidden: Res = GlobalValue::HiddenVisibility; break;
797 case lltok::kw_protected: Res = GlobalValue::ProtectedVisibility; break;
798 }
799 Lex.Lex();
800 return false;
801}
802
803/// ParseOptionalCallingConv
804/// ::= /*empty*/
805/// ::= 'ccc'
806/// ::= 'fastcc'
807/// ::= 'coldcc'
808/// ::= 'x86_stdcallcc'
809/// ::= 'x86_fastcallcc'
810/// ::= 'cc' UINT
811///
812bool LLParser::ParseOptionalCallingConv(unsigned &CC) {
813 switch (Lex.getKind()) {
814 default: CC = CallingConv::C; return false;
815 case lltok::kw_ccc: CC = CallingConv::C; break;
816 case lltok::kw_fastcc: CC = CallingConv::Fast; break;
817 case lltok::kw_coldcc: CC = CallingConv::Cold; break;
818 case lltok::kw_x86_stdcallcc: CC = CallingConv::X86_StdCall; break;
819 case lltok::kw_x86_fastcallcc: CC = CallingConv::X86_FastCall; break;
820 case lltok::kw_cc: Lex.Lex(); return ParseUInt32(CC);
821 }
822 Lex.Lex();
823 return false;
824}
825
826/// ParseOptionalAlignment
827/// ::= /* empty */
828/// ::= 'align' 4
829bool LLParser::ParseOptionalAlignment(unsigned &Alignment) {
830 Alignment = 0;
831 if (!EatIfPresent(lltok::kw_align))
832 return false;
833 LocTy AlignLoc = Lex.getLoc();
834 if (ParseUInt32(Alignment)) return true;
835 if (!isPowerOf2_32(Alignment))
836 return Error(AlignLoc, "alignment is not a power of two");
837 return false;
838}
839
840/// ParseOptionalCommaAlignment
841/// ::= /* empty */
842/// ::= ',' 'align' 4
843bool LLParser::ParseOptionalCommaAlignment(unsigned &Alignment) {
844 Alignment = 0;
845 if (!EatIfPresent(lltok::comma))
846 return false;
847 return ParseToken(lltok::kw_align, "expected 'align'") ||
848 ParseUInt32(Alignment);
849}
850
851/// ParseIndexList
852/// ::= (',' uint32)+
853bool LLParser::ParseIndexList(SmallVectorImpl<unsigned> &Indices) {
854 if (Lex.getKind() != lltok::comma)
855 return TokError("expected ',' as start of index list");
856
857 while (EatIfPresent(lltok::comma)) {
858 unsigned Idx;
859 if (ParseUInt32(Idx)) return true;
860 Indices.push_back(Idx);
861 }
862
863 return false;
864}
865
866//===----------------------------------------------------------------------===//
867// Type Parsing.
868//===----------------------------------------------------------------------===//
869
870/// ParseType - Parse and resolve a full type.
871bool LLParser::ParseType(PATypeHolder &Result, bool AllowVoid) {
872 LocTy TypeLoc = Lex.getLoc();
873 if (ParseTypeRec(Result)) return true;
874
875 // Verify no unresolved uprefs.
876 if (!UpRefs.empty())
877 return Error(UpRefs.back().Loc, "invalid unresolved type up reference");
878
879 if (!AllowVoid && Result.get() == Type::VoidTy)
880 return Error(TypeLoc, "void type only allowed for function results");
881
882 return false;
883}
884
885/// HandleUpRefs - Every time we finish a new layer of types, this function is
886/// called. It loops through the UpRefs vector, which is a list of the
887/// currently active types. For each type, if the up-reference is contained in
888/// the newly completed type, we decrement the level count. When the level
889/// count reaches zero, the up-referenced type is the type that is passed in:
890/// thus we can complete the cycle.
891///
892PATypeHolder LLParser::HandleUpRefs(const Type *ty) {
893 // If Ty isn't abstract, or if there are no up-references in it, then there is
894 // nothing to resolve here.
895 if (!ty->isAbstract() || UpRefs.empty()) return ty;
896
897 PATypeHolder Ty(ty);
898#if 0
899 errs() << "Type '" << Ty->getDescription()
900 << "' newly formed. Resolving upreferences.\n"
901 << UpRefs.size() << " upreferences active!\n";
902#endif
903
904 // If we find any resolvable upreferences (i.e., those whose NestingLevel goes
905 // to zero), we resolve them all together before we resolve them to Ty. At
906 // the end of the loop, if there is anything to resolve to Ty, it will be in
907 // this variable.
908 OpaqueType *TypeToResolve = 0;
909
910 for (unsigned i = 0; i != UpRefs.size(); ++i) {
911 // Determine if 'Ty' directly contains this up-references 'LastContainedTy'.
912 bool ContainsType =
913 std::find(Ty->subtype_begin(), Ty->subtype_end(),
914 UpRefs[i].LastContainedTy) != Ty->subtype_end();
915
916#if 0
917 errs() << " UR#" << i << " - TypeContains(" << Ty->getDescription() << ", "
918 << UpRefs[i].LastContainedTy->getDescription() << ") = "
919 << (ContainsType ? "true" : "false")
920 << " level=" << UpRefs[i].NestingLevel << "\n";
921#endif
922 if (!ContainsType)
923 continue;
924
925 // Decrement level of upreference
926 unsigned Level = --UpRefs[i].NestingLevel;
927 UpRefs[i].LastContainedTy = Ty;
928
929 // If the Up-reference has a non-zero level, it shouldn't be resolved yet.
930 if (Level != 0)
931 continue;
932
933#if 0
934 errs() << " * Resolving upreference for " << UpRefs[i].UpRefTy << "\n";
935#endif
936 if (!TypeToResolve)
937 TypeToResolve = UpRefs[i].UpRefTy;
938 else
939 UpRefs[i].UpRefTy->refineAbstractTypeTo(TypeToResolve);
940 UpRefs.erase(UpRefs.begin()+i); // Remove from upreference list.
941 --i; // Do not skip the next element.
942 }
943
944 if (TypeToResolve)
945 TypeToResolve->refineAbstractTypeTo(Ty);
946
947 return Ty;
948}
949
950
951/// ParseTypeRec - The recursive function used to process the internal
952/// implementation details of types.
953bool LLParser::ParseTypeRec(PATypeHolder &Result) {
954 switch (Lex.getKind()) {
955 default:
956 return TokError("expected type");
957 case lltok::Type:
958 // TypeRec ::= 'float' | 'void' (etc)
959 Result = Lex.getTyVal();
960 Lex.Lex();
961 break;
962 case lltok::kw_opaque:
963 // TypeRec ::= 'opaque'
964 Result = OpaqueType::get();
965 Lex.Lex();
966 break;
967 case lltok::lbrace:
968 // TypeRec ::= '{' ... '}'
969 if (ParseStructType(Result, false))
970 return true;
971 break;
972 case lltok::lsquare:
973 // TypeRec ::= '[' ... ']'
974 Lex.Lex(); // eat the lsquare.
975 if (ParseArrayVectorType(Result, false))
976 return true;
977 break;
978 case lltok::less: // Either vector or packed struct.
979 // TypeRec ::= '<' ... '>'
980 Lex.Lex();
981 if (Lex.getKind() == lltok::lbrace) {
982 if (ParseStructType(Result, true) ||
983 ParseToken(lltok::greater, "expected '>' at end of packed struct"))
984 return true;
985 } else if (ParseArrayVectorType(Result, true))
986 return true;
987 break;
988 case lltok::LocalVar:
989 case lltok::StringConstant: // FIXME: REMOVE IN LLVM 3.0
990 // TypeRec ::= %foo
991 if (const Type *T = M->getTypeByName(Lex.getStrVal())) {
992 Result = T;
993 } else {
994 Result = OpaqueType::get();
995 ForwardRefTypes.insert(std::make_pair(Lex.getStrVal(),
996 std::make_pair(Result,
997 Lex.getLoc())));
998 M->addTypeName(Lex.getStrVal(), Result.get());
999 }
1000 Lex.Lex();
1001 break;
1002
1003 case lltok::LocalVarID:
1004 // TypeRec ::= %4
1005 if (Lex.getUIntVal() < NumberedTypes.size())
1006 Result = NumberedTypes[Lex.getUIntVal()];
1007 else {
1008 std::map<unsigned, std::pair<PATypeHolder, LocTy> >::iterator
1009 I = ForwardRefTypeIDs.find(Lex.getUIntVal());
1010 if (I != ForwardRefTypeIDs.end())
1011 Result = I->second.first;
1012 else {
1013 Result = OpaqueType::get();
1014 ForwardRefTypeIDs.insert(std::make_pair(Lex.getUIntVal(),
1015 std::make_pair(Result,
1016 Lex.getLoc())));
1017 }
1018 }
1019 Lex.Lex();
1020 break;
1021 case lltok::backslash: {
1022 // TypeRec ::= '\' 4
1023 Lex.Lex();
1024 unsigned Val;
1025 if (ParseUInt32(Val)) return true;
1026 OpaqueType *OT = OpaqueType::get(); // Use temporary placeholder.
1027 UpRefs.push_back(UpRefRecord(Lex.getLoc(), Val, OT));
1028 Result = OT;
1029 break;
1030 }
1031 }
1032
1033 // Parse the type suffixes.
1034 while (1) {
1035 switch (Lex.getKind()) {
1036 // End of type.
1037 default: return false;
1038
1039 // TypeRec ::= TypeRec '*'
1040 case lltok::star:
1041 if (Result.get() == Type::LabelTy)
1042 return TokError("basic block pointers are invalid");
1043 if (Result.get() == Type::VoidTy)
1044 return TokError("pointers to void are invalid; use i8* instead");
1045 Result = HandleUpRefs(PointerType::getUnqual(Result.get()));
1046 Lex.Lex();
1047 break;
1048
1049 // TypeRec ::= TypeRec 'addrspace' '(' uint32 ')' '*'
1050 case lltok::kw_addrspace: {
1051 if (Result.get() == Type::LabelTy)
1052 return TokError("basic block pointers are invalid");
1053 if (Result.get() == Type::VoidTy)
1054 return TokError("pointers to void are invalid; use i8* instead");
1055 unsigned AddrSpace;
1056 if (ParseOptionalAddrSpace(AddrSpace) ||
1057 ParseToken(lltok::star, "expected '*' in address space"))
1058 return true;
1059
1060 Result = HandleUpRefs(PointerType::get(Result.get(), AddrSpace));
1061 break;
1062 }
1063
1064 /// Types '(' ArgTypeListI ')' OptFuncAttrs
1065 case lltok::lparen:
1066 if (ParseFunctionType(Result))
1067 return true;
1068 break;
1069 }
1070 }
1071}
1072
1073/// ParseParameterList
1074/// ::= '(' ')'
1075/// ::= '(' Arg (',' Arg)* ')'
1076/// Arg
1077/// ::= Type OptionalAttributes Value OptionalAttributes
1078bool LLParser::ParseParameterList(SmallVectorImpl<ParamInfo> &ArgList,
1079 PerFunctionState &PFS) {
1080 if (ParseToken(lltok::lparen, "expected '(' in call"))
1081 return true;
1082
1083 while (Lex.getKind() != lltok::rparen) {
1084 // If this isn't the first argument, we need a comma.
1085 if (!ArgList.empty() &&
1086 ParseToken(lltok::comma, "expected ',' in argument list"))
1087 return true;
1088
1089 // Parse the argument.
1090 LocTy ArgLoc;
1091 PATypeHolder ArgTy(Type::VoidTy);
1092 unsigned ArgAttrs1, ArgAttrs2;
1093 Value *V;
1094 if (ParseType(ArgTy, ArgLoc) ||
1095 ParseOptionalAttrs(ArgAttrs1, 0) ||
1096 ParseValue(ArgTy, V, PFS) ||
1097 // FIXME: Should not allow attributes after the argument, remove this in
1098 // LLVM 3.0.
1099 ParseOptionalAttrs(ArgAttrs2, 3))
1100 return true;
1101 ArgList.push_back(ParamInfo(ArgLoc, V, ArgAttrs1|ArgAttrs2));
1102 }
1103
1104 Lex.Lex(); // Lex the ')'.
1105 return false;
1106}
1107
1108
1109
1110/// ParseArgumentList - Parse the argument list for a function type or function
1111/// prototype. If 'inType' is true then we are parsing a FunctionType.
1112/// ::= '(' ArgTypeListI ')'
1113/// ArgTypeListI
1114/// ::= /*empty*/
1115/// ::= '...'
1116/// ::= ArgTypeList ',' '...'
1117/// ::= ArgType (',' ArgType)*
1118///
1119bool LLParser::ParseArgumentList(std::vector<ArgInfo> &ArgList,
1120 bool &isVarArg, bool inType) {
1121 isVarArg = false;
1122 assert(Lex.getKind() == lltok::lparen);
1123 Lex.Lex(); // eat the (.
1124
1125 if (Lex.getKind() == lltok::rparen) {
1126 // empty
1127 } else if (Lex.getKind() == lltok::dotdotdot) {
1128 isVarArg = true;
1129 Lex.Lex();
1130 } else {
1131 LocTy TypeLoc = Lex.getLoc();
1132 PATypeHolder ArgTy(Type::VoidTy);
1133 unsigned Attrs;
1134 std::string Name;
1135
1136 // If we're parsing a type, use ParseTypeRec, because we allow recursive
1137 // types (such as a function returning a pointer to itself). If parsing a
1138 // function prototype, we require fully resolved types.
1139 if ((inType ? ParseTypeRec(ArgTy) : ParseType(ArgTy)) ||
1140 ParseOptionalAttrs(Attrs, 0)) return true;
1141
1142 if (ArgTy == Type::VoidTy)
1143 return Error(TypeLoc, "argument can not have void type");
1144
1145 if (Lex.getKind() == lltok::LocalVar ||
1146 Lex.getKind() == lltok::StringConstant) { // FIXME: REMOVE IN LLVM 3.0
1147 Name = Lex.getStrVal();
1148 Lex.Lex();
1149 }
1150
1151 if (!ArgTy->isFirstClassType() && !isa<OpaqueType>(ArgTy))
1152 return Error(TypeLoc, "invalid type for function argument");
1153
1154 ArgList.push_back(ArgInfo(TypeLoc, ArgTy, Attrs, Name));
1155
1156 while (EatIfPresent(lltok::comma)) {
1157 // Handle ... at end of arg list.
1158 if (EatIfPresent(lltok::dotdotdot)) {
1159 isVarArg = true;
1160 break;
1161 }
1162
1163 // Otherwise must be an argument type.
1164 TypeLoc = Lex.getLoc();
1165 if ((inType ? ParseTypeRec(ArgTy) : ParseType(ArgTy)) ||
1166 ParseOptionalAttrs(Attrs, 0)) return true;
1167
1168 if (ArgTy == Type::VoidTy)
1169 return Error(TypeLoc, "argument can not have void type");
1170
1171 if (Lex.getKind() == lltok::LocalVar ||
1172 Lex.getKind() == lltok::StringConstant) { // FIXME: REMOVE IN LLVM 3.0
1173 Name = Lex.getStrVal();
1174 Lex.Lex();
1175 } else {
1176 Name = "";
1177 }
1178
1179 if (!ArgTy->isFirstClassType() && !isa<OpaqueType>(ArgTy))
1180 return Error(TypeLoc, "invalid type for function argument");
1181
1182 ArgList.push_back(ArgInfo(TypeLoc, ArgTy, Attrs, Name));
1183 }
1184 }
1185
1186 return ParseToken(lltok::rparen, "expected ')' at end of argument list");
1187}
1188
1189/// ParseFunctionType
1190/// ::= Type ArgumentList OptionalAttrs
1191bool LLParser::ParseFunctionType(PATypeHolder &Result) {
1192 assert(Lex.getKind() == lltok::lparen);
1193
1194 if (!FunctionType::isValidReturnType(Result))
1195 return TokError("invalid function return type");
1196
1197 std::vector<ArgInfo> ArgList;
1198 bool isVarArg;
1199 unsigned Attrs;
1200 if (ParseArgumentList(ArgList, isVarArg, true) ||
1201 // FIXME: Allow, but ignore attributes on function types!
1202 // FIXME: Remove in LLVM 3.0
1203 ParseOptionalAttrs(Attrs, 2))
1204 return true;
1205
1206 // Reject names on the arguments lists.
1207 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
1208 if (!ArgList[i].Name.empty())
1209 return Error(ArgList[i].Loc, "argument name invalid in function type");
1210 if (!ArgList[i].Attrs != 0) {
1211 // Allow but ignore attributes on function types; this permits
1212 // auto-upgrade.
1213 // FIXME: REJECT ATTRIBUTES ON FUNCTION TYPES in LLVM 3.0
1214 }
1215 }
1216
1217 std::vector<const Type*> ArgListTy;
1218 for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
1219 ArgListTy.push_back(ArgList[i].Type);
1220
1221 Result = HandleUpRefs(FunctionType::get(Result.get(), ArgListTy, isVarArg));
1222 return false;
1223}
1224
1225/// ParseStructType: Handles packed and unpacked types. </> parsed elsewhere.
1226/// TypeRec
1227/// ::= '{' '}'
1228/// ::= '{' TypeRec (',' TypeRec)* '}'
1229/// ::= '<' '{' '}' '>'
1230/// ::= '<' '{' TypeRec (',' TypeRec)* '}' '>'
1231bool LLParser::ParseStructType(PATypeHolder &Result, bool Packed) {
1232 assert(Lex.getKind() == lltok::lbrace);
1233 Lex.Lex(); // Consume the '{'
1234
1235 if (EatIfPresent(lltok::rbrace)) {
1236 Result = StructType::get(std::vector<const Type*>(), Packed);
1237 return false;
1238 }
1239
1240 std::vector<PATypeHolder> ParamsList;
1241 LocTy EltTyLoc = Lex.getLoc();
1242 if (ParseTypeRec(Result)) return true;
1243 ParamsList.push_back(Result);
1244
1245 if (Result == Type::VoidTy)
1246 return Error(EltTyLoc, "struct element can not have void type");
1247
1248 while (EatIfPresent(lltok::comma)) {
1249 EltTyLoc = Lex.getLoc();
1250 if (ParseTypeRec(Result)) return true;
1251
1252 if (Result == Type::VoidTy)
1253 return Error(EltTyLoc, "struct element can not have void type");
1254
1255 ParamsList.push_back(Result);
1256 }
1257
1258 if (ParseToken(lltok::rbrace, "expected '}' at end of struct"))
1259 return true;
1260
1261 std::vector<const Type*> ParamsListTy;
1262 for (unsigned i = 0, e = ParamsList.size(); i != e; ++i)
1263 ParamsListTy.push_back(ParamsList[i].get());
1264 Result = HandleUpRefs(StructType::get(ParamsListTy, Packed));
1265 return false;
1266}
1267
1268/// ParseArrayVectorType - Parse an array or vector type, assuming the first
1269/// token has already been consumed.
1270/// TypeRec
1271/// ::= '[' APSINTVAL 'x' Types ']'
1272/// ::= '<' APSINTVAL 'x' Types '>'
1273bool LLParser::ParseArrayVectorType(PATypeHolder &Result, bool isVector) {
1274 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned() ||
1275 Lex.getAPSIntVal().getBitWidth() > 64)
1276 return TokError("expected number in address space");
1277
1278 LocTy SizeLoc = Lex.getLoc();
1279 uint64_t Size = Lex.getAPSIntVal().getZExtValue();
1280 Lex.Lex();
1281
1282 if (ParseToken(lltok::kw_x, "expected 'x' after element count"))
1283 return true;
1284
1285 LocTy TypeLoc = Lex.getLoc();
1286 PATypeHolder EltTy(Type::VoidTy);
1287 if (ParseTypeRec(EltTy)) return true;
1288
1289 if (EltTy == Type::VoidTy)
1290 return Error(TypeLoc, "array and vector element type cannot be void");
1291
1292 if (ParseToken(isVector ? lltok::greater : lltok::rsquare,
1293 "expected end of sequential type"))
1294 return true;
1295
1296 if (isVector) {
1297 if (Size == 0)
1298 return Error(SizeLoc, "zero element vector is illegal");
1299 if ((unsigned)Size != Size)
1300 return Error(SizeLoc, "size too large for vector");
1301 if (!EltTy->isFloatingPoint() && !EltTy->isInteger())
1302 return Error(TypeLoc, "vector element type must be fp or integer");
1303 Result = VectorType::get(EltTy, unsigned(Size));
1304 } else {
1305 if (!EltTy->isFirstClassType() && !isa<OpaqueType>(EltTy))
1306 return Error(TypeLoc, "invalid array element type");
1307 Result = HandleUpRefs(ArrayType::get(EltTy, Size));
1308 }
1309 return false;
1310}
1311
1312//===----------------------------------------------------------------------===//
1313// Function Semantic Analysis.
1314//===----------------------------------------------------------------------===//
1315
1316LLParser::PerFunctionState::PerFunctionState(LLParser &p, Function &f)
1317 : P(p), F(f) {
1318
1319 // Insert unnamed arguments into the NumberedVals list.
1320 for (Function::arg_iterator AI = F.arg_begin(), E = F.arg_end();
1321 AI != E; ++AI)
1322 if (!AI->hasName())
1323 NumberedVals.push_back(AI);
1324}
1325
1326LLParser::PerFunctionState::~PerFunctionState() {
1327 // If there were any forward referenced non-basicblock values, delete them.
1328 for (std::map<std::string, std::pair<Value*, LocTy> >::iterator
1329 I = ForwardRefVals.begin(), E = ForwardRefVals.end(); I != E; ++I)
1330 if (!isa<BasicBlock>(I->second.first)) {
1331 I->second.first->replaceAllUsesWith(UndefValue::get(I->second.first
1332 ->getType()));
1333 delete I->second.first;
1334 I->second.first = 0;
1335 }
1336
1337 for (std::map<unsigned, std::pair<Value*, LocTy> >::iterator
1338 I = ForwardRefValIDs.begin(), E = ForwardRefValIDs.end(); I != E; ++I)
1339 if (!isa<BasicBlock>(I->second.first)) {
1340 I->second.first->replaceAllUsesWith(UndefValue::get(I->second.first
1341 ->getType()));
1342 delete I->second.first;
1343 I->second.first = 0;
1344 }
1345}
1346
1347bool LLParser::PerFunctionState::VerifyFunctionComplete() {
1348 if (!ForwardRefVals.empty())
1349 return P.Error(ForwardRefVals.begin()->second.second,
1350 "use of undefined value '%" + ForwardRefVals.begin()->first +
1351 "'");
1352 if (!ForwardRefValIDs.empty())
1353 return P.Error(ForwardRefValIDs.begin()->second.second,
1354 "use of undefined value '%" +
1355 utostr(ForwardRefValIDs.begin()->first) + "'");
1356 return false;
1357}
1358
1359
1360/// GetVal - Get a value with the specified name or ID, creating a
1361/// forward reference record if needed. This can return null if the value
1362/// exists but does not have the right type.
1363Value *LLParser::PerFunctionState::GetVal(const std::string &Name,
1364 const Type *Ty, LocTy Loc) {
1365 // Look this name up in the normal function symbol table.
1366 Value *Val = F.getValueSymbolTable().lookup(Name);
1367
1368 // If this is a forward reference for the value, see if we already created a
1369 // forward ref record.
1370 if (Val == 0) {
1371 std::map<std::string, std::pair<Value*, LocTy> >::iterator
1372 I = ForwardRefVals.find(Name);
1373 if (I != ForwardRefVals.end())
1374 Val = I->second.first;
1375 }
1376
1377 // If we have the value in the symbol table or fwd-ref table, return it.
1378 if (Val) {
1379 if (Val->getType() == Ty) return Val;
1380 if (Ty == Type::LabelTy)
1381 P.Error(Loc, "'%" + Name + "' is not a basic block");
1382 else
1383 P.Error(Loc, "'%" + Name + "' defined with type '" +
1384 Val->getType()->getDescription() + "'");
1385 return 0;
1386 }
1387
1388 // Don't make placeholders with invalid type.
1389 if (!Ty->isFirstClassType() && !isa<OpaqueType>(Ty) && Ty != Type::LabelTy) {
1390 P.Error(Loc, "invalid use of a non-first-class type");
1391 return 0;
1392 }
1393
1394 // Otherwise, create a new forward reference for this value and remember it.
1395 Value *FwdVal;
1396 if (Ty == Type::LabelTy)
1397 FwdVal = BasicBlock::Create(Name, &F);
1398 else
1399 FwdVal = new Argument(Ty, Name);
1400
1401 ForwardRefVals[Name] = std::make_pair(FwdVal, Loc);
1402 return FwdVal;
1403}
1404
1405Value *LLParser::PerFunctionState::GetVal(unsigned ID, const Type *Ty,
1406 LocTy Loc) {
1407 // Look this name up in the normal function symbol table.
1408 Value *Val = ID < NumberedVals.size() ? NumberedVals[ID] : 0;
1409
1410 // If this is a forward reference for the value, see if we already created a
1411 // forward ref record.
1412 if (Val == 0) {
1413 std::map<unsigned, std::pair<Value*, LocTy> >::iterator
1414 I = ForwardRefValIDs.find(ID);
1415 if (I != ForwardRefValIDs.end())
1416 Val = I->second.first;
1417 }
1418
1419 // If we have the value in the symbol table or fwd-ref table, return it.
1420 if (Val) {
1421 if (Val->getType() == Ty) return Val;
1422 if (Ty == Type::LabelTy)
1423 P.Error(Loc, "'%" + utostr(ID) + "' is not a basic block");
1424 else
1425 P.Error(Loc, "'%" + utostr(ID) + "' defined with type '" +
1426 Val->getType()->getDescription() + "'");
1427 return 0;
1428 }
1429
1430 if (!Ty->isFirstClassType() && !isa<OpaqueType>(Ty) && Ty != Type::LabelTy) {
1431 P.Error(Loc, "invalid use of a non-first-class type");
1432 return 0;
1433 }
1434
1435 // Otherwise, create a new forward reference for this value and remember it.
1436 Value *FwdVal;
1437 if (Ty == Type::LabelTy)
1438 FwdVal = BasicBlock::Create("", &F);
1439 else
1440 FwdVal = new Argument(Ty);
1441
1442 ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc);
1443 return FwdVal;
1444}
1445
1446/// SetInstName - After an instruction is parsed and inserted into its
1447/// basic block, this installs its name.
1448bool LLParser::PerFunctionState::SetInstName(int NameID,
1449 const std::string &NameStr,
1450 LocTy NameLoc, Instruction *Inst) {
1451 // If this instruction has void type, it cannot have a name or ID specified.
1452 if (Inst->getType() == Type::VoidTy) {
1453 if (NameID != -1 || !NameStr.empty())
1454 return P.Error(NameLoc, "instructions returning void cannot have a name");
1455 return false;
1456 }
1457
1458 // If this was a numbered instruction, verify that the instruction is the
1459 // expected value and resolve any forward references.
1460 if (NameStr.empty()) {
1461 // If neither a name nor an ID was specified, just use the next ID.
1462 if (NameID == -1)
1463 NameID = NumberedVals.size();
1464
1465 if (unsigned(NameID) != NumberedVals.size())
1466 return P.Error(NameLoc, "instruction expected to be numbered '%" +
1467 utostr(NumberedVals.size()) + "'");
1468
1469 std::map<unsigned, std::pair<Value*, LocTy> >::iterator FI =
1470 ForwardRefValIDs.find(NameID);
1471 if (FI != ForwardRefValIDs.end()) {
1472 if (FI->second.first->getType() != Inst->getType())
1473 return P.Error(NameLoc, "instruction forward referenced with type '" +
1474 FI->second.first->getType()->getDescription() + "'");
1475 FI->second.first->replaceAllUsesWith(Inst);
1476 ForwardRefValIDs.erase(FI);
1477 }
1478
1479 NumberedVals.push_back(Inst);
1480 return false;
1481 }
1482
1483 // Otherwise, the instruction had a name. Resolve forward refs and set it.
1484 std::map<std::string, std::pair<Value*, LocTy> >::iterator
1485 FI = ForwardRefVals.find(NameStr);
1486 if (FI != ForwardRefVals.end()) {
1487 if (FI->second.first->getType() != Inst->getType())
1488 return P.Error(NameLoc, "instruction forward referenced with type '" +
1489 FI->second.first->getType()->getDescription() + "'");
1490 FI->second.first->replaceAllUsesWith(Inst);
1491 ForwardRefVals.erase(FI);
1492 }
1493
1494 // Set the name on the instruction.
1495 Inst->setName(NameStr);
1496
1497 if (Inst->getNameStr() != NameStr)
1498 return P.Error(NameLoc, "multiple definition of local value named '" +
1499 NameStr + "'");
1500 return false;
1501}
1502
1503/// GetBB - Get a basic block with the specified name or ID, creating a
1504/// forward reference record if needed.
1505BasicBlock *LLParser::PerFunctionState::GetBB(const std::string &Name,
1506 LocTy Loc) {
1507 return cast_or_null<BasicBlock>(GetVal(Name, Type::LabelTy, Loc));
1508}
1509
1510BasicBlock *LLParser::PerFunctionState::GetBB(unsigned ID, LocTy Loc) {
1511 return cast_or_null<BasicBlock>(GetVal(ID, Type::LabelTy, Loc));
1512}
1513
1514/// DefineBB - Define the specified basic block, which is either named or
1515/// unnamed. If there is an error, this returns null otherwise it returns
1516/// the block being defined.
1517BasicBlock *LLParser::PerFunctionState::DefineBB(const std::string &Name,
1518 LocTy Loc) {
1519 BasicBlock *BB;
1520 if (Name.empty())
1521 BB = GetBB(NumberedVals.size(), Loc);
1522 else
1523 BB = GetBB(Name, Loc);
1524 if (BB == 0) return 0; // Already diagnosed error.
1525
1526 // Move the block to the end of the function. Forward ref'd blocks are
1527 // inserted wherever they happen to be referenced.
1528 F.getBasicBlockList().splice(F.end(), F.getBasicBlockList(), BB);
1529
1530 // Remove the block from forward ref sets.
1531 if (Name.empty()) {
1532 ForwardRefValIDs.erase(NumberedVals.size());
1533 NumberedVals.push_back(BB);
1534 } else {
1535 // BB forward references are already in the function symbol table.
1536 ForwardRefVals.erase(Name);
1537 }
1538
1539 return BB;
1540}
1541
1542//===----------------------------------------------------------------------===//
1543// Constants.
1544//===----------------------------------------------------------------------===//
1545
1546/// ParseValID - Parse an abstract value that doesn't necessarily have a
1547/// type implied. For example, if we parse "4" we don't know what integer type
1548/// it has. The value will later be combined with its type and checked for
1549/// sanity.
1550bool LLParser::ParseValID(ValID &ID) {
1551 ID.Loc = Lex.getLoc();
1552 switch (Lex.getKind()) {
1553 default: return TokError("expected value token");
1554 case lltok::GlobalID: // @42
1555 ID.UIntVal = Lex.getUIntVal();
1556 ID.Kind = ValID::t_GlobalID;
1557 break;
1558 case lltok::GlobalVar: // @foo
1559 ID.StrVal = Lex.getStrVal();
1560 ID.Kind = ValID::t_GlobalName;
1561 break;
1562 case lltok::LocalVarID: // %42
1563 ID.UIntVal = Lex.getUIntVal();
1564 ID.Kind = ValID::t_LocalID;
1565 break;
1566 case lltok::LocalVar: // %foo
1567 case lltok::StringConstant: // "foo" - FIXME: REMOVE IN LLVM 3.0
1568 ID.StrVal = Lex.getStrVal();
1569 ID.Kind = ValID::t_LocalName;
1570 break;
1571 case lltok::Metadata: { // !{...} MDNode, !"foo" MDString
1572 ID.Kind = ValID::t_Constant;
1573 Lex.Lex();
1574 if (Lex.getKind() == lltok::lbrace) {
1575 SmallVector<Value*, 16> Elts;
1576 if (ParseMDNodeVector(Elts) ||
1577 ParseToken(lltok::rbrace, "expected end of metadata node"))
1578 return true;
1579
1580 ID.ConstantVal = MDNode::get(Elts.data(), Elts.size());
1581 return false;
1582 }
1583
1584 // MDString:
1585 // ::= '!' STRINGCONSTANT
1586 std::string Str;
1587 if (ParseStringConstant(Str)) return true;
1588
1589 ID.ConstantVal = MDString::get(Str.data(), Str.data() + Str.size());
1590 return false;
1591 }
1592 case lltok::APSInt:
1593 ID.APSIntVal = Lex.getAPSIntVal();
1594 ID.Kind = ValID::t_APSInt;
1595 break;
1596 case lltok::APFloat:
1597 ID.APFloatVal = Lex.getAPFloatVal();
1598 ID.Kind = ValID::t_APFloat;
1599 break;
1600 case lltok::kw_true:
1601 ID.ConstantVal = ConstantInt::getTrue();
1602 ID.Kind = ValID::t_Constant;
1603 break;
1604 case lltok::kw_false:
1605 ID.ConstantVal = ConstantInt::getFalse();
1606 ID.Kind = ValID::t_Constant;
1607 break;
1608 case lltok::kw_null: ID.Kind = ValID::t_Null; break;
1609 case lltok::kw_undef: ID.Kind = ValID::t_Undef; break;
1610 case lltok::kw_zeroinitializer: ID.Kind = ValID::t_Zero; break;
1611
1612 case lltok::lbrace: {
1613 // ValID ::= '{' ConstVector '}'
1614 Lex.Lex();
1615 SmallVector<Constant*, 16> Elts;
1616 if (ParseGlobalValueVector(Elts) ||
1617 ParseToken(lltok::rbrace, "expected end of struct constant"))
1618 return true;
1619
1620 ID.ConstantVal = ConstantStruct::get(Elts.data(), Elts.size(), false);
1621 ID.Kind = ValID::t_Constant;
1622 return false;
1623 }
1624 case lltok::less: {
1625 // ValID ::= '<' ConstVector '>' --> Vector.
1626 // ValID ::= '<' '{' ConstVector '}' '>' --> Packed Struct.
1627 Lex.Lex();
1628 bool isPackedStruct = EatIfPresent(lltok::lbrace);
1629
1630 SmallVector<Constant*, 16> Elts;
1631 LocTy FirstEltLoc = Lex.getLoc();
1632 if (ParseGlobalValueVector(Elts) ||
1633 (isPackedStruct &&
1634 ParseToken(lltok::rbrace, "expected end of packed struct")) ||
1635 ParseToken(lltok::greater, "expected end of constant"))
1636 return true;
1637
1638 if (isPackedStruct) {
1639 ID.ConstantVal = ConstantStruct::get(Elts.data(), Elts.size(), true);
1640 ID.Kind = ValID::t_Constant;
1641 return false;
1642 }
1643
1644 if (Elts.empty())
1645 return Error(ID.Loc, "constant vector must not be empty");
1646
1647 if (!Elts[0]->getType()->isInteger() &&
1648 !Elts[0]->getType()->isFloatingPoint())
1649 return Error(FirstEltLoc,
1650 "vector elements must have integer or floating point type");
1651
1652 // Verify that all the vector elements have the same type.
1653 for (unsigned i = 1, e = Elts.size(); i != e; ++i)
1654 if (Elts[i]->getType() != Elts[0]->getType())
1655 return Error(FirstEltLoc,
1656 "vector element #" + utostr(i) +
1657 " is not of type '" + Elts[0]->getType()->getDescription());
1658
1659 ID.ConstantVal = ConstantVector::get(Elts.data(), Elts.size());
1660 ID.Kind = ValID::t_Constant;
1661 return false;
1662 }
1663 case lltok::lsquare: { // Array Constant
1664 Lex.Lex();
1665 SmallVector<Constant*, 16> Elts;
1666 LocTy FirstEltLoc = Lex.getLoc();
1667 if (ParseGlobalValueVector(Elts) ||
1668 ParseToken(lltok::rsquare, "expected end of array constant"))
1669 return true;
1670
1671 // Handle empty element.
1672 if (Elts.empty()) {
1673 // Use undef instead of an array because it's inconvenient to determine
1674 // the element type at this point, there being no elements to examine.
1675 ID.Kind = ValID::t_EmptyArray;
1676 return false;
1677 }
1678
1679 if (!Elts[0]->getType()->isFirstClassType())
1680 return Error(FirstEltLoc, "invalid array element type: " +
1681 Elts[0]->getType()->getDescription());
1682
1683 ArrayType *ATy = ArrayType::get(Elts[0]->getType(), Elts.size());
1684
1685 // Verify all elements are correct type!
1686 for (unsigned i = 0, e = Elts.size(); i != e; ++i) {
1687 if (Elts[i]->getType() != Elts[0]->getType())
1688 return Error(FirstEltLoc,
1689 "array element #" + utostr(i) +
1690 " is not of type '" +Elts[0]->getType()->getDescription());
1691 }
1692
1693 ID.ConstantVal = ConstantArray::get(ATy, Elts.data(), Elts.size());
1694 ID.Kind = ValID::t_Constant;
1695 return false;
1696 }
1697 case lltok::kw_c: // c "foo"
1698 Lex.Lex();
1699 ID.ConstantVal = ConstantArray::get(Lex.getStrVal(), false);
1700 if (ParseToken(lltok::StringConstant, "expected string")) return true;
1701 ID.Kind = ValID::t_Constant;
1702 return false;
1703
1704 case lltok::kw_asm: {
1705 // ValID ::= 'asm' SideEffect? STRINGCONSTANT ',' STRINGCONSTANT
1706 bool HasSideEffect;
1707 Lex.Lex();
1708 if (ParseOptionalToken(lltok::kw_sideeffect, HasSideEffect) ||
1709 ParseStringConstant(ID.StrVal) ||
1710 ParseToken(lltok::comma, "expected comma in inline asm expression") ||
1711 ParseToken(lltok::StringConstant, "expected constraint string"))
1712 return true;
1713 ID.StrVal2 = Lex.getStrVal();
1714 ID.UIntVal = HasSideEffect;
1715 ID.Kind = ValID::t_InlineAsm;
1716 return false;
1717 }
1718
1719 case lltok::kw_trunc:
1720 case lltok::kw_zext:
1721 case lltok::kw_sext:
1722 case lltok::kw_fptrunc:
1723 case lltok::kw_fpext:
1724 case lltok::kw_bitcast:
1725 case lltok::kw_uitofp:
1726 case lltok::kw_sitofp:
1727 case lltok::kw_fptoui:
1728 case lltok::kw_fptosi:
1729 case lltok::kw_inttoptr:
1730 case lltok::kw_ptrtoint: {
1731 unsigned Opc = Lex.getUIntVal();
1732 PATypeHolder DestTy(Type::VoidTy);
1733 Constant *SrcVal;
1734 Lex.Lex();
1735 if (ParseToken(lltok::lparen, "expected '(' after constantexpr cast") ||
1736 ParseGlobalTypeAndValue(SrcVal) ||
1737 ParseToken(lltok::kw_to, "expected 'to' int constantexpr cast") ||
1738 ParseType(DestTy) ||
1739 ParseToken(lltok::rparen, "expected ')' at end of constantexpr cast"))
1740 return true;
1741 if (!CastInst::castIsValid((Instruction::CastOps)Opc, SrcVal, DestTy))
1742 return Error(ID.Loc, "invalid cast opcode for cast from '" +
1743 SrcVal->getType()->getDescription() + "' to '" +
1744 DestTy->getDescription() + "'");
1745 ID.ConstantVal = ConstantExpr::getCast((Instruction::CastOps)Opc, SrcVal,
1746 DestTy);
1747 ID.Kind = ValID::t_Constant;
1748 return false;
1749 }
1750 case lltok::kw_extractvalue: {
1751 Lex.Lex();
1752 Constant *Val;
1753 SmallVector<unsigned, 4> Indices;
1754 if (ParseToken(lltok::lparen, "expected '(' in extractvalue constantexpr")||
1755 ParseGlobalTypeAndValue(Val) ||
1756 ParseIndexList(Indices) ||
1757 ParseToken(lltok::rparen, "expected ')' in extractvalue constantexpr"))
1758 return true;
1759 if (!isa<StructType>(Val->getType()) && !isa<ArrayType>(Val->getType()))
1760 return Error(ID.Loc, "extractvalue operand must be array or struct");
1761 if (!ExtractValueInst::getIndexedType(Val->getType(), Indices.begin(),
1762 Indices.end()))
1763 return Error(ID.Loc, "invalid indices for extractvalue");
1764 ID.ConstantVal =
1765 ConstantExpr::getExtractValue(Val, Indices.data(), Indices.size());
1766 ID.Kind = ValID::t_Constant;
1767 return false;
1768 }
1769 case lltok::kw_insertvalue: {
1770 Lex.Lex();
1771 Constant *Val0, *Val1;
1772 SmallVector<unsigned, 4> Indices;
1773 if (ParseToken(lltok::lparen, "expected '(' in insertvalue constantexpr")||
1774 ParseGlobalTypeAndValue(Val0) ||
1775 ParseToken(lltok::comma, "expected comma in insertvalue constantexpr")||
1776 ParseGlobalTypeAndValue(Val1) ||
1777 ParseIndexList(Indices) ||
1778 ParseToken(lltok::rparen, "expected ')' in insertvalue constantexpr"))
1779 return true;
1780 if (!isa<StructType>(Val0->getType()) && !isa<ArrayType>(Val0->getType()))
1781 return Error(ID.Loc, "extractvalue operand must be array or struct");
1782 if (!ExtractValueInst::getIndexedType(Val0->getType(), Indices.begin(),
1783 Indices.end()))
1784 return Error(ID.Loc, "invalid indices for insertvalue");
1785 ID.ConstantVal =
1786 ConstantExpr::getInsertValue(Val0, Val1, Indices.data(), Indices.size());
1787 ID.Kind = ValID::t_Constant;
1788 return false;
1789 }
1790 case lltok::kw_icmp:
1791 case lltok::kw_fcmp:
1792 case lltok::kw_vicmp:
1793 case lltok::kw_vfcmp: {
1794 unsigned PredVal, Opc = Lex.getUIntVal();
1795 Constant *Val0, *Val1;
1796 Lex.Lex();
1797 if (ParseCmpPredicate(PredVal, Opc) ||
1798 ParseToken(lltok::lparen, "expected '(' in compare constantexpr") ||
1799 ParseGlobalTypeAndValue(Val0) ||
1800 ParseToken(lltok::comma, "expected comma in compare constantexpr") ||
1801 ParseGlobalTypeAndValue(Val1) ||
1802 ParseToken(lltok::rparen, "expected ')' in compare constantexpr"))
1803 return true;
1804
1805 if (Val0->getType() != Val1->getType())
1806 return Error(ID.Loc, "compare operands must have the same type");
1807
1808 CmpInst::Predicate Pred = (CmpInst::Predicate)PredVal;
1809
1810 if (Opc == Instruction::FCmp) {
1811 if (!Val0->getType()->isFPOrFPVector())
1812 return Error(ID.Loc, "fcmp requires floating point operands");
1813 ID.ConstantVal = ConstantExpr::getFCmp(Pred, Val0, Val1);
1814 } else if (Opc == Instruction::ICmp) {
1815 if (!Val0->getType()->isIntOrIntVector() &&
1816 !isa<PointerType>(Val0->getType()))
1817 return Error(ID.Loc, "icmp requires pointer or integer operands");
1818 ID.ConstantVal = ConstantExpr::getICmp(Pred, Val0, Val1);
1819 } else if (Opc == Instruction::VFCmp) {
1820 // FIXME: REMOVE VFCMP Support
1821 if (!Val0->getType()->isFPOrFPVector() ||
1822 !isa<VectorType>(Val0->getType()))
1823 return Error(ID.Loc, "vfcmp requires vector floating point operands");
1824 ID.ConstantVal = ConstantExpr::getVFCmp(Pred, Val0, Val1);
1825 } else if (Opc == Instruction::VICmp) {
1826 // FIXME: REMOVE VICMP Support
1827 if (!Val0->getType()->isIntOrIntVector() ||
1828 !isa<VectorType>(Val0->getType()))
1829 return Error(ID.Loc, "vicmp requires vector floating point operands");
1830 ID.ConstantVal = ConstantExpr::getVICmp(Pred, Val0, Val1);
1831 }
1832 ID.Kind = ValID::t_Constant;
1833 return false;
1834 }
1835
1836 // Binary Operators.
1837 case lltok::kw_add:
735
736 case lltok::kw_align: {
737 unsigned Alignment;
738 if (ParseOptionalAlignment(Alignment))
739 return true;
740 Attrs |= Attribute::constructAlignmentFromInt(Alignment);
741 continue;
742 }
743 }
744 Lex.Lex();
745 }
746}
747
748/// ParseOptionalLinkage
749/// ::= /*empty*/
750/// ::= 'private'
751/// ::= 'internal'
752/// ::= 'weak'
753/// ::= 'weak_odr'
754/// ::= 'linkonce'
755/// ::= 'linkonce_odr'
756/// ::= 'appending'
757/// ::= 'dllexport'
758/// ::= 'common'
759/// ::= 'dllimport'
760/// ::= 'extern_weak'
761/// ::= 'external'
762bool LLParser::ParseOptionalLinkage(unsigned &Res, bool &HasLinkage) {
763 HasLinkage = false;
764 switch (Lex.getKind()) {
765 default: Res = GlobalValue::ExternalLinkage; return false;
766 case lltok::kw_private: Res = GlobalValue::PrivateLinkage; break;
767 case lltok::kw_internal: Res = GlobalValue::InternalLinkage; break;
768 case lltok::kw_weak: Res = GlobalValue::WeakAnyLinkage; break;
769 case lltok::kw_weak_odr: Res = GlobalValue::WeakODRLinkage; break;
770 case lltok::kw_linkonce: Res = GlobalValue::LinkOnceAnyLinkage; break;
771 case lltok::kw_linkonce_odr: Res = GlobalValue::LinkOnceODRLinkage; break;
772 case lltok::kw_available_externally:
773 Res = GlobalValue::AvailableExternallyLinkage;
774 break;
775 case lltok::kw_appending: Res = GlobalValue::AppendingLinkage; break;
776 case lltok::kw_dllexport: Res = GlobalValue::DLLExportLinkage; break;
777 case lltok::kw_common: Res = GlobalValue::CommonLinkage; break;
778 case lltok::kw_dllimport: Res = GlobalValue::DLLImportLinkage; break;
779 case lltok::kw_extern_weak: Res = GlobalValue::ExternalWeakLinkage; break;
780 case lltok::kw_external: Res = GlobalValue::ExternalLinkage; break;
781 }
782 Lex.Lex();
783 HasLinkage = true;
784 return false;
785}
786
787/// ParseOptionalVisibility
788/// ::= /*empty*/
789/// ::= 'default'
790/// ::= 'hidden'
791/// ::= 'protected'
792///
793bool LLParser::ParseOptionalVisibility(unsigned &Res) {
794 switch (Lex.getKind()) {
795 default: Res = GlobalValue::DefaultVisibility; return false;
796 case lltok::kw_default: Res = GlobalValue::DefaultVisibility; break;
797 case lltok::kw_hidden: Res = GlobalValue::HiddenVisibility; break;
798 case lltok::kw_protected: Res = GlobalValue::ProtectedVisibility; break;
799 }
800 Lex.Lex();
801 return false;
802}
803
804/// ParseOptionalCallingConv
805/// ::= /*empty*/
806/// ::= 'ccc'
807/// ::= 'fastcc'
808/// ::= 'coldcc'
809/// ::= 'x86_stdcallcc'
810/// ::= 'x86_fastcallcc'
811/// ::= 'cc' UINT
812///
813bool LLParser::ParseOptionalCallingConv(unsigned &CC) {
814 switch (Lex.getKind()) {
815 default: CC = CallingConv::C; return false;
816 case lltok::kw_ccc: CC = CallingConv::C; break;
817 case lltok::kw_fastcc: CC = CallingConv::Fast; break;
818 case lltok::kw_coldcc: CC = CallingConv::Cold; break;
819 case lltok::kw_x86_stdcallcc: CC = CallingConv::X86_StdCall; break;
820 case lltok::kw_x86_fastcallcc: CC = CallingConv::X86_FastCall; break;
821 case lltok::kw_cc: Lex.Lex(); return ParseUInt32(CC);
822 }
823 Lex.Lex();
824 return false;
825}
826
827/// ParseOptionalAlignment
828/// ::= /* empty */
829/// ::= 'align' 4
830bool LLParser::ParseOptionalAlignment(unsigned &Alignment) {
831 Alignment = 0;
832 if (!EatIfPresent(lltok::kw_align))
833 return false;
834 LocTy AlignLoc = Lex.getLoc();
835 if (ParseUInt32(Alignment)) return true;
836 if (!isPowerOf2_32(Alignment))
837 return Error(AlignLoc, "alignment is not a power of two");
838 return false;
839}
840
841/// ParseOptionalCommaAlignment
842/// ::= /* empty */
843/// ::= ',' 'align' 4
844bool LLParser::ParseOptionalCommaAlignment(unsigned &Alignment) {
845 Alignment = 0;
846 if (!EatIfPresent(lltok::comma))
847 return false;
848 return ParseToken(lltok::kw_align, "expected 'align'") ||
849 ParseUInt32(Alignment);
850}
851
852/// ParseIndexList
853/// ::= (',' uint32)+
854bool LLParser::ParseIndexList(SmallVectorImpl<unsigned> &Indices) {
855 if (Lex.getKind() != lltok::comma)
856 return TokError("expected ',' as start of index list");
857
858 while (EatIfPresent(lltok::comma)) {
859 unsigned Idx;
860 if (ParseUInt32(Idx)) return true;
861 Indices.push_back(Idx);
862 }
863
864 return false;
865}
866
867//===----------------------------------------------------------------------===//
868// Type Parsing.
869//===----------------------------------------------------------------------===//
870
871/// ParseType - Parse and resolve a full type.
872bool LLParser::ParseType(PATypeHolder &Result, bool AllowVoid) {
873 LocTy TypeLoc = Lex.getLoc();
874 if (ParseTypeRec(Result)) return true;
875
876 // Verify no unresolved uprefs.
877 if (!UpRefs.empty())
878 return Error(UpRefs.back().Loc, "invalid unresolved type up reference");
879
880 if (!AllowVoid && Result.get() == Type::VoidTy)
881 return Error(TypeLoc, "void type only allowed for function results");
882
883 return false;
884}
885
886/// HandleUpRefs - Every time we finish a new layer of types, this function is
887/// called. It loops through the UpRefs vector, which is a list of the
888/// currently active types. For each type, if the up-reference is contained in
889/// the newly completed type, we decrement the level count. When the level
890/// count reaches zero, the up-referenced type is the type that is passed in:
891/// thus we can complete the cycle.
892///
893PATypeHolder LLParser::HandleUpRefs(const Type *ty) {
894 // If Ty isn't abstract, or if there are no up-references in it, then there is
895 // nothing to resolve here.
896 if (!ty->isAbstract() || UpRefs.empty()) return ty;
897
898 PATypeHolder Ty(ty);
899#if 0
900 errs() << "Type '" << Ty->getDescription()
901 << "' newly formed. Resolving upreferences.\n"
902 << UpRefs.size() << " upreferences active!\n";
903#endif
904
905 // If we find any resolvable upreferences (i.e., those whose NestingLevel goes
906 // to zero), we resolve them all together before we resolve them to Ty. At
907 // the end of the loop, if there is anything to resolve to Ty, it will be in
908 // this variable.
909 OpaqueType *TypeToResolve = 0;
910
911 for (unsigned i = 0; i != UpRefs.size(); ++i) {
912 // Determine if 'Ty' directly contains this up-references 'LastContainedTy'.
913 bool ContainsType =
914 std::find(Ty->subtype_begin(), Ty->subtype_end(),
915 UpRefs[i].LastContainedTy) != Ty->subtype_end();
916
917#if 0
918 errs() << " UR#" << i << " - TypeContains(" << Ty->getDescription() << ", "
919 << UpRefs[i].LastContainedTy->getDescription() << ") = "
920 << (ContainsType ? "true" : "false")
921 << " level=" << UpRefs[i].NestingLevel << "\n";
922#endif
923 if (!ContainsType)
924 continue;
925
926 // Decrement level of upreference
927 unsigned Level = --UpRefs[i].NestingLevel;
928 UpRefs[i].LastContainedTy = Ty;
929
930 // If the Up-reference has a non-zero level, it shouldn't be resolved yet.
931 if (Level != 0)
932 continue;
933
934#if 0
935 errs() << " * Resolving upreference for " << UpRefs[i].UpRefTy << "\n";
936#endif
937 if (!TypeToResolve)
938 TypeToResolve = UpRefs[i].UpRefTy;
939 else
940 UpRefs[i].UpRefTy->refineAbstractTypeTo(TypeToResolve);
941 UpRefs.erase(UpRefs.begin()+i); // Remove from upreference list.
942 --i; // Do not skip the next element.
943 }
944
945 if (TypeToResolve)
946 TypeToResolve->refineAbstractTypeTo(Ty);
947
948 return Ty;
949}
950
951
952/// ParseTypeRec - The recursive function used to process the internal
953/// implementation details of types.
954bool LLParser::ParseTypeRec(PATypeHolder &Result) {
955 switch (Lex.getKind()) {
956 default:
957 return TokError("expected type");
958 case lltok::Type:
959 // TypeRec ::= 'float' | 'void' (etc)
960 Result = Lex.getTyVal();
961 Lex.Lex();
962 break;
963 case lltok::kw_opaque:
964 // TypeRec ::= 'opaque'
965 Result = OpaqueType::get();
966 Lex.Lex();
967 break;
968 case lltok::lbrace:
969 // TypeRec ::= '{' ... '}'
970 if (ParseStructType(Result, false))
971 return true;
972 break;
973 case lltok::lsquare:
974 // TypeRec ::= '[' ... ']'
975 Lex.Lex(); // eat the lsquare.
976 if (ParseArrayVectorType(Result, false))
977 return true;
978 break;
979 case lltok::less: // Either vector or packed struct.
980 // TypeRec ::= '<' ... '>'
981 Lex.Lex();
982 if (Lex.getKind() == lltok::lbrace) {
983 if (ParseStructType(Result, true) ||
984 ParseToken(lltok::greater, "expected '>' at end of packed struct"))
985 return true;
986 } else if (ParseArrayVectorType(Result, true))
987 return true;
988 break;
989 case lltok::LocalVar:
990 case lltok::StringConstant: // FIXME: REMOVE IN LLVM 3.0
991 // TypeRec ::= %foo
992 if (const Type *T = M->getTypeByName(Lex.getStrVal())) {
993 Result = T;
994 } else {
995 Result = OpaqueType::get();
996 ForwardRefTypes.insert(std::make_pair(Lex.getStrVal(),
997 std::make_pair(Result,
998 Lex.getLoc())));
999 M->addTypeName(Lex.getStrVal(), Result.get());
1000 }
1001 Lex.Lex();
1002 break;
1003
1004 case lltok::LocalVarID:
1005 // TypeRec ::= %4
1006 if (Lex.getUIntVal() < NumberedTypes.size())
1007 Result = NumberedTypes[Lex.getUIntVal()];
1008 else {
1009 std::map<unsigned, std::pair<PATypeHolder, LocTy> >::iterator
1010 I = ForwardRefTypeIDs.find(Lex.getUIntVal());
1011 if (I != ForwardRefTypeIDs.end())
1012 Result = I->second.first;
1013 else {
1014 Result = OpaqueType::get();
1015 ForwardRefTypeIDs.insert(std::make_pair(Lex.getUIntVal(),
1016 std::make_pair(Result,
1017 Lex.getLoc())));
1018 }
1019 }
1020 Lex.Lex();
1021 break;
1022 case lltok::backslash: {
1023 // TypeRec ::= '\' 4
1024 Lex.Lex();
1025 unsigned Val;
1026 if (ParseUInt32(Val)) return true;
1027 OpaqueType *OT = OpaqueType::get(); // Use temporary placeholder.
1028 UpRefs.push_back(UpRefRecord(Lex.getLoc(), Val, OT));
1029 Result = OT;
1030 break;
1031 }
1032 }
1033
1034 // Parse the type suffixes.
1035 while (1) {
1036 switch (Lex.getKind()) {
1037 // End of type.
1038 default: return false;
1039
1040 // TypeRec ::= TypeRec '*'
1041 case lltok::star:
1042 if (Result.get() == Type::LabelTy)
1043 return TokError("basic block pointers are invalid");
1044 if (Result.get() == Type::VoidTy)
1045 return TokError("pointers to void are invalid; use i8* instead");
1046 Result = HandleUpRefs(PointerType::getUnqual(Result.get()));
1047 Lex.Lex();
1048 break;
1049
1050 // TypeRec ::= TypeRec 'addrspace' '(' uint32 ')' '*'
1051 case lltok::kw_addrspace: {
1052 if (Result.get() == Type::LabelTy)
1053 return TokError("basic block pointers are invalid");
1054 if (Result.get() == Type::VoidTy)
1055 return TokError("pointers to void are invalid; use i8* instead");
1056 unsigned AddrSpace;
1057 if (ParseOptionalAddrSpace(AddrSpace) ||
1058 ParseToken(lltok::star, "expected '*' in address space"))
1059 return true;
1060
1061 Result = HandleUpRefs(PointerType::get(Result.get(), AddrSpace));
1062 break;
1063 }
1064
1065 /// Types '(' ArgTypeListI ')' OptFuncAttrs
1066 case lltok::lparen:
1067 if (ParseFunctionType(Result))
1068 return true;
1069 break;
1070 }
1071 }
1072}
1073
1074/// ParseParameterList
1075/// ::= '(' ')'
1076/// ::= '(' Arg (',' Arg)* ')'
1077/// Arg
1078/// ::= Type OptionalAttributes Value OptionalAttributes
1079bool LLParser::ParseParameterList(SmallVectorImpl<ParamInfo> &ArgList,
1080 PerFunctionState &PFS) {
1081 if (ParseToken(lltok::lparen, "expected '(' in call"))
1082 return true;
1083
1084 while (Lex.getKind() != lltok::rparen) {
1085 // If this isn't the first argument, we need a comma.
1086 if (!ArgList.empty() &&
1087 ParseToken(lltok::comma, "expected ',' in argument list"))
1088 return true;
1089
1090 // Parse the argument.
1091 LocTy ArgLoc;
1092 PATypeHolder ArgTy(Type::VoidTy);
1093 unsigned ArgAttrs1, ArgAttrs2;
1094 Value *V;
1095 if (ParseType(ArgTy, ArgLoc) ||
1096 ParseOptionalAttrs(ArgAttrs1, 0) ||
1097 ParseValue(ArgTy, V, PFS) ||
1098 // FIXME: Should not allow attributes after the argument, remove this in
1099 // LLVM 3.0.
1100 ParseOptionalAttrs(ArgAttrs2, 3))
1101 return true;
1102 ArgList.push_back(ParamInfo(ArgLoc, V, ArgAttrs1|ArgAttrs2));
1103 }
1104
1105 Lex.Lex(); // Lex the ')'.
1106 return false;
1107}
1108
1109
1110
1111/// ParseArgumentList - Parse the argument list for a function type or function
1112/// prototype. If 'inType' is true then we are parsing a FunctionType.
1113/// ::= '(' ArgTypeListI ')'
1114/// ArgTypeListI
1115/// ::= /*empty*/
1116/// ::= '...'
1117/// ::= ArgTypeList ',' '...'
1118/// ::= ArgType (',' ArgType)*
1119///
1120bool LLParser::ParseArgumentList(std::vector<ArgInfo> &ArgList,
1121 bool &isVarArg, bool inType) {
1122 isVarArg = false;
1123 assert(Lex.getKind() == lltok::lparen);
1124 Lex.Lex(); // eat the (.
1125
1126 if (Lex.getKind() == lltok::rparen) {
1127 // empty
1128 } else if (Lex.getKind() == lltok::dotdotdot) {
1129 isVarArg = true;
1130 Lex.Lex();
1131 } else {
1132 LocTy TypeLoc = Lex.getLoc();
1133 PATypeHolder ArgTy(Type::VoidTy);
1134 unsigned Attrs;
1135 std::string Name;
1136
1137 // If we're parsing a type, use ParseTypeRec, because we allow recursive
1138 // types (such as a function returning a pointer to itself). If parsing a
1139 // function prototype, we require fully resolved types.
1140 if ((inType ? ParseTypeRec(ArgTy) : ParseType(ArgTy)) ||
1141 ParseOptionalAttrs(Attrs, 0)) return true;
1142
1143 if (ArgTy == Type::VoidTy)
1144 return Error(TypeLoc, "argument can not have void type");
1145
1146 if (Lex.getKind() == lltok::LocalVar ||
1147 Lex.getKind() == lltok::StringConstant) { // FIXME: REMOVE IN LLVM 3.0
1148 Name = Lex.getStrVal();
1149 Lex.Lex();
1150 }
1151
1152 if (!ArgTy->isFirstClassType() && !isa<OpaqueType>(ArgTy))
1153 return Error(TypeLoc, "invalid type for function argument");
1154
1155 ArgList.push_back(ArgInfo(TypeLoc, ArgTy, Attrs, Name));
1156
1157 while (EatIfPresent(lltok::comma)) {
1158 // Handle ... at end of arg list.
1159 if (EatIfPresent(lltok::dotdotdot)) {
1160 isVarArg = true;
1161 break;
1162 }
1163
1164 // Otherwise must be an argument type.
1165 TypeLoc = Lex.getLoc();
1166 if ((inType ? ParseTypeRec(ArgTy) : ParseType(ArgTy)) ||
1167 ParseOptionalAttrs(Attrs, 0)) return true;
1168
1169 if (ArgTy == Type::VoidTy)
1170 return Error(TypeLoc, "argument can not have void type");
1171
1172 if (Lex.getKind() == lltok::LocalVar ||
1173 Lex.getKind() == lltok::StringConstant) { // FIXME: REMOVE IN LLVM 3.0
1174 Name = Lex.getStrVal();
1175 Lex.Lex();
1176 } else {
1177 Name = "";
1178 }
1179
1180 if (!ArgTy->isFirstClassType() && !isa<OpaqueType>(ArgTy))
1181 return Error(TypeLoc, "invalid type for function argument");
1182
1183 ArgList.push_back(ArgInfo(TypeLoc, ArgTy, Attrs, Name));
1184 }
1185 }
1186
1187 return ParseToken(lltok::rparen, "expected ')' at end of argument list");
1188}
1189
1190/// ParseFunctionType
1191/// ::= Type ArgumentList OptionalAttrs
1192bool LLParser::ParseFunctionType(PATypeHolder &Result) {
1193 assert(Lex.getKind() == lltok::lparen);
1194
1195 if (!FunctionType::isValidReturnType(Result))
1196 return TokError("invalid function return type");
1197
1198 std::vector<ArgInfo> ArgList;
1199 bool isVarArg;
1200 unsigned Attrs;
1201 if (ParseArgumentList(ArgList, isVarArg, true) ||
1202 // FIXME: Allow, but ignore attributes on function types!
1203 // FIXME: Remove in LLVM 3.0
1204 ParseOptionalAttrs(Attrs, 2))
1205 return true;
1206
1207 // Reject names on the arguments lists.
1208 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
1209 if (!ArgList[i].Name.empty())
1210 return Error(ArgList[i].Loc, "argument name invalid in function type");
1211 if (!ArgList[i].Attrs != 0) {
1212 // Allow but ignore attributes on function types; this permits
1213 // auto-upgrade.
1214 // FIXME: REJECT ATTRIBUTES ON FUNCTION TYPES in LLVM 3.0
1215 }
1216 }
1217
1218 std::vector<const Type*> ArgListTy;
1219 for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
1220 ArgListTy.push_back(ArgList[i].Type);
1221
1222 Result = HandleUpRefs(FunctionType::get(Result.get(), ArgListTy, isVarArg));
1223 return false;
1224}
1225
1226/// ParseStructType: Handles packed and unpacked types. </> parsed elsewhere.
1227/// TypeRec
1228/// ::= '{' '}'
1229/// ::= '{' TypeRec (',' TypeRec)* '}'
1230/// ::= '<' '{' '}' '>'
1231/// ::= '<' '{' TypeRec (',' TypeRec)* '}' '>'
1232bool LLParser::ParseStructType(PATypeHolder &Result, bool Packed) {
1233 assert(Lex.getKind() == lltok::lbrace);
1234 Lex.Lex(); // Consume the '{'
1235
1236 if (EatIfPresent(lltok::rbrace)) {
1237 Result = StructType::get(std::vector<const Type*>(), Packed);
1238 return false;
1239 }
1240
1241 std::vector<PATypeHolder> ParamsList;
1242 LocTy EltTyLoc = Lex.getLoc();
1243 if (ParseTypeRec(Result)) return true;
1244 ParamsList.push_back(Result);
1245
1246 if (Result == Type::VoidTy)
1247 return Error(EltTyLoc, "struct element can not have void type");
1248
1249 while (EatIfPresent(lltok::comma)) {
1250 EltTyLoc = Lex.getLoc();
1251 if (ParseTypeRec(Result)) return true;
1252
1253 if (Result == Type::VoidTy)
1254 return Error(EltTyLoc, "struct element can not have void type");
1255
1256 ParamsList.push_back(Result);
1257 }
1258
1259 if (ParseToken(lltok::rbrace, "expected '}' at end of struct"))
1260 return true;
1261
1262 std::vector<const Type*> ParamsListTy;
1263 for (unsigned i = 0, e = ParamsList.size(); i != e; ++i)
1264 ParamsListTy.push_back(ParamsList[i].get());
1265 Result = HandleUpRefs(StructType::get(ParamsListTy, Packed));
1266 return false;
1267}
1268
1269/// ParseArrayVectorType - Parse an array or vector type, assuming the first
1270/// token has already been consumed.
1271/// TypeRec
1272/// ::= '[' APSINTVAL 'x' Types ']'
1273/// ::= '<' APSINTVAL 'x' Types '>'
1274bool LLParser::ParseArrayVectorType(PATypeHolder &Result, bool isVector) {
1275 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned() ||
1276 Lex.getAPSIntVal().getBitWidth() > 64)
1277 return TokError("expected number in address space");
1278
1279 LocTy SizeLoc = Lex.getLoc();
1280 uint64_t Size = Lex.getAPSIntVal().getZExtValue();
1281 Lex.Lex();
1282
1283 if (ParseToken(lltok::kw_x, "expected 'x' after element count"))
1284 return true;
1285
1286 LocTy TypeLoc = Lex.getLoc();
1287 PATypeHolder EltTy(Type::VoidTy);
1288 if (ParseTypeRec(EltTy)) return true;
1289
1290 if (EltTy == Type::VoidTy)
1291 return Error(TypeLoc, "array and vector element type cannot be void");
1292
1293 if (ParseToken(isVector ? lltok::greater : lltok::rsquare,
1294 "expected end of sequential type"))
1295 return true;
1296
1297 if (isVector) {
1298 if (Size == 0)
1299 return Error(SizeLoc, "zero element vector is illegal");
1300 if ((unsigned)Size != Size)
1301 return Error(SizeLoc, "size too large for vector");
1302 if (!EltTy->isFloatingPoint() && !EltTy->isInteger())
1303 return Error(TypeLoc, "vector element type must be fp or integer");
1304 Result = VectorType::get(EltTy, unsigned(Size));
1305 } else {
1306 if (!EltTy->isFirstClassType() && !isa<OpaqueType>(EltTy))
1307 return Error(TypeLoc, "invalid array element type");
1308 Result = HandleUpRefs(ArrayType::get(EltTy, Size));
1309 }
1310 return false;
1311}
1312
1313//===----------------------------------------------------------------------===//
1314// Function Semantic Analysis.
1315//===----------------------------------------------------------------------===//
1316
1317LLParser::PerFunctionState::PerFunctionState(LLParser &p, Function &f)
1318 : P(p), F(f) {
1319
1320 // Insert unnamed arguments into the NumberedVals list.
1321 for (Function::arg_iterator AI = F.arg_begin(), E = F.arg_end();
1322 AI != E; ++AI)
1323 if (!AI->hasName())
1324 NumberedVals.push_back(AI);
1325}
1326
1327LLParser::PerFunctionState::~PerFunctionState() {
1328 // If there were any forward referenced non-basicblock values, delete them.
1329 for (std::map<std::string, std::pair<Value*, LocTy> >::iterator
1330 I = ForwardRefVals.begin(), E = ForwardRefVals.end(); I != E; ++I)
1331 if (!isa<BasicBlock>(I->second.first)) {
1332 I->second.first->replaceAllUsesWith(UndefValue::get(I->second.first
1333 ->getType()));
1334 delete I->second.first;
1335 I->second.first = 0;
1336 }
1337
1338 for (std::map<unsigned, std::pair<Value*, LocTy> >::iterator
1339 I = ForwardRefValIDs.begin(), E = ForwardRefValIDs.end(); I != E; ++I)
1340 if (!isa<BasicBlock>(I->second.first)) {
1341 I->second.first->replaceAllUsesWith(UndefValue::get(I->second.first
1342 ->getType()));
1343 delete I->second.first;
1344 I->second.first = 0;
1345 }
1346}
1347
1348bool LLParser::PerFunctionState::VerifyFunctionComplete() {
1349 if (!ForwardRefVals.empty())
1350 return P.Error(ForwardRefVals.begin()->second.second,
1351 "use of undefined value '%" + ForwardRefVals.begin()->first +
1352 "'");
1353 if (!ForwardRefValIDs.empty())
1354 return P.Error(ForwardRefValIDs.begin()->second.second,
1355 "use of undefined value '%" +
1356 utostr(ForwardRefValIDs.begin()->first) + "'");
1357 return false;
1358}
1359
1360
1361/// GetVal - Get a value with the specified name or ID, creating a
1362/// forward reference record if needed. This can return null if the value
1363/// exists but does not have the right type.
1364Value *LLParser::PerFunctionState::GetVal(const std::string &Name,
1365 const Type *Ty, LocTy Loc) {
1366 // Look this name up in the normal function symbol table.
1367 Value *Val = F.getValueSymbolTable().lookup(Name);
1368
1369 // If this is a forward reference for the value, see if we already created a
1370 // forward ref record.
1371 if (Val == 0) {
1372 std::map<std::string, std::pair<Value*, LocTy> >::iterator
1373 I = ForwardRefVals.find(Name);
1374 if (I != ForwardRefVals.end())
1375 Val = I->second.first;
1376 }
1377
1378 // If we have the value in the symbol table or fwd-ref table, return it.
1379 if (Val) {
1380 if (Val->getType() == Ty) return Val;
1381 if (Ty == Type::LabelTy)
1382 P.Error(Loc, "'%" + Name + "' is not a basic block");
1383 else
1384 P.Error(Loc, "'%" + Name + "' defined with type '" +
1385 Val->getType()->getDescription() + "'");
1386 return 0;
1387 }
1388
1389 // Don't make placeholders with invalid type.
1390 if (!Ty->isFirstClassType() && !isa<OpaqueType>(Ty) && Ty != Type::LabelTy) {
1391 P.Error(Loc, "invalid use of a non-first-class type");
1392 return 0;
1393 }
1394
1395 // Otherwise, create a new forward reference for this value and remember it.
1396 Value *FwdVal;
1397 if (Ty == Type::LabelTy)
1398 FwdVal = BasicBlock::Create(Name, &F);
1399 else
1400 FwdVal = new Argument(Ty, Name);
1401
1402 ForwardRefVals[Name] = std::make_pair(FwdVal, Loc);
1403 return FwdVal;
1404}
1405
1406Value *LLParser::PerFunctionState::GetVal(unsigned ID, const Type *Ty,
1407 LocTy Loc) {
1408 // Look this name up in the normal function symbol table.
1409 Value *Val = ID < NumberedVals.size() ? NumberedVals[ID] : 0;
1410
1411 // If this is a forward reference for the value, see if we already created a
1412 // forward ref record.
1413 if (Val == 0) {
1414 std::map<unsigned, std::pair<Value*, LocTy> >::iterator
1415 I = ForwardRefValIDs.find(ID);
1416 if (I != ForwardRefValIDs.end())
1417 Val = I->second.first;
1418 }
1419
1420 // If we have the value in the symbol table or fwd-ref table, return it.
1421 if (Val) {
1422 if (Val->getType() == Ty) return Val;
1423 if (Ty == Type::LabelTy)
1424 P.Error(Loc, "'%" + utostr(ID) + "' is not a basic block");
1425 else
1426 P.Error(Loc, "'%" + utostr(ID) + "' defined with type '" +
1427 Val->getType()->getDescription() + "'");
1428 return 0;
1429 }
1430
1431 if (!Ty->isFirstClassType() && !isa<OpaqueType>(Ty) && Ty != Type::LabelTy) {
1432 P.Error(Loc, "invalid use of a non-first-class type");
1433 return 0;
1434 }
1435
1436 // Otherwise, create a new forward reference for this value and remember it.
1437 Value *FwdVal;
1438 if (Ty == Type::LabelTy)
1439 FwdVal = BasicBlock::Create("", &F);
1440 else
1441 FwdVal = new Argument(Ty);
1442
1443 ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc);
1444 return FwdVal;
1445}
1446
1447/// SetInstName - After an instruction is parsed and inserted into its
1448/// basic block, this installs its name.
1449bool LLParser::PerFunctionState::SetInstName(int NameID,
1450 const std::string &NameStr,
1451 LocTy NameLoc, Instruction *Inst) {
1452 // If this instruction has void type, it cannot have a name or ID specified.
1453 if (Inst->getType() == Type::VoidTy) {
1454 if (NameID != -1 || !NameStr.empty())
1455 return P.Error(NameLoc, "instructions returning void cannot have a name");
1456 return false;
1457 }
1458
1459 // If this was a numbered instruction, verify that the instruction is the
1460 // expected value and resolve any forward references.
1461 if (NameStr.empty()) {
1462 // If neither a name nor an ID was specified, just use the next ID.
1463 if (NameID == -1)
1464 NameID = NumberedVals.size();
1465
1466 if (unsigned(NameID) != NumberedVals.size())
1467 return P.Error(NameLoc, "instruction expected to be numbered '%" +
1468 utostr(NumberedVals.size()) + "'");
1469
1470 std::map<unsigned, std::pair<Value*, LocTy> >::iterator FI =
1471 ForwardRefValIDs.find(NameID);
1472 if (FI != ForwardRefValIDs.end()) {
1473 if (FI->second.first->getType() != Inst->getType())
1474 return P.Error(NameLoc, "instruction forward referenced with type '" +
1475 FI->second.first->getType()->getDescription() + "'");
1476 FI->second.first->replaceAllUsesWith(Inst);
1477 ForwardRefValIDs.erase(FI);
1478 }
1479
1480 NumberedVals.push_back(Inst);
1481 return false;
1482 }
1483
1484 // Otherwise, the instruction had a name. Resolve forward refs and set it.
1485 std::map<std::string, std::pair<Value*, LocTy> >::iterator
1486 FI = ForwardRefVals.find(NameStr);
1487 if (FI != ForwardRefVals.end()) {
1488 if (FI->second.first->getType() != Inst->getType())
1489 return P.Error(NameLoc, "instruction forward referenced with type '" +
1490 FI->second.first->getType()->getDescription() + "'");
1491 FI->second.first->replaceAllUsesWith(Inst);
1492 ForwardRefVals.erase(FI);
1493 }
1494
1495 // Set the name on the instruction.
1496 Inst->setName(NameStr);
1497
1498 if (Inst->getNameStr() != NameStr)
1499 return P.Error(NameLoc, "multiple definition of local value named '" +
1500 NameStr + "'");
1501 return false;
1502}
1503
1504/// GetBB - Get a basic block with the specified name or ID, creating a
1505/// forward reference record if needed.
1506BasicBlock *LLParser::PerFunctionState::GetBB(const std::string &Name,
1507 LocTy Loc) {
1508 return cast_or_null<BasicBlock>(GetVal(Name, Type::LabelTy, Loc));
1509}
1510
1511BasicBlock *LLParser::PerFunctionState::GetBB(unsigned ID, LocTy Loc) {
1512 return cast_or_null<BasicBlock>(GetVal(ID, Type::LabelTy, Loc));
1513}
1514
1515/// DefineBB - Define the specified basic block, which is either named or
1516/// unnamed. If there is an error, this returns null otherwise it returns
1517/// the block being defined.
1518BasicBlock *LLParser::PerFunctionState::DefineBB(const std::string &Name,
1519 LocTy Loc) {
1520 BasicBlock *BB;
1521 if (Name.empty())
1522 BB = GetBB(NumberedVals.size(), Loc);
1523 else
1524 BB = GetBB(Name, Loc);
1525 if (BB == 0) return 0; // Already diagnosed error.
1526
1527 // Move the block to the end of the function. Forward ref'd blocks are
1528 // inserted wherever they happen to be referenced.
1529 F.getBasicBlockList().splice(F.end(), F.getBasicBlockList(), BB);
1530
1531 // Remove the block from forward ref sets.
1532 if (Name.empty()) {
1533 ForwardRefValIDs.erase(NumberedVals.size());
1534 NumberedVals.push_back(BB);
1535 } else {
1536 // BB forward references are already in the function symbol table.
1537 ForwardRefVals.erase(Name);
1538 }
1539
1540 return BB;
1541}
1542
1543//===----------------------------------------------------------------------===//
1544// Constants.
1545//===----------------------------------------------------------------------===//
1546
1547/// ParseValID - Parse an abstract value that doesn't necessarily have a
1548/// type implied. For example, if we parse "4" we don't know what integer type
1549/// it has. The value will later be combined with its type and checked for
1550/// sanity.
1551bool LLParser::ParseValID(ValID &ID) {
1552 ID.Loc = Lex.getLoc();
1553 switch (Lex.getKind()) {
1554 default: return TokError("expected value token");
1555 case lltok::GlobalID: // @42
1556 ID.UIntVal = Lex.getUIntVal();
1557 ID.Kind = ValID::t_GlobalID;
1558 break;
1559 case lltok::GlobalVar: // @foo
1560 ID.StrVal = Lex.getStrVal();
1561 ID.Kind = ValID::t_GlobalName;
1562 break;
1563 case lltok::LocalVarID: // %42
1564 ID.UIntVal = Lex.getUIntVal();
1565 ID.Kind = ValID::t_LocalID;
1566 break;
1567 case lltok::LocalVar: // %foo
1568 case lltok::StringConstant: // "foo" - FIXME: REMOVE IN LLVM 3.0
1569 ID.StrVal = Lex.getStrVal();
1570 ID.Kind = ValID::t_LocalName;
1571 break;
1572 case lltok::Metadata: { // !{...} MDNode, !"foo" MDString
1573 ID.Kind = ValID::t_Constant;
1574 Lex.Lex();
1575 if (Lex.getKind() == lltok::lbrace) {
1576 SmallVector<Value*, 16> Elts;
1577 if (ParseMDNodeVector(Elts) ||
1578 ParseToken(lltok::rbrace, "expected end of metadata node"))
1579 return true;
1580
1581 ID.ConstantVal = MDNode::get(Elts.data(), Elts.size());
1582 return false;
1583 }
1584
1585 // MDString:
1586 // ::= '!' STRINGCONSTANT
1587 std::string Str;
1588 if (ParseStringConstant(Str)) return true;
1589
1590 ID.ConstantVal = MDString::get(Str.data(), Str.data() + Str.size());
1591 return false;
1592 }
1593 case lltok::APSInt:
1594 ID.APSIntVal = Lex.getAPSIntVal();
1595 ID.Kind = ValID::t_APSInt;
1596 break;
1597 case lltok::APFloat:
1598 ID.APFloatVal = Lex.getAPFloatVal();
1599 ID.Kind = ValID::t_APFloat;
1600 break;
1601 case lltok::kw_true:
1602 ID.ConstantVal = ConstantInt::getTrue();
1603 ID.Kind = ValID::t_Constant;
1604 break;
1605 case lltok::kw_false:
1606 ID.ConstantVal = ConstantInt::getFalse();
1607 ID.Kind = ValID::t_Constant;
1608 break;
1609 case lltok::kw_null: ID.Kind = ValID::t_Null; break;
1610 case lltok::kw_undef: ID.Kind = ValID::t_Undef; break;
1611 case lltok::kw_zeroinitializer: ID.Kind = ValID::t_Zero; break;
1612
1613 case lltok::lbrace: {
1614 // ValID ::= '{' ConstVector '}'
1615 Lex.Lex();
1616 SmallVector<Constant*, 16> Elts;
1617 if (ParseGlobalValueVector(Elts) ||
1618 ParseToken(lltok::rbrace, "expected end of struct constant"))
1619 return true;
1620
1621 ID.ConstantVal = ConstantStruct::get(Elts.data(), Elts.size(), false);
1622 ID.Kind = ValID::t_Constant;
1623 return false;
1624 }
1625 case lltok::less: {
1626 // ValID ::= '<' ConstVector '>' --> Vector.
1627 // ValID ::= '<' '{' ConstVector '}' '>' --> Packed Struct.
1628 Lex.Lex();
1629 bool isPackedStruct = EatIfPresent(lltok::lbrace);
1630
1631 SmallVector<Constant*, 16> Elts;
1632 LocTy FirstEltLoc = Lex.getLoc();
1633 if (ParseGlobalValueVector(Elts) ||
1634 (isPackedStruct &&
1635 ParseToken(lltok::rbrace, "expected end of packed struct")) ||
1636 ParseToken(lltok::greater, "expected end of constant"))
1637 return true;
1638
1639 if (isPackedStruct) {
1640 ID.ConstantVal = ConstantStruct::get(Elts.data(), Elts.size(), true);
1641 ID.Kind = ValID::t_Constant;
1642 return false;
1643 }
1644
1645 if (Elts.empty())
1646 return Error(ID.Loc, "constant vector must not be empty");
1647
1648 if (!Elts[0]->getType()->isInteger() &&
1649 !Elts[0]->getType()->isFloatingPoint())
1650 return Error(FirstEltLoc,
1651 "vector elements must have integer or floating point type");
1652
1653 // Verify that all the vector elements have the same type.
1654 for (unsigned i = 1, e = Elts.size(); i != e; ++i)
1655 if (Elts[i]->getType() != Elts[0]->getType())
1656 return Error(FirstEltLoc,
1657 "vector element #" + utostr(i) +
1658 " is not of type '" + Elts[0]->getType()->getDescription());
1659
1660 ID.ConstantVal = ConstantVector::get(Elts.data(), Elts.size());
1661 ID.Kind = ValID::t_Constant;
1662 return false;
1663 }
1664 case lltok::lsquare: { // Array Constant
1665 Lex.Lex();
1666 SmallVector<Constant*, 16> Elts;
1667 LocTy FirstEltLoc = Lex.getLoc();
1668 if (ParseGlobalValueVector(Elts) ||
1669 ParseToken(lltok::rsquare, "expected end of array constant"))
1670 return true;
1671
1672 // Handle empty element.
1673 if (Elts.empty()) {
1674 // Use undef instead of an array because it's inconvenient to determine
1675 // the element type at this point, there being no elements to examine.
1676 ID.Kind = ValID::t_EmptyArray;
1677 return false;
1678 }
1679
1680 if (!Elts[0]->getType()->isFirstClassType())
1681 return Error(FirstEltLoc, "invalid array element type: " +
1682 Elts[0]->getType()->getDescription());
1683
1684 ArrayType *ATy = ArrayType::get(Elts[0]->getType(), Elts.size());
1685
1686 // Verify all elements are correct type!
1687 for (unsigned i = 0, e = Elts.size(); i != e; ++i) {
1688 if (Elts[i]->getType() != Elts[0]->getType())
1689 return Error(FirstEltLoc,
1690 "array element #" + utostr(i) +
1691 " is not of type '" +Elts[0]->getType()->getDescription());
1692 }
1693
1694 ID.ConstantVal = ConstantArray::get(ATy, Elts.data(), Elts.size());
1695 ID.Kind = ValID::t_Constant;
1696 return false;
1697 }
1698 case lltok::kw_c: // c "foo"
1699 Lex.Lex();
1700 ID.ConstantVal = ConstantArray::get(Lex.getStrVal(), false);
1701 if (ParseToken(lltok::StringConstant, "expected string")) return true;
1702 ID.Kind = ValID::t_Constant;
1703 return false;
1704
1705 case lltok::kw_asm: {
1706 // ValID ::= 'asm' SideEffect? STRINGCONSTANT ',' STRINGCONSTANT
1707 bool HasSideEffect;
1708 Lex.Lex();
1709 if (ParseOptionalToken(lltok::kw_sideeffect, HasSideEffect) ||
1710 ParseStringConstant(ID.StrVal) ||
1711 ParseToken(lltok::comma, "expected comma in inline asm expression") ||
1712 ParseToken(lltok::StringConstant, "expected constraint string"))
1713 return true;
1714 ID.StrVal2 = Lex.getStrVal();
1715 ID.UIntVal = HasSideEffect;
1716 ID.Kind = ValID::t_InlineAsm;
1717 return false;
1718 }
1719
1720 case lltok::kw_trunc:
1721 case lltok::kw_zext:
1722 case lltok::kw_sext:
1723 case lltok::kw_fptrunc:
1724 case lltok::kw_fpext:
1725 case lltok::kw_bitcast:
1726 case lltok::kw_uitofp:
1727 case lltok::kw_sitofp:
1728 case lltok::kw_fptoui:
1729 case lltok::kw_fptosi:
1730 case lltok::kw_inttoptr:
1731 case lltok::kw_ptrtoint: {
1732 unsigned Opc = Lex.getUIntVal();
1733 PATypeHolder DestTy(Type::VoidTy);
1734 Constant *SrcVal;
1735 Lex.Lex();
1736 if (ParseToken(lltok::lparen, "expected '(' after constantexpr cast") ||
1737 ParseGlobalTypeAndValue(SrcVal) ||
1738 ParseToken(lltok::kw_to, "expected 'to' int constantexpr cast") ||
1739 ParseType(DestTy) ||
1740 ParseToken(lltok::rparen, "expected ')' at end of constantexpr cast"))
1741 return true;
1742 if (!CastInst::castIsValid((Instruction::CastOps)Opc, SrcVal, DestTy))
1743 return Error(ID.Loc, "invalid cast opcode for cast from '" +
1744 SrcVal->getType()->getDescription() + "' to '" +
1745 DestTy->getDescription() + "'");
1746 ID.ConstantVal = ConstantExpr::getCast((Instruction::CastOps)Opc, SrcVal,
1747 DestTy);
1748 ID.Kind = ValID::t_Constant;
1749 return false;
1750 }
1751 case lltok::kw_extractvalue: {
1752 Lex.Lex();
1753 Constant *Val;
1754 SmallVector<unsigned, 4> Indices;
1755 if (ParseToken(lltok::lparen, "expected '(' in extractvalue constantexpr")||
1756 ParseGlobalTypeAndValue(Val) ||
1757 ParseIndexList(Indices) ||
1758 ParseToken(lltok::rparen, "expected ')' in extractvalue constantexpr"))
1759 return true;
1760 if (!isa<StructType>(Val->getType()) && !isa<ArrayType>(Val->getType()))
1761 return Error(ID.Loc, "extractvalue operand must be array or struct");
1762 if (!ExtractValueInst::getIndexedType(Val->getType(), Indices.begin(),
1763 Indices.end()))
1764 return Error(ID.Loc, "invalid indices for extractvalue");
1765 ID.ConstantVal =
1766 ConstantExpr::getExtractValue(Val, Indices.data(), Indices.size());
1767 ID.Kind = ValID::t_Constant;
1768 return false;
1769 }
1770 case lltok::kw_insertvalue: {
1771 Lex.Lex();
1772 Constant *Val0, *Val1;
1773 SmallVector<unsigned, 4> Indices;
1774 if (ParseToken(lltok::lparen, "expected '(' in insertvalue constantexpr")||
1775 ParseGlobalTypeAndValue(Val0) ||
1776 ParseToken(lltok::comma, "expected comma in insertvalue constantexpr")||
1777 ParseGlobalTypeAndValue(Val1) ||
1778 ParseIndexList(Indices) ||
1779 ParseToken(lltok::rparen, "expected ')' in insertvalue constantexpr"))
1780 return true;
1781 if (!isa<StructType>(Val0->getType()) && !isa<ArrayType>(Val0->getType()))
1782 return Error(ID.Loc, "extractvalue operand must be array or struct");
1783 if (!ExtractValueInst::getIndexedType(Val0->getType(), Indices.begin(),
1784 Indices.end()))
1785 return Error(ID.Loc, "invalid indices for insertvalue");
1786 ID.ConstantVal =
1787 ConstantExpr::getInsertValue(Val0, Val1, Indices.data(), Indices.size());
1788 ID.Kind = ValID::t_Constant;
1789 return false;
1790 }
1791 case lltok::kw_icmp:
1792 case lltok::kw_fcmp:
1793 case lltok::kw_vicmp:
1794 case lltok::kw_vfcmp: {
1795 unsigned PredVal, Opc = Lex.getUIntVal();
1796 Constant *Val0, *Val1;
1797 Lex.Lex();
1798 if (ParseCmpPredicate(PredVal, Opc) ||
1799 ParseToken(lltok::lparen, "expected '(' in compare constantexpr") ||
1800 ParseGlobalTypeAndValue(Val0) ||
1801 ParseToken(lltok::comma, "expected comma in compare constantexpr") ||
1802 ParseGlobalTypeAndValue(Val1) ||
1803 ParseToken(lltok::rparen, "expected ')' in compare constantexpr"))
1804 return true;
1805
1806 if (Val0->getType() != Val1->getType())
1807 return Error(ID.Loc, "compare operands must have the same type");
1808
1809 CmpInst::Predicate Pred = (CmpInst::Predicate)PredVal;
1810
1811 if (Opc == Instruction::FCmp) {
1812 if (!Val0->getType()->isFPOrFPVector())
1813 return Error(ID.Loc, "fcmp requires floating point operands");
1814 ID.ConstantVal = ConstantExpr::getFCmp(Pred, Val0, Val1);
1815 } else if (Opc == Instruction::ICmp) {
1816 if (!Val0->getType()->isIntOrIntVector() &&
1817 !isa<PointerType>(Val0->getType()))
1818 return Error(ID.Loc, "icmp requires pointer or integer operands");
1819 ID.ConstantVal = ConstantExpr::getICmp(Pred, Val0, Val1);
1820 } else if (Opc == Instruction::VFCmp) {
1821 // FIXME: REMOVE VFCMP Support
1822 if (!Val0->getType()->isFPOrFPVector() ||
1823 !isa<VectorType>(Val0->getType()))
1824 return Error(ID.Loc, "vfcmp requires vector floating point operands");
1825 ID.ConstantVal = ConstantExpr::getVFCmp(Pred, Val0, Val1);
1826 } else if (Opc == Instruction::VICmp) {
1827 // FIXME: REMOVE VICMP Support
1828 if (!Val0->getType()->isIntOrIntVector() ||
1829 !isa<VectorType>(Val0->getType()))
1830 return Error(ID.Loc, "vicmp requires vector floating point operands");
1831 ID.ConstantVal = ConstantExpr::getVICmp(Pred, Val0, Val1);
1832 }
1833 ID.Kind = ValID::t_Constant;
1834 return false;
1835 }
1836
1837 // Binary Operators.
1838 case lltok::kw_add:
1839 case lltok::kw_fadd:
1838 case lltok::kw_sub:
1840 case lltok::kw_sub:
1841 case lltok::kw_fsub:
1839 case lltok::kw_mul:
1842 case lltok::kw_mul:
1843 case lltok::kw_fmul:
1840 case lltok::kw_udiv:
1841 case lltok::kw_sdiv:
1842 case lltok::kw_fdiv:
1843 case lltok::kw_urem:
1844 case lltok::kw_srem:
1845 case lltok::kw_frem: {
1846 unsigned Opc = Lex.getUIntVal();
1847 Constant *Val0, *Val1;
1848 Lex.Lex();
1849 if (ParseToken(lltok::lparen, "expected '(' in binary constantexpr") ||
1850 ParseGlobalTypeAndValue(Val0) ||
1851 ParseToken(lltok::comma, "expected comma in binary constantexpr") ||
1852 ParseGlobalTypeAndValue(Val1) ||
1853 ParseToken(lltok::rparen, "expected ')' in binary constantexpr"))
1854 return true;
1855 if (Val0->getType() != Val1->getType())
1856 return Error(ID.Loc, "operands of constexpr must have same type");
1857 if (!Val0->getType()->isIntOrIntVector() &&
1858 !Val0->getType()->isFPOrFPVector())
1859 return Error(ID.Loc,"constexpr requires integer, fp, or vector operands");
1860 ID.ConstantVal = ConstantExpr::get(Opc, Val0, Val1);
1861 ID.Kind = ValID::t_Constant;
1862 return false;
1863 }
1864
1865 // Logical Operations
1866 case lltok::kw_shl:
1867 case lltok::kw_lshr:
1868 case lltok::kw_ashr:
1869 case lltok::kw_and:
1870 case lltok::kw_or:
1871 case lltok::kw_xor: {
1872 unsigned Opc = Lex.getUIntVal();
1873 Constant *Val0, *Val1;
1874 Lex.Lex();
1875 if (ParseToken(lltok::lparen, "expected '(' in logical constantexpr") ||
1876 ParseGlobalTypeAndValue(Val0) ||
1877 ParseToken(lltok::comma, "expected comma in logical constantexpr") ||
1878 ParseGlobalTypeAndValue(Val1) ||
1879 ParseToken(lltok::rparen, "expected ')' in logical constantexpr"))
1880 return true;
1881 if (Val0->getType() != Val1->getType())
1882 return Error(ID.Loc, "operands of constexpr must have same type");
1883 if (!Val0->getType()->isIntOrIntVector())
1884 return Error(ID.Loc,
1885 "constexpr requires integer or integer vector operands");
1886 ID.ConstantVal = ConstantExpr::get(Opc, Val0, Val1);
1887 ID.Kind = ValID::t_Constant;
1888 return false;
1889 }
1890
1891 case lltok::kw_getelementptr:
1892 case lltok::kw_shufflevector:
1893 case lltok::kw_insertelement:
1894 case lltok::kw_extractelement:
1895 case lltok::kw_select: {
1896 unsigned Opc = Lex.getUIntVal();
1897 SmallVector<Constant*, 16> Elts;
1898 Lex.Lex();
1899 if (ParseToken(lltok::lparen, "expected '(' in constantexpr") ||
1900 ParseGlobalValueVector(Elts) ||
1901 ParseToken(lltok::rparen, "expected ')' in constantexpr"))
1902 return true;
1903
1904 if (Opc == Instruction::GetElementPtr) {
1905 if (Elts.size() == 0 || !isa<PointerType>(Elts[0]->getType()))
1906 return Error(ID.Loc, "getelementptr requires pointer operand");
1907
1908 if (!GetElementPtrInst::getIndexedType(Elts[0]->getType(),
1909 (Value**)&Elts[1], Elts.size()-1))
1910 return Error(ID.Loc, "invalid indices for getelementptr");
1911 ID.ConstantVal = ConstantExpr::getGetElementPtr(Elts[0],
1912 &Elts[1], Elts.size()-1);
1913 } else if (Opc == Instruction::Select) {
1914 if (Elts.size() != 3)
1915 return Error(ID.Loc, "expected three operands to select");
1916 if (const char *Reason = SelectInst::areInvalidOperands(Elts[0], Elts[1],
1917 Elts[2]))
1918 return Error(ID.Loc, Reason);
1919 ID.ConstantVal = ConstantExpr::getSelect(Elts[0], Elts[1], Elts[2]);
1920 } else if (Opc == Instruction::ShuffleVector) {
1921 if (Elts.size() != 3)
1922 return Error(ID.Loc, "expected three operands to shufflevector");
1923 if (!ShuffleVectorInst::isValidOperands(Elts[0], Elts[1], Elts[2]))
1924 return Error(ID.Loc, "invalid operands to shufflevector");
1925 ID.ConstantVal = ConstantExpr::getShuffleVector(Elts[0], Elts[1],Elts[2]);
1926 } else if (Opc == Instruction::ExtractElement) {
1927 if (Elts.size() != 2)
1928 return Error(ID.Loc, "expected two operands to extractelement");
1929 if (!ExtractElementInst::isValidOperands(Elts[0], Elts[1]))
1930 return Error(ID.Loc, "invalid extractelement operands");
1931 ID.ConstantVal = ConstantExpr::getExtractElement(Elts[0], Elts[1]);
1932 } else {
1933 assert(Opc == Instruction::InsertElement && "Unknown opcode");
1934 if (Elts.size() != 3)
1935 return Error(ID.Loc, "expected three operands to insertelement");
1936 if (!InsertElementInst::isValidOperands(Elts[0], Elts[1], Elts[2]))
1937 return Error(ID.Loc, "invalid insertelement operands");
1938 ID.ConstantVal = ConstantExpr::getInsertElement(Elts[0], Elts[1],Elts[2]);
1939 }
1940
1941 ID.Kind = ValID::t_Constant;
1942 return false;
1943 }
1944 }
1945
1946 Lex.Lex();
1947 return false;
1948}
1949
1950/// ParseGlobalValue - Parse a global value with the specified type.
1951bool LLParser::ParseGlobalValue(const Type *Ty, Constant *&V) {
1952 V = 0;
1953 ValID ID;
1954 return ParseValID(ID) ||
1955 ConvertGlobalValIDToValue(Ty, ID, V);
1956}
1957
1958/// ConvertGlobalValIDToValue - Apply a type to a ValID to get a fully resolved
1959/// constant.
1960bool LLParser::ConvertGlobalValIDToValue(const Type *Ty, ValID &ID,
1961 Constant *&V) {
1962 if (isa<FunctionType>(Ty))
1963 return Error(ID.Loc, "functions are not values, refer to them as pointers");
1964
1965 switch (ID.Kind) {
1966 default: assert(0 && "Unknown ValID!");
1967 case ValID::t_LocalID:
1968 case ValID::t_LocalName:
1969 return Error(ID.Loc, "invalid use of function-local name");
1970 case ValID::t_InlineAsm:
1971 return Error(ID.Loc, "inline asm can only be an operand of call/invoke");
1972 case ValID::t_GlobalName:
1973 V = GetGlobalVal(ID.StrVal, Ty, ID.Loc);
1974 return V == 0;
1975 case ValID::t_GlobalID:
1976 V = GetGlobalVal(ID.UIntVal, Ty, ID.Loc);
1977 return V == 0;
1978 case ValID::t_APSInt:
1979 if (!isa<IntegerType>(Ty))
1980 return Error(ID.Loc, "integer constant must have integer type");
1981 ID.APSIntVal.extOrTrunc(Ty->getPrimitiveSizeInBits());
1982 V = ConstantInt::get(ID.APSIntVal);
1983 return false;
1984 case ValID::t_APFloat:
1985 if (!Ty->isFloatingPoint() ||
1986 !ConstantFP::isValueValidForType(Ty, ID.APFloatVal))
1987 return Error(ID.Loc, "floating point constant invalid for type");
1988
1989 // The lexer has no type info, so builds all float and double FP constants
1990 // as double. Fix this here. Long double does not need this.
1991 if (&ID.APFloatVal.getSemantics() == &APFloat::IEEEdouble &&
1992 Ty == Type::FloatTy) {
1993 bool Ignored;
1994 ID.APFloatVal.convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven,
1995 &Ignored);
1996 }
1997 V = ConstantFP::get(ID.APFloatVal);
1998
1999 if (V->getType() != Ty)
2000 return Error(ID.Loc, "floating point constant does not have type '" +
2001 Ty->getDescription() + "'");
2002
2003 return false;
2004 case ValID::t_Null:
2005 if (!isa<PointerType>(Ty))
2006 return Error(ID.Loc, "null must be a pointer type");
2007 V = ConstantPointerNull::get(cast<PointerType>(Ty));
2008 return false;
2009 case ValID::t_Undef:
2010 // FIXME: LabelTy should not be a first-class type.
2011 if ((!Ty->isFirstClassType() || Ty == Type::LabelTy) &&
2012 !isa<OpaqueType>(Ty))
2013 return Error(ID.Loc, "invalid type for undef constant");
2014 V = UndefValue::get(Ty);
2015 return false;
2016 case ValID::t_EmptyArray:
2017 if (!isa<ArrayType>(Ty) || cast<ArrayType>(Ty)->getNumElements() != 0)
2018 return Error(ID.Loc, "invalid empty array initializer");
2019 V = UndefValue::get(Ty);
2020 return false;
2021 case ValID::t_Zero:
2022 // FIXME: LabelTy should not be a first-class type.
2023 if (!Ty->isFirstClassType() || Ty == Type::LabelTy)
2024 return Error(ID.Loc, "invalid type for null constant");
2025 V = Constant::getNullValue(Ty);
2026 return false;
2027 case ValID::t_Constant:
2028 if (ID.ConstantVal->getType() != Ty)
2029 return Error(ID.Loc, "constant expression type mismatch");
2030 V = ID.ConstantVal;
2031 return false;
2032 }
2033}
2034
2035bool LLParser::ParseGlobalTypeAndValue(Constant *&V) {
2036 PATypeHolder Type(Type::VoidTy);
2037 return ParseType(Type) ||
2038 ParseGlobalValue(Type, V);
2039}
2040
2041/// ParseGlobalValueVector
2042/// ::= /*empty*/
2043/// ::= TypeAndValue (',' TypeAndValue)*
2044bool LLParser::ParseGlobalValueVector(SmallVectorImpl<Constant*> &Elts) {
2045 // Empty list.
2046 if (Lex.getKind() == lltok::rbrace ||
2047 Lex.getKind() == lltok::rsquare ||
2048 Lex.getKind() == lltok::greater ||
2049 Lex.getKind() == lltok::rparen)
2050 return false;
2051
2052 Constant *C;
2053 if (ParseGlobalTypeAndValue(C)) return true;
2054 Elts.push_back(C);
2055
2056 while (EatIfPresent(lltok::comma)) {
2057 if (ParseGlobalTypeAndValue(C)) return true;
2058 Elts.push_back(C);
2059 }
2060
2061 return false;
2062}
2063
2064
2065//===----------------------------------------------------------------------===//
2066// Function Parsing.
2067//===----------------------------------------------------------------------===//
2068
2069bool LLParser::ConvertValIDToValue(const Type *Ty, ValID &ID, Value *&V,
2070 PerFunctionState &PFS) {
2071 if (ID.Kind == ValID::t_LocalID)
2072 V = PFS.GetVal(ID.UIntVal, Ty, ID.Loc);
2073 else if (ID.Kind == ValID::t_LocalName)
2074 V = PFS.GetVal(ID.StrVal, Ty, ID.Loc);
2075 else if (ID.Kind == ValID::t_InlineAsm) {
2076 const PointerType *PTy = dyn_cast<PointerType>(Ty);
2077 const FunctionType *FTy =
2078 PTy ? dyn_cast<FunctionType>(PTy->getElementType()) : 0;
2079 if (!FTy || !InlineAsm::Verify(FTy, ID.StrVal2))
2080 return Error(ID.Loc, "invalid type for inline asm constraint string");
2081 V = InlineAsm::get(FTy, ID.StrVal, ID.StrVal2, ID.UIntVal);
2082 return false;
2083 } else {
2084 Constant *C;
2085 if (ConvertGlobalValIDToValue(Ty, ID, C)) return true;
2086 V = C;
2087 return false;
2088 }
2089
2090 return V == 0;
2091}
2092
2093bool LLParser::ParseValue(const Type *Ty, Value *&V, PerFunctionState &PFS) {
2094 V = 0;
2095 ValID ID;
2096 return ParseValID(ID) ||
2097 ConvertValIDToValue(Ty, ID, V, PFS);
2098}
2099
2100bool LLParser::ParseTypeAndValue(Value *&V, PerFunctionState &PFS) {
2101 PATypeHolder T(Type::VoidTy);
2102 return ParseType(T) ||
2103 ParseValue(T, V, PFS);
2104}
2105
2106/// FunctionHeader
2107/// ::= OptionalLinkage OptionalVisibility OptionalCallingConv OptRetAttrs
2108/// Type GlobalName '(' ArgList ')' OptFuncAttrs OptSection
2109/// OptionalAlign OptGC
2110bool LLParser::ParseFunctionHeader(Function *&Fn, bool isDefine) {
2111 // Parse the linkage.
2112 LocTy LinkageLoc = Lex.getLoc();
2113 unsigned Linkage;
2114
2115 unsigned Visibility, CC, RetAttrs;
2116 PATypeHolder RetType(Type::VoidTy);
2117 LocTy RetTypeLoc = Lex.getLoc();
2118 if (ParseOptionalLinkage(Linkage) ||
2119 ParseOptionalVisibility(Visibility) ||
2120 ParseOptionalCallingConv(CC) ||
2121 ParseOptionalAttrs(RetAttrs, 1) ||
2122 ParseType(RetType, RetTypeLoc, true /*void allowed*/))
2123 return true;
2124
2125 // Verify that the linkage is ok.
2126 switch ((GlobalValue::LinkageTypes)Linkage) {
2127 case GlobalValue::ExternalLinkage:
2128 break; // always ok.
2129 case GlobalValue::DLLImportLinkage:
2130 case GlobalValue::ExternalWeakLinkage:
2131 if (isDefine)
2132 return Error(LinkageLoc, "invalid linkage for function definition");
2133 break;
2134 case GlobalValue::PrivateLinkage:
2135 case GlobalValue::InternalLinkage:
2136 case GlobalValue::AvailableExternallyLinkage:
2137 case GlobalValue::LinkOnceAnyLinkage:
2138 case GlobalValue::LinkOnceODRLinkage:
2139 case GlobalValue::WeakAnyLinkage:
2140 case GlobalValue::WeakODRLinkage:
2141 case GlobalValue::DLLExportLinkage:
2142 if (!isDefine)
2143 return Error(LinkageLoc, "invalid linkage for function declaration");
2144 break;
2145 case GlobalValue::AppendingLinkage:
2146 case GlobalValue::GhostLinkage:
2147 case GlobalValue::CommonLinkage:
2148 return Error(LinkageLoc, "invalid function linkage type");
2149 }
2150
2151 if (!FunctionType::isValidReturnType(RetType) ||
2152 isa<OpaqueType>(RetType))
2153 return Error(RetTypeLoc, "invalid function return type");
2154
2155 LocTy NameLoc = Lex.getLoc();
2156
2157 std::string FunctionName;
2158 if (Lex.getKind() == lltok::GlobalVar) {
2159 FunctionName = Lex.getStrVal();
2160 } else if (Lex.getKind() == lltok::GlobalID) { // @42 is ok.
2161 unsigned NameID = Lex.getUIntVal();
2162
2163 if (NameID != NumberedVals.size())
2164 return TokError("function expected to be numbered '%" +
2165 utostr(NumberedVals.size()) + "'");
2166 } else {
2167 return TokError("expected function name");
2168 }
2169
2170 Lex.Lex();
2171
2172 if (Lex.getKind() != lltok::lparen)
2173 return TokError("expected '(' in function argument list");
2174
2175 std::vector<ArgInfo> ArgList;
2176 bool isVarArg;
2177 unsigned FuncAttrs;
2178 std::string Section;
2179 unsigned Alignment;
2180 std::string GC;
2181
2182 if (ParseArgumentList(ArgList, isVarArg, false) ||
2183 ParseOptionalAttrs(FuncAttrs, 2) ||
2184 (EatIfPresent(lltok::kw_section) &&
2185 ParseStringConstant(Section)) ||
2186 ParseOptionalAlignment(Alignment) ||
2187 (EatIfPresent(lltok::kw_gc) &&
2188 ParseStringConstant(GC)))
2189 return true;
2190
2191 // If the alignment was parsed as an attribute, move to the alignment field.
2192 if (FuncAttrs & Attribute::Alignment) {
2193 Alignment = Attribute::getAlignmentFromAttrs(FuncAttrs);
2194 FuncAttrs &= ~Attribute::Alignment;
2195 }
2196
2197 // Okay, if we got here, the function is syntactically valid. Convert types
2198 // and do semantic checks.
2199 std::vector<const Type*> ParamTypeList;
2200 SmallVector<AttributeWithIndex, 8> Attrs;
2201 // FIXME : In 3.0, stop accepting zext, sext and inreg as optional function
2202 // attributes.
2203 unsigned ObsoleteFuncAttrs = Attribute::ZExt|Attribute::SExt|Attribute::InReg;
2204 if (FuncAttrs & ObsoleteFuncAttrs) {
2205 RetAttrs |= FuncAttrs & ObsoleteFuncAttrs;
2206 FuncAttrs &= ~ObsoleteFuncAttrs;
2207 }
2208
2209 if (RetAttrs != Attribute::None)
2210 Attrs.push_back(AttributeWithIndex::get(0, RetAttrs));
2211
2212 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
2213 ParamTypeList.push_back(ArgList[i].Type);
2214 if (ArgList[i].Attrs != Attribute::None)
2215 Attrs.push_back(AttributeWithIndex::get(i+1, ArgList[i].Attrs));
2216 }
2217
2218 if (FuncAttrs != Attribute::None)
2219 Attrs.push_back(AttributeWithIndex::get(~0, FuncAttrs));
2220
2221 AttrListPtr PAL = AttrListPtr::get(Attrs.begin(), Attrs.end());
2222
2223 if (PAL.paramHasAttr(1, Attribute::StructRet) &&
2224 RetType != Type::VoidTy)
2225 return Error(RetTypeLoc, "functions with 'sret' argument must return void");
2226
2227 const FunctionType *FT = FunctionType::get(RetType, ParamTypeList, isVarArg);
2228 const PointerType *PFT = PointerType::getUnqual(FT);
2229
2230 Fn = 0;
2231 if (!FunctionName.empty()) {
2232 // If this was a definition of a forward reference, remove the definition
2233 // from the forward reference table and fill in the forward ref.
2234 std::map<std::string, std::pair<GlobalValue*, LocTy> >::iterator FRVI =
2235 ForwardRefVals.find(FunctionName);
2236 if (FRVI != ForwardRefVals.end()) {
2237 Fn = M->getFunction(FunctionName);
2238 ForwardRefVals.erase(FRVI);
2239 } else if ((Fn = M->getFunction(FunctionName))) {
2240 // If this function already exists in the symbol table, then it is
2241 // multiply defined. We accept a few cases for old backwards compat.
2242 // FIXME: Remove this stuff for LLVM 3.0.
2243 if (Fn->getType() != PFT || Fn->getAttributes() != PAL ||
2244 (!Fn->isDeclaration() && isDefine)) {
2245 // If the redefinition has different type or different attributes,
2246 // reject it. If both have bodies, reject it.
2247 return Error(NameLoc, "invalid redefinition of function '" +
2248 FunctionName + "'");
2249 } else if (Fn->isDeclaration()) {
2250 // Make sure to strip off any argument names so we can't get conflicts.
2251 for (Function::arg_iterator AI = Fn->arg_begin(), AE = Fn->arg_end();
2252 AI != AE; ++AI)
2253 AI->setName("");
2254 }
2255 }
2256
2257 } else if (FunctionName.empty()) {
2258 // If this is a definition of a forward referenced function, make sure the
2259 // types agree.
2260 std::map<unsigned, std::pair<GlobalValue*, LocTy> >::iterator I
2261 = ForwardRefValIDs.find(NumberedVals.size());
2262 if (I != ForwardRefValIDs.end()) {
2263 Fn = cast<Function>(I->second.first);
2264 if (Fn->getType() != PFT)
2265 return Error(NameLoc, "type of definition and forward reference of '@" +
2266 utostr(NumberedVals.size()) +"' disagree");
2267 ForwardRefValIDs.erase(I);
2268 }
2269 }
2270
2271 if (Fn == 0)
2272 Fn = Function::Create(FT, GlobalValue::ExternalLinkage, FunctionName, M);
2273 else // Move the forward-reference to the correct spot in the module.
2274 M->getFunctionList().splice(M->end(), M->getFunctionList(), Fn);
2275
2276 if (FunctionName.empty())
2277 NumberedVals.push_back(Fn);
2278
2279 Fn->setLinkage((GlobalValue::LinkageTypes)Linkage);
2280 Fn->setVisibility((GlobalValue::VisibilityTypes)Visibility);
2281 Fn->setCallingConv(CC);
2282 Fn->setAttributes(PAL);
2283 Fn->setAlignment(Alignment);
2284 Fn->setSection(Section);
2285 if (!GC.empty()) Fn->setGC(GC.c_str());
2286
2287 // Add all of the arguments we parsed to the function.
2288 Function::arg_iterator ArgIt = Fn->arg_begin();
2289 for (unsigned i = 0, e = ArgList.size(); i != e; ++i, ++ArgIt) {
2290 // If the argument has a name, insert it into the argument symbol table.
2291 if (ArgList[i].Name.empty()) continue;
2292
2293 // Set the name, if it conflicted, it will be auto-renamed.
2294 ArgIt->setName(ArgList[i].Name);
2295
2296 if (ArgIt->getNameStr() != ArgList[i].Name)
2297 return Error(ArgList[i].Loc, "redefinition of argument '%" +
2298 ArgList[i].Name + "'");
2299 }
2300
2301 return false;
2302}
2303
2304
2305/// ParseFunctionBody
2306/// ::= '{' BasicBlock+ '}'
2307/// ::= 'begin' BasicBlock+ 'end' // FIXME: remove in LLVM 3.0
2308///
2309bool LLParser::ParseFunctionBody(Function &Fn) {
2310 if (Lex.getKind() != lltok::lbrace && Lex.getKind() != lltok::kw_begin)
2311 return TokError("expected '{' in function body");
2312 Lex.Lex(); // eat the {.
2313
2314 PerFunctionState PFS(*this, Fn);
2315
2316 while (Lex.getKind() != lltok::rbrace && Lex.getKind() != lltok::kw_end)
2317 if (ParseBasicBlock(PFS)) return true;
2318
2319 // Eat the }.
2320 Lex.Lex();
2321
2322 // Verify function is ok.
2323 return PFS.VerifyFunctionComplete();
2324}
2325
2326/// ParseBasicBlock
2327/// ::= LabelStr? Instruction*
2328bool LLParser::ParseBasicBlock(PerFunctionState &PFS) {
2329 // If this basic block starts out with a name, remember it.
2330 std::string Name;
2331 LocTy NameLoc = Lex.getLoc();
2332 if (Lex.getKind() == lltok::LabelStr) {
2333 Name = Lex.getStrVal();
2334 Lex.Lex();
2335 }
2336
2337 BasicBlock *BB = PFS.DefineBB(Name, NameLoc);
2338 if (BB == 0) return true;
2339
2340 std::string NameStr;
2341
2342 // Parse the instructions in this block until we get a terminator.
2343 Instruction *Inst;
2344 do {
2345 // This instruction may have three possibilities for a name: a) none
2346 // specified, b) name specified "%foo =", c) number specified: "%4 =".
2347 LocTy NameLoc = Lex.getLoc();
2348 int NameID = -1;
2349 NameStr = "";
2350
2351 if (Lex.getKind() == lltok::LocalVarID) {
2352 NameID = Lex.getUIntVal();
2353 Lex.Lex();
2354 if (ParseToken(lltok::equal, "expected '=' after instruction id"))
2355 return true;
2356 } else if (Lex.getKind() == lltok::LocalVar ||
2357 // FIXME: REMOVE IN LLVM 3.0
2358 Lex.getKind() == lltok::StringConstant) {
2359 NameStr = Lex.getStrVal();
2360 Lex.Lex();
2361 if (ParseToken(lltok::equal, "expected '=' after instruction name"))
2362 return true;
2363 }
2364
2365 if (ParseInstruction(Inst, BB, PFS)) return true;
2366
2367 BB->getInstList().push_back(Inst);
2368
2369 // Set the name on the instruction.
2370 if (PFS.SetInstName(NameID, NameStr, NameLoc, Inst)) return true;
2371 } while (!isa<TerminatorInst>(Inst));
2372
2373 return false;
2374}
2375
2376//===----------------------------------------------------------------------===//
2377// Instruction Parsing.
2378//===----------------------------------------------------------------------===//
2379
2380/// ParseInstruction - Parse one of the many different instructions.
2381///
2382bool LLParser::ParseInstruction(Instruction *&Inst, BasicBlock *BB,
2383 PerFunctionState &PFS) {
2384 lltok::Kind Token = Lex.getKind();
2385 if (Token == lltok::Eof)
2386 return TokError("found end of file when expecting more instructions");
2387 LocTy Loc = Lex.getLoc();
2388 unsigned KeywordVal = Lex.getUIntVal();
2389 Lex.Lex(); // Eat the keyword.
2390
2391 switch (Token) {
2392 default: return Error(Loc, "expected instruction opcode");
2393 // Terminator Instructions.
2394 case lltok::kw_unwind: Inst = new UnwindInst(); return false;
2395 case lltok::kw_unreachable: Inst = new UnreachableInst(); return false;
2396 case lltok::kw_ret: return ParseRet(Inst, BB, PFS);
2397 case lltok::kw_br: return ParseBr(Inst, PFS);
2398 case lltok::kw_switch: return ParseSwitch(Inst, PFS);
2399 case lltok::kw_invoke: return ParseInvoke(Inst, PFS);
2400 // Binary Operators.
2401 case lltok::kw_add:
2402 case lltok::kw_sub:
1844 case lltok::kw_udiv:
1845 case lltok::kw_sdiv:
1846 case lltok::kw_fdiv:
1847 case lltok::kw_urem:
1848 case lltok::kw_srem:
1849 case lltok::kw_frem: {
1850 unsigned Opc = Lex.getUIntVal();
1851 Constant *Val0, *Val1;
1852 Lex.Lex();
1853 if (ParseToken(lltok::lparen, "expected '(' in binary constantexpr") ||
1854 ParseGlobalTypeAndValue(Val0) ||
1855 ParseToken(lltok::comma, "expected comma in binary constantexpr") ||
1856 ParseGlobalTypeAndValue(Val1) ||
1857 ParseToken(lltok::rparen, "expected ')' in binary constantexpr"))
1858 return true;
1859 if (Val0->getType() != Val1->getType())
1860 return Error(ID.Loc, "operands of constexpr must have same type");
1861 if (!Val0->getType()->isIntOrIntVector() &&
1862 !Val0->getType()->isFPOrFPVector())
1863 return Error(ID.Loc,"constexpr requires integer, fp, or vector operands");
1864 ID.ConstantVal = ConstantExpr::get(Opc, Val0, Val1);
1865 ID.Kind = ValID::t_Constant;
1866 return false;
1867 }
1868
1869 // Logical Operations
1870 case lltok::kw_shl:
1871 case lltok::kw_lshr:
1872 case lltok::kw_ashr:
1873 case lltok::kw_and:
1874 case lltok::kw_or:
1875 case lltok::kw_xor: {
1876 unsigned Opc = Lex.getUIntVal();
1877 Constant *Val0, *Val1;
1878 Lex.Lex();
1879 if (ParseToken(lltok::lparen, "expected '(' in logical constantexpr") ||
1880 ParseGlobalTypeAndValue(Val0) ||
1881 ParseToken(lltok::comma, "expected comma in logical constantexpr") ||
1882 ParseGlobalTypeAndValue(Val1) ||
1883 ParseToken(lltok::rparen, "expected ')' in logical constantexpr"))
1884 return true;
1885 if (Val0->getType() != Val1->getType())
1886 return Error(ID.Loc, "operands of constexpr must have same type");
1887 if (!Val0->getType()->isIntOrIntVector())
1888 return Error(ID.Loc,
1889 "constexpr requires integer or integer vector operands");
1890 ID.ConstantVal = ConstantExpr::get(Opc, Val0, Val1);
1891 ID.Kind = ValID::t_Constant;
1892 return false;
1893 }
1894
1895 case lltok::kw_getelementptr:
1896 case lltok::kw_shufflevector:
1897 case lltok::kw_insertelement:
1898 case lltok::kw_extractelement:
1899 case lltok::kw_select: {
1900 unsigned Opc = Lex.getUIntVal();
1901 SmallVector<Constant*, 16> Elts;
1902 Lex.Lex();
1903 if (ParseToken(lltok::lparen, "expected '(' in constantexpr") ||
1904 ParseGlobalValueVector(Elts) ||
1905 ParseToken(lltok::rparen, "expected ')' in constantexpr"))
1906 return true;
1907
1908 if (Opc == Instruction::GetElementPtr) {
1909 if (Elts.size() == 0 || !isa<PointerType>(Elts[0]->getType()))
1910 return Error(ID.Loc, "getelementptr requires pointer operand");
1911
1912 if (!GetElementPtrInst::getIndexedType(Elts[0]->getType(),
1913 (Value**)&Elts[1], Elts.size()-1))
1914 return Error(ID.Loc, "invalid indices for getelementptr");
1915 ID.ConstantVal = ConstantExpr::getGetElementPtr(Elts[0],
1916 &Elts[1], Elts.size()-1);
1917 } else if (Opc == Instruction::Select) {
1918 if (Elts.size() != 3)
1919 return Error(ID.Loc, "expected three operands to select");
1920 if (const char *Reason = SelectInst::areInvalidOperands(Elts[0], Elts[1],
1921 Elts[2]))
1922 return Error(ID.Loc, Reason);
1923 ID.ConstantVal = ConstantExpr::getSelect(Elts[0], Elts[1], Elts[2]);
1924 } else if (Opc == Instruction::ShuffleVector) {
1925 if (Elts.size() != 3)
1926 return Error(ID.Loc, "expected three operands to shufflevector");
1927 if (!ShuffleVectorInst::isValidOperands(Elts[0], Elts[1], Elts[2]))
1928 return Error(ID.Loc, "invalid operands to shufflevector");
1929 ID.ConstantVal = ConstantExpr::getShuffleVector(Elts[0], Elts[1],Elts[2]);
1930 } else if (Opc == Instruction::ExtractElement) {
1931 if (Elts.size() != 2)
1932 return Error(ID.Loc, "expected two operands to extractelement");
1933 if (!ExtractElementInst::isValidOperands(Elts[0], Elts[1]))
1934 return Error(ID.Loc, "invalid extractelement operands");
1935 ID.ConstantVal = ConstantExpr::getExtractElement(Elts[0], Elts[1]);
1936 } else {
1937 assert(Opc == Instruction::InsertElement && "Unknown opcode");
1938 if (Elts.size() != 3)
1939 return Error(ID.Loc, "expected three operands to insertelement");
1940 if (!InsertElementInst::isValidOperands(Elts[0], Elts[1], Elts[2]))
1941 return Error(ID.Loc, "invalid insertelement operands");
1942 ID.ConstantVal = ConstantExpr::getInsertElement(Elts[0], Elts[1],Elts[2]);
1943 }
1944
1945 ID.Kind = ValID::t_Constant;
1946 return false;
1947 }
1948 }
1949
1950 Lex.Lex();
1951 return false;
1952}
1953
1954/// ParseGlobalValue - Parse a global value with the specified type.
1955bool LLParser::ParseGlobalValue(const Type *Ty, Constant *&V) {
1956 V = 0;
1957 ValID ID;
1958 return ParseValID(ID) ||
1959 ConvertGlobalValIDToValue(Ty, ID, V);
1960}
1961
1962/// ConvertGlobalValIDToValue - Apply a type to a ValID to get a fully resolved
1963/// constant.
1964bool LLParser::ConvertGlobalValIDToValue(const Type *Ty, ValID &ID,
1965 Constant *&V) {
1966 if (isa<FunctionType>(Ty))
1967 return Error(ID.Loc, "functions are not values, refer to them as pointers");
1968
1969 switch (ID.Kind) {
1970 default: assert(0 && "Unknown ValID!");
1971 case ValID::t_LocalID:
1972 case ValID::t_LocalName:
1973 return Error(ID.Loc, "invalid use of function-local name");
1974 case ValID::t_InlineAsm:
1975 return Error(ID.Loc, "inline asm can only be an operand of call/invoke");
1976 case ValID::t_GlobalName:
1977 V = GetGlobalVal(ID.StrVal, Ty, ID.Loc);
1978 return V == 0;
1979 case ValID::t_GlobalID:
1980 V = GetGlobalVal(ID.UIntVal, Ty, ID.Loc);
1981 return V == 0;
1982 case ValID::t_APSInt:
1983 if (!isa<IntegerType>(Ty))
1984 return Error(ID.Loc, "integer constant must have integer type");
1985 ID.APSIntVal.extOrTrunc(Ty->getPrimitiveSizeInBits());
1986 V = ConstantInt::get(ID.APSIntVal);
1987 return false;
1988 case ValID::t_APFloat:
1989 if (!Ty->isFloatingPoint() ||
1990 !ConstantFP::isValueValidForType(Ty, ID.APFloatVal))
1991 return Error(ID.Loc, "floating point constant invalid for type");
1992
1993 // The lexer has no type info, so builds all float and double FP constants
1994 // as double. Fix this here. Long double does not need this.
1995 if (&ID.APFloatVal.getSemantics() == &APFloat::IEEEdouble &&
1996 Ty == Type::FloatTy) {
1997 bool Ignored;
1998 ID.APFloatVal.convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven,
1999 &Ignored);
2000 }
2001 V = ConstantFP::get(ID.APFloatVal);
2002
2003 if (V->getType() != Ty)
2004 return Error(ID.Loc, "floating point constant does not have type '" +
2005 Ty->getDescription() + "'");
2006
2007 return false;
2008 case ValID::t_Null:
2009 if (!isa<PointerType>(Ty))
2010 return Error(ID.Loc, "null must be a pointer type");
2011 V = ConstantPointerNull::get(cast<PointerType>(Ty));
2012 return false;
2013 case ValID::t_Undef:
2014 // FIXME: LabelTy should not be a first-class type.
2015 if ((!Ty->isFirstClassType() || Ty == Type::LabelTy) &&
2016 !isa<OpaqueType>(Ty))
2017 return Error(ID.Loc, "invalid type for undef constant");
2018 V = UndefValue::get(Ty);
2019 return false;
2020 case ValID::t_EmptyArray:
2021 if (!isa<ArrayType>(Ty) || cast<ArrayType>(Ty)->getNumElements() != 0)
2022 return Error(ID.Loc, "invalid empty array initializer");
2023 V = UndefValue::get(Ty);
2024 return false;
2025 case ValID::t_Zero:
2026 // FIXME: LabelTy should not be a first-class type.
2027 if (!Ty->isFirstClassType() || Ty == Type::LabelTy)
2028 return Error(ID.Loc, "invalid type for null constant");
2029 V = Constant::getNullValue(Ty);
2030 return false;
2031 case ValID::t_Constant:
2032 if (ID.ConstantVal->getType() != Ty)
2033 return Error(ID.Loc, "constant expression type mismatch");
2034 V = ID.ConstantVal;
2035 return false;
2036 }
2037}
2038
2039bool LLParser::ParseGlobalTypeAndValue(Constant *&V) {
2040 PATypeHolder Type(Type::VoidTy);
2041 return ParseType(Type) ||
2042 ParseGlobalValue(Type, V);
2043}
2044
2045/// ParseGlobalValueVector
2046/// ::= /*empty*/
2047/// ::= TypeAndValue (',' TypeAndValue)*
2048bool LLParser::ParseGlobalValueVector(SmallVectorImpl<Constant*> &Elts) {
2049 // Empty list.
2050 if (Lex.getKind() == lltok::rbrace ||
2051 Lex.getKind() == lltok::rsquare ||
2052 Lex.getKind() == lltok::greater ||
2053 Lex.getKind() == lltok::rparen)
2054 return false;
2055
2056 Constant *C;
2057 if (ParseGlobalTypeAndValue(C)) return true;
2058 Elts.push_back(C);
2059
2060 while (EatIfPresent(lltok::comma)) {
2061 if (ParseGlobalTypeAndValue(C)) return true;
2062 Elts.push_back(C);
2063 }
2064
2065 return false;
2066}
2067
2068
2069//===----------------------------------------------------------------------===//
2070// Function Parsing.
2071//===----------------------------------------------------------------------===//
2072
2073bool LLParser::ConvertValIDToValue(const Type *Ty, ValID &ID, Value *&V,
2074 PerFunctionState &PFS) {
2075 if (ID.Kind == ValID::t_LocalID)
2076 V = PFS.GetVal(ID.UIntVal, Ty, ID.Loc);
2077 else if (ID.Kind == ValID::t_LocalName)
2078 V = PFS.GetVal(ID.StrVal, Ty, ID.Loc);
2079 else if (ID.Kind == ValID::t_InlineAsm) {
2080 const PointerType *PTy = dyn_cast<PointerType>(Ty);
2081 const FunctionType *FTy =
2082 PTy ? dyn_cast<FunctionType>(PTy->getElementType()) : 0;
2083 if (!FTy || !InlineAsm::Verify(FTy, ID.StrVal2))
2084 return Error(ID.Loc, "invalid type for inline asm constraint string");
2085 V = InlineAsm::get(FTy, ID.StrVal, ID.StrVal2, ID.UIntVal);
2086 return false;
2087 } else {
2088 Constant *C;
2089 if (ConvertGlobalValIDToValue(Ty, ID, C)) return true;
2090 V = C;
2091 return false;
2092 }
2093
2094 return V == 0;
2095}
2096
2097bool LLParser::ParseValue(const Type *Ty, Value *&V, PerFunctionState &PFS) {
2098 V = 0;
2099 ValID ID;
2100 return ParseValID(ID) ||
2101 ConvertValIDToValue(Ty, ID, V, PFS);
2102}
2103
2104bool LLParser::ParseTypeAndValue(Value *&V, PerFunctionState &PFS) {
2105 PATypeHolder T(Type::VoidTy);
2106 return ParseType(T) ||
2107 ParseValue(T, V, PFS);
2108}
2109
2110/// FunctionHeader
2111/// ::= OptionalLinkage OptionalVisibility OptionalCallingConv OptRetAttrs
2112/// Type GlobalName '(' ArgList ')' OptFuncAttrs OptSection
2113/// OptionalAlign OptGC
2114bool LLParser::ParseFunctionHeader(Function *&Fn, bool isDefine) {
2115 // Parse the linkage.
2116 LocTy LinkageLoc = Lex.getLoc();
2117 unsigned Linkage;
2118
2119 unsigned Visibility, CC, RetAttrs;
2120 PATypeHolder RetType(Type::VoidTy);
2121 LocTy RetTypeLoc = Lex.getLoc();
2122 if (ParseOptionalLinkage(Linkage) ||
2123 ParseOptionalVisibility(Visibility) ||
2124 ParseOptionalCallingConv(CC) ||
2125 ParseOptionalAttrs(RetAttrs, 1) ||
2126 ParseType(RetType, RetTypeLoc, true /*void allowed*/))
2127 return true;
2128
2129 // Verify that the linkage is ok.
2130 switch ((GlobalValue::LinkageTypes)Linkage) {
2131 case GlobalValue::ExternalLinkage:
2132 break; // always ok.
2133 case GlobalValue::DLLImportLinkage:
2134 case GlobalValue::ExternalWeakLinkage:
2135 if (isDefine)
2136 return Error(LinkageLoc, "invalid linkage for function definition");
2137 break;
2138 case GlobalValue::PrivateLinkage:
2139 case GlobalValue::InternalLinkage:
2140 case GlobalValue::AvailableExternallyLinkage:
2141 case GlobalValue::LinkOnceAnyLinkage:
2142 case GlobalValue::LinkOnceODRLinkage:
2143 case GlobalValue::WeakAnyLinkage:
2144 case GlobalValue::WeakODRLinkage:
2145 case GlobalValue::DLLExportLinkage:
2146 if (!isDefine)
2147 return Error(LinkageLoc, "invalid linkage for function declaration");
2148 break;
2149 case GlobalValue::AppendingLinkage:
2150 case GlobalValue::GhostLinkage:
2151 case GlobalValue::CommonLinkage:
2152 return Error(LinkageLoc, "invalid function linkage type");
2153 }
2154
2155 if (!FunctionType::isValidReturnType(RetType) ||
2156 isa<OpaqueType>(RetType))
2157 return Error(RetTypeLoc, "invalid function return type");
2158
2159 LocTy NameLoc = Lex.getLoc();
2160
2161 std::string FunctionName;
2162 if (Lex.getKind() == lltok::GlobalVar) {
2163 FunctionName = Lex.getStrVal();
2164 } else if (Lex.getKind() == lltok::GlobalID) { // @42 is ok.
2165 unsigned NameID = Lex.getUIntVal();
2166
2167 if (NameID != NumberedVals.size())
2168 return TokError("function expected to be numbered '%" +
2169 utostr(NumberedVals.size()) + "'");
2170 } else {
2171 return TokError("expected function name");
2172 }
2173
2174 Lex.Lex();
2175
2176 if (Lex.getKind() != lltok::lparen)
2177 return TokError("expected '(' in function argument list");
2178
2179 std::vector<ArgInfo> ArgList;
2180 bool isVarArg;
2181 unsigned FuncAttrs;
2182 std::string Section;
2183 unsigned Alignment;
2184 std::string GC;
2185
2186 if (ParseArgumentList(ArgList, isVarArg, false) ||
2187 ParseOptionalAttrs(FuncAttrs, 2) ||
2188 (EatIfPresent(lltok::kw_section) &&
2189 ParseStringConstant(Section)) ||
2190 ParseOptionalAlignment(Alignment) ||
2191 (EatIfPresent(lltok::kw_gc) &&
2192 ParseStringConstant(GC)))
2193 return true;
2194
2195 // If the alignment was parsed as an attribute, move to the alignment field.
2196 if (FuncAttrs & Attribute::Alignment) {
2197 Alignment = Attribute::getAlignmentFromAttrs(FuncAttrs);
2198 FuncAttrs &= ~Attribute::Alignment;
2199 }
2200
2201 // Okay, if we got here, the function is syntactically valid. Convert types
2202 // and do semantic checks.
2203 std::vector<const Type*> ParamTypeList;
2204 SmallVector<AttributeWithIndex, 8> Attrs;
2205 // FIXME : In 3.0, stop accepting zext, sext and inreg as optional function
2206 // attributes.
2207 unsigned ObsoleteFuncAttrs = Attribute::ZExt|Attribute::SExt|Attribute::InReg;
2208 if (FuncAttrs & ObsoleteFuncAttrs) {
2209 RetAttrs |= FuncAttrs & ObsoleteFuncAttrs;
2210 FuncAttrs &= ~ObsoleteFuncAttrs;
2211 }
2212
2213 if (RetAttrs != Attribute::None)
2214 Attrs.push_back(AttributeWithIndex::get(0, RetAttrs));
2215
2216 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
2217 ParamTypeList.push_back(ArgList[i].Type);
2218 if (ArgList[i].Attrs != Attribute::None)
2219 Attrs.push_back(AttributeWithIndex::get(i+1, ArgList[i].Attrs));
2220 }
2221
2222 if (FuncAttrs != Attribute::None)
2223 Attrs.push_back(AttributeWithIndex::get(~0, FuncAttrs));
2224
2225 AttrListPtr PAL = AttrListPtr::get(Attrs.begin(), Attrs.end());
2226
2227 if (PAL.paramHasAttr(1, Attribute::StructRet) &&
2228 RetType != Type::VoidTy)
2229 return Error(RetTypeLoc, "functions with 'sret' argument must return void");
2230
2231 const FunctionType *FT = FunctionType::get(RetType, ParamTypeList, isVarArg);
2232 const PointerType *PFT = PointerType::getUnqual(FT);
2233
2234 Fn = 0;
2235 if (!FunctionName.empty()) {
2236 // If this was a definition of a forward reference, remove the definition
2237 // from the forward reference table and fill in the forward ref.
2238 std::map<std::string, std::pair<GlobalValue*, LocTy> >::iterator FRVI =
2239 ForwardRefVals.find(FunctionName);
2240 if (FRVI != ForwardRefVals.end()) {
2241 Fn = M->getFunction(FunctionName);
2242 ForwardRefVals.erase(FRVI);
2243 } else if ((Fn = M->getFunction(FunctionName))) {
2244 // If this function already exists in the symbol table, then it is
2245 // multiply defined. We accept a few cases for old backwards compat.
2246 // FIXME: Remove this stuff for LLVM 3.0.
2247 if (Fn->getType() != PFT || Fn->getAttributes() != PAL ||
2248 (!Fn->isDeclaration() && isDefine)) {
2249 // If the redefinition has different type or different attributes,
2250 // reject it. If both have bodies, reject it.
2251 return Error(NameLoc, "invalid redefinition of function '" +
2252 FunctionName + "'");
2253 } else if (Fn->isDeclaration()) {
2254 // Make sure to strip off any argument names so we can't get conflicts.
2255 for (Function::arg_iterator AI = Fn->arg_begin(), AE = Fn->arg_end();
2256 AI != AE; ++AI)
2257 AI->setName("");
2258 }
2259 }
2260
2261 } else if (FunctionName.empty()) {
2262 // If this is a definition of a forward referenced function, make sure the
2263 // types agree.
2264 std::map<unsigned, std::pair<GlobalValue*, LocTy> >::iterator I
2265 = ForwardRefValIDs.find(NumberedVals.size());
2266 if (I != ForwardRefValIDs.end()) {
2267 Fn = cast<Function>(I->second.first);
2268 if (Fn->getType() != PFT)
2269 return Error(NameLoc, "type of definition and forward reference of '@" +
2270 utostr(NumberedVals.size()) +"' disagree");
2271 ForwardRefValIDs.erase(I);
2272 }
2273 }
2274
2275 if (Fn == 0)
2276 Fn = Function::Create(FT, GlobalValue::ExternalLinkage, FunctionName, M);
2277 else // Move the forward-reference to the correct spot in the module.
2278 M->getFunctionList().splice(M->end(), M->getFunctionList(), Fn);
2279
2280 if (FunctionName.empty())
2281 NumberedVals.push_back(Fn);
2282
2283 Fn->setLinkage((GlobalValue::LinkageTypes)Linkage);
2284 Fn->setVisibility((GlobalValue::VisibilityTypes)Visibility);
2285 Fn->setCallingConv(CC);
2286 Fn->setAttributes(PAL);
2287 Fn->setAlignment(Alignment);
2288 Fn->setSection(Section);
2289 if (!GC.empty()) Fn->setGC(GC.c_str());
2290
2291 // Add all of the arguments we parsed to the function.
2292 Function::arg_iterator ArgIt = Fn->arg_begin();
2293 for (unsigned i = 0, e = ArgList.size(); i != e; ++i, ++ArgIt) {
2294 // If the argument has a name, insert it into the argument symbol table.
2295 if (ArgList[i].Name.empty()) continue;
2296
2297 // Set the name, if it conflicted, it will be auto-renamed.
2298 ArgIt->setName(ArgList[i].Name);
2299
2300 if (ArgIt->getNameStr() != ArgList[i].Name)
2301 return Error(ArgList[i].Loc, "redefinition of argument '%" +
2302 ArgList[i].Name + "'");
2303 }
2304
2305 return false;
2306}
2307
2308
2309/// ParseFunctionBody
2310/// ::= '{' BasicBlock+ '}'
2311/// ::= 'begin' BasicBlock+ 'end' // FIXME: remove in LLVM 3.0
2312///
2313bool LLParser::ParseFunctionBody(Function &Fn) {
2314 if (Lex.getKind() != lltok::lbrace && Lex.getKind() != lltok::kw_begin)
2315 return TokError("expected '{' in function body");
2316 Lex.Lex(); // eat the {.
2317
2318 PerFunctionState PFS(*this, Fn);
2319
2320 while (Lex.getKind() != lltok::rbrace && Lex.getKind() != lltok::kw_end)
2321 if (ParseBasicBlock(PFS)) return true;
2322
2323 // Eat the }.
2324 Lex.Lex();
2325
2326 // Verify function is ok.
2327 return PFS.VerifyFunctionComplete();
2328}
2329
2330/// ParseBasicBlock
2331/// ::= LabelStr? Instruction*
2332bool LLParser::ParseBasicBlock(PerFunctionState &PFS) {
2333 // If this basic block starts out with a name, remember it.
2334 std::string Name;
2335 LocTy NameLoc = Lex.getLoc();
2336 if (Lex.getKind() == lltok::LabelStr) {
2337 Name = Lex.getStrVal();
2338 Lex.Lex();
2339 }
2340
2341 BasicBlock *BB = PFS.DefineBB(Name, NameLoc);
2342 if (BB == 0) return true;
2343
2344 std::string NameStr;
2345
2346 // Parse the instructions in this block until we get a terminator.
2347 Instruction *Inst;
2348 do {
2349 // This instruction may have three possibilities for a name: a) none
2350 // specified, b) name specified "%foo =", c) number specified: "%4 =".
2351 LocTy NameLoc = Lex.getLoc();
2352 int NameID = -1;
2353 NameStr = "";
2354
2355 if (Lex.getKind() == lltok::LocalVarID) {
2356 NameID = Lex.getUIntVal();
2357 Lex.Lex();
2358 if (ParseToken(lltok::equal, "expected '=' after instruction id"))
2359 return true;
2360 } else if (Lex.getKind() == lltok::LocalVar ||
2361 // FIXME: REMOVE IN LLVM 3.0
2362 Lex.getKind() == lltok::StringConstant) {
2363 NameStr = Lex.getStrVal();
2364 Lex.Lex();
2365 if (ParseToken(lltok::equal, "expected '=' after instruction name"))
2366 return true;
2367 }
2368
2369 if (ParseInstruction(Inst, BB, PFS)) return true;
2370
2371 BB->getInstList().push_back(Inst);
2372
2373 // Set the name on the instruction.
2374 if (PFS.SetInstName(NameID, NameStr, NameLoc, Inst)) return true;
2375 } while (!isa<TerminatorInst>(Inst));
2376
2377 return false;
2378}
2379
2380//===----------------------------------------------------------------------===//
2381// Instruction Parsing.
2382//===----------------------------------------------------------------------===//
2383
2384/// ParseInstruction - Parse one of the many different instructions.
2385///
2386bool LLParser::ParseInstruction(Instruction *&Inst, BasicBlock *BB,
2387 PerFunctionState &PFS) {
2388 lltok::Kind Token = Lex.getKind();
2389 if (Token == lltok::Eof)
2390 return TokError("found end of file when expecting more instructions");
2391 LocTy Loc = Lex.getLoc();
2392 unsigned KeywordVal = Lex.getUIntVal();
2393 Lex.Lex(); // Eat the keyword.
2394
2395 switch (Token) {
2396 default: return Error(Loc, "expected instruction opcode");
2397 // Terminator Instructions.
2398 case lltok::kw_unwind: Inst = new UnwindInst(); return false;
2399 case lltok::kw_unreachable: Inst = new UnreachableInst(); return false;
2400 case lltok::kw_ret: return ParseRet(Inst, BB, PFS);
2401 case lltok::kw_br: return ParseBr(Inst, PFS);
2402 case lltok::kw_switch: return ParseSwitch(Inst, PFS);
2403 case lltok::kw_invoke: return ParseInvoke(Inst, PFS);
2404 // Binary Operators.
2405 case lltok::kw_add:
2406 case lltok::kw_sub:
2403 case lltok::kw_mul: return ParseArithmetic(Inst, PFS, KeywordVal, 0);
2404
2407 case lltok::kw_mul:
2408 // API compatibility: Accept either integer or floating-point types.
2409 return ParseArithmetic(Inst, PFS, KeywordVal, 0);
2410 case lltok::kw_fadd:
2411 case lltok::kw_fsub:
2412 case lltok::kw_fmul: return ParseArithmetic(Inst, PFS, KeywordVal, 2);
2413
2405 case lltok::kw_udiv:
2406 case lltok::kw_sdiv:
2407 case lltok::kw_urem:
2408 case lltok::kw_srem: return ParseArithmetic(Inst, PFS, KeywordVal, 1);
2409 case lltok::kw_fdiv:
2410 case lltok::kw_frem: return ParseArithmetic(Inst, PFS, KeywordVal, 2);
2411 case lltok::kw_shl:
2412 case lltok::kw_lshr:
2413 case lltok::kw_ashr:
2414 case lltok::kw_and:
2415 case lltok::kw_or:
2416 case lltok::kw_xor: return ParseLogical(Inst, PFS, KeywordVal);
2417 case lltok::kw_icmp:
2418 case lltok::kw_fcmp:
2419 case lltok::kw_vicmp:
2420 case lltok::kw_vfcmp: return ParseCompare(Inst, PFS, KeywordVal);
2421 // Casts.
2422 case lltok::kw_trunc:
2423 case lltok::kw_zext:
2424 case lltok::kw_sext:
2425 case lltok::kw_fptrunc:
2426 case lltok::kw_fpext:
2427 case lltok::kw_bitcast:
2428 case lltok::kw_uitofp:
2429 case lltok::kw_sitofp:
2430 case lltok::kw_fptoui:
2431 case lltok::kw_fptosi:
2432 case lltok::kw_inttoptr:
2433 case lltok::kw_ptrtoint: return ParseCast(Inst, PFS, KeywordVal);
2434 // Other.
2435 case lltok::kw_select: return ParseSelect(Inst, PFS);
2436 case lltok::kw_va_arg: return ParseVA_Arg(Inst, PFS);
2437 case lltok::kw_extractelement: return ParseExtractElement(Inst, PFS);
2438 case lltok::kw_insertelement: return ParseInsertElement(Inst, PFS);
2439 case lltok::kw_shufflevector: return ParseShuffleVector(Inst, PFS);
2440 case lltok::kw_phi: return ParsePHI(Inst, PFS);
2441 case lltok::kw_call: return ParseCall(Inst, PFS, false);
2442 case lltok::kw_tail: return ParseCall(Inst, PFS, true);
2443 // Memory.
2444 case lltok::kw_alloca:
2445 case lltok::kw_malloc: return ParseAlloc(Inst, PFS, KeywordVal);
2446 case lltok::kw_free: return ParseFree(Inst, PFS);
2447 case lltok::kw_load: return ParseLoad(Inst, PFS, false);
2448 case lltok::kw_store: return ParseStore(Inst, PFS, false);
2449 case lltok::kw_volatile:
2450 if (EatIfPresent(lltok::kw_load))
2451 return ParseLoad(Inst, PFS, true);
2452 else if (EatIfPresent(lltok::kw_store))
2453 return ParseStore(Inst, PFS, true);
2454 else
2455 return TokError("expected 'load' or 'store'");
2456 case lltok::kw_getresult: return ParseGetResult(Inst, PFS);
2457 case lltok::kw_getelementptr: return ParseGetElementPtr(Inst, PFS);
2458 case lltok::kw_extractvalue: return ParseExtractValue(Inst, PFS);
2459 case lltok::kw_insertvalue: return ParseInsertValue(Inst, PFS);
2460 }
2461}
2462
2463/// ParseCmpPredicate - Parse an integer or fp predicate, based on Kind.
2464bool LLParser::ParseCmpPredicate(unsigned &P, unsigned Opc) {
2465 // FIXME: REMOVE vicmp/vfcmp!
2466 if (Opc == Instruction::FCmp || Opc == Instruction::VFCmp) {
2467 switch (Lex.getKind()) {
2468 default: TokError("expected fcmp predicate (e.g. 'oeq')");
2469 case lltok::kw_oeq: P = CmpInst::FCMP_OEQ; break;
2470 case lltok::kw_one: P = CmpInst::FCMP_ONE; break;
2471 case lltok::kw_olt: P = CmpInst::FCMP_OLT; break;
2472 case lltok::kw_ogt: P = CmpInst::FCMP_OGT; break;
2473 case lltok::kw_ole: P = CmpInst::FCMP_OLE; break;
2474 case lltok::kw_oge: P = CmpInst::FCMP_OGE; break;
2475 case lltok::kw_ord: P = CmpInst::FCMP_ORD; break;
2476 case lltok::kw_uno: P = CmpInst::FCMP_UNO; break;
2477 case lltok::kw_ueq: P = CmpInst::FCMP_UEQ; break;
2478 case lltok::kw_une: P = CmpInst::FCMP_UNE; break;
2479 case lltok::kw_ult: P = CmpInst::FCMP_ULT; break;
2480 case lltok::kw_ugt: P = CmpInst::FCMP_UGT; break;
2481 case lltok::kw_ule: P = CmpInst::FCMP_ULE; break;
2482 case lltok::kw_uge: P = CmpInst::FCMP_UGE; break;
2483 case lltok::kw_true: P = CmpInst::FCMP_TRUE; break;
2484 case lltok::kw_false: P = CmpInst::FCMP_FALSE; break;
2485 }
2486 } else {
2487 switch (Lex.getKind()) {
2488 default: TokError("expected icmp predicate (e.g. 'eq')");
2489 case lltok::kw_eq: P = CmpInst::ICMP_EQ; break;
2490 case lltok::kw_ne: P = CmpInst::ICMP_NE; break;
2491 case lltok::kw_slt: P = CmpInst::ICMP_SLT; break;
2492 case lltok::kw_sgt: P = CmpInst::ICMP_SGT; break;
2493 case lltok::kw_sle: P = CmpInst::ICMP_SLE; break;
2494 case lltok::kw_sge: P = CmpInst::ICMP_SGE; break;
2495 case lltok::kw_ult: P = CmpInst::ICMP_ULT; break;
2496 case lltok::kw_ugt: P = CmpInst::ICMP_UGT; break;
2497 case lltok::kw_ule: P = CmpInst::ICMP_ULE; break;
2498 case lltok::kw_uge: P = CmpInst::ICMP_UGE; break;
2499 }
2500 }
2501 Lex.Lex();
2502 return false;
2503}
2504
2505//===----------------------------------------------------------------------===//
2506// Terminator Instructions.
2507//===----------------------------------------------------------------------===//
2508
2509/// ParseRet - Parse a return instruction.
2510/// ::= 'ret' void
2511/// ::= 'ret' TypeAndValue
2512/// ::= 'ret' TypeAndValue (',' TypeAndValue)+ [[obsolete: LLVM 3.0]]
2513bool LLParser::ParseRet(Instruction *&Inst, BasicBlock *BB,
2514 PerFunctionState &PFS) {
2515 PATypeHolder Ty(Type::VoidTy);
2516 if (ParseType(Ty, true /*void allowed*/)) return true;
2517
2518 if (Ty == Type::VoidTy) {
2519 Inst = ReturnInst::Create();
2520 return false;
2521 }
2522
2523 Value *RV;
2524 if (ParseValue(Ty, RV, PFS)) return true;
2525
2526 // The normal case is one return value.
2527 if (Lex.getKind() == lltok::comma) {
2528 // FIXME: LLVM 3.0 remove MRV support for 'ret i32 1, i32 2', requiring use
2529 // of 'ret {i32,i32} {i32 1, i32 2}'
2530 SmallVector<Value*, 8> RVs;
2531 RVs.push_back(RV);
2532
2533 while (EatIfPresent(lltok::comma)) {
2534 if (ParseTypeAndValue(RV, PFS)) return true;
2535 RVs.push_back(RV);
2536 }
2537
2538 RV = UndefValue::get(PFS.getFunction().getReturnType());
2539 for (unsigned i = 0, e = RVs.size(); i != e; ++i) {
2540 Instruction *I = InsertValueInst::Create(RV, RVs[i], i, "mrv");
2541 BB->getInstList().push_back(I);
2542 RV = I;
2543 }
2544 }
2545 Inst = ReturnInst::Create(RV);
2546 return false;
2547}
2548
2549
2550/// ParseBr
2551/// ::= 'br' TypeAndValue
2552/// ::= 'br' TypeAndValue ',' TypeAndValue ',' TypeAndValue
2553bool LLParser::ParseBr(Instruction *&Inst, PerFunctionState &PFS) {
2554 LocTy Loc, Loc2;
2555 Value *Op0, *Op1, *Op2;
2556 if (ParseTypeAndValue(Op0, Loc, PFS)) return true;
2557
2558 if (BasicBlock *BB = dyn_cast<BasicBlock>(Op0)) {
2559 Inst = BranchInst::Create(BB);
2560 return false;
2561 }
2562
2563 if (Op0->getType() != Type::Int1Ty)
2564 return Error(Loc, "branch condition must have 'i1' type");
2565
2566 if (ParseToken(lltok::comma, "expected ',' after branch condition") ||
2567 ParseTypeAndValue(Op1, Loc, PFS) ||
2568 ParseToken(lltok::comma, "expected ',' after true destination") ||
2569 ParseTypeAndValue(Op2, Loc2, PFS))
2570 return true;
2571
2572 if (!isa<BasicBlock>(Op1))
2573 return Error(Loc, "true destination of branch must be a basic block");
2574 if (!isa<BasicBlock>(Op2))
2575 return Error(Loc2, "true destination of branch must be a basic block");
2576
2577 Inst = BranchInst::Create(cast<BasicBlock>(Op1), cast<BasicBlock>(Op2), Op0);
2578 return false;
2579}
2580
2581/// ParseSwitch
2582/// Instruction
2583/// ::= 'switch' TypeAndValue ',' TypeAndValue '[' JumpTable ']'
2584/// JumpTable
2585/// ::= (TypeAndValue ',' TypeAndValue)*
2586bool LLParser::ParseSwitch(Instruction *&Inst, PerFunctionState &PFS) {
2587 LocTy CondLoc, BBLoc;
2588 Value *Cond, *DefaultBB;
2589 if (ParseTypeAndValue(Cond, CondLoc, PFS) ||
2590 ParseToken(lltok::comma, "expected ',' after switch condition") ||
2591 ParseTypeAndValue(DefaultBB, BBLoc, PFS) ||
2592 ParseToken(lltok::lsquare, "expected '[' with switch table"))
2593 return true;
2594
2595 if (!isa<IntegerType>(Cond->getType()))
2596 return Error(CondLoc, "switch condition must have integer type");
2597 if (!isa<BasicBlock>(DefaultBB))
2598 return Error(BBLoc, "default destination must be a basic block");
2599
2600 // Parse the jump table pairs.
2601 SmallPtrSet<Value*, 32> SeenCases;
2602 SmallVector<std::pair<ConstantInt*, BasicBlock*>, 32> Table;
2603 while (Lex.getKind() != lltok::rsquare) {
2604 Value *Constant, *DestBB;
2605
2606 if (ParseTypeAndValue(Constant, CondLoc, PFS) ||
2607 ParseToken(lltok::comma, "expected ',' after case value") ||
2608 ParseTypeAndValue(DestBB, BBLoc, PFS))
2609 return true;
2610
2611 if (!SeenCases.insert(Constant))
2612 return Error(CondLoc, "duplicate case value in switch");
2613 if (!isa<ConstantInt>(Constant))
2614 return Error(CondLoc, "case value is not a constant integer");
2615 if (!isa<BasicBlock>(DestBB))
2616 return Error(BBLoc, "case destination is not a basic block");
2617
2618 Table.push_back(std::make_pair(cast<ConstantInt>(Constant),
2619 cast<BasicBlock>(DestBB)));
2620 }
2621
2622 Lex.Lex(); // Eat the ']'.
2623
2624 SwitchInst *SI = SwitchInst::Create(Cond, cast<BasicBlock>(DefaultBB),
2625 Table.size());
2626 for (unsigned i = 0, e = Table.size(); i != e; ++i)
2627 SI->addCase(Table[i].first, Table[i].second);
2628 Inst = SI;
2629 return false;
2630}
2631
2632/// ParseInvoke
2633/// ::= 'invoke' OptionalCallingConv OptionalAttrs Type Value ParamList
2634/// OptionalAttrs 'to' TypeAndValue 'unwind' TypeAndValue
2635bool LLParser::ParseInvoke(Instruction *&Inst, PerFunctionState &PFS) {
2636 LocTy CallLoc = Lex.getLoc();
2637 unsigned CC, RetAttrs, FnAttrs;
2638 PATypeHolder RetType(Type::VoidTy);
2639 LocTy RetTypeLoc;
2640 ValID CalleeID;
2641 SmallVector<ParamInfo, 16> ArgList;
2642
2643 Value *NormalBB, *UnwindBB;
2644 if (ParseOptionalCallingConv(CC) ||
2645 ParseOptionalAttrs(RetAttrs, 1) ||
2646 ParseType(RetType, RetTypeLoc, true /*void allowed*/) ||
2647 ParseValID(CalleeID) ||
2648 ParseParameterList(ArgList, PFS) ||
2649 ParseOptionalAttrs(FnAttrs, 2) ||
2650 ParseToken(lltok::kw_to, "expected 'to' in invoke") ||
2651 ParseTypeAndValue(NormalBB, PFS) ||
2652 ParseToken(lltok::kw_unwind, "expected 'unwind' in invoke") ||
2653 ParseTypeAndValue(UnwindBB, PFS))
2654 return true;
2655
2656 if (!isa<BasicBlock>(NormalBB))
2657 return Error(CallLoc, "normal destination is not a basic block");
2658 if (!isa<BasicBlock>(UnwindBB))
2659 return Error(CallLoc, "unwind destination is not a basic block");
2660
2661 // If RetType is a non-function pointer type, then this is the short syntax
2662 // for the call, which means that RetType is just the return type. Infer the
2663 // rest of the function argument types from the arguments that are present.
2664 const PointerType *PFTy = 0;
2665 const FunctionType *Ty = 0;
2666 if (!(PFTy = dyn_cast<PointerType>(RetType)) ||
2667 !(Ty = dyn_cast<FunctionType>(PFTy->getElementType()))) {
2668 // Pull out the types of all of the arguments...
2669 std::vector<const Type*> ParamTypes;
2670 for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
2671 ParamTypes.push_back(ArgList[i].V->getType());
2672
2673 if (!FunctionType::isValidReturnType(RetType))
2674 return Error(RetTypeLoc, "Invalid result type for LLVM function");
2675
2676 Ty = FunctionType::get(RetType, ParamTypes, false);
2677 PFTy = PointerType::getUnqual(Ty);
2678 }
2679
2680 // Look up the callee.
2681 Value *Callee;
2682 if (ConvertValIDToValue(PFTy, CalleeID, Callee, PFS)) return true;
2683
2684 // FIXME: In LLVM 3.0, stop accepting zext, sext and inreg as optional
2685 // function attributes.
2686 unsigned ObsoleteFuncAttrs = Attribute::ZExt|Attribute::SExt|Attribute::InReg;
2687 if (FnAttrs & ObsoleteFuncAttrs) {
2688 RetAttrs |= FnAttrs & ObsoleteFuncAttrs;
2689 FnAttrs &= ~ObsoleteFuncAttrs;
2690 }
2691
2692 // Set up the Attributes for the function.
2693 SmallVector<AttributeWithIndex, 8> Attrs;
2694 if (RetAttrs != Attribute::None)
2695 Attrs.push_back(AttributeWithIndex::get(0, RetAttrs));
2696
2697 SmallVector<Value*, 8> Args;
2698
2699 // Loop through FunctionType's arguments and ensure they are specified
2700 // correctly. Also, gather any parameter attributes.
2701 FunctionType::param_iterator I = Ty->param_begin();
2702 FunctionType::param_iterator E = Ty->param_end();
2703 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
2704 const Type *ExpectedTy = 0;
2705 if (I != E) {
2706 ExpectedTy = *I++;
2707 } else if (!Ty->isVarArg()) {
2708 return Error(ArgList[i].Loc, "too many arguments specified");
2709 }
2710
2711 if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
2712 return Error(ArgList[i].Loc, "argument is not of expected type '" +
2713 ExpectedTy->getDescription() + "'");
2714 Args.push_back(ArgList[i].V);
2715 if (ArgList[i].Attrs != Attribute::None)
2716 Attrs.push_back(AttributeWithIndex::get(i+1, ArgList[i].Attrs));
2717 }
2718
2719 if (I != E)
2720 return Error(CallLoc, "not enough parameters specified for call");
2721
2722 if (FnAttrs != Attribute::None)
2723 Attrs.push_back(AttributeWithIndex::get(~0, FnAttrs));
2724
2725 // Finish off the Attributes and check them
2726 AttrListPtr PAL = AttrListPtr::get(Attrs.begin(), Attrs.end());
2727
2728 InvokeInst *II = InvokeInst::Create(Callee, cast<BasicBlock>(NormalBB),
2729 cast<BasicBlock>(UnwindBB),
2730 Args.begin(), Args.end());
2731 II->setCallingConv(CC);
2732 II->setAttributes(PAL);
2733 Inst = II;
2734 return false;
2735}
2736
2737
2738
2739//===----------------------------------------------------------------------===//
2740// Binary Operators.
2741//===----------------------------------------------------------------------===//
2742
2743/// ParseArithmetic
2744/// ::= ArithmeticOps TypeAndValue ',' Value
2745///
2746/// If OperandType is 0, then any FP or integer operand is allowed. If it is 1,
2747/// then any integer operand is allowed, if it is 2, any fp operand is allowed.
2748bool LLParser::ParseArithmetic(Instruction *&Inst, PerFunctionState &PFS,
2749 unsigned Opc, unsigned OperandType) {
2750 LocTy Loc; Value *LHS, *RHS;
2751 if (ParseTypeAndValue(LHS, Loc, PFS) ||
2752 ParseToken(lltok::comma, "expected ',' in arithmetic operation") ||
2753 ParseValue(LHS->getType(), RHS, PFS))
2754 return true;
2755
2756 bool Valid;
2757 switch (OperandType) {
2758 default: assert(0 && "Unknown operand type!");
2759 case 0: // int or FP.
2760 Valid = LHS->getType()->isIntOrIntVector() ||
2761 LHS->getType()->isFPOrFPVector();
2762 break;
2763 case 1: Valid = LHS->getType()->isIntOrIntVector(); break;
2764 case 2: Valid = LHS->getType()->isFPOrFPVector(); break;
2765 }
2766
2767 if (!Valid)
2768 return Error(Loc, "invalid operand type for instruction");
2769
2770 Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
2771 return false;
2772}
2773
2774/// ParseLogical
2775/// ::= ArithmeticOps TypeAndValue ',' Value {
2776bool LLParser::ParseLogical(Instruction *&Inst, PerFunctionState &PFS,
2777 unsigned Opc) {
2778 LocTy Loc; Value *LHS, *RHS;
2779 if (ParseTypeAndValue(LHS, Loc, PFS) ||
2780 ParseToken(lltok::comma, "expected ',' in logical operation") ||
2781 ParseValue(LHS->getType(), RHS, PFS))
2782 return true;
2783
2784 if (!LHS->getType()->isIntOrIntVector())
2785 return Error(Loc,"instruction requires integer or integer vector operands");
2786
2787 Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
2788 return false;
2789}
2790
2791
2792/// ParseCompare
2793/// ::= 'icmp' IPredicates TypeAndValue ',' Value
2794/// ::= 'fcmp' FPredicates TypeAndValue ',' Value
2795/// ::= 'vicmp' IPredicates TypeAndValue ',' Value
2796/// ::= 'vfcmp' FPredicates TypeAndValue ',' Value
2797bool LLParser::ParseCompare(Instruction *&Inst, PerFunctionState &PFS,
2798 unsigned Opc) {
2799 // Parse the integer/fp comparison predicate.
2800 LocTy Loc;
2801 unsigned Pred;
2802 Value *LHS, *RHS;
2803 if (ParseCmpPredicate(Pred, Opc) ||
2804 ParseTypeAndValue(LHS, Loc, PFS) ||
2805 ParseToken(lltok::comma, "expected ',' after compare value") ||
2806 ParseValue(LHS->getType(), RHS, PFS))
2807 return true;
2808
2809 if (Opc == Instruction::FCmp) {
2810 if (!LHS->getType()->isFPOrFPVector())
2811 return Error(Loc, "fcmp requires floating point operands");
2812 Inst = new FCmpInst(CmpInst::Predicate(Pred), LHS, RHS);
2813 } else if (Opc == Instruction::ICmp) {
2814 if (!LHS->getType()->isIntOrIntVector() &&
2815 !isa<PointerType>(LHS->getType()))
2816 return Error(Loc, "icmp requires integer operands");
2817 Inst = new ICmpInst(CmpInst::Predicate(Pred), LHS, RHS);
2818 } else if (Opc == Instruction::VFCmp) {
2819 if (!LHS->getType()->isFPOrFPVector() || !isa<VectorType>(LHS->getType()))
2820 return Error(Loc, "vfcmp requires vector floating point operands");
2821 Inst = new VFCmpInst(CmpInst::Predicate(Pred), LHS, RHS);
2822 } else if (Opc == Instruction::VICmp) {
2823 if (!LHS->getType()->isIntOrIntVector() || !isa<VectorType>(LHS->getType()))
2824 return Error(Loc, "vicmp requires vector floating point operands");
2825 Inst = new VICmpInst(CmpInst::Predicate(Pred), LHS, RHS);
2826 }
2827 return false;
2828}
2829
2830//===----------------------------------------------------------------------===//
2831// Other Instructions.
2832//===----------------------------------------------------------------------===//
2833
2834
2835/// ParseCast
2836/// ::= CastOpc TypeAndValue 'to' Type
2837bool LLParser::ParseCast(Instruction *&Inst, PerFunctionState &PFS,
2838 unsigned Opc) {
2839 LocTy Loc; Value *Op;
2840 PATypeHolder DestTy(Type::VoidTy);
2841 if (ParseTypeAndValue(Op, Loc, PFS) ||
2842 ParseToken(lltok::kw_to, "expected 'to' after cast value") ||
2843 ParseType(DestTy))
2844 return true;
2845
2846 if (!CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy)) {
2847 CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy);
2848 return Error(Loc, "invalid cast opcode for cast from '" +
2849 Op->getType()->getDescription() + "' to '" +
2850 DestTy->getDescription() + "'");
2851 }
2852 Inst = CastInst::Create((Instruction::CastOps)Opc, Op, DestTy);
2853 return false;
2854}
2855
2856/// ParseSelect
2857/// ::= 'select' TypeAndValue ',' TypeAndValue ',' TypeAndValue
2858bool LLParser::ParseSelect(Instruction *&Inst, PerFunctionState &PFS) {
2859 LocTy Loc;
2860 Value *Op0, *Op1, *Op2;
2861 if (ParseTypeAndValue(Op0, Loc, PFS) ||
2862 ParseToken(lltok::comma, "expected ',' after select condition") ||
2863 ParseTypeAndValue(Op1, PFS) ||
2864 ParseToken(lltok::comma, "expected ',' after select value") ||
2865 ParseTypeAndValue(Op2, PFS))
2866 return true;
2867
2868 if (const char *Reason = SelectInst::areInvalidOperands(Op0, Op1, Op2))
2869 return Error(Loc, Reason);
2870
2871 Inst = SelectInst::Create(Op0, Op1, Op2);
2872 return false;
2873}
2874
2875/// ParseVA_Arg
2876/// ::= 'va_arg' TypeAndValue ',' Type
2877bool LLParser::ParseVA_Arg(Instruction *&Inst, PerFunctionState &PFS) {
2878 Value *Op;
2879 PATypeHolder EltTy(Type::VoidTy);
2880 LocTy TypeLoc;
2881 if (ParseTypeAndValue(Op, PFS) ||
2882 ParseToken(lltok::comma, "expected ',' after vaarg operand") ||
2883 ParseType(EltTy, TypeLoc))
2884 return true;
2885
2886 if (!EltTy->isFirstClassType())
2887 return Error(TypeLoc, "va_arg requires operand with first class type");
2888
2889 Inst = new VAArgInst(Op, EltTy);
2890 return false;
2891}
2892
2893/// ParseExtractElement
2894/// ::= 'extractelement' TypeAndValue ',' TypeAndValue
2895bool LLParser::ParseExtractElement(Instruction *&Inst, PerFunctionState &PFS) {
2896 LocTy Loc;
2897 Value *Op0, *Op1;
2898 if (ParseTypeAndValue(Op0, Loc, PFS) ||
2899 ParseToken(lltok::comma, "expected ',' after extract value") ||
2900 ParseTypeAndValue(Op1, PFS))
2901 return true;
2902
2903 if (!ExtractElementInst::isValidOperands(Op0, Op1))
2904 return Error(Loc, "invalid extractelement operands");
2905
2906 Inst = new ExtractElementInst(Op0, Op1);
2907 return false;
2908}
2909
2910/// ParseInsertElement
2911/// ::= 'insertelement' TypeAndValue ',' TypeAndValue ',' TypeAndValue
2912bool LLParser::ParseInsertElement(Instruction *&Inst, PerFunctionState &PFS) {
2913 LocTy Loc;
2914 Value *Op0, *Op1, *Op2;
2915 if (ParseTypeAndValue(Op0, Loc, PFS) ||
2916 ParseToken(lltok::comma, "expected ',' after insertelement value") ||
2917 ParseTypeAndValue(Op1, PFS) ||
2918 ParseToken(lltok::comma, "expected ',' after insertelement value") ||
2919 ParseTypeAndValue(Op2, PFS))
2920 return true;
2921
2922 if (!InsertElementInst::isValidOperands(Op0, Op1, Op2))
2923 return Error(Loc, "invalid extractelement operands");
2924
2925 Inst = InsertElementInst::Create(Op0, Op1, Op2);
2926 return false;
2927}
2928
2929/// ParseShuffleVector
2930/// ::= 'shufflevector' TypeAndValue ',' TypeAndValue ',' TypeAndValue
2931bool LLParser::ParseShuffleVector(Instruction *&Inst, PerFunctionState &PFS) {
2932 LocTy Loc;
2933 Value *Op0, *Op1, *Op2;
2934 if (ParseTypeAndValue(Op0, Loc, PFS) ||
2935 ParseToken(lltok::comma, "expected ',' after shuffle mask") ||
2936 ParseTypeAndValue(Op1, PFS) ||
2937 ParseToken(lltok::comma, "expected ',' after shuffle value") ||
2938 ParseTypeAndValue(Op2, PFS))
2939 return true;
2940
2941 if (!ShuffleVectorInst::isValidOperands(Op0, Op1, Op2))
2942 return Error(Loc, "invalid extractelement operands");
2943
2944 Inst = new ShuffleVectorInst(Op0, Op1, Op2);
2945 return false;
2946}
2947
2948/// ParsePHI
2949/// ::= 'phi' Type '[' Value ',' Value ']' (',' '[' Value ',' Value�� ']')*
2950bool LLParser::ParsePHI(Instruction *&Inst, PerFunctionState &PFS) {
2951 PATypeHolder Ty(Type::VoidTy);
2952 Value *Op0, *Op1;
2953 LocTy TypeLoc = Lex.getLoc();
2954
2955 if (ParseType(Ty) ||
2956 ParseToken(lltok::lsquare, "expected '[' in phi value list") ||
2957 ParseValue(Ty, Op0, PFS) ||
2958 ParseToken(lltok::comma, "expected ',' after insertelement value") ||
2959 ParseValue(Type::LabelTy, Op1, PFS) ||
2960 ParseToken(lltok::rsquare, "expected ']' in phi value list"))
2961 return true;
2962
2963 SmallVector<std::pair<Value*, BasicBlock*>, 16> PHIVals;
2964 while (1) {
2965 PHIVals.push_back(std::make_pair(Op0, cast<BasicBlock>(Op1)));
2966
2967 if (!EatIfPresent(lltok::comma))
2968 break;
2969
2970 if (ParseToken(lltok::lsquare, "expected '[' in phi value list") ||
2971 ParseValue(Ty, Op0, PFS) ||
2972 ParseToken(lltok::comma, "expected ',' after insertelement value") ||
2973 ParseValue(Type::LabelTy, Op1, PFS) ||
2974 ParseToken(lltok::rsquare, "expected ']' in phi value list"))
2975 return true;
2976 }
2977
2978 if (!Ty->isFirstClassType())
2979 return Error(TypeLoc, "phi node must have first class type");
2980
2981 PHINode *PN = PHINode::Create(Ty);
2982 PN->reserveOperandSpace(PHIVals.size());
2983 for (unsigned i = 0, e = PHIVals.size(); i != e; ++i)
2984 PN->addIncoming(PHIVals[i].first, PHIVals[i].second);
2985 Inst = PN;
2986 return false;
2987}
2988
2989/// ParseCall
2990/// ::= 'tail'? 'call' OptionalCallingConv OptionalAttrs Type Value
2991/// ParameterList OptionalAttrs
2992bool LLParser::ParseCall(Instruction *&Inst, PerFunctionState &PFS,
2993 bool isTail) {
2994 unsigned CC, RetAttrs, FnAttrs;
2995 PATypeHolder RetType(Type::VoidTy);
2996 LocTy RetTypeLoc;
2997 ValID CalleeID;
2998 SmallVector<ParamInfo, 16> ArgList;
2999 LocTy CallLoc = Lex.getLoc();
3000
3001 if ((isTail && ParseToken(lltok::kw_call, "expected 'tail call'")) ||
3002 ParseOptionalCallingConv(CC) ||
3003 ParseOptionalAttrs(RetAttrs, 1) ||
3004 ParseType(RetType, RetTypeLoc, true /*void allowed*/) ||
3005 ParseValID(CalleeID) ||
3006 ParseParameterList(ArgList, PFS) ||
3007 ParseOptionalAttrs(FnAttrs, 2))
3008 return true;
3009
3010 // If RetType is a non-function pointer type, then this is the short syntax
3011 // for the call, which means that RetType is just the return type. Infer the
3012 // rest of the function argument types from the arguments that are present.
3013 const PointerType *PFTy = 0;
3014 const FunctionType *Ty = 0;
3015 if (!(PFTy = dyn_cast<PointerType>(RetType)) ||
3016 !(Ty = dyn_cast<FunctionType>(PFTy->getElementType()))) {
3017 // Pull out the types of all of the arguments...
3018 std::vector<const Type*> ParamTypes;
3019 for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
3020 ParamTypes.push_back(ArgList[i].V->getType());
3021
3022 if (!FunctionType::isValidReturnType(RetType))
3023 return Error(RetTypeLoc, "Invalid result type for LLVM function");
3024
3025 Ty = FunctionType::get(RetType, ParamTypes, false);
3026 PFTy = PointerType::getUnqual(Ty);
3027 }
3028
3029 // Look up the callee.
3030 Value *Callee;
3031 if (ConvertValIDToValue(PFTy, CalleeID, Callee, PFS)) return true;
3032
3033 // FIXME: In LLVM 3.0, stop accepting zext, sext and inreg as optional
3034 // function attributes.
3035 unsigned ObsoleteFuncAttrs = Attribute::ZExt|Attribute::SExt|Attribute::InReg;
3036 if (FnAttrs & ObsoleteFuncAttrs) {
3037 RetAttrs |= FnAttrs & ObsoleteFuncAttrs;
3038 FnAttrs &= ~ObsoleteFuncAttrs;
3039 }
3040
3041 // Set up the Attributes for the function.
3042 SmallVector<AttributeWithIndex, 8> Attrs;
3043 if (RetAttrs != Attribute::None)
3044 Attrs.push_back(AttributeWithIndex::get(0, RetAttrs));
3045
3046 SmallVector<Value*, 8> Args;
3047
3048 // Loop through FunctionType's arguments and ensure they are specified
3049 // correctly. Also, gather any parameter attributes.
3050 FunctionType::param_iterator I = Ty->param_begin();
3051 FunctionType::param_iterator E = Ty->param_end();
3052 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
3053 const Type *ExpectedTy = 0;
3054 if (I != E) {
3055 ExpectedTy = *I++;
3056 } else if (!Ty->isVarArg()) {
3057 return Error(ArgList[i].Loc, "too many arguments specified");
3058 }
3059
3060 if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
3061 return Error(ArgList[i].Loc, "argument is not of expected type '" +
3062 ExpectedTy->getDescription() + "'");
3063 Args.push_back(ArgList[i].V);
3064 if (ArgList[i].Attrs != Attribute::None)
3065 Attrs.push_back(AttributeWithIndex::get(i+1, ArgList[i].Attrs));
3066 }
3067
3068 if (I != E)
3069 return Error(CallLoc, "not enough parameters specified for call");
3070
3071 if (FnAttrs != Attribute::None)
3072 Attrs.push_back(AttributeWithIndex::get(~0, FnAttrs));
3073
3074 // Finish off the Attributes and check them
3075 AttrListPtr PAL = AttrListPtr::get(Attrs.begin(), Attrs.end());
3076
3077 CallInst *CI = CallInst::Create(Callee, Args.begin(), Args.end());
3078 CI->setTailCall(isTail);
3079 CI->setCallingConv(CC);
3080 CI->setAttributes(PAL);
3081 Inst = CI;
3082 return false;
3083}
3084
3085//===----------------------------------------------------------------------===//
3086// Memory Instructions.
3087//===----------------------------------------------------------------------===//
3088
3089/// ParseAlloc
3090/// ::= 'malloc' Type (',' TypeAndValue)? (',' OptionalAlignment)?
3091/// ::= 'alloca' Type (',' TypeAndValue)? (',' OptionalAlignment)?
3092bool LLParser::ParseAlloc(Instruction *&Inst, PerFunctionState &PFS,
3093 unsigned Opc) {
3094 PATypeHolder Ty(Type::VoidTy);
3095 Value *Size = 0;
3096 LocTy SizeLoc = 0;
3097 unsigned Alignment = 0;
3098 if (ParseType(Ty)) return true;
3099
3100 if (EatIfPresent(lltok::comma)) {
3101 if (Lex.getKind() == lltok::kw_align) {
3102 if (ParseOptionalAlignment(Alignment)) return true;
3103 } else if (ParseTypeAndValue(Size, SizeLoc, PFS) ||
3104 ParseOptionalCommaAlignment(Alignment)) {
3105 return true;
3106 }
3107 }
3108
3109 if (Size && Size->getType() != Type::Int32Ty)
3110 return Error(SizeLoc, "element count must be i32");
3111
3112 if (Opc == Instruction::Malloc)
3113 Inst = new MallocInst(Ty, Size, Alignment);
3114 else
3115 Inst = new AllocaInst(Ty, Size, Alignment);
3116 return false;
3117}
3118
3119/// ParseFree
3120/// ::= 'free' TypeAndValue
3121bool LLParser::ParseFree(Instruction *&Inst, PerFunctionState &PFS) {
3122 Value *Val; LocTy Loc;
3123 if (ParseTypeAndValue(Val, Loc, PFS)) return true;
3124 if (!isa<PointerType>(Val->getType()))
3125 return Error(Loc, "operand to free must be a pointer");
3126 Inst = new FreeInst(Val);
3127 return false;
3128}
3129
3130/// ParseLoad
3131/// ::= 'volatile'? 'load' TypeAndValue (',' 'align' uint)?
3132bool LLParser::ParseLoad(Instruction *&Inst, PerFunctionState &PFS,
3133 bool isVolatile) {
3134 Value *Val; LocTy Loc;
3135 unsigned Alignment;
3136 if (ParseTypeAndValue(Val, Loc, PFS) ||
3137 ParseOptionalCommaAlignment(Alignment))
3138 return true;
3139
3140 if (!isa<PointerType>(Val->getType()) ||
3141 !cast<PointerType>(Val->getType())->getElementType()->isFirstClassType())
3142 return Error(Loc, "load operand must be a pointer to a first class type");
3143
3144 Inst = new LoadInst(Val, "", isVolatile, Alignment);
3145 return false;
3146}
3147
3148/// ParseStore
3149/// ::= 'volatile'? 'store' TypeAndValue ',' TypeAndValue (',' 'align' uint)?
3150bool LLParser::ParseStore(Instruction *&Inst, PerFunctionState &PFS,
3151 bool isVolatile) {
3152 Value *Val, *Ptr; LocTy Loc, PtrLoc;
3153 unsigned Alignment;
3154 if (ParseTypeAndValue(Val, Loc, PFS) ||
3155 ParseToken(lltok::comma, "expected ',' after store operand") ||
3156 ParseTypeAndValue(Ptr, PtrLoc, PFS) ||
3157 ParseOptionalCommaAlignment(Alignment))
3158 return true;
3159
3160 if (!isa<PointerType>(Ptr->getType()))
3161 return Error(PtrLoc, "store operand must be a pointer");
3162 if (!Val->getType()->isFirstClassType())
3163 return Error(Loc, "store operand must be a first class value");
3164 if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType())
3165 return Error(Loc, "stored value and pointer type do not match");
3166
3167 Inst = new StoreInst(Val, Ptr, isVolatile, Alignment);
3168 return false;
3169}
3170
3171/// ParseGetResult
3172/// ::= 'getresult' TypeAndValue ',' uint
3173/// FIXME: Remove support for getresult in LLVM 3.0
3174bool LLParser::ParseGetResult(Instruction *&Inst, PerFunctionState &PFS) {
3175 Value *Val; LocTy ValLoc, EltLoc;
3176 unsigned Element;
3177 if (ParseTypeAndValue(Val, ValLoc, PFS) ||
3178 ParseToken(lltok::comma, "expected ',' after getresult operand") ||
3179 ParseUInt32(Element, EltLoc))
3180 return true;
3181
3182 if (!isa<StructType>(Val->getType()) && !isa<ArrayType>(Val->getType()))
3183 return Error(ValLoc, "getresult inst requires an aggregate operand");
3184 if (!ExtractValueInst::getIndexedType(Val->getType(), Element))
3185 return Error(EltLoc, "invalid getresult index for value");
3186 Inst = ExtractValueInst::Create(Val, Element);
3187 return false;
3188}
3189
3190/// ParseGetElementPtr
3191/// ::= 'getelementptr' TypeAndValue (',' TypeAndValue)*
3192bool LLParser::ParseGetElementPtr(Instruction *&Inst, PerFunctionState &PFS) {
3193 Value *Ptr, *Val; LocTy Loc, EltLoc;
3194 if (ParseTypeAndValue(Ptr, Loc, PFS)) return true;
3195
3196 if (!isa<PointerType>(Ptr->getType()))
3197 return Error(Loc, "base of getelementptr must be a pointer");
3198
3199 SmallVector<Value*, 16> Indices;
3200 while (EatIfPresent(lltok::comma)) {
3201 if (ParseTypeAndValue(Val, EltLoc, PFS)) return true;
3202 if (!isa<IntegerType>(Val->getType()))
3203 return Error(EltLoc, "getelementptr index must be an integer");
3204 Indices.push_back(Val);
3205 }
3206
3207 if (!GetElementPtrInst::getIndexedType(Ptr->getType(),
3208 Indices.begin(), Indices.end()))
3209 return Error(Loc, "invalid getelementptr indices");
3210 Inst = GetElementPtrInst::Create(Ptr, Indices.begin(), Indices.end());
3211 return false;
3212}
3213
3214/// ParseExtractValue
3215/// ::= 'extractvalue' TypeAndValue (',' uint32)+
3216bool LLParser::ParseExtractValue(Instruction *&Inst, PerFunctionState &PFS) {
3217 Value *Val; LocTy Loc;
3218 SmallVector<unsigned, 4> Indices;
3219 if (ParseTypeAndValue(Val, Loc, PFS) ||
3220 ParseIndexList(Indices))
3221 return true;
3222
3223 if (!isa<StructType>(Val->getType()) && !isa<ArrayType>(Val->getType()))
3224 return Error(Loc, "extractvalue operand must be array or struct");
3225
3226 if (!ExtractValueInst::getIndexedType(Val->getType(), Indices.begin(),
3227 Indices.end()))
3228 return Error(Loc, "invalid indices for extractvalue");
3229 Inst = ExtractValueInst::Create(Val, Indices.begin(), Indices.end());
3230 return false;
3231}
3232
3233/// ParseInsertValue
3234/// ::= 'insertvalue' TypeAndValue ',' TypeAndValue (',' uint32)+
3235bool LLParser::ParseInsertValue(Instruction *&Inst, PerFunctionState &PFS) {
3236 Value *Val0, *Val1; LocTy Loc0, Loc1;
3237 SmallVector<unsigned, 4> Indices;
3238 if (ParseTypeAndValue(Val0, Loc0, PFS) ||
3239 ParseToken(lltok::comma, "expected comma after insertvalue operand") ||
3240 ParseTypeAndValue(Val1, Loc1, PFS) ||
3241 ParseIndexList(Indices))
3242 return true;
3243
3244 if (!isa<StructType>(Val0->getType()) && !isa<ArrayType>(Val0->getType()))
3245 return Error(Loc0, "extractvalue operand must be array or struct");
3246
3247 if (!ExtractValueInst::getIndexedType(Val0->getType(), Indices.begin(),
3248 Indices.end()))
3249 return Error(Loc0, "invalid indices for insertvalue");
3250 Inst = InsertValueInst::Create(Val0, Val1, Indices.begin(), Indices.end());
3251 return false;
3252}
3253
3254//===----------------------------------------------------------------------===//
3255// Embedded metadata.
3256//===----------------------------------------------------------------------===//
3257
3258/// ParseMDNodeVector
3259/// ::= Element (',' Element)*
3260/// Element
3261/// ::= 'null' | TypeAndValue
3262bool LLParser::ParseMDNodeVector(SmallVectorImpl<Value*> &Elts) {
3263 assert(Lex.getKind() == lltok::lbrace);
3264 Lex.Lex();
3265 do {
3266 Value *V;
3267 if (Lex.getKind() == lltok::kw_null) {
3268 Lex.Lex();
3269 V = 0;
3270 } else {
3271 Constant *C;
3272 if (ParseGlobalTypeAndValue(C)) return true;
3273 V = C;
3274 }
3275 Elts.push_back(V);
3276 } while (EatIfPresent(lltok::comma));
3277
3278 return false;
3279}
2414 case lltok::kw_udiv:
2415 case lltok::kw_sdiv:
2416 case lltok::kw_urem:
2417 case lltok::kw_srem: return ParseArithmetic(Inst, PFS, KeywordVal, 1);
2418 case lltok::kw_fdiv:
2419 case lltok::kw_frem: return ParseArithmetic(Inst, PFS, KeywordVal, 2);
2420 case lltok::kw_shl:
2421 case lltok::kw_lshr:
2422 case lltok::kw_ashr:
2423 case lltok::kw_and:
2424 case lltok::kw_or:
2425 case lltok::kw_xor: return ParseLogical(Inst, PFS, KeywordVal);
2426 case lltok::kw_icmp:
2427 case lltok::kw_fcmp:
2428 case lltok::kw_vicmp:
2429 case lltok::kw_vfcmp: return ParseCompare(Inst, PFS, KeywordVal);
2430 // Casts.
2431 case lltok::kw_trunc:
2432 case lltok::kw_zext:
2433 case lltok::kw_sext:
2434 case lltok::kw_fptrunc:
2435 case lltok::kw_fpext:
2436 case lltok::kw_bitcast:
2437 case lltok::kw_uitofp:
2438 case lltok::kw_sitofp:
2439 case lltok::kw_fptoui:
2440 case lltok::kw_fptosi:
2441 case lltok::kw_inttoptr:
2442 case lltok::kw_ptrtoint: return ParseCast(Inst, PFS, KeywordVal);
2443 // Other.
2444 case lltok::kw_select: return ParseSelect(Inst, PFS);
2445 case lltok::kw_va_arg: return ParseVA_Arg(Inst, PFS);
2446 case lltok::kw_extractelement: return ParseExtractElement(Inst, PFS);
2447 case lltok::kw_insertelement: return ParseInsertElement(Inst, PFS);
2448 case lltok::kw_shufflevector: return ParseShuffleVector(Inst, PFS);
2449 case lltok::kw_phi: return ParsePHI(Inst, PFS);
2450 case lltok::kw_call: return ParseCall(Inst, PFS, false);
2451 case lltok::kw_tail: return ParseCall(Inst, PFS, true);
2452 // Memory.
2453 case lltok::kw_alloca:
2454 case lltok::kw_malloc: return ParseAlloc(Inst, PFS, KeywordVal);
2455 case lltok::kw_free: return ParseFree(Inst, PFS);
2456 case lltok::kw_load: return ParseLoad(Inst, PFS, false);
2457 case lltok::kw_store: return ParseStore(Inst, PFS, false);
2458 case lltok::kw_volatile:
2459 if (EatIfPresent(lltok::kw_load))
2460 return ParseLoad(Inst, PFS, true);
2461 else if (EatIfPresent(lltok::kw_store))
2462 return ParseStore(Inst, PFS, true);
2463 else
2464 return TokError("expected 'load' or 'store'");
2465 case lltok::kw_getresult: return ParseGetResult(Inst, PFS);
2466 case lltok::kw_getelementptr: return ParseGetElementPtr(Inst, PFS);
2467 case lltok::kw_extractvalue: return ParseExtractValue(Inst, PFS);
2468 case lltok::kw_insertvalue: return ParseInsertValue(Inst, PFS);
2469 }
2470}
2471
2472/// ParseCmpPredicate - Parse an integer or fp predicate, based on Kind.
2473bool LLParser::ParseCmpPredicate(unsigned &P, unsigned Opc) {
2474 // FIXME: REMOVE vicmp/vfcmp!
2475 if (Opc == Instruction::FCmp || Opc == Instruction::VFCmp) {
2476 switch (Lex.getKind()) {
2477 default: TokError("expected fcmp predicate (e.g. 'oeq')");
2478 case lltok::kw_oeq: P = CmpInst::FCMP_OEQ; break;
2479 case lltok::kw_one: P = CmpInst::FCMP_ONE; break;
2480 case lltok::kw_olt: P = CmpInst::FCMP_OLT; break;
2481 case lltok::kw_ogt: P = CmpInst::FCMP_OGT; break;
2482 case lltok::kw_ole: P = CmpInst::FCMP_OLE; break;
2483 case lltok::kw_oge: P = CmpInst::FCMP_OGE; break;
2484 case lltok::kw_ord: P = CmpInst::FCMP_ORD; break;
2485 case lltok::kw_uno: P = CmpInst::FCMP_UNO; break;
2486 case lltok::kw_ueq: P = CmpInst::FCMP_UEQ; break;
2487 case lltok::kw_une: P = CmpInst::FCMP_UNE; break;
2488 case lltok::kw_ult: P = CmpInst::FCMP_ULT; break;
2489 case lltok::kw_ugt: P = CmpInst::FCMP_UGT; break;
2490 case lltok::kw_ule: P = CmpInst::FCMP_ULE; break;
2491 case lltok::kw_uge: P = CmpInst::FCMP_UGE; break;
2492 case lltok::kw_true: P = CmpInst::FCMP_TRUE; break;
2493 case lltok::kw_false: P = CmpInst::FCMP_FALSE; break;
2494 }
2495 } else {
2496 switch (Lex.getKind()) {
2497 default: TokError("expected icmp predicate (e.g. 'eq')");
2498 case lltok::kw_eq: P = CmpInst::ICMP_EQ; break;
2499 case lltok::kw_ne: P = CmpInst::ICMP_NE; break;
2500 case lltok::kw_slt: P = CmpInst::ICMP_SLT; break;
2501 case lltok::kw_sgt: P = CmpInst::ICMP_SGT; break;
2502 case lltok::kw_sle: P = CmpInst::ICMP_SLE; break;
2503 case lltok::kw_sge: P = CmpInst::ICMP_SGE; break;
2504 case lltok::kw_ult: P = CmpInst::ICMP_ULT; break;
2505 case lltok::kw_ugt: P = CmpInst::ICMP_UGT; break;
2506 case lltok::kw_ule: P = CmpInst::ICMP_ULE; break;
2507 case lltok::kw_uge: P = CmpInst::ICMP_UGE; break;
2508 }
2509 }
2510 Lex.Lex();
2511 return false;
2512}
2513
2514//===----------------------------------------------------------------------===//
2515// Terminator Instructions.
2516//===----------------------------------------------------------------------===//
2517
2518/// ParseRet - Parse a return instruction.
2519/// ::= 'ret' void
2520/// ::= 'ret' TypeAndValue
2521/// ::= 'ret' TypeAndValue (',' TypeAndValue)+ [[obsolete: LLVM 3.0]]
2522bool LLParser::ParseRet(Instruction *&Inst, BasicBlock *BB,
2523 PerFunctionState &PFS) {
2524 PATypeHolder Ty(Type::VoidTy);
2525 if (ParseType(Ty, true /*void allowed*/)) return true;
2526
2527 if (Ty == Type::VoidTy) {
2528 Inst = ReturnInst::Create();
2529 return false;
2530 }
2531
2532 Value *RV;
2533 if (ParseValue(Ty, RV, PFS)) return true;
2534
2535 // The normal case is one return value.
2536 if (Lex.getKind() == lltok::comma) {
2537 // FIXME: LLVM 3.0 remove MRV support for 'ret i32 1, i32 2', requiring use
2538 // of 'ret {i32,i32} {i32 1, i32 2}'
2539 SmallVector<Value*, 8> RVs;
2540 RVs.push_back(RV);
2541
2542 while (EatIfPresent(lltok::comma)) {
2543 if (ParseTypeAndValue(RV, PFS)) return true;
2544 RVs.push_back(RV);
2545 }
2546
2547 RV = UndefValue::get(PFS.getFunction().getReturnType());
2548 for (unsigned i = 0, e = RVs.size(); i != e; ++i) {
2549 Instruction *I = InsertValueInst::Create(RV, RVs[i], i, "mrv");
2550 BB->getInstList().push_back(I);
2551 RV = I;
2552 }
2553 }
2554 Inst = ReturnInst::Create(RV);
2555 return false;
2556}
2557
2558
2559/// ParseBr
2560/// ::= 'br' TypeAndValue
2561/// ::= 'br' TypeAndValue ',' TypeAndValue ',' TypeAndValue
2562bool LLParser::ParseBr(Instruction *&Inst, PerFunctionState &PFS) {
2563 LocTy Loc, Loc2;
2564 Value *Op0, *Op1, *Op2;
2565 if (ParseTypeAndValue(Op0, Loc, PFS)) return true;
2566
2567 if (BasicBlock *BB = dyn_cast<BasicBlock>(Op0)) {
2568 Inst = BranchInst::Create(BB);
2569 return false;
2570 }
2571
2572 if (Op0->getType() != Type::Int1Ty)
2573 return Error(Loc, "branch condition must have 'i1' type");
2574
2575 if (ParseToken(lltok::comma, "expected ',' after branch condition") ||
2576 ParseTypeAndValue(Op1, Loc, PFS) ||
2577 ParseToken(lltok::comma, "expected ',' after true destination") ||
2578 ParseTypeAndValue(Op2, Loc2, PFS))
2579 return true;
2580
2581 if (!isa<BasicBlock>(Op1))
2582 return Error(Loc, "true destination of branch must be a basic block");
2583 if (!isa<BasicBlock>(Op2))
2584 return Error(Loc2, "true destination of branch must be a basic block");
2585
2586 Inst = BranchInst::Create(cast<BasicBlock>(Op1), cast<BasicBlock>(Op2), Op0);
2587 return false;
2588}
2589
2590/// ParseSwitch
2591/// Instruction
2592/// ::= 'switch' TypeAndValue ',' TypeAndValue '[' JumpTable ']'
2593/// JumpTable
2594/// ::= (TypeAndValue ',' TypeAndValue)*
2595bool LLParser::ParseSwitch(Instruction *&Inst, PerFunctionState &PFS) {
2596 LocTy CondLoc, BBLoc;
2597 Value *Cond, *DefaultBB;
2598 if (ParseTypeAndValue(Cond, CondLoc, PFS) ||
2599 ParseToken(lltok::comma, "expected ',' after switch condition") ||
2600 ParseTypeAndValue(DefaultBB, BBLoc, PFS) ||
2601 ParseToken(lltok::lsquare, "expected '[' with switch table"))
2602 return true;
2603
2604 if (!isa<IntegerType>(Cond->getType()))
2605 return Error(CondLoc, "switch condition must have integer type");
2606 if (!isa<BasicBlock>(DefaultBB))
2607 return Error(BBLoc, "default destination must be a basic block");
2608
2609 // Parse the jump table pairs.
2610 SmallPtrSet<Value*, 32> SeenCases;
2611 SmallVector<std::pair<ConstantInt*, BasicBlock*>, 32> Table;
2612 while (Lex.getKind() != lltok::rsquare) {
2613 Value *Constant, *DestBB;
2614
2615 if (ParseTypeAndValue(Constant, CondLoc, PFS) ||
2616 ParseToken(lltok::comma, "expected ',' after case value") ||
2617 ParseTypeAndValue(DestBB, BBLoc, PFS))
2618 return true;
2619
2620 if (!SeenCases.insert(Constant))
2621 return Error(CondLoc, "duplicate case value in switch");
2622 if (!isa<ConstantInt>(Constant))
2623 return Error(CondLoc, "case value is not a constant integer");
2624 if (!isa<BasicBlock>(DestBB))
2625 return Error(BBLoc, "case destination is not a basic block");
2626
2627 Table.push_back(std::make_pair(cast<ConstantInt>(Constant),
2628 cast<BasicBlock>(DestBB)));
2629 }
2630
2631 Lex.Lex(); // Eat the ']'.
2632
2633 SwitchInst *SI = SwitchInst::Create(Cond, cast<BasicBlock>(DefaultBB),
2634 Table.size());
2635 for (unsigned i = 0, e = Table.size(); i != e; ++i)
2636 SI->addCase(Table[i].first, Table[i].second);
2637 Inst = SI;
2638 return false;
2639}
2640
2641/// ParseInvoke
2642/// ::= 'invoke' OptionalCallingConv OptionalAttrs Type Value ParamList
2643/// OptionalAttrs 'to' TypeAndValue 'unwind' TypeAndValue
2644bool LLParser::ParseInvoke(Instruction *&Inst, PerFunctionState &PFS) {
2645 LocTy CallLoc = Lex.getLoc();
2646 unsigned CC, RetAttrs, FnAttrs;
2647 PATypeHolder RetType(Type::VoidTy);
2648 LocTy RetTypeLoc;
2649 ValID CalleeID;
2650 SmallVector<ParamInfo, 16> ArgList;
2651
2652 Value *NormalBB, *UnwindBB;
2653 if (ParseOptionalCallingConv(CC) ||
2654 ParseOptionalAttrs(RetAttrs, 1) ||
2655 ParseType(RetType, RetTypeLoc, true /*void allowed*/) ||
2656 ParseValID(CalleeID) ||
2657 ParseParameterList(ArgList, PFS) ||
2658 ParseOptionalAttrs(FnAttrs, 2) ||
2659 ParseToken(lltok::kw_to, "expected 'to' in invoke") ||
2660 ParseTypeAndValue(NormalBB, PFS) ||
2661 ParseToken(lltok::kw_unwind, "expected 'unwind' in invoke") ||
2662 ParseTypeAndValue(UnwindBB, PFS))
2663 return true;
2664
2665 if (!isa<BasicBlock>(NormalBB))
2666 return Error(CallLoc, "normal destination is not a basic block");
2667 if (!isa<BasicBlock>(UnwindBB))
2668 return Error(CallLoc, "unwind destination is not a basic block");
2669
2670 // If RetType is a non-function pointer type, then this is the short syntax
2671 // for the call, which means that RetType is just the return type. Infer the
2672 // rest of the function argument types from the arguments that are present.
2673 const PointerType *PFTy = 0;
2674 const FunctionType *Ty = 0;
2675 if (!(PFTy = dyn_cast<PointerType>(RetType)) ||
2676 !(Ty = dyn_cast<FunctionType>(PFTy->getElementType()))) {
2677 // Pull out the types of all of the arguments...
2678 std::vector<const Type*> ParamTypes;
2679 for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
2680 ParamTypes.push_back(ArgList[i].V->getType());
2681
2682 if (!FunctionType::isValidReturnType(RetType))
2683 return Error(RetTypeLoc, "Invalid result type for LLVM function");
2684
2685 Ty = FunctionType::get(RetType, ParamTypes, false);
2686 PFTy = PointerType::getUnqual(Ty);
2687 }
2688
2689 // Look up the callee.
2690 Value *Callee;
2691 if (ConvertValIDToValue(PFTy, CalleeID, Callee, PFS)) return true;
2692
2693 // FIXME: In LLVM 3.0, stop accepting zext, sext and inreg as optional
2694 // function attributes.
2695 unsigned ObsoleteFuncAttrs = Attribute::ZExt|Attribute::SExt|Attribute::InReg;
2696 if (FnAttrs & ObsoleteFuncAttrs) {
2697 RetAttrs |= FnAttrs & ObsoleteFuncAttrs;
2698 FnAttrs &= ~ObsoleteFuncAttrs;
2699 }
2700
2701 // Set up the Attributes for the function.
2702 SmallVector<AttributeWithIndex, 8> Attrs;
2703 if (RetAttrs != Attribute::None)
2704 Attrs.push_back(AttributeWithIndex::get(0, RetAttrs));
2705
2706 SmallVector<Value*, 8> Args;
2707
2708 // Loop through FunctionType's arguments and ensure they are specified
2709 // correctly. Also, gather any parameter attributes.
2710 FunctionType::param_iterator I = Ty->param_begin();
2711 FunctionType::param_iterator E = Ty->param_end();
2712 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
2713 const Type *ExpectedTy = 0;
2714 if (I != E) {
2715 ExpectedTy = *I++;
2716 } else if (!Ty->isVarArg()) {
2717 return Error(ArgList[i].Loc, "too many arguments specified");
2718 }
2719
2720 if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
2721 return Error(ArgList[i].Loc, "argument is not of expected type '" +
2722 ExpectedTy->getDescription() + "'");
2723 Args.push_back(ArgList[i].V);
2724 if (ArgList[i].Attrs != Attribute::None)
2725 Attrs.push_back(AttributeWithIndex::get(i+1, ArgList[i].Attrs));
2726 }
2727
2728 if (I != E)
2729 return Error(CallLoc, "not enough parameters specified for call");
2730
2731 if (FnAttrs != Attribute::None)
2732 Attrs.push_back(AttributeWithIndex::get(~0, FnAttrs));
2733
2734 // Finish off the Attributes and check them
2735 AttrListPtr PAL = AttrListPtr::get(Attrs.begin(), Attrs.end());
2736
2737 InvokeInst *II = InvokeInst::Create(Callee, cast<BasicBlock>(NormalBB),
2738 cast<BasicBlock>(UnwindBB),
2739 Args.begin(), Args.end());
2740 II->setCallingConv(CC);
2741 II->setAttributes(PAL);
2742 Inst = II;
2743 return false;
2744}
2745
2746
2747
2748//===----------------------------------------------------------------------===//
2749// Binary Operators.
2750//===----------------------------------------------------------------------===//
2751
2752/// ParseArithmetic
2753/// ::= ArithmeticOps TypeAndValue ',' Value
2754///
2755/// If OperandType is 0, then any FP or integer operand is allowed. If it is 1,
2756/// then any integer operand is allowed, if it is 2, any fp operand is allowed.
2757bool LLParser::ParseArithmetic(Instruction *&Inst, PerFunctionState &PFS,
2758 unsigned Opc, unsigned OperandType) {
2759 LocTy Loc; Value *LHS, *RHS;
2760 if (ParseTypeAndValue(LHS, Loc, PFS) ||
2761 ParseToken(lltok::comma, "expected ',' in arithmetic operation") ||
2762 ParseValue(LHS->getType(), RHS, PFS))
2763 return true;
2764
2765 bool Valid;
2766 switch (OperandType) {
2767 default: assert(0 && "Unknown operand type!");
2768 case 0: // int or FP.
2769 Valid = LHS->getType()->isIntOrIntVector() ||
2770 LHS->getType()->isFPOrFPVector();
2771 break;
2772 case 1: Valid = LHS->getType()->isIntOrIntVector(); break;
2773 case 2: Valid = LHS->getType()->isFPOrFPVector(); break;
2774 }
2775
2776 if (!Valid)
2777 return Error(Loc, "invalid operand type for instruction");
2778
2779 Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
2780 return false;
2781}
2782
2783/// ParseLogical
2784/// ::= ArithmeticOps TypeAndValue ',' Value {
2785bool LLParser::ParseLogical(Instruction *&Inst, PerFunctionState &PFS,
2786 unsigned Opc) {
2787 LocTy Loc; Value *LHS, *RHS;
2788 if (ParseTypeAndValue(LHS, Loc, PFS) ||
2789 ParseToken(lltok::comma, "expected ',' in logical operation") ||
2790 ParseValue(LHS->getType(), RHS, PFS))
2791 return true;
2792
2793 if (!LHS->getType()->isIntOrIntVector())
2794 return Error(Loc,"instruction requires integer or integer vector operands");
2795
2796 Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
2797 return false;
2798}
2799
2800
2801/// ParseCompare
2802/// ::= 'icmp' IPredicates TypeAndValue ',' Value
2803/// ::= 'fcmp' FPredicates TypeAndValue ',' Value
2804/// ::= 'vicmp' IPredicates TypeAndValue ',' Value
2805/// ::= 'vfcmp' FPredicates TypeAndValue ',' Value
2806bool LLParser::ParseCompare(Instruction *&Inst, PerFunctionState &PFS,
2807 unsigned Opc) {
2808 // Parse the integer/fp comparison predicate.
2809 LocTy Loc;
2810 unsigned Pred;
2811 Value *LHS, *RHS;
2812 if (ParseCmpPredicate(Pred, Opc) ||
2813 ParseTypeAndValue(LHS, Loc, PFS) ||
2814 ParseToken(lltok::comma, "expected ',' after compare value") ||
2815 ParseValue(LHS->getType(), RHS, PFS))
2816 return true;
2817
2818 if (Opc == Instruction::FCmp) {
2819 if (!LHS->getType()->isFPOrFPVector())
2820 return Error(Loc, "fcmp requires floating point operands");
2821 Inst = new FCmpInst(CmpInst::Predicate(Pred), LHS, RHS);
2822 } else if (Opc == Instruction::ICmp) {
2823 if (!LHS->getType()->isIntOrIntVector() &&
2824 !isa<PointerType>(LHS->getType()))
2825 return Error(Loc, "icmp requires integer operands");
2826 Inst = new ICmpInst(CmpInst::Predicate(Pred), LHS, RHS);
2827 } else if (Opc == Instruction::VFCmp) {
2828 if (!LHS->getType()->isFPOrFPVector() || !isa<VectorType>(LHS->getType()))
2829 return Error(Loc, "vfcmp requires vector floating point operands");
2830 Inst = new VFCmpInst(CmpInst::Predicate(Pred), LHS, RHS);
2831 } else if (Opc == Instruction::VICmp) {
2832 if (!LHS->getType()->isIntOrIntVector() || !isa<VectorType>(LHS->getType()))
2833 return Error(Loc, "vicmp requires vector floating point operands");
2834 Inst = new VICmpInst(CmpInst::Predicate(Pred), LHS, RHS);
2835 }
2836 return false;
2837}
2838
2839//===----------------------------------------------------------------------===//
2840// Other Instructions.
2841//===----------------------------------------------------------------------===//
2842
2843
2844/// ParseCast
2845/// ::= CastOpc TypeAndValue 'to' Type
2846bool LLParser::ParseCast(Instruction *&Inst, PerFunctionState &PFS,
2847 unsigned Opc) {
2848 LocTy Loc; Value *Op;
2849 PATypeHolder DestTy(Type::VoidTy);
2850 if (ParseTypeAndValue(Op, Loc, PFS) ||
2851 ParseToken(lltok::kw_to, "expected 'to' after cast value") ||
2852 ParseType(DestTy))
2853 return true;
2854
2855 if (!CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy)) {
2856 CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy);
2857 return Error(Loc, "invalid cast opcode for cast from '" +
2858 Op->getType()->getDescription() + "' to '" +
2859 DestTy->getDescription() + "'");
2860 }
2861 Inst = CastInst::Create((Instruction::CastOps)Opc, Op, DestTy);
2862 return false;
2863}
2864
2865/// ParseSelect
2866/// ::= 'select' TypeAndValue ',' TypeAndValue ',' TypeAndValue
2867bool LLParser::ParseSelect(Instruction *&Inst, PerFunctionState &PFS) {
2868 LocTy Loc;
2869 Value *Op0, *Op1, *Op2;
2870 if (ParseTypeAndValue(Op0, Loc, PFS) ||
2871 ParseToken(lltok::comma, "expected ',' after select condition") ||
2872 ParseTypeAndValue(Op1, PFS) ||
2873 ParseToken(lltok::comma, "expected ',' after select value") ||
2874 ParseTypeAndValue(Op2, PFS))
2875 return true;
2876
2877 if (const char *Reason = SelectInst::areInvalidOperands(Op0, Op1, Op2))
2878 return Error(Loc, Reason);
2879
2880 Inst = SelectInst::Create(Op0, Op1, Op2);
2881 return false;
2882}
2883
2884/// ParseVA_Arg
2885/// ::= 'va_arg' TypeAndValue ',' Type
2886bool LLParser::ParseVA_Arg(Instruction *&Inst, PerFunctionState &PFS) {
2887 Value *Op;
2888 PATypeHolder EltTy(Type::VoidTy);
2889 LocTy TypeLoc;
2890 if (ParseTypeAndValue(Op, PFS) ||
2891 ParseToken(lltok::comma, "expected ',' after vaarg operand") ||
2892 ParseType(EltTy, TypeLoc))
2893 return true;
2894
2895 if (!EltTy->isFirstClassType())
2896 return Error(TypeLoc, "va_arg requires operand with first class type");
2897
2898 Inst = new VAArgInst(Op, EltTy);
2899 return false;
2900}
2901
2902/// ParseExtractElement
2903/// ::= 'extractelement' TypeAndValue ',' TypeAndValue
2904bool LLParser::ParseExtractElement(Instruction *&Inst, PerFunctionState &PFS) {
2905 LocTy Loc;
2906 Value *Op0, *Op1;
2907 if (ParseTypeAndValue(Op0, Loc, PFS) ||
2908 ParseToken(lltok::comma, "expected ',' after extract value") ||
2909 ParseTypeAndValue(Op1, PFS))
2910 return true;
2911
2912 if (!ExtractElementInst::isValidOperands(Op0, Op1))
2913 return Error(Loc, "invalid extractelement operands");
2914
2915 Inst = new ExtractElementInst(Op0, Op1);
2916 return false;
2917}
2918
2919/// ParseInsertElement
2920/// ::= 'insertelement' TypeAndValue ',' TypeAndValue ',' TypeAndValue
2921bool LLParser::ParseInsertElement(Instruction *&Inst, PerFunctionState &PFS) {
2922 LocTy Loc;
2923 Value *Op0, *Op1, *Op2;
2924 if (ParseTypeAndValue(Op0, Loc, PFS) ||
2925 ParseToken(lltok::comma, "expected ',' after insertelement value") ||
2926 ParseTypeAndValue(Op1, PFS) ||
2927 ParseToken(lltok::comma, "expected ',' after insertelement value") ||
2928 ParseTypeAndValue(Op2, PFS))
2929 return true;
2930
2931 if (!InsertElementInst::isValidOperands(Op0, Op1, Op2))
2932 return Error(Loc, "invalid extractelement operands");
2933
2934 Inst = InsertElementInst::Create(Op0, Op1, Op2);
2935 return false;
2936}
2937
2938/// ParseShuffleVector
2939/// ::= 'shufflevector' TypeAndValue ',' TypeAndValue ',' TypeAndValue
2940bool LLParser::ParseShuffleVector(Instruction *&Inst, PerFunctionState &PFS) {
2941 LocTy Loc;
2942 Value *Op0, *Op1, *Op2;
2943 if (ParseTypeAndValue(Op0, Loc, PFS) ||
2944 ParseToken(lltok::comma, "expected ',' after shuffle mask") ||
2945 ParseTypeAndValue(Op1, PFS) ||
2946 ParseToken(lltok::comma, "expected ',' after shuffle value") ||
2947 ParseTypeAndValue(Op2, PFS))
2948 return true;
2949
2950 if (!ShuffleVectorInst::isValidOperands(Op0, Op1, Op2))
2951 return Error(Loc, "invalid extractelement operands");
2952
2953 Inst = new ShuffleVectorInst(Op0, Op1, Op2);
2954 return false;
2955}
2956
2957/// ParsePHI
2958/// ::= 'phi' Type '[' Value ',' Value ']' (',' '[' Value ',' Value�� ']')*
2959bool LLParser::ParsePHI(Instruction *&Inst, PerFunctionState &PFS) {
2960 PATypeHolder Ty(Type::VoidTy);
2961 Value *Op0, *Op1;
2962 LocTy TypeLoc = Lex.getLoc();
2963
2964 if (ParseType(Ty) ||
2965 ParseToken(lltok::lsquare, "expected '[' in phi value list") ||
2966 ParseValue(Ty, Op0, PFS) ||
2967 ParseToken(lltok::comma, "expected ',' after insertelement value") ||
2968 ParseValue(Type::LabelTy, Op1, PFS) ||
2969 ParseToken(lltok::rsquare, "expected ']' in phi value list"))
2970 return true;
2971
2972 SmallVector<std::pair<Value*, BasicBlock*>, 16> PHIVals;
2973 while (1) {
2974 PHIVals.push_back(std::make_pair(Op0, cast<BasicBlock>(Op1)));
2975
2976 if (!EatIfPresent(lltok::comma))
2977 break;
2978
2979 if (ParseToken(lltok::lsquare, "expected '[' in phi value list") ||
2980 ParseValue(Ty, Op0, PFS) ||
2981 ParseToken(lltok::comma, "expected ',' after insertelement value") ||
2982 ParseValue(Type::LabelTy, Op1, PFS) ||
2983 ParseToken(lltok::rsquare, "expected ']' in phi value list"))
2984 return true;
2985 }
2986
2987 if (!Ty->isFirstClassType())
2988 return Error(TypeLoc, "phi node must have first class type");
2989
2990 PHINode *PN = PHINode::Create(Ty);
2991 PN->reserveOperandSpace(PHIVals.size());
2992 for (unsigned i = 0, e = PHIVals.size(); i != e; ++i)
2993 PN->addIncoming(PHIVals[i].first, PHIVals[i].second);
2994 Inst = PN;
2995 return false;
2996}
2997
2998/// ParseCall
2999/// ::= 'tail'? 'call' OptionalCallingConv OptionalAttrs Type Value
3000/// ParameterList OptionalAttrs
3001bool LLParser::ParseCall(Instruction *&Inst, PerFunctionState &PFS,
3002 bool isTail) {
3003 unsigned CC, RetAttrs, FnAttrs;
3004 PATypeHolder RetType(Type::VoidTy);
3005 LocTy RetTypeLoc;
3006 ValID CalleeID;
3007 SmallVector<ParamInfo, 16> ArgList;
3008 LocTy CallLoc = Lex.getLoc();
3009
3010 if ((isTail && ParseToken(lltok::kw_call, "expected 'tail call'")) ||
3011 ParseOptionalCallingConv(CC) ||
3012 ParseOptionalAttrs(RetAttrs, 1) ||
3013 ParseType(RetType, RetTypeLoc, true /*void allowed*/) ||
3014 ParseValID(CalleeID) ||
3015 ParseParameterList(ArgList, PFS) ||
3016 ParseOptionalAttrs(FnAttrs, 2))
3017 return true;
3018
3019 // If RetType is a non-function pointer type, then this is the short syntax
3020 // for the call, which means that RetType is just the return type. Infer the
3021 // rest of the function argument types from the arguments that are present.
3022 const PointerType *PFTy = 0;
3023 const FunctionType *Ty = 0;
3024 if (!(PFTy = dyn_cast<PointerType>(RetType)) ||
3025 !(Ty = dyn_cast<FunctionType>(PFTy->getElementType()))) {
3026 // Pull out the types of all of the arguments...
3027 std::vector<const Type*> ParamTypes;
3028 for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
3029 ParamTypes.push_back(ArgList[i].V->getType());
3030
3031 if (!FunctionType::isValidReturnType(RetType))
3032 return Error(RetTypeLoc, "Invalid result type for LLVM function");
3033
3034 Ty = FunctionType::get(RetType, ParamTypes, false);
3035 PFTy = PointerType::getUnqual(Ty);
3036 }
3037
3038 // Look up the callee.
3039 Value *Callee;
3040 if (ConvertValIDToValue(PFTy, CalleeID, Callee, PFS)) return true;
3041
3042 // FIXME: In LLVM 3.0, stop accepting zext, sext and inreg as optional
3043 // function attributes.
3044 unsigned ObsoleteFuncAttrs = Attribute::ZExt|Attribute::SExt|Attribute::InReg;
3045 if (FnAttrs & ObsoleteFuncAttrs) {
3046 RetAttrs |= FnAttrs & ObsoleteFuncAttrs;
3047 FnAttrs &= ~ObsoleteFuncAttrs;
3048 }
3049
3050 // Set up the Attributes for the function.
3051 SmallVector<AttributeWithIndex, 8> Attrs;
3052 if (RetAttrs != Attribute::None)
3053 Attrs.push_back(AttributeWithIndex::get(0, RetAttrs));
3054
3055 SmallVector<Value*, 8> Args;
3056
3057 // Loop through FunctionType's arguments and ensure they are specified
3058 // correctly. Also, gather any parameter attributes.
3059 FunctionType::param_iterator I = Ty->param_begin();
3060 FunctionType::param_iterator E = Ty->param_end();
3061 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
3062 const Type *ExpectedTy = 0;
3063 if (I != E) {
3064 ExpectedTy = *I++;
3065 } else if (!Ty->isVarArg()) {
3066 return Error(ArgList[i].Loc, "too many arguments specified");
3067 }
3068
3069 if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
3070 return Error(ArgList[i].Loc, "argument is not of expected type '" +
3071 ExpectedTy->getDescription() + "'");
3072 Args.push_back(ArgList[i].V);
3073 if (ArgList[i].Attrs != Attribute::None)
3074 Attrs.push_back(AttributeWithIndex::get(i+1, ArgList[i].Attrs));
3075 }
3076
3077 if (I != E)
3078 return Error(CallLoc, "not enough parameters specified for call");
3079
3080 if (FnAttrs != Attribute::None)
3081 Attrs.push_back(AttributeWithIndex::get(~0, FnAttrs));
3082
3083 // Finish off the Attributes and check them
3084 AttrListPtr PAL = AttrListPtr::get(Attrs.begin(), Attrs.end());
3085
3086 CallInst *CI = CallInst::Create(Callee, Args.begin(), Args.end());
3087 CI->setTailCall(isTail);
3088 CI->setCallingConv(CC);
3089 CI->setAttributes(PAL);
3090 Inst = CI;
3091 return false;
3092}
3093
3094//===----------------------------------------------------------------------===//
3095// Memory Instructions.
3096//===----------------------------------------------------------------------===//
3097
3098/// ParseAlloc
3099/// ::= 'malloc' Type (',' TypeAndValue)? (',' OptionalAlignment)?
3100/// ::= 'alloca' Type (',' TypeAndValue)? (',' OptionalAlignment)?
3101bool LLParser::ParseAlloc(Instruction *&Inst, PerFunctionState &PFS,
3102 unsigned Opc) {
3103 PATypeHolder Ty(Type::VoidTy);
3104 Value *Size = 0;
3105 LocTy SizeLoc = 0;
3106 unsigned Alignment = 0;
3107 if (ParseType(Ty)) return true;
3108
3109 if (EatIfPresent(lltok::comma)) {
3110 if (Lex.getKind() == lltok::kw_align) {
3111 if (ParseOptionalAlignment(Alignment)) return true;
3112 } else if (ParseTypeAndValue(Size, SizeLoc, PFS) ||
3113 ParseOptionalCommaAlignment(Alignment)) {
3114 return true;
3115 }
3116 }
3117
3118 if (Size && Size->getType() != Type::Int32Ty)
3119 return Error(SizeLoc, "element count must be i32");
3120
3121 if (Opc == Instruction::Malloc)
3122 Inst = new MallocInst(Ty, Size, Alignment);
3123 else
3124 Inst = new AllocaInst(Ty, Size, Alignment);
3125 return false;
3126}
3127
3128/// ParseFree
3129/// ::= 'free' TypeAndValue
3130bool LLParser::ParseFree(Instruction *&Inst, PerFunctionState &PFS) {
3131 Value *Val; LocTy Loc;
3132 if (ParseTypeAndValue(Val, Loc, PFS)) return true;
3133 if (!isa<PointerType>(Val->getType()))
3134 return Error(Loc, "operand to free must be a pointer");
3135 Inst = new FreeInst(Val);
3136 return false;
3137}
3138
3139/// ParseLoad
3140/// ::= 'volatile'? 'load' TypeAndValue (',' 'align' uint)?
3141bool LLParser::ParseLoad(Instruction *&Inst, PerFunctionState &PFS,
3142 bool isVolatile) {
3143 Value *Val; LocTy Loc;
3144 unsigned Alignment;
3145 if (ParseTypeAndValue(Val, Loc, PFS) ||
3146 ParseOptionalCommaAlignment(Alignment))
3147 return true;
3148
3149 if (!isa<PointerType>(Val->getType()) ||
3150 !cast<PointerType>(Val->getType())->getElementType()->isFirstClassType())
3151 return Error(Loc, "load operand must be a pointer to a first class type");
3152
3153 Inst = new LoadInst(Val, "", isVolatile, Alignment);
3154 return false;
3155}
3156
3157/// ParseStore
3158/// ::= 'volatile'? 'store' TypeAndValue ',' TypeAndValue (',' 'align' uint)?
3159bool LLParser::ParseStore(Instruction *&Inst, PerFunctionState &PFS,
3160 bool isVolatile) {
3161 Value *Val, *Ptr; LocTy Loc, PtrLoc;
3162 unsigned Alignment;
3163 if (ParseTypeAndValue(Val, Loc, PFS) ||
3164 ParseToken(lltok::comma, "expected ',' after store operand") ||
3165 ParseTypeAndValue(Ptr, PtrLoc, PFS) ||
3166 ParseOptionalCommaAlignment(Alignment))
3167 return true;
3168
3169 if (!isa<PointerType>(Ptr->getType()))
3170 return Error(PtrLoc, "store operand must be a pointer");
3171 if (!Val->getType()->isFirstClassType())
3172 return Error(Loc, "store operand must be a first class value");
3173 if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType())
3174 return Error(Loc, "stored value and pointer type do not match");
3175
3176 Inst = new StoreInst(Val, Ptr, isVolatile, Alignment);
3177 return false;
3178}
3179
3180/// ParseGetResult
3181/// ::= 'getresult' TypeAndValue ',' uint
3182/// FIXME: Remove support for getresult in LLVM 3.0
3183bool LLParser::ParseGetResult(Instruction *&Inst, PerFunctionState &PFS) {
3184 Value *Val; LocTy ValLoc, EltLoc;
3185 unsigned Element;
3186 if (ParseTypeAndValue(Val, ValLoc, PFS) ||
3187 ParseToken(lltok::comma, "expected ',' after getresult operand") ||
3188 ParseUInt32(Element, EltLoc))
3189 return true;
3190
3191 if (!isa<StructType>(Val->getType()) && !isa<ArrayType>(Val->getType()))
3192 return Error(ValLoc, "getresult inst requires an aggregate operand");
3193 if (!ExtractValueInst::getIndexedType(Val->getType(), Element))
3194 return Error(EltLoc, "invalid getresult index for value");
3195 Inst = ExtractValueInst::Create(Val, Element);
3196 return false;
3197}
3198
3199/// ParseGetElementPtr
3200/// ::= 'getelementptr' TypeAndValue (',' TypeAndValue)*
3201bool LLParser::ParseGetElementPtr(Instruction *&Inst, PerFunctionState &PFS) {
3202 Value *Ptr, *Val; LocTy Loc, EltLoc;
3203 if (ParseTypeAndValue(Ptr, Loc, PFS)) return true;
3204
3205 if (!isa<PointerType>(Ptr->getType()))
3206 return Error(Loc, "base of getelementptr must be a pointer");
3207
3208 SmallVector<Value*, 16> Indices;
3209 while (EatIfPresent(lltok::comma)) {
3210 if (ParseTypeAndValue(Val, EltLoc, PFS)) return true;
3211 if (!isa<IntegerType>(Val->getType()))
3212 return Error(EltLoc, "getelementptr index must be an integer");
3213 Indices.push_back(Val);
3214 }
3215
3216 if (!GetElementPtrInst::getIndexedType(Ptr->getType(),
3217 Indices.begin(), Indices.end()))
3218 return Error(Loc, "invalid getelementptr indices");
3219 Inst = GetElementPtrInst::Create(Ptr, Indices.begin(), Indices.end());
3220 return false;
3221}
3222
3223/// ParseExtractValue
3224/// ::= 'extractvalue' TypeAndValue (',' uint32)+
3225bool LLParser::ParseExtractValue(Instruction *&Inst, PerFunctionState &PFS) {
3226 Value *Val; LocTy Loc;
3227 SmallVector<unsigned, 4> Indices;
3228 if (ParseTypeAndValue(Val, Loc, PFS) ||
3229 ParseIndexList(Indices))
3230 return true;
3231
3232 if (!isa<StructType>(Val->getType()) && !isa<ArrayType>(Val->getType()))
3233 return Error(Loc, "extractvalue operand must be array or struct");
3234
3235 if (!ExtractValueInst::getIndexedType(Val->getType(), Indices.begin(),
3236 Indices.end()))
3237 return Error(Loc, "invalid indices for extractvalue");
3238 Inst = ExtractValueInst::Create(Val, Indices.begin(), Indices.end());
3239 return false;
3240}
3241
3242/// ParseInsertValue
3243/// ::= 'insertvalue' TypeAndValue ',' TypeAndValue (',' uint32)+
3244bool LLParser::ParseInsertValue(Instruction *&Inst, PerFunctionState &PFS) {
3245 Value *Val0, *Val1; LocTy Loc0, Loc1;
3246 SmallVector<unsigned, 4> Indices;
3247 if (ParseTypeAndValue(Val0, Loc0, PFS) ||
3248 ParseToken(lltok::comma, "expected comma after insertvalue operand") ||
3249 ParseTypeAndValue(Val1, Loc1, PFS) ||
3250 ParseIndexList(Indices))
3251 return true;
3252
3253 if (!isa<StructType>(Val0->getType()) && !isa<ArrayType>(Val0->getType()))
3254 return Error(Loc0, "extractvalue operand must be array or struct");
3255
3256 if (!ExtractValueInst::getIndexedType(Val0->getType(), Indices.begin(),
3257 Indices.end()))
3258 return Error(Loc0, "invalid indices for insertvalue");
3259 Inst = InsertValueInst::Create(Val0, Val1, Indices.begin(), Indices.end());
3260 return false;
3261}
3262
3263//===----------------------------------------------------------------------===//
3264// Embedded metadata.
3265//===----------------------------------------------------------------------===//
3266
3267/// ParseMDNodeVector
3268/// ::= Element (',' Element)*
3269/// Element
3270/// ::= 'null' | TypeAndValue
3271bool LLParser::ParseMDNodeVector(SmallVectorImpl<Value*> &Elts) {
3272 assert(Lex.getKind() == lltok::lbrace);
3273 Lex.Lex();
3274 do {
3275 Value *V;
3276 if (Lex.getKind() == lltok::kw_null) {
3277 Lex.Lex();
3278 V = 0;
3279 } else {
3280 Constant *C;
3281 if (ParseGlobalTypeAndValue(C)) return true;
3282 V = C;
3283 }
3284 Elts.push_back(V);
3285 } while (EatIfPresent(lltok::comma));
3286
3287 return false;
3288}