Deleted Added
full compact
ScalarEvolution.cpp (263508) ScalarEvolution.cpp (266715)
1//===- ScalarEvolution.cpp - Scalar Evolution Analysis ----------*- C++ -*-===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the implementation of the scalar evolution analysis
11// engine, which is used primarily to analyze expressions involving induction
12// variables in loops.
13//
14// There are several aspects to this library. First is the representation of
15// scalar expressions, which are represented as subclasses of the SCEV class.
16// These classes are used to represent certain types of subexpressions that we
17// can handle. We only create one SCEV of a particular shape, so
18// pointer-comparisons for equality are legal.
19//
20// One important aspect of the SCEV objects is that they are never cyclic, even
21// if there is a cycle in the dataflow for an expression (ie, a PHI node). If
22// the PHI node is one of the idioms that we can represent (e.g., a polynomial
23// recurrence) then we represent it directly as a recurrence node, otherwise we
24// represent it as a SCEVUnknown node.
25//
26// In addition to being able to represent expressions of various types, we also
27// have folders that are used to build the *canonical* representation for a
28// particular expression. These folders are capable of using a variety of
29// rewrite rules to simplify the expressions.
30//
31// Once the folders are defined, we can implement the more interesting
32// higher-level code, such as the code that recognizes PHI nodes of various
33// types, computes the execution count of a loop, etc.
34//
35// TODO: We should use these routines and value representations to implement
36// dependence analysis!
37//
38//===----------------------------------------------------------------------===//
39//
40// There are several good references for the techniques used in this analysis.
41//
42// Chains of recurrences -- a method to expedite the evaluation
43// of closed-form functions
44// Olaf Bachmann, Paul S. Wang, Eugene V. Zima
45//
46// On computational properties of chains of recurrences
47// Eugene V. Zima
48//
49// Symbolic Evaluation of Chains of Recurrences for Loop Optimization
50// Robert A. van Engelen
51//
52// Efficient Symbolic Analysis for Optimizing Compilers
53// Robert A. van Engelen
54//
55// Using the chains of recurrences algebra for data dependence testing and
56// induction variable substitution
57// MS Thesis, Johnie Birch
58//
59//===----------------------------------------------------------------------===//
60
61#define DEBUG_TYPE "scalar-evolution"
62#include "llvm/Analysis/ScalarEvolution.h"
63#include "llvm/ADT/STLExtras.h"
64#include "llvm/ADT/SmallPtrSet.h"
65#include "llvm/ADT/Statistic.h"
66#include "llvm/Analysis/ConstantFolding.h"
67#include "llvm/Analysis/Dominators.h"
68#include "llvm/Analysis/InstructionSimplify.h"
69#include "llvm/Analysis/LoopInfo.h"
70#include "llvm/Analysis/ScalarEvolutionExpressions.h"
71#include "llvm/Analysis/ValueTracking.h"
72#include "llvm/Assembly/Writer.h"
73#include "llvm/IR/Constants.h"
74#include "llvm/IR/DataLayout.h"
75#include "llvm/IR/DerivedTypes.h"
76#include "llvm/IR/GlobalAlias.h"
77#include "llvm/IR/GlobalVariable.h"
78#include "llvm/IR/Instructions.h"
79#include "llvm/IR/LLVMContext.h"
80#include "llvm/IR/Operator.h"
81#include "llvm/Support/CommandLine.h"
82#include "llvm/Support/ConstantRange.h"
83#include "llvm/Support/Debug.h"
84#include "llvm/Support/ErrorHandling.h"
85#include "llvm/Support/GetElementPtrTypeIterator.h"
86#include "llvm/Support/InstIterator.h"
87#include "llvm/Support/MathExtras.h"
88#include "llvm/Support/raw_ostream.h"
89#include "llvm/Target/TargetLibraryInfo.h"
90#include <algorithm>
91using namespace llvm;
92
93STATISTIC(NumArrayLenItCounts,
94 "Number of trip counts computed with array length");
95STATISTIC(NumTripCountsComputed,
96 "Number of loops with predictable loop counts");
97STATISTIC(NumTripCountsNotComputed,
98 "Number of loops without predictable loop counts");
99STATISTIC(NumBruteForceTripCountsComputed,
100 "Number of loops with trip counts computed by force");
101
102static cl::opt<unsigned>
103MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden,
104 cl::desc("Maximum number of iterations SCEV will "
105 "symbolically execute a constant "
106 "derived loop"),
107 cl::init(100));
108
109// FIXME: Enable this with XDEBUG when the test suite is clean.
110static cl::opt<bool>
111VerifySCEV("verify-scev",
112 cl::desc("Verify ScalarEvolution's backedge taken counts (slow)"));
113
114INITIALIZE_PASS_BEGIN(ScalarEvolution, "scalar-evolution",
115 "Scalar Evolution Analysis", false, true)
116INITIALIZE_PASS_DEPENDENCY(LoopInfo)
117INITIALIZE_PASS_DEPENDENCY(DominatorTree)
118INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfo)
119INITIALIZE_PASS_END(ScalarEvolution, "scalar-evolution",
120 "Scalar Evolution Analysis", false, true)
121char ScalarEvolution::ID = 0;
122
123//===----------------------------------------------------------------------===//
124// SCEV class definitions
125//===----------------------------------------------------------------------===//
126
127//===----------------------------------------------------------------------===//
128// Implementation of the SCEV class.
129//
130
131#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
132void SCEV::dump() const {
133 print(dbgs());
134 dbgs() << '\n';
135}
136#endif
137
138void SCEV::print(raw_ostream &OS) const {
139 switch (getSCEVType()) {
140 case scConstant:
141 WriteAsOperand(OS, cast<SCEVConstant>(this)->getValue(), false);
142 return;
143 case scTruncate: {
144 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(this);
145 const SCEV *Op = Trunc->getOperand();
146 OS << "(trunc " << *Op->getType() << " " << *Op << " to "
147 << *Trunc->getType() << ")";
148 return;
149 }
150 case scZeroExtend: {
151 const SCEVZeroExtendExpr *ZExt = cast<SCEVZeroExtendExpr>(this);
152 const SCEV *Op = ZExt->getOperand();
153 OS << "(zext " << *Op->getType() << " " << *Op << " to "
154 << *ZExt->getType() << ")";
155 return;
156 }
157 case scSignExtend: {
158 const SCEVSignExtendExpr *SExt = cast<SCEVSignExtendExpr>(this);
159 const SCEV *Op = SExt->getOperand();
160 OS << "(sext " << *Op->getType() << " " << *Op << " to "
161 << *SExt->getType() << ")";
162 return;
163 }
164 case scAddRecExpr: {
165 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(this);
166 OS << "{" << *AR->getOperand(0);
167 for (unsigned i = 1, e = AR->getNumOperands(); i != e; ++i)
168 OS << ",+," << *AR->getOperand(i);
169 OS << "}<";
170 if (AR->getNoWrapFlags(FlagNUW))
171 OS << "nuw><";
172 if (AR->getNoWrapFlags(FlagNSW))
173 OS << "nsw><";
174 if (AR->getNoWrapFlags(FlagNW) &&
175 !AR->getNoWrapFlags((NoWrapFlags)(FlagNUW | FlagNSW)))
176 OS << "nw><";
177 WriteAsOperand(OS, AR->getLoop()->getHeader(), /*PrintType=*/false);
178 OS << ">";
179 return;
180 }
181 case scAddExpr:
182 case scMulExpr:
183 case scUMaxExpr:
184 case scSMaxExpr: {
185 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(this);
186 const char *OpStr = 0;
187 switch (NAry->getSCEVType()) {
188 case scAddExpr: OpStr = " + "; break;
189 case scMulExpr: OpStr = " * "; break;
190 case scUMaxExpr: OpStr = " umax "; break;
191 case scSMaxExpr: OpStr = " smax "; break;
192 }
193 OS << "(";
194 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
195 I != E; ++I) {
196 OS << **I;
197 if (llvm::next(I) != E)
198 OS << OpStr;
199 }
200 OS << ")";
201 switch (NAry->getSCEVType()) {
202 case scAddExpr:
203 case scMulExpr:
204 if (NAry->getNoWrapFlags(FlagNUW))
205 OS << "<nuw>";
206 if (NAry->getNoWrapFlags(FlagNSW))
207 OS << "<nsw>";
208 }
209 return;
210 }
211 case scUDivExpr: {
212 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(this);
213 OS << "(" << *UDiv->getLHS() << " /u " << *UDiv->getRHS() << ")";
214 return;
215 }
216 case scUnknown: {
217 const SCEVUnknown *U = cast<SCEVUnknown>(this);
218 Type *AllocTy;
219 if (U->isSizeOf(AllocTy)) {
220 OS << "sizeof(" << *AllocTy << ")";
221 return;
222 }
223 if (U->isAlignOf(AllocTy)) {
224 OS << "alignof(" << *AllocTy << ")";
225 return;
226 }
227
228 Type *CTy;
229 Constant *FieldNo;
230 if (U->isOffsetOf(CTy, FieldNo)) {
231 OS << "offsetof(" << *CTy << ", ";
232 WriteAsOperand(OS, FieldNo, false);
233 OS << ")";
234 return;
235 }
236
237 // Otherwise just print it normally.
238 WriteAsOperand(OS, U->getValue(), false);
239 return;
240 }
241 case scCouldNotCompute:
242 OS << "***COULDNOTCOMPUTE***";
243 return;
244 default: break;
245 }
246 llvm_unreachable("Unknown SCEV kind!");
247}
248
249Type *SCEV::getType() const {
250 switch (getSCEVType()) {
251 case scConstant:
252 return cast<SCEVConstant>(this)->getType();
253 case scTruncate:
254 case scZeroExtend:
255 case scSignExtend:
256 return cast<SCEVCastExpr>(this)->getType();
257 case scAddRecExpr:
258 case scMulExpr:
259 case scUMaxExpr:
260 case scSMaxExpr:
261 return cast<SCEVNAryExpr>(this)->getType();
262 case scAddExpr:
263 return cast<SCEVAddExpr>(this)->getType();
264 case scUDivExpr:
265 return cast<SCEVUDivExpr>(this)->getType();
266 case scUnknown:
267 return cast<SCEVUnknown>(this)->getType();
268 case scCouldNotCompute:
269 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
270 default:
271 llvm_unreachable("Unknown SCEV kind!");
272 }
273}
274
275bool SCEV::isZero() const {
276 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
277 return SC->getValue()->isZero();
278 return false;
279}
280
281bool SCEV::isOne() const {
282 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
283 return SC->getValue()->isOne();
284 return false;
285}
286
287bool SCEV::isAllOnesValue() const {
288 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
289 return SC->getValue()->isAllOnesValue();
290 return false;
291}
292
293/// isNonConstantNegative - Return true if the specified scev is negated, but
294/// not a constant.
295bool SCEV::isNonConstantNegative() const {
296 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(this);
297 if (!Mul) return false;
298
299 // If there is a constant factor, it will be first.
300 const SCEVConstant *SC = dyn_cast<SCEVConstant>(Mul->getOperand(0));
301 if (!SC) return false;
302
303 // Return true if the value is negative, this matches things like (-42 * V).
304 return SC->getValue()->getValue().isNegative();
305}
306
307SCEVCouldNotCompute::SCEVCouldNotCompute() :
308 SCEV(FoldingSetNodeIDRef(), scCouldNotCompute) {}
309
310bool SCEVCouldNotCompute::classof(const SCEV *S) {
311 return S->getSCEVType() == scCouldNotCompute;
312}
313
314const SCEV *ScalarEvolution::getConstant(ConstantInt *V) {
315 FoldingSetNodeID ID;
316 ID.AddInteger(scConstant);
317 ID.AddPointer(V);
318 void *IP = 0;
319 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
320 SCEV *S = new (SCEVAllocator) SCEVConstant(ID.Intern(SCEVAllocator), V);
321 UniqueSCEVs.InsertNode(S, IP);
322 return S;
323}
324
325const SCEV *ScalarEvolution::getConstant(const APInt& Val) {
326 return getConstant(ConstantInt::get(getContext(), Val));
327}
328
329const SCEV *
330ScalarEvolution::getConstant(Type *Ty, uint64_t V, bool isSigned) {
331 IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty));
332 return getConstant(ConstantInt::get(ITy, V, isSigned));
333}
334
335SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeIDRef ID,
336 unsigned SCEVTy, const SCEV *op, Type *ty)
337 : SCEV(ID, SCEVTy), Op(op), Ty(ty) {}
338
339SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeIDRef ID,
340 const SCEV *op, Type *ty)
341 : SCEVCastExpr(ID, scTruncate, op, ty) {
342 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
343 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
344 "Cannot truncate non-integer value!");
345}
346
347SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID,
348 const SCEV *op, Type *ty)
349 : SCEVCastExpr(ID, scZeroExtend, op, ty) {
350 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
351 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
352 "Cannot zero extend non-integer value!");
353}
354
355SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeIDRef ID,
356 const SCEV *op, Type *ty)
357 : SCEVCastExpr(ID, scSignExtend, op, ty) {
358 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
359 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
360 "Cannot sign extend non-integer value!");
361}
362
363void SCEVUnknown::deleted() {
364 // Clear this SCEVUnknown from various maps.
365 SE->forgetMemoizedResults(this);
366
367 // Remove this SCEVUnknown from the uniquing map.
368 SE->UniqueSCEVs.RemoveNode(this);
369
370 // Release the value.
371 setValPtr(0);
372}
373
374void SCEVUnknown::allUsesReplacedWith(Value *New) {
375 // Clear this SCEVUnknown from various maps.
376 SE->forgetMemoizedResults(this);
377
378 // Remove this SCEVUnknown from the uniquing map.
379 SE->UniqueSCEVs.RemoveNode(this);
380
381 // Update this SCEVUnknown to point to the new value. This is needed
382 // because there may still be outstanding SCEVs which still point to
383 // this SCEVUnknown.
384 setValPtr(New);
385}
386
387bool SCEVUnknown::isSizeOf(Type *&AllocTy) const {
388 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
389 if (VCE->getOpcode() == Instruction::PtrToInt)
390 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
391 if (CE->getOpcode() == Instruction::GetElementPtr &&
392 CE->getOperand(0)->isNullValue() &&
393 CE->getNumOperands() == 2)
394 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(1)))
395 if (CI->isOne()) {
396 AllocTy = cast<PointerType>(CE->getOperand(0)->getType())
397 ->getElementType();
398 return true;
399 }
400
401 return false;
402}
403
404bool SCEVUnknown::isAlignOf(Type *&AllocTy) const {
405 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
406 if (VCE->getOpcode() == Instruction::PtrToInt)
407 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
408 if (CE->getOpcode() == Instruction::GetElementPtr &&
409 CE->getOperand(0)->isNullValue()) {
410 Type *Ty =
411 cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
412 if (StructType *STy = dyn_cast<StructType>(Ty))
413 if (!STy->isPacked() &&
414 CE->getNumOperands() == 3 &&
415 CE->getOperand(1)->isNullValue()) {
416 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(2)))
417 if (CI->isOne() &&
418 STy->getNumElements() == 2 &&
419 STy->getElementType(0)->isIntegerTy(1)) {
420 AllocTy = STy->getElementType(1);
421 return true;
422 }
423 }
424 }
425
426 return false;
427}
428
429bool SCEVUnknown::isOffsetOf(Type *&CTy, Constant *&FieldNo) const {
430 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
431 if (VCE->getOpcode() == Instruction::PtrToInt)
432 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
433 if (CE->getOpcode() == Instruction::GetElementPtr &&
434 CE->getNumOperands() == 3 &&
435 CE->getOperand(0)->isNullValue() &&
436 CE->getOperand(1)->isNullValue()) {
437 Type *Ty =
438 cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
439 // Ignore vector types here so that ScalarEvolutionExpander doesn't
440 // emit getelementptrs that index into vectors.
441 if (Ty->isStructTy() || Ty->isArrayTy()) {
442 CTy = Ty;
443 FieldNo = CE->getOperand(2);
444 return true;
445 }
446 }
447
448 return false;
449}
450
451//===----------------------------------------------------------------------===//
452// SCEV Utilities
453//===----------------------------------------------------------------------===//
454
455namespace {
456 /// SCEVComplexityCompare - Return true if the complexity of the LHS is less
457 /// than the complexity of the RHS. This comparator is used to canonicalize
458 /// expressions.
459 class SCEVComplexityCompare {
460 const LoopInfo *const LI;
461 public:
462 explicit SCEVComplexityCompare(const LoopInfo *li) : LI(li) {}
463
464 // Return true or false if LHS is less than, or at least RHS, respectively.
465 bool operator()(const SCEV *LHS, const SCEV *RHS) const {
466 return compare(LHS, RHS) < 0;
467 }
468
469 // Return negative, zero, or positive, if LHS is less than, equal to, or
470 // greater than RHS, respectively. A three-way result allows recursive
471 // comparisons to be more efficient.
472 int compare(const SCEV *LHS, const SCEV *RHS) const {
473 // Fast-path: SCEVs are uniqued so we can do a quick equality check.
474 if (LHS == RHS)
475 return 0;
476
477 // Primarily, sort the SCEVs by their getSCEVType().
478 unsigned LType = LHS->getSCEVType(), RType = RHS->getSCEVType();
479 if (LType != RType)
480 return (int)LType - (int)RType;
481
482 // Aside from the getSCEVType() ordering, the particular ordering
483 // isn't very important except that it's beneficial to be consistent,
484 // so that (a + b) and (b + a) don't end up as different expressions.
485 switch (LType) {
486 case scUnknown: {
487 const SCEVUnknown *LU = cast<SCEVUnknown>(LHS);
488 const SCEVUnknown *RU = cast<SCEVUnknown>(RHS);
489
490 // Sort SCEVUnknown values with some loose heuristics. TODO: This is
491 // not as complete as it could be.
492 const Value *LV = LU->getValue(), *RV = RU->getValue();
493
494 // Order pointer values after integer values. This helps SCEVExpander
495 // form GEPs.
496 bool LIsPointer = LV->getType()->isPointerTy(),
497 RIsPointer = RV->getType()->isPointerTy();
498 if (LIsPointer != RIsPointer)
499 return (int)LIsPointer - (int)RIsPointer;
500
501 // Compare getValueID values.
502 unsigned LID = LV->getValueID(),
503 RID = RV->getValueID();
504 if (LID != RID)
505 return (int)LID - (int)RID;
506
507 // Sort arguments by their position.
508 if (const Argument *LA = dyn_cast<Argument>(LV)) {
509 const Argument *RA = cast<Argument>(RV);
510 unsigned LArgNo = LA->getArgNo(), RArgNo = RA->getArgNo();
511 return (int)LArgNo - (int)RArgNo;
512 }
513
514 // For instructions, compare their loop depth, and their operand
515 // count. This is pretty loose.
516 if (const Instruction *LInst = dyn_cast<Instruction>(LV)) {
517 const Instruction *RInst = cast<Instruction>(RV);
518
519 // Compare loop depths.
520 const BasicBlock *LParent = LInst->getParent(),
521 *RParent = RInst->getParent();
522 if (LParent != RParent) {
523 unsigned LDepth = LI->getLoopDepth(LParent),
524 RDepth = LI->getLoopDepth(RParent);
525 if (LDepth != RDepth)
526 return (int)LDepth - (int)RDepth;
527 }
528
529 // Compare the number of operands.
530 unsigned LNumOps = LInst->getNumOperands(),
531 RNumOps = RInst->getNumOperands();
532 return (int)LNumOps - (int)RNumOps;
533 }
534
535 return 0;
536 }
537
538 case scConstant: {
539 const SCEVConstant *LC = cast<SCEVConstant>(LHS);
540 const SCEVConstant *RC = cast<SCEVConstant>(RHS);
541
542 // Compare constant values.
543 const APInt &LA = LC->getValue()->getValue();
544 const APInt &RA = RC->getValue()->getValue();
545 unsigned LBitWidth = LA.getBitWidth(), RBitWidth = RA.getBitWidth();
546 if (LBitWidth != RBitWidth)
547 return (int)LBitWidth - (int)RBitWidth;
548 return LA.ult(RA) ? -1 : 1;
549 }
550
551 case scAddRecExpr: {
552 const SCEVAddRecExpr *LA = cast<SCEVAddRecExpr>(LHS);
553 const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS);
554
555 // Compare addrec loop depths.
556 const Loop *LLoop = LA->getLoop(), *RLoop = RA->getLoop();
557 if (LLoop != RLoop) {
558 unsigned LDepth = LLoop->getLoopDepth(),
559 RDepth = RLoop->getLoopDepth();
560 if (LDepth != RDepth)
561 return (int)LDepth - (int)RDepth;
562 }
563
564 // Addrec complexity grows with operand count.
565 unsigned LNumOps = LA->getNumOperands(), RNumOps = RA->getNumOperands();
566 if (LNumOps != RNumOps)
567 return (int)LNumOps - (int)RNumOps;
568
569 // Lexicographically compare.
570 for (unsigned i = 0; i != LNumOps; ++i) {
571 long X = compare(LA->getOperand(i), RA->getOperand(i));
572 if (X != 0)
573 return X;
574 }
575
576 return 0;
577 }
578
579 case scAddExpr:
580 case scMulExpr:
581 case scSMaxExpr:
582 case scUMaxExpr: {
583 const SCEVNAryExpr *LC = cast<SCEVNAryExpr>(LHS);
584 const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS);
585
586 // Lexicographically compare n-ary expressions.
587 unsigned LNumOps = LC->getNumOperands(), RNumOps = RC->getNumOperands();
588 if (LNumOps != RNumOps)
589 return (int)LNumOps - (int)RNumOps;
590
591 for (unsigned i = 0; i != LNumOps; ++i) {
592 if (i >= RNumOps)
593 return 1;
594 long X = compare(LC->getOperand(i), RC->getOperand(i));
595 if (X != 0)
596 return X;
597 }
598 return (int)LNumOps - (int)RNumOps;
599 }
600
601 case scUDivExpr: {
602 const SCEVUDivExpr *LC = cast<SCEVUDivExpr>(LHS);
603 const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS);
604
605 // Lexicographically compare udiv expressions.
606 long X = compare(LC->getLHS(), RC->getLHS());
607 if (X != 0)
608 return X;
609 return compare(LC->getRHS(), RC->getRHS());
610 }
611
612 case scTruncate:
613 case scZeroExtend:
614 case scSignExtend: {
615 const SCEVCastExpr *LC = cast<SCEVCastExpr>(LHS);
616 const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS);
617
618 // Compare cast expressions by operand.
619 return compare(LC->getOperand(), RC->getOperand());
620 }
621
622 default:
623 llvm_unreachable("Unknown SCEV kind!");
624 }
625 }
626 };
627}
628
629/// GroupByComplexity - Given a list of SCEV objects, order them by their
630/// complexity, and group objects of the same complexity together by value.
631/// When this routine is finished, we know that any duplicates in the vector are
632/// consecutive and that complexity is monotonically increasing.
633///
634/// Note that we go take special precautions to ensure that we get deterministic
635/// results from this routine. In other words, we don't want the results of
636/// this to depend on where the addresses of various SCEV objects happened to
637/// land in memory.
638///
639static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops,
640 LoopInfo *LI) {
641 if (Ops.size() < 2) return; // Noop
642 if (Ops.size() == 2) {
643 // This is the common case, which also happens to be trivially simple.
644 // Special case it.
645 const SCEV *&LHS = Ops[0], *&RHS = Ops[1];
646 if (SCEVComplexityCompare(LI)(RHS, LHS))
647 std::swap(LHS, RHS);
648 return;
649 }
650
651 // Do the rough sort by complexity.
652 std::stable_sort(Ops.begin(), Ops.end(), SCEVComplexityCompare(LI));
653
654 // Now that we are sorted by complexity, group elements of the same
655 // complexity. Note that this is, at worst, N^2, but the vector is likely to
656 // be extremely short in practice. Note that we take this approach because we
657 // do not want to depend on the addresses of the objects we are grouping.
658 for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) {
659 const SCEV *S = Ops[i];
660 unsigned Complexity = S->getSCEVType();
661
662 // If there are any objects of the same complexity and same value as this
663 // one, group them.
664 for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) {
665 if (Ops[j] == S) { // Found a duplicate.
666 // Move it to immediately after i'th element.
667 std::swap(Ops[i+1], Ops[j]);
668 ++i; // no need to rescan it.
669 if (i == e-2) return; // Done!
670 }
671 }
672 }
673}
674
675
676
677//===----------------------------------------------------------------------===//
678// Simple SCEV method implementations
679//===----------------------------------------------------------------------===//
680
681/// BinomialCoefficient - Compute BC(It, K). The result has width W.
682/// Assume, K > 0.
683static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K,
684 ScalarEvolution &SE,
685 Type *ResultTy) {
686 // Handle the simplest case efficiently.
687 if (K == 1)
688 return SE.getTruncateOrZeroExtend(It, ResultTy);
689
690 // We are using the following formula for BC(It, K):
691 //
692 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K!
693 //
694 // Suppose, W is the bitwidth of the return value. We must be prepared for
695 // overflow. Hence, we must assure that the result of our computation is
696 // equal to the accurate one modulo 2^W. Unfortunately, division isn't
697 // safe in modular arithmetic.
698 //
699 // However, this code doesn't use exactly that formula; the formula it uses
700 // is something like the following, where T is the number of factors of 2 in
701 // K! (i.e. trailing zeros in the binary representation of K!), and ^ is
702 // exponentiation:
703 //
704 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T)
705 //
706 // This formula is trivially equivalent to the previous formula. However,
707 // this formula can be implemented much more efficiently. The trick is that
708 // K! / 2^T is odd, and exact division by an odd number *is* safe in modular
709 // arithmetic. To do exact division in modular arithmetic, all we have
710 // to do is multiply by the inverse. Therefore, this step can be done at
711 // width W.
712 //
713 // The next issue is how to safely do the division by 2^T. The way this
714 // is done is by doing the multiplication step at a width of at least W + T
715 // bits. This way, the bottom W+T bits of the product are accurate. Then,
716 // when we perform the division by 2^T (which is equivalent to a right shift
717 // by T), the bottom W bits are accurate. Extra bits are okay; they'll get
718 // truncated out after the division by 2^T.
719 //
720 // In comparison to just directly using the first formula, this technique
721 // is much more efficient; using the first formula requires W * K bits,
722 // but this formula less than W + K bits. Also, the first formula requires
723 // a division step, whereas this formula only requires multiplies and shifts.
724 //
725 // It doesn't matter whether the subtraction step is done in the calculation
726 // width or the input iteration count's width; if the subtraction overflows,
727 // the result must be zero anyway. We prefer here to do it in the width of
728 // the induction variable because it helps a lot for certain cases; CodeGen
729 // isn't smart enough to ignore the overflow, which leads to much less
730 // efficient code if the width of the subtraction is wider than the native
731 // register width.
732 //
733 // (It's possible to not widen at all by pulling out factors of 2 before
734 // the multiplication; for example, K=2 can be calculated as
735 // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires
736 // extra arithmetic, so it's not an obvious win, and it gets
737 // much more complicated for K > 3.)
738
739 // Protection from insane SCEVs; this bound is conservative,
740 // but it probably doesn't matter.
741 if (K > 1000)
742 return SE.getCouldNotCompute();
743
744 unsigned W = SE.getTypeSizeInBits(ResultTy);
745
746 // Calculate K! / 2^T and T; we divide out the factors of two before
747 // multiplying for calculating K! / 2^T to avoid overflow.
748 // Other overflow doesn't matter because we only care about the bottom
749 // W bits of the result.
750 APInt OddFactorial(W, 1);
751 unsigned T = 1;
752 for (unsigned i = 3; i <= K; ++i) {
753 APInt Mult(W, i);
754 unsigned TwoFactors = Mult.countTrailingZeros();
755 T += TwoFactors;
756 Mult = Mult.lshr(TwoFactors);
757 OddFactorial *= Mult;
758 }
759
760 // We need at least W + T bits for the multiplication step
761 unsigned CalculationBits = W + T;
762
763 // Calculate 2^T, at width T+W.
764 APInt DivFactor = APInt::getOneBitSet(CalculationBits, T);
765
766 // Calculate the multiplicative inverse of K! / 2^T;
767 // this multiplication factor will perform the exact division by
768 // K! / 2^T.
769 APInt Mod = APInt::getSignedMinValue(W+1);
770 APInt MultiplyFactor = OddFactorial.zext(W+1);
771 MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod);
772 MultiplyFactor = MultiplyFactor.trunc(W);
773
774 // Calculate the product, at width T+W
775 IntegerType *CalculationTy = IntegerType::get(SE.getContext(),
776 CalculationBits);
777 const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy);
778 for (unsigned i = 1; i != K; ++i) {
779 const SCEV *S = SE.getMinusSCEV(It, SE.getConstant(It->getType(), i));
780 Dividend = SE.getMulExpr(Dividend,
781 SE.getTruncateOrZeroExtend(S, CalculationTy));
782 }
783
784 // Divide by 2^T
785 const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor));
786
787 // Truncate the result, and divide by K! / 2^T.
788
789 return SE.getMulExpr(SE.getConstant(MultiplyFactor),
790 SE.getTruncateOrZeroExtend(DivResult, ResultTy));
791}
792
793/// evaluateAtIteration - Return the value of this chain of recurrences at
794/// the specified iteration number. We can evaluate this recurrence by
795/// multiplying each element in the chain by the binomial coefficient
796/// corresponding to it. In other words, we can evaluate {A,+,B,+,C,+,D} as:
797///
798/// A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3)
799///
800/// where BC(It, k) stands for binomial coefficient.
801///
802const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It,
803 ScalarEvolution &SE) const {
804 const SCEV *Result = getStart();
805 for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
806 // The computation is correct in the face of overflow provided that the
807 // multiplication is performed _after_ the evaluation of the binomial
808 // coefficient.
809 const SCEV *Coeff = BinomialCoefficient(It, i, SE, getType());
810 if (isa<SCEVCouldNotCompute>(Coeff))
811 return Coeff;
812
813 Result = SE.getAddExpr(Result, SE.getMulExpr(getOperand(i), Coeff));
814 }
815 return Result;
816}
817
818//===----------------------------------------------------------------------===//
819// SCEV Expression folder implementations
820//===----------------------------------------------------------------------===//
821
822const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op,
823 Type *Ty) {
824 assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) &&
825 "This is not a truncating conversion!");
826 assert(isSCEVable(Ty) &&
827 "This is not a conversion to a SCEVable type!");
828 Ty = getEffectiveSCEVType(Ty);
829
830 FoldingSetNodeID ID;
831 ID.AddInteger(scTruncate);
832 ID.AddPointer(Op);
833 ID.AddPointer(Ty);
834 void *IP = 0;
835 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
836
837 // Fold if the operand is constant.
838 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
839 return getConstant(
840 cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(), Ty)));
841
842 // trunc(trunc(x)) --> trunc(x)
843 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op))
844 return getTruncateExpr(ST->getOperand(), Ty);
845
846 // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing
847 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
848 return getTruncateOrSignExtend(SS->getOperand(), Ty);
849
850 // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing
851 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
852 return getTruncateOrZeroExtend(SZ->getOperand(), Ty);
853
854 // trunc(x1+x2+...+xN) --> trunc(x1)+trunc(x2)+...+trunc(xN) if we can
855 // eliminate all the truncates.
856 if (const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Op)) {
857 SmallVector<const SCEV *, 4> Operands;
858 bool hasTrunc = false;
859 for (unsigned i = 0, e = SA->getNumOperands(); i != e && !hasTrunc; ++i) {
860 const SCEV *S = getTruncateExpr(SA->getOperand(i), Ty);
861 hasTrunc = isa<SCEVTruncateExpr>(S);
862 Operands.push_back(S);
863 }
864 if (!hasTrunc)
865 return getAddExpr(Operands);
866 UniqueSCEVs.FindNodeOrInsertPos(ID, IP); // Mutates IP, returns NULL.
867 }
868
869 // trunc(x1*x2*...*xN) --> trunc(x1)*trunc(x2)*...*trunc(xN) if we can
870 // eliminate all the truncates.
871 if (const SCEVMulExpr *SM = dyn_cast<SCEVMulExpr>(Op)) {
872 SmallVector<const SCEV *, 4> Operands;
873 bool hasTrunc = false;
874 for (unsigned i = 0, e = SM->getNumOperands(); i != e && !hasTrunc; ++i) {
875 const SCEV *S = getTruncateExpr(SM->getOperand(i), Ty);
876 hasTrunc = isa<SCEVTruncateExpr>(S);
877 Operands.push_back(S);
878 }
879 if (!hasTrunc)
880 return getMulExpr(Operands);
881 UniqueSCEVs.FindNodeOrInsertPos(ID, IP); // Mutates IP, returns NULL.
882 }
883
884 // If the input value is a chrec scev, truncate the chrec's operands.
885 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
886 SmallVector<const SCEV *, 4> Operands;
887 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
888 Operands.push_back(getTruncateExpr(AddRec->getOperand(i), Ty));
889 return getAddRecExpr(Operands, AddRec->getLoop(), SCEV::FlagAnyWrap);
890 }
891
892 // The cast wasn't folded; create an explicit cast node. We can reuse
893 // the existing insert position since if we get here, we won't have
894 // made any changes which would invalidate it.
895 SCEV *S = new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator),
896 Op, Ty);
897 UniqueSCEVs.InsertNode(S, IP);
898 return S;
899}
900
901const SCEV *ScalarEvolution::getZeroExtendExpr(const SCEV *Op,
902 Type *Ty) {
903 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
904 "This is not an extending conversion!");
905 assert(isSCEVable(Ty) &&
906 "This is not a conversion to a SCEVable type!");
907 Ty = getEffectiveSCEVType(Ty);
908
909 // Fold if the operand is constant.
910 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
911 return getConstant(
912 cast<ConstantInt>(ConstantExpr::getZExt(SC->getValue(), Ty)));
913
914 // zext(zext(x)) --> zext(x)
915 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
916 return getZeroExtendExpr(SZ->getOperand(), Ty);
917
918 // Before doing any expensive analysis, check to see if we've already
919 // computed a SCEV for this Op and Ty.
920 FoldingSetNodeID ID;
921 ID.AddInteger(scZeroExtend);
922 ID.AddPointer(Op);
923 ID.AddPointer(Ty);
924 void *IP = 0;
925 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
926
927 // zext(trunc(x)) --> zext(x) or x or trunc(x)
928 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) {
929 // It's possible the bits taken off by the truncate were all zero bits. If
930 // so, we should be able to simplify this further.
931 const SCEV *X = ST->getOperand();
932 ConstantRange CR = getUnsignedRange(X);
933 unsigned TruncBits = getTypeSizeInBits(ST->getType());
934 unsigned NewBits = getTypeSizeInBits(Ty);
935 if (CR.truncate(TruncBits).zeroExtend(NewBits).contains(
936 CR.zextOrTrunc(NewBits)))
937 return getTruncateOrZeroExtend(X, Ty);
938 }
939
940 // If the input value is a chrec scev, and we can prove that the value
941 // did not overflow the old, smaller, value, we can zero extend all of the
942 // operands (often constants). This allows analysis of something like
943 // this: for (unsigned char X = 0; X < 100; ++X) { int Y = X; }
944 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
945 if (AR->isAffine()) {
946 const SCEV *Start = AR->getStart();
947 const SCEV *Step = AR->getStepRecurrence(*this);
948 unsigned BitWidth = getTypeSizeInBits(AR->getType());
949 const Loop *L = AR->getLoop();
950
951 // If we have special knowledge that this addrec won't overflow,
952 // we don't need to do any further analysis.
953 if (AR->getNoWrapFlags(SCEV::FlagNUW))
954 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
955 getZeroExtendExpr(Step, Ty),
956 L, AR->getNoWrapFlags());
957
958 // Check whether the backedge-taken count is SCEVCouldNotCompute.
959 // Note that this serves two purposes: It filters out loops that are
960 // simply not analyzable, and it covers the case where this code is
961 // being called from within backedge-taken count analysis, such that
962 // attempting to ask for the backedge-taken count would likely result
963 // in infinite recursion. In the later case, the analysis code will
964 // cope with a conservative value, and it will take care to purge
965 // that value once it has finished.
966 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
967 if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
968 // Manually compute the final value for AR, checking for
969 // overflow.
970
971 // Check whether the backedge-taken count can be losslessly casted to
972 // the addrec's type. The count is always unsigned.
973 const SCEV *CastedMaxBECount =
974 getTruncateOrZeroExtend(MaxBECount, Start->getType());
975 const SCEV *RecastedMaxBECount =
976 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
977 if (MaxBECount == RecastedMaxBECount) {
978 Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
979 // Check whether Start+Step*MaxBECount has no unsigned overflow.
980 const SCEV *ZMul = getMulExpr(CastedMaxBECount, Step);
981 const SCEV *ZAdd = getZeroExtendExpr(getAddExpr(Start, ZMul), WideTy);
982 const SCEV *WideStart = getZeroExtendExpr(Start, WideTy);
983 const SCEV *WideMaxBECount =
984 getZeroExtendExpr(CastedMaxBECount, WideTy);
985 const SCEV *OperandExtendedAdd =
986 getAddExpr(WideStart,
987 getMulExpr(WideMaxBECount,
988 getZeroExtendExpr(Step, WideTy)));
989 if (ZAdd == OperandExtendedAdd) {
990 // Cache knowledge of AR NUW, which is propagated to this AddRec.
991 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW);
992 // Return the expression with the addrec on the outside.
993 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
994 getZeroExtendExpr(Step, Ty),
995 L, AR->getNoWrapFlags());
996 }
997 // Similar to above, only this time treat the step value as signed.
998 // This covers loops that count down.
999 OperandExtendedAdd =
1000 getAddExpr(WideStart,
1001 getMulExpr(WideMaxBECount,
1002 getSignExtendExpr(Step, WideTy)));
1003 if (ZAdd == OperandExtendedAdd) {
1004 // Cache knowledge of AR NW, which is propagated to this AddRec.
1005 // Negative step causes unsigned wrap, but it still can't self-wrap.
1006 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW);
1007 // Return the expression with the addrec on the outside.
1008 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
1009 getSignExtendExpr(Step, Ty),
1010 L, AR->getNoWrapFlags());
1011 }
1012 }
1013
1014 // If the backedge is guarded by a comparison with the pre-inc value
1015 // the addrec is safe. Also, if the entry is guarded by a comparison
1016 // with the start value and the backedge is guarded by a comparison
1017 // with the post-inc value, the addrec is safe.
1018 if (isKnownPositive(Step)) {
1019 const SCEV *N = getConstant(APInt::getMinValue(BitWidth) -
1020 getUnsignedRange(Step).getUnsignedMax());
1021 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) ||
1022 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_ULT, Start, N) &&
1023 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT,
1024 AR->getPostIncExpr(*this), N))) {
1025 // Cache knowledge of AR NUW, which is propagated to this AddRec.
1026 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW);
1027 // Return the expression with the addrec on the outside.
1028 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
1029 getZeroExtendExpr(Step, Ty),
1030 L, AR->getNoWrapFlags());
1031 }
1032 } else if (isKnownNegative(Step)) {
1033 const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) -
1034 getSignedRange(Step).getSignedMin());
1035 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) ||
1036 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_UGT, Start, N) &&
1037 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT,
1038 AR->getPostIncExpr(*this), N))) {
1039 // Cache knowledge of AR NW, which is propagated to this AddRec.
1040 // Negative step causes unsigned wrap, but it still can't self-wrap.
1041 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW);
1042 // Return the expression with the addrec on the outside.
1043 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
1044 getSignExtendExpr(Step, Ty),
1045 L, AR->getNoWrapFlags());
1046 }
1047 }
1048 }
1049 }
1050
1051 // The cast wasn't folded; create an explicit cast node.
1052 // Recompute the insert position, as it may have been invalidated.
1053 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1054 SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator),
1055 Op, Ty);
1056 UniqueSCEVs.InsertNode(S, IP);
1057 return S;
1058}
1059
1060// Get the limit of a recurrence such that incrementing by Step cannot cause
1061// signed overflow as long as the value of the recurrence within the loop does
1062// not exceed this limit before incrementing.
1063static const SCEV *getOverflowLimitForStep(const SCEV *Step,
1064 ICmpInst::Predicate *Pred,
1065 ScalarEvolution *SE) {
1066 unsigned BitWidth = SE->getTypeSizeInBits(Step->getType());
1067 if (SE->isKnownPositive(Step)) {
1068 *Pred = ICmpInst::ICMP_SLT;
1069 return SE->getConstant(APInt::getSignedMinValue(BitWidth) -
1070 SE->getSignedRange(Step).getSignedMax());
1071 }
1072 if (SE->isKnownNegative(Step)) {
1073 *Pred = ICmpInst::ICMP_SGT;
1074 return SE->getConstant(APInt::getSignedMaxValue(BitWidth) -
1075 SE->getSignedRange(Step).getSignedMin());
1076 }
1077 return 0;
1078}
1079
1080// The recurrence AR has been shown to have no signed wrap. Typically, if we can
1081// prove NSW for AR, then we can just as easily prove NSW for its preincrement
1082// or postincrement sibling. This allows normalizing a sign extended AddRec as
1083// such: {sext(Step + Start),+,Step} => {(Step + sext(Start),+,Step} As a
1084// result, the expression "Step + sext(PreIncAR)" is congruent with
1085// "sext(PostIncAR)"
1086static const SCEV *getPreStartForSignExtend(const SCEVAddRecExpr *AR,
1087 Type *Ty,
1088 ScalarEvolution *SE) {
1089 const Loop *L = AR->getLoop();
1090 const SCEV *Start = AR->getStart();
1091 const SCEV *Step = AR->getStepRecurrence(*SE);
1092
1093 // Check for a simple looking step prior to loop entry.
1094 const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Start);
1095 if (!SA)
1096 return 0;
1097
1098 // Create an AddExpr for "PreStart" after subtracting Step. Full SCEV
1099 // subtraction is expensive. For this purpose, perform a quick and dirty
1100 // difference, by checking for Step in the operand list.
1101 SmallVector<const SCEV *, 4> DiffOps;
1102 for (SCEVAddExpr::op_iterator I = SA->op_begin(), E = SA->op_end();
1103 I != E; ++I) {
1104 if (*I != Step)
1105 DiffOps.push_back(*I);
1106 }
1107 if (DiffOps.size() == SA->getNumOperands())
1108 return 0;
1109
1110 // This is a postinc AR. Check for overflow on the preinc recurrence using the
1111 // same three conditions that getSignExtendedExpr checks.
1112
1113 // 1. NSW flags on the step increment.
1114 const SCEV *PreStart = SE->getAddExpr(DiffOps, SA->getNoWrapFlags());
1115 const SCEVAddRecExpr *PreAR = dyn_cast<SCEVAddRecExpr>(
1116 SE->getAddRecExpr(PreStart, Step, L, SCEV::FlagAnyWrap));
1117
1118 if (PreAR && PreAR->getNoWrapFlags(SCEV::FlagNSW))
1119 return PreStart;
1120
1121 // 2. Direct overflow check on the step operation's expression.
1122 unsigned BitWidth = SE->getTypeSizeInBits(AR->getType());
1123 Type *WideTy = IntegerType::get(SE->getContext(), BitWidth * 2);
1124 const SCEV *OperandExtendedStart =
1125 SE->getAddExpr(SE->getSignExtendExpr(PreStart, WideTy),
1126 SE->getSignExtendExpr(Step, WideTy));
1127 if (SE->getSignExtendExpr(Start, WideTy) == OperandExtendedStart) {
1128 // Cache knowledge of PreAR NSW.
1129 if (PreAR)
1130 const_cast<SCEVAddRecExpr *>(PreAR)->setNoWrapFlags(SCEV::FlagNSW);
1131 // FIXME: this optimization needs a unit test
1132 DEBUG(dbgs() << "SCEV: untested prestart overflow check\n");
1133 return PreStart;
1134 }
1135
1136 // 3. Loop precondition.
1137 ICmpInst::Predicate Pred;
1138 const SCEV *OverflowLimit = getOverflowLimitForStep(Step, &Pred, SE);
1139
1140 if (OverflowLimit &&
1141 SE->isLoopEntryGuardedByCond(L, Pred, PreStart, OverflowLimit)) {
1142 return PreStart;
1143 }
1144 return 0;
1145}
1146
1147// Get the normalized sign-extended expression for this AddRec's Start.
1148static const SCEV *getSignExtendAddRecStart(const SCEVAddRecExpr *AR,
1149 Type *Ty,
1150 ScalarEvolution *SE) {
1151 const SCEV *PreStart = getPreStartForSignExtend(AR, Ty, SE);
1152 if (!PreStart)
1153 return SE->getSignExtendExpr(AR->getStart(), Ty);
1154
1155 return SE->getAddExpr(SE->getSignExtendExpr(AR->getStepRecurrence(*SE), Ty),
1156 SE->getSignExtendExpr(PreStart, Ty));
1157}
1158
1159const SCEV *ScalarEvolution::getSignExtendExpr(const SCEV *Op,
1160 Type *Ty) {
1161 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1162 "This is not an extending conversion!");
1163 assert(isSCEVable(Ty) &&
1164 "This is not a conversion to a SCEVable type!");
1165 Ty = getEffectiveSCEVType(Ty);
1166
1167 // Fold if the operand is constant.
1168 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1169 return getConstant(
1170 cast<ConstantInt>(ConstantExpr::getSExt(SC->getValue(), Ty)));
1171
1172 // sext(sext(x)) --> sext(x)
1173 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
1174 return getSignExtendExpr(SS->getOperand(), Ty);
1175
1176 // sext(zext(x)) --> zext(x)
1177 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
1178 return getZeroExtendExpr(SZ->getOperand(), Ty);
1179
1180 // Before doing any expensive analysis, check to see if we've already
1181 // computed a SCEV for this Op and Ty.
1182 FoldingSetNodeID ID;
1183 ID.AddInteger(scSignExtend);
1184 ID.AddPointer(Op);
1185 ID.AddPointer(Ty);
1186 void *IP = 0;
1187 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1188
1189 // If the input value is provably positive, build a zext instead.
1190 if (isKnownNonNegative(Op))
1191 return getZeroExtendExpr(Op, Ty);
1192
1193 // sext(trunc(x)) --> sext(x) or x or trunc(x)
1194 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) {
1195 // It's possible the bits taken off by the truncate were all sign bits. If
1196 // so, we should be able to simplify this further.
1197 const SCEV *X = ST->getOperand();
1198 ConstantRange CR = getSignedRange(X);
1199 unsigned TruncBits = getTypeSizeInBits(ST->getType());
1200 unsigned NewBits = getTypeSizeInBits(Ty);
1201 if (CR.truncate(TruncBits).signExtend(NewBits).contains(
1202 CR.sextOrTrunc(NewBits)))
1203 return getTruncateOrSignExtend(X, Ty);
1204 }
1205
1206 // If the input value is a chrec scev, and we can prove that the value
1207 // did not overflow the old, smaller, value, we can sign extend all of the
1208 // operands (often constants). This allows analysis of something like
1209 // this: for (signed char X = 0; X < 100; ++X) { int Y = X; }
1210 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
1211 if (AR->isAffine()) {
1212 const SCEV *Start = AR->getStart();
1213 const SCEV *Step = AR->getStepRecurrence(*this);
1214 unsigned BitWidth = getTypeSizeInBits(AR->getType());
1215 const Loop *L = AR->getLoop();
1216
1217 // If we have special knowledge that this addrec won't overflow,
1218 // we don't need to do any further analysis.
1219 if (AR->getNoWrapFlags(SCEV::FlagNSW))
1220 return getAddRecExpr(getSignExtendAddRecStart(AR, Ty, this),
1221 getSignExtendExpr(Step, Ty),
1222 L, SCEV::FlagNSW);
1223
1224 // Check whether the backedge-taken count is SCEVCouldNotCompute.
1225 // Note that this serves two purposes: It filters out loops that are
1226 // simply not analyzable, and it covers the case where this code is
1227 // being called from within backedge-taken count analysis, such that
1228 // attempting to ask for the backedge-taken count would likely result
1229 // in infinite recursion. In the later case, the analysis code will
1230 // cope with a conservative value, and it will take care to purge
1231 // that value once it has finished.
1232 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
1233 if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
1234 // Manually compute the final value for AR, checking for
1235 // overflow.
1236
1237 // Check whether the backedge-taken count can be losslessly casted to
1238 // the addrec's type. The count is always unsigned.
1239 const SCEV *CastedMaxBECount =
1240 getTruncateOrZeroExtend(MaxBECount, Start->getType());
1241 const SCEV *RecastedMaxBECount =
1242 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
1243 if (MaxBECount == RecastedMaxBECount) {
1244 Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
1245 // Check whether Start+Step*MaxBECount has no signed overflow.
1246 const SCEV *SMul = getMulExpr(CastedMaxBECount, Step);
1247 const SCEV *SAdd = getSignExtendExpr(getAddExpr(Start, SMul), WideTy);
1248 const SCEV *WideStart = getSignExtendExpr(Start, WideTy);
1249 const SCEV *WideMaxBECount =
1250 getZeroExtendExpr(CastedMaxBECount, WideTy);
1251 const SCEV *OperandExtendedAdd =
1252 getAddExpr(WideStart,
1253 getMulExpr(WideMaxBECount,
1254 getSignExtendExpr(Step, WideTy)));
1255 if (SAdd == OperandExtendedAdd) {
1256 // Cache knowledge of AR NSW, which is propagated to this AddRec.
1257 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
1258 // Return the expression with the addrec on the outside.
1259 return getAddRecExpr(getSignExtendAddRecStart(AR, Ty, this),
1260 getSignExtendExpr(Step, Ty),
1261 L, AR->getNoWrapFlags());
1262 }
1263 // Similar to above, only this time treat the step value as unsigned.
1264 // This covers loops that count up with an unsigned step.
1265 OperandExtendedAdd =
1266 getAddExpr(WideStart,
1267 getMulExpr(WideMaxBECount,
1268 getZeroExtendExpr(Step, WideTy)));
1269 if (SAdd == OperandExtendedAdd) {
1270 // Cache knowledge of AR NSW, which is propagated to this AddRec.
1271 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
1272 // Return the expression with the addrec on the outside.
1273 return getAddRecExpr(getSignExtendAddRecStart(AR, Ty, this),
1274 getZeroExtendExpr(Step, Ty),
1275 L, AR->getNoWrapFlags());
1276 }
1277 }
1278
1279 // If the backedge is guarded by a comparison with the pre-inc value
1280 // the addrec is safe. Also, if the entry is guarded by a comparison
1281 // with the start value and the backedge is guarded by a comparison
1282 // with the post-inc value, the addrec is safe.
1283 ICmpInst::Predicate Pred;
1284 const SCEV *OverflowLimit = getOverflowLimitForStep(Step, &Pred, this);
1285 if (OverflowLimit &&
1286 (isLoopBackedgeGuardedByCond(L, Pred, AR, OverflowLimit) ||
1287 (isLoopEntryGuardedByCond(L, Pred, Start, OverflowLimit) &&
1288 isLoopBackedgeGuardedByCond(L, Pred, AR->getPostIncExpr(*this),
1289 OverflowLimit)))) {
1290 // Cache knowledge of AR NSW, then propagate NSW to the wide AddRec.
1291 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
1292 return getAddRecExpr(getSignExtendAddRecStart(AR, Ty, this),
1293 getSignExtendExpr(Step, Ty),
1294 L, AR->getNoWrapFlags());
1295 }
1296 }
1297 }
1298
1299 // The cast wasn't folded; create an explicit cast node.
1300 // Recompute the insert position, as it may have been invalidated.
1301 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1302 SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator),
1303 Op, Ty);
1304 UniqueSCEVs.InsertNode(S, IP);
1305 return S;
1306}
1307
1308/// getAnyExtendExpr - Return a SCEV for the given operand extended with
1309/// unspecified bits out to the given type.
1310///
1311const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op,
1312 Type *Ty) {
1313 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1314 "This is not an extending conversion!");
1315 assert(isSCEVable(Ty) &&
1316 "This is not a conversion to a SCEVable type!");
1317 Ty = getEffectiveSCEVType(Ty);
1318
1319 // Sign-extend negative constants.
1320 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1321 if (SC->getValue()->getValue().isNegative())
1322 return getSignExtendExpr(Op, Ty);
1323
1324 // Peel off a truncate cast.
1325 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) {
1326 const SCEV *NewOp = T->getOperand();
1327 if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty))
1328 return getAnyExtendExpr(NewOp, Ty);
1329 return getTruncateOrNoop(NewOp, Ty);
1330 }
1331
1332 // Next try a zext cast. If the cast is folded, use it.
1333 const SCEV *ZExt = getZeroExtendExpr(Op, Ty);
1334 if (!isa<SCEVZeroExtendExpr>(ZExt))
1335 return ZExt;
1336
1337 // Next try a sext cast. If the cast is folded, use it.
1338 const SCEV *SExt = getSignExtendExpr(Op, Ty);
1339 if (!isa<SCEVSignExtendExpr>(SExt))
1340 return SExt;
1341
1342 // Force the cast to be folded into the operands of an addrec.
1343 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) {
1344 SmallVector<const SCEV *, 4> Ops;
1345 for (SCEVAddRecExpr::op_iterator I = AR->op_begin(), E = AR->op_end();
1346 I != E; ++I)
1347 Ops.push_back(getAnyExtendExpr(*I, Ty));
1348 return getAddRecExpr(Ops, AR->getLoop(), SCEV::FlagNW);
1349 }
1350
1351 // If the expression is obviously signed, use the sext cast value.
1352 if (isa<SCEVSMaxExpr>(Op))
1353 return SExt;
1354
1355 // Absent any other information, use the zext cast value.
1356 return ZExt;
1357}
1358
1359/// CollectAddOperandsWithScales - Process the given Ops list, which is
1360/// a list of operands to be added under the given scale, update the given
1361/// map. This is a helper function for getAddRecExpr. As an example of
1362/// what it does, given a sequence of operands that would form an add
1363/// expression like this:
1364///
1365/// m + n + 13 + (A * (o + p + (B * q + m + 29))) + r + (-1 * r)
1366///
1367/// where A and B are constants, update the map with these values:
1368///
1369/// (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0)
1370///
1371/// and add 13 + A*B*29 to AccumulatedConstant.
1372/// This will allow getAddRecExpr to produce this:
1373///
1374/// 13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B)
1375///
1376/// This form often exposes folding opportunities that are hidden in
1377/// the original operand list.
1378///
1379/// Return true iff it appears that any interesting folding opportunities
1380/// may be exposed. This helps getAddRecExpr short-circuit extra work in
1381/// the common case where no interesting opportunities are present, and
1382/// is also used as a check to avoid infinite recursion.
1383///
1384static bool
1385CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M,
1386 SmallVectorImpl<const SCEV *> &NewOps,
1387 APInt &AccumulatedConstant,
1388 const SCEV *const *Ops, size_t NumOperands,
1389 const APInt &Scale,
1390 ScalarEvolution &SE) {
1391 bool Interesting = false;
1392
1393 // Iterate over the add operands. They are sorted, with constants first.
1394 unsigned i = 0;
1395 while (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
1396 ++i;
1397 // Pull a buried constant out to the outside.
1398 if (Scale != 1 || AccumulatedConstant != 0 || C->getValue()->isZero())
1399 Interesting = true;
1400 AccumulatedConstant += Scale * C->getValue()->getValue();
1401 }
1402
1403 // Next comes everything else. We're especially interested in multiplies
1404 // here, but they're in the middle, so just visit the rest with one loop.
1405 for (; i != NumOperands; ++i) {
1406 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]);
1407 if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) {
1408 APInt NewScale =
1409 Scale * cast<SCEVConstant>(Mul->getOperand(0))->getValue()->getValue();
1410 if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) {
1411 // A multiplication of a constant with another add; recurse.
1412 const SCEVAddExpr *Add = cast<SCEVAddExpr>(Mul->getOperand(1));
1413 Interesting |=
1414 CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
1415 Add->op_begin(), Add->getNumOperands(),
1416 NewScale, SE);
1417 } else {
1418 // A multiplication of a constant with some other value. Update
1419 // the map.
1420 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin()+1, Mul->op_end());
1421 const SCEV *Key = SE.getMulExpr(MulOps);
1422 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
1423 M.insert(std::make_pair(Key, NewScale));
1424 if (Pair.second) {
1425 NewOps.push_back(Pair.first->first);
1426 } else {
1427 Pair.first->second += NewScale;
1428 // The map already had an entry for this value, which may indicate
1429 // a folding opportunity.
1430 Interesting = true;
1431 }
1432 }
1433 } else {
1434 // An ordinary operand. Update the map.
1435 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
1436 M.insert(std::make_pair(Ops[i], Scale));
1437 if (Pair.second) {
1438 NewOps.push_back(Pair.first->first);
1439 } else {
1440 Pair.first->second += Scale;
1441 // The map already had an entry for this value, which may indicate
1442 // a folding opportunity.
1443 Interesting = true;
1444 }
1445 }
1446 }
1447
1448 return Interesting;
1449}
1450
1451namespace {
1452 struct APIntCompare {
1453 bool operator()(const APInt &LHS, const APInt &RHS) const {
1454 return LHS.ult(RHS);
1455 }
1456 };
1457}
1458
1459/// getAddExpr - Get a canonical add expression, or something simpler if
1460/// possible.
1461const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops,
1462 SCEV::NoWrapFlags Flags) {
1463 assert(!(Flags & ~(SCEV::FlagNUW | SCEV::FlagNSW)) &&
1464 "only nuw or nsw allowed");
1465 assert(!Ops.empty() && "Cannot get empty add!");
1466 if (Ops.size() == 1) return Ops[0];
1467#ifndef NDEBUG
1468 Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
1469 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
1470 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
1471 "SCEVAddExpr operand types don't match!");
1472#endif
1473
1474 // If FlagNSW is true and all the operands are non-negative, infer FlagNUW.
1475 // And vice-versa.
1476 int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW;
1477 SCEV::NoWrapFlags SignOrUnsignWrap = maskFlags(Flags, SignOrUnsignMask);
1478 if (SignOrUnsignWrap && (SignOrUnsignWrap != SignOrUnsignMask)) {
1479 bool All = true;
1480 for (SmallVectorImpl<const SCEV *>::const_iterator I = Ops.begin(),
1481 E = Ops.end(); I != E; ++I)
1482 if (!isKnownNonNegative(*I)) {
1483 All = false;
1484 break;
1485 }
1486 if (All) Flags = setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask);
1487 }
1488
1489 // Sort by complexity, this groups all similar expression types together.
1490 GroupByComplexity(Ops, LI);
1491
1492 // If there are any constants, fold them together.
1493 unsigned Idx = 0;
1494 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
1495 ++Idx;
1496 assert(Idx < Ops.size());
1497 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
1498 // We found two constants, fold them together!
1499 Ops[0] = getConstant(LHSC->getValue()->getValue() +
1500 RHSC->getValue()->getValue());
1501 if (Ops.size() == 2) return Ops[0];
1502 Ops.erase(Ops.begin()+1); // Erase the folded element
1503 LHSC = cast<SCEVConstant>(Ops[0]);
1504 }
1505
1506 // If we are left with a constant zero being added, strip it off.
1507 if (LHSC->getValue()->isZero()) {
1508 Ops.erase(Ops.begin());
1509 --Idx;
1510 }
1511
1512 if (Ops.size() == 1) return Ops[0];
1513 }
1514
1515 // Okay, check to see if the same value occurs in the operand list more than
1516 // once. If so, merge them together into an multiply expression. Since we
1517 // sorted the list, these values are required to be adjacent.
1518 Type *Ty = Ops[0]->getType();
1519 bool FoundMatch = false;
1520 for (unsigned i = 0, e = Ops.size(); i != e-1; ++i)
1521 if (Ops[i] == Ops[i+1]) { // X + Y + Y --> X + Y*2
1522 // Scan ahead to count how many equal operands there are.
1523 unsigned Count = 2;
1524 while (i+Count != e && Ops[i+Count] == Ops[i])
1525 ++Count;
1526 // Merge the values into a multiply.
1527 const SCEV *Scale = getConstant(Ty, Count);
1528 const SCEV *Mul = getMulExpr(Scale, Ops[i]);
1529 if (Ops.size() == Count)
1530 return Mul;
1531 Ops[i] = Mul;
1532 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+Count);
1533 --i; e -= Count - 1;
1534 FoundMatch = true;
1535 }
1536 if (FoundMatch)
1537 return getAddExpr(Ops, Flags);
1538
1539 // Check for truncates. If all the operands are truncated from the same
1540 // type, see if factoring out the truncate would permit the result to be
1541 // folded. eg., trunc(x) + m*trunc(n) --> trunc(x + trunc(m)*n)
1542 // if the contents of the resulting outer trunc fold to something simple.
1543 for (; Idx < Ops.size() && isa<SCEVTruncateExpr>(Ops[Idx]); ++Idx) {
1544 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(Ops[Idx]);
1545 Type *DstType = Trunc->getType();
1546 Type *SrcType = Trunc->getOperand()->getType();
1547 SmallVector<const SCEV *, 8> LargeOps;
1548 bool Ok = true;
1549 // Check all the operands to see if they can be represented in the
1550 // source type of the truncate.
1551 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1552 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) {
1553 if (T->getOperand()->getType() != SrcType) {
1554 Ok = false;
1555 break;
1556 }
1557 LargeOps.push_back(T->getOperand());
1558 } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
1559 LargeOps.push_back(getAnyExtendExpr(C, SrcType));
1560 } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) {
1561 SmallVector<const SCEV *, 8> LargeMulOps;
1562 for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) {
1563 if (const SCEVTruncateExpr *T =
1564 dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) {
1565 if (T->getOperand()->getType() != SrcType) {
1566 Ok = false;
1567 break;
1568 }
1569 LargeMulOps.push_back(T->getOperand());
1570 } else if (const SCEVConstant *C =
1571 dyn_cast<SCEVConstant>(M->getOperand(j))) {
1572 LargeMulOps.push_back(getAnyExtendExpr(C, SrcType));
1573 } else {
1574 Ok = false;
1575 break;
1576 }
1577 }
1578 if (Ok)
1579 LargeOps.push_back(getMulExpr(LargeMulOps));
1580 } else {
1581 Ok = false;
1582 break;
1583 }
1584 }
1585 if (Ok) {
1586 // Evaluate the expression in the larger type.
1587 const SCEV *Fold = getAddExpr(LargeOps, Flags);
1588 // If it folds to something simple, use it. Otherwise, don't.
1589 if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold))
1590 return getTruncateExpr(Fold, DstType);
1591 }
1592 }
1593
1594 // Skip past any other cast SCEVs.
1595 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr)
1596 ++Idx;
1597
1598 // If there are add operands they would be next.
1599 if (Idx < Ops.size()) {
1600 bool DeletedAdd = false;
1601 while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) {
1602 // If we have an add, expand the add operands onto the end of the operands
1603 // list.
1604 Ops.erase(Ops.begin()+Idx);
1605 Ops.append(Add->op_begin(), Add->op_end());
1606 DeletedAdd = true;
1607 }
1608
1609 // If we deleted at least one add, we added operands to the end of the list,
1610 // and they are not necessarily sorted. Recurse to resort and resimplify
1611 // any operands we just acquired.
1612 if (DeletedAdd)
1613 return getAddExpr(Ops);
1614 }
1615
1616 // Skip over the add expression until we get to a multiply.
1617 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
1618 ++Idx;
1619
1620 // Check to see if there are any folding opportunities present with
1621 // operands multiplied by constant values.
1622 if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) {
1623 uint64_t BitWidth = getTypeSizeInBits(Ty);
1624 DenseMap<const SCEV *, APInt> M;
1625 SmallVector<const SCEV *, 8> NewOps;
1626 APInt AccumulatedConstant(BitWidth, 0);
1627 if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
1628 Ops.data(), Ops.size(),
1629 APInt(BitWidth, 1), *this)) {
1630 // Some interesting folding opportunity is present, so its worthwhile to
1631 // re-generate the operands list. Group the operands by constant scale,
1632 // to avoid multiplying by the same constant scale multiple times.
1633 std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists;
1634 for (SmallVectorImpl<const SCEV *>::const_iterator I = NewOps.begin(),
1635 E = NewOps.end(); I != E; ++I)
1636 MulOpLists[M.find(*I)->second].push_back(*I);
1637 // Re-generate the operands list.
1638 Ops.clear();
1639 if (AccumulatedConstant != 0)
1640 Ops.push_back(getConstant(AccumulatedConstant));
1641 for (std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare>::iterator
1642 I = MulOpLists.begin(), E = MulOpLists.end(); I != E; ++I)
1643 if (I->first != 0)
1644 Ops.push_back(getMulExpr(getConstant(I->first),
1645 getAddExpr(I->second)));
1646 if (Ops.empty())
1647 return getConstant(Ty, 0);
1648 if (Ops.size() == 1)
1649 return Ops[0];
1650 return getAddExpr(Ops);
1651 }
1652 }
1653
1654 // If we are adding something to a multiply expression, make sure the
1655 // something is not already an operand of the multiply. If so, merge it into
1656 // the multiply.
1657 for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) {
1658 const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]);
1659 for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) {
1660 const SCEV *MulOpSCEV = Mul->getOperand(MulOp);
1661 if (isa<SCEVConstant>(MulOpSCEV))
1662 continue;
1663 for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp)
1664 if (MulOpSCEV == Ops[AddOp]) {
1665 // Fold W + X + (X * Y * Z) --> W + (X * ((Y*Z)+1))
1666 const SCEV *InnerMul = Mul->getOperand(MulOp == 0);
1667 if (Mul->getNumOperands() != 2) {
1668 // If the multiply has more than two operands, we must get the
1669 // Y*Z term.
1670 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
1671 Mul->op_begin()+MulOp);
1672 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
1673 InnerMul = getMulExpr(MulOps);
1674 }
1675 const SCEV *One = getConstant(Ty, 1);
1676 const SCEV *AddOne = getAddExpr(One, InnerMul);
1677 const SCEV *OuterMul = getMulExpr(AddOne, MulOpSCEV);
1678 if (Ops.size() == 2) return OuterMul;
1679 if (AddOp < Idx) {
1680 Ops.erase(Ops.begin()+AddOp);
1681 Ops.erase(Ops.begin()+Idx-1);
1682 } else {
1683 Ops.erase(Ops.begin()+Idx);
1684 Ops.erase(Ops.begin()+AddOp-1);
1685 }
1686 Ops.push_back(OuterMul);
1687 return getAddExpr(Ops);
1688 }
1689
1690 // Check this multiply against other multiplies being added together.
1691 for (unsigned OtherMulIdx = Idx+1;
1692 OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]);
1693 ++OtherMulIdx) {
1694 const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]);
1695 // If MulOp occurs in OtherMul, we can fold the two multiplies
1696 // together.
1697 for (unsigned OMulOp = 0, e = OtherMul->getNumOperands();
1698 OMulOp != e; ++OMulOp)
1699 if (OtherMul->getOperand(OMulOp) == MulOpSCEV) {
1700 // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E))
1701 const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0);
1702 if (Mul->getNumOperands() != 2) {
1703 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
1704 Mul->op_begin()+MulOp);
1705 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
1706 InnerMul1 = getMulExpr(MulOps);
1707 }
1708 const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0);
1709 if (OtherMul->getNumOperands() != 2) {
1710 SmallVector<const SCEV *, 4> MulOps(OtherMul->op_begin(),
1711 OtherMul->op_begin()+OMulOp);
1712 MulOps.append(OtherMul->op_begin()+OMulOp+1, OtherMul->op_end());
1713 InnerMul2 = getMulExpr(MulOps);
1714 }
1715 const SCEV *InnerMulSum = getAddExpr(InnerMul1,InnerMul2);
1716 const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum);
1717 if (Ops.size() == 2) return OuterMul;
1718 Ops.erase(Ops.begin()+Idx);
1719 Ops.erase(Ops.begin()+OtherMulIdx-1);
1720 Ops.push_back(OuterMul);
1721 return getAddExpr(Ops);
1722 }
1723 }
1724 }
1725 }
1726
1727 // If there are any add recurrences in the operands list, see if any other
1728 // added values are loop invariant. If so, we can fold them into the
1729 // recurrence.
1730 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
1731 ++Idx;
1732
1733 // Scan over all recurrences, trying to fold loop invariants into them.
1734 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
1735 // Scan all of the other operands to this add and add them to the vector if
1736 // they are loop invariant w.r.t. the recurrence.
1737 SmallVector<const SCEV *, 8> LIOps;
1738 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
1739 const Loop *AddRecLoop = AddRec->getLoop();
1740 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1741 if (isLoopInvariant(Ops[i], AddRecLoop)) {
1742 LIOps.push_back(Ops[i]);
1743 Ops.erase(Ops.begin()+i);
1744 --i; --e;
1745 }
1746
1747 // If we found some loop invariants, fold them into the recurrence.
1748 if (!LIOps.empty()) {
1749 // NLI + LI + {Start,+,Step} --> NLI + {LI+Start,+,Step}
1750 LIOps.push_back(AddRec->getStart());
1751
1752 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
1753 AddRec->op_end());
1754 AddRecOps[0] = getAddExpr(LIOps);
1755
1756 // Build the new addrec. Propagate the NUW and NSW flags if both the
1757 // outer add and the inner addrec are guaranteed to have no overflow.
1758 // Always propagate NW.
1759 Flags = AddRec->getNoWrapFlags(setFlags(Flags, SCEV::FlagNW));
1760 const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRecLoop, Flags);
1761
1762 // If all of the other operands were loop invariant, we are done.
1763 if (Ops.size() == 1) return NewRec;
1764
1765 // Otherwise, add the folded AddRec by the non-invariant parts.
1766 for (unsigned i = 0;; ++i)
1767 if (Ops[i] == AddRec) {
1768 Ops[i] = NewRec;
1769 break;
1770 }
1771 return getAddExpr(Ops);
1772 }
1773
1774 // Okay, if there weren't any loop invariants to be folded, check to see if
1775 // there are multiple AddRec's with the same loop induction variable being
1776 // added together. If so, we can fold them.
1777 for (unsigned OtherIdx = Idx+1;
1778 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
1779 ++OtherIdx)
1780 if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) {
1781 // Other + {A,+,B}<L> + {C,+,D}<L> --> Other + {A+C,+,B+D}<L>
1782 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
1783 AddRec->op_end());
1784 for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
1785 ++OtherIdx)
1786 if (const SCEVAddRecExpr *OtherAddRec =
1787 dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]))
1788 if (OtherAddRec->getLoop() == AddRecLoop) {
1789 for (unsigned i = 0, e = OtherAddRec->getNumOperands();
1790 i != e; ++i) {
1791 if (i >= AddRecOps.size()) {
1792 AddRecOps.append(OtherAddRec->op_begin()+i,
1793 OtherAddRec->op_end());
1794 break;
1795 }
1796 AddRecOps[i] = getAddExpr(AddRecOps[i],
1797 OtherAddRec->getOperand(i));
1798 }
1799 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
1800 }
1801 // Step size has changed, so we cannot guarantee no self-wraparound.
1802 Ops[Idx] = getAddRecExpr(AddRecOps, AddRecLoop, SCEV::FlagAnyWrap);
1803 return getAddExpr(Ops);
1804 }
1805
1806 // Otherwise couldn't fold anything into this recurrence. Move onto the
1807 // next one.
1808 }
1809
1810 // Okay, it looks like we really DO need an add expr. Check to see if we
1811 // already have one, otherwise create a new one.
1812 FoldingSetNodeID ID;
1813 ID.AddInteger(scAddExpr);
1814 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1815 ID.AddPointer(Ops[i]);
1816 void *IP = 0;
1817 SCEVAddExpr *S =
1818 static_cast<SCEVAddExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
1819 if (!S) {
1820 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
1821 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
1822 S = new (SCEVAllocator) SCEVAddExpr(ID.Intern(SCEVAllocator),
1823 O, Ops.size());
1824 UniqueSCEVs.InsertNode(S, IP);
1825 }
1826 S->setNoWrapFlags(Flags);
1827 return S;
1828}
1829
1830static uint64_t umul_ov(uint64_t i, uint64_t j, bool &Overflow) {
1831 uint64_t k = i*j;
1832 if (j > 1 && k / j != i) Overflow = true;
1833 return k;
1834}
1835
1836/// Compute the result of "n choose k", the binomial coefficient. If an
1837/// intermediate computation overflows, Overflow will be set and the return will
1838/// be garbage. Overflow is not cleared on absence of overflow.
1839static uint64_t Choose(uint64_t n, uint64_t k, bool &Overflow) {
1840 // We use the multiplicative formula:
1841 // n(n-1)(n-2)...(n-(k-1)) / k(k-1)(k-2)...1 .
1842 // At each iteration, we take the n-th term of the numeral and divide by the
1843 // (k-n)th term of the denominator. This division will always produce an
1844 // integral result, and helps reduce the chance of overflow in the
1845 // intermediate computations. However, we can still overflow even when the
1846 // final result would fit.
1847
1848 if (n == 0 || n == k) return 1;
1849 if (k > n) return 0;
1850
1851 if (k > n/2)
1852 k = n-k;
1853
1854 uint64_t r = 1;
1855 for (uint64_t i = 1; i <= k; ++i) {
1856 r = umul_ov(r, n-(i-1), Overflow);
1857 r /= i;
1858 }
1859 return r;
1860}
1861
1862/// getMulExpr - Get a canonical multiply expression, or something simpler if
1863/// possible.
1864const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops,
1865 SCEV::NoWrapFlags Flags) {
1866 assert(Flags == maskFlags(Flags, SCEV::FlagNUW | SCEV::FlagNSW) &&
1867 "only nuw or nsw allowed");
1868 assert(!Ops.empty() && "Cannot get empty mul!");
1869 if (Ops.size() == 1) return Ops[0];
1870#ifndef NDEBUG
1871 Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
1872 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
1873 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
1874 "SCEVMulExpr operand types don't match!");
1875#endif
1876
1877 // If FlagNSW is true and all the operands are non-negative, infer FlagNUW.
1878 // And vice-versa.
1879 int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW;
1880 SCEV::NoWrapFlags SignOrUnsignWrap = maskFlags(Flags, SignOrUnsignMask);
1881 if (SignOrUnsignWrap && (SignOrUnsignWrap != SignOrUnsignMask)) {
1882 bool All = true;
1883 for (SmallVectorImpl<const SCEV *>::const_iterator I = Ops.begin(),
1884 E = Ops.end(); I != E; ++I)
1885 if (!isKnownNonNegative(*I)) {
1886 All = false;
1887 break;
1888 }
1889 if (All) Flags = setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask);
1890 }
1891
1892 // Sort by complexity, this groups all similar expression types together.
1893 GroupByComplexity(Ops, LI);
1894
1895 // If there are any constants, fold them together.
1896 unsigned Idx = 0;
1897 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
1898
1899 // C1*(C2+V) -> C1*C2 + C1*V
1900 if (Ops.size() == 2)
1901 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1]))
1902 if (Add->getNumOperands() == 2 &&
1903 isa<SCEVConstant>(Add->getOperand(0)))
1904 return getAddExpr(getMulExpr(LHSC, Add->getOperand(0)),
1905 getMulExpr(LHSC, Add->getOperand(1)));
1906
1907 ++Idx;
1908 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
1909 // We found two constants, fold them together!
1910 ConstantInt *Fold = ConstantInt::get(getContext(),
1911 LHSC->getValue()->getValue() *
1912 RHSC->getValue()->getValue());
1913 Ops[0] = getConstant(Fold);
1914 Ops.erase(Ops.begin()+1); // Erase the folded element
1915 if (Ops.size() == 1) return Ops[0];
1916 LHSC = cast<SCEVConstant>(Ops[0]);
1917 }
1918
1919 // If we are left with a constant one being multiplied, strip it off.
1920 if (cast<SCEVConstant>(Ops[0])->getValue()->equalsInt(1)) {
1921 Ops.erase(Ops.begin());
1922 --Idx;
1923 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) {
1924 // If we have a multiply of zero, it will always be zero.
1925 return Ops[0];
1926 } else if (Ops[0]->isAllOnesValue()) {
1927 // If we have a mul by -1 of an add, try distributing the -1 among the
1928 // add operands.
1929 if (Ops.size() == 2) {
1930 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) {
1931 SmallVector<const SCEV *, 4> NewOps;
1932 bool AnyFolded = false;
1933 for (SCEVAddRecExpr::op_iterator I = Add->op_begin(),
1934 E = Add->op_end(); I != E; ++I) {
1935 const SCEV *Mul = getMulExpr(Ops[0], *I);
1936 if (!isa<SCEVMulExpr>(Mul)) AnyFolded = true;
1937 NewOps.push_back(Mul);
1938 }
1939 if (AnyFolded)
1940 return getAddExpr(NewOps);
1941 }
1942 else if (const SCEVAddRecExpr *
1943 AddRec = dyn_cast<SCEVAddRecExpr>(Ops[1])) {
1944 // Negation preserves a recurrence's no self-wrap property.
1945 SmallVector<const SCEV *, 4> Operands;
1946 for (SCEVAddRecExpr::op_iterator I = AddRec->op_begin(),
1947 E = AddRec->op_end(); I != E; ++I) {
1948 Operands.push_back(getMulExpr(Ops[0], *I));
1949 }
1950 return getAddRecExpr(Operands, AddRec->getLoop(),
1951 AddRec->getNoWrapFlags(SCEV::FlagNW));
1952 }
1953 }
1954 }
1955
1956 if (Ops.size() == 1)
1957 return Ops[0];
1958 }
1959
1960 // Skip over the add expression until we get to a multiply.
1961 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
1962 ++Idx;
1963
1964 // If there are mul operands inline them all into this expression.
1965 if (Idx < Ops.size()) {
1966 bool DeletedMul = false;
1967 while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) {
1968 // If we have an mul, expand the mul operands onto the end of the operands
1969 // list.
1970 Ops.erase(Ops.begin()+Idx);
1971 Ops.append(Mul->op_begin(), Mul->op_end());
1972 DeletedMul = true;
1973 }
1974
1975 // If we deleted at least one mul, we added operands to the end of the list,
1976 // and they are not necessarily sorted. Recurse to resort and resimplify
1977 // any operands we just acquired.
1978 if (DeletedMul)
1979 return getMulExpr(Ops);
1980 }
1981
1982 // If there are any add recurrences in the operands list, see if any other
1983 // added values are loop invariant. If so, we can fold them into the
1984 // recurrence.
1985 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
1986 ++Idx;
1987
1988 // Scan over all recurrences, trying to fold loop invariants into them.
1989 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
1990 // Scan all of the other operands to this mul and add them to the vector if
1991 // they are loop invariant w.r.t. the recurrence.
1992 SmallVector<const SCEV *, 8> LIOps;
1993 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
1994 const Loop *AddRecLoop = AddRec->getLoop();
1995 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1996 if (isLoopInvariant(Ops[i], AddRecLoop)) {
1997 LIOps.push_back(Ops[i]);
1998 Ops.erase(Ops.begin()+i);
1999 --i; --e;
2000 }
2001
2002 // If we found some loop invariants, fold them into the recurrence.
2003 if (!LIOps.empty()) {
2004 // NLI * LI * {Start,+,Step} --> NLI * {LI*Start,+,LI*Step}
2005 SmallVector<const SCEV *, 4> NewOps;
2006 NewOps.reserve(AddRec->getNumOperands());
2007 const SCEV *Scale = getMulExpr(LIOps);
2008 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
2009 NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i)));
2010
2011 // Build the new addrec. Propagate the NUW and NSW flags if both the
2012 // outer mul and the inner addrec are guaranteed to have no overflow.
2013 //
2014 // No self-wrap cannot be guaranteed after changing the step size, but
2015 // will be inferred if either NUW or NSW is true.
2016 Flags = AddRec->getNoWrapFlags(clearFlags(Flags, SCEV::FlagNW));
2017 const SCEV *NewRec = getAddRecExpr(NewOps, AddRecLoop, Flags);
2018
2019 // If all of the other operands were loop invariant, we are done.
2020 if (Ops.size() == 1) return NewRec;
2021
2022 // Otherwise, multiply the folded AddRec by the non-invariant parts.
2023 for (unsigned i = 0;; ++i)
2024 if (Ops[i] == AddRec) {
2025 Ops[i] = NewRec;
2026 break;
2027 }
2028 return getMulExpr(Ops);
2029 }
2030
2031 // Okay, if there weren't any loop invariants to be folded, check to see if
2032 // there are multiple AddRec's with the same loop induction variable being
2033 // multiplied together. If so, we can fold them.
2034 for (unsigned OtherIdx = Idx+1;
2035 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
2036 ++OtherIdx) {
2037 if (AddRecLoop != cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop())
2038 continue;
2039
2040 // {A1,+,A2,+,...,+,An}<L> * {B1,+,B2,+,...,+,Bn}<L>
2041 // = {x=1 in [ sum y=x..2x [ sum z=max(y-x, y-n)..min(x,n) [
2042 // choose(x, 2x)*choose(2x-y, x-z)*A_{y-z}*B_z
2043 // ]]],+,...up to x=2n}.
2044 // Note that the arguments to choose() are always integers with values
2045 // known at compile time, never SCEV objects.
2046 //
2047 // The implementation avoids pointless extra computations when the two
2048 // addrec's are of different length (mathematically, it's equivalent to
2049 // an infinite stream of zeros on the right).
2050 bool OpsModified = false;
2051 for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
2052 ++OtherIdx) {
2053 const SCEVAddRecExpr *OtherAddRec =
2054 dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]);
2055 if (!OtherAddRec || OtherAddRec->getLoop() != AddRecLoop)
2056 continue;
2057
2058 bool Overflow = false;
2059 Type *Ty = AddRec->getType();
2060 bool LargerThan64Bits = getTypeSizeInBits(Ty) > 64;
2061 SmallVector<const SCEV*, 7> AddRecOps;
2062 for (int x = 0, xe = AddRec->getNumOperands() +
2063 OtherAddRec->getNumOperands() - 1; x != xe && !Overflow; ++x) {
2064 const SCEV *Term = getConstant(Ty, 0);
2065 for (int y = x, ye = 2*x+1; y != ye && !Overflow; ++y) {
2066 uint64_t Coeff1 = Choose(x, 2*x - y, Overflow);
2067 for (int z = std::max(y-x, y-(int)AddRec->getNumOperands()+1),
2068 ze = std::min(x+1, (int)OtherAddRec->getNumOperands());
2069 z < ze && !Overflow; ++z) {
2070 uint64_t Coeff2 = Choose(2*x - y, x-z, Overflow);
2071 uint64_t Coeff;
2072 if (LargerThan64Bits)
2073 Coeff = umul_ov(Coeff1, Coeff2, Overflow);
2074 else
2075 Coeff = Coeff1*Coeff2;
2076 const SCEV *CoeffTerm = getConstant(Ty, Coeff);
2077 const SCEV *Term1 = AddRec->getOperand(y-z);
2078 const SCEV *Term2 = OtherAddRec->getOperand(z);
2079 Term = getAddExpr(Term, getMulExpr(CoeffTerm, Term1,Term2));
2080 }
2081 }
2082 AddRecOps.push_back(Term);
2083 }
2084 if (!Overflow) {
2085 const SCEV *NewAddRec = getAddRecExpr(AddRecOps, AddRec->getLoop(),
2086 SCEV::FlagAnyWrap);
2087 if (Ops.size() == 2) return NewAddRec;
2088 Ops[Idx] = NewAddRec;
2089 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
2090 OpsModified = true;
2091 AddRec = dyn_cast<SCEVAddRecExpr>(NewAddRec);
2092 if (!AddRec)
2093 break;
2094 }
2095 }
2096 if (OpsModified)
2097 return getMulExpr(Ops);
2098 }
2099
2100 // Otherwise couldn't fold anything into this recurrence. Move onto the
2101 // next one.
2102 }
2103
2104 // Okay, it looks like we really DO need an mul expr. Check to see if we
2105 // already have one, otherwise create a new one.
2106 FoldingSetNodeID ID;
2107 ID.AddInteger(scMulExpr);
2108 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2109 ID.AddPointer(Ops[i]);
2110 void *IP = 0;
2111 SCEVMulExpr *S =
2112 static_cast<SCEVMulExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2113 if (!S) {
2114 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2115 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
2116 S = new (SCEVAllocator) SCEVMulExpr(ID.Intern(SCEVAllocator),
2117 O, Ops.size());
2118 UniqueSCEVs.InsertNode(S, IP);
2119 }
2120 S->setNoWrapFlags(Flags);
2121 return S;
2122}
2123
2124/// getUDivExpr - Get a canonical unsigned division expression, or something
2125/// simpler if possible.
2126const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS,
2127 const SCEV *RHS) {
2128 assert(getEffectiveSCEVType(LHS->getType()) ==
2129 getEffectiveSCEVType(RHS->getType()) &&
2130 "SCEVUDivExpr operand types don't match!");
2131
2132 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
2133 if (RHSC->getValue()->equalsInt(1))
2134 return LHS; // X udiv 1 --> x
2135 // If the denominator is zero, the result of the udiv is undefined. Don't
2136 // try to analyze it, because the resolution chosen here may differ from
2137 // the resolution chosen in other parts of the compiler.
2138 if (!RHSC->getValue()->isZero()) {
2139 // Determine if the division can be folded into the operands of
2140 // its operands.
2141 // TODO: Generalize this to non-constants by using known-bits information.
2142 Type *Ty = LHS->getType();
2143 unsigned LZ = RHSC->getValue()->getValue().countLeadingZeros();
2144 unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ - 1;
2145 // For non-power-of-two values, effectively round the value up to the
2146 // nearest power of two.
2147 if (!RHSC->getValue()->getValue().isPowerOf2())
2148 ++MaxShiftAmt;
2149 IntegerType *ExtTy =
2150 IntegerType::get(getContext(), getTypeSizeInBits(Ty) + MaxShiftAmt);
2151 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS))
2152 if (const SCEVConstant *Step =
2153 dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this))) {
2154 // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded.
2155 const APInt &StepInt = Step->getValue()->getValue();
2156 const APInt &DivInt = RHSC->getValue()->getValue();
2157 if (!StepInt.urem(DivInt) &&
2158 getZeroExtendExpr(AR, ExtTy) ==
2159 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
2160 getZeroExtendExpr(Step, ExtTy),
2161 AR->getLoop(), SCEV::FlagAnyWrap)) {
2162 SmallVector<const SCEV *, 4> Operands;
2163 for (unsigned i = 0, e = AR->getNumOperands(); i != e; ++i)
2164 Operands.push_back(getUDivExpr(AR->getOperand(i), RHS));
2165 return getAddRecExpr(Operands, AR->getLoop(),
2166 SCEV::FlagNW);
2167 }
2168 /// Get a canonical UDivExpr for a recurrence.
2169 /// {X,+,N}/C => {Y,+,N}/C where Y=X-(X%N). Safe when C%N=0.
2170 // We can currently only fold X%N if X is constant.
2171 const SCEVConstant *StartC = dyn_cast<SCEVConstant>(AR->getStart());
2172 if (StartC && !DivInt.urem(StepInt) &&
2173 getZeroExtendExpr(AR, ExtTy) ==
2174 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
2175 getZeroExtendExpr(Step, ExtTy),
2176 AR->getLoop(), SCEV::FlagAnyWrap)) {
2177 const APInt &StartInt = StartC->getValue()->getValue();
2178 const APInt &StartRem = StartInt.urem(StepInt);
2179 if (StartRem != 0)
2180 LHS = getAddRecExpr(getConstant(StartInt - StartRem), Step,
2181 AR->getLoop(), SCEV::FlagNW);
2182 }
2183 }
2184 // (A*B)/C --> A*(B/C) if safe and B/C can be folded.
2185 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) {
2186 SmallVector<const SCEV *, 4> Operands;
2187 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i)
2188 Operands.push_back(getZeroExtendExpr(M->getOperand(i), ExtTy));
2189 if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands))
2190 // Find an operand that's safely divisible.
2191 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) {
2192 const SCEV *Op = M->getOperand(i);
2193 const SCEV *Div = getUDivExpr(Op, RHSC);
2194 if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) {
2195 Operands = SmallVector<const SCEV *, 4>(M->op_begin(),
2196 M->op_end());
2197 Operands[i] = Div;
2198 return getMulExpr(Operands);
2199 }
2200 }
2201 }
2202 // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded.
2203 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(LHS)) {
2204 SmallVector<const SCEV *, 4> Operands;
2205 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i)
2206 Operands.push_back(getZeroExtendExpr(A->getOperand(i), ExtTy));
2207 if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) {
2208 Operands.clear();
2209 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) {
2210 const SCEV *Op = getUDivExpr(A->getOperand(i), RHS);
2211 if (isa<SCEVUDivExpr>(Op) ||
2212 getMulExpr(Op, RHS) != A->getOperand(i))
2213 break;
2214 Operands.push_back(Op);
2215 }
2216 if (Operands.size() == A->getNumOperands())
2217 return getAddExpr(Operands);
2218 }
2219 }
2220
2221 // Fold if both operands are constant.
2222 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
2223 Constant *LHSCV = LHSC->getValue();
2224 Constant *RHSCV = RHSC->getValue();
2225 return getConstant(cast<ConstantInt>(ConstantExpr::getUDiv(LHSCV,
2226 RHSCV)));
2227 }
2228 }
2229 }
2230
2231 FoldingSetNodeID ID;
2232 ID.AddInteger(scUDivExpr);
2233 ID.AddPointer(LHS);
2234 ID.AddPointer(RHS);
2235 void *IP = 0;
2236 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
2237 SCEV *S = new (SCEVAllocator) SCEVUDivExpr(ID.Intern(SCEVAllocator),
2238 LHS, RHS);
2239 UniqueSCEVs.InsertNode(S, IP);
2240 return S;
2241}
2242
2243
2244/// getAddRecExpr - Get an add recurrence expression for the specified loop.
2245/// Simplify the expression as much as possible.
2246const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start, const SCEV *Step,
2247 const Loop *L,
2248 SCEV::NoWrapFlags Flags) {
2249 SmallVector<const SCEV *, 4> Operands;
2250 Operands.push_back(Start);
2251 if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step))
2252 if (StepChrec->getLoop() == L) {
2253 Operands.append(StepChrec->op_begin(), StepChrec->op_end());
2254 return getAddRecExpr(Operands, L, maskFlags(Flags, SCEV::FlagNW));
2255 }
2256
2257 Operands.push_back(Step);
2258 return getAddRecExpr(Operands, L, Flags);
2259}
2260
2261/// getAddRecExpr - Get an add recurrence expression for the specified loop.
2262/// Simplify the expression as much as possible.
2263const SCEV *
2264ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands,
2265 const Loop *L, SCEV::NoWrapFlags Flags) {
2266 if (Operands.size() == 1) return Operands[0];
2267#ifndef NDEBUG
2268 Type *ETy = getEffectiveSCEVType(Operands[0]->getType());
2269 for (unsigned i = 1, e = Operands.size(); i != e; ++i)
2270 assert(getEffectiveSCEVType(Operands[i]->getType()) == ETy &&
2271 "SCEVAddRecExpr operand types don't match!");
2272 for (unsigned i = 0, e = Operands.size(); i != e; ++i)
2273 assert(isLoopInvariant(Operands[i], L) &&
2274 "SCEVAddRecExpr operand is not loop-invariant!");
2275#endif
2276
2277 if (Operands.back()->isZero()) {
2278 Operands.pop_back();
2279 return getAddRecExpr(Operands, L, SCEV::FlagAnyWrap); // {X,+,0} --> X
2280 }
2281
2282 // It's tempting to want to call getMaxBackedgeTakenCount count here and
2283 // use that information to infer NUW and NSW flags. However, computing a
2284 // BE count requires calling getAddRecExpr, so we may not yet have a
2285 // meaningful BE count at this point (and if we don't, we'd be stuck
2286 // with a SCEVCouldNotCompute as the cached BE count).
2287
2288 // If FlagNSW is true and all the operands are non-negative, infer FlagNUW.
2289 // And vice-versa.
2290 int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW;
2291 SCEV::NoWrapFlags SignOrUnsignWrap = maskFlags(Flags, SignOrUnsignMask);
2292 if (SignOrUnsignWrap && (SignOrUnsignWrap != SignOrUnsignMask)) {
2293 bool All = true;
2294 for (SmallVectorImpl<const SCEV *>::const_iterator I = Operands.begin(),
2295 E = Operands.end(); I != E; ++I)
2296 if (!isKnownNonNegative(*I)) {
2297 All = false;
2298 break;
2299 }
2300 if (All) Flags = setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask);
2301 }
2302
2303 // Canonicalize nested AddRecs in by nesting them in order of loop depth.
2304 if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) {
2305 const Loop *NestedLoop = NestedAR->getLoop();
2306 if (L->contains(NestedLoop) ?
2307 (L->getLoopDepth() < NestedLoop->getLoopDepth()) :
2308 (!NestedLoop->contains(L) &&
2309 DT->dominates(L->getHeader(), NestedLoop->getHeader()))) {
2310 SmallVector<const SCEV *, 4> NestedOperands(NestedAR->op_begin(),
2311 NestedAR->op_end());
2312 Operands[0] = NestedAR->getStart();
2313 // AddRecs require their operands be loop-invariant with respect to their
2314 // loops. Don't perform this transformation if it would break this
2315 // requirement.
2316 bool AllInvariant = true;
2317 for (unsigned i = 0, e = Operands.size(); i != e; ++i)
2318 if (!isLoopInvariant(Operands[i], L)) {
2319 AllInvariant = false;
2320 break;
2321 }
2322 if (AllInvariant) {
2323 // Create a recurrence for the outer loop with the same step size.
2324 //
2325 // The outer recurrence keeps its NW flag but only keeps NUW/NSW if the
2326 // inner recurrence has the same property.
2327 SCEV::NoWrapFlags OuterFlags =
2328 maskFlags(Flags, SCEV::FlagNW | NestedAR->getNoWrapFlags());
2329
2330 NestedOperands[0] = getAddRecExpr(Operands, L, OuterFlags);
2331 AllInvariant = true;
2332 for (unsigned i = 0, e = NestedOperands.size(); i != e; ++i)
2333 if (!isLoopInvariant(NestedOperands[i], NestedLoop)) {
2334 AllInvariant = false;
2335 break;
2336 }
2337 if (AllInvariant) {
2338 // Ok, both add recurrences are valid after the transformation.
2339 //
2340 // The inner recurrence keeps its NW flag but only keeps NUW/NSW if
2341 // the outer recurrence has the same property.
2342 SCEV::NoWrapFlags InnerFlags =
2343 maskFlags(NestedAR->getNoWrapFlags(), SCEV::FlagNW | Flags);
2344 return getAddRecExpr(NestedOperands, NestedLoop, InnerFlags);
2345 }
2346 }
2347 // Reset Operands to its original state.
2348 Operands[0] = NestedAR;
2349 }
2350 }
2351
2352 // Okay, it looks like we really DO need an addrec expr. Check to see if we
2353 // already have one, otherwise create a new one.
2354 FoldingSetNodeID ID;
2355 ID.AddInteger(scAddRecExpr);
2356 for (unsigned i = 0, e = Operands.size(); i != e; ++i)
2357 ID.AddPointer(Operands[i]);
2358 ID.AddPointer(L);
2359 void *IP = 0;
2360 SCEVAddRecExpr *S =
2361 static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2362 if (!S) {
2363 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Operands.size());
2364 std::uninitialized_copy(Operands.begin(), Operands.end(), O);
2365 S = new (SCEVAllocator) SCEVAddRecExpr(ID.Intern(SCEVAllocator),
2366 O, Operands.size(), L);
2367 UniqueSCEVs.InsertNode(S, IP);
2368 }
2369 S->setNoWrapFlags(Flags);
2370 return S;
2371}
2372
2373const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS,
2374 const SCEV *RHS) {
2375 SmallVector<const SCEV *, 2> Ops;
2376 Ops.push_back(LHS);
2377 Ops.push_back(RHS);
2378 return getSMaxExpr(Ops);
2379}
2380
2381const SCEV *
2382ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
2383 assert(!Ops.empty() && "Cannot get empty smax!");
2384 if (Ops.size() == 1) return Ops[0];
2385#ifndef NDEBUG
2386 Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
2387 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
2388 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
2389 "SCEVSMaxExpr operand types don't match!");
2390#endif
2391
2392 // Sort by complexity, this groups all similar expression types together.
2393 GroupByComplexity(Ops, LI);
2394
2395 // If there are any constants, fold them together.
2396 unsigned Idx = 0;
2397 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
2398 ++Idx;
2399 assert(Idx < Ops.size());
2400 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
2401 // We found two constants, fold them together!
2402 ConstantInt *Fold = ConstantInt::get(getContext(),
2403 APIntOps::smax(LHSC->getValue()->getValue(),
2404 RHSC->getValue()->getValue()));
2405 Ops[0] = getConstant(Fold);
2406 Ops.erase(Ops.begin()+1); // Erase the folded element
2407 if (Ops.size() == 1) return Ops[0];
2408 LHSC = cast<SCEVConstant>(Ops[0]);
2409 }
2410
2411 // If we are left with a constant minimum-int, strip it off.
2412 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(true)) {
2413 Ops.erase(Ops.begin());
2414 --Idx;
2415 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(true)) {
2416 // If we have an smax with a constant maximum-int, it will always be
2417 // maximum-int.
2418 return Ops[0];
2419 }
2420
2421 if (Ops.size() == 1) return Ops[0];
2422 }
2423
2424 // Find the first SMax
2425 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scSMaxExpr)
2426 ++Idx;
2427
2428 // Check to see if one of the operands is an SMax. If so, expand its operands
2429 // onto our operand list, and recurse to simplify.
2430 if (Idx < Ops.size()) {
2431 bool DeletedSMax = false;
2432 while (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(Ops[Idx])) {
2433 Ops.erase(Ops.begin()+Idx);
2434 Ops.append(SMax->op_begin(), SMax->op_end());
2435 DeletedSMax = true;
2436 }
2437
2438 if (DeletedSMax)
2439 return getSMaxExpr(Ops);
2440 }
2441
2442 // Okay, check to see if the same value occurs in the operand list twice. If
2443 // so, delete one. Since we sorted the list, these values are required to
2444 // be adjacent.
2445 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
2446 // X smax Y smax Y --> X smax Y
2447 // X smax Y --> X, if X is always greater than Y
2448 if (Ops[i] == Ops[i+1] ||
2449 isKnownPredicate(ICmpInst::ICMP_SGE, Ops[i], Ops[i+1])) {
2450 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2);
2451 --i; --e;
2452 } else if (isKnownPredicate(ICmpInst::ICMP_SLE, Ops[i], Ops[i+1])) {
2453 Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
2454 --i; --e;
2455 }
2456
2457 if (Ops.size() == 1) return Ops[0];
2458
2459 assert(!Ops.empty() && "Reduced smax down to nothing!");
2460
2461 // Okay, it looks like we really DO need an smax expr. Check to see if we
2462 // already have one, otherwise create a new one.
2463 FoldingSetNodeID ID;
2464 ID.AddInteger(scSMaxExpr);
2465 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2466 ID.AddPointer(Ops[i]);
2467 void *IP = 0;
2468 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
2469 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2470 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
2471 SCEV *S = new (SCEVAllocator) SCEVSMaxExpr(ID.Intern(SCEVAllocator),
2472 O, Ops.size());
2473 UniqueSCEVs.InsertNode(S, IP);
2474 return S;
2475}
2476
2477const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS,
2478 const SCEV *RHS) {
2479 SmallVector<const SCEV *, 2> Ops;
2480 Ops.push_back(LHS);
2481 Ops.push_back(RHS);
2482 return getUMaxExpr(Ops);
2483}
2484
2485const SCEV *
2486ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
2487 assert(!Ops.empty() && "Cannot get empty umax!");
2488 if (Ops.size() == 1) return Ops[0];
2489#ifndef NDEBUG
2490 Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
2491 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
2492 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
2493 "SCEVUMaxExpr operand types don't match!");
2494#endif
2495
2496 // Sort by complexity, this groups all similar expression types together.
2497 GroupByComplexity(Ops, LI);
2498
2499 // If there are any constants, fold them together.
2500 unsigned Idx = 0;
2501 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
2502 ++Idx;
2503 assert(Idx < Ops.size());
2504 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
2505 // We found two constants, fold them together!
2506 ConstantInt *Fold = ConstantInt::get(getContext(),
2507 APIntOps::umax(LHSC->getValue()->getValue(),
2508 RHSC->getValue()->getValue()));
2509 Ops[0] = getConstant(Fold);
2510 Ops.erase(Ops.begin()+1); // Erase the folded element
2511 if (Ops.size() == 1) return Ops[0];
2512 LHSC = cast<SCEVConstant>(Ops[0]);
2513 }
2514
2515 // If we are left with a constant minimum-int, strip it off.
2516 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(false)) {
2517 Ops.erase(Ops.begin());
2518 --Idx;
2519 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(false)) {
2520 // If we have an umax with a constant maximum-int, it will always be
2521 // maximum-int.
2522 return Ops[0];
2523 }
2524
2525 if (Ops.size() == 1) return Ops[0];
2526 }
2527
2528 // Find the first UMax
2529 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scUMaxExpr)
2530 ++Idx;
2531
2532 // Check to see if one of the operands is a UMax. If so, expand its operands
2533 // onto our operand list, and recurse to simplify.
2534 if (Idx < Ops.size()) {
2535 bool DeletedUMax = false;
2536 while (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(Ops[Idx])) {
2537 Ops.erase(Ops.begin()+Idx);
2538 Ops.append(UMax->op_begin(), UMax->op_end());
2539 DeletedUMax = true;
2540 }
2541
2542 if (DeletedUMax)
2543 return getUMaxExpr(Ops);
2544 }
2545
2546 // Okay, check to see if the same value occurs in the operand list twice. If
2547 // so, delete one. Since we sorted the list, these values are required to
2548 // be adjacent.
2549 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
2550 // X umax Y umax Y --> X umax Y
2551 // X umax Y --> X, if X is always greater than Y
2552 if (Ops[i] == Ops[i+1] ||
2553 isKnownPredicate(ICmpInst::ICMP_UGE, Ops[i], Ops[i+1])) {
2554 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2);
2555 --i; --e;
2556 } else if (isKnownPredicate(ICmpInst::ICMP_ULE, Ops[i], Ops[i+1])) {
2557 Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
2558 --i; --e;
2559 }
2560
2561 if (Ops.size() == 1) return Ops[0];
2562
2563 assert(!Ops.empty() && "Reduced umax down to nothing!");
2564
2565 // Okay, it looks like we really DO need a umax expr. Check to see if we
2566 // already have one, otherwise create a new one.
2567 FoldingSetNodeID ID;
2568 ID.AddInteger(scUMaxExpr);
2569 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2570 ID.AddPointer(Ops[i]);
2571 void *IP = 0;
2572 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
2573 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2574 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
2575 SCEV *S = new (SCEVAllocator) SCEVUMaxExpr(ID.Intern(SCEVAllocator),
2576 O, Ops.size());
2577 UniqueSCEVs.InsertNode(S, IP);
2578 return S;
2579}
2580
2581const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS,
2582 const SCEV *RHS) {
2583 // ~smax(~x, ~y) == smin(x, y).
2584 return getNotSCEV(getSMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
2585}
2586
2587const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS,
2588 const SCEV *RHS) {
2589 // ~umax(~x, ~y) == umin(x, y)
2590 return getNotSCEV(getUMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
2591}
2592
2593const SCEV *ScalarEvolution::getSizeOfExpr(Type *IntTy, Type *AllocTy) {
2594 // If we have DataLayout, we can bypass creating a target-independent
2595 // constant expression and then folding it back into a ConstantInt.
2596 // This is just a compile-time optimization.
2597 if (TD)
2598 return getConstant(IntTy, TD->getTypeAllocSize(AllocTy));
2599
2600 Constant *C = ConstantExpr::getSizeOf(AllocTy);
2601 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
2602 if (Constant *Folded = ConstantFoldConstantExpression(CE, TD, TLI))
2603 C = Folded;
2604 Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(AllocTy));
2605 assert(Ty == IntTy && "Effective SCEV type doesn't match");
2606 return getTruncateOrZeroExtend(getSCEV(C), Ty);
2607}
2608
2609const SCEV *ScalarEvolution::getOffsetOfExpr(Type *IntTy,
2610 StructType *STy,
2611 unsigned FieldNo) {
2612 // If we have DataLayout, we can bypass creating a target-independent
2613 // constant expression and then folding it back into a ConstantInt.
2614 // This is just a compile-time optimization.
2615 if (TD) {
2616 return getConstant(IntTy,
2617 TD->getStructLayout(STy)->getElementOffset(FieldNo));
2618 }
2619
2620 Constant *C = ConstantExpr::getOffsetOf(STy, FieldNo);
2621 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
2622 if (Constant *Folded = ConstantFoldConstantExpression(CE, TD, TLI))
2623 C = Folded;
2624
2625 Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(STy));
2626 return getTruncateOrZeroExtend(getSCEV(C), Ty);
2627}
2628
2629const SCEV *ScalarEvolution::getUnknown(Value *V) {
2630 // Don't attempt to do anything other than create a SCEVUnknown object
2631 // here. createSCEV only calls getUnknown after checking for all other
2632 // interesting possibilities, and any other code that calls getUnknown
2633 // is doing so in order to hide a value from SCEV canonicalization.
2634
2635 FoldingSetNodeID ID;
2636 ID.AddInteger(scUnknown);
2637 ID.AddPointer(V);
2638 void *IP = 0;
2639 if (SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) {
2640 assert(cast<SCEVUnknown>(S)->getValue() == V &&
2641 "Stale SCEVUnknown in uniquing map!");
2642 return S;
2643 }
2644 SCEV *S = new (SCEVAllocator) SCEVUnknown(ID.Intern(SCEVAllocator), V, this,
2645 FirstUnknown);
2646 FirstUnknown = cast<SCEVUnknown>(S);
2647 UniqueSCEVs.InsertNode(S, IP);
2648 return S;
2649}
2650
2651//===----------------------------------------------------------------------===//
2652// Basic SCEV Analysis and PHI Idiom Recognition Code
2653//
2654
2655/// isSCEVable - Test if values of the given type are analyzable within
2656/// the SCEV framework. This primarily includes integer types, and it
2657/// can optionally include pointer types if the ScalarEvolution class
2658/// has access to target-specific information.
2659bool ScalarEvolution::isSCEVable(Type *Ty) const {
2660 // Integers and pointers are always SCEVable.
2661 return Ty->isIntegerTy() || Ty->isPointerTy();
2662}
2663
2664/// getTypeSizeInBits - Return the size in bits of the specified type,
2665/// for which isSCEVable must return true.
2666uint64_t ScalarEvolution::getTypeSizeInBits(Type *Ty) const {
2667 assert(isSCEVable(Ty) && "Type is not SCEVable!");
2668
2669 // If we have a DataLayout, use it!
2670 if (TD)
2671 return TD->getTypeSizeInBits(Ty);
2672
2673 // Integer types have fixed sizes.
2674 if (Ty->isIntegerTy())
2675 return Ty->getPrimitiveSizeInBits();
2676
2677 // The only other support type is pointer. Without DataLayout, conservatively
2678 // assume pointers are 64-bit.
2679 assert(Ty->isPointerTy() && "isSCEVable permitted a non-SCEVable type!");
2680 return 64;
2681}
2682
2683/// getEffectiveSCEVType - Return a type with the same bitwidth as
2684/// the given type and which represents how SCEV will treat the given
2685/// type, for which isSCEVable must return true. For pointer types,
2686/// this is the pointer-sized integer type.
2687Type *ScalarEvolution::getEffectiveSCEVType(Type *Ty) const {
2688 assert(isSCEVable(Ty) && "Type is not SCEVable!");
2689
2690 if (Ty->isIntegerTy()) {
2691 return Ty;
2692 }
2693
2694 // The only other support type is pointer.
2695 assert(Ty->isPointerTy() && "Unexpected non-pointer non-integer type!");
2696
2697 if (TD)
2698 return TD->getIntPtrType(Ty);
2699
2700 // Without DataLayout, conservatively assume pointers are 64-bit.
2701 return Type::getInt64Ty(getContext());
2702}
2703
2704const SCEV *ScalarEvolution::getCouldNotCompute() {
2705 return &CouldNotCompute;
2706}
2707
2708namespace {
2709 // Helper class working with SCEVTraversal to figure out if a SCEV contains
2710 // a SCEVUnknown with null value-pointer. FindInvalidSCEVUnknown::FindOne
2711 // is set iff if find such SCEVUnknown.
2712 //
2713 struct FindInvalidSCEVUnknown {
2714 bool FindOne;
2715 FindInvalidSCEVUnknown() { FindOne = false; }
2716 bool follow(const SCEV *S) {
2717 switch (S->getSCEVType()) {
2718 case scConstant:
2719 return false;
2720 case scUnknown:
2721 if (!cast<SCEVUnknown>(S)->getValue())
2722 FindOne = true;
2723 return false;
2724 default:
2725 return true;
2726 }
2727 }
2728 bool isDone() const { return FindOne; }
2729 };
2730}
2731
2732bool ScalarEvolution::checkValidity(const SCEV *S) const {
2733 FindInvalidSCEVUnknown F;
2734 SCEVTraversal<FindInvalidSCEVUnknown> ST(F);
2735 ST.visitAll(S);
2736
2737 return !F.FindOne;
2738}
2739
2740/// getSCEV - Return an existing SCEV if it exists, otherwise analyze the
2741/// expression and create a new one.
2742const SCEV *ScalarEvolution::getSCEV(Value *V) {
2743 assert(isSCEVable(V->getType()) && "Value is not SCEVable!");
2744
2745 ValueExprMapType::iterator I = ValueExprMap.find_as(V);
2746 if (I != ValueExprMap.end()) {
2747 const SCEV *S = I->second;
2748 if (checkValidity(S))
2749 return S;
2750 else
2751 ValueExprMap.erase(I);
2752 }
2753 const SCEV *S = createSCEV(V);
2754
2755 // The process of creating a SCEV for V may have caused other SCEVs
2756 // to have been created, so it's necessary to insert the new entry
2757 // from scratch, rather than trying to remember the insert position
2758 // above.
2759 ValueExprMap.insert(std::make_pair(SCEVCallbackVH(V, this), S));
2760 return S;
2761}
2762
2763/// getNegativeSCEV - Return a SCEV corresponding to -V = -1*V
2764///
2765const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V) {
2766 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
2767 return getConstant(
2768 cast<ConstantInt>(ConstantExpr::getNeg(VC->getValue())));
2769
2770 Type *Ty = V->getType();
2771 Ty = getEffectiveSCEVType(Ty);
2772 return getMulExpr(V,
2773 getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty))));
2774}
2775
2776/// getNotSCEV - Return a SCEV corresponding to ~V = -1-V
2777const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) {
2778 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
2779 return getConstant(
2780 cast<ConstantInt>(ConstantExpr::getNot(VC->getValue())));
2781
2782 Type *Ty = V->getType();
2783 Ty = getEffectiveSCEVType(Ty);
2784 const SCEV *AllOnes =
2785 getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty)));
2786 return getMinusSCEV(AllOnes, V);
2787}
2788
2789/// getMinusSCEV - Return LHS-RHS. Minus is represented in SCEV as A+B*-1.
2790const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS, const SCEV *RHS,
2791 SCEV::NoWrapFlags Flags) {
2792 assert(!maskFlags(Flags, SCEV::FlagNUW) && "subtraction does not have NUW");
2793
2794 // Fast path: X - X --> 0.
2795 if (LHS == RHS)
2796 return getConstant(LHS->getType(), 0);
2797
2798 // X - Y --> X + -Y
2799 return getAddExpr(LHS, getNegativeSCEV(RHS), Flags);
2800}
2801
2802/// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion of the
2803/// input value to the specified type. If the type must be extended, it is zero
2804/// extended.
2805const SCEV *
2806ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V, Type *Ty) {
2807 Type *SrcTy = V->getType();
2808 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2809 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
2810 "Cannot truncate or zero extend with non-integer arguments!");
2811 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2812 return V; // No conversion
2813 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
2814 return getTruncateExpr(V, Ty);
2815 return getZeroExtendExpr(V, Ty);
2816}
2817
2818/// getTruncateOrSignExtend - Return a SCEV corresponding to a conversion of the
2819/// input value to the specified type. If the type must be extended, it is sign
2820/// extended.
2821const SCEV *
2822ScalarEvolution::getTruncateOrSignExtend(const SCEV *V,
2823 Type *Ty) {
2824 Type *SrcTy = V->getType();
2825 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2826 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
2827 "Cannot truncate or zero extend with non-integer arguments!");
2828 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2829 return V; // No conversion
2830 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
2831 return getTruncateExpr(V, Ty);
2832 return getSignExtendExpr(V, Ty);
2833}
2834
2835/// getNoopOrZeroExtend - Return a SCEV corresponding to a conversion of the
2836/// input value to the specified type. If the type must be extended, it is zero
2837/// extended. The conversion must not be narrowing.
2838const SCEV *
2839ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, Type *Ty) {
2840 Type *SrcTy = V->getType();
2841 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2842 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
2843 "Cannot noop or zero extend with non-integer arguments!");
2844 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
2845 "getNoopOrZeroExtend cannot truncate!");
2846 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2847 return V; // No conversion
2848 return getZeroExtendExpr(V, Ty);
2849}
2850
2851/// getNoopOrSignExtend - Return a SCEV corresponding to a conversion of the
2852/// input value to the specified type. If the type must be extended, it is sign
2853/// extended. The conversion must not be narrowing.
2854const SCEV *
2855ScalarEvolution::getNoopOrSignExtend(const SCEV *V, Type *Ty) {
2856 Type *SrcTy = V->getType();
2857 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2858 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
2859 "Cannot noop or sign extend with non-integer arguments!");
2860 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
2861 "getNoopOrSignExtend cannot truncate!");
2862 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2863 return V; // No conversion
2864 return getSignExtendExpr(V, Ty);
2865}
2866
2867/// getNoopOrAnyExtend - Return a SCEV corresponding to a conversion of
2868/// the input value to the specified type. If the type must be extended,
2869/// it is extended with unspecified bits. The conversion must not be
2870/// narrowing.
2871const SCEV *
2872ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, Type *Ty) {
2873 Type *SrcTy = V->getType();
2874 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2875 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
2876 "Cannot noop or any extend with non-integer arguments!");
2877 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
2878 "getNoopOrAnyExtend cannot truncate!");
2879 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2880 return V; // No conversion
2881 return getAnyExtendExpr(V, Ty);
2882}
2883
2884/// getTruncateOrNoop - Return a SCEV corresponding to a conversion of the
2885/// input value to the specified type. The conversion must not be widening.
2886const SCEV *
2887ScalarEvolution::getTruncateOrNoop(const SCEV *V, Type *Ty) {
2888 Type *SrcTy = V->getType();
2889 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2890 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
2891 "Cannot truncate or noop with non-integer arguments!");
2892 assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) &&
2893 "getTruncateOrNoop cannot extend!");
2894 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2895 return V; // No conversion
2896 return getTruncateExpr(V, Ty);
2897}
2898
2899/// getUMaxFromMismatchedTypes - Promote the operands to the wider of
2900/// the types using zero-extension, and then perform a umax operation
2901/// with them.
2902const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS,
2903 const SCEV *RHS) {
2904 const SCEV *PromotedLHS = LHS;
2905 const SCEV *PromotedRHS = RHS;
2906
2907 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
2908 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
2909 else
2910 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
2911
2912 return getUMaxExpr(PromotedLHS, PromotedRHS);
2913}
2914
2915/// getUMinFromMismatchedTypes - Promote the operands to the wider of
2916/// the types using zero-extension, and then perform a umin operation
2917/// with them.
2918const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS,
2919 const SCEV *RHS) {
2920 const SCEV *PromotedLHS = LHS;
2921 const SCEV *PromotedRHS = RHS;
2922
2923 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
2924 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
2925 else
2926 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
2927
2928 return getUMinExpr(PromotedLHS, PromotedRHS);
2929}
2930
2931/// getPointerBase - Transitively follow the chain of pointer-type operands
2932/// until reaching a SCEV that does not have a single pointer operand. This
2933/// returns a SCEVUnknown pointer for well-formed pointer-type expressions,
2934/// but corner cases do exist.
2935const SCEV *ScalarEvolution::getPointerBase(const SCEV *V) {
2936 // A pointer operand may evaluate to a nonpointer expression, such as null.
2937 if (!V->getType()->isPointerTy())
2938 return V;
2939
2940 if (const SCEVCastExpr *Cast = dyn_cast<SCEVCastExpr>(V)) {
2941 return getPointerBase(Cast->getOperand());
2942 }
2943 else if (const SCEVNAryExpr *NAry = dyn_cast<SCEVNAryExpr>(V)) {
2944 const SCEV *PtrOp = 0;
2945 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
2946 I != E; ++I) {
2947 if ((*I)->getType()->isPointerTy()) {
2948 // Cannot find the base of an expression with multiple pointer operands.
2949 if (PtrOp)
2950 return V;
2951 PtrOp = *I;
2952 }
2953 }
2954 if (!PtrOp)
2955 return V;
2956 return getPointerBase(PtrOp);
2957 }
2958 return V;
2959}
2960
2961/// PushDefUseChildren - Push users of the given Instruction
2962/// onto the given Worklist.
2963static void
2964PushDefUseChildren(Instruction *I,
2965 SmallVectorImpl<Instruction *> &Worklist) {
2966 // Push the def-use children onto the Worklist stack.
2967 for (Value::use_iterator UI = I->use_begin(), UE = I->use_end();
2968 UI != UE; ++UI)
2969 Worklist.push_back(cast<Instruction>(*UI));
2970}
2971
2972/// ForgetSymbolicValue - This looks up computed SCEV values for all
2973/// instructions that depend on the given instruction and removes them from
2974/// the ValueExprMapType map if they reference SymName. This is used during PHI
2975/// resolution.
2976void
2977ScalarEvolution::ForgetSymbolicName(Instruction *PN, const SCEV *SymName) {
2978 SmallVector<Instruction *, 16> Worklist;
2979 PushDefUseChildren(PN, Worklist);
2980
2981 SmallPtrSet<Instruction *, 8> Visited;
2982 Visited.insert(PN);
2983 while (!Worklist.empty()) {
2984 Instruction *I = Worklist.pop_back_val();
2985 if (!Visited.insert(I)) continue;
2986
2987 ValueExprMapType::iterator It =
2988 ValueExprMap.find_as(static_cast<Value *>(I));
2989 if (It != ValueExprMap.end()) {
2990 const SCEV *Old = It->second;
2991
2992 // Short-circuit the def-use traversal if the symbolic name
2993 // ceases to appear in expressions.
2994 if (Old != SymName && !hasOperand(Old, SymName))
2995 continue;
2996
2997 // SCEVUnknown for a PHI either means that it has an unrecognized
2998 // structure, it's a PHI that's in the progress of being computed
2999 // by createNodeForPHI, or it's a single-value PHI. In the first case,
3000 // additional loop trip count information isn't going to change anything.
3001 // In the second case, createNodeForPHI will perform the necessary
3002 // updates on its own when it gets to that point. In the third, we do
3003 // want to forget the SCEVUnknown.
3004 if (!isa<PHINode>(I) ||
3005 !isa<SCEVUnknown>(Old) ||
3006 (I != PN && Old == SymName)) {
3007 forgetMemoizedResults(Old);
3008 ValueExprMap.erase(It);
3009 }
3010 }
3011
3012 PushDefUseChildren(I, Worklist);
3013 }
3014}
3015
3016/// createNodeForPHI - PHI nodes have two cases. Either the PHI node exists in
3017/// a loop header, making it a potential recurrence, or it doesn't.
3018///
3019const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) {
3020 if (const Loop *L = LI->getLoopFor(PN->getParent()))
3021 if (L->getHeader() == PN->getParent()) {
3022 // The loop may have multiple entrances or multiple exits; we can analyze
3023 // this phi as an addrec if it has a unique entry value and a unique
3024 // backedge value.
3025 Value *BEValueV = 0, *StartValueV = 0;
3026 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
3027 Value *V = PN->getIncomingValue(i);
3028 if (L->contains(PN->getIncomingBlock(i))) {
3029 if (!BEValueV) {
3030 BEValueV = V;
3031 } else if (BEValueV != V) {
3032 BEValueV = 0;
3033 break;
3034 }
3035 } else if (!StartValueV) {
3036 StartValueV = V;
3037 } else if (StartValueV != V) {
3038 StartValueV = 0;
3039 break;
3040 }
3041 }
3042 if (BEValueV && StartValueV) {
3043 // While we are analyzing this PHI node, handle its value symbolically.
3044 const SCEV *SymbolicName = getUnknown(PN);
3045 assert(ValueExprMap.find_as(PN) == ValueExprMap.end() &&
3046 "PHI node already processed?");
3047 ValueExprMap.insert(std::make_pair(SCEVCallbackVH(PN, this), SymbolicName));
3048
3049 // Using this symbolic name for the PHI, analyze the value coming around
3050 // the back-edge.
3051 const SCEV *BEValue = getSCEV(BEValueV);
3052
3053 // NOTE: If BEValue is loop invariant, we know that the PHI node just
3054 // has a special value for the first iteration of the loop.
3055
3056 // If the value coming around the backedge is an add with the symbolic
3057 // value we just inserted, then we found a simple induction variable!
3058 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) {
3059 // If there is a single occurrence of the symbolic value, replace it
3060 // with a recurrence.
3061 unsigned FoundIndex = Add->getNumOperands();
3062 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
3063 if (Add->getOperand(i) == SymbolicName)
3064 if (FoundIndex == e) {
3065 FoundIndex = i;
3066 break;
3067 }
3068
3069 if (FoundIndex != Add->getNumOperands()) {
3070 // Create an add with everything but the specified operand.
3071 SmallVector<const SCEV *, 8> Ops;
3072 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
3073 if (i != FoundIndex)
3074 Ops.push_back(Add->getOperand(i));
3075 const SCEV *Accum = getAddExpr(Ops);
3076
3077 // This is not a valid addrec if the step amount is varying each
3078 // loop iteration, but is not itself an addrec in this loop.
3079 if (isLoopInvariant(Accum, L) ||
3080 (isa<SCEVAddRecExpr>(Accum) &&
3081 cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) {
3082 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
3083
3084 // If the increment doesn't overflow, then neither the addrec nor
3085 // the post-increment will overflow.
3086 if (const AddOperator *OBO = dyn_cast<AddOperator>(BEValueV)) {
3087 if (OBO->hasNoUnsignedWrap())
3088 Flags = setFlags(Flags, SCEV::FlagNUW);
3089 if (OBO->hasNoSignedWrap())
3090 Flags = setFlags(Flags, SCEV::FlagNSW);
3091 } else if (GEPOperator *GEP = dyn_cast<GEPOperator>(BEValueV)) {
3092 // If the increment is an inbounds GEP, then we know the address
3093 // space cannot be wrapped around. We cannot make any guarantee
3094 // about signed or unsigned overflow because pointers are
3095 // unsigned but we may have a negative index from the base
3096 // pointer. We can guarantee that no unsigned wrap occurs if the
3097 // indices form a positive value.
3098 if (GEP->isInBounds()) {
3099 Flags = setFlags(Flags, SCEV::FlagNW);
3100
3101 const SCEV *Ptr = getSCEV(GEP->getPointerOperand());
3102 if (isKnownPositive(getMinusSCEV(getSCEV(GEP), Ptr)))
3103 Flags = setFlags(Flags, SCEV::FlagNUW);
3104 }
3105 } else if (const SubOperator *OBO =
3106 dyn_cast<SubOperator>(BEValueV)) {
3107 if (OBO->hasNoUnsignedWrap())
3108 Flags = setFlags(Flags, SCEV::FlagNUW);
3109 if (OBO->hasNoSignedWrap())
3110 Flags = setFlags(Flags, SCEV::FlagNSW);
3111 }
3112
3113 const SCEV *StartVal = getSCEV(StartValueV);
3114 const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags);
3115
3116 // Since the no-wrap flags are on the increment, they apply to the
3117 // post-incremented value as well.
3118 if (isLoopInvariant(Accum, L))
3119 (void)getAddRecExpr(getAddExpr(StartVal, Accum),
3120 Accum, L, Flags);
3121
3122 // Okay, for the entire analysis of this edge we assumed the PHI
3123 // to be symbolic. We now need to go back and purge all of the
3124 // entries for the scalars that use the symbolic expression.
3125 ForgetSymbolicName(PN, SymbolicName);
3126 ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV;
3127 return PHISCEV;
3128 }
3129 }
3130 } else if (const SCEVAddRecExpr *AddRec =
3131 dyn_cast<SCEVAddRecExpr>(BEValue)) {
3132 // Otherwise, this could be a loop like this:
3133 // i = 0; for (j = 1; ..; ++j) { .... i = j; }
3134 // In this case, j = {1,+,1} and BEValue is j.
3135 // Because the other in-value of i (0) fits the evolution of BEValue
3136 // i really is an addrec evolution.
3137 if (AddRec->getLoop() == L && AddRec->isAffine()) {
3138 const SCEV *StartVal = getSCEV(StartValueV);
3139
3140 // If StartVal = j.start - j.stride, we can use StartVal as the
3141 // initial step of the addrec evolution.
3142 if (StartVal == getMinusSCEV(AddRec->getOperand(0),
3143 AddRec->getOperand(1))) {
3144 // FIXME: For constant StartVal, we should be able to infer
3145 // no-wrap flags.
3146 const SCEV *PHISCEV =
3147 getAddRecExpr(StartVal, AddRec->getOperand(1), L,
3148 SCEV::FlagAnyWrap);
3149
3150 // Okay, for the entire analysis of this edge we assumed the PHI
3151 // to be symbolic. We now need to go back and purge all of the
3152 // entries for the scalars that use the symbolic expression.
3153 ForgetSymbolicName(PN, SymbolicName);
3154 ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV;
3155 return PHISCEV;
3156 }
3157 }
3158 }
3159 }
3160 }
3161
3162 // If the PHI has a single incoming value, follow that value, unless the
3163 // PHI's incoming blocks are in a different loop, in which case doing so
3164 // risks breaking LCSSA form. Instcombine would normally zap these, but
3165 // it doesn't have DominatorTree information, so it may miss cases.
3166 if (Value *V = SimplifyInstruction(PN, TD, TLI, DT))
3167 if (LI->replacementPreservesLCSSAForm(PN, V))
3168 return getSCEV(V);
3169
3170 // If it's not a loop phi, we can't handle it yet.
3171 return getUnknown(PN);
3172}
3173
3174/// createNodeForGEP - Expand GEP instructions into add and multiply
3175/// operations. This allows them to be analyzed by regular SCEV code.
3176///
3177const SCEV *ScalarEvolution::createNodeForGEP(GEPOperator *GEP) {
3178 Type *IntPtrTy = getEffectiveSCEVType(GEP->getType());
3179 Value *Base = GEP->getOperand(0);
3180 // Don't attempt to analyze GEPs over unsized objects.
3181 if (!Base->getType()->getPointerElementType()->isSized())
3182 return getUnknown(GEP);
3183
3184 // Don't blindly transfer the inbounds flag from the GEP instruction to the
3185 // Add expression, because the Instruction may be guarded by control flow
3186 // and the no-overflow bits may not be valid for the expression in any
3187 // context.
3188 SCEV::NoWrapFlags Wrap = GEP->isInBounds() ? SCEV::FlagNSW : SCEV::FlagAnyWrap;
3189
3190 const SCEV *TotalOffset = getConstant(IntPtrTy, 0);
3191 gep_type_iterator GTI = gep_type_begin(GEP);
3192 for (GetElementPtrInst::op_iterator I = llvm::next(GEP->op_begin()),
3193 E = GEP->op_end();
3194 I != E; ++I) {
3195 Value *Index = *I;
3196 // Compute the (potentially symbolic) offset in bytes for this index.
3197 if (StructType *STy = dyn_cast<StructType>(*GTI++)) {
3198 // For a struct, add the member offset.
3199 unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue();
3200 const SCEV *FieldOffset = getOffsetOfExpr(IntPtrTy, STy, FieldNo);
3201
3202 // Add the field offset to the running total offset.
3203 TotalOffset = getAddExpr(TotalOffset, FieldOffset);
3204 } else {
3205 // For an array, add the element offset, explicitly scaled.
3206 const SCEV *ElementSize = getSizeOfExpr(IntPtrTy, *GTI);
3207 const SCEV *IndexS = getSCEV(Index);
3208 // Getelementptr indices are signed.
3209 IndexS = getTruncateOrSignExtend(IndexS, IntPtrTy);
3210
3211 // Multiply the index by the element size to compute the element offset.
3212 const SCEV *LocalOffset = getMulExpr(IndexS, ElementSize, Wrap);
3213
3214 // Add the element offset to the running total offset.
3215 TotalOffset = getAddExpr(TotalOffset, LocalOffset);
3216 }
3217 }
3218
3219 // Get the SCEV for the GEP base.
3220 const SCEV *BaseS = getSCEV(Base);
3221
3222 // Add the total offset from all the GEP indices to the base.
3223 return getAddExpr(BaseS, TotalOffset, Wrap);
3224}
3225
3226/// GetMinTrailingZeros - Determine the minimum number of zero bits that S is
3227/// guaranteed to end in (at every loop iteration). It is, at the same time,
3228/// the minimum number of times S is divisible by 2. For example, given {4,+,8}
3229/// it returns 2. If S is guaranteed to be 0, it returns the bitwidth of S.
3230uint32_t
3231ScalarEvolution::GetMinTrailingZeros(const SCEV *S) {
3232 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
3233 return C->getValue()->getValue().countTrailingZeros();
3234
3235 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S))
3236 return std::min(GetMinTrailingZeros(T->getOperand()),
3237 (uint32_t)getTypeSizeInBits(T->getType()));
3238
3239 if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) {
3240 uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
3241 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ?
3242 getTypeSizeInBits(E->getType()) : OpRes;
3243 }
3244
3245 if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) {
3246 uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
3247 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ?
3248 getTypeSizeInBits(E->getType()) : OpRes;
3249 }
3250
3251 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) {
3252 // The result is the min of all operands results.
3253 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
3254 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
3255 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
3256 return MinOpRes;
3257 }
3258
3259 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) {
3260 // The result is the sum of all operands results.
3261 uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0));
3262 uint32_t BitWidth = getTypeSizeInBits(M->getType());
3263 for (unsigned i = 1, e = M->getNumOperands();
3264 SumOpRes != BitWidth && i != e; ++i)
3265 SumOpRes = std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)),
3266 BitWidth);
3267 return SumOpRes;
3268 }
3269
3270 if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) {
3271 // The result is the min of all operands results.
3272 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
3273 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
3274 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
3275 return MinOpRes;
3276 }
3277
3278 if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) {
3279 // The result is the min of all operands results.
3280 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
3281 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
3282 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
3283 return MinOpRes;
3284 }
3285
3286 if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) {
3287 // The result is the min of all operands results.
3288 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
3289 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
3290 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
3291 return MinOpRes;
3292 }
3293
3294 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
3295 // For a SCEVUnknown, ask ValueTracking.
3296 unsigned BitWidth = getTypeSizeInBits(U->getType());
3297 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
3298 ComputeMaskedBits(U->getValue(), Zeros, Ones);
3299 return Zeros.countTrailingOnes();
3300 }
3301
3302 // SCEVUDivExpr
3303 return 0;
3304}
3305
3306/// getUnsignedRange - Determine the unsigned range for a particular SCEV.
3307///
3308ConstantRange
3309ScalarEvolution::getUnsignedRange(const SCEV *S) {
3310 // See if we've computed this range already.
3311 DenseMap<const SCEV *, ConstantRange>::iterator I = UnsignedRanges.find(S);
3312 if (I != UnsignedRanges.end())
3313 return I->second;
3314
3315 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
3316 return setUnsignedRange(C, ConstantRange(C->getValue()->getValue()));
3317
3318 unsigned BitWidth = getTypeSizeInBits(S->getType());
3319 ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true);
3320
3321 // If the value has known zeros, the maximum unsigned value will have those
3322 // known zeros as well.
3323 uint32_t TZ = GetMinTrailingZeros(S);
3324 if (TZ != 0)
3325 ConservativeResult =
3326 ConstantRange(APInt::getMinValue(BitWidth),
3327 APInt::getMaxValue(BitWidth).lshr(TZ).shl(TZ) + 1);
3328
3329 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
3330 ConstantRange X = getUnsignedRange(Add->getOperand(0));
3331 for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
3332 X = X.add(getUnsignedRange(Add->getOperand(i)));
3333 return setUnsignedRange(Add, ConservativeResult.intersectWith(X));
3334 }
3335
3336 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
3337 ConstantRange X = getUnsignedRange(Mul->getOperand(0));
3338 for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
3339 X = X.multiply(getUnsignedRange(Mul->getOperand(i)));
3340 return setUnsignedRange(Mul, ConservativeResult.intersectWith(X));
3341 }
3342
3343 if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
3344 ConstantRange X = getUnsignedRange(SMax->getOperand(0));
3345 for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
3346 X = X.smax(getUnsignedRange(SMax->getOperand(i)));
3347 return setUnsignedRange(SMax, ConservativeResult.intersectWith(X));
3348 }
3349
3350 if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
3351 ConstantRange X = getUnsignedRange(UMax->getOperand(0));
3352 for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
3353 X = X.umax(getUnsignedRange(UMax->getOperand(i)));
3354 return setUnsignedRange(UMax, ConservativeResult.intersectWith(X));
3355 }
3356
3357 if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
3358 ConstantRange X = getUnsignedRange(UDiv->getLHS());
3359 ConstantRange Y = getUnsignedRange(UDiv->getRHS());
3360 return setUnsignedRange(UDiv, ConservativeResult.intersectWith(X.udiv(Y)));
3361 }
3362
3363 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
3364 ConstantRange X = getUnsignedRange(ZExt->getOperand());
3365 return setUnsignedRange(ZExt,
3366 ConservativeResult.intersectWith(X.zeroExtend(BitWidth)));
3367 }
3368
3369 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
3370 ConstantRange X = getUnsignedRange(SExt->getOperand());
3371 return setUnsignedRange(SExt,
3372 ConservativeResult.intersectWith(X.signExtend(BitWidth)));
3373 }
3374
3375 if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
3376 ConstantRange X = getUnsignedRange(Trunc->getOperand());
3377 return setUnsignedRange(Trunc,
3378 ConservativeResult.intersectWith(X.truncate(BitWidth)));
3379 }
3380
3381 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
3382 // If there's no unsigned wrap, the value will never be less than its
3383 // initial value.
3384 if (AddRec->getNoWrapFlags(SCEV::FlagNUW))
3385 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(AddRec->getStart()))
3386 if (!C->getValue()->isZero())
3387 ConservativeResult =
3388 ConservativeResult.intersectWith(
3389 ConstantRange(C->getValue()->getValue(), APInt(BitWidth, 0)));
3390
3391 // TODO: non-affine addrec
3392 if (AddRec->isAffine()) {
3393 Type *Ty = AddRec->getType();
3394 const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop());
3395 if (!isa<SCEVCouldNotCompute>(MaxBECount) &&
3396 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) {
3397 MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty);
3398
3399 const SCEV *Start = AddRec->getStart();
3400 const SCEV *Step = AddRec->getStepRecurrence(*this);
3401
3402 ConstantRange StartRange = getUnsignedRange(Start);
3403 ConstantRange StepRange = getSignedRange(Step);
3404 ConstantRange MaxBECountRange = getUnsignedRange(MaxBECount);
3405 ConstantRange EndRange =
3406 StartRange.add(MaxBECountRange.multiply(StepRange));
3407
3408 // Check for overflow. This must be done with ConstantRange arithmetic
3409 // because we could be called from within the ScalarEvolution overflow
3410 // checking code.
3411 ConstantRange ExtStartRange = StartRange.zextOrTrunc(BitWidth*2+1);
3412 ConstantRange ExtStepRange = StepRange.sextOrTrunc(BitWidth*2+1);
3413 ConstantRange ExtMaxBECountRange =
3414 MaxBECountRange.zextOrTrunc(BitWidth*2+1);
3415 ConstantRange ExtEndRange = EndRange.zextOrTrunc(BitWidth*2+1);
3416 if (ExtStartRange.add(ExtMaxBECountRange.multiply(ExtStepRange)) !=
3417 ExtEndRange)
3418 return setUnsignedRange(AddRec, ConservativeResult);
3419
3420 APInt Min = APIntOps::umin(StartRange.getUnsignedMin(),
3421 EndRange.getUnsignedMin());
3422 APInt Max = APIntOps::umax(StartRange.getUnsignedMax(),
3423 EndRange.getUnsignedMax());
3424 if (Min.isMinValue() && Max.isMaxValue())
3425 return setUnsignedRange(AddRec, ConservativeResult);
3426 return setUnsignedRange(AddRec,
3427 ConservativeResult.intersectWith(ConstantRange(Min, Max+1)));
3428 }
3429 }
3430
3431 return setUnsignedRange(AddRec, ConservativeResult);
3432 }
3433
3434 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
3435 // For a SCEVUnknown, ask ValueTracking.
3436 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
3437 ComputeMaskedBits(U->getValue(), Zeros, Ones, TD);
3438 if (Ones == ~Zeros + 1)
3439 return setUnsignedRange(U, ConservativeResult);
3440 return setUnsignedRange(U,
3441 ConservativeResult.intersectWith(ConstantRange(Ones, ~Zeros + 1)));
3442 }
3443
3444 return setUnsignedRange(S, ConservativeResult);
3445}
3446
3447/// getSignedRange - Determine the signed range for a particular SCEV.
3448///
3449ConstantRange
3450ScalarEvolution::getSignedRange(const SCEV *S) {
3451 // See if we've computed this range already.
3452 DenseMap<const SCEV *, ConstantRange>::iterator I = SignedRanges.find(S);
3453 if (I != SignedRanges.end())
3454 return I->second;
3455
3456 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
3457 return setSignedRange(C, ConstantRange(C->getValue()->getValue()));
3458
3459 unsigned BitWidth = getTypeSizeInBits(S->getType());
3460 ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true);
3461
3462 // If the value has known zeros, the maximum signed value will have those
3463 // known zeros as well.
3464 uint32_t TZ = GetMinTrailingZeros(S);
3465 if (TZ != 0)
3466 ConservativeResult =
3467 ConstantRange(APInt::getSignedMinValue(BitWidth),
3468 APInt::getSignedMaxValue(BitWidth).ashr(TZ).shl(TZ) + 1);
3469
3470 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
3471 ConstantRange X = getSignedRange(Add->getOperand(0));
3472 for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
3473 X = X.add(getSignedRange(Add->getOperand(i)));
3474 return setSignedRange(Add, ConservativeResult.intersectWith(X));
3475 }
3476
3477 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
3478 ConstantRange X = getSignedRange(Mul->getOperand(0));
3479 for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
3480 X = X.multiply(getSignedRange(Mul->getOperand(i)));
3481 return setSignedRange(Mul, ConservativeResult.intersectWith(X));
3482 }
3483
3484 if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
3485 ConstantRange X = getSignedRange(SMax->getOperand(0));
3486 for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
3487 X = X.smax(getSignedRange(SMax->getOperand(i)));
3488 return setSignedRange(SMax, ConservativeResult.intersectWith(X));
3489 }
3490
3491 if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
3492 ConstantRange X = getSignedRange(UMax->getOperand(0));
3493 for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
3494 X = X.umax(getSignedRange(UMax->getOperand(i)));
3495 return setSignedRange(UMax, ConservativeResult.intersectWith(X));
3496 }
3497
3498 if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
3499 ConstantRange X = getSignedRange(UDiv->getLHS());
3500 ConstantRange Y = getSignedRange(UDiv->getRHS());
3501 return setSignedRange(UDiv, ConservativeResult.intersectWith(X.udiv(Y)));
3502 }
3503
3504 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
3505 ConstantRange X = getSignedRange(ZExt->getOperand());
3506 return setSignedRange(ZExt,
3507 ConservativeResult.intersectWith(X.zeroExtend(BitWidth)));
3508 }
3509
3510 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
3511 ConstantRange X = getSignedRange(SExt->getOperand());
3512 return setSignedRange(SExt,
3513 ConservativeResult.intersectWith(X.signExtend(BitWidth)));
3514 }
3515
3516 if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
3517 ConstantRange X = getSignedRange(Trunc->getOperand());
3518 return setSignedRange(Trunc,
3519 ConservativeResult.intersectWith(X.truncate(BitWidth)));
3520 }
3521
3522 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
3523 // If there's no signed wrap, and all the operands have the same sign or
3524 // zero, the value won't ever change sign.
3525 if (AddRec->getNoWrapFlags(SCEV::FlagNSW)) {
3526 bool AllNonNeg = true;
3527 bool AllNonPos = true;
3528 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
3529 if (!isKnownNonNegative(AddRec->getOperand(i))) AllNonNeg = false;
3530 if (!isKnownNonPositive(AddRec->getOperand(i))) AllNonPos = false;
3531 }
3532 if (AllNonNeg)
3533 ConservativeResult = ConservativeResult.intersectWith(
3534 ConstantRange(APInt(BitWidth, 0),
3535 APInt::getSignedMinValue(BitWidth)));
3536 else if (AllNonPos)
3537 ConservativeResult = ConservativeResult.intersectWith(
3538 ConstantRange(APInt::getSignedMinValue(BitWidth),
3539 APInt(BitWidth, 1)));
3540 }
3541
3542 // TODO: non-affine addrec
3543 if (AddRec->isAffine()) {
3544 Type *Ty = AddRec->getType();
3545 const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop());
3546 if (!isa<SCEVCouldNotCompute>(MaxBECount) &&
3547 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) {
3548 MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty);
3549
3550 const SCEV *Start = AddRec->getStart();
3551 const SCEV *Step = AddRec->getStepRecurrence(*this);
3552
3553 ConstantRange StartRange = getSignedRange(Start);
3554 ConstantRange StepRange = getSignedRange(Step);
3555 ConstantRange MaxBECountRange = getUnsignedRange(MaxBECount);
3556 ConstantRange EndRange =
3557 StartRange.add(MaxBECountRange.multiply(StepRange));
3558
3559 // Check for overflow. This must be done with ConstantRange arithmetic
3560 // because we could be called from within the ScalarEvolution overflow
3561 // checking code.
3562 ConstantRange ExtStartRange = StartRange.sextOrTrunc(BitWidth*2+1);
3563 ConstantRange ExtStepRange = StepRange.sextOrTrunc(BitWidth*2+1);
3564 ConstantRange ExtMaxBECountRange =
3565 MaxBECountRange.zextOrTrunc(BitWidth*2+1);
3566 ConstantRange ExtEndRange = EndRange.sextOrTrunc(BitWidth*2+1);
3567 if (ExtStartRange.add(ExtMaxBECountRange.multiply(ExtStepRange)) !=
3568 ExtEndRange)
3569 return setSignedRange(AddRec, ConservativeResult);
3570
3571 APInt Min = APIntOps::smin(StartRange.getSignedMin(),
3572 EndRange.getSignedMin());
3573 APInt Max = APIntOps::smax(StartRange.getSignedMax(),
3574 EndRange.getSignedMax());
3575 if (Min.isMinSignedValue() && Max.isMaxSignedValue())
3576 return setSignedRange(AddRec, ConservativeResult);
3577 return setSignedRange(AddRec,
3578 ConservativeResult.intersectWith(ConstantRange(Min, Max+1)));
3579 }
3580 }
3581
3582 return setSignedRange(AddRec, ConservativeResult);
3583 }
3584
3585 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
3586 // For a SCEVUnknown, ask ValueTracking.
3587 if (!U->getValue()->getType()->isIntegerTy() && !TD)
3588 return setSignedRange(U, ConservativeResult);
3589 unsigned NS = ComputeNumSignBits(U->getValue(), TD);
3590 if (NS <= 1)
3591 return setSignedRange(U, ConservativeResult);
3592 return setSignedRange(U, ConservativeResult.intersectWith(
3593 ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1),
3594 APInt::getSignedMaxValue(BitWidth).ashr(NS - 1)+1)));
3595 }
3596
3597 return setSignedRange(S, ConservativeResult);
3598}
3599
3600/// createSCEV - We know that there is no SCEV for the specified value.
3601/// Analyze the expression.
3602///
3603const SCEV *ScalarEvolution::createSCEV(Value *V) {
3604 if (!isSCEVable(V->getType()))
3605 return getUnknown(V);
3606
3607 unsigned Opcode = Instruction::UserOp1;
3608 if (Instruction *I = dyn_cast<Instruction>(V)) {
3609 Opcode = I->getOpcode();
3610
3611 // Don't attempt to analyze instructions in blocks that aren't
3612 // reachable. Such instructions don't matter, and they aren't required
3613 // to obey basic rules for definitions dominating uses which this
3614 // analysis depends on.
3615 if (!DT->isReachableFromEntry(I->getParent()))
3616 return getUnknown(V);
3617 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
3618 Opcode = CE->getOpcode();
3619 else if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
3620 return getConstant(CI);
3621 else if (isa<ConstantPointerNull>(V))
3622 return getConstant(V->getType(), 0);
3623 else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
3624 return GA->mayBeOverridden() ? getUnknown(V) : getSCEV(GA->getAliasee());
3625 else
3626 return getUnknown(V);
3627
3628 Operator *U = cast<Operator>(V);
3629 switch (Opcode) {
3630 case Instruction::Add: {
3631 // The simple thing to do would be to just call getSCEV on both operands
3632 // and call getAddExpr with the result. However if we're looking at a
3633 // bunch of things all added together, this can be quite inefficient,
3634 // because it leads to N-1 getAddExpr calls for N ultimate operands.
3635 // Instead, gather up all the operands and make a single getAddExpr call.
3636 // LLVM IR canonical form means we need only traverse the left operands.
3637 //
3638 // Don't apply this instruction's NSW or NUW flags to the new
3639 // expression. The instruction may be guarded by control flow that the
3640 // no-wrap behavior depends on. Non-control-equivalent instructions can be
3641 // mapped to the same SCEV expression, and it would be incorrect to transfer
3642 // NSW/NUW semantics to those operations.
3643 SmallVector<const SCEV *, 4> AddOps;
3644 AddOps.push_back(getSCEV(U->getOperand(1)));
3645 for (Value *Op = U->getOperand(0); ; Op = U->getOperand(0)) {
3646 unsigned Opcode = Op->getValueID() - Value::InstructionVal;
3647 if (Opcode != Instruction::Add && Opcode != Instruction::Sub)
3648 break;
3649 U = cast<Operator>(Op);
3650 const SCEV *Op1 = getSCEV(U->getOperand(1));
3651 if (Opcode == Instruction::Sub)
3652 AddOps.push_back(getNegativeSCEV(Op1));
3653 else
3654 AddOps.push_back(Op1);
3655 }
3656 AddOps.push_back(getSCEV(U->getOperand(0)));
3657 return getAddExpr(AddOps);
3658 }
3659 case Instruction::Mul: {
3660 // Don't transfer NSW/NUW for the same reason as AddExpr.
3661 SmallVector<const SCEV *, 4> MulOps;
3662 MulOps.push_back(getSCEV(U->getOperand(1)));
3663 for (Value *Op = U->getOperand(0);
3664 Op->getValueID() == Instruction::Mul + Value::InstructionVal;
3665 Op = U->getOperand(0)) {
3666 U = cast<Operator>(Op);
3667 MulOps.push_back(getSCEV(U->getOperand(1)));
3668 }
3669 MulOps.push_back(getSCEV(U->getOperand(0)));
3670 return getMulExpr(MulOps);
3671 }
3672 case Instruction::UDiv:
3673 return getUDivExpr(getSCEV(U->getOperand(0)),
3674 getSCEV(U->getOperand(1)));
3675 case Instruction::Sub:
3676 return getMinusSCEV(getSCEV(U->getOperand(0)),
3677 getSCEV(U->getOperand(1)));
3678 case Instruction::And:
3679 // For an expression like x&255 that merely masks off the high bits,
3680 // use zext(trunc(x)) as the SCEV expression.
3681 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
3682 if (CI->isNullValue())
3683 return getSCEV(U->getOperand(1));
3684 if (CI->isAllOnesValue())
3685 return getSCEV(U->getOperand(0));
3686 const APInt &A = CI->getValue();
3687
3688 // Instcombine's ShrinkDemandedConstant may strip bits out of
3689 // constants, obscuring what would otherwise be a low-bits mask.
3690 // Use ComputeMaskedBits to compute what ShrinkDemandedConstant
3691 // knew about to reconstruct a low-bits mask value.
3692 unsigned LZ = A.countLeadingZeros();
3693 unsigned BitWidth = A.getBitWidth();
3694 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
3695 ComputeMaskedBits(U->getOperand(0), KnownZero, KnownOne, TD);
3696
3697 APInt EffectiveMask = APInt::getLowBitsSet(BitWidth, BitWidth - LZ);
3698
3699 if (LZ != 0 && !((~A & ~KnownZero) & EffectiveMask))
3700 return
3701 getZeroExtendExpr(getTruncateExpr(getSCEV(U->getOperand(0)),
3702 IntegerType::get(getContext(), BitWidth - LZ)),
3703 U->getType());
3704 }
3705 break;
3706
3707 case Instruction::Or:
3708 // If the RHS of the Or is a constant, we may have something like:
3709 // X*4+1 which got turned into X*4|1. Handle this as an Add so loop
3710 // optimizations will transparently handle this case.
3711 //
3712 // In order for this transformation to be safe, the LHS must be of the
3713 // form X*(2^n) and the Or constant must be less than 2^n.
3714 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
3715 const SCEV *LHS = getSCEV(U->getOperand(0));
3716 const APInt &CIVal = CI->getValue();
3717 if (GetMinTrailingZeros(LHS) >=
3718 (CIVal.getBitWidth() - CIVal.countLeadingZeros())) {
3719 // Build a plain add SCEV.
3720 const SCEV *S = getAddExpr(LHS, getSCEV(CI));
3721 // If the LHS of the add was an addrec and it has no-wrap flags,
3722 // transfer the no-wrap flags, since an or won't introduce a wrap.
3723 if (const SCEVAddRecExpr *NewAR = dyn_cast<SCEVAddRecExpr>(S)) {
3724 const SCEVAddRecExpr *OldAR = cast<SCEVAddRecExpr>(LHS);
3725 const_cast<SCEVAddRecExpr *>(NewAR)->setNoWrapFlags(
3726 OldAR->getNoWrapFlags());
3727 }
3728 return S;
3729 }
3730 }
3731 break;
3732 case Instruction::Xor:
3733 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
3734 // If the RHS of the xor is a signbit, then this is just an add.
3735 // Instcombine turns add of signbit into xor as a strength reduction step.
3736 if (CI->getValue().isSignBit())
3737 return getAddExpr(getSCEV(U->getOperand(0)),
3738 getSCEV(U->getOperand(1)));
3739
3740 // If the RHS of xor is -1, then this is a not operation.
3741 if (CI->isAllOnesValue())
3742 return getNotSCEV(getSCEV(U->getOperand(0)));
3743
3744 // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask.
3745 // This is a variant of the check for xor with -1, and it handles
3746 // the case where instcombine has trimmed non-demanded bits out
3747 // of an xor with -1.
3748 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U->getOperand(0)))
3749 if (ConstantInt *LCI = dyn_cast<ConstantInt>(BO->getOperand(1)))
3750 if (BO->getOpcode() == Instruction::And &&
3751 LCI->getValue() == CI->getValue())
3752 if (const SCEVZeroExtendExpr *Z =
3753 dyn_cast<SCEVZeroExtendExpr>(getSCEV(U->getOperand(0)))) {
3754 Type *UTy = U->getType();
3755 const SCEV *Z0 = Z->getOperand();
3756 Type *Z0Ty = Z0->getType();
3757 unsigned Z0TySize = getTypeSizeInBits(Z0Ty);
3758
3759 // If C is a low-bits mask, the zero extend is serving to
3760 // mask off the high bits. Complement the operand and
3761 // re-apply the zext.
3762 if (APIntOps::isMask(Z0TySize, CI->getValue()))
3763 return getZeroExtendExpr(getNotSCEV(Z0), UTy);
3764
3765 // If C is a single bit, it may be in the sign-bit position
3766 // before the zero-extend. In this case, represent the xor
3767 // using an add, which is equivalent, and re-apply the zext.
3768 APInt Trunc = CI->getValue().trunc(Z0TySize);
3769 if (Trunc.zext(getTypeSizeInBits(UTy)) == CI->getValue() &&
3770 Trunc.isSignBit())
3771 return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)),
3772 UTy);
3773 }
3774 }
3775 break;
3776
3777 case Instruction::Shl:
3778 // Turn shift left of a constant amount into a multiply.
3779 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
3780 uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth();
3781
3782 // If the shift count is not less than the bitwidth, the result of
3783 // the shift is undefined. Don't try to analyze it, because the
3784 // resolution chosen here may differ from the resolution chosen in
3785 // other parts of the compiler.
3786 if (SA->getValue().uge(BitWidth))
3787 break;
3788
3789 Constant *X = ConstantInt::get(getContext(),
3790 APInt::getOneBitSet(BitWidth, SA->getZExtValue()));
3791 return getMulExpr(getSCEV(U->getOperand(0)), getSCEV(X));
3792 }
3793 break;
3794
3795 case Instruction::LShr:
3796 // Turn logical shift right of a constant into a unsigned divide.
3797 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
3798 uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth();
3799
3800 // If the shift count is not less than the bitwidth, the result of
3801 // the shift is undefined. Don't try to analyze it, because the
3802 // resolution chosen here may differ from the resolution chosen in
3803 // other parts of the compiler.
3804 if (SA->getValue().uge(BitWidth))
3805 break;
3806
3807 Constant *X = ConstantInt::get(getContext(),
3808 APInt::getOneBitSet(BitWidth, SA->getZExtValue()));
3809 return getUDivExpr(getSCEV(U->getOperand(0)), getSCEV(X));
3810 }
3811 break;
3812
3813 case Instruction::AShr:
3814 // For a two-shift sext-inreg, use sext(trunc(x)) as the SCEV expression.
3815 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1)))
3816 if (Operator *L = dyn_cast<Operator>(U->getOperand(0)))
3817 if (L->getOpcode() == Instruction::Shl &&
3818 L->getOperand(1) == U->getOperand(1)) {
3819 uint64_t BitWidth = getTypeSizeInBits(U->getType());
3820
3821 // If the shift count is not less than the bitwidth, the result of
3822 // the shift is undefined. Don't try to analyze it, because the
3823 // resolution chosen here may differ from the resolution chosen in
3824 // other parts of the compiler.
3825 if (CI->getValue().uge(BitWidth))
3826 break;
3827
3828 uint64_t Amt = BitWidth - CI->getZExtValue();
3829 if (Amt == BitWidth)
3830 return getSCEV(L->getOperand(0)); // shift by zero --> noop
3831 return
3832 getSignExtendExpr(getTruncateExpr(getSCEV(L->getOperand(0)),
3833 IntegerType::get(getContext(),
3834 Amt)),
3835 U->getType());
3836 }
3837 break;
3838
3839 case Instruction::Trunc:
3840 return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType());
3841
3842 case Instruction::ZExt:
3843 return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType());
3844
3845 case Instruction::SExt:
3846 return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType());
3847
3848 case Instruction::BitCast:
3849 // BitCasts are no-op casts so we just eliminate the cast.
3850 if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType()))
3851 return getSCEV(U->getOperand(0));
3852 break;
3853
3854 // It's tempting to handle inttoptr and ptrtoint as no-ops, however this can
3855 // lead to pointer expressions which cannot safely be expanded to GEPs,
3856 // because ScalarEvolution doesn't respect the GEP aliasing rules when
3857 // simplifying integer expressions.
3858
3859 case Instruction::GetElementPtr:
3860 return createNodeForGEP(cast<GEPOperator>(U));
3861
3862 case Instruction::PHI:
3863 return createNodeForPHI(cast<PHINode>(U));
3864
3865 case Instruction::Select:
3866 // This could be a smax or umax that was lowered earlier.
3867 // Try to recover it.
3868 if (ICmpInst *ICI = dyn_cast<ICmpInst>(U->getOperand(0))) {
3869 Value *LHS = ICI->getOperand(0);
3870 Value *RHS = ICI->getOperand(1);
3871 switch (ICI->getPredicate()) {
3872 case ICmpInst::ICMP_SLT:
3873 case ICmpInst::ICMP_SLE:
3874 std::swap(LHS, RHS);
3875 // fall through
3876 case ICmpInst::ICMP_SGT:
3877 case ICmpInst::ICMP_SGE:
3878 // a >s b ? a+x : b+x -> smax(a, b)+x
3879 // a >s b ? b+x : a+x -> smin(a, b)+x
3880 if (LHS->getType() == U->getType()) {
3881 const SCEV *LS = getSCEV(LHS);
3882 const SCEV *RS = getSCEV(RHS);
3883 const SCEV *LA = getSCEV(U->getOperand(1));
3884 const SCEV *RA = getSCEV(U->getOperand(2));
3885 const SCEV *LDiff = getMinusSCEV(LA, LS);
3886 const SCEV *RDiff = getMinusSCEV(RA, RS);
3887 if (LDiff == RDiff)
3888 return getAddExpr(getSMaxExpr(LS, RS), LDiff);
3889 LDiff = getMinusSCEV(LA, RS);
3890 RDiff = getMinusSCEV(RA, LS);
3891 if (LDiff == RDiff)
3892 return getAddExpr(getSMinExpr(LS, RS), LDiff);
3893 }
3894 break;
3895 case ICmpInst::ICMP_ULT:
3896 case ICmpInst::ICMP_ULE:
3897 std::swap(LHS, RHS);
3898 // fall through
3899 case ICmpInst::ICMP_UGT:
3900 case ICmpInst::ICMP_UGE:
3901 // a >u b ? a+x : b+x -> umax(a, b)+x
3902 // a >u b ? b+x : a+x -> umin(a, b)+x
3903 if (LHS->getType() == U->getType()) {
3904 const SCEV *LS = getSCEV(LHS);
3905 const SCEV *RS = getSCEV(RHS);
3906 const SCEV *LA = getSCEV(U->getOperand(1));
3907 const SCEV *RA = getSCEV(U->getOperand(2));
3908 const SCEV *LDiff = getMinusSCEV(LA, LS);
3909 const SCEV *RDiff = getMinusSCEV(RA, RS);
3910 if (LDiff == RDiff)
3911 return getAddExpr(getUMaxExpr(LS, RS), LDiff);
3912 LDiff = getMinusSCEV(LA, RS);
3913 RDiff = getMinusSCEV(RA, LS);
3914 if (LDiff == RDiff)
3915 return getAddExpr(getUMinExpr(LS, RS), LDiff);
3916 }
3917 break;
3918 case ICmpInst::ICMP_NE:
3919 // n != 0 ? n+x : 1+x -> umax(n, 1)+x
3920 if (LHS->getType() == U->getType() &&
3921 isa<ConstantInt>(RHS) &&
3922 cast<ConstantInt>(RHS)->isZero()) {
3923 const SCEV *One = getConstant(LHS->getType(), 1);
3924 const SCEV *LS = getSCEV(LHS);
3925 const SCEV *LA = getSCEV(U->getOperand(1));
3926 const SCEV *RA = getSCEV(U->getOperand(2));
3927 const SCEV *LDiff = getMinusSCEV(LA, LS);
3928 const SCEV *RDiff = getMinusSCEV(RA, One);
3929 if (LDiff == RDiff)
3930 return getAddExpr(getUMaxExpr(One, LS), LDiff);
3931 }
3932 break;
3933 case ICmpInst::ICMP_EQ:
3934 // n == 0 ? 1+x : n+x -> umax(n, 1)+x
3935 if (LHS->getType() == U->getType() &&
3936 isa<ConstantInt>(RHS) &&
3937 cast<ConstantInt>(RHS)->isZero()) {
3938 const SCEV *One = getConstant(LHS->getType(), 1);
3939 const SCEV *LS = getSCEV(LHS);
3940 const SCEV *LA = getSCEV(U->getOperand(1));
3941 const SCEV *RA = getSCEV(U->getOperand(2));
3942 const SCEV *LDiff = getMinusSCEV(LA, One);
3943 const SCEV *RDiff = getMinusSCEV(RA, LS);
3944 if (LDiff == RDiff)
3945 return getAddExpr(getUMaxExpr(One, LS), LDiff);
3946 }
3947 break;
3948 default:
3949 break;
3950 }
3951 }
3952
3953 default: // We cannot analyze this expression.
3954 break;
3955 }
3956
3957 return getUnknown(V);
3958}
3959
3960
3961
3962//===----------------------------------------------------------------------===//
3963// Iteration Count Computation Code
3964//
3965
3966/// getSmallConstantTripCount - Returns the maximum trip count of this loop as a
3967/// normal unsigned value. Returns 0 if the trip count is unknown or not
3968/// constant. Will also return 0 if the maximum trip count is very large (>=
3969/// 2^32).
3970///
3971/// This "trip count" assumes that control exits via ExitingBlock. More
3972/// precisely, it is the number of times that control may reach ExitingBlock
3973/// before taking the branch. For loops with multiple exits, it may not be the
3974/// number times that the loop header executes because the loop may exit
3975/// prematurely via another branch.
3976///
3977/// FIXME: We conservatively call getBackedgeTakenCount(L) instead of
3978/// getExitCount(L, ExitingBlock) to compute a safe trip count considering all
3979/// loop exits. getExitCount() may return an exact count for this branch
3980/// assuming no-signed-wrap. The number of well-defined iterations may actually
3981/// be higher than this trip count if this exit test is skipped and the loop
3982/// exits via a different branch. Ideally, getExitCount() would know whether it
3983/// depends on a NSW assumption, and we would only fall back to a conservative
3984/// trip count in that case.
3985unsigned ScalarEvolution::
3986getSmallConstantTripCount(Loop *L, BasicBlock * /*ExitingBlock*/) {
3987 const SCEVConstant *ExitCount =
3988 dyn_cast<SCEVConstant>(getBackedgeTakenCount(L));
3989 if (!ExitCount)
3990 return 0;
3991
3992 ConstantInt *ExitConst = ExitCount->getValue();
3993
3994 // Guard against huge trip counts.
3995 if (ExitConst->getValue().getActiveBits() > 32)
3996 return 0;
3997
3998 // In case of integer overflow, this returns 0, which is correct.
3999 return ((unsigned)ExitConst->getZExtValue()) + 1;
4000}
4001
4002/// getSmallConstantTripMultiple - Returns the largest constant divisor of the
4003/// trip count of this loop as a normal unsigned value, if possible. This
4004/// means that the actual trip count is always a multiple of the returned
4005/// value (don't forget the trip count could very well be zero as well!).
4006///
4007/// Returns 1 if the trip count is unknown or not guaranteed to be the
4008/// multiple of a constant (which is also the case if the trip count is simply
4009/// constant, use getSmallConstantTripCount for that case), Will also return 1
4010/// if the trip count is very large (>= 2^32).
4011///
4012/// As explained in the comments for getSmallConstantTripCount, this assumes
4013/// that control exits the loop via ExitingBlock.
4014unsigned ScalarEvolution::
4015getSmallConstantTripMultiple(Loop *L, BasicBlock * /*ExitingBlock*/) {
4016 const SCEV *ExitCount = getBackedgeTakenCount(L);
4017 if (ExitCount == getCouldNotCompute())
4018 return 1;
4019
4020 // Get the trip count from the BE count by adding 1.
4021 const SCEV *TCMul = getAddExpr(ExitCount,
4022 getConstant(ExitCount->getType(), 1));
4023 // FIXME: SCEV distributes multiplication as V1*C1 + V2*C1. We could attempt
4024 // to factor simple cases.
4025 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(TCMul))
4026 TCMul = Mul->getOperand(0);
4027
4028 const SCEVConstant *MulC = dyn_cast<SCEVConstant>(TCMul);
4029 if (!MulC)
4030 return 1;
4031
4032 ConstantInt *Result = MulC->getValue();
4033
4034 // Guard against huge trip counts (this requires checking
4035 // for zero to handle the case where the trip count == -1 and the
4036 // addition wraps).
4037 if (!Result || Result->getValue().getActiveBits() > 32 ||
4038 Result->getValue().getActiveBits() == 0)
4039 return 1;
4040
4041 return (unsigned)Result->getZExtValue();
4042}
4043
4044// getExitCount - Get the expression for the number of loop iterations for which
4045// this loop is guaranteed not to exit via ExitingBlock. Otherwise return
4046// SCEVCouldNotCompute.
4047const SCEV *ScalarEvolution::getExitCount(Loop *L, BasicBlock *ExitingBlock) {
4048 return getBackedgeTakenInfo(L).getExact(ExitingBlock, this);
4049}
4050
4051/// getBackedgeTakenCount - If the specified loop has a predictable
4052/// backedge-taken count, return it, otherwise return a SCEVCouldNotCompute
4053/// object. The backedge-taken count is the number of times the loop header
4054/// will be branched to from within the loop. This is one less than the
4055/// trip count of the loop, since it doesn't count the first iteration,
4056/// when the header is branched to from outside the loop.
4057///
4058/// Note that it is not valid to call this method on a loop without a
4059/// loop-invariant backedge-taken count (see
4060/// hasLoopInvariantBackedgeTakenCount).
4061///
4062const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L) {
4063 return getBackedgeTakenInfo(L).getExact(this);
4064}
4065
4066/// getMaxBackedgeTakenCount - Similar to getBackedgeTakenCount, except
4067/// return the least SCEV value that is known never to be less than the
4068/// actual backedge taken count.
4069const SCEV *ScalarEvolution::getMaxBackedgeTakenCount(const Loop *L) {
4070 return getBackedgeTakenInfo(L).getMax(this);
4071}
4072
4073/// PushLoopPHIs - Push PHI nodes in the header of the given loop
4074/// onto the given Worklist.
4075static void
4076PushLoopPHIs(const Loop *L, SmallVectorImpl<Instruction *> &Worklist) {
4077 BasicBlock *Header = L->getHeader();
4078
4079 // Push all Loop-header PHIs onto the Worklist stack.
4080 for (BasicBlock::iterator I = Header->begin();
4081 PHINode *PN = dyn_cast<PHINode>(I); ++I)
4082 Worklist.push_back(PN);
4083}
4084
4085const ScalarEvolution::BackedgeTakenInfo &
4086ScalarEvolution::getBackedgeTakenInfo(const Loop *L) {
4087 // Initially insert an invalid entry for this loop. If the insertion
4088 // succeeds, proceed to actually compute a backedge-taken count and
4089 // update the value. The temporary CouldNotCompute value tells SCEV
4090 // code elsewhere that it shouldn't attempt to request a new
4091 // backedge-taken count, which could result in infinite recursion.
4092 std::pair<DenseMap<const Loop *, BackedgeTakenInfo>::iterator, bool> Pair =
4093 BackedgeTakenCounts.insert(std::make_pair(L, BackedgeTakenInfo()));
4094 if (!Pair.second)
4095 return Pair.first->second;
4096
4097 // ComputeBackedgeTakenCount may allocate memory for its result. Inserting it
4098 // into the BackedgeTakenCounts map transfers ownership. Otherwise, the result
4099 // must be cleared in this scope.
4100 BackedgeTakenInfo Result = ComputeBackedgeTakenCount(L);
4101
4102 if (Result.getExact(this) != getCouldNotCompute()) {
4103 assert(isLoopInvariant(Result.getExact(this), L) &&
4104 isLoopInvariant(Result.getMax(this), L) &&
4105 "Computed backedge-taken count isn't loop invariant for loop!");
4106 ++NumTripCountsComputed;
4107 }
4108 else if (Result.getMax(this) == getCouldNotCompute() &&
4109 isa<PHINode>(L->getHeader()->begin())) {
4110 // Only count loops that have phi nodes as not being computable.
4111 ++NumTripCountsNotComputed;
4112 }
4113
4114 // Now that we know more about the trip count for this loop, forget any
4115 // existing SCEV values for PHI nodes in this loop since they are only
4116 // conservative estimates made without the benefit of trip count
4117 // information. This is similar to the code in forgetLoop, except that
4118 // it handles SCEVUnknown PHI nodes specially.
4119 if (Result.hasAnyInfo()) {
4120 SmallVector<Instruction *, 16> Worklist;
4121 PushLoopPHIs(L, Worklist);
4122
4123 SmallPtrSet<Instruction *, 8> Visited;
4124 while (!Worklist.empty()) {
4125 Instruction *I = Worklist.pop_back_val();
4126 if (!Visited.insert(I)) continue;
4127
4128 ValueExprMapType::iterator It =
4129 ValueExprMap.find_as(static_cast<Value *>(I));
4130 if (It != ValueExprMap.end()) {
4131 const SCEV *Old = It->second;
4132
4133 // SCEVUnknown for a PHI either means that it has an unrecognized
4134 // structure, or it's a PHI that's in the progress of being computed
4135 // by createNodeForPHI. In the former case, additional loop trip
4136 // count information isn't going to change anything. In the later
4137 // case, createNodeForPHI will perform the necessary updates on its
4138 // own when it gets to that point.
4139 if (!isa<PHINode>(I) || !isa<SCEVUnknown>(Old)) {
4140 forgetMemoizedResults(Old);
4141 ValueExprMap.erase(It);
4142 }
4143 if (PHINode *PN = dyn_cast<PHINode>(I))
4144 ConstantEvolutionLoopExitValue.erase(PN);
4145 }
4146
4147 PushDefUseChildren(I, Worklist);
4148 }
4149 }
4150
4151 // Re-lookup the insert position, since the call to
4152 // ComputeBackedgeTakenCount above could result in a
4153 // recusive call to getBackedgeTakenInfo (on a different
4154 // loop), which would invalidate the iterator computed
4155 // earlier.
4156 return BackedgeTakenCounts.find(L)->second = Result;
4157}
4158
4159/// forgetLoop - This method should be called by the client when it has
4160/// changed a loop in a way that may effect ScalarEvolution's ability to
4161/// compute a trip count, or if the loop is deleted.
4162void ScalarEvolution::forgetLoop(const Loop *L) {
4163 // Drop any stored trip count value.
4164 DenseMap<const Loop*, BackedgeTakenInfo>::iterator BTCPos =
4165 BackedgeTakenCounts.find(L);
4166 if (BTCPos != BackedgeTakenCounts.end()) {
4167 BTCPos->second.clear();
4168 BackedgeTakenCounts.erase(BTCPos);
4169 }
4170
4171 // Drop information about expressions based on loop-header PHIs.
4172 SmallVector<Instruction *, 16> Worklist;
4173 PushLoopPHIs(L, Worklist);
4174
4175 SmallPtrSet<Instruction *, 8> Visited;
4176 while (!Worklist.empty()) {
4177 Instruction *I = Worklist.pop_back_val();
4178 if (!Visited.insert(I)) continue;
4179
4180 ValueExprMapType::iterator It =
4181 ValueExprMap.find_as(static_cast<Value *>(I));
4182 if (It != ValueExprMap.end()) {
4183 forgetMemoizedResults(It->second);
4184 ValueExprMap.erase(It);
4185 if (PHINode *PN = dyn_cast<PHINode>(I))
4186 ConstantEvolutionLoopExitValue.erase(PN);
4187 }
4188
4189 PushDefUseChildren(I, Worklist);
4190 }
4191
4192 // Forget all contained loops too, to avoid dangling entries in the
4193 // ValuesAtScopes map.
4194 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
4195 forgetLoop(*I);
4196}
4197
4198/// forgetValue - This method should be called by the client when it has
4199/// changed a value in a way that may effect its value, or which may
4200/// disconnect it from a def-use chain linking it to a loop.
4201void ScalarEvolution::forgetValue(Value *V) {
4202 Instruction *I = dyn_cast<Instruction>(V);
4203 if (!I) return;
4204
4205 // Drop information about expressions based on loop-header PHIs.
4206 SmallVector<Instruction *, 16> Worklist;
4207 Worklist.push_back(I);
4208
4209 SmallPtrSet<Instruction *, 8> Visited;
4210 while (!Worklist.empty()) {
4211 I = Worklist.pop_back_val();
4212 if (!Visited.insert(I)) continue;
4213
4214 ValueExprMapType::iterator It =
4215 ValueExprMap.find_as(static_cast<Value *>(I));
4216 if (It != ValueExprMap.end()) {
4217 forgetMemoizedResults(It->second);
4218 ValueExprMap.erase(It);
4219 if (PHINode *PN = dyn_cast<PHINode>(I))
4220 ConstantEvolutionLoopExitValue.erase(PN);
4221 }
4222
4223 PushDefUseChildren(I, Worklist);
4224 }
4225}
4226
4227/// getExact - Get the exact loop backedge taken count considering all loop
4228/// exits. A computable result can only be return for loops with a single exit.
4229/// Returning the minimum taken count among all exits is incorrect because one
4230/// of the loop's exit limit's may have been skipped. HowFarToZero assumes that
4231/// the limit of each loop test is never skipped. This is a valid assumption as
4232/// long as the loop exits via that test. For precise results, it is the
4233/// caller's responsibility to specify the relevant loop exit using
4234/// getExact(ExitingBlock, SE).
4235const SCEV *
4236ScalarEvolution::BackedgeTakenInfo::getExact(ScalarEvolution *SE) const {
4237 // If any exits were not computable, the loop is not computable.
4238 if (!ExitNotTaken.isCompleteList()) return SE->getCouldNotCompute();
4239
4240 // We need exactly one computable exit.
4241 if (!ExitNotTaken.ExitingBlock) return SE->getCouldNotCompute();
4242 assert(ExitNotTaken.ExactNotTaken && "uninitialized not-taken info");
4243
4244 const SCEV *BECount = 0;
4245 for (const ExitNotTakenInfo *ENT = &ExitNotTaken;
4246 ENT != 0; ENT = ENT->getNextExit()) {
4247
4248 assert(ENT->ExactNotTaken != SE->getCouldNotCompute() && "bad exit SCEV");
4249
4250 if (!BECount)
4251 BECount = ENT->ExactNotTaken;
4252 else if (BECount != ENT->ExactNotTaken)
4253 return SE->getCouldNotCompute();
4254 }
4255 assert(BECount && "Invalid not taken count for loop exit");
4256 return BECount;
4257}
4258
4259/// getExact - Get the exact not taken count for this loop exit.
4260const SCEV *
4261ScalarEvolution::BackedgeTakenInfo::getExact(BasicBlock *ExitingBlock,
4262 ScalarEvolution *SE) const {
4263 for (const ExitNotTakenInfo *ENT = &ExitNotTaken;
4264 ENT != 0; ENT = ENT->getNextExit()) {
4265
4266 if (ENT->ExitingBlock == ExitingBlock)
4267 return ENT->ExactNotTaken;
4268 }
4269 return SE->getCouldNotCompute();
4270}
4271
4272/// getMax - Get the max backedge taken count for the loop.
4273const SCEV *
4274ScalarEvolution::BackedgeTakenInfo::getMax(ScalarEvolution *SE) const {
4275 return Max ? Max : SE->getCouldNotCompute();
4276}
4277
4278bool ScalarEvolution::BackedgeTakenInfo::hasOperand(const SCEV *S,
4279 ScalarEvolution *SE) const {
4280 if (Max && Max != SE->getCouldNotCompute() && SE->hasOperand(Max, S))
4281 return true;
4282
4283 if (!ExitNotTaken.ExitingBlock)
4284 return false;
4285
4286 for (const ExitNotTakenInfo *ENT = &ExitNotTaken;
4287 ENT != 0; ENT = ENT->getNextExit()) {
4288
4289 if (ENT->ExactNotTaken != SE->getCouldNotCompute()
4290 && SE->hasOperand(ENT->ExactNotTaken, S)) {
4291 return true;
4292 }
4293 }
4294 return false;
4295}
4296
4297/// Allocate memory for BackedgeTakenInfo and copy the not-taken count of each
4298/// computable exit into a persistent ExitNotTakenInfo array.
4299ScalarEvolution::BackedgeTakenInfo::BackedgeTakenInfo(
4300 SmallVectorImpl< std::pair<BasicBlock *, const SCEV *> > &ExitCounts,
4301 bool Complete, const SCEV *MaxCount) : Max(MaxCount) {
4302
4303 if (!Complete)
4304 ExitNotTaken.setIncomplete();
4305
4306 unsigned NumExits = ExitCounts.size();
4307 if (NumExits == 0) return;
4308
4309 ExitNotTaken.ExitingBlock = ExitCounts[0].first;
4310 ExitNotTaken.ExactNotTaken = ExitCounts[0].second;
4311 if (NumExits == 1) return;
4312
4313 // Handle the rare case of multiple computable exits.
4314 ExitNotTakenInfo *ENT = new ExitNotTakenInfo[NumExits-1];
4315
4316 ExitNotTakenInfo *PrevENT = &ExitNotTaken;
4317 for (unsigned i = 1; i < NumExits; ++i, PrevENT = ENT, ++ENT) {
4318 PrevENT->setNextExit(ENT);
4319 ENT->ExitingBlock = ExitCounts[i].first;
4320 ENT->ExactNotTaken = ExitCounts[i].second;
4321 }
4322}
4323
4324/// clear - Invalidate this result and free the ExitNotTakenInfo array.
4325void ScalarEvolution::BackedgeTakenInfo::clear() {
4326 ExitNotTaken.ExitingBlock = 0;
4327 ExitNotTaken.ExactNotTaken = 0;
4328 delete[] ExitNotTaken.getNextExit();
4329}
4330
4331/// ComputeBackedgeTakenCount - Compute the number of times the backedge
4332/// of the specified loop will execute.
4333ScalarEvolution::BackedgeTakenInfo
4334ScalarEvolution::ComputeBackedgeTakenCount(const Loop *L) {
4335 SmallVector<BasicBlock *, 8> ExitingBlocks;
4336 L->getExitingBlocks(ExitingBlocks);
4337
4338 // Examine all exits and pick the most conservative values.
4339 const SCEV *MaxBECount = getCouldNotCompute();
4340 bool CouldComputeBECount = true;
4341 SmallVector<std::pair<BasicBlock *, const SCEV *>, 4> ExitCounts;
4342 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
4343 ExitLimit EL = ComputeExitLimit(L, ExitingBlocks[i]);
4344 if (EL.Exact == getCouldNotCompute())
4345 // We couldn't compute an exact value for this exit, so
4346 // we won't be able to compute an exact value for the loop.
4347 CouldComputeBECount = false;
4348 else
4349 ExitCounts.push_back(std::make_pair(ExitingBlocks[i], EL.Exact));
4350
4351 if (MaxBECount == getCouldNotCompute())
4352 MaxBECount = EL.Max;
4353 else if (EL.Max != getCouldNotCompute()) {
4354 // We cannot take the "min" MaxBECount, because non-unit stride loops may
4355 // skip some loop tests. Taking the max over the exits is sufficiently
4356 // conservative. TODO: We could do better taking into consideration
4357 // that (1) the loop has unit stride (2) the last loop test is
4358 // less-than/greater-than (3) any loop test is less-than/greater-than AND
4359 // falls-through some constant times less then the other tests.
4360 MaxBECount = getUMaxFromMismatchedTypes(MaxBECount, EL.Max);
4361 }
4362 }
4363
4364 return BackedgeTakenInfo(ExitCounts, CouldComputeBECount, MaxBECount);
4365}
4366
4367/// ComputeExitLimit - Compute the number of times the backedge of the specified
4368/// loop will execute if it exits via the specified block.
4369ScalarEvolution::ExitLimit
4370ScalarEvolution::ComputeExitLimit(const Loop *L, BasicBlock *ExitingBlock) {
4371
4372 // Okay, we've chosen an exiting block. See what condition causes us to
4373 // exit at this block.
4374 //
4375 // FIXME: we should be able to handle switch instructions (with a single exit)
4376 BranchInst *ExitBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
4377 if (ExitBr == 0) return getCouldNotCompute();
4378 assert(ExitBr->isConditional() && "If unconditional, it can't be in loop!");
4379
4380 // At this point, we know we have a conditional branch that determines whether
4381 // the loop is exited. However, we don't know if the branch is executed each
4382 // time through the loop. If not, then the execution count of the branch will
4383 // not be equal to the trip count of the loop.
4384 //
4385 // Currently we check for this by checking to see if the Exit branch goes to
4386 // the loop header. If so, we know it will always execute the same number of
4387 // times as the loop. We also handle the case where the exit block *is* the
4388 // loop header. This is common for un-rotated loops.
4389 //
4390 // If both of those tests fail, walk up the unique predecessor chain to the
4391 // header, stopping if there is an edge that doesn't exit the loop. If the
4392 // header is reached, the execution count of the branch will be equal to the
4393 // trip count of the loop.
4394 //
4395 // More extensive analysis could be done to handle more cases here.
4396 //
4397 if (ExitBr->getSuccessor(0) != L->getHeader() &&
4398 ExitBr->getSuccessor(1) != L->getHeader() &&
4399 ExitBr->getParent() != L->getHeader()) {
4400 // The simple checks failed, try climbing the unique predecessor chain
4401 // up to the header.
4402 bool Ok = false;
4403 for (BasicBlock *BB = ExitBr->getParent(); BB; ) {
4404 BasicBlock *Pred = BB->getUniquePredecessor();
4405 if (!Pred)
4406 return getCouldNotCompute();
4407 TerminatorInst *PredTerm = Pred->getTerminator();
4408 for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i) {
4409 BasicBlock *PredSucc = PredTerm->getSuccessor(i);
4410 if (PredSucc == BB)
4411 continue;
4412 // If the predecessor has a successor that isn't BB and isn't
4413 // outside the loop, assume the worst.
4414 if (L->contains(PredSucc))
4415 return getCouldNotCompute();
4416 }
4417 if (Pred == L->getHeader()) {
4418 Ok = true;
4419 break;
4420 }
4421 BB = Pred;
4422 }
4423 if (!Ok)
4424 return getCouldNotCompute();
4425 }
4426
4427 // Proceed to the next level to examine the exit condition expression.
4428 return ComputeExitLimitFromCond(L, ExitBr->getCondition(),
4429 ExitBr->getSuccessor(0),
4430 ExitBr->getSuccessor(1),
4431 /*IsSubExpr=*/false);
4432}
4433
4434/// ComputeExitLimitFromCond - Compute the number of times the
4435/// backedge of the specified loop will execute if its exit condition
4436/// were a conditional branch of ExitCond, TBB, and FBB.
4437///
4438/// @param IsSubExpr is true if ExitCond does not directly control the exit
4439/// branch. In this case, we cannot assume that the loop only exits when the
4440/// condition is true and cannot infer that failing to meet the condition prior
4441/// to integer wraparound results in undefined behavior.
4442ScalarEvolution::ExitLimit
4443ScalarEvolution::ComputeExitLimitFromCond(const Loop *L,
4444 Value *ExitCond,
4445 BasicBlock *TBB,
4446 BasicBlock *FBB,
4447 bool IsSubExpr) {
4448 // Check if the controlling expression for this loop is an And or Or.
4449 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(ExitCond)) {
4450 if (BO->getOpcode() == Instruction::And) {
4451 // Recurse on the operands of the and.
4452 bool EitherMayExit = L->contains(TBB);
4453 ExitLimit EL0 = ComputeExitLimitFromCond(L, BO->getOperand(0), TBB, FBB,
4454 IsSubExpr || EitherMayExit);
4455 ExitLimit EL1 = ComputeExitLimitFromCond(L, BO->getOperand(1), TBB, FBB,
4456 IsSubExpr || EitherMayExit);
4457 const SCEV *BECount = getCouldNotCompute();
4458 const SCEV *MaxBECount = getCouldNotCompute();
4459 if (EitherMayExit) {
4460 // Both conditions must be true for the loop to continue executing.
4461 // Choose the less conservative count.
4462 if (EL0.Exact == getCouldNotCompute() ||
4463 EL1.Exact == getCouldNotCompute())
4464 BECount = getCouldNotCompute();
4465 else
4466 BECount = getUMinFromMismatchedTypes(EL0.Exact, EL1.Exact);
4467 if (EL0.Max == getCouldNotCompute())
4468 MaxBECount = EL1.Max;
4469 else if (EL1.Max == getCouldNotCompute())
4470 MaxBECount = EL0.Max;
4471 else
4472 MaxBECount = getUMinFromMismatchedTypes(EL0.Max, EL1.Max);
4473 } else {
4474 // Both conditions must be true at the same time for the loop to exit.
4475 // For now, be conservative.
4476 assert(L->contains(FBB) && "Loop block has no successor in loop!");
4477 if (EL0.Max == EL1.Max)
4478 MaxBECount = EL0.Max;
4479 if (EL0.Exact == EL1.Exact)
4480 BECount = EL0.Exact;
4481 }
4482
4483 return ExitLimit(BECount, MaxBECount);
4484 }
4485 if (BO->getOpcode() == Instruction::Or) {
4486 // Recurse on the operands of the or.
4487 bool EitherMayExit = L->contains(FBB);
4488 ExitLimit EL0 = ComputeExitLimitFromCond(L, BO->getOperand(0), TBB, FBB,
4489 IsSubExpr || EitherMayExit);
4490 ExitLimit EL1 = ComputeExitLimitFromCond(L, BO->getOperand(1), TBB, FBB,
4491 IsSubExpr || EitherMayExit);
4492 const SCEV *BECount = getCouldNotCompute();
4493 const SCEV *MaxBECount = getCouldNotCompute();
4494 if (EitherMayExit) {
4495 // Both conditions must be false for the loop to continue executing.
4496 // Choose the less conservative count.
4497 if (EL0.Exact == getCouldNotCompute() ||
4498 EL1.Exact == getCouldNotCompute())
4499 BECount = getCouldNotCompute();
4500 else
4501 BECount = getUMinFromMismatchedTypes(EL0.Exact, EL1.Exact);
4502 if (EL0.Max == getCouldNotCompute())
4503 MaxBECount = EL1.Max;
4504 else if (EL1.Max == getCouldNotCompute())
4505 MaxBECount = EL0.Max;
4506 else
4507 MaxBECount = getUMinFromMismatchedTypes(EL0.Max, EL1.Max);
4508 } else {
4509 // Both conditions must be false at the same time for the loop to exit.
4510 // For now, be conservative.
4511 assert(L->contains(TBB) && "Loop block has no successor in loop!");
4512 if (EL0.Max == EL1.Max)
4513 MaxBECount = EL0.Max;
4514 if (EL0.Exact == EL1.Exact)
4515 BECount = EL0.Exact;
4516 }
4517
4518 return ExitLimit(BECount, MaxBECount);
4519 }
4520 }
4521
4522 // With an icmp, it may be feasible to compute an exact backedge-taken count.
4523 // Proceed to the next level to examine the icmp.
4524 if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond))
4525 return ComputeExitLimitFromICmp(L, ExitCondICmp, TBB, FBB, IsSubExpr);
4526
4527 // Check for a constant condition. These are normally stripped out by
4528 // SimplifyCFG, but ScalarEvolution may be used by a pass which wishes to
4529 // preserve the CFG and is temporarily leaving constant conditions
4530 // in place.
4531 if (ConstantInt *CI = dyn_cast<ConstantInt>(ExitCond)) {
4532 if (L->contains(FBB) == !CI->getZExtValue())
4533 // The backedge is always taken.
4534 return getCouldNotCompute();
4535 else
4536 // The backedge is never taken.
4537 return getConstant(CI->getType(), 0);
4538 }
4539
4540 // If it's not an integer or pointer comparison then compute it the hard way.
4541 return ComputeExitCountExhaustively(L, ExitCond, !L->contains(TBB));
4542}
4543
4544/// ComputeExitLimitFromICmp - Compute the number of times the
4545/// backedge of the specified loop will execute if its exit condition
4546/// were a conditional branch of the ICmpInst ExitCond, TBB, and FBB.
4547ScalarEvolution::ExitLimit
4548ScalarEvolution::ComputeExitLimitFromICmp(const Loop *L,
4549 ICmpInst *ExitCond,
4550 BasicBlock *TBB,
4551 BasicBlock *FBB,
4552 bool IsSubExpr) {
4553
4554 // If the condition was exit on true, convert the condition to exit on false
4555 ICmpInst::Predicate Cond;
4556 if (!L->contains(FBB))
4557 Cond = ExitCond->getPredicate();
4558 else
4559 Cond = ExitCond->getInversePredicate();
4560
4561 // Handle common loops like: for (X = "string"; *X; ++X)
4562 if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0)))
4563 if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) {
4564 ExitLimit ItCnt =
4565 ComputeLoadConstantCompareExitLimit(LI, RHS, L, Cond);
4566 if (ItCnt.hasAnyInfo())
4567 return ItCnt;
4568 }
4569
4570 const SCEV *LHS = getSCEV(ExitCond->getOperand(0));
4571 const SCEV *RHS = getSCEV(ExitCond->getOperand(1));
4572
4573 // Try to evaluate any dependencies out of the loop.
4574 LHS = getSCEVAtScope(LHS, L);
4575 RHS = getSCEVAtScope(RHS, L);
4576
4577 // At this point, we would like to compute how many iterations of the
4578 // loop the predicate will return true for these inputs.
4579 if (isLoopInvariant(LHS, L) && !isLoopInvariant(RHS, L)) {
4580 // If there is a loop-invariant, force it into the RHS.
4581 std::swap(LHS, RHS);
4582 Cond = ICmpInst::getSwappedPredicate(Cond);
4583 }
4584
4585 // Simplify the operands before analyzing them.
4586 (void)SimplifyICmpOperands(Cond, LHS, RHS);
4587
4588 // If we have a comparison of a chrec against a constant, try to use value
4589 // ranges to answer this query.
4590 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS))
4591 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS))
4592 if (AddRec->getLoop() == L) {
4593 // Form the constant range.
4594 ConstantRange CompRange(
4595 ICmpInst::makeConstantRange(Cond, RHSC->getValue()->getValue()));
4596
4597 const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this);
4598 if (!isa<SCEVCouldNotCompute>(Ret)) return Ret;
4599 }
4600
4601 switch (Cond) {
4602 case ICmpInst::ICMP_NE: { // while (X != Y)
4603 // Convert to: while (X-Y != 0)
4604 ExitLimit EL = HowFarToZero(getMinusSCEV(LHS, RHS), L, IsSubExpr);
4605 if (EL.hasAnyInfo()) return EL;
4606 break;
4607 }
4608 case ICmpInst::ICMP_EQ: { // while (X == Y)
4609 // Convert to: while (X-Y == 0)
4610 ExitLimit EL = HowFarToNonZero(getMinusSCEV(LHS, RHS), L);
4611 if (EL.hasAnyInfo()) return EL;
4612 break;
4613 }
4614 case ICmpInst::ICMP_SLT:
4615 case ICmpInst::ICMP_ULT: { // while (X < Y)
4616 bool IsSigned = Cond == ICmpInst::ICMP_SLT;
4617 ExitLimit EL = HowManyLessThans(LHS, RHS, L, IsSigned, IsSubExpr);
4618 if (EL.hasAnyInfo()) return EL;
4619 break;
4620 }
4621 case ICmpInst::ICMP_SGT:
4622 case ICmpInst::ICMP_UGT: { // while (X > Y)
4623 bool IsSigned = Cond == ICmpInst::ICMP_SGT;
4624 ExitLimit EL = HowManyGreaterThans(LHS, RHS, L, IsSigned, IsSubExpr);
4625 if (EL.hasAnyInfo()) return EL;
4626 break;
4627 }
4628 default:
4629#if 0
4630 dbgs() << "ComputeBackedgeTakenCount ";
4631 if (ExitCond->getOperand(0)->getType()->isUnsigned())
4632 dbgs() << "[unsigned] ";
4633 dbgs() << *LHS << " "
4634 << Instruction::getOpcodeName(Instruction::ICmp)
4635 << " " << *RHS << "\n";
4636#endif
4637 break;
4638 }
4639 return ComputeExitCountExhaustively(L, ExitCond, !L->contains(TBB));
4640}
4641
4642static ConstantInt *
4643EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C,
4644 ScalarEvolution &SE) {
4645 const SCEV *InVal = SE.getConstant(C);
4646 const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE);
4647 assert(isa<SCEVConstant>(Val) &&
4648 "Evaluation of SCEV at constant didn't fold correctly?");
4649 return cast<SCEVConstant>(Val)->getValue();
4650}
4651
4652/// ComputeLoadConstantCompareExitLimit - Given an exit condition of
4653/// 'icmp op load X, cst', try to see if we can compute the backedge
4654/// execution count.
4655ScalarEvolution::ExitLimit
4656ScalarEvolution::ComputeLoadConstantCompareExitLimit(
4657 LoadInst *LI,
4658 Constant *RHS,
4659 const Loop *L,
4660 ICmpInst::Predicate predicate) {
4661
4662 if (LI->isVolatile()) return getCouldNotCompute();
4663
4664 // Check to see if the loaded pointer is a getelementptr of a global.
4665 // TODO: Use SCEV instead of manually grubbing with GEPs.
4666 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0));
4667 if (!GEP) return getCouldNotCompute();
4668
4669 // Make sure that it is really a constant global we are gepping, with an
4670 // initializer, and make sure the first IDX is really 0.
4671 GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0));
4672 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() ||
4673 GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) ||
4674 !cast<Constant>(GEP->getOperand(1))->isNullValue())
4675 return getCouldNotCompute();
4676
4677 // Okay, we allow one non-constant index into the GEP instruction.
4678 Value *VarIdx = 0;
4679 std::vector<Constant*> Indexes;
4680 unsigned VarIdxNum = 0;
4681 for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i)
4682 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
4683 Indexes.push_back(CI);
4684 } else if (!isa<ConstantInt>(GEP->getOperand(i))) {
4685 if (VarIdx) return getCouldNotCompute(); // Multiple non-constant idx's.
4686 VarIdx = GEP->getOperand(i);
4687 VarIdxNum = i-2;
4688 Indexes.push_back(0);
4689 }
4690
4691 // Loop-invariant loads may be a byproduct of loop optimization. Skip them.
4692 if (!VarIdx)
4693 return getCouldNotCompute();
4694
4695 // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant.
4696 // Check to see if X is a loop variant variable value now.
4697 const SCEV *Idx = getSCEV(VarIdx);
4698 Idx = getSCEVAtScope(Idx, L);
4699
4700 // We can only recognize very limited forms of loop index expressions, in
4701 // particular, only affine AddRec's like {C1,+,C2}.
4702 const SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx);
4703 if (!IdxExpr || !IdxExpr->isAffine() || isLoopInvariant(IdxExpr, L) ||
4704 !isa<SCEVConstant>(IdxExpr->getOperand(0)) ||
4705 !isa<SCEVConstant>(IdxExpr->getOperand(1)))
4706 return getCouldNotCompute();
4707
4708 unsigned MaxSteps = MaxBruteForceIterations;
4709 for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) {
4710 ConstantInt *ItCst = ConstantInt::get(
4711 cast<IntegerType>(IdxExpr->getType()), IterationNum);
4712 ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this);
4713
4714 // Form the GEP offset.
4715 Indexes[VarIdxNum] = Val;
4716
4717 Constant *Result = ConstantFoldLoadThroughGEPIndices(GV->getInitializer(),
4718 Indexes);
4719 if (Result == 0) break; // Cannot compute!
4720
4721 // Evaluate the condition for this iteration.
4722 Result = ConstantExpr::getICmp(predicate, Result, RHS);
4723 if (!isa<ConstantInt>(Result)) break; // Couldn't decide for sure
4724 if (cast<ConstantInt>(Result)->getValue().isMinValue()) {
4725#if 0
4726 dbgs() << "\n***\n*** Computed loop count " << *ItCst
4727 << "\n*** From global " << *GV << "*** BB: " << *L->getHeader()
4728 << "***\n";
4729#endif
4730 ++NumArrayLenItCounts;
4731 return getConstant(ItCst); // Found terminating iteration!
4732 }
4733 }
4734 return getCouldNotCompute();
4735}
4736
4737
4738/// CanConstantFold - Return true if we can constant fold an instruction of the
4739/// specified type, assuming that all operands were constants.
4740static bool CanConstantFold(const Instruction *I) {
4741 if (isa<BinaryOperator>(I) || isa<CmpInst>(I) ||
4742 isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) ||
4743 isa<LoadInst>(I))
4744 return true;
4745
4746 if (const CallInst *CI = dyn_cast<CallInst>(I))
4747 if (const Function *F = CI->getCalledFunction())
4748 return canConstantFoldCallTo(F);
4749 return false;
4750}
4751
4752/// Determine whether this instruction can constant evolve within this loop
4753/// assuming its operands can all constant evolve.
4754static bool canConstantEvolve(Instruction *I, const Loop *L) {
4755 // An instruction outside of the loop can't be derived from a loop PHI.
4756 if (!L->contains(I)) return false;
4757
4758 if (isa<PHINode>(I)) {
4759 if (L->getHeader() == I->getParent())
4760 return true;
4761 else
4762 // We don't currently keep track of the control flow needed to evaluate
4763 // PHIs, so we cannot handle PHIs inside of loops.
4764 return false;
4765 }
4766
4767 // If we won't be able to constant fold this expression even if the operands
4768 // are constants, bail early.
4769 return CanConstantFold(I);
4770}
4771
4772/// getConstantEvolvingPHIOperands - Implement getConstantEvolvingPHI by
4773/// recursing through each instruction operand until reaching a loop header phi.
4774static PHINode *
4775getConstantEvolvingPHIOperands(Instruction *UseInst, const Loop *L,
4776 DenseMap<Instruction *, PHINode *> &PHIMap) {
4777
4778 // Otherwise, we can evaluate this instruction if all of its operands are
4779 // constant or derived from a PHI node themselves.
4780 PHINode *PHI = 0;
4781 for (Instruction::op_iterator OpI = UseInst->op_begin(),
4782 OpE = UseInst->op_end(); OpI != OpE; ++OpI) {
4783
4784 if (isa<Constant>(*OpI)) continue;
4785
4786 Instruction *OpInst = dyn_cast<Instruction>(*OpI);
4787 if (!OpInst || !canConstantEvolve(OpInst, L)) return 0;
4788
4789 PHINode *P = dyn_cast<PHINode>(OpInst);
4790 if (!P)
4791 // If this operand is already visited, reuse the prior result.
4792 // We may have P != PHI if this is the deepest point at which the
4793 // inconsistent paths meet.
4794 P = PHIMap.lookup(OpInst);
4795 if (!P) {
4796 // Recurse and memoize the results, whether a phi is found or not.
4797 // This recursive call invalidates pointers into PHIMap.
4798 P = getConstantEvolvingPHIOperands(OpInst, L, PHIMap);
4799 PHIMap[OpInst] = P;
4800 }
4801 if (P == 0) return 0; // Not evolving from PHI
4802 if (PHI && PHI != P) return 0; // Evolving from multiple different PHIs.
4803 PHI = P;
4804 }
4805 // This is a expression evolving from a constant PHI!
4806 return PHI;
4807}
4808
4809/// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node
4810/// in the loop that V is derived from. We allow arbitrary operations along the
4811/// way, but the operands of an operation must either be constants or a value
4812/// derived from a constant PHI. If this expression does not fit with these
4813/// constraints, return null.
4814static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) {
4815 Instruction *I = dyn_cast<Instruction>(V);
4816 if (I == 0 || !canConstantEvolve(I, L)) return 0;
4817
4818 if (PHINode *PN = dyn_cast<PHINode>(I)) {
4819 return PN;
4820 }
4821
4822 // Record non-constant instructions contained by the loop.
4823 DenseMap<Instruction *, PHINode *> PHIMap;
4824 return getConstantEvolvingPHIOperands(I, L, PHIMap);
4825}
4826
4827/// EvaluateExpression - Given an expression that passes the
4828/// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node
4829/// in the loop has the value PHIVal. If we can't fold this expression for some
4830/// reason, return null.
4831static Constant *EvaluateExpression(Value *V, const Loop *L,
4832 DenseMap<Instruction *, Constant *> &Vals,
4833 const DataLayout *TD,
4834 const TargetLibraryInfo *TLI) {
4835 // Convenient constant check, but redundant for recursive calls.
4836 if (Constant *C = dyn_cast<Constant>(V)) return C;
4837 Instruction *I = dyn_cast<Instruction>(V);
4838 if (!I) return 0;
4839
4840 if (Constant *C = Vals.lookup(I)) return C;
4841
4842 // An instruction inside the loop depends on a value outside the loop that we
4843 // weren't given a mapping for, or a value such as a call inside the loop.
4844 if (!canConstantEvolve(I, L)) return 0;
4845
4846 // An unmapped PHI can be due to a branch or another loop inside this loop,
4847 // or due to this not being the initial iteration through a loop where we
4848 // couldn't compute the evolution of this particular PHI last time.
4849 if (isa<PHINode>(I)) return 0;
4850
4851 std::vector<Constant*> Operands(I->getNumOperands());
4852
4853 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
4854 Instruction *Operand = dyn_cast<Instruction>(I->getOperand(i));
4855 if (!Operand) {
4856 Operands[i] = dyn_cast<Constant>(I->getOperand(i));
4857 if (!Operands[i]) return 0;
4858 continue;
4859 }
4860 Constant *C = EvaluateExpression(Operand, L, Vals, TD, TLI);
4861 Vals[Operand] = C;
4862 if (!C) return 0;
4863 Operands[i] = C;
4864 }
4865
4866 if (CmpInst *CI = dyn_cast<CmpInst>(I))
4867 return ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0],
4868 Operands[1], TD, TLI);
4869 if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
4870 if (!LI->isVolatile())
4871 return ConstantFoldLoadFromConstPtr(Operands[0], TD);
4872 }
4873 return ConstantFoldInstOperands(I->getOpcode(), I->getType(), Operands, TD,
4874 TLI);
4875}
4876
4877/// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
4878/// in the header of its containing loop, we know the loop executes a
4879/// constant number of times, and the PHI node is just a recurrence
4880/// involving constants, fold it.
4881Constant *
4882ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN,
4883 const APInt &BEs,
4884 const Loop *L) {
4885 DenseMap<PHINode*, Constant*>::const_iterator I =
4886 ConstantEvolutionLoopExitValue.find(PN);
4887 if (I != ConstantEvolutionLoopExitValue.end())
4888 return I->second;
4889
4890 if (BEs.ugt(MaxBruteForceIterations))
4891 return ConstantEvolutionLoopExitValue[PN] = 0; // Not going to evaluate it.
4892
4893 Constant *&RetVal = ConstantEvolutionLoopExitValue[PN];
4894
4895 DenseMap<Instruction *, Constant *> CurrentIterVals;
4896 BasicBlock *Header = L->getHeader();
4897 assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!");
4898
4899 // Since the loop is canonicalized, the PHI node must have two entries. One
4900 // entry must be a constant (coming in from outside of the loop), and the
4901 // second must be derived from the same PHI.
4902 bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
4903 PHINode *PHI = 0;
4904 for (BasicBlock::iterator I = Header->begin();
4905 (PHI = dyn_cast<PHINode>(I)); ++I) {
4906 Constant *StartCST =
4907 dyn_cast<Constant>(PHI->getIncomingValue(!SecondIsBackedge));
4908 if (StartCST == 0) continue;
4909 CurrentIterVals[PHI] = StartCST;
4910 }
4911 if (!CurrentIterVals.count(PN))
4912 return RetVal = 0;
4913
4914 Value *BEValue = PN->getIncomingValue(SecondIsBackedge);
4915
4916 // Execute the loop symbolically to determine the exit value.
4917 if (BEs.getActiveBits() >= 32)
4918 return RetVal = 0; // More than 2^32-1 iterations?? Not doing it!
4919
4920 unsigned NumIterations = BEs.getZExtValue(); // must be in range
4921 unsigned IterationNum = 0;
4922 for (; ; ++IterationNum) {
4923 if (IterationNum == NumIterations)
4924 return RetVal = CurrentIterVals[PN]; // Got exit value!
4925
4926 // Compute the value of the PHIs for the next iteration.
4927 // EvaluateExpression adds non-phi values to the CurrentIterVals map.
4928 DenseMap<Instruction *, Constant *> NextIterVals;
4929 Constant *NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, TD,
4930 TLI);
4931 if (NextPHI == 0)
4932 return 0; // Couldn't evaluate!
4933 NextIterVals[PN] = NextPHI;
4934
4935 bool StoppedEvolving = NextPHI == CurrentIterVals[PN];
4936
4937 // Also evaluate the other PHI nodes. However, we don't get to stop if we
4938 // cease to be able to evaluate one of them or if they stop evolving,
4939 // because that doesn't necessarily prevent us from computing PN.
4940 SmallVector<std::pair<PHINode *, Constant *>, 8> PHIsToCompute;
4941 for (DenseMap<Instruction *, Constant *>::const_iterator
4942 I = CurrentIterVals.begin(), E = CurrentIterVals.end(); I != E; ++I){
4943 PHINode *PHI = dyn_cast<PHINode>(I->first);
4944 if (!PHI || PHI == PN || PHI->getParent() != Header) continue;
4945 PHIsToCompute.push_back(std::make_pair(PHI, I->second));
4946 }
4947 // We use two distinct loops because EvaluateExpression may invalidate any
4948 // iterators into CurrentIterVals.
4949 for (SmallVectorImpl<std::pair<PHINode *, Constant*> >::const_iterator
4950 I = PHIsToCompute.begin(), E = PHIsToCompute.end(); I != E; ++I) {
4951 PHINode *PHI = I->first;
4952 Constant *&NextPHI = NextIterVals[PHI];
4953 if (!NextPHI) { // Not already computed.
4954 Value *BEValue = PHI->getIncomingValue(SecondIsBackedge);
4955 NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, TD, TLI);
4956 }
4957 if (NextPHI != I->second)
4958 StoppedEvolving = false;
4959 }
4960
4961 // If all entries in CurrentIterVals == NextIterVals then we can stop
4962 // iterating, the loop can't continue to change.
4963 if (StoppedEvolving)
4964 return RetVal = CurrentIterVals[PN];
4965
4966 CurrentIterVals.swap(NextIterVals);
4967 }
4968}
4969
4970/// ComputeExitCountExhaustively - If the loop is known to execute a
4971/// constant number of times (the condition evolves only from constants),
4972/// try to evaluate a few iterations of the loop until we get the exit
4973/// condition gets a value of ExitWhen (true or false). If we cannot
4974/// evaluate the trip count of the loop, return getCouldNotCompute().
4975const SCEV *ScalarEvolution::ComputeExitCountExhaustively(const Loop *L,
4976 Value *Cond,
4977 bool ExitWhen) {
4978 PHINode *PN = getConstantEvolvingPHI(Cond, L);
4979 if (PN == 0) return getCouldNotCompute();
4980
4981 // If the loop is canonicalized, the PHI will have exactly two entries.
4982 // That's the only form we support here.
4983 if (PN->getNumIncomingValues() != 2) return getCouldNotCompute();
4984
4985 DenseMap<Instruction *, Constant *> CurrentIterVals;
4986 BasicBlock *Header = L->getHeader();
4987 assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!");
4988
4989 // One entry must be a constant (coming in from outside of the loop), and the
4990 // second must be derived from the same PHI.
4991 bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
4992 PHINode *PHI = 0;
4993 for (BasicBlock::iterator I = Header->begin();
4994 (PHI = dyn_cast<PHINode>(I)); ++I) {
4995 Constant *StartCST =
4996 dyn_cast<Constant>(PHI->getIncomingValue(!SecondIsBackedge));
4997 if (StartCST == 0) continue;
4998 CurrentIterVals[PHI] = StartCST;
4999 }
5000 if (!CurrentIterVals.count(PN))
5001 return getCouldNotCompute();
5002
5003 // Okay, we find a PHI node that defines the trip count of this loop. Execute
5004 // the loop symbolically to determine when the condition gets a value of
5005 // "ExitWhen".
5006
5007 unsigned MaxIterations = MaxBruteForceIterations; // Limit analysis.
5008 for (unsigned IterationNum = 0; IterationNum != MaxIterations;++IterationNum){
5009 ConstantInt *CondVal =
5010 dyn_cast_or_null<ConstantInt>(EvaluateExpression(Cond, L, CurrentIterVals,
5011 TD, TLI));
5012
5013 // Couldn't symbolically evaluate.
5014 if (!CondVal) return getCouldNotCompute();
5015
5016 if (CondVal->getValue() == uint64_t(ExitWhen)) {
5017 ++NumBruteForceTripCountsComputed;
5018 return getConstant(Type::getInt32Ty(getContext()), IterationNum);
5019 }
5020
5021 // Update all the PHI nodes for the next iteration.
5022 DenseMap<Instruction *, Constant *> NextIterVals;
5023
5024 // Create a list of which PHIs we need to compute. We want to do this before
5025 // calling EvaluateExpression on them because that may invalidate iterators
5026 // into CurrentIterVals.
5027 SmallVector<PHINode *, 8> PHIsToCompute;
5028 for (DenseMap<Instruction *, Constant *>::const_iterator
5029 I = CurrentIterVals.begin(), E = CurrentIterVals.end(); I != E; ++I){
5030 PHINode *PHI = dyn_cast<PHINode>(I->first);
5031 if (!PHI || PHI->getParent() != Header) continue;
5032 PHIsToCompute.push_back(PHI);
5033 }
5034 for (SmallVectorImpl<PHINode *>::const_iterator I = PHIsToCompute.begin(),
5035 E = PHIsToCompute.end(); I != E; ++I) {
5036 PHINode *PHI = *I;
5037 Constant *&NextPHI = NextIterVals[PHI];
5038 if (NextPHI) continue; // Already computed!
5039
5040 Value *BEValue = PHI->getIncomingValue(SecondIsBackedge);
5041 NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, TD, TLI);
5042 }
5043 CurrentIterVals.swap(NextIterVals);
5044 }
5045
5046 // Too many iterations were needed to evaluate.
5047 return getCouldNotCompute();
5048}
5049
5050/// getSCEVAtScope - Return a SCEV expression for the specified value
5051/// at the specified scope in the program. The L value specifies a loop
5052/// nest to evaluate the expression at, where null is the top-level or a
5053/// specified loop is immediately inside of the loop.
5054///
5055/// This method can be used to compute the exit value for a variable defined
5056/// in a loop by querying what the value will hold in the parent loop.
5057///
5058/// In the case that a relevant loop exit value cannot be computed, the
5059/// original value V is returned.
5060const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) {
5061 // Check to see if we've folded this expression at this loop before.
5062 SmallVector<std::pair<const Loop *, const SCEV *>, 2> &Values = ValuesAtScopes[V];
5063 for (unsigned u = 0; u < Values.size(); u++) {
5064 if (Values[u].first == L)
5065 return Values[u].second ? Values[u].second : V;
5066 }
5067 Values.push_back(std::make_pair(L, static_cast<const SCEV *>(0)));
5068 // Otherwise compute it.
5069 const SCEV *C = computeSCEVAtScope(V, L);
5070 SmallVector<std::pair<const Loop *, const SCEV *>, 2> &Values2 = ValuesAtScopes[V];
5071 for (unsigned u = Values2.size(); u > 0; u--) {
5072 if (Values2[u - 1].first == L) {
5073 Values2[u - 1].second = C;
5074 break;
5075 }
5076 }
5077 return C;
5078}
5079
5080/// This builds up a Constant using the ConstantExpr interface. That way, we
5081/// will return Constants for objects which aren't represented by a
5082/// SCEVConstant, because SCEVConstant is restricted to ConstantInt.
5083/// Returns NULL if the SCEV isn't representable as a Constant.
5084static Constant *BuildConstantFromSCEV(const SCEV *V) {
5085 switch (V->getSCEVType()) {
5086 default: // TODO: smax, umax.
5087 case scCouldNotCompute:
5088 case scAddRecExpr:
5089 break;
5090 case scConstant:
5091 return cast<SCEVConstant>(V)->getValue();
5092 case scUnknown:
5093 return dyn_cast<Constant>(cast<SCEVUnknown>(V)->getValue());
5094 case scSignExtend: {
5095 const SCEVSignExtendExpr *SS = cast<SCEVSignExtendExpr>(V);
5096 if (Constant *CastOp = BuildConstantFromSCEV(SS->getOperand()))
5097 return ConstantExpr::getSExt(CastOp, SS->getType());
5098 break;
5099 }
5100 case scZeroExtend: {
5101 const SCEVZeroExtendExpr *SZ = cast<SCEVZeroExtendExpr>(V);
5102 if (Constant *CastOp = BuildConstantFromSCEV(SZ->getOperand()))
5103 return ConstantExpr::getZExt(CastOp, SZ->getType());
5104 break;
5105 }
5106 case scTruncate: {
5107 const SCEVTruncateExpr *ST = cast<SCEVTruncateExpr>(V);
5108 if (Constant *CastOp = BuildConstantFromSCEV(ST->getOperand()))
5109 return ConstantExpr::getTrunc(CastOp, ST->getType());
5110 break;
5111 }
5112 case scAddExpr: {
5113 const SCEVAddExpr *SA = cast<SCEVAddExpr>(V);
5114 if (Constant *C = BuildConstantFromSCEV(SA->getOperand(0))) {
5115 if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) {
5116 unsigned AS = PTy->getAddressSpace();
5117 Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS);
5118 C = ConstantExpr::getBitCast(C, DestPtrTy);
5119 }
5120 for (unsigned i = 1, e = SA->getNumOperands(); i != e; ++i) {
5121 Constant *C2 = BuildConstantFromSCEV(SA->getOperand(i));
5122 if (!C2) return 0;
5123
5124 // First pointer!
5125 if (!C->getType()->isPointerTy() && C2->getType()->isPointerTy()) {
5126 unsigned AS = C2->getType()->getPointerAddressSpace();
5127 std::swap(C, C2);
5128 Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS);
5129 // The offsets have been converted to bytes. We can add bytes to an
5130 // i8* by GEP with the byte count in the first index.
5131 C = ConstantExpr::getBitCast(C, DestPtrTy);
5132 }
5133
5134 // Don't bother trying to sum two pointers. We probably can't
5135 // statically compute a load that results from it anyway.
5136 if (C2->getType()->isPointerTy())
5137 return 0;
5138
5139 if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) {
5140 if (PTy->getElementType()->isStructTy())
5141 C2 = ConstantExpr::getIntegerCast(
5142 C2, Type::getInt32Ty(C->getContext()), true);
5143 C = ConstantExpr::getGetElementPtr(C, C2);
5144 } else
5145 C = ConstantExpr::getAdd(C, C2);
5146 }
5147 return C;
5148 }
5149 break;
5150 }
5151 case scMulExpr: {
5152 const SCEVMulExpr *SM = cast<SCEVMulExpr>(V);
5153 if (Constant *C = BuildConstantFromSCEV(SM->getOperand(0))) {
5154 // Don't bother with pointers at all.
5155 if (C->getType()->isPointerTy()) return 0;
5156 for (unsigned i = 1, e = SM->getNumOperands(); i != e; ++i) {
5157 Constant *C2 = BuildConstantFromSCEV(SM->getOperand(i));
5158 if (!C2 || C2->getType()->isPointerTy()) return 0;
5159 C = ConstantExpr::getMul(C, C2);
5160 }
5161 return C;
5162 }
5163 break;
5164 }
5165 case scUDivExpr: {
5166 const SCEVUDivExpr *SU = cast<SCEVUDivExpr>(V);
5167 if (Constant *LHS = BuildConstantFromSCEV(SU->getLHS()))
5168 if (Constant *RHS = BuildConstantFromSCEV(SU->getRHS()))
5169 if (LHS->getType() == RHS->getType())
5170 return ConstantExpr::getUDiv(LHS, RHS);
5171 break;
5172 }
5173 }
5174 return 0;
5175}
5176
5177const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) {
5178 if (isa<SCEVConstant>(V)) return V;
5179
5180 // If this instruction is evolved from a constant-evolving PHI, compute the
5181 // exit value from the loop without using SCEVs.
5182 if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) {
5183 if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) {
5184 const Loop *LI = (*this->LI)[I->getParent()];
5185 if (LI && LI->getParentLoop() == L) // Looking for loop exit value.
5186 if (PHINode *PN = dyn_cast<PHINode>(I))
5187 if (PN->getParent() == LI->getHeader()) {
5188 // Okay, there is no closed form solution for the PHI node. Check
5189 // to see if the loop that contains it has a known backedge-taken
5190 // count. If so, we may be able to force computation of the exit
5191 // value.
5192 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(LI);
5193 if (const SCEVConstant *BTCC =
5194 dyn_cast<SCEVConstant>(BackedgeTakenCount)) {
5195 // Okay, we know how many times the containing loop executes. If
5196 // this is a constant evolving PHI node, get the final value at
5197 // the specified iteration number.
5198 Constant *RV = getConstantEvolutionLoopExitValue(PN,
5199 BTCC->getValue()->getValue(),
5200 LI);
5201 if (RV) return getSCEV(RV);
5202 }
5203 }
5204
5205 // Okay, this is an expression that we cannot symbolically evaluate
5206 // into a SCEV. Check to see if it's possible to symbolically evaluate
5207 // the arguments into constants, and if so, try to constant propagate the
5208 // result. This is particularly useful for computing loop exit values.
5209 if (CanConstantFold(I)) {
5210 SmallVector<Constant *, 4> Operands;
5211 bool MadeImprovement = false;
5212 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
5213 Value *Op = I->getOperand(i);
5214 if (Constant *C = dyn_cast<Constant>(Op)) {
5215 Operands.push_back(C);
5216 continue;
5217 }
5218
5219 // If any of the operands is non-constant and if they are
5220 // non-integer and non-pointer, don't even try to analyze them
5221 // with scev techniques.
5222 if (!isSCEVable(Op->getType()))
5223 return V;
5224
5225 const SCEV *OrigV = getSCEV(Op);
5226 const SCEV *OpV = getSCEVAtScope(OrigV, L);
5227 MadeImprovement |= OrigV != OpV;
5228
5229 Constant *C = BuildConstantFromSCEV(OpV);
5230 if (!C) return V;
5231 if (C->getType() != Op->getType())
5232 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
5233 Op->getType(),
5234 false),
5235 C, Op->getType());
5236 Operands.push_back(C);
5237 }
5238
5239 // Check to see if getSCEVAtScope actually made an improvement.
5240 if (MadeImprovement) {
5241 Constant *C = 0;
5242 if (const CmpInst *CI = dyn_cast<CmpInst>(I))
5243 C = ConstantFoldCompareInstOperands(CI->getPredicate(),
5244 Operands[0], Operands[1], TD,
5245 TLI);
5246 else if (const LoadInst *LI = dyn_cast<LoadInst>(I)) {
5247 if (!LI->isVolatile())
5248 C = ConstantFoldLoadFromConstPtr(Operands[0], TD);
5249 } else
5250 C = ConstantFoldInstOperands(I->getOpcode(), I->getType(),
5251 Operands, TD, TLI);
5252 if (!C) return V;
5253 return getSCEV(C);
5254 }
5255 }
5256 }
5257
5258 // This is some other type of SCEVUnknown, just return it.
5259 return V;
5260 }
5261
5262 if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) {
5263 // Avoid performing the look-up in the common case where the specified
5264 // expression has no loop-variant portions.
5265 for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) {
5266 const SCEV *OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
5267 if (OpAtScope != Comm->getOperand(i)) {
5268 // Okay, at least one of these operands is loop variant but might be
5269 // foldable. Build a new instance of the folded commutative expression.
5270 SmallVector<const SCEV *, 8> NewOps(Comm->op_begin(),
5271 Comm->op_begin()+i);
5272 NewOps.push_back(OpAtScope);
5273
5274 for (++i; i != e; ++i) {
5275 OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
5276 NewOps.push_back(OpAtScope);
5277 }
5278 if (isa<SCEVAddExpr>(Comm))
5279 return getAddExpr(NewOps);
5280 if (isa<SCEVMulExpr>(Comm))
5281 return getMulExpr(NewOps);
5282 if (isa<SCEVSMaxExpr>(Comm))
5283 return getSMaxExpr(NewOps);
5284 if (isa<SCEVUMaxExpr>(Comm))
5285 return getUMaxExpr(NewOps);
5286 llvm_unreachable("Unknown commutative SCEV type!");
5287 }
5288 }
5289 // If we got here, all operands are loop invariant.
5290 return Comm;
5291 }
5292
5293 if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) {
5294 const SCEV *LHS = getSCEVAtScope(Div->getLHS(), L);
5295 const SCEV *RHS = getSCEVAtScope(Div->getRHS(), L);
5296 if (LHS == Div->getLHS() && RHS == Div->getRHS())
5297 return Div; // must be loop invariant
5298 return getUDivExpr(LHS, RHS);
5299 }
5300
5301 // If this is a loop recurrence for a loop that does not contain L, then we
5302 // are dealing with the final value computed by the loop.
5303 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) {
5304 // First, attempt to evaluate each operand.
5305 // Avoid performing the look-up in the common case where the specified
5306 // expression has no loop-variant portions.
5307 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
5308 const SCEV *OpAtScope = getSCEVAtScope(AddRec->getOperand(i), L);
5309 if (OpAtScope == AddRec->getOperand(i))
5310 continue;
5311
5312 // Okay, at least one of these operands is loop variant but might be
5313 // foldable. Build a new instance of the folded commutative expression.
5314 SmallVector<const SCEV *, 8> NewOps(AddRec->op_begin(),
5315 AddRec->op_begin()+i);
5316 NewOps.push_back(OpAtScope);
5317 for (++i; i != e; ++i)
5318 NewOps.push_back(getSCEVAtScope(AddRec->getOperand(i), L));
5319
5320 const SCEV *FoldedRec =
5321 getAddRecExpr(NewOps, AddRec->getLoop(),
5322 AddRec->getNoWrapFlags(SCEV::FlagNW));
5323 AddRec = dyn_cast<SCEVAddRecExpr>(FoldedRec);
5324 // The addrec may be folded to a nonrecurrence, for example, if the
5325 // induction variable is multiplied by zero after constant folding. Go
5326 // ahead and return the folded value.
5327 if (!AddRec)
5328 return FoldedRec;
5329 break;
5330 }
5331
5332 // If the scope is outside the addrec's loop, evaluate it by using the
5333 // loop exit value of the addrec.
5334 if (!AddRec->getLoop()->contains(L)) {
5335 // To evaluate this recurrence, we need to know how many times the AddRec
5336 // loop iterates. Compute this now.
5337 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop());
5338 if (BackedgeTakenCount == getCouldNotCompute()) return AddRec;
5339
5340 // Then, evaluate the AddRec.
5341 return AddRec->evaluateAtIteration(BackedgeTakenCount, *this);
5342 }
5343
5344 return AddRec;
5345 }
5346
5347 if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) {
5348 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
5349 if (Op == Cast->getOperand())
5350 return Cast; // must be loop invariant
5351 return getZeroExtendExpr(Op, Cast->getType());
5352 }
5353
5354 if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) {
5355 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
5356 if (Op == Cast->getOperand())
5357 return Cast; // must be loop invariant
5358 return getSignExtendExpr(Op, Cast->getType());
5359 }
5360
5361 if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) {
5362 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
5363 if (Op == Cast->getOperand())
5364 return Cast; // must be loop invariant
5365 return getTruncateExpr(Op, Cast->getType());
5366 }
5367
5368 llvm_unreachable("Unknown SCEV type!");
5369}
5370
5371/// getSCEVAtScope - This is a convenience function which does
5372/// getSCEVAtScope(getSCEV(V), L).
5373const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) {
5374 return getSCEVAtScope(getSCEV(V), L);
5375}
5376
5377/// SolveLinEquationWithOverflow - Finds the minimum unsigned root of the
5378/// following equation:
5379///
5380/// A * X = B (mod N)
5381///
5382/// where N = 2^BW and BW is the common bit width of A and B. The signedness of
5383/// A and B isn't important.
5384///
5385/// If the equation does not have a solution, SCEVCouldNotCompute is returned.
5386static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const APInt &B,
5387 ScalarEvolution &SE) {
5388 uint32_t BW = A.getBitWidth();
5389 assert(BW == B.getBitWidth() && "Bit widths must be the same.");
5390 assert(A != 0 && "A must be non-zero.");
5391
5392 // 1. D = gcd(A, N)
5393 //
5394 // The gcd of A and N may have only one prime factor: 2. The number of
5395 // trailing zeros in A is its multiplicity
5396 uint32_t Mult2 = A.countTrailingZeros();
5397 // D = 2^Mult2
5398
5399 // 2. Check if B is divisible by D.
5400 //
5401 // B is divisible by D if and only if the multiplicity of prime factor 2 for B
5402 // is not less than multiplicity of this prime factor for D.
5403 if (B.countTrailingZeros() < Mult2)
5404 return SE.getCouldNotCompute();
5405
5406 // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic
5407 // modulo (N / D).
5408 //
5409 // (N / D) may need BW+1 bits in its representation. Hence, we'll use this
5410 // bit width during computations.
5411 APInt AD = A.lshr(Mult2).zext(BW + 1); // AD = A / D
5412 APInt Mod(BW + 1, 0);
5413 Mod.setBit(BW - Mult2); // Mod = N / D
5414 APInt I = AD.multiplicativeInverse(Mod);
5415
5416 // 4. Compute the minimum unsigned root of the equation:
5417 // I * (B / D) mod (N / D)
5418 APInt Result = (I * B.lshr(Mult2).zext(BW + 1)).urem(Mod);
5419
5420 // The result is guaranteed to be less than 2^BW so we may truncate it to BW
5421 // bits.
5422 return SE.getConstant(Result.trunc(BW));
5423}
5424
5425/// SolveQuadraticEquation - Find the roots of the quadratic equation for the
5426/// given quadratic chrec {L,+,M,+,N}. This returns either the two roots (which
5427/// might be the same) or two SCEVCouldNotCompute objects.
5428///
5429static std::pair<const SCEV *,const SCEV *>
5430SolveQuadraticEquation(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) {
5431 assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!");
5432 const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0));
5433 const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1));
5434 const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2));
5435
5436 // We currently can only solve this if the coefficients are constants.
5437 if (!LC || !MC || !NC) {
5438 const SCEV *CNC = SE.getCouldNotCompute();
5439 return std::make_pair(CNC, CNC);
5440 }
5441
5442 uint32_t BitWidth = LC->getValue()->getValue().getBitWidth();
5443 const APInt &L = LC->getValue()->getValue();
5444 const APInt &M = MC->getValue()->getValue();
5445 const APInt &N = NC->getValue()->getValue();
5446 APInt Two(BitWidth, 2);
5447 APInt Four(BitWidth, 4);
5448
5449 {
5450 using namespace APIntOps;
5451 const APInt& C = L;
5452 // Convert from chrec coefficients to polynomial coefficients AX^2+BX+C
5453 // The B coefficient is M-N/2
5454 APInt B(M);
5455 B -= sdiv(N,Two);
5456
5457 // The A coefficient is N/2
5458 APInt A(N.sdiv(Two));
5459
5460 // Compute the B^2-4ac term.
5461 APInt SqrtTerm(B);
5462 SqrtTerm *= B;
5463 SqrtTerm -= Four * (A * C);
5464
5465 if (SqrtTerm.isNegative()) {
5466 // The loop is provably infinite.
5467 const SCEV *CNC = SE.getCouldNotCompute();
5468 return std::make_pair(CNC, CNC);
5469 }
5470
5471 // Compute sqrt(B^2-4ac). This is guaranteed to be the nearest
5472 // integer value or else APInt::sqrt() will assert.
5473 APInt SqrtVal(SqrtTerm.sqrt());
5474
5475 // Compute the two solutions for the quadratic formula.
5476 // The divisions must be performed as signed divisions.
5477 APInt NegB(-B);
5478 APInt TwoA(A << 1);
5479 if (TwoA.isMinValue()) {
5480 const SCEV *CNC = SE.getCouldNotCompute();
5481 return std::make_pair(CNC, CNC);
5482 }
5483
5484 LLVMContext &Context = SE.getContext();
5485
5486 ConstantInt *Solution1 =
5487 ConstantInt::get(Context, (NegB + SqrtVal).sdiv(TwoA));
5488 ConstantInt *Solution2 =
5489 ConstantInt::get(Context, (NegB - SqrtVal).sdiv(TwoA));
5490
5491 return std::make_pair(SE.getConstant(Solution1),
5492 SE.getConstant(Solution2));
5493 } // end APIntOps namespace
5494}
5495
5496/// HowFarToZero - Return the number of times a backedge comparing the specified
5497/// value to zero will execute. If not computable, return CouldNotCompute.
5498///
5499/// This is only used for loops with a "x != y" exit test. The exit condition is
5500/// now expressed as a single expression, V = x-y. So the exit test is
5501/// effectively V != 0. We know and take advantage of the fact that this
5502/// expression only being used in a comparison by zero context.
5503ScalarEvolution::ExitLimit
5504ScalarEvolution::HowFarToZero(const SCEV *V, const Loop *L, bool IsSubExpr) {
5505 // If the value is a constant
5506 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
5507 // If the value is already zero, the branch will execute zero times.
5508 if (C->getValue()->isZero()) return C;
5509 return getCouldNotCompute(); // Otherwise it will loop infinitely.
5510 }
5511
5512 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V);
5513 if (!AddRec || AddRec->getLoop() != L)
5514 return getCouldNotCompute();
5515
5516 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of
5517 // the quadratic equation to solve it.
5518 if (AddRec->isQuadratic() && AddRec->getType()->isIntegerTy()) {
5519 std::pair<const SCEV *,const SCEV *> Roots =
5520 SolveQuadraticEquation(AddRec, *this);
5521 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
5522 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
5523 if (R1 && R2) {
5524#if 0
5525 dbgs() << "HFTZ: " << *V << " - sol#1: " << *R1
5526 << " sol#2: " << *R2 << "\n";
5527#endif
5528 // Pick the smallest positive root value.
5529 if (ConstantInt *CB =
5530 dyn_cast<ConstantInt>(ConstantExpr::getICmp(CmpInst::ICMP_ULT,
5531 R1->getValue(),
5532 R2->getValue()))) {
5533 if (CB->getZExtValue() == false)
5534 std::swap(R1, R2); // R1 is the minimum root now.
5535
5536 // We can only use this value if the chrec ends up with an exact zero
5537 // value at this index. When solving for "X*X != 5", for example, we
5538 // should not accept a root of 2.
5539 const SCEV *Val = AddRec->evaluateAtIteration(R1, *this);
5540 if (Val->isZero())
5541 return R1; // We found a quadratic root!
5542 }
5543 }
5544 return getCouldNotCompute();
5545 }
5546
5547 // Otherwise we can only handle this if it is affine.
5548 if (!AddRec->isAffine())
5549 return getCouldNotCompute();
5550
5551 // If this is an affine expression, the execution count of this branch is
5552 // the minimum unsigned root of the following equation:
5553 //
5554 // Start + Step*N = 0 (mod 2^BW)
5555 //
5556 // equivalent to:
5557 //
5558 // Step*N = -Start (mod 2^BW)
5559 //
5560 // where BW is the common bit width of Start and Step.
5561
5562 // Get the initial value for the loop.
5563 const SCEV *Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop());
5564 const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1), L->getParentLoop());
5565
5566 // For now we handle only constant steps.
5567 //
5568 // TODO: Handle a nonconstant Step given AddRec<NUW>. If the
5569 // AddRec is NUW, then (in an unsigned sense) it cannot be counting up to wrap
5570 // to 0, it must be counting down to equal 0. Consequently, N = Start / -Step.
5571 // We have not yet seen any such cases.
5572 const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step);
5573 if (StepC == 0 || StepC->getValue()->equalsInt(0))
5574 return getCouldNotCompute();
5575
5576 // For positive steps (counting up until unsigned overflow):
5577 // N = -Start/Step (as unsigned)
5578 // For negative steps (counting down to zero):
5579 // N = Start/-Step
5580 // First compute the unsigned distance from zero in the direction of Step.
5581 bool CountDown = StepC->getValue()->getValue().isNegative();
5582 const SCEV *Distance = CountDown ? Start : getNegativeSCEV(Start);
5583
5584 // Handle unitary steps, which cannot wraparound.
5585 // 1*N = -Start; -1*N = Start (mod 2^BW), so:
5586 // N = Distance (as unsigned)
5587 if (StepC->getValue()->equalsInt(1) || StepC->getValue()->isAllOnesValue()) {
5588 ConstantRange CR = getUnsignedRange(Start);
5589 const SCEV *MaxBECount;
5590 if (!CountDown && CR.getUnsignedMin().isMinValue())
5591 // When counting up, the worst starting value is 1, not 0.
5592 MaxBECount = CR.getUnsignedMax().isMinValue()
5593 ? getConstant(APInt::getMinValue(CR.getBitWidth()))
5594 : getConstant(APInt::getMaxValue(CR.getBitWidth()));
5595 else
5596 MaxBECount = getConstant(CountDown ? CR.getUnsignedMax()
5597 : -CR.getUnsignedMin());
5598 return ExitLimit(Distance, MaxBECount);
5599 }
5600
5601 // If the recurrence is known not to wraparound, unsigned divide computes the
5602 // back edge count. (Ideally we would have an "isexact" bit for udiv). We know
5603 // that the value will either become zero (and thus the loop terminates), that
5604 // the loop will terminate through some other exit condition first, or that
5605 // the loop has undefined behavior. This means we can't "miss" the exit
5606 // value, even with nonunit stride.
5607 //
5608 // This is only valid for expressions that directly compute the loop exit. It
5609 // is invalid for subexpressions in which the loop may exit through this
5610 // branch even if this subexpression is false. In that case, the trip count
5611 // computed by this udiv could be smaller than the number of well-defined
5612 // iterations.
5613 if (!IsSubExpr && AddRec->getNoWrapFlags(SCEV::FlagNW))
5614 return getUDivExpr(Distance, CountDown ? getNegativeSCEV(Step) : Step);
5615
5616 // Then, try to solve the above equation provided that Start is constant.
5617 if (const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start))
5618 return SolveLinEquationWithOverflow(StepC->getValue()->getValue(),
5619 -StartC->getValue()->getValue(),
5620 *this);
5621 return getCouldNotCompute();
5622}
5623
5624/// HowFarToNonZero - Return the number of times a backedge checking the
5625/// specified value for nonzero will execute. If not computable, return
5626/// CouldNotCompute
5627ScalarEvolution::ExitLimit
5628ScalarEvolution::HowFarToNonZero(const SCEV *V, const Loop *L) {
5629 // Loops that look like: while (X == 0) are very strange indeed. We don't
5630 // handle them yet except for the trivial case. This could be expanded in the
5631 // future as needed.
5632
5633 // If the value is a constant, check to see if it is known to be non-zero
5634 // already. If so, the backedge will execute zero times.
5635 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
5636 if (!C->getValue()->isNullValue())
5637 return getConstant(C->getType(), 0);
5638 return getCouldNotCompute(); // Otherwise it will loop infinitely.
5639 }
5640
5641 // We could implement others, but I really doubt anyone writes loops like
5642 // this, and if they did, they would already be constant folded.
5643 return getCouldNotCompute();
5644}
5645
5646/// getPredecessorWithUniqueSuccessorForBB - Return a predecessor of BB
5647/// (which may not be an immediate predecessor) which has exactly one
5648/// successor from which BB is reachable, or null if no such block is
5649/// found.
5650///
5651std::pair<BasicBlock *, BasicBlock *>
5652ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB) {
5653 // If the block has a unique predecessor, then there is no path from the
5654 // predecessor to the block that does not go through the direct edge
5655 // from the predecessor to the block.
5656 if (BasicBlock *Pred = BB->getSinglePredecessor())
5657 return std::make_pair(Pred, BB);
5658
5659 // A loop's header is defined to be a block that dominates the loop.
5660 // If the header has a unique predecessor outside the loop, it must be
5661 // a block that has exactly one successor that can reach the loop.
5662 if (Loop *L = LI->getLoopFor(BB))
5663 return std::make_pair(L->getLoopPredecessor(), L->getHeader());
5664
5665 return std::pair<BasicBlock *, BasicBlock *>();
5666}
5667
5668/// HasSameValue - SCEV structural equivalence is usually sufficient for
5669/// testing whether two expressions are equal, however for the purposes of
5670/// looking for a condition guarding a loop, it can be useful to be a little
5671/// more general, since a front-end may have replicated the controlling
5672/// expression.
5673///
5674static bool HasSameValue(const SCEV *A, const SCEV *B) {
5675 // Quick check to see if they are the same SCEV.
5676 if (A == B) return true;
5677
5678 // Otherwise, if they're both SCEVUnknown, it's possible that they hold
5679 // two different instructions with the same value. Check for this case.
5680 if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A))
5681 if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B))
5682 if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue()))
5683 if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue()))
5684 if (AI->isIdenticalTo(BI) && !AI->mayReadFromMemory())
5685 return true;
5686
5687 // Otherwise assume they may have a different value.
5688 return false;
5689}
5690
5691/// SimplifyICmpOperands - Simplify LHS and RHS in a comparison with
5692/// predicate Pred. Return true iff any changes were made.
5693///
5694bool ScalarEvolution::SimplifyICmpOperands(ICmpInst::Predicate &Pred,
5695 const SCEV *&LHS, const SCEV *&RHS,
5696 unsigned Depth) {
5697 bool Changed = false;
5698
5699 // If we hit the max recursion limit bail out.
5700 if (Depth >= 3)
5701 return false;
5702
5703 // Canonicalize a constant to the right side.
5704 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
5705 // Check for both operands constant.
5706 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
5707 if (ConstantExpr::getICmp(Pred,
5708 LHSC->getValue(),
5709 RHSC->getValue())->isNullValue())
5710 goto trivially_false;
5711 else
5712 goto trivially_true;
5713 }
5714 // Otherwise swap the operands to put the constant on the right.
5715 std::swap(LHS, RHS);
5716 Pred = ICmpInst::getSwappedPredicate(Pred);
5717 Changed = true;
5718 }
5719
5720 // If we're comparing an addrec with a value which is loop-invariant in the
5721 // addrec's loop, put the addrec on the left. Also make a dominance check,
5722 // as both operands could be addrecs loop-invariant in each other's loop.
5723 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS)) {
5724 const Loop *L = AR->getLoop();
5725 if (isLoopInvariant(LHS, L) && properlyDominates(LHS, L->getHeader())) {
5726 std::swap(LHS, RHS);
5727 Pred = ICmpInst::getSwappedPredicate(Pred);
5728 Changed = true;
5729 }
5730 }
5731
5732 // If there's a constant operand, canonicalize comparisons with boundary
5733 // cases, and canonicalize *-or-equal comparisons to regular comparisons.
5734 if (const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS)) {
5735 const APInt &RA = RC->getValue()->getValue();
5736 switch (Pred) {
5737 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
5738 case ICmpInst::ICMP_EQ:
5739 case ICmpInst::ICMP_NE:
5740 // Fold ((-1) * %a) + %b == 0 (equivalent to %b-%a == 0) into %a == %b.
5741 if (!RA)
5742 if (const SCEVAddExpr *AE = dyn_cast<SCEVAddExpr>(LHS))
5743 if (const SCEVMulExpr *ME = dyn_cast<SCEVMulExpr>(AE->getOperand(0)))
5744 if (AE->getNumOperands() == 2 && ME->getNumOperands() == 2 &&
5745 ME->getOperand(0)->isAllOnesValue()) {
5746 RHS = AE->getOperand(1);
5747 LHS = ME->getOperand(1);
5748 Changed = true;
5749 }
5750 break;
5751 case ICmpInst::ICMP_UGE:
5752 if ((RA - 1).isMinValue()) {
5753 Pred = ICmpInst::ICMP_NE;
5754 RHS = getConstant(RA - 1);
5755 Changed = true;
5756 break;
5757 }
5758 if (RA.isMaxValue()) {
5759 Pred = ICmpInst::ICMP_EQ;
5760 Changed = true;
5761 break;
5762 }
5763 if (RA.isMinValue()) goto trivially_true;
5764
5765 Pred = ICmpInst::ICMP_UGT;
5766 RHS = getConstant(RA - 1);
5767 Changed = true;
5768 break;
5769 case ICmpInst::ICMP_ULE:
5770 if ((RA + 1).isMaxValue()) {
5771 Pred = ICmpInst::ICMP_NE;
5772 RHS = getConstant(RA + 1);
5773 Changed = true;
5774 break;
5775 }
5776 if (RA.isMinValue()) {
5777 Pred = ICmpInst::ICMP_EQ;
5778 Changed = true;
5779 break;
5780 }
5781 if (RA.isMaxValue()) goto trivially_true;
5782
5783 Pred = ICmpInst::ICMP_ULT;
5784 RHS = getConstant(RA + 1);
5785 Changed = true;
5786 break;
5787 case ICmpInst::ICMP_SGE:
5788 if ((RA - 1).isMinSignedValue()) {
5789 Pred = ICmpInst::ICMP_NE;
5790 RHS = getConstant(RA - 1);
5791 Changed = true;
5792 break;
5793 }
5794 if (RA.isMaxSignedValue()) {
5795 Pred = ICmpInst::ICMP_EQ;
5796 Changed = true;
5797 break;
5798 }
5799 if (RA.isMinSignedValue()) goto trivially_true;
5800
5801 Pred = ICmpInst::ICMP_SGT;
5802 RHS = getConstant(RA - 1);
5803 Changed = true;
5804 break;
5805 case ICmpInst::ICMP_SLE:
5806 if ((RA + 1).isMaxSignedValue()) {
5807 Pred = ICmpInst::ICMP_NE;
5808 RHS = getConstant(RA + 1);
5809 Changed = true;
5810 break;
5811 }
5812 if (RA.isMinSignedValue()) {
5813 Pred = ICmpInst::ICMP_EQ;
5814 Changed = true;
5815 break;
5816 }
5817 if (RA.isMaxSignedValue()) goto trivially_true;
5818
5819 Pred = ICmpInst::ICMP_SLT;
5820 RHS = getConstant(RA + 1);
5821 Changed = true;
5822 break;
5823 case ICmpInst::ICMP_UGT:
5824 if (RA.isMinValue()) {
5825 Pred = ICmpInst::ICMP_NE;
5826 Changed = true;
5827 break;
5828 }
5829 if ((RA + 1).isMaxValue()) {
5830 Pred = ICmpInst::ICMP_EQ;
5831 RHS = getConstant(RA + 1);
5832 Changed = true;
5833 break;
5834 }
5835 if (RA.isMaxValue()) goto trivially_false;
5836 break;
5837 case ICmpInst::ICMP_ULT:
5838 if (RA.isMaxValue()) {
5839 Pred = ICmpInst::ICMP_NE;
5840 Changed = true;
5841 break;
5842 }
5843 if ((RA - 1).isMinValue()) {
5844 Pred = ICmpInst::ICMP_EQ;
5845 RHS = getConstant(RA - 1);
5846 Changed = true;
5847 break;
5848 }
5849 if (RA.isMinValue()) goto trivially_false;
5850 break;
5851 case ICmpInst::ICMP_SGT:
5852 if (RA.isMinSignedValue()) {
5853 Pred = ICmpInst::ICMP_NE;
5854 Changed = true;
5855 break;
5856 }
5857 if ((RA + 1).isMaxSignedValue()) {
5858 Pred = ICmpInst::ICMP_EQ;
5859 RHS = getConstant(RA + 1);
5860 Changed = true;
5861 break;
5862 }
5863 if (RA.isMaxSignedValue()) goto trivially_false;
5864 break;
5865 case ICmpInst::ICMP_SLT:
5866 if (RA.isMaxSignedValue()) {
5867 Pred = ICmpInst::ICMP_NE;
5868 Changed = true;
5869 break;
5870 }
5871 if ((RA - 1).isMinSignedValue()) {
5872 Pred = ICmpInst::ICMP_EQ;
5873 RHS = getConstant(RA - 1);
5874 Changed = true;
5875 break;
5876 }
5877 if (RA.isMinSignedValue()) goto trivially_false;
5878 break;
5879 }
5880 }
5881
5882 // Check for obvious equality.
5883 if (HasSameValue(LHS, RHS)) {
5884 if (ICmpInst::isTrueWhenEqual(Pred))
5885 goto trivially_true;
5886 if (ICmpInst::isFalseWhenEqual(Pred))
5887 goto trivially_false;
5888 }
5889
5890 // If possible, canonicalize GE/LE comparisons to GT/LT comparisons, by
5891 // adding or subtracting 1 from one of the operands.
5892 switch (Pred) {
5893 case ICmpInst::ICMP_SLE:
5894 if (!getSignedRange(RHS).getSignedMax().isMaxSignedValue()) {
5895 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
5896 SCEV::FlagNSW);
5897 Pred = ICmpInst::ICMP_SLT;
5898 Changed = true;
5899 } else if (!getSignedRange(LHS).getSignedMin().isMinSignedValue()) {
5900 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS,
5901 SCEV::FlagNSW);
5902 Pred = ICmpInst::ICMP_SLT;
5903 Changed = true;
5904 }
5905 break;
5906 case ICmpInst::ICMP_SGE:
5907 if (!getSignedRange(RHS).getSignedMin().isMinSignedValue()) {
5908 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS,
5909 SCEV::FlagNSW);
5910 Pred = ICmpInst::ICMP_SGT;
5911 Changed = true;
5912 } else if (!getSignedRange(LHS).getSignedMax().isMaxSignedValue()) {
5913 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
5914 SCEV::FlagNSW);
5915 Pred = ICmpInst::ICMP_SGT;
5916 Changed = true;
5917 }
5918 break;
5919 case ICmpInst::ICMP_ULE:
5920 if (!getUnsignedRange(RHS).getUnsignedMax().isMaxValue()) {
5921 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
5922 SCEV::FlagNUW);
5923 Pred = ICmpInst::ICMP_ULT;
5924 Changed = true;
5925 } else if (!getUnsignedRange(LHS).getUnsignedMin().isMinValue()) {
5926 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS,
5927 SCEV::FlagNUW);
5928 Pred = ICmpInst::ICMP_ULT;
5929 Changed = true;
5930 }
5931 break;
5932 case ICmpInst::ICMP_UGE:
5933 if (!getUnsignedRange(RHS).getUnsignedMin().isMinValue()) {
5934 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS,
5935 SCEV::FlagNUW);
5936 Pred = ICmpInst::ICMP_UGT;
5937 Changed = true;
5938 } else if (!getUnsignedRange(LHS).getUnsignedMax().isMaxValue()) {
5939 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
5940 SCEV::FlagNUW);
5941 Pred = ICmpInst::ICMP_UGT;
5942 Changed = true;
5943 }
5944 break;
5945 default:
5946 break;
5947 }
5948
5949 // TODO: More simplifications are possible here.
5950
5951 // Recursively simplify until we either hit a recursion limit or nothing
5952 // changes.
5953 if (Changed)
5954 return SimplifyICmpOperands(Pred, LHS, RHS, Depth+1);
5955
5956 return Changed;
5957
5958trivially_true:
5959 // Return 0 == 0.
5960 LHS = RHS = getConstant(ConstantInt::getFalse(getContext()));
5961 Pred = ICmpInst::ICMP_EQ;
5962 return true;
5963
5964trivially_false:
5965 // Return 0 != 0.
5966 LHS = RHS = getConstant(ConstantInt::getFalse(getContext()));
5967 Pred = ICmpInst::ICMP_NE;
5968 return true;
5969}
5970
5971bool ScalarEvolution::isKnownNegative(const SCEV *S) {
5972 return getSignedRange(S).getSignedMax().isNegative();
5973}
5974
5975bool ScalarEvolution::isKnownPositive(const SCEV *S) {
5976 return getSignedRange(S).getSignedMin().isStrictlyPositive();
5977}
5978
5979bool ScalarEvolution::isKnownNonNegative(const SCEV *S) {
5980 return !getSignedRange(S).getSignedMin().isNegative();
5981}
5982
5983bool ScalarEvolution::isKnownNonPositive(const SCEV *S) {
5984 return !getSignedRange(S).getSignedMax().isStrictlyPositive();
5985}
5986
5987bool ScalarEvolution::isKnownNonZero(const SCEV *S) {
5988 return isKnownNegative(S) || isKnownPositive(S);
5989}
5990
5991bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred,
5992 const SCEV *LHS, const SCEV *RHS) {
5993 // Canonicalize the inputs first.
5994 (void)SimplifyICmpOperands(Pred, LHS, RHS);
5995
5996 // If LHS or RHS is an addrec, check to see if the condition is true in
5997 // every iteration of the loop.
5998 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS))
5999 if (isLoopEntryGuardedByCond(
6000 AR->getLoop(), Pred, AR->getStart(), RHS) &&
6001 isLoopBackedgeGuardedByCond(
6002 AR->getLoop(), Pred, AR->getPostIncExpr(*this), RHS))
6003 return true;
6004 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS))
6005 if (isLoopEntryGuardedByCond(
6006 AR->getLoop(), Pred, LHS, AR->getStart()) &&
6007 isLoopBackedgeGuardedByCond(
6008 AR->getLoop(), Pred, LHS, AR->getPostIncExpr(*this)))
6009 return true;
6010
6011 // Otherwise see what can be done with known constant ranges.
6012 return isKnownPredicateWithRanges(Pred, LHS, RHS);
6013}
6014
6015bool
6016ScalarEvolution::isKnownPredicateWithRanges(ICmpInst::Predicate Pred,
6017 const SCEV *LHS, const SCEV *RHS) {
6018 if (HasSameValue(LHS, RHS))
6019 return ICmpInst::isTrueWhenEqual(Pred);
6020
6021 // This code is split out from isKnownPredicate because it is called from
6022 // within isLoopEntryGuardedByCond.
6023 switch (Pred) {
6024 default:
6025 llvm_unreachable("Unexpected ICmpInst::Predicate value!");
6026 case ICmpInst::ICMP_SGT:
6027 Pred = ICmpInst::ICMP_SLT;
6028 std::swap(LHS, RHS);
6029 case ICmpInst::ICMP_SLT: {
6030 ConstantRange LHSRange = getSignedRange(LHS);
6031 ConstantRange RHSRange = getSignedRange(RHS);
6032 if (LHSRange.getSignedMax().slt(RHSRange.getSignedMin()))
6033 return true;
6034 if (LHSRange.getSignedMin().sge(RHSRange.getSignedMax()))
6035 return false;
6036 break;
6037 }
6038 case ICmpInst::ICMP_SGE:
6039 Pred = ICmpInst::ICMP_SLE;
6040 std::swap(LHS, RHS);
6041 case ICmpInst::ICMP_SLE: {
6042 ConstantRange LHSRange = getSignedRange(LHS);
6043 ConstantRange RHSRange = getSignedRange(RHS);
6044 if (LHSRange.getSignedMax().sle(RHSRange.getSignedMin()))
6045 return true;
6046 if (LHSRange.getSignedMin().sgt(RHSRange.getSignedMax()))
6047 return false;
6048 break;
6049 }
6050 case ICmpInst::ICMP_UGT:
6051 Pred = ICmpInst::ICMP_ULT;
6052 std::swap(LHS, RHS);
6053 case ICmpInst::ICMP_ULT: {
6054 ConstantRange LHSRange = getUnsignedRange(LHS);
6055 ConstantRange RHSRange = getUnsignedRange(RHS);
6056 if (LHSRange.getUnsignedMax().ult(RHSRange.getUnsignedMin()))
6057 return true;
6058 if (LHSRange.getUnsignedMin().uge(RHSRange.getUnsignedMax()))
6059 return false;
6060 break;
6061 }
6062 case ICmpInst::ICMP_UGE:
6063 Pred = ICmpInst::ICMP_ULE;
6064 std::swap(LHS, RHS);
6065 case ICmpInst::ICMP_ULE: {
6066 ConstantRange LHSRange = getUnsignedRange(LHS);
6067 ConstantRange RHSRange = getUnsignedRange(RHS);
6068 if (LHSRange.getUnsignedMax().ule(RHSRange.getUnsignedMin()))
6069 return true;
6070 if (LHSRange.getUnsignedMin().ugt(RHSRange.getUnsignedMax()))
6071 return false;
6072 break;
6073 }
6074 case ICmpInst::ICMP_NE: {
6075 if (getUnsignedRange(LHS).intersectWith(getUnsignedRange(RHS)).isEmptySet())
6076 return true;
6077 if (getSignedRange(LHS).intersectWith(getSignedRange(RHS)).isEmptySet())
6078 return true;
6079
6080 const SCEV *Diff = getMinusSCEV(LHS, RHS);
6081 if (isKnownNonZero(Diff))
6082 return true;
6083 break;
6084 }
6085 case ICmpInst::ICMP_EQ:
6086 // The check at the top of the function catches the case where
6087 // the values are known to be equal.
6088 break;
6089 }
6090 return false;
6091}
6092
6093/// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is
6094/// protected by a conditional between LHS and RHS. This is used to
6095/// to eliminate casts.
6096bool
6097ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L,
6098 ICmpInst::Predicate Pred,
6099 const SCEV *LHS, const SCEV *RHS) {
6100 // Interpret a null as meaning no loop, where there is obviously no guard
6101 // (interprocedural conditions notwithstanding).
6102 if (!L) return true;
6103
6104 BasicBlock *Latch = L->getLoopLatch();
6105 if (!Latch)
6106 return false;
6107
6108 BranchInst *LoopContinuePredicate =
6109 dyn_cast<BranchInst>(Latch->getTerminator());
6110 if (!LoopContinuePredicate ||
6111 LoopContinuePredicate->isUnconditional())
6112 return false;
6113
6114 return isImpliedCond(Pred, LHS, RHS,
6115 LoopContinuePredicate->getCondition(),
6116 LoopContinuePredicate->getSuccessor(0) != L->getHeader());
6117}
6118
6119/// isLoopEntryGuardedByCond - Test whether entry to the loop is protected
6120/// by a conditional between LHS and RHS. This is used to help avoid max
6121/// expressions in loop trip counts, and to eliminate casts.
6122bool
6123ScalarEvolution::isLoopEntryGuardedByCond(const Loop *L,
6124 ICmpInst::Predicate Pred,
6125 const SCEV *LHS, const SCEV *RHS) {
6126 // Interpret a null as meaning no loop, where there is obviously no guard
6127 // (interprocedural conditions notwithstanding).
6128 if (!L) return false;
6129
6130 // Starting at the loop predecessor, climb up the predecessor chain, as long
6131 // as there are predecessors that can be found that have unique successors
6132 // leading to the original header.
6133 for (std::pair<BasicBlock *, BasicBlock *>
6134 Pair(L->getLoopPredecessor(), L->getHeader());
6135 Pair.first;
6136 Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) {
6137
6138 BranchInst *LoopEntryPredicate =
6139 dyn_cast<BranchInst>(Pair.first->getTerminator());
6140 if (!LoopEntryPredicate ||
6141 LoopEntryPredicate->isUnconditional())
6142 continue;
6143
6144 if (isImpliedCond(Pred, LHS, RHS,
6145 LoopEntryPredicate->getCondition(),
6146 LoopEntryPredicate->getSuccessor(0) != Pair.second))
6147 return true;
6148 }
6149
6150 return false;
6151}
6152
6153/// RAII wrapper to prevent recursive application of isImpliedCond.
6154/// ScalarEvolution's PendingLoopPredicates set must be empty unless we are
6155/// currently evaluating isImpliedCond.
6156struct MarkPendingLoopPredicate {
6157 Value *Cond;
6158 DenseSet<Value*> &LoopPreds;
6159 bool Pending;
6160
6161 MarkPendingLoopPredicate(Value *C, DenseSet<Value*> &LP)
6162 : Cond(C), LoopPreds(LP) {
6163 Pending = !LoopPreds.insert(Cond).second;
6164 }
6165 ~MarkPendingLoopPredicate() {
6166 if (!Pending)
6167 LoopPreds.erase(Cond);
6168 }
6169};
6170
6171/// isImpliedCond - Test whether the condition described by Pred, LHS,
6172/// and RHS is true whenever the given Cond value evaluates to true.
6173bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred,
6174 const SCEV *LHS, const SCEV *RHS,
6175 Value *FoundCondValue,
6176 bool Inverse) {
6177 MarkPendingLoopPredicate Mark(FoundCondValue, PendingLoopPredicates);
6178 if (Mark.Pending)
6179 return false;
6180
6181 // Recursively handle And and Or conditions.
6182 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(FoundCondValue)) {
6183 if (BO->getOpcode() == Instruction::And) {
6184 if (!Inverse)
6185 return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) ||
6186 isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse);
6187 } else if (BO->getOpcode() == Instruction::Or) {
6188 if (Inverse)
6189 return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) ||
6190 isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse);
6191 }
6192 }
6193
6194 ICmpInst *ICI = dyn_cast<ICmpInst>(FoundCondValue);
6195 if (!ICI) return false;
6196
6197 // Bail if the ICmp's operands' types are wider than the needed type
6198 // before attempting to call getSCEV on them. This avoids infinite
6199 // recursion, since the analysis of widening casts can require loop
6200 // exit condition information for overflow checking, which would
6201 // lead back here.
6202 if (getTypeSizeInBits(LHS->getType()) <
6203 getTypeSizeInBits(ICI->getOperand(0)->getType()))
6204 return false;
6205
6206 // Now that we found a conditional branch that dominates the loop or controls
6207 // the loop latch. Check to see if it is the comparison we are looking for.
6208 ICmpInst::Predicate FoundPred;
6209 if (Inverse)
6210 FoundPred = ICI->getInversePredicate();
6211 else
6212 FoundPred = ICI->getPredicate();
6213
6214 const SCEV *FoundLHS = getSCEV(ICI->getOperand(0));
6215 const SCEV *FoundRHS = getSCEV(ICI->getOperand(1));
6216
6217 // Balance the types. The case where FoundLHS' type is wider than
6218 // LHS' type is checked for above.
6219 if (getTypeSizeInBits(LHS->getType()) >
6220 getTypeSizeInBits(FoundLHS->getType())) {
1//===- ScalarEvolution.cpp - Scalar Evolution Analysis ----------*- C++ -*-===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the implementation of the scalar evolution analysis
11// engine, which is used primarily to analyze expressions involving induction
12// variables in loops.
13//
14// There are several aspects to this library. First is the representation of
15// scalar expressions, which are represented as subclasses of the SCEV class.
16// These classes are used to represent certain types of subexpressions that we
17// can handle. We only create one SCEV of a particular shape, so
18// pointer-comparisons for equality are legal.
19//
20// One important aspect of the SCEV objects is that they are never cyclic, even
21// if there is a cycle in the dataflow for an expression (ie, a PHI node). If
22// the PHI node is one of the idioms that we can represent (e.g., a polynomial
23// recurrence) then we represent it directly as a recurrence node, otherwise we
24// represent it as a SCEVUnknown node.
25//
26// In addition to being able to represent expressions of various types, we also
27// have folders that are used to build the *canonical* representation for a
28// particular expression. These folders are capable of using a variety of
29// rewrite rules to simplify the expressions.
30//
31// Once the folders are defined, we can implement the more interesting
32// higher-level code, such as the code that recognizes PHI nodes of various
33// types, computes the execution count of a loop, etc.
34//
35// TODO: We should use these routines and value representations to implement
36// dependence analysis!
37//
38//===----------------------------------------------------------------------===//
39//
40// There are several good references for the techniques used in this analysis.
41//
42// Chains of recurrences -- a method to expedite the evaluation
43// of closed-form functions
44// Olaf Bachmann, Paul S. Wang, Eugene V. Zima
45//
46// On computational properties of chains of recurrences
47// Eugene V. Zima
48//
49// Symbolic Evaluation of Chains of Recurrences for Loop Optimization
50// Robert A. van Engelen
51//
52// Efficient Symbolic Analysis for Optimizing Compilers
53// Robert A. van Engelen
54//
55// Using the chains of recurrences algebra for data dependence testing and
56// induction variable substitution
57// MS Thesis, Johnie Birch
58//
59//===----------------------------------------------------------------------===//
60
61#define DEBUG_TYPE "scalar-evolution"
62#include "llvm/Analysis/ScalarEvolution.h"
63#include "llvm/ADT/STLExtras.h"
64#include "llvm/ADT/SmallPtrSet.h"
65#include "llvm/ADT/Statistic.h"
66#include "llvm/Analysis/ConstantFolding.h"
67#include "llvm/Analysis/Dominators.h"
68#include "llvm/Analysis/InstructionSimplify.h"
69#include "llvm/Analysis/LoopInfo.h"
70#include "llvm/Analysis/ScalarEvolutionExpressions.h"
71#include "llvm/Analysis/ValueTracking.h"
72#include "llvm/Assembly/Writer.h"
73#include "llvm/IR/Constants.h"
74#include "llvm/IR/DataLayout.h"
75#include "llvm/IR/DerivedTypes.h"
76#include "llvm/IR/GlobalAlias.h"
77#include "llvm/IR/GlobalVariable.h"
78#include "llvm/IR/Instructions.h"
79#include "llvm/IR/LLVMContext.h"
80#include "llvm/IR/Operator.h"
81#include "llvm/Support/CommandLine.h"
82#include "llvm/Support/ConstantRange.h"
83#include "llvm/Support/Debug.h"
84#include "llvm/Support/ErrorHandling.h"
85#include "llvm/Support/GetElementPtrTypeIterator.h"
86#include "llvm/Support/InstIterator.h"
87#include "llvm/Support/MathExtras.h"
88#include "llvm/Support/raw_ostream.h"
89#include "llvm/Target/TargetLibraryInfo.h"
90#include <algorithm>
91using namespace llvm;
92
93STATISTIC(NumArrayLenItCounts,
94 "Number of trip counts computed with array length");
95STATISTIC(NumTripCountsComputed,
96 "Number of loops with predictable loop counts");
97STATISTIC(NumTripCountsNotComputed,
98 "Number of loops without predictable loop counts");
99STATISTIC(NumBruteForceTripCountsComputed,
100 "Number of loops with trip counts computed by force");
101
102static cl::opt<unsigned>
103MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden,
104 cl::desc("Maximum number of iterations SCEV will "
105 "symbolically execute a constant "
106 "derived loop"),
107 cl::init(100));
108
109// FIXME: Enable this with XDEBUG when the test suite is clean.
110static cl::opt<bool>
111VerifySCEV("verify-scev",
112 cl::desc("Verify ScalarEvolution's backedge taken counts (slow)"));
113
114INITIALIZE_PASS_BEGIN(ScalarEvolution, "scalar-evolution",
115 "Scalar Evolution Analysis", false, true)
116INITIALIZE_PASS_DEPENDENCY(LoopInfo)
117INITIALIZE_PASS_DEPENDENCY(DominatorTree)
118INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfo)
119INITIALIZE_PASS_END(ScalarEvolution, "scalar-evolution",
120 "Scalar Evolution Analysis", false, true)
121char ScalarEvolution::ID = 0;
122
123//===----------------------------------------------------------------------===//
124// SCEV class definitions
125//===----------------------------------------------------------------------===//
126
127//===----------------------------------------------------------------------===//
128// Implementation of the SCEV class.
129//
130
131#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
132void SCEV::dump() const {
133 print(dbgs());
134 dbgs() << '\n';
135}
136#endif
137
138void SCEV::print(raw_ostream &OS) const {
139 switch (getSCEVType()) {
140 case scConstant:
141 WriteAsOperand(OS, cast<SCEVConstant>(this)->getValue(), false);
142 return;
143 case scTruncate: {
144 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(this);
145 const SCEV *Op = Trunc->getOperand();
146 OS << "(trunc " << *Op->getType() << " " << *Op << " to "
147 << *Trunc->getType() << ")";
148 return;
149 }
150 case scZeroExtend: {
151 const SCEVZeroExtendExpr *ZExt = cast<SCEVZeroExtendExpr>(this);
152 const SCEV *Op = ZExt->getOperand();
153 OS << "(zext " << *Op->getType() << " " << *Op << " to "
154 << *ZExt->getType() << ")";
155 return;
156 }
157 case scSignExtend: {
158 const SCEVSignExtendExpr *SExt = cast<SCEVSignExtendExpr>(this);
159 const SCEV *Op = SExt->getOperand();
160 OS << "(sext " << *Op->getType() << " " << *Op << " to "
161 << *SExt->getType() << ")";
162 return;
163 }
164 case scAddRecExpr: {
165 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(this);
166 OS << "{" << *AR->getOperand(0);
167 for (unsigned i = 1, e = AR->getNumOperands(); i != e; ++i)
168 OS << ",+," << *AR->getOperand(i);
169 OS << "}<";
170 if (AR->getNoWrapFlags(FlagNUW))
171 OS << "nuw><";
172 if (AR->getNoWrapFlags(FlagNSW))
173 OS << "nsw><";
174 if (AR->getNoWrapFlags(FlagNW) &&
175 !AR->getNoWrapFlags((NoWrapFlags)(FlagNUW | FlagNSW)))
176 OS << "nw><";
177 WriteAsOperand(OS, AR->getLoop()->getHeader(), /*PrintType=*/false);
178 OS << ">";
179 return;
180 }
181 case scAddExpr:
182 case scMulExpr:
183 case scUMaxExpr:
184 case scSMaxExpr: {
185 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(this);
186 const char *OpStr = 0;
187 switch (NAry->getSCEVType()) {
188 case scAddExpr: OpStr = " + "; break;
189 case scMulExpr: OpStr = " * "; break;
190 case scUMaxExpr: OpStr = " umax "; break;
191 case scSMaxExpr: OpStr = " smax "; break;
192 }
193 OS << "(";
194 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
195 I != E; ++I) {
196 OS << **I;
197 if (llvm::next(I) != E)
198 OS << OpStr;
199 }
200 OS << ")";
201 switch (NAry->getSCEVType()) {
202 case scAddExpr:
203 case scMulExpr:
204 if (NAry->getNoWrapFlags(FlagNUW))
205 OS << "<nuw>";
206 if (NAry->getNoWrapFlags(FlagNSW))
207 OS << "<nsw>";
208 }
209 return;
210 }
211 case scUDivExpr: {
212 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(this);
213 OS << "(" << *UDiv->getLHS() << " /u " << *UDiv->getRHS() << ")";
214 return;
215 }
216 case scUnknown: {
217 const SCEVUnknown *U = cast<SCEVUnknown>(this);
218 Type *AllocTy;
219 if (U->isSizeOf(AllocTy)) {
220 OS << "sizeof(" << *AllocTy << ")";
221 return;
222 }
223 if (U->isAlignOf(AllocTy)) {
224 OS << "alignof(" << *AllocTy << ")";
225 return;
226 }
227
228 Type *CTy;
229 Constant *FieldNo;
230 if (U->isOffsetOf(CTy, FieldNo)) {
231 OS << "offsetof(" << *CTy << ", ";
232 WriteAsOperand(OS, FieldNo, false);
233 OS << ")";
234 return;
235 }
236
237 // Otherwise just print it normally.
238 WriteAsOperand(OS, U->getValue(), false);
239 return;
240 }
241 case scCouldNotCompute:
242 OS << "***COULDNOTCOMPUTE***";
243 return;
244 default: break;
245 }
246 llvm_unreachable("Unknown SCEV kind!");
247}
248
249Type *SCEV::getType() const {
250 switch (getSCEVType()) {
251 case scConstant:
252 return cast<SCEVConstant>(this)->getType();
253 case scTruncate:
254 case scZeroExtend:
255 case scSignExtend:
256 return cast<SCEVCastExpr>(this)->getType();
257 case scAddRecExpr:
258 case scMulExpr:
259 case scUMaxExpr:
260 case scSMaxExpr:
261 return cast<SCEVNAryExpr>(this)->getType();
262 case scAddExpr:
263 return cast<SCEVAddExpr>(this)->getType();
264 case scUDivExpr:
265 return cast<SCEVUDivExpr>(this)->getType();
266 case scUnknown:
267 return cast<SCEVUnknown>(this)->getType();
268 case scCouldNotCompute:
269 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
270 default:
271 llvm_unreachable("Unknown SCEV kind!");
272 }
273}
274
275bool SCEV::isZero() const {
276 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
277 return SC->getValue()->isZero();
278 return false;
279}
280
281bool SCEV::isOne() const {
282 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
283 return SC->getValue()->isOne();
284 return false;
285}
286
287bool SCEV::isAllOnesValue() const {
288 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
289 return SC->getValue()->isAllOnesValue();
290 return false;
291}
292
293/// isNonConstantNegative - Return true if the specified scev is negated, but
294/// not a constant.
295bool SCEV::isNonConstantNegative() const {
296 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(this);
297 if (!Mul) return false;
298
299 // If there is a constant factor, it will be first.
300 const SCEVConstant *SC = dyn_cast<SCEVConstant>(Mul->getOperand(0));
301 if (!SC) return false;
302
303 // Return true if the value is negative, this matches things like (-42 * V).
304 return SC->getValue()->getValue().isNegative();
305}
306
307SCEVCouldNotCompute::SCEVCouldNotCompute() :
308 SCEV(FoldingSetNodeIDRef(), scCouldNotCompute) {}
309
310bool SCEVCouldNotCompute::classof(const SCEV *S) {
311 return S->getSCEVType() == scCouldNotCompute;
312}
313
314const SCEV *ScalarEvolution::getConstant(ConstantInt *V) {
315 FoldingSetNodeID ID;
316 ID.AddInteger(scConstant);
317 ID.AddPointer(V);
318 void *IP = 0;
319 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
320 SCEV *S = new (SCEVAllocator) SCEVConstant(ID.Intern(SCEVAllocator), V);
321 UniqueSCEVs.InsertNode(S, IP);
322 return S;
323}
324
325const SCEV *ScalarEvolution::getConstant(const APInt& Val) {
326 return getConstant(ConstantInt::get(getContext(), Val));
327}
328
329const SCEV *
330ScalarEvolution::getConstant(Type *Ty, uint64_t V, bool isSigned) {
331 IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty));
332 return getConstant(ConstantInt::get(ITy, V, isSigned));
333}
334
335SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeIDRef ID,
336 unsigned SCEVTy, const SCEV *op, Type *ty)
337 : SCEV(ID, SCEVTy), Op(op), Ty(ty) {}
338
339SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeIDRef ID,
340 const SCEV *op, Type *ty)
341 : SCEVCastExpr(ID, scTruncate, op, ty) {
342 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
343 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
344 "Cannot truncate non-integer value!");
345}
346
347SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID,
348 const SCEV *op, Type *ty)
349 : SCEVCastExpr(ID, scZeroExtend, op, ty) {
350 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
351 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
352 "Cannot zero extend non-integer value!");
353}
354
355SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeIDRef ID,
356 const SCEV *op, Type *ty)
357 : SCEVCastExpr(ID, scSignExtend, op, ty) {
358 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
359 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
360 "Cannot sign extend non-integer value!");
361}
362
363void SCEVUnknown::deleted() {
364 // Clear this SCEVUnknown from various maps.
365 SE->forgetMemoizedResults(this);
366
367 // Remove this SCEVUnknown from the uniquing map.
368 SE->UniqueSCEVs.RemoveNode(this);
369
370 // Release the value.
371 setValPtr(0);
372}
373
374void SCEVUnknown::allUsesReplacedWith(Value *New) {
375 // Clear this SCEVUnknown from various maps.
376 SE->forgetMemoizedResults(this);
377
378 // Remove this SCEVUnknown from the uniquing map.
379 SE->UniqueSCEVs.RemoveNode(this);
380
381 // Update this SCEVUnknown to point to the new value. This is needed
382 // because there may still be outstanding SCEVs which still point to
383 // this SCEVUnknown.
384 setValPtr(New);
385}
386
387bool SCEVUnknown::isSizeOf(Type *&AllocTy) const {
388 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
389 if (VCE->getOpcode() == Instruction::PtrToInt)
390 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
391 if (CE->getOpcode() == Instruction::GetElementPtr &&
392 CE->getOperand(0)->isNullValue() &&
393 CE->getNumOperands() == 2)
394 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(1)))
395 if (CI->isOne()) {
396 AllocTy = cast<PointerType>(CE->getOperand(0)->getType())
397 ->getElementType();
398 return true;
399 }
400
401 return false;
402}
403
404bool SCEVUnknown::isAlignOf(Type *&AllocTy) const {
405 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
406 if (VCE->getOpcode() == Instruction::PtrToInt)
407 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
408 if (CE->getOpcode() == Instruction::GetElementPtr &&
409 CE->getOperand(0)->isNullValue()) {
410 Type *Ty =
411 cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
412 if (StructType *STy = dyn_cast<StructType>(Ty))
413 if (!STy->isPacked() &&
414 CE->getNumOperands() == 3 &&
415 CE->getOperand(1)->isNullValue()) {
416 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(2)))
417 if (CI->isOne() &&
418 STy->getNumElements() == 2 &&
419 STy->getElementType(0)->isIntegerTy(1)) {
420 AllocTy = STy->getElementType(1);
421 return true;
422 }
423 }
424 }
425
426 return false;
427}
428
429bool SCEVUnknown::isOffsetOf(Type *&CTy, Constant *&FieldNo) const {
430 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
431 if (VCE->getOpcode() == Instruction::PtrToInt)
432 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
433 if (CE->getOpcode() == Instruction::GetElementPtr &&
434 CE->getNumOperands() == 3 &&
435 CE->getOperand(0)->isNullValue() &&
436 CE->getOperand(1)->isNullValue()) {
437 Type *Ty =
438 cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
439 // Ignore vector types here so that ScalarEvolutionExpander doesn't
440 // emit getelementptrs that index into vectors.
441 if (Ty->isStructTy() || Ty->isArrayTy()) {
442 CTy = Ty;
443 FieldNo = CE->getOperand(2);
444 return true;
445 }
446 }
447
448 return false;
449}
450
451//===----------------------------------------------------------------------===//
452// SCEV Utilities
453//===----------------------------------------------------------------------===//
454
455namespace {
456 /// SCEVComplexityCompare - Return true if the complexity of the LHS is less
457 /// than the complexity of the RHS. This comparator is used to canonicalize
458 /// expressions.
459 class SCEVComplexityCompare {
460 const LoopInfo *const LI;
461 public:
462 explicit SCEVComplexityCompare(const LoopInfo *li) : LI(li) {}
463
464 // Return true or false if LHS is less than, or at least RHS, respectively.
465 bool operator()(const SCEV *LHS, const SCEV *RHS) const {
466 return compare(LHS, RHS) < 0;
467 }
468
469 // Return negative, zero, or positive, if LHS is less than, equal to, or
470 // greater than RHS, respectively. A three-way result allows recursive
471 // comparisons to be more efficient.
472 int compare(const SCEV *LHS, const SCEV *RHS) const {
473 // Fast-path: SCEVs are uniqued so we can do a quick equality check.
474 if (LHS == RHS)
475 return 0;
476
477 // Primarily, sort the SCEVs by their getSCEVType().
478 unsigned LType = LHS->getSCEVType(), RType = RHS->getSCEVType();
479 if (LType != RType)
480 return (int)LType - (int)RType;
481
482 // Aside from the getSCEVType() ordering, the particular ordering
483 // isn't very important except that it's beneficial to be consistent,
484 // so that (a + b) and (b + a) don't end up as different expressions.
485 switch (LType) {
486 case scUnknown: {
487 const SCEVUnknown *LU = cast<SCEVUnknown>(LHS);
488 const SCEVUnknown *RU = cast<SCEVUnknown>(RHS);
489
490 // Sort SCEVUnknown values with some loose heuristics. TODO: This is
491 // not as complete as it could be.
492 const Value *LV = LU->getValue(), *RV = RU->getValue();
493
494 // Order pointer values after integer values. This helps SCEVExpander
495 // form GEPs.
496 bool LIsPointer = LV->getType()->isPointerTy(),
497 RIsPointer = RV->getType()->isPointerTy();
498 if (LIsPointer != RIsPointer)
499 return (int)LIsPointer - (int)RIsPointer;
500
501 // Compare getValueID values.
502 unsigned LID = LV->getValueID(),
503 RID = RV->getValueID();
504 if (LID != RID)
505 return (int)LID - (int)RID;
506
507 // Sort arguments by their position.
508 if (const Argument *LA = dyn_cast<Argument>(LV)) {
509 const Argument *RA = cast<Argument>(RV);
510 unsigned LArgNo = LA->getArgNo(), RArgNo = RA->getArgNo();
511 return (int)LArgNo - (int)RArgNo;
512 }
513
514 // For instructions, compare their loop depth, and their operand
515 // count. This is pretty loose.
516 if (const Instruction *LInst = dyn_cast<Instruction>(LV)) {
517 const Instruction *RInst = cast<Instruction>(RV);
518
519 // Compare loop depths.
520 const BasicBlock *LParent = LInst->getParent(),
521 *RParent = RInst->getParent();
522 if (LParent != RParent) {
523 unsigned LDepth = LI->getLoopDepth(LParent),
524 RDepth = LI->getLoopDepth(RParent);
525 if (LDepth != RDepth)
526 return (int)LDepth - (int)RDepth;
527 }
528
529 // Compare the number of operands.
530 unsigned LNumOps = LInst->getNumOperands(),
531 RNumOps = RInst->getNumOperands();
532 return (int)LNumOps - (int)RNumOps;
533 }
534
535 return 0;
536 }
537
538 case scConstant: {
539 const SCEVConstant *LC = cast<SCEVConstant>(LHS);
540 const SCEVConstant *RC = cast<SCEVConstant>(RHS);
541
542 // Compare constant values.
543 const APInt &LA = LC->getValue()->getValue();
544 const APInt &RA = RC->getValue()->getValue();
545 unsigned LBitWidth = LA.getBitWidth(), RBitWidth = RA.getBitWidth();
546 if (LBitWidth != RBitWidth)
547 return (int)LBitWidth - (int)RBitWidth;
548 return LA.ult(RA) ? -1 : 1;
549 }
550
551 case scAddRecExpr: {
552 const SCEVAddRecExpr *LA = cast<SCEVAddRecExpr>(LHS);
553 const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS);
554
555 // Compare addrec loop depths.
556 const Loop *LLoop = LA->getLoop(), *RLoop = RA->getLoop();
557 if (LLoop != RLoop) {
558 unsigned LDepth = LLoop->getLoopDepth(),
559 RDepth = RLoop->getLoopDepth();
560 if (LDepth != RDepth)
561 return (int)LDepth - (int)RDepth;
562 }
563
564 // Addrec complexity grows with operand count.
565 unsigned LNumOps = LA->getNumOperands(), RNumOps = RA->getNumOperands();
566 if (LNumOps != RNumOps)
567 return (int)LNumOps - (int)RNumOps;
568
569 // Lexicographically compare.
570 for (unsigned i = 0; i != LNumOps; ++i) {
571 long X = compare(LA->getOperand(i), RA->getOperand(i));
572 if (X != 0)
573 return X;
574 }
575
576 return 0;
577 }
578
579 case scAddExpr:
580 case scMulExpr:
581 case scSMaxExpr:
582 case scUMaxExpr: {
583 const SCEVNAryExpr *LC = cast<SCEVNAryExpr>(LHS);
584 const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS);
585
586 // Lexicographically compare n-ary expressions.
587 unsigned LNumOps = LC->getNumOperands(), RNumOps = RC->getNumOperands();
588 if (LNumOps != RNumOps)
589 return (int)LNumOps - (int)RNumOps;
590
591 for (unsigned i = 0; i != LNumOps; ++i) {
592 if (i >= RNumOps)
593 return 1;
594 long X = compare(LC->getOperand(i), RC->getOperand(i));
595 if (X != 0)
596 return X;
597 }
598 return (int)LNumOps - (int)RNumOps;
599 }
600
601 case scUDivExpr: {
602 const SCEVUDivExpr *LC = cast<SCEVUDivExpr>(LHS);
603 const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS);
604
605 // Lexicographically compare udiv expressions.
606 long X = compare(LC->getLHS(), RC->getLHS());
607 if (X != 0)
608 return X;
609 return compare(LC->getRHS(), RC->getRHS());
610 }
611
612 case scTruncate:
613 case scZeroExtend:
614 case scSignExtend: {
615 const SCEVCastExpr *LC = cast<SCEVCastExpr>(LHS);
616 const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS);
617
618 // Compare cast expressions by operand.
619 return compare(LC->getOperand(), RC->getOperand());
620 }
621
622 default:
623 llvm_unreachable("Unknown SCEV kind!");
624 }
625 }
626 };
627}
628
629/// GroupByComplexity - Given a list of SCEV objects, order them by their
630/// complexity, and group objects of the same complexity together by value.
631/// When this routine is finished, we know that any duplicates in the vector are
632/// consecutive and that complexity is monotonically increasing.
633///
634/// Note that we go take special precautions to ensure that we get deterministic
635/// results from this routine. In other words, we don't want the results of
636/// this to depend on where the addresses of various SCEV objects happened to
637/// land in memory.
638///
639static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops,
640 LoopInfo *LI) {
641 if (Ops.size() < 2) return; // Noop
642 if (Ops.size() == 2) {
643 // This is the common case, which also happens to be trivially simple.
644 // Special case it.
645 const SCEV *&LHS = Ops[0], *&RHS = Ops[1];
646 if (SCEVComplexityCompare(LI)(RHS, LHS))
647 std::swap(LHS, RHS);
648 return;
649 }
650
651 // Do the rough sort by complexity.
652 std::stable_sort(Ops.begin(), Ops.end(), SCEVComplexityCompare(LI));
653
654 // Now that we are sorted by complexity, group elements of the same
655 // complexity. Note that this is, at worst, N^2, but the vector is likely to
656 // be extremely short in practice. Note that we take this approach because we
657 // do not want to depend on the addresses of the objects we are grouping.
658 for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) {
659 const SCEV *S = Ops[i];
660 unsigned Complexity = S->getSCEVType();
661
662 // If there are any objects of the same complexity and same value as this
663 // one, group them.
664 for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) {
665 if (Ops[j] == S) { // Found a duplicate.
666 // Move it to immediately after i'th element.
667 std::swap(Ops[i+1], Ops[j]);
668 ++i; // no need to rescan it.
669 if (i == e-2) return; // Done!
670 }
671 }
672 }
673}
674
675
676
677//===----------------------------------------------------------------------===//
678// Simple SCEV method implementations
679//===----------------------------------------------------------------------===//
680
681/// BinomialCoefficient - Compute BC(It, K). The result has width W.
682/// Assume, K > 0.
683static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K,
684 ScalarEvolution &SE,
685 Type *ResultTy) {
686 // Handle the simplest case efficiently.
687 if (K == 1)
688 return SE.getTruncateOrZeroExtend(It, ResultTy);
689
690 // We are using the following formula for BC(It, K):
691 //
692 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K!
693 //
694 // Suppose, W is the bitwidth of the return value. We must be prepared for
695 // overflow. Hence, we must assure that the result of our computation is
696 // equal to the accurate one modulo 2^W. Unfortunately, division isn't
697 // safe in modular arithmetic.
698 //
699 // However, this code doesn't use exactly that formula; the formula it uses
700 // is something like the following, where T is the number of factors of 2 in
701 // K! (i.e. trailing zeros in the binary representation of K!), and ^ is
702 // exponentiation:
703 //
704 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T)
705 //
706 // This formula is trivially equivalent to the previous formula. However,
707 // this formula can be implemented much more efficiently. The trick is that
708 // K! / 2^T is odd, and exact division by an odd number *is* safe in modular
709 // arithmetic. To do exact division in modular arithmetic, all we have
710 // to do is multiply by the inverse. Therefore, this step can be done at
711 // width W.
712 //
713 // The next issue is how to safely do the division by 2^T. The way this
714 // is done is by doing the multiplication step at a width of at least W + T
715 // bits. This way, the bottom W+T bits of the product are accurate. Then,
716 // when we perform the division by 2^T (which is equivalent to a right shift
717 // by T), the bottom W bits are accurate. Extra bits are okay; they'll get
718 // truncated out after the division by 2^T.
719 //
720 // In comparison to just directly using the first formula, this technique
721 // is much more efficient; using the first formula requires W * K bits,
722 // but this formula less than W + K bits. Also, the first formula requires
723 // a division step, whereas this formula only requires multiplies and shifts.
724 //
725 // It doesn't matter whether the subtraction step is done in the calculation
726 // width or the input iteration count's width; if the subtraction overflows,
727 // the result must be zero anyway. We prefer here to do it in the width of
728 // the induction variable because it helps a lot for certain cases; CodeGen
729 // isn't smart enough to ignore the overflow, which leads to much less
730 // efficient code if the width of the subtraction is wider than the native
731 // register width.
732 //
733 // (It's possible to not widen at all by pulling out factors of 2 before
734 // the multiplication; for example, K=2 can be calculated as
735 // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires
736 // extra arithmetic, so it's not an obvious win, and it gets
737 // much more complicated for K > 3.)
738
739 // Protection from insane SCEVs; this bound is conservative,
740 // but it probably doesn't matter.
741 if (K > 1000)
742 return SE.getCouldNotCompute();
743
744 unsigned W = SE.getTypeSizeInBits(ResultTy);
745
746 // Calculate K! / 2^T and T; we divide out the factors of two before
747 // multiplying for calculating K! / 2^T to avoid overflow.
748 // Other overflow doesn't matter because we only care about the bottom
749 // W bits of the result.
750 APInt OddFactorial(W, 1);
751 unsigned T = 1;
752 for (unsigned i = 3; i <= K; ++i) {
753 APInt Mult(W, i);
754 unsigned TwoFactors = Mult.countTrailingZeros();
755 T += TwoFactors;
756 Mult = Mult.lshr(TwoFactors);
757 OddFactorial *= Mult;
758 }
759
760 // We need at least W + T bits for the multiplication step
761 unsigned CalculationBits = W + T;
762
763 // Calculate 2^T, at width T+W.
764 APInt DivFactor = APInt::getOneBitSet(CalculationBits, T);
765
766 // Calculate the multiplicative inverse of K! / 2^T;
767 // this multiplication factor will perform the exact division by
768 // K! / 2^T.
769 APInt Mod = APInt::getSignedMinValue(W+1);
770 APInt MultiplyFactor = OddFactorial.zext(W+1);
771 MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod);
772 MultiplyFactor = MultiplyFactor.trunc(W);
773
774 // Calculate the product, at width T+W
775 IntegerType *CalculationTy = IntegerType::get(SE.getContext(),
776 CalculationBits);
777 const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy);
778 for (unsigned i = 1; i != K; ++i) {
779 const SCEV *S = SE.getMinusSCEV(It, SE.getConstant(It->getType(), i));
780 Dividend = SE.getMulExpr(Dividend,
781 SE.getTruncateOrZeroExtend(S, CalculationTy));
782 }
783
784 // Divide by 2^T
785 const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor));
786
787 // Truncate the result, and divide by K! / 2^T.
788
789 return SE.getMulExpr(SE.getConstant(MultiplyFactor),
790 SE.getTruncateOrZeroExtend(DivResult, ResultTy));
791}
792
793/// evaluateAtIteration - Return the value of this chain of recurrences at
794/// the specified iteration number. We can evaluate this recurrence by
795/// multiplying each element in the chain by the binomial coefficient
796/// corresponding to it. In other words, we can evaluate {A,+,B,+,C,+,D} as:
797///
798/// A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3)
799///
800/// where BC(It, k) stands for binomial coefficient.
801///
802const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It,
803 ScalarEvolution &SE) const {
804 const SCEV *Result = getStart();
805 for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
806 // The computation is correct in the face of overflow provided that the
807 // multiplication is performed _after_ the evaluation of the binomial
808 // coefficient.
809 const SCEV *Coeff = BinomialCoefficient(It, i, SE, getType());
810 if (isa<SCEVCouldNotCompute>(Coeff))
811 return Coeff;
812
813 Result = SE.getAddExpr(Result, SE.getMulExpr(getOperand(i), Coeff));
814 }
815 return Result;
816}
817
818//===----------------------------------------------------------------------===//
819// SCEV Expression folder implementations
820//===----------------------------------------------------------------------===//
821
822const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op,
823 Type *Ty) {
824 assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) &&
825 "This is not a truncating conversion!");
826 assert(isSCEVable(Ty) &&
827 "This is not a conversion to a SCEVable type!");
828 Ty = getEffectiveSCEVType(Ty);
829
830 FoldingSetNodeID ID;
831 ID.AddInteger(scTruncate);
832 ID.AddPointer(Op);
833 ID.AddPointer(Ty);
834 void *IP = 0;
835 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
836
837 // Fold if the operand is constant.
838 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
839 return getConstant(
840 cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(), Ty)));
841
842 // trunc(trunc(x)) --> trunc(x)
843 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op))
844 return getTruncateExpr(ST->getOperand(), Ty);
845
846 // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing
847 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
848 return getTruncateOrSignExtend(SS->getOperand(), Ty);
849
850 // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing
851 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
852 return getTruncateOrZeroExtend(SZ->getOperand(), Ty);
853
854 // trunc(x1+x2+...+xN) --> trunc(x1)+trunc(x2)+...+trunc(xN) if we can
855 // eliminate all the truncates.
856 if (const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Op)) {
857 SmallVector<const SCEV *, 4> Operands;
858 bool hasTrunc = false;
859 for (unsigned i = 0, e = SA->getNumOperands(); i != e && !hasTrunc; ++i) {
860 const SCEV *S = getTruncateExpr(SA->getOperand(i), Ty);
861 hasTrunc = isa<SCEVTruncateExpr>(S);
862 Operands.push_back(S);
863 }
864 if (!hasTrunc)
865 return getAddExpr(Operands);
866 UniqueSCEVs.FindNodeOrInsertPos(ID, IP); // Mutates IP, returns NULL.
867 }
868
869 // trunc(x1*x2*...*xN) --> trunc(x1)*trunc(x2)*...*trunc(xN) if we can
870 // eliminate all the truncates.
871 if (const SCEVMulExpr *SM = dyn_cast<SCEVMulExpr>(Op)) {
872 SmallVector<const SCEV *, 4> Operands;
873 bool hasTrunc = false;
874 for (unsigned i = 0, e = SM->getNumOperands(); i != e && !hasTrunc; ++i) {
875 const SCEV *S = getTruncateExpr(SM->getOperand(i), Ty);
876 hasTrunc = isa<SCEVTruncateExpr>(S);
877 Operands.push_back(S);
878 }
879 if (!hasTrunc)
880 return getMulExpr(Operands);
881 UniqueSCEVs.FindNodeOrInsertPos(ID, IP); // Mutates IP, returns NULL.
882 }
883
884 // If the input value is a chrec scev, truncate the chrec's operands.
885 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
886 SmallVector<const SCEV *, 4> Operands;
887 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
888 Operands.push_back(getTruncateExpr(AddRec->getOperand(i), Ty));
889 return getAddRecExpr(Operands, AddRec->getLoop(), SCEV::FlagAnyWrap);
890 }
891
892 // The cast wasn't folded; create an explicit cast node. We can reuse
893 // the existing insert position since if we get here, we won't have
894 // made any changes which would invalidate it.
895 SCEV *S = new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator),
896 Op, Ty);
897 UniqueSCEVs.InsertNode(S, IP);
898 return S;
899}
900
901const SCEV *ScalarEvolution::getZeroExtendExpr(const SCEV *Op,
902 Type *Ty) {
903 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
904 "This is not an extending conversion!");
905 assert(isSCEVable(Ty) &&
906 "This is not a conversion to a SCEVable type!");
907 Ty = getEffectiveSCEVType(Ty);
908
909 // Fold if the operand is constant.
910 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
911 return getConstant(
912 cast<ConstantInt>(ConstantExpr::getZExt(SC->getValue(), Ty)));
913
914 // zext(zext(x)) --> zext(x)
915 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
916 return getZeroExtendExpr(SZ->getOperand(), Ty);
917
918 // Before doing any expensive analysis, check to see if we've already
919 // computed a SCEV for this Op and Ty.
920 FoldingSetNodeID ID;
921 ID.AddInteger(scZeroExtend);
922 ID.AddPointer(Op);
923 ID.AddPointer(Ty);
924 void *IP = 0;
925 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
926
927 // zext(trunc(x)) --> zext(x) or x or trunc(x)
928 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) {
929 // It's possible the bits taken off by the truncate were all zero bits. If
930 // so, we should be able to simplify this further.
931 const SCEV *X = ST->getOperand();
932 ConstantRange CR = getUnsignedRange(X);
933 unsigned TruncBits = getTypeSizeInBits(ST->getType());
934 unsigned NewBits = getTypeSizeInBits(Ty);
935 if (CR.truncate(TruncBits).zeroExtend(NewBits).contains(
936 CR.zextOrTrunc(NewBits)))
937 return getTruncateOrZeroExtend(X, Ty);
938 }
939
940 // If the input value is a chrec scev, and we can prove that the value
941 // did not overflow the old, smaller, value, we can zero extend all of the
942 // operands (often constants). This allows analysis of something like
943 // this: for (unsigned char X = 0; X < 100; ++X) { int Y = X; }
944 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
945 if (AR->isAffine()) {
946 const SCEV *Start = AR->getStart();
947 const SCEV *Step = AR->getStepRecurrence(*this);
948 unsigned BitWidth = getTypeSizeInBits(AR->getType());
949 const Loop *L = AR->getLoop();
950
951 // If we have special knowledge that this addrec won't overflow,
952 // we don't need to do any further analysis.
953 if (AR->getNoWrapFlags(SCEV::FlagNUW))
954 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
955 getZeroExtendExpr(Step, Ty),
956 L, AR->getNoWrapFlags());
957
958 // Check whether the backedge-taken count is SCEVCouldNotCompute.
959 // Note that this serves two purposes: It filters out loops that are
960 // simply not analyzable, and it covers the case where this code is
961 // being called from within backedge-taken count analysis, such that
962 // attempting to ask for the backedge-taken count would likely result
963 // in infinite recursion. In the later case, the analysis code will
964 // cope with a conservative value, and it will take care to purge
965 // that value once it has finished.
966 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
967 if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
968 // Manually compute the final value for AR, checking for
969 // overflow.
970
971 // Check whether the backedge-taken count can be losslessly casted to
972 // the addrec's type. The count is always unsigned.
973 const SCEV *CastedMaxBECount =
974 getTruncateOrZeroExtend(MaxBECount, Start->getType());
975 const SCEV *RecastedMaxBECount =
976 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
977 if (MaxBECount == RecastedMaxBECount) {
978 Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
979 // Check whether Start+Step*MaxBECount has no unsigned overflow.
980 const SCEV *ZMul = getMulExpr(CastedMaxBECount, Step);
981 const SCEV *ZAdd = getZeroExtendExpr(getAddExpr(Start, ZMul), WideTy);
982 const SCEV *WideStart = getZeroExtendExpr(Start, WideTy);
983 const SCEV *WideMaxBECount =
984 getZeroExtendExpr(CastedMaxBECount, WideTy);
985 const SCEV *OperandExtendedAdd =
986 getAddExpr(WideStart,
987 getMulExpr(WideMaxBECount,
988 getZeroExtendExpr(Step, WideTy)));
989 if (ZAdd == OperandExtendedAdd) {
990 // Cache knowledge of AR NUW, which is propagated to this AddRec.
991 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW);
992 // Return the expression with the addrec on the outside.
993 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
994 getZeroExtendExpr(Step, Ty),
995 L, AR->getNoWrapFlags());
996 }
997 // Similar to above, only this time treat the step value as signed.
998 // This covers loops that count down.
999 OperandExtendedAdd =
1000 getAddExpr(WideStart,
1001 getMulExpr(WideMaxBECount,
1002 getSignExtendExpr(Step, WideTy)));
1003 if (ZAdd == OperandExtendedAdd) {
1004 // Cache knowledge of AR NW, which is propagated to this AddRec.
1005 // Negative step causes unsigned wrap, but it still can't self-wrap.
1006 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW);
1007 // Return the expression with the addrec on the outside.
1008 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
1009 getSignExtendExpr(Step, Ty),
1010 L, AR->getNoWrapFlags());
1011 }
1012 }
1013
1014 // If the backedge is guarded by a comparison with the pre-inc value
1015 // the addrec is safe. Also, if the entry is guarded by a comparison
1016 // with the start value and the backedge is guarded by a comparison
1017 // with the post-inc value, the addrec is safe.
1018 if (isKnownPositive(Step)) {
1019 const SCEV *N = getConstant(APInt::getMinValue(BitWidth) -
1020 getUnsignedRange(Step).getUnsignedMax());
1021 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) ||
1022 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_ULT, Start, N) &&
1023 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT,
1024 AR->getPostIncExpr(*this), N))) {
1025 // Cache knowledge of AR NUW, which is propagated to this AddRec.
1026 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW);
1027 // Return the expression with the addrec on the outside.
1028 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
1029 getZeroExtendExpr(Step, Ty),
1030 L, AR->getNoWrapFlags());
1031 }
1032 } else if (isKnownNegative(Step)) {
1033 const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) -
1034 getSignedRange(Step).getSignedMin());
1035 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) ||
1036 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_UGT, Start, N) &&
1037 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT,
1038 AR->getPostIncExpr(*this), N))) {
1039 // Cache knowledge of AR NW, which is propagated to this AddRec.
1040 // Negative step causes unsigned wrap, but it still can't self-wrap.
1041 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW);
1042 // Return the expression with the addrec on the outside.
1043 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
1044 getSignExtendExpr(Step, Ty),
1045 L, AR->getNoWrapFlags());
1046 }
1047 }
1048 }
1049 }
1050
1051 // The cast wasn't folded; create an explicit cast node.
1052 // Recompute the insert position, as it may have been invalidated.
1053 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1054 SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator),
1055 Op, Ty);
1056 UniqueSCEVs.InsertNode(S, IP);
1057 return S;
1058}
1059
1060// Get the limit of a recurrence such that incrementing by Step cannot cause
1061// signed overflow as long as the value of the recurrence within the loop does
1062// not exceed this limit before incrementing.
1063static const SCEV *getOverflowLimitForStep(const SCEV *Step,
1064 ICmpInst::Predicate *Pred,
1065 ScalarEvolution *SE) {
1066 unsigned BitWidth = SE->getTypeSizeInBits(Step->getType());
1067 if (SE->isKnownPositive(Step)) {
1068 *Pred = ICmpInst::ICMP_SLT;
1069 return SE->getConstant(APInt::getSignedMinValue(BitWidth) -
1070 SE->getSignedRange(Step).getSignedMax());
1071 }
1072 if (SE->isKnownNegative(Step)) {
1073 *Pred = ICmpInst::ICMP_SGT;
1074 return SE->getConstant(APInt::getSignedMaxValue(BitWidth) -
1075 SE->getSignedRange(Step).getSignedMin());
1076 }
1077 return 0;
1078}
1079
1080// The recurrence AR has been shown to have no signed wrap. Typically, if we can
1081// prove NSW for AR, then we can just as easily prove NSW for its preincrement
1082// or postincrement sibling. This allows normalizing a sign extended AddRec as
1083// such: {sext(Step + Start),+,Step} => {(Step + sext(Start),+,Step} As a
1084// result, the expression "Step + sext(PreIncAR)" is congruent with
1085// "sext(PostIncAR)"
1086static const SCEV *getPreStartForSignExtend(const SCEVAddRecExpr *AR,
1087 Type *Ty,
1088 ScalarEvolution *SE) {
1089 const Loop *L = AR->getLoop();
1090 const SCEV *Start = AR->getStart();
1091 const SCEV *Step = AR->getStepRecurrence(*SE);
1092
1093 // Check for a simple looking step prior to loop entry.
1094 const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Start);
1095 if (!SA)
1096 return 0;
1097
1098 // Create an AddExpr for "PreStart" after subtracting Step. Full SCEV
1099 // subtraction is expensive. For this purpose, perform a quick and dirty
1100 // difference, by checking for Step in the operand list.
1101 SmallVector<const SCEV *, 4> DiffOps;
1102 for (SCEVAddExpr::op_iterator I = SA->op_begin(), E = SA->op_end();
1103 I != E; ++I) {
1104 if (*I != Step)
1105 DiffOps.push_back(*I);
1106 }
1107 if (DiffOps.size() == SA->getNumOperands())
1108 return 0;
1109
1110 // This is a postinc AR. Check for overflow on the preinc recurrence using the
1111 // same three conditions that getSignExtendedExpr checks.
1112
1113 // 1. NSW flags on the step increment.
1114 const SCEV *PreStart = SE->getAddExpr(DiffOps, SA->getNoWrapFlags());
1115 const SCEVAddRecExpr *PreAR = dyn_cast<SCEVAddRecExpr>(
1116 SE->getAddRecExpr(PreStart, Step, L, SCEV::FlagAnyWrap));
1117
1118 if (PreAR && PreAR->getNoWrapFlags(SCEV::FlagNSW))
1119 return PreStart;
1120
1121 // 2. Direct overflow check on the step operation's expression.
1122 unsigned BitWidth = SE->getTypeSizeInBits(AR->getType());
1123 Type *WideTy = IntegerType::get(SE->getContext(), BitWidth * 2);
1124 const SCEV *OperandExtendedStart =
1125 SE->getAddExpr(SE->getSignExtendExpr(PreStart, WideTy),
1126 SE->getSignExtendExpr(Step, WideTy));
1127 if (SE->getSignExtendExpr(Start, WideTy) == OperandExtendedStart) {
1128 // Cache knowledge of PreAR NSW.
1129 if (PreAR)
1130 const_cast<SCEVAddRecExpr *>(PreAR)->setNoWrapFlags(SCEV::FlagNSW);
1131 // FIXME: this optimization needs a unit test
1132 DEBUG(dbgs() << "SCEV: untested prestart overflow check\n");
1133 return PreStart;
1134 }
1135
1136 // 3. Loop precondition.
1137 ICmpInst::Predicate Pred;
1138 const SCEV *OverflowLimit = getOverflowLimitForStep(Step, &Pred, SE);
1139
1140 if (OverflowLimit &&
1141 SE->isLoopEntryGuardedByCond(L, Pred, PreStart, OverflowLimit)) {
1142 return PreStart;
1143 }
1144 return 0;
1145}
1146
1147// Get the normalized sign-extended expression for this AddRec's Start.
1148static const SCEV *getSignExtendAddRecStart(const SCEVAddRecExpr *AR,
1149 Type *Ty,
1150 ScalarEvolution *SE) {
1151 const SCEV *PreStart = getPreStartForSignExtend(AR, Ty, SE);
1152 if (!PreStart)
1153 return SE->getSignExtendExpr(AR->getStart(), Ty);
1154
1155 return SE->getAddExpr(SE->getSignExtendExpr(AR->getStepRecurrence(*SE), Ty),
1156 SE->getSignExtendExpr(PreStart, Ty));
1157}
1158
1159const SCEV *ScalarEvolution::getSignExtendExpr(const SCEV *Op,
1160 Type *Ty) {
1161 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1162 "This is not an extending conversion!");
1163 assert(isSCEVable(Ty) &&
1164 "This is not a conversion to a SCEVable type!");
1165 Ty = getEffectiveSCEVType(Ty);
1166
1167 // Fold if the operand is constant.
1168 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1169 return getConstant(
1170 cast<ConstantInt>(ConstantExpr::getSExt(SC->getValue(), Ty)));
1171
1172 // sext(sext(x)) --> sext(x)
1173 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
1174 return getSignExtendExpr(SS->getOperand(), Ty);
1175
1176 // sext(zext(x)) --> zext(x)
1177 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
1178 return getZeroExtendExpr(SZ->getOperand(), Ty);
1179
1180 // Before doing any expensive analysis, check to see if we've already
1181 // computed a SCEV for this Op and Ty.
1182 FoldingSetNodeID ID;
1183 ID.AddInteger(scSignExtend);
1184 ID.AddPointer(Op);
1185 ID.AddPointer(Ty);
1186 void *IP = 0;
1187 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1188
1189 // If the input value is provably positive, build a zext instead.
1190 if (isKnownNonNegative(Op))
1191 return getZeroExtendExpr(Op, Ty);
1192
1193 // sext(trunc(x)) --> sext(x) or x or trunc(x)
1194 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) {
1195 // It's possible the bits taken off by the truncate were all sign bits. If
1196 // so, we should be able to simplify this further.
1197 const SCEV *X = ST->getOperand();
1198 ConstantRange CR = getSignedRange(X);
1199 unsigned TruncBits = getTypeSizeInBits(ST->getType());
1200 unsigned NewBits = getTypeSizeInBits(Ty);
1201 if (CR.truncate(TruncBits).signExtend(NewBits).contains(
1202 CR.sextOrTrunc(NewBits)))
1203 return getTruncateOrSignExtend(X, Ty);
1204 }
1205
1206 // If the input value is a chrec scev, and we can prove that the value
1207 // did not overflow the old, smaller, value, we can sign extend all of the
1208 // operands (often constants). This allows analysis of something like
1209 // this: for (signed char X = 0; X < 100; ++X) { int Y = X; }
1210 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
1211 if (AR->isAffine()) {
1212 const SCEV *Start = AR->getStart();
1213 const SCEV *Step = AR->getStepRecurrence(*this);
1214 unsigned BitWidth = getTypeSizeInBits(AR->getType());
1215 const Loop *L = AR->getLoop();
1216
1217 // If we have special knowledge that this addrec won't overflow,
1218 // we don't need to do any further analysis.
1219 if (AR->getNoWrapFlags(SCEV::FlagNSW))
1220 return getAddRecExpr(getSignExtendAddRecStart(AR, Ty, this),
1221 getSignExtendExpr(Step, Ty),
1222 L, SCEV::FlagNSW);
1223
1224 // Check whether the backedge-taken count is SCEVCouldNotCompute.
1225 // Note that this serves two purposes: It filters out loops that are
1226 // simply not analyzable, and it covers the case where this code is
1227 // being called from within backedge-taken count analysis, such that
1228 // attempting to ask for the backedge-taken count would likely result
1229 // in infinite recursion. In the later case, the analysis code will
1230 // cope with a conservative value, and it will take care to purge
1231 // that value once it has finished.
1232 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
1233 if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
1234 // Manually compute the final value for AR, checking for
1235 // overflow.
1236
1237 // Check whether the backedge-taken count can be losslessly casted to
1238 // the addrec's type. The count is always unsigned.
1239 const SCEV *CastedMaxBECount =
1240 getTruncateOrZeroExtend(MaxBECount, Start->getType());
1241 const SCEV *RecastedMaxBECount =
1242 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
1243 if (MaxBECount == RecastedMaxBECount) {
1244 Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
1245 // Check whether Start+Step*MaxBECount has no signed overflow.
1246 const SCEV *SMul = getMulExpr(CastedMaxBECount, Step);
1247 const SCEV *SAdd = getSignExtendExpr(getAddExpr(Start, SMul), WideTy);
1248 const SCEV *WideStart = getSignExtendExpr(Start, WideTy);
1249 const SCEV *WideMaxBECount =
1250 getZeroExtendExpr(CastedMaxBECount, WideTy);
1251 const SCEV *OperandExtendedAdd =
1252 getAddExpr(WideStart,
1253 getMulExpr(WideMaxBECount,
1254 getSignExtendExpr(Step, WideTy)));
1255 if (SAdd == OperandExtendedAdd) {
1256 // Cache knowledge of AR NSW, which is propagated to this AddRec.
1257 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
1258 // Return the expression with the addrec on the outside.
1259 return getAddRecExpr(getSignExtendAddRecStart(AR, Ty, this),
1260 getSignExtendExpr(Step, Ty),
1261 L, AR->getNoWrapFlags());
1262 }
1263 // Similar to above, only this time treat the step value as unsigned.
1264 // This covers loops that count up with an unsigned step.
1265 OperandExtendedAdd =
1266 getAddExpr(WideStart,
1267 getMulExpr(WideMaxBECount,
1268 getZeroExtendExpr(Step, WideTy)));
1269 if (SAdd == OperandExtendedAdd) {
1270 // Cache knowledge of AR NSW, which is propagated to this AddRec.
1271 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
1272 // Return the expression with the addrec on the outside.
1273 return getAddRecExpr(getSignExtendAddRecStart(AR, Ty, this),
1274 getZeroExtendExpr(Step, Ty),
1275 L, AR->getNoWrapFlags());
1276 }
1277 }
1278
1279 // If the backedge is guarded by a comparison with the pre-inc value
1280 // the addrec is safe. Also, if the entry is guarded by a comparison
1281 // with the start value and the backedge is guarded by a comparison
1282 // with the post-inc value, the addrec is safe.
1283 ICmpInst::Predicate Pred;
1284 const SCEV *OverflowLimit = getOverflowLimitForStep(Step, &Pred, this);
1285 if (OverflowLimit &&
1286 (isLoopBackedgeGuardedByCond(L, Pred, AR, OverflowLimit) ||
1287 (isLoopEntryGuardedByCond(L, Pred, Start, OverflowLimit) &&
1288 isLoopBackedgeGuardedByCond(L, Pred, AR->getPostIncExpr(*this),
1289 OverflowLimit)))) {
1290 // Cache knowledge of AR NSW, then propagate NSW to the wide AddRec.
1291 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
1292 return getAddRecExpr(getSignExtendAddRecStart(AR, Ty, this),
1293 getSignExtendExpr(Step, Ty),
1294 L, AR->getNoWrapFlags());
1295 }
1296 }
1297 }
1298
1299 // The cast wasn't folded; create an explicit cast node.
1300 // Recompute the insert position, as it may have been invalidated.
1301 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1302 SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator),
1303 Op, Ty);
1304 UniqueSCEVs.InsertNode(S, IP);
1305 return S;
1306}
1307
1308/// getAnyExtendExpr - Return a SCEV for the given operand extended with
1309/// unspecified bits out to the given type.
1310///
1311const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op,
1312 Type *Ty) {
1313 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1314 "This is not an extending conversion!");
1315 assert(isSCEVable(Ty) &&
1316 "This is not a conversion to a SCEVable type!");
1317 Ty = getEffectiveSCEVType(Ty);
1318
1319 // Sign-extend negative constants.
1320 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1321 if (SC->getValue()->getValue().isNegative())
1322 return getSignExtendExpr(Op, Ty);
1323
1324 // Peel off a truncate cast.
1325 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) {
1326 const SCEV *NewOp = T->getOperand();
1327 if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty))
1328 return getAnyExtendExpr(NewOp, Ty);
1329 return getTruncateOrNoop(NewOp, Ty);
1330 }
1331
1332 // Next try a zext cast. If the cast is folded, use it.
1333 const SCEV *ZExt = getZeroExtendExpr(Op, Ty);
1334 if (!isa<SCEVZeroExtendExpr>(ZExt))
1335 return ZExt;
1336
1337 // Next try a sext cast. If the cast is folded, use it.
1338 const SCEV *SExt = getSignExtendExpr(Op, Ty);
1339 if (!isa<SCEVSignExtendExpr>(SExt))
1340 return SExt;
1341
1342 // Force the cast to be folded into the operands of an addrec.
1343 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) {
1344 SmallVector<const SCEV *, 4> Ops;
1345 for (SCEVAddRecExpr::op_iterator I = AR->op_begin(), E = AR->op_end();
1346 I != E; ++I)
1347 Ops.push_back(getAnyExtendExpr(*I, Ty));
1348 return getAddRecExpr(Ops, AR->getLoop(), SCEV::FlagNW);
1349 }
1350
1351 // If the expression is obviously signed, use the sext cast value.
1352 if (isa<SCEVSMaxExpr>(Op))
1353 return SExt;
1354
1355 // Absent any other information, use the zext cast value.
1356 return ZExt;
1357}
1358
1359/// CollectAddOperandsWithScales - Process the given Ops list, which is
1360/// a list of operands to be added under the given scale, update the given
1361/// map. This is a helper function for getAddRecExpr. As an example of
1362/// what it does, given a sequence of operands that would form an add
1363/// expression like this:
1364///
1365/// m + n + 13 + (A * (o + p + (B * q + m + 29))) + r + (-1 * r)
1366///
1367/// where A and B are constants, update the map with these values:
1368///
1369/// (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0)
1370///
1371/// and add 13 + A*B*29 to AccumulatedConstant.
1372/// This will allow getAddRecExpr to produce this:
1373///
1374/// 13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B)
1375///
1376/// This form often exposes folding opportunities that are hidden in
1377/// the original operand list.
1378///
1379/// Return true iff it appears that any interesting folding opportunities
1380/// may be exposed. This helps getAddRecExpr short-circuit extra work in
1381/// the common case where no interesting opportunities are present, and
1382/// is also used as a check to avoid infinite recursion.
1383///
1384static bool
1385CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M,
1386 SmallVectorImpl<const SCEV *> &NewOps,
1387 APInt &AccumulatedConstant,
1388 const SCEV *const *Ops, size_t NumOperands,
1389 const APInt &Scale,
1390 ScalarEvolution &SE) {
1391 bool Interesting = false;
1392
1393 // Iterate over the add operands. They are sorted, with constants first.
1394 unsigned i = 0;
1395 while (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
1396 ++i;
1397 // Pull a buried constant out to the outside.
1398 if (Scale != 1 || AccumulatedConstant != 0 || C->getValue()->isZero())
1399 Interesting = true;
1400 AccumulatedConstant += Scale * C->getValue()->getValue();
1401 }
1402
1403 // Next comes everything else. We're especially interested in multiplies
1404 // here, but they're in the middle, so just visit the rest with one loop.
1405 for (; i != NumOperands; ++i) {
1406 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]);
1407 if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) {
1408 APInt NewScale =
1409 Scale * cast<SCEVConstant>(Mul->getOperand(0))->getValue()->getValue();
1410 if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) {
1411 // A multiplication of a constant with another add; recurse.
1412 const SCEVAddExpr *Add = cast<SCEVAddExpr>(Mul->getOperand(1));
1413 Interesting |=
1414 CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
1415 Add->op_begin(), Add->getNumOperands(),
1416 NewScale, SE);
1417 } else {
1418 // A multiplication of a constant with some other value. Update
1419 // the map.
1420 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin()+1, Mul->op_end());
1421 const SCEV *Key = SE.getMulExpr(MulOps);
1422 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
1423 M.insert(std::make_pair(Key, NewScale));
1424 if (Pair.second) {
1425 NewOps.push_back(Pair.first->first);
1426 } else {
1427 Pair.first->second += NewScale;
1428 // The map already had an entry for this value, which may indicate
1429 // a folding opportunity.
1430 Interesting = true;
1431 }
1432 }
1433 } else {
1434 // An ordinary operand. Update the map.
1435 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
1436 M.insert(std::make_pair(Ops[i], Scale));
1437 if (Pair.second) {
1438 NewOps.push_back(Pair.first->first);
1439 } else {
1440 Pair.first->second += Scale;
1441 // The map already had an entry for this value, which may indicate
1442 // a folding opportunity.
1443 Interesting = true;
1444 }
1445 }
1446 }
1447
1448 return Interesting;
1449}
1450
1451namespace {
1452 struct APIntCompare {
1453 bool operator()(const APInt &LHS, const APInt &RHS) const {
1454 return LHS.ult(RHS);
1455 }
1456 };
1457}
1458
1459/// getAddExpr - Get a canonical add expression, or something simpler if
1460/// possible.
1461const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops,
1462 SCEV::NoWrapFlags Flags) {
1463 assert(!(Flags & ~(SCEV::FlagNUW | SCEV::FlagNSW)) &&
1464 "only nuw or nsw allowed");
1465 assert(!Ops.empty() && "Cannot get empty add!");
1466 if (Ops.size() == 1) return Ops[0];
1467#ifndef NDEBUG
1468 Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
1469 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
1470 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
1471 "SCEVAddExpr operand types don't match!");
1472#endif
1473
1474 // If FlagNSW is true and all the operands are non-negative, infer FlagNUW.
1475 // And vice-versa.
1476 int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW;
1477 SCEV::NoWrapFlags SignOrUnsignWrap = maskFlags(Flags, SignOrUnsignMask);
1478 if (SignOrUnsignWrap && (SignOrUnsignWrap != SignOrUnsignMask)) {
1479 bool All = true;
1480 for (SmallVectorImpl<const SCEV *>::const_iterator I = Ops.begin(),
1481 E = Ops.end(); I != E; ++I)
1482 if (!isKnownNonNegative(*I)) {
1483 All = false;
1484 break;
1485 }
1486 if (All) Flags = setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask);
1487 }
1488
1489 // Sort by complexity, this groups all similar expression types together.
1490 GroupByComplexity(Ops, LI);
1491
1492 // If there are any constants, fold them together.
1493 unsigned Idx = 0;
1494 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
1495 ++Idx;
1496 assert(Idx < Ops.size());
1497 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
1498 // We found two constants, fold them together!
1499 Ops[0] = getConstant(LHSC->getValue()->getValue() +
1500 RHSC->getValue()->getValue());
1501 if (Ops.size() == 2) return Ops[0];
1502 Ops.erase(Ops.begin()+1); // Erase the folded element
1503 LHSC = cast<SCEVConstant>(Ops[0]);
1504 }
1505
1506 // If we are left with a constant zero being added, strip it off.
1507 if (LHSC->getValue()->isZero()) {
1508 Ops.erase(Ops.begin());
1509 --Idx;
1510 }
1511
1512 if (Ops.size() == 1) return Ops[0];
1513 }
1514
1515 // Okay, check to see if the same value occurs in the operand list more than
1516 // once. If so, merge them together into an multiply expression. Since we
1517 // sorted the list, these values are required to be adjacent.
1518 Type *Ty = Ops[0]->getType();
1519 bool FoundMatch = false;
1520 for (unsigned i = 0, e = Ops.size(); i != e-1; ++i)
1521 if (Ops[i] == Ops[i+1]) { // X + Y + Y --> X + Y*2
1522 // Scan ahead to count how many equal operands there are.
1523 unsigned Count = 2;
1524 while (i+Count != e && Ops[i+Count] == Ops[i])
1525 ++Count;
1526 // Merge the values into a multiply.
1527 const SCEV *Scale = getConstant(Ty, Count);
1528 const SCEV *Mul = getMulExpr(Scale, Ops[i]);
1529 if (Ops.size() == Count)
1530 return Mul;
1531 Ops[i] = Mul;
1532 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+Count);
1533 --i; e -= Count - 1;
1534 FoundMatch = true;
1535 }
1536 if (FoundMatch)
1537 return getAddExpr(Ops, Flags);
1538
1539 // Check for truncates. If all the operands are truncated from the same
1540 // type, see if factoring out the truncate would permit the result to be
1541 // folded. eg., trunc(x) + m*trunc(n) --> trunc(x + trunc(m)*n)
1542 // if the contents of the resulting outer trunc fold to something simple.
1543 for (; Idx < Ops.size() && isa<SCEVTruncateExpr>(Ops[Idx]); ++Idx) {
1544 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(Ops[Idx]);
1545 Type *DstType = Trunc->getType();
1546 Type *SrcType = Trunc->getOperand()->getType();
1547 SmallVector<const SCEV *, 8> LargeOps;
1548 bool Ok = true;
1549 // Check all the operands to see if they can be represented in the
1550 // source type of the truncate.
1551 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1552 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) {
1553 if (T->getOperand()->getType() != SrcType) {
1554 Ok = false;
1555 break;
1556 }
1557 LargeOps.push_back(T->getOperand());
1558 } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
1559 LargeOps.push_back(getAnyExtendExpr(C, SrcType));
1560 } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) {
1561 SmallVector<const SCEV *, 8> LargeMulOps;
1562 for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) {
1563 if (const SCEVTruncateExpr *T =
1564 dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) {
1565 if (T->getOperand()->getType() != SrcType) {
1566 Ok = false;
1567 break;
1568 }
1569 LargeMulOps.push_back(T->getOperand());
1570 } else if (const SCEVConstant *C =
1571 dyn_cast<SCEVConstant>(M->getOperand(j))) {
1572 LargeMulOps.push_back(getAnyExtendExpr(C, SrcType));
1573 } else {
1574 Ok = false;
1575 break;
1576 }
1577 }
1578 if (Ok)
1579 LargeOps.push_back(getMulExpr(LargeMulOps));
1580 } else {
1581 Ok = false;
1582 break;
1583 }
1584 }
1585 if (Ok) {
1586 // Evaluate the expression in the larger type.
1587 const SCEV *Fold = getAddExpr(LargeOps, Flags);
1588 // If it folds to something simple, use it. Otherwise, don't.
1589 if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold))
1590 return getTruncateExpr(Fold, DstType);
1591 }
1592 }
1593
1594 // Skip past any other cast SCEVs.
1595 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr)
1596 ++Idx;
1597
1598 // If there are add operands they would be next.
1599 if (Idx < Ops.size()) {
1600 bool DeletedAdd = false;
1601 while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) {
1602 // If we have an add, expand the add operands onto the end of the operands
1603 // list.
1604 Ops.erase(Ops.begin()+Idx);
1605 Ops.append(Add->op_begin(), Add->op_end());
1606 DeletedAdd = true;
1607 }
1608
1609 // If we deleted at least one add, we added operands to the end of the list,
1610 // and they are not necessarily sorted. Recurse to resort and resimplify
1611 // any operands we just acquired.
1612 if (DeletedAdd)
1613 return getAddExpr(Ops);
1614 }
1615
1616 // Skip over the add expression until we get to a multiply.
1617 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
1618 ++Idx;
1619
1620 // Check to see if there are any folding opportunities present with
1621 // operands multiplied by constant values.
1622 if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) {
1623 uint64_t BitWidth = getTypeSizeInBits(Ty);
1624 DenseMap<const SCEV *, APInt> M;
1625 SmallVector<const SCEV *, 8> NewOps;
1626 APInt AccumulatedConstant(BitWidth, 0);
1627 if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
1628 Ops.data(), Ops.size(),
1629 APInt(BitWidth, 1), *this)) {
1630 // Some interesting folding opportunity is present, so its worthwhile to
1631 // re-generate the operands list. Group the operands by constant scale,
1632 // to avoid multiplying by the same constant scale multiple times.
1633 std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists;
1634 for (SmallVectorImpl<const SCEV *>::const_iterator I = NewOps.begin(),
1635 E = NewOps.end(); I != E; ++I)
1636 MulOpLists[M.find(*I)->second].push_back(*I);
1637 // Re-generate the operands list.
1638 Ops.clear();
1639 if (AccumulatedConstant != 0)
1640 Ops.push_back(getConstant(AccumulatedConstant));
1641 for (std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare>::iterator
1642 I = MulOpLists.begin(), E = MulOpLists.end(); I != E; ++I)
1643 if (I->first != 0)
1644 Ops.push_back(getMulExpr(getConstant(I->first),
1645 getAddExpr(I->second)));
1646 if (Ops.empty())
1647 return getConstant(Ty, 0);
1648 if (Ops.size() == 1)
1649 return Ops[0];
1650 return getAddExpr(Ops);
1651 }
1652 }
1653
1654 // If we are adding something to a multiply expression, make sure the
1655 // something is not already an operand of the multiply. If so, merge it into
1656 // the multiply.
1657 for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) {
1658 const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]);
1659 for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) {
1660 const SCEV *MulOpSCEV = Mul->getOperand(MulOp);
1661 if (isa<SCEVConstant>(MulOpSCEV))
1662 continue;
1663 for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp)
1664 if (MulOpSCEV == Ops[AddOp]) {
1665 // Fold W + X + (X * Y * Z) --> W + (X * ((Y*Z)+1))
1666 const SCEV *InnerMul = Mul->getOperand(MulOp == 0);
1667 if (Mul->getNumOperands() != 2) {
1668 // If the multiply has more than two operands, we must get the
1669 // Y*Z term.
1670 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
1671 Mul->op_begin()+MulOp);
1672 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
1673 InnerMul = getMulExpr(MulOps);
1674 }
1675 const SCEV *One = getConstant(Ty, 1);
1676 const SCEV *AddOne = getAddExpr(One, InnerMul);
1677 const SCEV *OuterMul = getMulExpr(AddOne, MulOpSCEV);
1678 if (Ops.size() == 2) return OuterMul;
1679 if (AddOp < Idx) {
1680 Ops.erase(Ops.begin()+AddOp);
1681 Ops.erase(Ops.begin()+Idx-1);
1682 } else {
1683 Ops.erase(Ops.begin()+Idx);
1684 Ops.erase(Ops.begin()+AddOp-1);
1685 }
1686 Ops.push_back(OuterMul);
1687 return getAddExpr(Ops);
1688 }
1689
1690 // Check this multiply against other multiplies being added together.
1691 for (unsigned OtherMulIdx = Idx+1;
1692 OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]);
1693 ++OtherMulIdx) {
1694 const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]);
1695 // If MulOp occurs in OtherMul, we can fold the two multiplies
1696 // together.
1697 for (unsigned OMulOp = 0, e = OtherMul->getNumOperands();
1698 OMulOp != e; ++OMulOp)
1699 if (OtherMul->getOperand(OMulOp) == MulOpSCEV) {
1700 // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E))
1701 const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0);
1702 if (Mul->getNumOperands() != 2) {
1703 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
1704 Mul->op_begin()+MulOp);
1705 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
1706 InnerMul1 = getMulExpr(MulOps);
1707 }
1708 const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0);
1709 if (OtherMul->getNumOperands() != 2) {
1710 SmallVector<const SCEV *, 4> MulOps(OtherMul->op_begin(),
1711 OtherMul->op_begin()+OMulOp);
1712 MulOps.append(OtherMul->op_begin()+OMulOp+1, OtherMul->op_end());
1713 InnerMul2 = getMulExpr(MulOps);
1714 }
1715 const SCEV *InnerMulSum = getAddExpr(InnerMul1,InnerMul2);
1716 const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum);
1717 if (Ops.size() == 2) return OuterMul;
1718 Ops.erase(Ops.begin()+Idx);
1719 Ops.erase(Ops.begin()+OtherMulIdx-1);
1720 Ops.push_back(OuterMul);
1721 return getAddExpr(Ops);
1722 }
1723 }
1724 }
1725 }
1726
1727 // If there are any add recurrences in the operands list, see if any other
1728 // added values are loop invariant. If so, we can fold them into the
1729 // recurrence.
1730 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
1731 ++Idx;
1732
1733 // Scan over all recurrences, trying to fold loop invariants into them.
1734 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
1735 // Scan all of the other operands to this add and add them to the vector if
1736 // they are loop invariant w.r.t. the recurrence.
1737 SmallVector<const SCEV *, 8> LIOps;
1738 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
1739 const Loop *AddRecLoop = AddRec->getLoop();
1740 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1741 if (isLoopInvariant(Ops[i], AddRecLoop)) {
1742 LIOps.push_back(Ops[i]);
1743 Ops.erase(Ops.begin()+i);
1744 --i; --e;
1745 }
1746
1747 // If we found some loop invariants, fold them into the recurrence.
1748 if (!LIOps.empty()) {
1749 // NLI + LI + {Start,+,Step} --> NLI + {LI+Start,+,Step}
1750 LIOps.push_back(AddRec->getStart());
1751
1752 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
1753 AddRec->op_end());
1754 AddRecOps[0] = getAddExpr(LIOps);
1755
1756 // Build the new addrec. Propagate the NUW and NSW flags if both the
1757 // outer add and the inner addrec are guaranteed to have no overflow.
1758 // Always propagate NW.
1759 Flags = AddRec->getNoWrapFlags(setFlags(Flags, SCEV::FlagNW));
1760 const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRecLoop, Flags);
1761
1762 // If all of the other operands were loop invariant, we are done.
1763 if (Ops.size() == 1) return NewRec;
1764
1765 // Otherwise, add the folded AddRec by the non-invariant parts.
1766 for (unsigned i = 0;; ++i)
1767 if (Ops[i] == AddRec) {
1768 Ops[i] = NewRec;
1769 break;
1770 }
1771 return getAddExpr(Ops);
1772 }
1773
1774 // Okay, if there weren't any loop invariants to be folded, check to see if
1775 // there are multiple AddRec's with the same loop induction variable being
1776 // added together. If so, we can fold them.
1777 for (unsigned OtherIdx = Idx+1;
1778 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
1779 ++OtherIdx)
1780 if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) {
1781 // Other + {A,+,B}<L> + {C,+,D}<L> --> Other + {A+C,+,B+D}<L>
1782 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
1783 AddRec->op_end());
1784 for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
1785 ++OtherIdx)
1786 if (const SCEVAddRecExpr *OtherAddRec =
1787 dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]))
1788 if (OtherAddRec->getLoop() == AddRecLoop) {
1789 for (unsigned i = 0, e = OtherAddRec->getNumOperands();
1790 i != e; ++i) {
1791 if (i >= AddRecOps.size()) {
1792 AddRecOps.append(OtherAddRec->op_begin()+i,
1793 OtherAddRec->op_end());
1794 break;
1795 }
1796 AddRecOps[i] = getAddExpr(AddRecOps[i],
1797 OtherAddRec->getOperand(i));
1798 }
1799 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
1800 }
1801 // Step size has changed, so we cannot guarantee no self-wraparound.
1802 Ops[Idx] = getAddRecExpr(AddRecOps, AddRecLoop, SCEV::FlagAnyWrap);
1803 return getAddExpr(Ops);
1804 }
1805
1806 // Otherwise couldn't fold anything into this recurrence. Move onto the
1807 // next one.
1808 }
1809
1810 // Okay, it looks like we really DO need an add expr. Check to see if we
1811 // already have one, otherwise create a new one.
1812 FoldingSetNodeID ID;
1813 ID.AddInteger(scAddExpr);
1814 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1815 ID.AddPointer(Ops[i]);
1816 void *IP = 0;
1817 SCEVAddExpr *S =
1818 static_cast<SCEVAddExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
1819 if (!S) {
1820 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
1821 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
1822 S = new (SCEVAllocator) SCEVAddExpr(ID.Intern(SCEVAllocator),
1823 O, Ops.size());
1824 UniqueSCEVs.InsertNode(S, IP);
1825 }
1826 S->setNoWrapFlags(Flags);
1827 return S;
1828}
1829
1830static uint64_t umul_ov(uint64_t i, uint64_t j, bool &Overflow) {
1831 uint64_t k = i*j;
1832 if (j > 1 && k / j != i) Overflow = true;
1833 return k;
1834}
1835
1836/// Compute the result of "n choose k", the binomial coefficient. If an
1837/// intermediate computation overflows, Overflow will be set and the return will
1838/// be garbage. Overflow is not cleared on absence of overflow.
1839static uint64_t Choose(uint64_t n, uint64_t k, bool &Overflow) {
1840 // We use the multiplicative formula:
1841 // n(n-1)(n-2)...(n-(k-1)) / k(k-1)(k-2)...1 .
1842 // At each iteration, we take the n-th term of the numeral and divide by the
1843 // (k-n)th term of the denominator. This division will always produce an
1844 // integral result, and helps reduce the chance of overflow in the
1845 // intermediate computations. However, we can still overflow even when the
1846 // final result would fit.
1847
1848 if (n == 0 || n == k) return 1;
1849 if (k > n) return 0;
1850
1851 if (k > n/2)
1852 k = n-k;
1853
1854 uint64_t r = 1;
1855 for (uint64_t i = 1; i <= k; ++i) {
1856 r = umul_ov(r, n-(i-1), Overflow);
1857 r /= i;
1858 }
1859 return r;
1860}
1861
1862/// getMulExpr - Get a canonical multiply expression, or something simpler if
1863/// possible.
1864const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops,
1865 SCEV::NoWrapFlags Flags) {
1866 assert(Flags == maskFlags(Flags, SCEV::FlagNUW | SCEV::FlagNSW) &&
1867 "only nuw or nsw allowed");
1868 assert(!Ops.empty() && "Cannot get empty mul!");
1869 if (Ops.size() == 1) return Ops[0];
1870#ifndef NDEBUG
1871 Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
1872 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
1873 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
1874 "SCEVMulExpr operand types don't match!");
1875#endif
1876
1877 // If FlagNSW is true and all the operands are non-negative, infer FlagNUW.
1878 // And vice-versa.
1879 int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW;
1880 SCEV::NoWrapFlags SignOrUnsignWrap = maskFlags(Flags, SignOrUnsignMask);
1881 if (SignOrUnsignWrap && (SignOrUnsignWrap != SignOrUnsignMask)) {
1882 bool All = true;
1883 for (SmallVectorImpl<const SCEV *>::const_iterator I = Ops.begin(),
1884 E = Ops.end(); I != E; ++I)
1885 if (!isKnownNonNegative(*I)) {
1886 All = false;
1887 break;
1888 }
1889 if (All) Flags = setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask);
1890 }
1891
1892 // Sort by complexity, this groups all similar expression types together.
1893 GroupByComplexity(Ops, LI);
1894
1895 // If there are any constants, fold them together.
1896 unsigned Idx = 0;
1897 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
1898
1899 // C1*(C2+V) -> C1*C2 + C1*V
1900 if (Ops.size() == 2)
1901 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1]))
1902 if (Add->getNumOperands() == 2 &&
1903 isa<SCEVConstant>(Add->getOperand(0)))
1904 return getAddExpr(getMulExpr(LHSC, Add->getOperand(0)),
1905 getMulExpr(LHSC, Add->getOperand(1)));
1906
1907 ++Idx;
1908 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
1909 // We found two constants, fold them together!
1910 ConstantInt *Fold = ConstantInt::get(getContext(),
1911 LHSC->getValue()->getValue() *
1912 RHSC->getValue()->getValue());
1913 Ops[0] = getConstant(Fold);
1914 Ops.erase(Ops.begin()+1); // Erase the folded element
1915 if (Ops.size() == 1) return Ops[0];
1916 LHSC = cast<SCEVConstant>(Ops[0]);
1917 }
1918
1919 // If we are left with a constant one being multiplied, strip it off.
1920 if (cast<SCEVConstant>(Ops[0])->getValue()->equalsInt(1)) {
1921 Ops.erase(Ops.begin());
1922 --Idx;
1923 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) {
1924 // If we have a multiply of zero, it will always be zero.
1925 return Ops[0];
1926 } else if (Ops[0]->isAllOnesValue()) {
1927 // If we have a mul by -1 of an add, try distributing the -1 among the
1928 // add operands.
1929 if (Ops.size() == 2) {
1930 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) {
1931 SmallVector<const SCEV *, 4> NewOps;
1932 bool AnyFolded = false;
1933 for (SCEVAddRecExpr::op_iterator I = Add->op_begin(),
1934 E = Add->op_end(); I != E; ++I) {
1935 const SCEV *Mul = getMulExpr(Ops[0], *I);
1936 if (!isa<SCEVMulExpr>(Mul)) AnyFolded = true;
1937 NewOps.push_back(Mul);
1938 }
1939 if (AnyFolded)
1940 return getAddExpr(NewOps);
1941 }
1942 else if (const SCEVAddRecExpr *
1943 AddRec = dyn_cast<SCEVAddRecExpr>(Ops[1])) {
1944 // Negation preserves a recurrence's no self-wrap property.
1945 SmallVector<const SCEV *, 4> Operands;
1946 for (SCEVAddRecExpr::op_iterator I = AddRec->op_begin(),
1947 E = AddRec->op_end(); I != E; ++I) {
1948 Operands.push_back(getMulExpr(Ops[0], *I));
1949 }
1950 return getAddRecExpr(Operands, AddRec->getLoop(),
1951 AddRec->getNoWrapFlags(SCEV::FlagNW));
1952 }
1953 }
1954 }
1955
1956 if (Ops.size() == 1)
1957 return Ops[0];
1958 }
1959
1960 // Skip over the add expression until we get to a multiply.
1961 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
1962 ++Idx;
1963
1964 // If there are mul operands inline them all into this expression.
1965 if (Idx < Ops.size()) {
1966 bool DeletedMul = false;
1967 while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) {
1968 // If we have an mul, expand the mul operands onto the end of the operands
1969 // list.
1970 Ops.erase(Ops.begin()+Idx);
1971 Ops.append(Mul->op_begin(), Mul->op_end());
1972 DeletedMul = true;
1973 }
1974
1975 // If we deleted at least one mul, we added operands to the end of the list,
1976 // and they are not necessarily sorted. Recurse to resort and resimplify
1977 // any operands we just acquired.
1978 if (DeletedMul)
1979 return getMulExpr(Ops);
1980 }
1981
1982 // If there are any add recurrences in the operands list, see if any other
1983 // added values are loop invariant. If so, we can fold them into the
1984 // recurrence.
1985 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
1986 ++Idx;
1987
1988 // Scan over all recurrences, trying to fold loop invariants into them.
1989 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
1990 // Scan all of the other operands to this mul and add them to the vector if
1991 // they are loop invariant w.r.t. the recurrence.
1992 SmallVector<const SCEV *, 8> LIOps;
1993 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
1994 const Loop *AddRecLoop = AddRec->getLoop();
1995 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1996 if (isLoopInvariant(Ops[i], AddRecLoop)) {
1997 LIOps.push_back(Ops[i]);
1998 Ops.erase(Ops.begin()+i);
1999 --i; --e;
2000 }
2001
2002 // If we found some loop invariants, fold them into the recurrence.
2003 if (!LIOps.empty()) {
2004 // NLI * LI * {Start,+,Step} --> NLI * {LI*Start,+,LI*Step}
2005 SmallVector<const SCEV *, 4> NewOps;
2006 NewOps.reserve(AddRec->getNumOperands());
2007 const SCEV *Scale = getMulExpr(LIOps);
2008 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
2009 NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i)));
2010
2011 // Build the new addrec. Propagate the NUW and NSW flags if both the
2012 // outer mul and the inner addrec are guaranteed to have no overflow.
2013 //
2014 // No self-wrap cannot be guaranteed after changing the step size, but
2015 // will be inferred if either NUW or NSW is true.
2016 Flags = AddRec->getNoWrapFlags(clearFlags(Flags, SCEV::FlagNW));
2017 const SCEV *NewRec = getAddRecExpr(NewOps, AddRecLoop, Flags);
2018
2019 // If all of the other operands were loop invariant, we are done.
2020 if (Ops.size() == 1) return NewRec;
2021
2022 // Otherwise, multiply the folded AddRec by the non-invariant parts.
2023 for (unsigned i = 0;; ++i)
2024 if (Ops[i] == AddRec) {
2025 Ops[i] = NewRec;
2026 break;
2027 }
2028 return getMulExpr(Ops);
2029 }
2030
2031 // Okay, if there weren't any loop invariants to be folded, check to see if
2032 // there are multiple AddRec's with the same loop induction variable being
2033 // multiplied together. If so, we can fold them.
2034 for (unsigned OtherIdx = Idx+1;
2035 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
2036 ++OtherIdx) {
2037 if (AddRecLoop != cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop())
2038 continue;
2039
2040 // {A1,+,A2,+,...,+,An}<L> * {B1,+,B2,+,...,+,Bn}<L>
2041 // = {x=1 in [ sum y=x..2x [ sum z=max(y-x, y-n)..min(x,n) [
2042 // choose(x, 2x)*choose(2x-y, x-z)*A_{y-z}*B_z
2043 // ]]],+,...up to x=2n}.
2044 // Note that the arguments to choose() are always integers with values
2045 // known at compile time, never SCEV objects.
2046 //
2047 // The implementation avoids pointless extra computations when the two
2048 // addrec's are of different length (mathematically, it's equivalent to
2049 // an infinite stream of zeros on the right).
2050 bool OpsModified = false;
2051 for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
2052 ++OtherIdx) {
2053 const SCEVAddRecExpr *OtherAddRec =
2054 dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]);
2055 if (!OtherAddRec || OtherAddRec->getLoop() != AddRecLoop)
2056 continue;
2057
2058 bool Overflow = false;
2059 Type *Ty = AddRec->getType();
2060 bool LargerThan64Bits = getTypeSizeInBits(Ty) > 64;
2061 SmallVector<const SCEV*, 7> AddRecOps;
2062 for (int x = 0, xe = AddRec->getNumOperands() +
2063 OtherAddRec->getNumOperands() - 1; x != xe && !Overflow; ++x) {
2064 const SCEV *Term = getConstant(Ty, 0);
2065 for (int y = x, ye = 2*x+1; y != ye && !Overflow; ++y) {
2066 uint64_t Coeff1 = Choose(x, 2*x - y, Overflow);
2067 for (int z = std::max(y-x, y-(int)AddRec->getNumOperands()+1),
2068 ze = std::min(x+1, (int)OtherAddRec->getNumOperands());
2069 z < ze && !Overflow; ++z) {
2070 uint64_t Coeff2 = Choose(2*x - y, x-z, Overflow);
2071 uint64_t Coeff;
2072 if (LargerThan64Bits)
2073 Coeff = umul_ov(Coeff1, Coeff2, Overflow);
2074 else
2075 Coeff = Coeff1*Coeff2;
2076 const SCEV *CoeffTerm = getConstant(Ty, Coeff);
2077 const SCEV *Term1 = AddRec->getOperand(y-z);
2078 const SCEV *Term2 = OtherAddRec->getOperand(z);
2079 Term = getAddExpr(Term, getMulExpr(CoeffTerm, Term1,Term2));
2080 }
2081 }
2082 AddRecOps.push_back(Term);
2083 }
2084 if (!Overflow) {
2085 const SCEV *NewAddRec = getAddRecExpr(AddRecOps, AddRec->getLoop(),
2086 SCEV::FlagAnyWrap);
2087 if (Ops.size() == 2) return NewAddRec;
2088 Ops[Idx] = NewAddRec;
2089 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
2090 OpsModified = true;
2091 AddRec = dyn_cast<SCEVAddRecExpr>(NewAddRec);
2092 if (!AddRec)
2093 break;
2094 }
2095 }
2096 if (OpsModified)
2097 return getMulExpr(Ops);
2098 }
2099
2100 // Otherwise couldn't fold anything into this recurrence. Move onto the
2101 // next one.
2102 }
2103
2104 // Okay, it looks like we really DO need an mul expr. Check to see if we
2105 // already have one, otherwise create a new one.
2106 FoldingSetNodeID ID;
2107 ID.AddInteger(scMulExpr);
2108 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2109 ID.AddPointer(Ops[i]);
2110 void *IP = 0;
2111 SCEVMulExpr *S =
2112 static_cast<SCEVMulExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2113 if (!S) {
2114 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2115 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
2116 S = new (SCEVAllocator) SCEVMulExpr(ID.Intern(SCEVAllocator),
2117 O, Ops.size());
2118 UniqueSCEVs.InsertNode(S, IP);
2119 }
2120 S->setNoWrapFlags(Flags);
2121 return S;
2122}
2123
2124/// getUDivExpr - Get a canonical unsigned division expression, or something
2125/// simpler if possible.
2126const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS,
2127 const SCEV *RHS) {
2128 assert(getEffectiveSCEVType(LHS->getType()) ==
2129 getEffectiveSCEVType(RHS->getType()) &&
2130 "SCEVUDivExpr operand types don't match!");
2131
2132 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
2133 if (RHSC->getValue()->equalsInt(1))
2134 return LHS; // X udiv 1 --> x
2135 // If the denominator is zero, the result of the udiv is undefined. Don't
2136 // try to analyze it, because the resolution chosen here may differ from
2137 // the resolution chosen in other parts of the compiler.
2138 if (!RHSC->getValue()->isZero()) {
2139 // Determine if the division can be folded into the operands of
2140 // its operands.
2141 // TODO: Generalize this to non-constants by using known-bits information.
2142 Type *Ty = LHS->getType();
2143 unsigned LZ = RHSC->getValue()->getValue().countLeadingZeros();
2144 unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ - 1;
2145 // For non-power-of-two values, effectively round the value up to the
2146 // nearest power of two.
2147 if (!RHSC->getValue()->getValue().isPowerOf2())
2148 ++MaxShiftAmt;
2149 IntegerType *ExtTy =
2150 IntegerType::get(getContext(), getTypeSizeInBits(Ty) + MaxShiftAmt);
2151 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS))
2152 if (const SCEVConstant *Step =
2153 dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this))) {
2154 // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded.
2155 const APInt &StepInt = Step->getValue()->getValue();
2156 const APInt &DivInt = RHSC->getValue()->getValue();
2157 if (!StepInt.urem(DivInt) &&
2158 getZeroExtendExpr(AR, ExtTy) ==
2159 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
2160 getZeroExtendExpr(Step, ExtTy),
2161 AR->getLoop(), SCEV::FlagAnyWrap)) {
2162 SmallVector<const SCEV *, 4> Operands;
2163 for (unsigned i = 0, e = AR->getNumOperands(); i != e; ++i)
2164 Operands.push_back(getUDivExpr(AR->getOperand(i), RHS));
2165 return getAddRecExpr(Operands, AR->getLoop(),
2166 SCEV::FlagNW);
2167 }
2168 /// Get a canonical UDivExpr for a recurrence.
2169 /// {X,+,N}/C => {Y,+,N}/C where Y=X-(X%N). Safe when C%N=0.
2170 // We can currently only fold X%N if X is constant.
2171 const SCEVConstant *StartC = dyn_cast<SCEVConstant>(AR->getStart());
2172 if (StartC && !DivInt.urem(StepInt) &&
2173 getZeroExtendExpr(AR, ExtTy) ==
2174 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
2175 getZeroExtendExpr(Step, ExtTy),
2176 AR->getLoop(), SCEV::FlagAnyWrap)) {
2177 const APInt &StartInt = StartC->getValue()->getValue();
2178 const APInt &StartRem = StartInt.urem(StepInt);
2179 if (StartRem != 0)
2180 LHS = getAddRecExpr(getConstant(StartInt - StartRem), Step,
2181 AR->getLoop(), SCEV::FlagNW);
2182 }
2183 }
2184 // (A*B)/C --> A*(B/C) if safe and B/C can be folded.
2185 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) {
2186 SmallVector<const SCEV *, 4> Operands;
2187 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i)
2188 Operands.push_back(getZeroExtendExpr(M->getOperand(i), ExtTy));
2189 if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands))
2190 // Find an operand that's safely divisible.
2191 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) {
2192 const SCEV *Op = M->getOperand(i);
2193 const SCEV *Div = getUDivExpr(Op, RHSC);
2194 if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) {
2195 Operands = SmallVector<const SCEV *, 4>(M->op_begin(),
2196 M->op_end());
2197 Operands[i] = Div;
2198 return getMulExpr(Operands);
2199 }
2200 }
2201 }
2202 // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded.
2203 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(LHS)) {
2204 SmallVector<const SCEV *, 4> Operands;
2205 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i)
2206 Operands.push_back(getZeroExtendExpr(A->getOperand(i), ExtTy));
2207 if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) {
2208 Operands.clear();
2209 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) {
2210 const SCEV *Op = getUDivExpr(A->getOperand(i), RHS);
2211 if (isa<SCEVUDivExpr>(Op) ||
2212 getMulExpr(Op, RHS) != A->getOperand(i))
2213 break;
2214 Operands.push_back(Op);
2215 }
2216 if (Operands.size() == A->getNumOperands())
2217 return getAddExpr(Operands);
2218 }
2219 }
2220
2221 // Fold if both operands are constant.
2222 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
2223 Constant *LHSCV = LHSC->getValue();
2224 Constant *RHSCV = RHSC->getValue();
2225 return getConstant(cast<ConstantInt>(ConstantExpr::getUDiv(LHSCV,
2226 RHSCV)));
2227 }
2228 }
2229 }
2230
2231 FoldingSetNodeID ID;
2232 ID.AddInteger(scUDivExpr);
2233 ID.AddPointer(LHS);
2234 ID.AddPointer(RHS);
2235 void *IP = 0;
2236 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
2237 SCEV *S = new (SCEVAllocator) SCEVUDivExpr(ID.Intern(SCEVAllocator),
2238 LHS, RHS);
2239 UniqueSCEVs.InsertNode(S, IP);
2240 return S;
2241}
2242
2243
2244/// getAddRecExpr - Get an add recurrence expression for the specified loop.
2245/// Simplify the expression as much as possible.
2246const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start, const SCEV *Step,
2247 const Loop *L,
2248 SCEV::NoWrapFlags Flags) {
2249 SmallVector<const SCEV *, 4> Operands;
2250 Operands.push_back(Start);
2251 if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step))
2252 if (StepChrec->getLoop() == L) {
2253 Operands.append(StepChrec->op_begin(), StepChrec->op_end());
2254 return getAddRecExpr(Operands, L, maskFlags(Flags, SCEV::FlagNW));
2255 }
2256
2257 Operands.push_back(Step);
2258 return getAddRecExpr(Operands, L, Flags);
2259}
2260
2261/// getAddRecExpr - Get an add recurrence expression for the specified loop.
2262/// Simplify the expression as much as possible.
2263const SCEV *
2264ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands,
2265 const Loop *L, SCEV::NoWrapFlags Flags) {
2266 if (Operands.size() == 1) return Operands[0];
2267#ifndef NDEBUG
2268 Type *ETy = getEffectiveSCEVType(Operands[0]->getType());
2269 for (unsigned i = 1, e = Operands.size(); i != e; ++i)
2270 assert(getEffectiveSCEVType(Operands[i]->getType()) == ETy &&
2271 "SCEVAddRecExpr operand types don't match!");
2272 for (unsigned i = 0, e = Operands.size(); i != e; ++i)
2273 assert(isLoopInvariant(Operands[i], L) &&
2274 "SCEVAddRecExpr operand is not loop-invariant!");
2275#endif
2276
2277 if (Operands.back()->isZero()) {
2278 Operands.pop_back();
2279 return getAddRecExpr(Operands, L, SCEV::FlagAnyWrap); // {X,+,0} --> X
2280 }
2281
2282 // It's tempting to want to call getMaxBackedgeTakenCount count here and
2283 // use that information to infer NUW and NSW flags. However, computing a
2284 // BE count requires calling getAddRecExpr, so we may not yet have a
2285 // meaningful BE count at this point (and if we don't, we'd be stuck
2286 // with a SCEVCouldNotCompute as the cached BE count).
2287
2288 // If FlagNSW is true and all the operands are non-negative, infer FlagNUW.
2289 // And vice-versa.
2290 int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW;
2291 SCEV::NoWrapFlags SignOrUnsignWrap = maskFlags(Flags, SignOrUnsignMask);
2292 if (SignOrUnsignWrap && (SignOrUnsignWrap != SignOrUnsignMask)) {
2293 bool All = true;
2294 for (SmallVectorImpl<const SCEV *>::const_iterator I = Operands.begin(),
2295 E = Operands.end(); I != E; ++I)
2296 if (!isKnownNonNegative(*I)) {
2297 All = false;
2298 break;
2299 }
2300 if (All) Flags = setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask);
2301 }
2302
2303 // Canonicalize nested AddRecs in by nesting them in order of loop depth.
2304 if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) {
2305 const Loop *NestedLoop = NestedAR->getLoop();
2306 if (L->contains(NestedLoop) ?
2307 (L->getLoopDepth() < NestedLoop->getLoopDepth()) :
2308 (!NestedLoop->contains(L) &&
2309 DT->dominates(L->getHeader(), NestedLoop->getHeader()))) {
2310 SmallVector<const SCEV *, 4> NestedOperands(NestedAR->op_begin(),
2311 NestedAR->op_end());
2312 Operands[0] = NestedAR->getStart();
2313 // AddRecs require their operands be loop-invariant with respect to their
2314 // loops. Don't perform this transformation if it would break this
2315 // requirement.
2316 bool AllInvariant = true;
2317 for (unsigned i = 0, e = Operands.size(); i != e; ++i)
2318 if (!isLoopInvariant(Operands[i], L)) {
2319 AllInvariant = false;
2320 break;
2321 }
2322 if (AllInvariant) {
2323 // Create a recurrence for the outer loop with the same step size.
2324 //
2325 // The outer recurrence keeps its NW flag but only keeps NUW/NSW if the
2326 // inner recurrence has the same property.
2327 SCEV::NoWrapFlags OuterFlags =
2328 maskFlags(Flags, SCEV::FlagNW | NestedAR->getNoWrapFlags());
2329
2330 NestedOperands[0] = getAddRecExpr(Operands, L, OuterFlags);
2331 AllInvariant = true;
2332 for (unsigned i = 0, e = NestedOperands.size(); i != e; ++i)
2333 if (!isLoopInvariant(NestedOperands[i], NestedLoop)) {
2334 AllInvariant = false;
2335 break;
2336 }
2337 if (AllInvariant) {
2338 // Ok, both add recurrences are valid after the transformation.
2339 //
2340 // The inner recurrence keeps its NW flag but only keeps NUW/NSW if
2341 // the outer recurrence has the same property.
2342 SCEV::NoWrapFlags InnerFlags =
2343 maskFlags(NestedAR->getNoWrapFlags(), SCEV::FlagNW | Flags);
2344 return getAddRecExpr(NestedOperands, NestedLoop, InnerFlags);
2345 }
2346 }
2347 // Reset Operands to its original state.
2348 Operands[0] = NestedAR;
2349 }
2350 }
2351
2352 // Okay, it looks like we really DO need an addrec expr. Check to see if we
2353 // already have one, otherwise create a new one.
2354 FoldingSetNodeID ID;
2355 ID.AddInteger(scAddRecExpr);
2356 for (unsigned i = 0, e = Operands.size(); i != e; ++i)
2357 ID.AddPointer(Operands[i]);
2358 ID.AddPointer(L);
2359 void *IP = 0;
2360 SCEVAddRecExpr *S =
2361 static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2362 if (!S) {
2363 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Operands.size());
2364 std::uninitialized_copy(Operands.begin(), Operands.end(), O);
2365 S = new (SCEVAllocator) SCEVAddRecExpr(ID.Intern(SCEVAllocator),
2366 O, Operands.size(), L);
2367 UniqueSCEVs.InsertNode(S, IP);
2368 }
2369 S->setNoWrapFlags(Flags);
2370 return S;
2371}
2372
2373const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS,
2374 const SCEV *RHS) {
2375 SmallVector<const SCEV *, 2> Ops;
2376 Ops.push_back(LHS);
2377 Ops.push_back(RHS);
2378 return getSMaxExpr(Ops);
2379}
2380
2381const SCEV *
2382ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
2383 assert(!Ops.empty() && "Cannot get empty smax!");
2384 if (Ops.size() == 1) return Ops[0];
2385#ifndef NDEBUG
2386 Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
2387 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
2388 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
2389 "SCEVSMaxExpr operand types don't match!");
2390#endif
2391
2392 // Sort by complexity, this groups all similar expression types together.
2393 GroupByComplexity(Ops, LI);
2394
2395 // If there are any constants, fold them together.
2396 unsigned Idx = 0;
2397 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
2398 ++Idx;
2399 assert(Idx < Ops.size());
2400 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
2401 // We found two constants, fold them together!
2402 ConstantInt *Fold = ConstantInt::get(getContext(),
2403 APIntOps::smax(LHSC->getValue()->getValue(),
2404 RHSC->getValue()->getValue()));
2405 Ops[0] = getConstant(Fold);
2406 Ops.erase(Ops.begin()+1); // Erase the folded element
2407 if (Ops.size() == 1) return Ops[0];
2408 LHSC = cast<SCEVConstant>(Ops[0]);
2409 }
2410
2411 // If we are left with a constant minimum-int, strip it off.
2412 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(true)) {
2413 Ops.erase(Ops.begin());
2414 --Idx;
2415 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(true)) {
2416 // If we have an smax with a constant maximum-int, it will always be
2417 // maximum-int.
2418 return Ops[0];
2419 }
2420
2421 if (Ops.size() == 1) return Ops[0];
2422 }
2423
2424 // Find the first SMax
2425 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scSMaxExpr)
2426 ++Idx;
2427
2428 // Check to see if one of the operands is an SMax. If so, expand its operands
2429 // onto our operand list, and recurse to simplify.
2430 if (Idx < Ops.size()) {
2431 bool DeletedSMax = false;
2432 while (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(Ops[Idx])) {
2433 Ops.erase(Ops.begin()+Idx);
2434 Ops.append(SMax->op_begin(), SMax->op_end());
2435 DeletedSMax = true;
2436 }
2437
2438 if (DeletedSMax)
2439 return getSMaxExpr(Ops);
2440 }
2441
2442 // Okay, check to see if the same value occurs in the operand list twice. If
2443 // so, delete one. Since we sorted the list, these values are required to
2444 // be adjacent.
2445 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
2446 // X smax Y smax Y --> X smax Y
2447 // X smax Y --> X, if X is always greater than Y
2448 if (Ops[i] == Ops[i+1] ||
2449 isKnownPredicate(ICmpInst::ICMP_SGE, Ops[i], Ops[i+1])) {
2450 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2);
2451 --i; --e;
2452 } else if (isKnownPredicate(ICmpInst::ICMP_SLE, Ops[i], Ops[i+1])) {
2453 Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
2454 --i; --e;
2455 }
2456
2457 if (Ops.size() == 1) return Ops[0];
2458
2459 assert(!Ops.empty() && "Reduced smax down to nothing!");
2460
2461 // Okay, it looks like we really DO need an smax expr. Check to see if we
2462 // already have one, otherwise create a new one.
2463 FoldingSetNodeID ID;
2464 ID.AddInteger(scSMaxExpr);
2465 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2466 ID.AddPointer(Ops[i]);
2467 void *IP = 0;
2468 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
2469 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2470 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
2471 SCEV *S = new (SCEVAllocator) SCEVSMaxExpr(ID.Intern(SCEVAllocator),
2472 O, Ops.size());
2473 UniqueSCEVs.InsertNode(S, IP);
2474 return S;
2475}
2476
2477const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS,
2478 const SCEV *RHS) {
2479 SmallVector<const SCEV *, 2> Ops;
2480 Ops.push_back(LHS);
2481 Ops.push_back(RHS);
2482 return getUMaxExpr(Ops);
2483}
2484
2485const SCEV *
2486ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
2487 assert(!Ops.empty() && "Cannot get empty umax!");
2488 if (Ops.size() == 1) return Ops[0];
2489#ifndef NDEBUG
2490 Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
2491 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
2492 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
2493 "SCEVUMaxExpr operand types don't match!");
2494#endif
2495
2496 // Sort by complexity, this groups all similar expression types together.
2497 GroupByComplexity(Ops, LI);
2498
2499 // If there are any constants, fold them together.
2500 unsigned Idx = 0;
2501 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
2502 ++Idx;
2503 assert(Idx < Ops.size());
2504 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
2505 // We found two constants, fold them together!
2506 ConstantInt *Fold = ConstantInt::get(getContext(),
2507 APIntOps::umax(LHSC->getValue()->getValue(),
2508 RHSC->getValue()->getValue()));
2509 Ops[0] = getConstant(Fold);
2510 Ops.erase(Ops.begin()+1); // Erase the folded element
2511 if (Ops.size() == 1) return Ops[0];
2512 LHSC = cast<SCEVConstant>(Ops[0]);
2513 }
2514
2515 // If we are left with a constant minimum-int, strip it off.
2516 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(false)) {
2517 Ops.erase(Ops.begin());
2518 --Idx;
2519 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(false)) {
2520 // If we have an umax with a constant maximum-int, it will always be
2521 // maximum-int.
2522 return Ops[0];
2523 }
2524
2525 if (Ops.size() == 1) return Ops[0];
2526 }
2527
2528 // Find the first UMax
2529 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scUMaxExpr)
2530 ++Idx;
2531
2532 // Check to see if one of the operands is a UMax. If so, expand its operands
2533 // onto our operand list, and recurse to simplify.
2534 if (Idx < Ops.size()) {
2535 bool DeletedUMax = false;
2536 while (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(Ops[Idx])) {
2537 Ops.erase(Ops.begin()+Idx);
2538 Ops.append(UMax->op_begin(), UMax->op_end());
2539 DeletedUMax = true;
2540 }
2541
2542 if (DeletedUMax)
2543 return getUMaxExpr(Ops);
2544 }
2545
2546 // Okay, check to see if the same value occurs in the operand list twice. If
2547 // so, delete one. Since we sorted the list, these values are required to
2548 // be adjacent.
2549 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
2550 // X umax Y umax Y --> X umax Y
2551 // X umax Y --> X, if X is always greater than Y
2552 if (Ops[i] == Ops[i+1] ||
2553 isKnownPredicate(ICmpInst::ICMP_UGE, Ops[i], Ops[i+1])) {
2554 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2);
2555 --i; --e;
2556 } else if (isKnownPredicate(ICmpInst::ICMP_ULE, Ops[i], Ops[i+1])) {
2557 Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
2558 --i; --e;
2559 }
2560
2561 if (Ops.size() == 1) return Ops[0];
2562
2563 assert(!Ops.empty() && "Reduced umax down to nothing!");
2564
2565 // Okay, it looks like we really DO need a umax expr. Check to see if we
2566 // already have one, otherwise create a new one.
2567 FoldingSetNodeID ID;
2568 ID.AddInteger(scUMaxExpr);
2569 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2570 ID.AddPointer(Ops[i]);
2571 void *IP = 0;
2572 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
2573 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2574 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
2575 SCEV *S = new (SCEVAllocator) SCEVUMaxExpr(ID.Intern(SCEVAllocator),
2576 O, Ops.size());
2577 UniqueSCEVs.InsertNode(S, IP);
2578 return S;
2579}
2580
2581const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS,
2582 const SCEV *RHS) {
2583 // ~smax(~x, ~y) == smin(x, y).
2584 return getNotSCEV(getSMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
2585}
2586
2587const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS,
2588 const SCEV *RHS) {
2589 // ~umax(~x, ~y) == umin(x, y)
2590 return getNotSCEV(getUMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
2591}
2592
2593const SCEV *ScalarEvolution::getSizeOfExpr(Type *IntTy, Type *AllocTy) {
2594 // If we have DataLayout, we can bypass creating a target-independent
2595 // constant expression and then folding it back into a ConstantInt.
2596 // This is just a compile-time optimization.
2597 if (TD)
2598 return getConstant(IntTy, TD->getTypeAllocSize(AllocTy));
2599
2600 Constant *C = ConstantExpr::getSizeOf(AllocTy);
2601 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
2602 if (Constant *Folded = ConstantFoldConstantExpression(CE, TD, TLI))
2603 C = Folded;
2604 Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(AllocTy));
2605 assert(Ty == IntTy && "Effective SCEV type doesn't match");
2606 return getTruncateOrZeroExtend(getSCEV(C), Ty);
2607}
2608
2609const SCEV *ScalarEvolution::getOffsetOfExpr(Type *IntTy,
2610 StructType *STy,
2611 unsigned FieldNo) {
2612 // If we have DataLayout, we can bypass creating a target-independent
2613 // constant expression and then folding it back into a ConstantInt.
2614 // This is just a compile-time optimization.
2615 if (TD) {
2616 return getConstant(IntTy,
2617 TD->getStructLayout(STy)->getElementOffset(FieldNo));
2618 }
2619
2620 Constant *C = ConstantExpr::getOffsetOf(STy, FieldNo);
2621 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
2622 if (Constant *Folded = ConstantFoldConstantExpression(CE, TD, TLI))
2623 C = Folded;
2624
2625 Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(STy));
2626 return getTruncateOrZeroExtend(getSCEV(C), Ty);
2627}
2628
2629const SCEV *ScalarEvolution::getUnknown(Value *V) {
2630 // Don't attempt to do anything other than create a SCEVUnknown object
2631 // here. createSCEV only calls getUnknown after checking for all other
2632 // interesting possibilities, and any other code that calls getUnknown
2633 // is doing so in order to hide a value from SCEV canonicalization.
2634
2635 FoldingSetNodeID ID;
2636 ID.AddInteger(scUnknown);
2637 ID.AddPointer(V);
2638 void *IP = 0;
2639 if (SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) {
2640 assert(cast<SCEVUnknown>(S)->getValue() == V &&
2641 "Stale SCEVUnknown in uniquing map!");
2642 return S;
2643 }
2644 SCEV *S = new (SCEVAllocator) SCEVUnknown(ID.Intern(SCEVAllocator), V, this,
2645 FirstUnknown);
2646 FirstUnknown = cast<SCEVUnknown>(S);
2647 UniqueSCEVs.InsertNode(S, IP);
2648 return S;
2649}
2650
2651//===----------------------------------------------------------------------===//
2652// Basic SCEV Analysis and PHI Idiom Recognition Code
2653//
2654
2655/// isSCEVable - Test if values of the given type are analyzable within
2656/// the SCEV framework. This primarily includes integer types, and it
2657/// can optionally include pointer types if the ScalarEvolution class
2658/// has access to target-specific information.
2659bool ScalarEvolution::isSCEVable(Type *Ty) const {
2660 // Integers and pointers are always SCEVable.
2661 return Ty->isIntegerTy() || Ty->isPointerTy();
2662}
2663
2664/// getTypeSizeInBits - Return the size in bits of the specified type,
2665/// for which isSCEVable must return true.
2666uint64_t ScalarEvolution::getTypeSizeInBits(Type *Ty) const {
2667 assert(isSCEVable(Ty) && "Type is not SCEVable!");
2668
2669 // If we have a DataLayout, use it!
2670 if (TD)
2671 return TD->getTypeSizeInBits(Ty);
2672
2673 // Integer types have fixed sizes.
2674 if (Ty->isIntegerTy())
2675 return Ty->getPrimitiveSizeInBits();
2676
2677 // The only other support type is pointer. Without DataLayout, conservatively
2678 // assume pointers are 64-bit.
2679 assert(Ty->isPointerTy() && "isSCEVable permitted a non-SCEVable type!");
2680 return 64;
2681}
2682
2683/// getEffectiveSCEVType - Return a type with the same bitwidth as
2684/// the given type and which represents how SCEV will treat the given
2685/// type, for which isSCEVable must return true. For pointer types,
2686/// this is the pointer-sized integer type.
2687Type *ScalarEvolution::getEffectiveSCEVType(Type *Ty) const {
2688 assert(isSCEVable(Ty) && "Type is not SCEVable!");
2689
2690 if (Ty->isIntegerTy()) {
2691 return Ty;
2692 }
2693
2694 // The only other support type is pointer.
2695 assert(Ty->isPointerTy() && "Unexpected non-pointer non-integer type!");
2696
2697 if (TD)
2698 return TD->getIntPtrType(Ty);
2699
2700 // Without DataLayout, conservatively assume pointers are 64-bit.
2701 return Type::getInt64Ty(getContext());
2702}
2703
2704const SCEV *ScalarEvolution::getCouldNotCompute() {
2705 return &CouldNotCompute;
2706}
2707
2708namespace {
2709 // Helper class working with SCEVTraversal to figure out if a SCEV contains
2710 // a SCEVUnknown with null value-pointer. FindInvalidSCEVUnknown::FindOne
2711 // is set iff if find such SCEVUnknown.
2712 //
2713 struct FindInvalidSCEVUnknown {
2714 bool FindOne;
2715 FindInvalidSCEVUnknown() { FindOne = false; }
2716 bool follow(const SCEV *S) {
2717 switch (S->getSCEVType()) {
2718 case scConstant:
2719 return false;
2720 case scUnknown:
2721 if (!cast<SCEVUnknown>(S)->getValue())
2722 FindOne = true;
2723 return false;
2724 default:
2725 return true;
2726 }
2727 }
2728 bool isDone() const { return FindOne; }
2729 };
2730}
2731
2732bool ScalarEvolution::checkValidity(const SCEV *S) const {
2733 FindInvalidSCEVUnknown F;
2734 SCEVTraversal<FindInvalidSCEVUnknown> ST(F);
2735 ST.visitAll(S);
2736
2737 return !F.FindOne;
2738}
2739
2740/// getSCEV - Return an existing SCEV if it exists, otherwise analyze the
2741/// expression and create a new one.
2742const SCEV *ScalarEvolution::getSCEV(Value *V) {
2743 assert(isSCEVable(V->getType()) && "Value is not SCEVable!");
2744
2745 ValueExprMapType::iterator I = ValueExprMap.find_as(V);
2746 if (I != ValueExprMap.end()) {
2747 const SCEV *S = I->second;
2748 if (checkValidity(S))
2749 return S;
2750 else
2751 ValueExprMap.erase(I);
2752 }
2753 const SCEV *S = createSCEV(V);
2754
2755 // The process of creating a SCEV for V may have caused other SCEVs
2756 // to have been created, so it's necessary to insert the new entry
2757 // from scratch, rather than trying to remember the insert position
2758 // above.
2759 ValueExprMap.insert(std::make_pair(SCEVCallbackVH(V, this), S));
2760 return S;
2761}
2762
2763/// getNegativeSCEV - Return a SCEV corresponding to -V = -1*V
2764///
2765const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V) {
2766 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
2767 return getConstant(
2768 cast<ConstantInt>(ConstantExpr::getNeg(VC->getValue())));
2769
2770 Type *Ty = V->getType();
2771 Ty = getEffectiveSCEVType(Ty);
2772 return getMulExpr(V,
2773 getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty))));
2774}
2775
2776/// getNotSCEV - Return a SCEV corresponding to ~V = -1-V
2777const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) {
2778 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
2779 return getConstant(
2780 cast<ConstantInt>(ConstantExpr::getNot(VC->getValue())));
2781
2782 Type *Ty = V->getType();
2783 Ty = getEffectiveSCEVType(Ty);
2784 const SCEV *AllOnes =
2785 getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty)));
2786 return getMinusSCEV(AllOnes, V);
2787}
2788
2789/// getMinusSCEV - Return LHS-RHS. Minus is represented in SCEV as A+B*-1.
2790const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS, const SCEV *RHS,
2791 SCEV::NoWrapFlags Flags) {
2792 assert(!maskFlags(Flags, SCEV::FlagNUW) && "subtraction does not have NUW");
2793
2794 // Fast path: X - X --> 0.
2795 if (LHS == RHS)
2796 return getConstant(LHS->getType(), 0);
2797
2798 // X - Y --> X + -Y
2799 return getAddExpr(LHS, getNegativeSCEV(RHS), Flags);
2800}
2801
2802/// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion of the
2803/// input value to the specified type. If the type must be extended, it is zero
2804/// extended.
2805const SCEV *
2806ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V, Type *Ty) {
2807 Type *SrcTy = V->getType();
2808 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2809 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
2810 "Cannot truncate or zero extend with non-integer arguments!");
2811 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2812 return V; // No conversion
2813 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
2814 return getTruncateExpr(V, Ty);
2815 return getZeroExtendExpr(V, Ty);
2816}
2817
2818/// getTruncateOrSignExtend - Return a SCEV corresponding to a conversion of the
2819/// input value to the specified type. If the type must be extended, it is sign
2820/// extended.
2821const SCEV *
2822ScalarEvolution::getTruncateOrSignExtend(const SCEV *V,
2823 Type *Ty) {
2824 Type *SrcTy = V->getType();
2825 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2826 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
2827 "Cannot truncate or zero extend with non-integer arguments!");
2828 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2829 return V; // No conversion
2830 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
2831 return getTruncateExpr(V, Ty);
2832 return getSignExtendExpr(V, Ty);
2833}
2834
2835/// getNoopOrZeroExtend - Return a SCEV corresponding to a conversion of the
2836/// input value to the specified type. If the type must be extended, it is zero
2837/// extended. The conversion must not be narrowing.
2838const SCEV *
2839ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, Type *Ty) {
2840 Type *SrcTy = V->getType();
2841 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2842 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
2843 "Cannot noop or zero extend with non-integer arguments!");
2844 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
2845 "getNoopOrZeroExtend cannot truncate!");
2846 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2847 return V; // No conversion
2848 return getZeroExtendExpr(V, Ty);
2849}
2850
2851/// getNoopOrSignExtend - Return a SCEV corresponding to a conversion of the
2852/// input value to the specified type. If the type must be extended, it is sign
2853/// extended. The conversion must not be narrowing.
2854const SCEV *
2855ScalarEvolution::getNoopOrSignExtend(const SCEV *V, Type *Ty) {
2856 Type *SrcTy = V->getType();
2857 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2858 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
2859 "Cannot noop or sign extend with non-integer arguments!");
2860 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
2861 "getNoopOrSignExtend cannot truncate!");
2862 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2863 return V; // No conversion
2864 return getSignExtendExpr(V, Ty);
2865}
2866
2867/// getNoopOrAnyExtend - Return a SCEV corresponding to a conversion of
2868/// the input value to the specified type. If the type must be extended,
2869/// it is extended with unspecified bits. The conversion must not be
2870/// narrowing.
2871const SCEV *
2872ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, Type *Ty) {
2873 Type *SrcTy = V->getType();
2874 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2875 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
2876 "Cannot noop or any extend with non-integer arguments!");
2877 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
2878 "getNoopOrAnyExtend cannot truncate!");
2879 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2880 return V; // No conversion
2881 return getAnyExtendExpr(V, Ty);
2882}
2883
2884/// getTruncateOrNoop - Return a SCEV corresponding to a conversion of the
2885/// input value to the specified type. The conversion must not be widening.
2886const SCEV *
2887ScalarEvolution::getTruncateOrNoop(const SCEV *V, Type *Ty) {
2888 Type *SrcTy = V->getType();
2889 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2890 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
2891 "Cannot truncate or noop with non-integer arguments!");
2892 assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) &&
2893 "getTruncateOrNoop cannot extend!");
2894 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2895 return V; // No conversion
2896 return getTruncateExpr(V, Ty);
2897}
2898
2899/// getUMaxFromMismatchedTypes - Promote the operands to the wider of
2900/// the types using zero-extension, and then perform a umax operation
2901/// with them.
2902const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS,
2903 const SCEV *RHS) {
2904 const SCEV *PromotedLHS = LHS;
2905 const SCEV *PromotedRHS = RHS;
2906
2907 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
2908 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
2909 else
2910 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
2911
2912 return getUMaxExpr(PromotedLHS, PromotedRHS);
2913}
2914
2915/// getUMinFromMismatchedTypes - Promote the operands to the wider of
2916/// the types using zero-extension, and then perform a umin operation
2917/// with them.
2918const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS,
2919 const SCEV *RHS) {
2920 const SCEV *PromotedLHS = LHS;
2921 const SCEV *PromotedRHS = RHS;
2922
2923 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
2924 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
2925 else
2926 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
2927
2928 return getUMinExpr(PromotedLHS, PromotedRHS);
2929}
2930
2931/// getPointerBase - Transitively follow the chain of pointer-type operands
2932/// until reaching a SCEV that does not have a single pointer operand. This
2933/// returns a SCEVUnknown pointer for well-formed pointer-type expressions,
2934/// but corner cases do exist.
2935const SCEV *ScalarEvolution::getPointerBase(const SCEV *V) {
2936 // A pointer operand may evaluate to a nonpointer expression, such as null.
2937 if (!V->getType()->isPointerTy())
2938 return V;
2939
2940 if (const SCEVCastExpr *Cast = dyn_cast<SCEVCastExpr>(V)) {
2941 return getPointerBase(Cast->getOperand());
2942 }
2943 else if (const SCEVNAryExpr *NAry = dyn_cast<SCEVNAryExpr>(V)) {
2944 const SCEV *PtrOp = 0;
2945 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
2946 I != E; ++I) {
2947 if ((*I)->getType()->isPointerTy()) {
2948 // Cannot find the base of an expression with multiple pointer operands.
2949 if (PtrOp)
2950 return V;
2951 PtrOp = *I;
2952 }
2953 }
2954 if (!PtrOp)
2955 return V;
2956 return getPointerBase(PtrOp);
2957 }
2958 return V;
2959}
2960
2961/// PushDefUseChildren - Push users of the given Instruction
2962/// onto the given Worklist.
2963static void
2964PushDefUseChildren(Instruction *I,
2965 SmallVectorImpl<Instruction *> &Worklist) {
2966 // Push the def-use children onto the Worklist stack.
2967 for (Value::use_iterator UI = I->use_begin(), UE = I->use_end();
2968 UI != UE; ++UI)
2969 Worklist.push_back(cast<Instruction>(*UI));
2970}
2971
2972/// ForgetSymbolicValue - This looks up computed SCEV values for all
2973/// instructions that depend on the given instruction and removes them from
2974/// the ValueExprMapType map if they reference SymName. This is used during PHI
2975/// resolution.
2976void
2977ScalarEvolution::ForgetSymbolicName(Instruction *PN, const SCEV *SymName) {
2978 SmallVector<Instruction *, 16> Worklist;
2979 PushDefUseChildren(PN, Worklist);
2980
2981 SmallPtrSet<Instruction *, 8> Visited;
2982 Visited.insert(PN);
2983 while (!Worklist.empty()) {
2984 Instruction *I = Worklist.pop_back_val();
2985 if (!Visited.insert(I)) continue;
2986
2987 ValueExprMapType::iterator It =
2988 ValueExprMap.find_as(static_cast<Value *>(I));
2989 if (It != ValueExprMap.end()) {
2990 const SCEV *Old = It->second;
2991
2992 // Short-circuit the def-use traversal if the symbolic name
2993 // ceases to appear in expressions.
2994 if (Old != SymName && !hasOperand(Old, SymName))
2995 continue;
2996
2997 // SCEVUnknown for a PHI either means that it has an unrecognized
2998 // structure, it's a PHI that's in the progress of being computed
2999 // by createNodeForPHI, or it's a single-value PHI. In the first case,
3000 // additional loop trip count information isn't going to change anything.
3001 // In the second case, createNodeForPHI will perform the necessary
3002 // updates on its own when it gets to that point. In the third, we do
3003 // want to forget the SCEVUnknown.
3004 if (!isa<PHINode>(I) ||
3005 !isa<SCEVUnknown>(Old) ||
3006 (I != PN && Old == SymName)) {
3007 forgetMemoizedResults(Old);
3008 ValueExprMap.erase(It);
3009 }
3010 }
3011
3012 PushDefUseChildren(I, Worklist);
3013 }
3014}
3015
3016/// createNodeForPHI - PHI nodes have two cases. Either the PHI node exists in
3017/// a loop header, making it a potential recurrence, or it doesn't.
3018///
3019const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) {
3020 if (const Loop *L = LI->getLoopFor(PN->getParent()))
3021 if (L->getHeader() == PN->getParent()) {
3022 // The loop may have multiple entrances or multiple exits; we can analyze
3023 // this phi as an addrec if it has a unique entry value and a unique
3024 // backedge value.
3025 Value *BEValueV = 0, *StartValueV = 0;
3026 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
3027 Value *V = PN->getIncomingValue(i);
3028 if (L->contains(PN->getIncomingBlock(i))) {
3029 if (!BEValueV) {
3030 BEValueV = V;
3031 } else if (BEValueV != V) {
3032 BEValueV = 0;
3033 break;
3034 }
3035 } else if (!StartValueV) {
3036 StartValueV = V;
3037 } else if (StartValueV != V) {
3038 StartValueV = 0;
3039 break;
3040 }
3041 }
3042 if (BEValueV && StartValueV) {
3043 // While we are analyzing this PHI node, handle its value symbolically.
3044 const SCEV *SymbolicName = getUnknown(PN);
3045 assert(ValueExprMap.find_as(PN) == ValueExprMap.end() &&
3046 "PHI node already processed?");
3047 ValueExprMap.insert(std::make_pair(SCEVCallbackVH(PN, this), SymbolicName));
3048
3049 // Using this symbolic name for the PHI, analyze the value coming around
3050 // the back-edge.
3051 const SCEV *BEValue = getSCEV(BEValueV);
3052
3053 // NOTE: If BEValue is loop invariant, we know that the PHI node just
3054 // has a special value for the first iteration of the loop.
3055
3056 // If the value coming around the backedge is an add with the symbolic
3057 // value we just inserted, then we found a simple induction variable!
3058 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) {
3059 // If there is a single occurrence of the symbolic value, replace it
3060 // with a recurrence.
3061 unsigned FoundIndex = Add->getNumOperands();
3062 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
3063 if (Add->getOperand(i) == SymbolicName)
3064 if (FoundIndex == e) {
3065 FoundIndex = i;
3066 break;
3067 }
3068
3069 if (FoundIndex != Add->getNumOperands()) {
3070 // Create an add with everything but the specified operand.
3071 SmallVector<const SCEV *, 8> Ops;
3072 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
3073 if (i != FoundIndex)
3074 Ops.push_back(Add->getOperand(i));
3075 const SCEV *Accum = getAddExpr(Ops);
3076
3077 // This is not a valid addrec if the step amount is varying each
3078 // loop iteration, but is not itself an addrec in this loop.
3079 if (isLoopInvariant(Accum, L) ||
3080 (isa<SCEVAddRecExpr>(Accum) &&
3081 cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) {
3082 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
3083
3084 // If the increment doesn't overflow, then neither the addrec nor
3085 // the post-increment will overflow.
3086 if (const AddOperator *OBO = dyn_cast<AddOperator>(BEValueV)) {
3087 if (OBO->hasNoUnsignedWrap())
3088 Flags = setFlags(Flags, SCEV::FlagNUW);
3089 if (OBO->hasNoSignedWrap())
3090 Flags = setFlags(Flags, SCEV::FlagNSW);
3091 } else if (GEPOperator *GEP = dyn_cast<GEPOperator>(BEValueV)) {
3092 // If the increment is an inbounds GEP, then we know the address
3093 // space cannot be wrapped around. We cannot make any guarantee
3094 // about signed or unsigned overflow because pointers are
3095 // unsigned but we may have a negative index from the base
3096 // pointer. We can guarantee that no unsigned wrap occurs if the
3097 // indices form a positive value.
3098 if (GEP->isInBounds()) {
3099 Flags = setFlags(Flags, SCEV::FlagNW);
3100
3101 const SCEV *Ptr = getSCEV(GEP->getPointerOperand());
3102 if (isKnownPositive(getMinusSCEV(getSCEV(GEP), Ptr)))
3103 Flags = setFlags(Flags, SCEV::FlagNUW);
3104 }
3105 } else if (const SubOperator *OBO =
3106 dyn_cast<SubOperator>(BEValueV)) {
3107 if (OBO->hasNoUnsignedWrap())
3108 Flags = setFlags(Flags, SCEV::FlagNUW);
3109 if (OBO->hasNoSignedWrap())
3110 Flags = setFlags(Flags, SCEV::FlagNSW);
3111 }
3112
3113 const SCEV *StartVal = getSCEV(StartValueV);
3114 const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags);
3115
3116 // Since the no-wrap flags are on the increment, they apply to the
3117 // post-incremented value as well.
3118 if (isLoopInvariant(Accum, L))
3119 (void)getAddRecExpr(getAddExpr(StartVal, Accum),
3120 Accum, L, Flags);
3121
3122 // Okay, for the entire analysis of this edge we assumed the PHI
3123 // to be symbolic. We now need to go back and purge all of the
3124 // entries for the scalars that use the symbolic expression.
3125 ForgetSymbolicName(PN, SymbolicName);
3126 ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV;
3127 return PHISCEV;
3128 }
3129 }
3130 } else if (const SCEVAddRecExpr *AddRec =
3131 dyn_cast<SCEVAddRecExpr>(BEValue)) {
3132 // Otherwise, this could be a loop like this:
3133 // i = 0; for (j = 1; ..; ++j) { .... i = j; }
3134 // In this case, j = {1,+,1} and BEValue is j.
3135 // Because the other in-value of i (0) fits the evolution of BEValue
3136 // i really is an addrec evolution.
3137 if (AddRec->getLoop() == L && AddRec->isAffine()) {
3138 const SCEV *StartVal = getSCEV(StartValueV);
3139
3140 // If StartVal = j.start - j.stride, we can use StartVal as the
3141 // initial step of the addrec evolution.
3142 if (StartVal == getMinusSCEV(AddRec->getOperand(0),
3143 AddRec->getOperand(1))) {
3144 // FIXME: For constant StartVal, we should be able to infer
3145 // no-wrap flags.
3146 const SCEV *PHISCEV =
3147 getAddRecExpr(StartVal, AddRec->getOperand(1), L,
3148 SCEV::FlagAnyWrap);
3149
3150 // Okay, for the entire analysis of this edge we assumed the PHI
3151 // to be symbolic. We now need to go back and purge all of the
3152 // entries for the scalars that use the symbolic expression.
3153 ForgetSymbolicName(PN, SymbolicName);
3154 ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV;
3155 return PHISCEV;
3156 }
3157 }
3158 }
3159 }
3160 }
3161
3162 // If the PHI has a single incoming value, follow that value, unless the
3163 // PHI's incoming blocks are in a different loop, in which case doing so
3164 // risks breaking LCSSA form. Instcombine would normally zap these, but
3165 // it doesn't have DominatorTree information, so it may miss cases.
3166 if (Value *V = SimplifyInstruction(PN, TD, TLI, DT))
3167 if (LI->replacementPreservesLCSSAForm(PN, V))
3168 return getSCEV(V);
3169
3170 // If it's not a loop phi, we can't handle it yet.
3171 return getUnknown(PN);
3172}
3173
3174/// createNodeForGEP - Expand GEP instructions into add and multiply
3175/// operations. This allows them to be analyzed by regular SCEV code.
3176///
3177const SCEV *ScalarEvolution::createNodeForGEP(GEPOperator *GEP) {
3178 Type *IntPtrTy = getEffectiveSCEVType(GEP->getType());
3179 Value *Base = GEP->getOperand(0);
3180 // Don't attempt to analyze GEPs over unsized objects.
3181 if (!Base->getType()->getPointerElementType()->isSized())
3182 return getUnknown(GEP);
3183
3184 // Don't blindly transfer the inbounds flag from the GEP instruction to the
3185 // Add expression, because the Instruction may be guarded by control flow
3186 // and the no-overflow bits may not be valid for the expression in any
3187 // context.
3188 SCEV::NoWrapFlags Wrap = GEP->isInBounds() ? SCEV::FlagNSW : SCEV::FlagAnyWrap;
3189
3190 const SCEV *TotalOffset = getConstant(IntPtrTy, 0);
3191 gep_type_iterator GTI = gep_type_begin(GEP);
3192 for (GetElementPtrInst::op_iterator I = llvm::next(GEP->op_begin()),
3193 E = GEP->op_end();
3194 I != E; ++I) {
3195 Value *Index = *I;
3196 // Compute the (potentially symbolic) offset in bytes for this index.
3197 if (StructType *STy = dyn_cast<StructType>(*GTI++)) {
3198 // For a struct, add the member offset.
3199 unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue();
3200 const SCEV *FieldOffset = getOffsetOfExpr(IntPtrTy, STy, FieldNo);
3201
3202 // Add the field offset to the running total offset.
3203 TotalOffset = getAddExpr(TotalOffset, FieldOffset);
3204 } else {
3205 // For an array, add the element offset, explicitly scaled.
3206 const SCEV *ElementSize = getSizeOfExpr(IntPtrTy, *GTI);
3207 const SCEV *IndexS = getSCEV(Index);
3208 // Getelementptr indices are signed.
3209 IndexS = getTruncateOrSignExtend(IndexS, IntPtrTy);
3210
3211 // Multiply the index by the element size to compute the element offset.
3212 const SCEV *LocalOffset = getMulExpr(IndexS, ElementSize, Wrap);
3213
3214 // Add the element offset to the running total offset.
3215 TotalOffset = getAddExpr(TotalOffset, LocalOffset);
3216 }
3217 }
3218
3219 // Get the SCEV for the GEP base.
3220 const SCEV *BaseS = getSCEV(Base);
3221
3222 // Add the total offset from all the GEP indices to the base.
3223 return getAddExpr(BaseS, TotalOffset, Wrap);
3224}
3225
3226/// GetMinTrailingZeros - Determine the minimum number of zero bits that S is
3227/// guaranteed to end in (at every loop iteration). It is, at the same time,
3228/// the minimum number of times S is divisible by 2. For example, given {4,+,8}
3229/// it returns 2. If S is guaranteed to be 0, it returns the bitwidth of S.
3230uint32_t
3231ScalarEvolution::GetMinTrailingZeros(const SCEV *S) {
3232 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
3233 return C->getValue()->getValue().countTrailingZeros();
3234
3235 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S))
3236 return std::min(GetMinTrailingZeros(T->getOperand()),
3237 (uint32_t)getTypeSizeInBits(T->getType()));
3238
3239 if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) {
3240 uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
3241 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ?
3242 getTypeSizeInBits(E->getType()) : OpRes;
3243 }
3244
3245 if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) {
3246 uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
3247 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ?
3248 getTypeSizeInBits(E->getType()) : OpRes;
3249 }
3250
3251 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) {
3252 // The result is the min of all operands results.
3253 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
3254 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
3255 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
3256 return MinOpRes;
3257 }
3258
3259 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) {
3260 // The result is the sum of all operands results.
3261 uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0));
3262 uint32_t BitWidth = getTypeSizeInBits(M->getType());
3263 for (unsigned i = 1, e = M->getNumOperands();
3264 SumOpRes != BitWidth && i != e; ++i)
3265 SumOpRes = std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)),
3266 BitWidth);
3267 return SumOpRes;
3268 }
3269
3270 if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) {
3271 // The result is the min of all operands results.
3272 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
3273 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
3274 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
3275 return MinOpRes;
3276 }
3277
3278 if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) {
3279 // The result is the min of all operands results.
3280 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
3281 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
3282 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
3283 return MinOpRes;
3284 }
3285
3286 if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) {
3287 // The result is the min of all operands results.
3288 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
3289 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
3290 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
3291 return MinOpRes;
3292 }
3293
3294 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
3295 // For a SCEVUnknown, ask ValueTracking.
3296 unsigned BitWidth = getTypeSizeInBits(U->getType());
3297 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
3298 ComputeMaskedBits(U->getValue(), Zeros, Ones);
3299 return Zeros.countTrailingOnes();
3300 }
3301
3302 // SCEVUDivExpr
3303 return 0;
3304}
3305
3306/// getUnsignedRange - Determine the unsigned range for a particular SCEV.
3307///
3308ConstantRange
3309ScalarEvolution::getUnsignedRange(const SCEV *S) {
3310 // See if we've computed this range already.
3311 DenseMap<const SCEV *, ConstantRange>::iterator I = UnsignedRanges.find(S);
3312 if (I != UnsignedRanges.end())
3313 return I->second;
3314
3315 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
3316 return setUnsignedRange(C, ConstantRange(C->getValue()->getValue()));
3317
3318 unsigned BitWidth = getTypeSizeInBits(S->getType());
3319 ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true);
3320
3321 // If the value has known zeros, the maximum unsigned value will have those
3322 // known zeros as well.
3323 uint32_t TZ = GetMinTrailingZeros(S);
3324 if (TZ != 0)
3325 ConservativeResult =
3326 ConstantRange(APInt::getMinValue(BitWidth),
3327 APInt::getMaxValue(BitWidth).lshr(TZ).shl(TZ) + 1);
3328
3329 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
3330 ConstantRange X = getUnsignedRange(Add->getOperand(0));
3331 for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
3332 X = X.add(getUnsignedRange(Add->getOperand(i)));
3333 return setUnsignedRange(Add, ConservativeResult.intersectWith(X));
3334 }
3335
3336 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
3337 ConstantRange X = getUnsignedRange(Mul->getOperand(0));
3338 for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
3339 X = X.multiply(getUnsignedRange(Mul->getOperand(i)));
3340 return setUnsignedRange(Mul, ConservativeResult.intersectWith(X));
3341 }
3342
3343 if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
3344 ConstantRange X = getUnsignedRange(SMax->getOperand(0));
3345 for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
3346 X = X.smax(getUnsignedRange(SMax->getOperand(i)));
3347 return setUnsignedRange(SMax, ConservativeResult.intersectWith(X));
3348 }
3349
3350 if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
3351 ConstantRange X = getUnsignedRange(UMax->getOperand(0));
3352 for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
3353 X = X.umax(getUnsignedRange(UMax->getOperand(i)));
3354 return setUnsignedRange(UMax, ConservativeResult.intersectWith(X));
3355 }
3356
3357 if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
3358 ConstantRange X = getUnsignedRange(UDiv->getLHS());
3359 ConstantRange Y = getUnsignedRange(UDiv->getRHS());
3360 return setUnsignedRange(UDiv, ConservativeResult.intersectWith(X.udiv(Y)));
3361 }
3362
3363 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
3364 ConstantRange X = getUnsignedRange(ZExt->getOperand());
3365 return setUnsignedRange(ZExt,
3366 ConservativeResult.intersectWith(X.zeroExtend(BitWidth)));
3367 }
3368
3369 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
3370 ConstantRange X = getUnsignedRange(SExt->getOperand());
3371 return setUnsignedRange(SExt,
3372 ConservativeResult.intersectWith(X.signExtend(BitWidth)));
3373 }
3374
3375 if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
3376 ConstantRange X = getUnsignedRange(Trunc->getOperand());
3377 return setUnsignedRange(Trunc,
3378 ConservativeResult.intersectWith(X.truncate(BitWidth)));
3379 }
3380
3381 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
3382 // If there's no unsigned wrap, the value will never be less than its
3383 // initial value.
3384 if (AddRec->getNoWrapFlags(SCEV::FlagNUW))
3385 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(AddRec->getStart()))
3386 if (!C->getValue()->isZero())
3387 ConservativeResult =
3388 ConservativeResult.intersectWith(
3389 ConstantRange(C->getValue()->getValue(), APInt(BitWidth, 0)));
3390
3391 // TODO: non-affine addrec
3392 if (AddRec->isAffine()) {
3393 Type *Ty = AddRec->getType();
3394 const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop());
3395 if (!isa<SCEVCouldNotCompute>(MaxBECount) &&
3396 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) {
3397 MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty);
3398
3399 const SCEV *Start = AddRec->getStart();
3400 const SCEV *Step = AddRec->getStepRecurrence(*this);
3401
3402 ConstantRange StartRange = getUnsignedRange(Start);
3403 ConstantRange StepRange = getSignedRange(Step);
3404 ConstantRange MaxBECountRange = getUnsignedRange(MaxBECount);
3405 ConstantRange EndRange =
3406 StartRange.add(MaxBECountRange.multiply(StepRange));
3407
3408 // Check for overflow. This must be done with ConstantRange arithmetic
3409 // because we could be called from within the ScalarEvolution overflow
3410 // checking code.
3411 ConstantRange ExtStartRange = StartRange.zextOrTrunc(BitWidth*2+1);
3412 ConstantRange ExtStepRange = StepRange.sextOrTrunc(BitWidth*2+1);
3413 ConstantRange ExtMaxBECountRange =
3414 MaxBECountRange.zextOrTrunc(BitWidth*2+1);
3415 ConstantRange ExtEndRange = EndRange.zextOrTrunc(BitWidth*2+1);
3416 if (ExtStartRange.add(ExtMaxBECountRange.multiply(ExtStepRange)) !=
3417 ExtEndRange)
3418 return setUnsignedRange(AddRec, ConservativeResult);
3419
3420 APInt Min = APIntOps::umin(StartRange.getUnsignedMin(),
3421 EndRange.getUnsignedMin());
3422 APInt Max = APIntOps::umax(StartRange.getUnsignedMax(),
3423 EndRange.getUnsignedMax());
3424 if (Min.isMinValue() && Max.isMaxValue())
3425 return setUnsignedRange(AddRec, ConservativeResult);
3426 return setUnsignedRange(AddRec,
3427 ConservativeResult.intersectWith(ConstantRange(Min, Max+1)));
3428 }
3429 }
3430
3431 return setUnsignedRange(AddRec, ConservativeResult);
3432 }
3433
3434 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
3435 // For a SCEVUnknown, ask ValueTracking.
3436 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
3437 ComputeMaskedBits(U->getValue(), Zeros, Ones, TD);
3438 if (Ones == ~Zeros + 1)
3439 return setUnsignedRange(U, ConservativeResult);
3440 return setUnsignedRange(U,
3441 ConservativeResult.intersectWith(ConstantRange(Ones, ~Zeros + 1)));
3442 }
3443
3444 return setUnsignedRange(S, ConservativeResult);
3445}
3446
3447/// getSignedRange - Determine the signed range for a particular SCEV.
3448///
3449ConstantRange
3450ScalarEvolution::getSignedRange(const SCEV *S) {
3451 // See if we've computed this range already.
3452 DenseMap<const SCEV *, ConstantRange>::iterator I = SignedRanges.find(S);
3453 if (I != SignedRanges.end())
3454 return I->second;
3455
3456 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
3457 return setSignedRange(C, ConstantRange(C->getValue()->getValue()));
3458
3459 unsigned BitWidth = getTypeSizeInBits(S->getType());
3460 ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true);
3461
3462 // If the value has known zeros, the maximum signed value will have those
3463 // known zeros as well.
3464 uint32_t TZ = GetMinTrailingZeros(S);
3465 if (TZ != 0)
3466 ConservativeResult =
3467 ConstantRange(APInt::getSignedMinValue(BitWidth),
3468 APInt::getSignedMaxValue(BitWidth).ashr(TZ).shl(TZ) + 1);
3469
3470 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
3471 ConstantRange X = getSignedRange(Add->getOperand(0));
3472 for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
3473 X = X.add(getSignedRange(Add->getOperand(i)));
3474 return setSignedRange(Add, ConservativeResult.intersectWith(X));
3475 }
3476
3477 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
3478 ConstantRange X = getSignedRange(Mul->getOperand(0));
3479 for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
3480 X = X.multiply(getSignedRange(Mul->getOperand(i)));
3481 return setSignedRange(Mul, ConservativeResult.intersectWith(X));
3482 }
3483
3484 if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
3485 ConstantRange X = getSignedRange(SMax->getOperand(0));
3486 for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
3487 X = X.smax(getSignedRange(SMax->getOperand(i)));
3488 return setSignedRange(SMax, ConservativeResult.intersectWith(X));
3489 }
3490
3491 if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
3492 ConstantRange X = getSignedRange(UMax->getOperand(0));
3493 for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
3494 X = X.umax(getSignedRange(UMax->getOperand(i)));
3495 return setSignedRange(UMax, ConservativeResult.intersectWith(X));
3496 }
3497
3498 if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
3499 ConstantRange X = getSignedRange(UDiv->getLHS());
3500 ConstantRange Y = getSignedRange(UDiv->getRHS());
3501 return setSignedRange(UDiv, ConservativeResult.intersectWith(X.udiv(Y)));
3502 }
3503
3504 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
3505 ConstantRange X = getSignedRange(ZExt->getOperand());
3506 return setSignedRange(ZExt,
3507 ConservativeResult.intersectWith(X.zeroExtend(BitWidth)));
3508 }
3509
3510 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
3511 ConstantRange X = getSignedRange(SExt->getOperand());
3512 return setSignedRange(SExt,
3513 ConservativeResult.intersectWith(X.signExtend(BitWidth)));
3514 }
3515
3516 if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
3517 ConstantRange X = getSignedRange(Trunc->getOperand());
3518 return setSignedRange(Trunc,
3519 ConservativeResult.intersectWith(X.truncate(BitWidth)));
3520 }
3521
3522 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
3523 // If there's no signed wrap, and all the operands have the same sign or
3524 // zero, the value won't ever change sign.
3525 if (AddRec->getNoWrapFlags(SCEV::FlagNSW)) {
3526 bool AllNonNeg = true;
3527 bool AllNonPos = true;
3528 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
3529 if (!isKnownNonNegative(AddRec->getOperand(i))) AllNonNeg = false;
3530 if (!isKnownNonPositive(AddRec->getOperand(i))) AllNonPos = false;
3531 }
3532 if (AllNonNeg)
3533 ConservativeResult = ConservativeResult.intersectWith(
3534 ConstantRange(APInt(BitWidth, 0),
3535 APInt::getSignedMinValue(BitWidth)));
3536 else if (AllNonPos)
3537 ConservativeResult = ConservativeResult.intersectWith(
3538 ConstantRange(APInt::getSignedMinValue(BitWidth),
3539 APInt(BitWidth, 1)));
3540 }
3541
3542 // TODO: non-affine addrec
3543 if (AddRec->isAffine()) {
3544 Type *Ty = AddRec->getType();
3545 const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop());
3546 if (!isa<SCEVCouldNotCompute>(MaxBECount) &&
3547 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) {
3548 MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty);
3549
3550 const SCEV *Start = AddRec->getStart();
3551 const SCEV *Step = AddRec->getStepRecurrence(*this);
3552
3553 ConstantRange StartRange = getSignedRange(Start);
3554 ConstantRange StepRange = getSignedRange(Step);
3555 ConstantRange MaxBECountRange = getUnsignedRange(MaxBECount);
3556 ConstantRange EndRange =
3557 StartRange.add(MaxBECountRange.multiply(StepRange));
3558
3559 // Check for overflow. This must be done with ConstantRange arithmetic
3560 // because we could be called from within the ScalarEvolution overflow
3561 // checking code.
3562 ConstantRange ExtStartRange = StartRange.sextOrTrunc(BitWidth*2+1);
3563 ConstantRange ExtStepRange = StepRange.sextOrTrunc(BitWidth*2+1);
3564 ConstantRange ExtMaxBECountRange =
3565 MaxBECountRange.zextOrTrunc(BitWidth*2+1);
3566 ConstantRange ExtEndRange = EndRange.sextOrTrunc(BitWidth*2+1);
3567 if (ExtStartRange.add(ExtMaxBECountRange.multiply(ExtStepRange)) !=
3568 ExtEndRange)
3569 return setSignedRange(AddRec, ConservativeResult);
3570
3571 APInt Min = APIntOps::smin(StartRange.getSignedMin(),
3572 EndRange.getSignedMin());
3573 APInt Max = APIntOps::smax(StartRange.getSignedMax(),
3574 EndRange.getSignedMax());
3575 if (Min.isMinSignedValue() && Max.isMaxSignedValue())
3576 return setSignedRange(AddRec, ConservativeResult);
3577 return setSignedRange(AddRec,
3578 ConservativeResult.intersectWith(ConstantRange(Min, Max+1)));
3579 }
3580 }
3581
3582 return setSignedRange(AddRec, ConservativeResult);
3583 }
3584
3585 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
3586 // For a SCEVUnknown, ask ValueTracking.
3587 if (!U->getValue()->getType()->isIntegerTy() && !TD)
3588 return setSignedRange(U, ConservativeResult);
3589 unsigned NS = ComputeNumSignBits(U->getValue(), TD);
3590 if (NS <= 1)
3591 return setSignedRange(U, ConservativeResult);
3592 return setSignedRange(U, ConservativeResult.intersectWith(
3593 ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1),
3594 APInt::getSignedMaxValue(BitWidth).ashr(NS - 1)+1)));
3595 }
3596
3597 return setSignedRange(S, ConservativeResult);
3598}
3599
3600/// createSCEV - We know that there is no SCEV for the specified value.
3601/// Analyze the expression.
3602///
3603const SCEV *ScalarEvolution::createSCEV(Value *V) {
3604 if (!isSCEVable(V->getType()))
3605 return getUnknown(V);
3606
3607 unsigned Opcode = Instruction::UserOp1;
3608 if (Instruction *I = dyn_cast<Instruction>(V)) {
3609 Opcode = I->getOpcode();
3610
3611 // Don't attempt to analyze instructions in blocks that aren't
3612 // reachable. Such instructions don't matter, and they aren't required
3613 // to obey basic rules for definitions dominating uses which this
3614 // analysis depends on.
3615 if (!DT->isReachableFromEntry(I->getParent()))
3616 return getUnknown(V);
3617 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
3618 Opcode = CE->getOpcode();
3619 else if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
3620 return getConstant(CI);
3621 else if (isa<ConstantPointerNull>(V))
3622 return getConstant(V->getType(), 0);
3623 else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
3624 return GA->mayBeOverridden() ? getUnknown(V) : getSCEV(GA->getAliasee());
3625 else
3626 return getUnknown(V);
3627
3628 Operator *U = cast<Operator>(V);
3629 switch (Opcode) {
3630 case Instruction::Add: {
3631 // The simple thing to do would be to just call getSCEV on both operands
3632 // and call getAddExpr with the result. However if we're looking at a
3633 // bunch of things all added together, this can be quite inefficient,
3634 // because it leads to N-1 getAddExpr calls for N ultimate operands.
3635 // Instead, gather up all the operands and make a single getAddExpr call.
3636 // LLVM IR canonical form means we need only traverse the left operands.
3637 //
3638 // Don't apply this instruction's NSW or NUW flags to the new
3639 // expression. The instruction may be guarded by control flow that the
3640 // no-wrap behavior depends on. Non-control-equivalent instructions can be
3641 // mapped to the same SCEV expression, and it would be incorrect to transfer
3642 // NSW/NUW semantics to those operations.
3643 SmallVector<const SCEV *, 4> AddOps;
3644 AddOps.push_back(getSCEV(U->getOperand(1)));
3645 for (Value *Op = U->getOperand(0); ; Op = U->getOperand(0)) {
3646 unsigned Opcode = Op->getValueID() - Value::InstructionVal;
3647 if (Opcode != Instruction::Add && Opcode != Instruction::Sub)
3648 break;
3649 U = cast<Operator>(Op);
3650 const SCEV *Op1 = getSCEV(U->getOperand(1));
3651 if (Opcode == Instruction::Sub)
3652 AddOps.push_back(getNegativeSCEV(Op1));
3653 else
3654 AddOps.push_back(Op1);
3655 }
3656 AddOps.push_back(getSCEV(U->getOperand(0)));
3657 return getAddExpr(AddOps);
3658 }
3659 case Instruction::Mul: {
3660 // Don't transfer NSW/NUW for the same reason as AddExpr.
3661 SmallVector<const SCEV *, 4> MulOps;
3662 MulOps.push_back(getSCEV(U->getOperand(1)));
3663 for (Value *Op = U->getOperand(0);
3664 Op->getValueID() == Instruction::Mul + Value::InstructionVal;
3665 Op = U->getOperand(0)) {
3666 U = cast<Operator>(Op);
3667 MulOps.push_back(getSCEV(U->getOperand(1)));
3668 }
3669 MulOps.push_back(getSCEV(U->getOperand(0)));
3670 return getMulExpr(MulOps);
3671 }
3672 case Instruction::UDiv:
3673 return getUDivExpr(getSCEV(U->getOperand(0)),
3674 getSCEV(U->getOperand(1)));
3675 case Instruction::Sub:
3676 return getMinusSCEV(getSCEV(U->getOperand(0)),
3677 getSCEV(U->getOperand(1)));
3678 case Instruction::And:
3679 // For an expression like x&255 that merely masks off the high bits,
3680 // use zext(trunc(x)) as the SCEV expression.
3681 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
3682 if (CI->isNullValue())
3683 return getSCEV(U->getOperand(1));
3684 if (CI->isAllOnesValue())
3685 return getSCEV(U->getOperand(0));
3686 const APInt &A = CI->getValue();
3687
3688 // Instcombine's ShrinkDemandedConstant may strip bits out of
3689 // constants, obscuring what would otherwise be a low-bits mask.
3690 // Use ComputeMaskedBits to compute what ShrinkDemandedConstant
3691 // knew about to reconstruct a low-bits mask value.
3692 unsigned LZ = A.countLeadingZeros();
3693 unsigned BitWidth = A.getBitWidth();
3694 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
3695 ComputeMaskedBits(U->getOperand(0), KnownZero, KnownOne, TD);
3696
3697 APInt EffectiveMask = APInt::getLowBitsSet(BitWidth, BitWidth - LZ);
3698
3699 if (LZ != 0 && !((~A & ~KnownZero) & EffectiveMask))
3700 return
3701 getZeroExtendExpr(getTruncateExpr(getSCEV(U->getOperand(0)),
3702 IntegerType::get(getContext(), BitWidth - LZ)),
3703 U->getType());
3704 }
3705 break;
3706
3707 case Instruction::Or:
3708 // If the RHS of the Or is a constant, we may have something like:
3709 // X*4+1 which got turned into X*4|1. Handle this as an Add so loop
3710 // optimizations will transparently handle this case.
3711 //
3712 // In order for this transformation to be safe, the LHS must be of the
3713 // form X*(2^n) and the Or constant must be less than 2^n.
3714 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
3715 const SCEV *LHS = getSCEV(U->getOperand(0));
3716 const APInt &CIVal = CI->getValue();
3717 if (GetMinTrailingZeros(LHS) >=
3718 (CIVal.getBitWidth() - CIVal.countLeadingZeros())) {
3719 // Build a plain add SCEV.
3720 const SCEV *S = getAddExpr(LHS, getSCEV(CI));
3721 // If the LHS of the add was an addrec and it has no-wrap flags,
3722 // transfer the no-wrap flags, since an or won't introduce a wrap.
3723 if (const SCEVAddRecExpr *NewAR = dyn_cast<SCEVAddRecExpr>(S)) {
3724 const SCEVAddRecExpr *OldAR = cast<SCEVAddRecExpr>(LHS);
3725 const_cast<SCEVAddRecExpr *>(NewAR)->setNoWrapFlags(
3726 OldAR->getNoWrapFlags());
3727 }
3728 return S;
3729 }
3730 }
3731 break;
3732 case Instruction::Xor:
3733 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
3734 // If the RHS of the xor is a signbit, then this is just an add.
3735 // Instcombine turns add of signbit into xor as a strength reduction step.
3736 if (CI->getValue().isSignBit())
3737 return getAddExpr(getSCEV(U->getOperand(0)),
3738 getSCEV(U->getOperand(1)));
3739
3740 // If the RHS of xor is -1, then this is a not operation.
3741 if (CI->isAllOnesValue())
3742 return getNotSCEV(getSCEV(U->getOperand(0)));
3743
3744 // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask.
3745 // This is a variant of the check for xor with -1, and it handles
3746 // the case where instcombine has trimmed non-demanded bits out
3747 // of an xor with -1.
3748 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U->getOperand(0)))
3749 if (ConstantInt *LCI = dyn_cast<ConstantInt>(BO->getOperand(1)))
3750 if (BO->getOpcode() == Instruction::And &&
3751 LCI->getValue() == CI->getValue())
3752 if (const SCEVZeroExtendExpr *Z =
3753 dyn_cast<SCEVZeroExtendExpr>(getSCEV(U->getOperand(0)))) {
3754 Type *UTy = U->getType();
3755 const SCEV *Z0 = Z->getOperand();
3756 Type *Z0Ty = Z0->getType();
3757 unsigned Z0TySize = getTypeSizeInBits(Z0Ty);
3758
3759 // If C is a low-bits mask, the zero extend is serving to
3760 // mask off the high bits. Complement the operand and
3761 // re-apply the zext.
3762 if (APIntOps::isMask(Z0TySize, CI->getValue()))
3763 return getZeroExtendExpr(getNotSCEV(Z0), UTy);
3764
3765 // If C is a single bit, it may be in the sign-bit position
3766 // before the zero-extend. In this case, represent the xor
3767 // using an add, which is equivalent, and re-apply the zext.
3768 APInt Trunc = CI->getValue().trunc(Z0TySize);
3769 if (Trunc.zext(getTypeSizeInBits(UTy)) == CI->getValue() &&
3770 Trunc.isSignBit())
3771 return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)),
3772 UTy);
3773 }
3774 }
3775 break;
3776
3777 case Instruction::Shl:
3778 // Turn shift left of a constant amount into a multiply.
3779 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
3780 uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth();
3781
3782 // If the shift count is not less than the bitwidth, the result of
3783 // the shift is undefined. Don't try to analyze it, because the
3784 // resolution chosen here may differ from the resolution chosen in
3785 // other parts of the compiler.
3786 if (SA->getValue().uge(BitWidth))
3787 break;
3788
3789 Constant *X = ConstantInt::get(getContext(),
3790 APInt::getOneBitSet(BitWidth, SA->getZExtValue()));
3791 return getMulExpr(getSCEV(U->getOperand(0)), getSCEV(X));
3792 }
3793 break;
3794
3795 case Instruction::LShr:
3796 // Turn logical shift right of a constant into a unsigned divide.
3797 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
3798 uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth();
3799
3800 // If the shift count is not less than the bitwidth, the result of
3801 // the shift is undefined. Don't try to analyze it, because the
3802 // resolution chosen here may differ from the resolution chosen in
3803 // other parts of the compiler.
3804 if (SA->getValue().uge(BitWidth))
3805 break;
3806
3807 Constant *X = ConstantInt::get(getContext(),
3808 APInt::getOneBitSet(BitWidth, SA->getZExtValue()));
3809 return getUDivExpr(getSCEV(U->getOperand(0)), getSCEV(X));
3810 }
3811 break;
3812
3813 case Instruction::AShr:
3814 // For a two-shift sext-inreg, use sext(trunc(x)) as the SCEV expression.
3815 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1)))
3816 if (Operator *L = dyn_cast<Operator>(U->getOperand(0)))
3817 if (L->getOpcode() == Instruction::Shl &&
3818 L->getOperand(1) == U->getOperand(1)) {
3819 uint64_t BitWidth = getTypeSizeInBits(U->getType());
3820
3821 // If the shift count is not less than the bitwidth, the result of
3822 // the shift is undefined. Don't try to analyze it, because the
3823 // resolution chosen here may differ from the resolution chosen in
3824 // other parts of the compiler.
3825 if (CI->getValue().uge(BitWidth))
3826 break;
3827
3828 uint64_t Amt = BitWidth - CI->getZExtValue();
3829 if (Amt == BitWidth)
3830 return getSCEV(L->getOperand(0)); // shift by zero --> noop
3831 return
3832 getSignExtendExpr(getTruncateExpr(getSCEV(L->getOperand(0)),
3833 IntegerType::get(getContext(),
3834 Amt)),
3835 U->getType());
3836 }
3837 break;
3838
3839 case Instruction::Trunc:
3840 return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType());
3841
3842 case Instruction::ZExt:
3843 return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType());
3844
3845 case Instruction::SExt:
3846 return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType());
3847
3848 case Instruction::BitCast:
3849 // BitCasts are no-op casts so we just eliminate the cast.
3850 if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType()))
3851 return getSCEV(U->getOperand(0));
3852 break;
3853
3854 // It's tempting to handle inttoptr and ptrtoint as no-ops, however this can
3855 // lead to pointer expressions which cannot safely be expanded to GEPs,
3856 // because ScalarEvolution doesn't respect the GEP aliasing rules when
3857 // simplifying integer expressions.
3858
3859 case Instruction::GetElementPtr:
3860 return createNodeForGEP(cast<GEPOperator>(U));
3861
3862 case Instruction::PHI:
3863 return createNodeForPHI(cast<PHINode>(U));
3864
3865 case Instruction::Select:
3866 // This could be a smax or umax that was lowered earlier.
3867 // Try to recover it.
3868 if (ICmpInst *ICI = dyn_cast<ICmpInst>(U->getOperand(0))) {
3869 Value *LHS = ICI->getOperand(0);
3870 Value *RHS = ICI->getOperand(1);
3871 switch (ICI->getPredicate()) {
3872 case ICmpInst::ICMP_SLT:
3873 case ICmpInst::ICMP_SLE:
3874 std::swap(LHS, RHS);
3875 // fall through
3876 case ICmpInst::ICMP_SGT:
3877 case ICmpInst::ICMP_SGE:
3878 // a >s b ? a+x : b+x -> smax(a, b)+x
3879 // a >s b ? b+x : a+x -> smin(a, b)+x
3880 if (LHS->getType() == U->getType()) {
3881 const SCEV *LS = getSCEV(LHS);
3882 const SCEV *RS = getSCEV(RHS);
3883 const SCEV *LA = getSCEV(U->getOperand(1));
3884 const SCEV *RA = getSCEV(U->getOperand(2));
3885 const SCEV *LDiff = getMinusSCEV(LA, LS);
3886 const SCEV *RDiff = getMinusSCEV(RA, RS);
3887 if (LDiff == RDiff)
3888 return getAddExpr(getSMaxExpr(LS, RS), LDiff);
3889 LDiff = getMinusSCEV(LA, RS);
3890 RDiff = getMinusSCEV(RA, LS);
3891 if (LDiff == RDiff)
3892 return getAddExpr(getSMinExpr(LS, RS), LDiff);
3893 }
3894 break;
3895 case ICmpInst::ICMP_ULT:
3896 case ICmpInst::ICMP_ULE:
3897 std::swap(LHS, RHS);
3898 // fall through
3899 case ICmpInst::ICMP_UGT:
3900 case ICmpInst::ICMP_UGE:
3901 // a >u b ? a+x : b+x -> umax(a, b)+x
3902 // a >u b ? b+x : a+x -> umin(a, b)+x
3903 if (LHS->getType() == U->getType()) {
3904 const SCEV *LS = getSCEV(LHS);
3905 const SCEV *RS = getSCEV(RHS);
3906 const SCEV *LA = getSCEV(U->getOperand(1));
3907 const SCEV *RA = getSCEV(U->getOperand(2));
3908 const SCEV *LDiff = getMinusSCEV(LA, LS);
3909 const SCEV *RDiff = getMinusSCEV(RA, RS);
3910 if (LDiff == RDiff)
3911 return getAddExpr(getUMaxExpr(LS, RS), LDiff);
3912 LDiff = getMinusSCEV(LA, RS);
3913 RDiff = getMinusSCEV(RA, LS);
3914 if (LDiff == RDiff)
3915 return getAddExpr(getUMinExpr(LS, RS), LDiff);
3916 }
3917 break;
3918 case ICmpInst::ICMP_NE:
3919 // n != 0 ? n+x : 1+x -> umax(n, 1)+x
3920 if (LHS->getType() == U->getType() &&
3921 isa<ConstantInt>(RHS) &&
3922 cast<ConstantInt>(RHS)->isZero()) {
3923 const SCEV *One = getConstant(LHS->getType(), 1);
3924 const SCEV *LS = getSCEV(LHS);
3925 const SCEV *LA = getSCEV(U->getOperand(1));
3926 const SCEV *RA = getSCEV(U->getOperand(2));
3927 const SCEV *LDiff = getMinusSCEV(LA, LS);
3928 const SCEV *RDiff = getMinusSCEV(RA, One);
3929 if (LDiff == RDiff)
3930 return getAddExpr(getUMaxExpr(One, LS), LDiff);
3931 }
3932 break;
3933 case ICmpInst::ICMP_EQ:
3934 // n == 0 ? 1+x : n+x -> umax(n, 1)+x
3935 if (LHS->getType() == U->getType() &&
3936 isa<ConstantInt>(RHS) &&
3937 cast<ConstantInt>(RHS)->isZero()) {
3938 const SCEV *One = getConstant(LHS->getType(), 1);
3939 const SCEV *LS = getSCEV(LHS);
3940 const SCEV *LA = getSCEV(U->getOperand(1));
3941 const SCEV *RA = getSCEV(U->getOperand(2));
3942 const SCEV *LDiff = getMinusSCEV(LA, One);
3943 const SCEV *RDiff = getMinusSCEV(RA, LS);
3944 if (LDiff == RDiff)
3945 return getAddExpr(getUMaxExpr(One, LS), LDiff);
3946 }
3947 break;
3948 default:
3949 break;
3950 }
3951 }
3952
3953 default: // We cannot analyze this expression.
3954 break;
3955 }
3956
3957 return getUnknown(V);
3958}
3959
3960
3961
3962//===----------------------------------------------------------------------===//
3963// Iteration Count Computation Code
3964//
3965
3966/// getSmallConstantTripCount - Returns the maximum trip count of this loop as a
3967/// normal unsigned value. Returns 0 if the trip count is unknown or not
3968/// constant. Will also return 0 if the maximum trip count is very large (>=
3969/// 2^32).
3970///
3971/// This "trip count" assumes that control exits via ExitingBlock. More
3972/// precisely, it is the number of times that control may reach ExitingBlock
3973/// before taking the branch. For loops with multiple exits, it may not be the
3974/// number times that the loop header executes because the loop may exit
3975/// prematurely via another branch.
3976///
3977/// FIXME: We conservatively call getBackedgeTakenCount(L) instead of
3978/// getExitCount(L, ExitingBlock) to compute a safe trip count considering all
3979/// loop exits. getExitCount() may return an exact count for this branch
3980/// assuming no-signed-wrap. The number of well-defined iterations may actually
3981/// be higher than this trip count if this exit test is skipped and the loop
3982/// exits via a different branch. Ideally, getExitCount() would know whether it
3983/// depends on a NSW assumption, and we would only fall back to a conservative
3984/// trip count in that case.
3985unsigned ScalarEvolution::
3986getSmallConstantTripCount(Loop *L, BasicBlock * /*ExitingBlock*/) {
3987 const SCEVConstant *ExitCount =
3988 dyn_cast<SCEVConstant>(getBackedgeTakenCount(L));
3989 if (!ExitCount)
3990 return 0;
3991
3992 ConstantInt *ExitConst = ExitCount->getValue();
3993
3994 // Guard against huge trip counts.
3995 if (ExitConst->getValue().getActiveBits() > 32)
3996 return 0;
3997
3998 // In case of integer overflow, this returns 0, which is correct.
3999 return ((unsigned)ExitConst->getZExtValue()) + 1;
4000}
4001
4002/// getSmallConstantTripMultiple - Returns the largest constant divisor of the
4003/// trip count of this loop as a normal unsigned value, if possible. This
4004/// means that the actual trip count is always a multiple of the returned
4005/// value (don't forget the trip count could very well be zero as well!).
4006///
4007/// Returns 1 if the trip count is unknown or not guaranteed to be the
4008/// multiple of a constant (which is also the case if the trip count is simply
4009/// constant, use getSmallConstantTripCount for that case), Will also return 1
4010/// if the trip count is very large (>= 2^32).
4011///
4012/// As explained in the comments for getSmallConstantTripCount, this assumes
4013/// that control exits the loop via ExitingBlock.
4014unsigned ScalarEvolution::
4015getSmallConstantTripMultiple(Loop *L, BasicBlock * /*ExitingBlock*/) {
4016 const SCEV *ExitCount = getBackedgeTakenCount(L);
4017 if (ExitCount == getCouldNotCompute())
4018 return 1;
4019
4020 // Get the trip count from the BE count by adding 1.
4021 const SCEV *TCMul = getAddExpr(ExitCount,
4022 getConstant(ExitCount->getType(), 1));
4023 // FIXME: SCEV distributes multiplication as V1*C1 + V2*C1. We could attempt
4024 // to factor simple cases.
4025 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(TCMul))
4026 TCMul = Mul->getOperand(0);
4027
4028 const SCEVConstant *MulC = dyn_cast<SCEVConstant>(TCMul);
4029 if (!MulC)
4030 return 1;
4031
4032 ConstantInt *Result = MulC->getValue();
4033
4034 // Guard against huge trip counts (this requires checking
4035 // for zero to handle the case where the trip count == -1 and the
4036 // addition wraps).
4037 if (!Result || Result->getValue().getActiveBits() > 32 ||
4038 Result->getValue().getActiveBits() == 0)
4039 return 1;
4040
4041 return (unsigned)Result->getZExtValue();
4042}
4043
4044// getExitCount - Get the expression for the number of loop iterations for which
4045// this loop is guaranteed not to exit via ExitingBlock. Otherwise return
4046// SCEVCouldNotCompute.
4047const SCEV *ScalarEvolution::getExitCount(Loop *L, BasicBlock *ExitingBlock) {
4048 return getBackedgeTakenInfo(L).getExact(ExitingBlock, this);
4049}
4050
4051/// getBackedgeTakenCount - If the specified loop has a predictable
4052/// backedge-taken count, return it, otherwise return a SCEVCouldNotCompute
4053/// object. The backedge-taken count is the number of times the loop header
4054/// will be branched to from within the loop. This is one less than the
4055/// trip count of the loop, since it doesn't count the first iteration,
4056/// when the header is branched to from outside the loop.
4057///
4058/// Note that it is not valid to call this method on a loop without a
4059/// loop-invariant backedge-taken count (see
4060/// hasLoopInvariantBackedgeTakenCount).
4061///
4062const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L) {
4063 return getBackedgeTakenInfo(L).getExact(this);
4064}
4065
4066/// getMaxBackedgeTakenCount - Similar to getBackedgeTakenCount, except
4067/// return the least SCEV value that is known never to be less than the
4068/// actual backedge taken count.
4069const SCEV *ScalarEvolution::getMaxBackedgeTakenCount(const Loop *L) {
4070 return getBackedgeTakenInfo(L).getMax(this);
4071}
4072
4073/// PushLoopPHIs - Push PHI nodes in the header of the given loop
4074/// onto the given Worklist.
4075static void
4076PushLoopPHIs(const Loop *L, SmallVectorImpl<Instruction *> &Worklist) {
4077 BasicBlock *Header = L->getHeader();
4078
4079 // Push all Loop-header PHIs onto the Worklist stack.
4080 for (BasicBlock::iterator I = Header->begin();
4081 PHINode *PN = dyn_cast<PHINode>(I); ++I)
4082 Worklist.push_back(PN);
4083}
4084
4085const ScalarEvolution::BackedgeTakenInfo &
4086ScalarEvolution::getBackedgeTakenInfo(const Loop *L) {
4087 // Initially insert an invalid entry for this loop. If the insertion
4088 // succeeds, proceed to actually compute a backedge-taken count and
4089 // update the value. The temporary CouldNotCompute value tells SCEV
4090 // code elsewhere that it shouldn't attempt to request a new
4091 // backedge-taken count, which could result in infinite recursion.
4092 std::pair<DenseMap<const Loop *, BackedgeTakenInfo>::iterator, bool> Pair =
4093 BackedgeTakenCounts.insert(std::make_pair(L, BackedgeTakenInfo()));
4094 if (!Pair.second)
4095 return Pair.first->second;
4096
4097 // ComputeBackedgeTakenCount may allocate memory for its result. Inserting it
4098 // into the BackedgeTakenCounts map transfers ownership. Otherwise, the result
4099 // must be cleared in this scope.
4100 BackedgeTakenInfo Result = ComputeBackedgeTakenCount(L);
4101
4102 if (Result.getExact(this) != getCouldNotCompute()) {
4103 assert(isLoopInvariant(Result.getExact(this), L) &&
4104 isLoopInvariant(Result.getMax(this), L) &&
4105 "Computed backedge-taken count isn't loop invariant for loop!");
4106 ++NumTripCountsComputed;
4107 }
4108 else if (Result.getMax(this) == getCouldNotCompute() &&
4109 isa<PHINode>(L->getHeader()->begin())) {
4110 // Only count loops that have phi nodes as not being computable.
4111 ++NumTripCountsNotComputed;
4112 }
4113
4114 // Now that we know more about the trip count for this loop, forget any
4115 // existing SCEV values for PHI nodes in this loop since they are only
4116 // conservative estimates made without the benefit of trip count
4117 // information. This is similar to the code in forgetLoop, except that
4118 // it handles SCEVUnknown PHI nodes specially.
4119 if (Result.hasAnyInfo()) {
4120 SmallVector<Instruction *, 16> Worklist;
4121 PushLoopPHIs(L, Worklist);
4122
4123 SmallPtrSet<Instruction *, 8> Visited;
4124 while (!Worklist.empty()) {
4125 Instruction *I = Worklist.pop_back_val();
4126 if (!Visited.insert(I)) continue;
4127
4128 ValueExprMapType::iterator It =
4129 ValueExprMap.find_as(static_cast<Value *>(I));
4130 if (It != ValueExprMap.end()) {
4131 const SCEV *Old = It->second;
4132
4133 // SCEVUnknown for a PHI either means that it has an unrecognized
4134 // structure, or it's a PHI that's in the progress of being computed
4135 // by createNodeForPHI. In the former case, additional loop trip
4136 // count information isn't going to change anything. In the later
4137 // case, createNodeForPHI will perform the necessary updates on its
4138 // own when it gets to that point.
4139 if (!isa<PHINode>(I) || !isa<SCEVUnknown>(Old)) {
4140 forgetMemoizedResults(Old);
4141 ValueExprMap.erase(It);
4142 }
4143 if (PHINode *PN = dyn_cast<PHINode>(I))
4144 ConstantEvolutionLoopExitValue.erase(PN);
4145 }
4146
4147 PushDefUseChildren(I, Worklist);
4148 }
4149 }
4150
4151 // Re-lookup the insert position, since the call to
4152 // ComputeBackedgeTakenCount above could result in a
4153 // recusive call to getBackedgeTakenInfo (on a different
4154 // loop), which would invalidate the iterator computed
4155 // earlier.
4156 return BackedgeTakenCounts.find(L)->second = Result;
4157}
4158
4159/// forgetLoop - This method should be called by the client when it has
4160/// changed a loop in a way that may effect ScalarEvolution's ability to
4161/// compute a trip count, or if the loop is deleted.
4162void ScalarEvolution::forgetLoop(const Loop *L) {
4163 // Drop any stored trip count value.
4164 DenseMap<const Loop*, BackedgeTakenInfo>::iterator BTCPos =
4165 BackedgeTakenCounts.find(L);
4166 if (BTCPos != BackedgeTakenCounts.end()) {
4167 BTCPos->second.clear();
4168 BackedgeTakenCounts.erase(BTCPos);
4169 }
4170
4171 // Drop information about expressions based on loop-header PHIs.
4172 SmallVector<Instruction *, 16> Worklist;
4173 PushLoopPHIs(L, Worklist);
4174
4175 SmallPtrSet<Instruction *, 8> Visited;
4176 while (!Worklist.empty()) {
4177 Instruction *I = Worklist.pop_back_val();
4178 if (!Visited.insert(I)) continue;
4179
4180 ValueExprMapType::iterator It =
4181 ValueExprMap.find_as(static_cast<Value *>(I));
4182 if (It != ValueExprMap.end()) {
4183 forgetMemoizedResults(It->second);
4184 ValueExprMap.erase(It);
4185 if (PHINode *PN = dyn_cast<PHINode>(I))
4186 ConstantEvolutionLoopExitValue.erase(PN);
4187 }
4188
4189 PushDefUseChildren(I, Worklist);
4190 }
4191
4192 // Forget all contained loops too, to avoid dangling entries in the
4193 // ValuesAtScopes map.
4194 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
4195 forgetLoop(*I);
4196}
4197
4198/// forgetValue - This method should be called by the client when it has
4199/// changed a value in a way that may effect its value, or which may
4200/// disconnect it from a def-use chain linking it to a loop.
4201void ScalarEvolution::forgetValue(Value *V) {
4202 Instruction *I = dyn_cast<Instruction>(V);
4203 if (!I) return;
4204
4205 // Drop information about expressions based on loop-header PHIs.
4206 SmallVector<Instruction *, 16> Worklist;
4207 Worklist.push_back(I);
4208
4209 SmallPtrSet<Instruction *, 8> Visited;
4210 while (!Worklist.empty()) {
4211 I = Worklist.pop_back_val();
4212 if (!Visited.insert(I)) continue;
4213
4214 ValueExprMapType::iterator It =
4215 ValueExprMap.find_as(static_cast<Value *>(I));
4216 if (It != ValueExprMap.end()) {
4217 forgetMemoizedResults(It->second);
4218 ValueExprMap.erase(It);
4219 if (PHINode *PN = dyn_cast<PHINode>(I))
4220 ConstantEvolutionLoopExitValue.erase(PN);
4221 }
4222
4223 PushDefUseChildren(I, Worklist);
4224 }
4225}
4226
4227/// getExact - Get the exact loop backedge taken count considering all loop
4228/// exits. A computable result can only be return for loops with a single exit.
4229/// Returning the minimum taken count among all exits is incorrect because one
4230/// of the loop's exit limit's may have been skipped. HowFarToZero assumes that
4231/// the limit of each loop test is never skipped. This is a valid assumption as
4232/// long as the loop exits via that test. For precise results, it is the
4233/// caller's responsibility to specify the relevant loop exit using
4234/// getExact(ExitingBlock, SE).
4235const SCEV *
4236ScalarEvolution::BackedgeTakenInfo::getExact(ScalarEvolution *SE) const {
4237 // If any exits were not computable, the loop is not computable.
4238 if (!ExitNotTaken.isCompleteList()) return SE->getCouldNotCompute();
4239
4240 // We need exactly one computable exit.
4241 if (!ExitNotTaken.ExitingBlock) return SE->getCouldNotCompute();
4242 assert(ExitNotTaken.ExactNotTaken && "uninitialized not-taken info");
4243
4244 const SCEV *BECount = 0;
4245 for (const ExitNotTakenInfo *ENT = &ExitNotTaken;
4246 ENT != 0; ENT = ENT->getNextExit()) {
4247
4248 assert(ENT->ExactNotTaken != SE->getCouldNotCompute() && "bad exit SCEV");
4249
4250 if (!BECount)
4251 BECount = ENT->ExactNotTaken;
4252 else if (BECount != ENT->ExactNotTaken)
4253 return SE->getCouldNotCompute();
4254 }
4255 assert(BECount && "Invalid not taken count for loop exit");
4256 return BECount;
4257}
4258
4259/// getExact - Get the exact not taken count for this loop exit.
4260const SCEV *
4261ScalarEvolution::BackedgeTakenInfo::getExact(BasicBlock *ExitingBlock,
4262 ScalarEvolution *SE) const {
4263 for (const ExitNotTakenInfo *ENT = &ExitNotTaken;
4264 ENT != 0; ENT = ENT->getNextExit()) {
4265
4266 if (ENT->ExitingBlock == ExitingBlock)
4267 return ENT->ExactNotTaken;
4268 }
4269 return SE->getCouldNotCompute();
4270}
4271
4272/// getMax - Get the max backedge taken count for the loop.
4273const SCEV *
4274ScalarEvolution::BackedgeTakenInfo::getMax(ScalarEvolution *SE) const {
4275 return Max ? Max : SE->getCouldNotCompute();
4276}
4277
4278bool ScalarEvolution::BackedgeTakenInfo::hasOperand(const SCEV *S,
4279 ScalarEvolution *SE) const {
4280 if (Max && Max != SE->getCouldNotCompute() && SE->hasOperand(Max, S))
4281 return true;
4282
4283 if (!ExitNotTaken.ExitingBlock)
4284 return false;
4285
4286 for (const ExitNotTakenInfo *ENT = &ExitNotTaken;
4287 ENT != 0; ENT = ENT->getNextExit()) {
4288
4289 if (ENT->ExactNotTaken != SE->getCouldNotCompute()
4290 && SE->hasOperand(ENT->ExactNotTaken, S)) {
4291 return true;
4292 }
4293 }
4294 return false;
4295}
4296
4297/// Allocate memory for BackedgeTakenInfo and copy the not-taken count of each
4298/// computable exit into a persistent ExitNotTakenInfo array.
4299ScalarEvolution::BackedgeTakenInfo::BackedgeTakenInfo(
4300 SmallVectorImpl< std::pair<BasicBlock *, const SCEV *> > &ExitCounts,
4301 bool Complete, const SCEV *MaxCount) : Max(MaxCount) {
4302
4303 if (!Complete)
4304 ExitNotTaken.setIncomplete();
4305
4306 unsigned NumExits = ExitCounts.size();
4307 if (NumExits == 0) return;
4308
4309 ExitNotTaken.ExitingBlock = ExitCounts[0].first;
4310 ExitNotTaken.ExactNotTaken = ExitCounts[0].second;
4311 if (NumExits == 1) return;
4312
4313 // Handle the rare case of multiple computable exits.
4314 ExitNotTakenInfo *ENT = new ExitNotTakenInfo[NumExits-1];
4315
4316 ExitNotTakenInfo *PrevENT = &ExitNotTaken;
4317 for (unsigned i = 1; i < NumExits; ++i, PrevENT = ENT, ++ENT) {
4318 PrevENT->setNextExit(ENT);
4319 ENT->ExitingBlock = ExitCounts[i].first;
4320 ENT->ExactNotTaken = ExitCounts[i].second;
4321 }
4322}
4323
4324/// clear - Invalidate this result and free the ExitNotTakenInfo array.
4325void ScalarEvolution::BackedgeTakenInfo::clear() {
4326 ExitNotTaken.ExitingBlock = 0;
4327 ExitNotTaken.ExactNotTaken = 0;
4328 delete[] ExitNotTaken.getNextExit();
4329}
4330
4331/// ComputeBackedgeTakenCount - Compute the number of times the backedge
4332/// of the specified loop will execute.
4333ScalarEvolution::BackedgeTakenInfo
4334ScalarEvolution::ComputeBackedgeTakenCount(const Loop *L) {
4335 SmallVector<BasicBlock *, 8> ExitingBlocks;
4336 L->getExitingBlocks(ExitingBlocks);
4337
4338 // Examine all exits and pick the most conservative values.
4339 const SCEV *MaxBECount = getCouldNotCompute();
4340 bool CouldComputeBECount = true;
4341 SmallVector<std::pair<BasicBlock *, const SCEV *>, 4> ExitCounts;
4342 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
4343 ExitLimit EL = ComputeExitLimit(L, ExitingBlocks[i]);
4344 if (EL.Exact == getCouldNotCompute())
4345 // We couldn't compute an exact value for this exit, so
4346 // we won't be able to compute an exact value for the loop.
4347 CouldComputeBECount = false;
4348 else
4349 ExitCounts.push_back(std::make_pair(ExitingBlocks[i], EL.Exact));
4350
4351 if (MaxBECount == getCouldNotCompute())
4352 MaxBECount = EL.Max;
4353 else if (EL.Max != getCouldNotCompute()) {
4354 // We cannot take the "min" MaxBECount, because non-unit stride loops may
4355 // skip some loop tests. Taking the max over the exits is sufficiently
4356 // conservative. TODO: We could do better taking into consideration
4357 // that (1) the loop has unit stride (2) the last loop test is
4358 // less-than/greater-than (3) any loop test is less-than/greater-than AND
4359 // falls-through some constant times less then the other tests.
4360 MaxBECount = getUMaxFromMismatchedTypes(MaxBECount, EL.Max);
4361 }
4362 }
4363
4364 return BackedgeTakenInfo(ExitCounts, CouldComputeBECount, MaxBECount);
4365}
4366
4367/// ComputeExitLimit - Compute the number of times the backedge of the specified
4368/// loop will execute if it exits via the specified block.
4369ScalarEvolution::ExitLimit
4370ScalarEvolution::ComputeExitLimit(const Loop *L, BasicBlock *ExitingBlock) {
4371
4372 // Okay, we've chosen an exiting block. See what condition causes us to
4373 // exit at this block.
4374 //
4375 // FIXME: we should be able to handle switch instructions (with a single exit)
4376 BranchInst *ExitBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
4377 if (ExitBr == 0) return getCouldNotCompute();
4378 assert(ExitBr->isConditional() && "If unconditional, it can't be in loop!");
4379
4380 // At this point, we know we have a conditional branch that determines whether
4381 // the loop is exited. However, we don't know if the branch is executed each
4382 // time through the loop. If not, then the execution count of the branch will
4383 // not be equal to the trip count of the loop.
4384 //
4385 // Currently we check for this by checking to see if the Exit branch goes to
4386 // the loop header. If so, we know it will always execute the same number of
4387 // times as the loop. We also handle the case where the exit block *is* the
4388 // loop header. This is common for un-rotated loops.
4389 //
4390 // If both of those tests fail, walk up the unique predecessor chain to the
4391 // header, stopping if there is an edge that doesn't exit the loop. If the
4392 // header is reached, the execution count of the branch will be equal to the
4393 // trip count of the loop.
4394 //
4395 // More extensive analysis could be done to handle more cases here.
4396 //
4397 if (ExitBr->getSuccessor(0) != L->getHeader() &&
4398 ExitBr->getSuccessor(1) != L->getHeader() &&
4399 ExitBr->getParent() != L->getHeader()) {
4400 // The simple checks failed, try climbing the unique predecessor chain
4401 // up to the header.
4402 bool Ok = false;
4403 for (BasicBlock *BB = ExitBr->getParent(); BB; ) {
4404 BasicBlock *Pred = BB->getUniquePredecessor();
4405 if (!Pred)
4406 return getCouldNotCompute();
4407 TerminatorInst *PredTerm = Pred->getTerminator();
4408 for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i) {
4409 BasicBlock *PredSucc = PredTerm->getSuccessor(i);
4410 if (PredSucc == BB)
4411 continue;
4412 // If the predecessor has a successor that isn't BB and isn't
4413 // outside the loop, assume the worst.
4414 if (L->contains(PredSucc))
4415 return getCouldNotCompute();
4416 }
4417 if (Pred == L->getHeader()) {
4418 Ok = true;
4419 break;
4420 }
4421 BB = Pred;
4422 }
4423 if (!Ok)
4424 return getCouldNotCompute();
4425 }
4426
4427 // Proceed to the next level to examine the exit condition expression.
4428 return ComputeExitLimitFromCond(L, ExitBr->getCondition(),
4429 ExitBr->getSuccessor(0),
4430 ExitBr->getSuccessor(1),
4431 /*IsSubExpr=*/false);
4432}
4433
4434/// ComputeExitLimitFromCond - Compute the number of times the
4435/// backedge of the specified loop will execute if its exit condition
4436/// were a conditional branch of ExitCond, TBB, and FBB.
4437///
4438/// @param IsSubExpr is true if ExitCond does not directly control the exit
4439/// branch. In this case, we cannot assume that the loop only exits when the
4440/// condition is true and cannot infer that failing to meet the condition prior
4441/// to integer wraparound results in undefined behavior.
4442ScalarEvolution::ExitLimit
4443ScalarEvolution::ComputeExitLimitFromCond(const Loop *L,
4444 Value *ExitCond,
4445 BasicBlock *TBB,
4446 BasicBlock *FBB,
4447 bool IsSubExpr) {
4448 // Check if the controlling expression for this loop is an And or Or.
4449 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(ExitCond)) {
4450 if (BO->getOpcode() == Instruction::And) {
4451 // Recurse on the operands of the and.
4452 bool EitherMayExit = L->contains(TBB);
4453 ExitLimit EL0 = ComputeExitLimitFromCond(L, BO->getOperand(0), TBB, FBB,
4454 IsSubExpr || EitherMayExit);
4455 ExitLimit EL1 = ComputeExitLimitFromCond(L, BO->getOperand(1), TBB, FBB,
4456 IsSubExpr || EitherMayExit);
4457 const SCEV *BECount = getCouldNotCompute();
4458 const SCEV *MaxBECount = getCouldNotCompute();
4459 if (EitherMayExit) {
4460 // Both conditions must be true for the loop to continue executing.
4461 // Choose the less conservative count.
4462 if (EL0.Exact == getCouldNotCompute() ||
4463 EL1.Exact == getCouldNotCompute())
4464 BECount = getCouldNotCompute();
4465 else
4466 BECount = getUMinFromMismatchedTypes(EL0.Exact, EL1.Exact);
4467 if (EL0.Max == getCouldNotCompute())
4468 MaxBECount = EL1.Max;
4469 else if (EL1.Max == getCouldNotCompute())
4470 MaxBECount = EL0.Max;
4471 else
4472 MaxBECount = getUMinFromMismatchedTypes(EL0.Max, EL1.Max);
4473 } else {
4474 // Both conditions must be true at the same time for the loop to exit.
4475 // For now, be conservative.
4476 assert(L->contains(FBB) && "Loop block has no successor in loop!");
4477 if (EL0.Max == EL1.Max)
4478 MaxBECount = EL0.Max;
4479 if (EL0.Exact == EL1.Exact)
4480 BECount = EL0.Exact;
4481 }
4482
4483 return ExitLimit(BECount, MaxBECount);
4484 }
4485 if (BO->getOpcode() == Instruction::Or) {
4486 // Recurse on the operands of the or.
4487 bool EitherMayExit = L->contains(FBB);
4488 ExitLimit EL0 = ComputeExitLimitFromCond(L, BO->getOperand(0), TBB, FBB,
4489 IsSubExpr || EitherMayExit);
4490 ExitLimit EL1 = ComputeExitLimitFromCond(L, BO->getOperand(1), TBB, FBB,
4491 IsSubExpr || EitherMayExit);
4492 const SCEV *BECount = getCouldNotCompute();
4493 const SCEV *MaxBECount = getCouldNotCompute();
4494 if (EitherMayExit) {
4495 // Both conditions must be false for the loop to continue executing.
4496 // Choose the less conservative count.
4497 if (EL0.Exact == getCouldNotCompute() ||
4498 EL1.Exact == getCouldNotCompute())
4499 BECount = getCouldNotCompute();
4500 else
4501 BECount = getUMinFromMismatchedTypes(EL0.Exact, EL1.Exact);
4502 if (EL0.Max == getCouldNotCompute())
4503 MaxBECount = EL1.Max;
4504 else if (EL1.Max == getCouldNotCompute())
4505 MaxBECount = EL0.Max;
4506 else
4507 MaxBECount = getUMinFromMismatchedTypes(EL0.Max, EL1.Max);
4508 } else {
4509 // Both conditions must be false at the same time for the loop to exit.
4510 // For now, be conservative.
4511 assert(L->contains(TBB) && "Loop block has no successor in loop!");
4512 if (EL0.Max == EL1.Max)
4513 MaxBECount = EL0.Max;
4514 if (EL0.Exact == EL1.Exact)
4515 BECount = EL0.Exact;
4516 }
4517
4518 return ExitLimit(BECount, MaxBECount);
4519 }
4520 }
4521
4522 // With an icmp, it may be feasible to compute an exact backedge-taken count.
4523 // Proceed to the next level to examine the icmp.
4524 if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond))
4525 return ComputeExitLimitFromICmp(L, ExitCondICmp, TBB, FBB, IsSubExpr);
4526
4527 // Check for a constant condition. These are normally stripped out by
4528 // SimplifyCFG, but ScalarEvolution may be used by a pass which wishes to
4529 // preserve the CFG and is temporarily leaving constant conditions
4530 // in place.
4531 if (ConstantInt *CI = dyn_cast<ConstantInt>(ExitCond)) {
4532 if (L->contains(FBB) == !CI->getZExtValue())
4533 // The backedge is always taken.
4534 return getCouldNotCompute();
4535 else
4536 // The backedge is never taken.
4537 return getConstant(CI->getType(), 0);
4538 }
4539
4540 // If it's not an integer or pointer comparison then compute it the hard way.
4541 return ComputeExitCountExhaustively(L, ExitCond, !L->contains(TBB));
4542}
4543
4544/// ComputeExitLimitFromICmp - Compute the number of times the
4545/// backedge of the specified loop will execute if its exit condition
4546/// were a conditional branch of the ICmpInst ExitCond, TBB, and FBB.
4547ScalarEvolution::ExitLimit
4548ScalarEvolution::ComputeExitLimitFromICmp(const Loop *L,
4549 ICmpInst *ExitCond,
4550 BasicBlock *TBB,
4551 BasicBlock *FBB,
4552 bool IsSubExpr) {
4553
4554 // If the condition was exit on true, convert the condition to exit on false
4555 ICmpInst::Predicate Cond;
4556 if (!L->contains(FBB))
4557 Cond = ExitCond->getPredicate();
4558 else
4559 Cond = ExitCond->getInversePredicate();
4560
4561 // Handle common loops like: for (X = "string"; *X; ++X)
4562 if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0)))
4563 if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) {
4564 ExitLimit ItCnt =
4565 ComputeLoadConstantCompareExitLimit(LI, RHS, L, Cond);
4566 if (ItCnt.hasAnyInfo())
4567 return ItCnt;
4568 }
4569
4570 const SCEV *LHS = getSCEV(ExitCond->getOperand(0));
4571 const SCEV *RHS = getSCEV(ExitCond->getOperand(1));
4572
4573 // Try to evaluate any dependencies out of the loop.
4574 LHS = getSCEVAtScope(LHS, L);
4575 RHS = getSCEVAtScope(RHS, L);
4576
4577 // At this point, we would like to compute how many iterations of the
4578 // loop the predicate will return true for these inputs.
4579 if (isLoopInvariant(LHS, L) && !isLoopInvariant(RHS, L)) {
4580 // If there is a loop-invariant, force it into the RHS.
4581 std::swap(LHS, RHS);
4582 Cond = ICmpInst::getSwappedPredicate(Cond);
4583 }
4584
4585 // Simplify the operands before analyzing them.
4586 (void)SimplifyICmpOperands(Cond, LHS, RHS);
4587
4588 // If we have a comparison of a chrec against a constant, try to use value
4589 // ranges to answer this query.
4590 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS))
4591 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS))
4592 if (AddRec->getLoop() == L) {
4593 // Form the constant range.
4594 ConstantRange CompRange(
4595 ICmpInst::makeConstantRange(Cond, RHSC->getValue()->getValue()));
4596
4597 const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this);
4598 if (!isa<SCEVCouldNotCompute>(Ret)) return Ret;
4599 }
4600
4601 switch (Cond) {
4602 case ICmpInst::ICMP_NE: { // while (X != Y)
4603 // Convert to: while (X-Y != 0)
4604 ExitLimit EL = HowFarToZero(getMinusSCEV(LHS, RHS), L, IsSubExpr);
4605 if (EL.hasAnyInfo()) return EL;
4606 break;
4607 }
4608 case ICmpInst::ICMP_EQ: { // while (X == Y)
4609 // Convert to: while (X-Y == 0)
4610 ExitLimit EL = HowFarToNonZero(getMinusSCEV(LHS, RHS), L);
4611 if (EL.hasAnyInfo()) return EL;
4612 break;
4613 }
4614 case ICmpInst::ICMP_SLT:
4615 case ICmpInst::ICMP_ULT: { // while (X < Y)
4616 bool IsSigned = Cond == ICmpInst::ICMP_SLT;
4617 ExitLimit EL = HowManyLessThans(LHS, RHS, L, IsSigned, IsSubExpr);
4618 if (EL.hasAnyInfo()) return EL;
4619 break;
4620 }
4621 case ICmpInst::ICMP_SGT:
4622 case ICmpInst::ICMP_UGT: { // while (X > Y)
4623 bool IsSigned = Cond == ICmpInst::ICMP_SGT;
4624 ExitLimit EL = HowManyGreaterThans(LHS, RHS, L, IsSigned, IsSubExpr);
4625 if (EL.hasAnyInfo()) return EL;
4626 break;
4627 }
4628 default:
4629#if 0
4630 dbgs() << "ComputeBackedgeTakenCount ";
4631 if (ExitCond->getOperand(0)->getType()->isUnsigned())
4632 dbgs() << "[unsigned] ";
4633 dbgs() << *LHS << " "
4634 << Instruction::getOpcodeName(Instruction::ICmp)
4635 << " " << *RHS << "\n";
4636#endif
4637 break;
4638 }
4639 return ComputeExitCountExhaustively(L, ExitCond, !L->contains(TBB));
4640}
4641
4642static ConstantInt *
4643EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C,
4644 ScalarEvolution &SE) {
4645 const SCEV *InVal = SE.getConstant(C);
4646 const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE);
4647 assert(isa<SCEVConstant>(Val) &&
4648 "Evaluation of SCEV at constant didn't fold correctly?");
4649 return cast<SCEVConstant>(Val)->getValue();
4650}
4651
4652/// ComputeLoadConstantCompareExitLimit - Given an exit condition of
4653/// 'icmp op load X, cst', try to see if we can compute the backedge
4654/// execution count.
4655ScalarEvolution::ExitLimit
4656ScalarEvolution::ComputeLoadConstantCompareExitLimit(
4657 LoadInst *LI,
4658 Constant *RHS,
4659 const Loop *L,
4660 ICmpInst::Predicate predicate) {
4661
4662 if (LI->isVolatile()) return getCouldNotCompute();
4663
4664 // Check to see if the loaded pointer is a getelementptr of a global.
4665 // TODO: Use SCEV instead of manually grubbing with GEPs.
4666 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0));
4667 if (!GEP) return getCouldNotCompute();
4668
4669 // Make sure that it is really a constant global we are gepping, with an
4670 // initializer, and make sure the first IDX is really 0.
4671 GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0));
4672 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() ||
4673 GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) ||
4674 !cast<Constant>(GEP->getOperand(1))->isNullValue())
4675 return getCouldNotCompute();
4676
4677 // Okay, we allow one non-constant index into the GEP instruction.
4678 Value *VarIdx = 0;
4679 std::vector<Constant*> Indexes;
4680 unsigned VarIdxNum = 0;
4681 for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i)
4682 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
4683 Indexes.push_back(CI);
4684 } else if (!isa<ConstantInt>(GEP->getOperand(i))) {
4685 if (VarIdx) return getCouldNotCompute(); // Multiple non-constant idx's.
4686 VarIdx = GEP->getOperand(i);
4687 VarIdxNum = i-2;
4688 Indexes.push_back(0);
4689 }
4690
4691 // Loop-invariant loads may be a byproduct of loop optimization. Skip them.
4692 if (!VarIdx)
4693 return getCouldNotCompute();
4694
4695 // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant.
4696 // Check to see if X is a loop variant variable value now.
4697 const SCEV *Idx = getSCEV(VarIdx);
4698 Idx = getSCEVAtScope(Idx, L);
4699
4700 // We can only recognize very limited forms of loop index expressions, in
4701 // particular, only affine AddRec's like {C1,+,C2}.
4702 const SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx);
4703 if (!IdxExpr || !IdxExpr->isAffine() || isLoopInvariant(IdxExpr, L) ||
4704 !isa<SCEVConstant>(IdxExpr->getOperand(0)) ||
4705 !isa<SCEVConstant>(IdxExpr->getOperand(1)))
4706 return getCouldNotCompute();
4707
4708 unsigned MaxSteps = MaxBruteForceIterations;
4709 for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) {
4710 ConstantInt *ItCst = ConstantInt::get(
4711 cast<IntegerType>(IdxExpr->getType()), IterationNum);
4712 ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this);
4713
4714 // Form the GEP offset.
4715 Indexes[VarIdxNum] = Val;
4716
4717 Constant *Result = ConstantFoldLoadThroughGEPIndices(GV->getInitializer(),
4718 Indexes);
4719 if (Result == 0) break; // Cannot compute!
4720
4721 // Evaluate the condition for this iteration.
4722 Result = ConstantExpr::getICmp(predicate, Result, RHS);
4723 if (!isa<ConstantInt>(Result)) break; // Couldn't decide for sure
4724 if (cast<ConstantInt>(Result)->getValue().isMinValue()) {
4725#if 0
4726 dbgs() << "\n***\n*** Computed loop count " << *ItCst
4727 << "\n*** From global " << *GV << "*** BB: " << *L->getHeader()
4728 << "***\n";
4729#endif
4730 ++NumArrayLenItCounts;
4731 return getConstant(ItCst); // Found terminating iteration!
4732 }
4733 }
4734 return getCouldNotCompute();
4735}
4736
4737
4738/// CanConstantFold - Return true if we can constant fold an instruction of the
4739/// specified type, assuming that all operands were constants.
4740static bool CanConstantFold(const Instruction *I) {
4741 if (isa<BinaryOperator>(I) || isa<CmpInst>(I) ||
4742 isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) ||
4743 isa<LoadInst>(I))
4744 return true;
4745
4746 if (const CallInst *CI = dyn_cast<CallInst>(I))
4747 if (const Function *F = CI->getCalledFunction())
4748 return canConstantFoldCallTo(F);
4749 return false;
4750}
4751
4752/// Determine whether this instruction can constant evolve within this loop
4753/// assuming its operands can all constant evolve.
4754static bool canConstantEvolve(Instruction *I, const Loop *L) {
4755 // An instruction outside of the loop can't be derived from a loop PHI.
4756 if (!L->contains(I)) return false;
4757
4758 if (isa<PHINode>(I)) {
4759 if (L->getHeader() == I->getParent())
4760 return true;
4761 else
4762 // We don't currently keep track of the control flow needed to evaluate
4763 // PHIs, so we cannot handle PHIs inside of loops.
4764 return false;
4765 }
4766
4767 // If we won't be able to constant fold this expression even if the operands
4768 // are constants, bail early.
4769 return CanConstantFold(I);
4770}
4771
4772/// getConstantEvolvingPHIOperands - Implement getConstantEvolvingPHI by
4773/// recursing through each instruction operand until reaching a loop header phi.
4774static PHINode *
4775getConstantEvolvingPHIOperands(Instruction *UseInst, const Loop *L,
4776 DenseMap<Instruction *, PHINode *> &PHIMap) {
4777
4778 // Otherwise, we can evaluate this instruction if all of its operands are
4779 // constant or derived from a PHI node themselves.
4780 PHINode *PHI = 0;
4781 for (Instruction::op_iterator OpI = UseInst->op_begin(),
4782 OpE = UseInst->op_end(); OpI != OpE; ++OpI) {
4783
4784 if (isa<Constant>(*OpI)) continue;
4785
4786 Instruction *OpInst = dyn_cast<Instruction>(*OpI);
4787 if (!OpInst || !canConstantEvolve(OpInst, L)) return 0;
4788
4789 PHINode *P = dyn_cast<PHINode>(OpInst);
4790 if (!P)
4791 // If this operand is already visited, reuse the prior result.
4792 // We may have P != PHI if this is the deepest point at which the
4793 // inconsistent paths meet.
4794 P = PHIMap.lookup(OpInst);
4795 if (!P) {
4796 // Recurse and memoize the results, whether a phi is found or not.
4797 // This recursive call invalidates pointers into PHIMap.
4798 P = getConstantEvolvingPHIOperands(OpInst, L, PHIMap);
4799 PHIMap[OpInst] = P;
4800 }
4801 if (P == 0) return 0; // Not evolving from PHI
4802 if (PHI && PHI != P) return 0; // Evolving from multiple different PHIs.
4803 PHI = P;
4804 }
4805 // This is a expression evolving from a constant PHI!
4806 return PHI;
4807}
4808
4809/// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node
4810/// in the loop that V is derived from. We allow arbitrary operations along the
4811/// way, but the operands of an operation must either be constants or a value
4812/// derived from a constant PHI. If this expression does not fit with these
4813/// constraints, return null.
4814static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) {
4815 Instruction *I = dyn_cast<Instruction>(V);
4816 if (I == 0 || !canConstantEvolve(I, L)) return 0;
4817
4818 if (PHINode *PN = dyn_cast<PHINode>(I)) {
4819 return PN;
4820 }
4821
4822 // Record non-constant instructions contained by the loop.
4823 DenseMap<Instruction *, PHINode *> PHIMap;
4824 return getConstantEvolvingPHIOperands(I, L, PHIMap);
4825}
4826
4827/// EvaluateExpression - Given an expression that passes the
4828/// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node
4829/// in the loop has the value PHIVal. If we can't fold this expression for some
4830/// reason, return null.
4831static Constant *EvaluateExpression(Value *V, const Loop *L,
4832 DenseMap<Instruction *, Constant *> &Vals,
4833 const DataLayout *TD,
4834 const TargetLibraryInfo *TLI) {
4835 // Convenient constant check, but redundant for recursive calls.
4836 if (Constant *C = dyn_cast<Constant>(V)) return C;
4837 Instruction *I = dyn_cast<Instruction>(V);
4838 if (!I) return 0;
4839
4840 if (Constant *C = Vals.lookup(I)) return C;
4841
4842 // An instruction inside the loop depends on a value outside the loop that we
4843 // weren't given a mapping for, or a value such as a call inside the loop.
4844 if (!canConstantEvolve(I, L)) return 0;
4845
4846 // An unmapped PHI can be due to a branch or another loop inside this loop,
4847 // or due to this not being the initial iteration through a loop where we
4848 // couldn't compute the evolution of this particular PHI last time.
4849 if (isa<PHINode>(I)) return 0;
4850
4851 std::vector<Constant*> Operands(I->getNumOperands());
4852
4853 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
4854 Instruction *Operand = dyn_cast<Instruction>(I->getOperand(i));
4855 if (!Operand) {
4856 Operands[i] = dyn_cast<Constant>(I->getOperand(i));
4857 if (!Operands[i]) return 0;
4858 continue;
4859 }
4860 Constant *C = EvaluateExpression(Operand, L, Vals, TD, TLI);
4861 Vals[Operand] = C;
4862 if (!C) return 0;
4863 Operands[i] = C;
4864 }
4865
4866 if (CmpInst *CI = dyn_cast<CmpInst>(I))
4867 return ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0],
4868 Operands[1], TD, TLI);
4869 if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
4870 if (!LI->isVolatile())
4871 return ConstantFoldLoadFromConstPtr(Operands[0], TD);
4872 }
4873 return ConstantFoldInstOperands(I->getOpcode(), I->getType(), Operands, TD,
4874 TLI);
4875}
4876
4877/// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
4878/// in the header of its containing loop, we know the loop executes a
4879/// constant number of times, and the PHI node is just a recurrence
4880/// involving constants, fold it.
4881Constant *
4882ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN,
4883 const APInt &BEs,
4884 const Loop *L) {
4885 DenseMap<PHINode*, Constant*>::const_iterator I =
4886 ConstantEvolutionLoopExitValue.find(PN);
4887 if (I != ConstantEvolutionLoopExitValue.end())
4888 return I->second;
4889
4890 if (BEs.ugt(MaxBruteForceIterations))
4891 return ConstantEvolutionLoopExitValue[PN] = 0; // Not going to evaluate it.
4892
4893 Constant *&RetVal = ConstantEvolutionLoopExitValue[PN];
4894
4895 DenseMap<Instruction *, Constant *> CurrentIterVals;
4896 BasicBlock *Header = L->getHeader();
4897 assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!");
4898
4899 // Since the loop is canonicalized, the PHI node must have two entries. One
4900 // entry must be a constant (coming in from outside of the loop), and the
4901 // second must be derived from the same PHI.
4902 bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
4903 PHINode *PHI = 0;
4904 for (BasicBlock::iterator I = Header->begin();
4905 (PHI = dyn_cast<PHINode>(I)); ++I) {
4906 Constant *StartCST =
4907 dyn_cast<Constant>(PHI->getIncomingValue(!SecondIsBackedge));
4908 if (StartCST == 0) continue;
4909 CurrentIterVals[PHI] = StartCST;
4910 }
4911 if (!CurrentIterVals.count(PN))
4912 return RetVal = 0;
4913
4914 Value *BEValue = PN->getIncomingValue(SecondIsBackedge);
4915
4916 // Execute the loop symbolically to determine the exit value.
4917 if (BEs.getActiveBits() >= 32)
4918 return RetVal = 0; // More than 2^32-1 iterations?? Not doing it!
4919
4920 unsigned NumIterations = BEs.getZExtValue(); // must be in range
4921 unsigned IterationNum = 0;
4922 for (; ; ++IterationNum) {
4923 if (IterationNum == NumIterations)
4924 return RetVal = CurrentIterVals[PN]; // Got exit value!
4925
4926 // Compute the value of the PHIs for the next iteration.
4927 // EvaluateExpression adds non-phi values to the CurrentIterVals map.
4928 DenseMap<Instruction *, Constant *> NextIterVals;
4929 Constant *NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, TD,
4930 TLI);
4931 if (NextPHI == 0)
4932 return 0; // Couldn't evaluate!
4933 NextIterVals[PN] = NextPHI;
4934
4935 bool StoppedEvolving = NextPHI == CurrentIterVals[PN];
4936
4937 // Also evaluate the other PHI nodes. However, we don't get to stop if we
4938 // cease to be able to evaluate one of them or if they stop evolving,
4939 // because that doesn't necessarily prevent us from computing PN.
4940 SmallVector<std::pair<PHINode *, Constant *>, 8> PHIsToCompute;
4941 for (DenseMap<Instruction *, Constant *>::const_iterator
4942 I = CurrentIterVals.begin(), E = CurrentIterVals.end(); I != E; ++I){
4943 PHINode *PHI = dyn_cast<PHINode>(I->first);
4944 if (!PHI || PHI == PN || PHI->getParent() != Header) continue;
4945 PHIsToCompute.push_back(std::make_pair(PHI, I->second));
4946 }
4947 // We use two distinct loops because EvaluateExpression may invalidate any
4948 // iterators into CurrentIterVals.
4949 for (SmallVectorImpl<std::pair<PHINode *, Constant*> >::const_iterator
4950 I = PHIsToCompute.begin(), E = PHIsToCompute.end(); I != E; ++I) {
4951 PHINode *PHI = I->first;
4952 Constant *&NextPHI = NextIterVals[PHI];
4953 if (!NextPHI) { // Not already computed.
4954 Value *BEValue = PHI->getIncomingValue(SecondIsBackedge);
4955 NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, TD, TLI);
4956 }
4957 if (NextPHI != I->second)
4958 StoppedEvolving = false;
4959 }
4960
4961 // If all entries in CurrentIterVals == NextIterVals then we can stop
4962 // iterating, the loop can't continue to change.
4963 if (StoppedEvolving)
4964 return RetVal = CurrentIterVals[PN];
4965
4966 CurrentIterVals.swap(NextIterVals);
4967 }
4968}
4969
4970/// ComputeExitCountExhaustively - If the loop is known to execute a
4971/// constant number of times (the condition evolves only from constants),
4972/// try to evaluate a few iterations of the loop until we get the exit
4973/// condition gets a value of ExitWhen (true or false). If we cannot
4974/// evaluate the trip count of the loop, return getCouldNotCompute().
4975const SCEV *ScalarEvolution::ComputeExitCountExhaustively(const Loop *L,
4976 Value *Cond,
4977 bool ExitWhen) {
4978 PHINode *PN = getConstantEvolvingPHI(Cond, L);
4979 if (PN == 0) return getCouldNotCompute();
4980
4981 // If the loop is canonicalized, the PHI will have exactly two entries.
4982 // That's the only form we support here.
4983 if (PN->getNumIncomingValues() != 2) return getCouldNotCompute();
4984
4985 DenseMap<Instruction *, Constant *> CurrentIterVals;
4986 BasicBlock *Header = L->getHeader();
4987 assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!");
4988
4989 // One entry must be a constant (coming in from outside of the loop), and the
4990 // second must be derived from the same PHI.
4991 bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
4992 PHINode *PHI = 0;
4993 for (BasicBlock::iterator I = Header->begin();
4994 (PHI = dyn_cast<PHINode>(I)); ++I) {
4995 Constant *StartCST =
4996 dyn_cast<Constant>(PHI->getIncomingValue(!SecondIsBackedge));
4997 if (StartCST == 0) continue;
4998 CurrentIterVals[PHI] = StartCST;
4999 }
5000 if (!CurrentIterVals.count(PN))
5001 return getCouldNotCompute();
5002
5003 // Okay, we find a PHI node that defines the trip count of this loop. Execute
5004 // the loop symbolically to determine when the condition gets a value of
5005 // "ExitWhen".
5006
5007 unsigned MaxIterations = MaxBruteForceIterations; // Limit analysis.
5008 for (unsigned IterationNum = 0; IterationNum != MaxIterations;++IterationNum){
5009 ConstantInt *CondVal =
5010 dyn_cast_or_null<ConstantInt>(EvaluateExpression(Cond, L, CurrentIterVals,
5011 TD, TLI));
5012
5013 // Couldn't symbolically evaluate.
5014 if (!CondVal) return getCouldNotCompute();
5015
5016 if (CondVal->getValue() == uint64_t(ExitWhen)) {
5017 ++NumBruteForceTripCountsComputed;
5018 return getConstant(Type::getInt32Ty(getContext()), IterationNum);
5019 }
5020
5021 // Update all the PHI nodes for the next iteration.
5022 DenseMap<Instruction *, Constant *> NextIterVals;
5023
5024 // Create a list of which PHIs we need to compute. We want to do this before
5025 // calling EvaluateExpression on them because that may invalidate iterators
5026 // into CurrentIterVals.
5027 SmallVector<PHINode *, 8> PHIsToCompute;
5028 for (DenseMap<Instruction *, Constant *>::const_iterator
5029 I = CurrentIterVals.begin(), E = CurrentIterVals.end(); I != E; ++I){
5030 PHINode *PHI = dyn_cast<PHINode>(I->first);
5031 if (!PHI || PHI->getParent() != Header) continue;
5032 PHIsToCompute.push_back(PHI);
5033 }
5034 for (SmallVectorImpl<PHINode *>::const_iterator I = PHIsToCompute.begin(),
5035 E = PHIsToCompute.end(); I != E; ++I) {
5036 PHINode *PHI = *I;
5037 Constant *&NextPHI = NextIterVals[PHI];
5038 if (NextPHI) continue; // Already computed!
5039
5040 Value *BEValue = PHI->getIncomingValue(SecondIsBackedge);
5041 NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, TD, TLI);
5042 }
5043 CurrentIterVals.swap(NextIterVals);
5044 }
5045
5046 // Too many iterations were needed to evaluate.
5047 return getCouldNotCompute();
5048}
5049
5050/// getSCEVAtScope - Return a SCEV expression for the specified value
5051/// at the specified scope in the program. The L value specifies a loop
5052/// nest to evaluate the expression at, where null is the top-level or a
5053/// specified loop is immediately inside of the loop.
5054///
5055/// This method can be used to compute the exit value for a variable defined
5056/// in a loop by querying what the value will hold in the parent loop.
5057///
5058/// In the case that a relevant loop exit value cannot be computed, the
5059/// original value V is returned.
5060const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) {
5061 // Check to see if we've folded this expression at this loop before.
5062 SmallVector<std::pair<const Loop *, const SCEV *>, 2> &Values = ValuesAtScopes[V];
5063 for (unsigned u = 0; u < Values.size(); u++) {
5064 if (Values[u].first == L)
5065 return Values[u].second ? Values[u].second : V;
5066 }
5067 Values.push_back(std::make_pair(L, static_cast<const SCEV *>(0)));
5068 // Otherwise compute it.
5069 const SCEV *C = computeSCEVAtScope(V, L);
5070 SmallVector<std::pair<const Loop *, const SCEV *>, 2> &Values2 = ValuesAtScopes[V];
5071 for (unsigned u = Values2.size(); u > 0; u--) {
5072 if (Values2[u - 1].first == L) {
5073 Values2[u - 1].second = C;
5074 break;
5075 }
5076 }
5077 return C;
5078}
5079
5080/// This builds up a Constant using the ConstantExpr interface. That way, we
5081/// will return Constants for objects which aren't represented by a
5082/// SCEVConstant, because SCEVConstant is restricted to ConstantInt.
5083/// Returns NULL if the SCEV isn't representable as a Constant.
5084static Constant *BuildConstantFromSCEV(const SCEV *V) {
5085 switch (V->getSCEVType()) {
5086 default: // TODO: smax, umax.
5087 case scCouldNotCompute:
5088 case scAddRecExpr:
5089 break;
5090 case scConstant:
5091 return cast<SCEVConstant>(V)->getValue();
5092 case scUnknown:
5093 return dyn_cast<Constant>(cast<SCEVUnknown>(V)->getValue());
5094 case scSignExtend: {
5095 const SCEVSignExtendExpr *SS = cast<SCEVSignExtendExpr>(V);
5096 if (Constant *CastOp = BuildConstantFromSCEV(SS->getOperand()))
5097 return ConstantExpr::getSExt(CastOp, SS->getType());
5098 break;
5099 }
5100 case scZeroExtend: {
5101 const SCEVZeroExtendExpr *SZ = cast<SCEVZeroExtendExpr>(V);
5102 if (Constant *CastOp = BuildConstantFromSCEV(SZ->getOperand()))
5103 return ConstantExpr::getZExt(CastOp, SZ->getType());
5104 break;
5105 }
5106 case scTruncate: {
5107 const SCEVTruncateExpr *ST = cast<SCEVTruncateExpr>(V);
5108 if (Constant *CastOp = BuildConstantFromSCEV(ST->getOperand()))
5109 return ConstantExpr::getTrunc(CastOp, ST->getType());
5110 break;
5111 }
5112 case scAddExpr: {
5113 const SCEVAddExpr *SA = cast<SCEVAddExpr>(V);
5114 if (Constant *C = BuildConstantFromSCEV(SA->getOperand(0))) {
5115 if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) {
5116 unsigned AS = PTy->getAddressSpace();
5117 Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS);
5118 C = ConstantExpr::getBitCast(C, DestPtrTy);
5119 }
5120 for (unsigned i = 1, e = SA->getNumOperands(); i != e; ++i) {
5121 Constant *C2 = BuildConstantFromSCEV(SA->getOperand(i));
5122 if (!C2) return 0;
5123
5124 // First pointer!
5125 if (!C->getType()->isPointerTy() && C2->getType()->isPointerTy()) {
5126 unsigned AS = C2->getType()->getPointerAddressSpace();
5127 std::swap(C, C2);
5128 Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS);
5129 // The offsets have been converted to bytes. We can add bytes to an
5130 // i8* by GEP with the byte count in the first index.
5131 C = ConstantExpr::getBitCast(C, DestPtrTy);
5132 }
5133
5134 // Don't bother trying to sum two pointers. We probably can't
5135 // statically compute a load that results from it anyway.
5136 if (C2->getType()->isPointerTy())
5137 return 0;
5138
5139 if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) {
5140 if (PTy->getElementType()->isStructTy())
5141 C2 = ConstantExpr::getIntegerCast(
5142 C2, Type::getInt32Ty(C->getContext()), true);
5143 C = ConstantExpr::getGetElementPtr(C, C2);
5144 } else
5145 C = ConstantExpr::getAdd(C, C2);
5146 }
5147 return C;
5148 }
5149 break;
5150 }
5151 case scMulExpr: {
5152 const SCEVMulExpr *SM = cast<SCEVMulExpr>(V);
5153 if (Constant *C = BuildConstantFromSCEV(SM->getOperand(0))) {
5154 // Don't bother with pointers at all.
5155 if (C->getType()->isPointerTy()) return 0;
5156 for (unsigned i = 1, e = SM->getNumOperands(); i != e; ++i) {
5157 Constant *C2 = BuildConstantFromSCEV(SM->getOperand(i));
5158 if (!C2 || C2->getType()->isPointerTy()) return 0;
5159 C = ConstantExpr::getMul(C, C2);
5160 }
5161 return C;
5162 }
5163 break;
5164 }
5165 case scUDivExpr: {
5166 const SCEVUDivExpr *SU = cast<SCEVUDivExpr>(V);
5167 if (Constant *LHS = BuildConstantFromSCEV(SU->getLHS()))
5168 if (Constant *RHS = BuildConstantFromSCEV(SU->getRHS()))
5169 if (LHS->getType() == RHS->getType())
5170 return ConstantExpr::getUDiv(LHS, RHS);
5171 break;
5172 }
5173 }
5174 return 0;
5175}
5176
5177const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) {
5178 if (isa<SCEVConstant>(V)) return V;
5179
5180 // If this instruction is evolved from a constant-evolving PHI, compute the
5181 // exit value from the loop without using SCEVs.
5182 if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) {
5183 if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) {
5184 const Loop *LI = (*this->LI)[I->getParent()];
5185 if (LI && LI->getParentLoop() == L) // Looking for loop exit value.
5186 if (PHINode *PN = dyn_cast<PHINode>(I))
5187 if (PN->getParent() == LI->getHeader()) {
5188 // Okay, there is no closed form solution for the PHI node. Check
5189 // to see if the loop that contains it has a known backedge-taken
5190 // count. If so, we may be able to force computation of the exit
5191 // value.
5192 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(LI);
5193 if (const SCEVConstant *BTCC =
5194 dyn_cast<SCEVConstant>(BackedgeTakenCount)) {
5195 // Okay, we know how many times the containing loop executes. If
5196 // this is a constant evolving PHI node, get the final value at
5197 // the specified iteration number.
5198 Constant *RV = getConstantEvolutionLoopExitValue(PN,
5199 BTCC->getValue()->getValue(),
5200 LI);
5201 if (RV) return getSCEV(RV);
5202 }
5203 }
5204
5205 // Okay, this is an expression that we cannot symbolically evaluate
5206 // into a SCEV. Check to see if it's possible to symbolically evaluate
5207 // the arguments into constants, and if so, try to constant propagate the
5208 // result. This is particularly useful for computing loop exit values.
5209 if (CanConstantFold(I)) {
5210 SmallVector<Constant *, 4> Operands;
5211 bool MadeImprovement = false;
5212 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
5213 Value *Op = I->getOperand(i);
5214 if (Constant *C = dyn_cast<Constant>(Op)) {
5215 Operands.push_back(C);
5216 continue;
5217 }
5218
5219 // If any of the operands is non-constant and if they are
5220 // non-integer and non-pointer, don't even try to analyze them
5221 // with scev techniques.
5222 if (!isSCEVable(Op->getType()))
5223 return V;
5224
5225 const SCEV *OrigV = getSCEV(Op);
5226 const SCEV *OpV = getSCEVAtScope(OrigV, L);
5227 MadeImprovement |= OrigV != OpV;
5228
5229 Constant *C = BuildConstantFromSCEV(OpV);
5230 if (!C) return V;
5231 if (C->getType() != Op->getType())
5232 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
5233 Op->getType(),
5234 false),
5235 C, Op->getType());
5236 Operands.push_back(C);
5237 }
5238
5239 // Check to see if getSCEVAtScope actually made an improvement.
5240 if (MadeImprovement) {
5241 Constant *C = 0;
5242 if (const CmpInst *CI = dyn_cast<CmpInst>(I))
5243 C = ConstantFoldCompareInstOperands(CI->getPredicate(),
5244 Operands[0], Operands[1], TD,
5245 TLI);
5246 else if (const LoadInst *LI = dyn_cast<LoadInst>(I)) {
5247 if (!LI->isVolatile())
5248 C = ConstantFoldLoadFromConstPtr(Operands[0], TD);
5249 } else
5250 C = ConstantFoldInstOperands(I->getOpcode(), I->getType(),
5251 Operands, TD, TLI);
5252 if (!C) return V;
5253 return getSCEV(C);
5254 }
5255 }
5256 }
5257
5258 // This is some other type of SCEVUnknown, just return it.
5259 return V;
5260 }
5261
5262 if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) {
5263 // Avoid performing the look-up in the common case where the specified
5264 // expression has no loop-variant portions.
5265 for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) {
5266 const SCEV *OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
5267 if (OpAtScope != Comm->getOperand(i)) {
5268 // Okay, at least one of these operands is loop variant but might be
5269 // foldable. Build a new instance of the folded commutative expression.
5270 SmallVector<const SCEV *, 8> NewOps(Comm->op_begin(),
5271 Comm->op_begin()+i);
5272 NewOps.push_back(OpAtScope);
5273
5274 for (++i; i != e; ++i) {
5275 OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
5276 NewOps.push_back(OpAtScope);
5277 }
5278 if (isa<SCEVAddExpr>(Comm))
5279 return getAddExpr(NewOps);
5280 if (isa<SCEVMulExpr>(Comm))
5281 return getMulExpr(NewOps);
5282 if (isa<SCEVSMaxExpr>(Comm))
5283 return getSMaxExpr(NewOps);
5284 if (isa<SCEVUMaxExpr>(Comm))
5285 return getUMaxExpr(NewOps);
5286 llvm_unreachable("Unknown commutative SCEV type!");
5287 }
5288 }
5289 // If we got here, all operands are loop invariant.
5290 return Comm;
5291 }
5292
5293 if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) {
5294 const SCEV *LHS = getSCEVAtScope(Div->getLHS(), L);
5295 const SCEV *RHS = getSCEVAtScope(Div->getRHS(), L);
5296 if (LHS == Div->getLHS() && RHS == Div->getRHS())
5297 return Div; // must be loop invariant
5298 return getUDivExpr(LHS, RHS);
5299 }
5300
5301 // If this is a loop recurrence for a loop that does not contain L, then we
5302 // are dealing with the final value computed by the loop.
5303 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) {
5304 // First, attempt to evaluate each operand.
5305 // Avoid performing the look-up in the common case where the specified
5306 // expression has no loop-variant portions.
5307 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
5308 const SCEV *OpAtScope = getSCEVAtScope(AddRec->getOperand(i), L);
5309 if (OpAtScope == AddRec->getOperand(i))
5310 continue;
5311
5312 // Okay, at least one of these operands is loop variant but might be
5313 // foldable. Build a new instance of the folded commutative expression.
5314 SmallVector<const SCEV *, 8> NewOps(AddRec->op_begin(),
5315 AddRec->op_begin()+i);
5316 NewOps.push_back(OpAtScope);
5317 for (++i; i != e; ++i)
5318 NewOps.push_back(getSCEVAtScope(AddRec->getOperand(i), L));
5319
5320 const SCEV *FoldedRec =
5321 getAddRecExpr(NewOps, AddRec->getLoop(),
5322 AddRec->getNoWrapFlags(SCEV::FlagNW));
5323 AddRec = dyn_cast<SCEVAddRecExpr>(FoldedRec);
5324 // The addrec may be folded to a nonrecurrence, for example, if the
5325 // induction variable is multiplied by zero after constant folding. Go
5326 // ahead and return the folded value.
5327 if (!AddRec)
5328 return FoldedRec;
5329 break;
5330 }
5331
5332 // If the scope is outside the addrec's loop, evaluate it by using the
5333 // loop exit value of the addrec.
5334 if (!AddRec->getLoop()->contains(L)) {
5335 // To evaluate this recurrence, we need to know how many times the AddRec
5336 // loop iterates. Compute this now.
5337 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop());
5338 if (BackedgeTakenCount == getCouldNotCompute()) return AddRec;
5339
5340 // Then, evaluate the AddRec.
5341 return AddRec->evaluateAtIteration(BackedgeTakenCount, *this);
5342 }
5343
5344 return AddRec;
5345 }
5346
5347 if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) {
5348 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
5349 if (Op == Cast->getOperand())
5350 return Cast; // must be loop invariant
5351 return getZeroExtendExpr(Op, Cast->getType());
5352 }
5353
5354 if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) {
5355 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
5356 if (Op == Cast->getOperand())
5357 return Cast; // must be loop invariant
5358 return getSignExtendExpr(Op, Cast->getType());
5359 }
5360
5361 if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) {
5362 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
5363 if (Op == Cast->getOperand())
5364 return Cast; // must be loop invariant
5365 return getTruncateExpr(Op, Cast->getType());
5366 }
5367
5368 llvm_unreachable("Unknown SCEV type!");
5369}
5370
5371/// getSCEVAtScope - This is a convenience function which does
5372/// getSCEVAtScope(getSCEV(V), L).
5373const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) {
5374 return getSCEVAtScope(getSCEV(V), L);
5375}
5376
5377/// SolveLinEquationWithOverflow - Finds the minimum unsigned root of the
5378/// following equation:
5379///
5380/// A * X = B (mod N)
5381///
5382/// where N = 2^BW and BW is the common bit width of A and B. The signedness of
5383/// A and B isn't important.
5384///
5385/// If the equation does not have a solution, SCEVCouldNotCompute is returned.
5386static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const APInt &B,
5387 ScalarEvolution &SE) {
5388 uint32_t BW = A.getBitWidth();
5389 assert(BW == B.getBitWidth() && "Bit widths must be the same.");
5390 assert(A != 0 && "A must be non-zero.");
5391
5392 // 1. D = gcd(A, N)
5393 //
5394 // The gcd of A and N may have only one prime factor: 2. The number of
5395 // trailing zeros in A is its multiplicity
5396 uint32_t Mult2 = A.countTrailingZeros();
5397 // D = 2^Mult2
5398
5399 // 2. Check if B is divisible by D.
5400 //
5401 // B is divisible by D if and only if the multiplicity of prime factor 2 for B
5402 // is not less than multiplicity of this prime factor for D.
5403 if (B.countTrailingZeros() < Mult2)
5404 return SE.getCouldNotCompute();
5405
5406 // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic
5407 // modulo (N / D).
5408 //
5409 // (N / D) may need BW+1 bits in its representation. Hence, we'll use this
5410 // bit width during computations.
5411 APInt AD = A.lshr(Mult2).zext(BW + 1); // AD = A / D
5412 APInt Mod(BW + 1, 0);
5413 Mod.setBit(BW - Mult2); // Mod = N / D
5414 APInt I = AD.multiplicativeInverse(Mod);
5415
5416 // 4. Compute the minimum unsigned root of the equation:
5417 // I * (B / D) mod (N / D)
5418 APInt Result = (I * B.lshr(Mult2).zext(BW + 1)).urem(Mod);
5419
5420 // The result is guaranteed to be less than 2^BW so we may truncate it to BW
5421 // bits.
5422 return SE.getConstant(Result.trunc(BW));
5423}
5424
5425/// SolveQuadraticEquation - Find the roots of the quadratic equation for the
5426/// given quadratic chrec {L,+,M,+,N}. This returns either the two roots (which
5427/// might be the same) or two SCEVCouldNotCompute objects.
5428///
5429static std::pair<const SCEV *,const SCEV *>
5430SolveQuadraticEquation(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) {
5431 assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!");
5432 const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0));
5433 const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1));
5434 const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2));
5435
5436 // We currently can only solve this if the coefficients are constants.
5437 if (!LC || !MC || !NC) {
5438 const SCEV *CNC = SE.getCouldNotCompute();
5439 return std::make_pair(CNC, CNC);
5440 }
5441
5442 uint32_t BitWidth = LC->getValue()->getValue().getBitWidth();
5443 const APInt &L = LC->getValue()->getValue();
5444 const APInt &M = MC->getValue()->getValue();
5445 const APInt &N = NC->getValue()->getValue();
5446 APInt Two(BitWidth, 2);
5447 APInt Four(BitWidth, 4);
5448
5449 {
5450 using namespace APIntOps;
5451 const APInt& C = L;
5452 // Convert from chrec coefficients to polynomial coefficients AX^2+BX+C
5453 // The B coefficient is M-N/2
5454 APInt B(M);
5455 B -= sdiv(N,Two);
5456
5457 // The A coefficient is N/2
5458 APInt A(N.sdiv(Two));
5459
5460 // Compute the B^2-4ac term.
5461 APInt SqrtTerm(B);
5462 SqrtTerm *= B;
5463 SqrtTerm -= Four * (A * C);
5464
5465 if (SqrtTerm.isNegative()) {
5466 // The loop is provably infinite.
5467 const SCEV *CNC = SE.getCouldNotCompute();
5468 return std::make_pair(CNC, CNC);
5469 }
5470
5471 // Compute sqrt(B^2-4ac). This is guaranteed to be the nearest
5472 // integer value or else APInt::sqrt() will assert.
5473 APInt SqrtVal(SqrtTerm.sqrt());
5474
5475 // Compute the two solutions for the quadratic formula.
5476 // The divisions must be performed as signed divisions.
5477 APInt NegB(-B);
5478 APInt TwoA(A << 1);
5479 if (TwoA.isMinValue()) {
5480 const SCEV *CNC = SE.getCouldNotCompute();
5481 return std::make_pair(CNC, CNC);
5482 }
5483
5484 LLVMContext &Context = SE.getContext();
5485
5486 ConstantInt *Solution1 =
5487 ConstantInt::get(Context, (NegB + SqrtVal).sdiv(TwoA));
5488 ConstantInt *Solution2 =
5489 ConstantInt::get(Context, (NegB - SqrtVal).sdiv(TwoA));
5490
5491 return std::make_pair(SE.getConstant(Solution1),
5492 SE.getConstant(Solution2));
5493 } // end APIntOps namespace
5494}
5495
5496/// HowFarToZero - Return the number of times a backedge comparing the specified
5497/// value to zero will execute. If not computable, return CouldNotCompute.
5498///
5499/// This is only used for loops with a "x != y" exit test. The exit condition is
5500/// now expressed as a single expression, V = x-y. So the exit test is
5501/// effectively V != 0. We know and take advantage of the fact that this
5502/// expression only being used in a comparison by zero context.
5503ScalarEvolution::ExitLimit
5504ScalarEvolution::HowFarToZero(const SCEV *V, const Loop *L, bool IsSubExpr) {
5505 // If the value is a constant
5506 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
5507 // If the value is already zero, the branch will execute zero times.
5508 if (C->getValue()->isZero()) return C;
5509 return getCouldNotCompute(); // Otherwise it will loop infinitely.
5510 }
5511
5512 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V);
5513 if (!AddRec || AddRec->getLoop() != L)
5514 return getCouldNotCompute();
5515
5516 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of
5517 // the quadratic equation to solve it.
5518 if (AddRec->isQuadratic() && AddRec->getType()->isIntegerTy()) {
5519 std::pair<const SCEV *,const SCEV *> Roots =
5520 SolveQuadraticEquation(AddRec, *this);
5521 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
5522 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
5523 if (R1 && R2) {
5524#if 0
5525 dbgs() << "HFTZ: " << *V << " - sol#1: " << *R1
5526 << " sol#2: " << *R2 << "\n";
5527#endif
5528 // Pick the smallest positive root value.
5529 if (ConstantInt *CB =
5530 dyn_cast<ConstantInt>(ConstantExpr::getICmp(CmpInst::ICMP_ULT,
5531 R1->getValue(),
5532 R2->getValue()))) {
5533 if (CB->getZExtValue() == false)
5534 std::swap(R1, R2); // R1 is the minimum root now.
5535
5536 // We can only use this value if the chrec ends up with an exact zero
5537 // value at this index. When solving for "X*X != 5", for example, we
5538 // should not accept a root of 2.
5539 const SCEV *Val = AddRec->evaluateAtIteration(R1, *this);
5540 if (Val->isZero())
5541 return R1; // We found a quadratic root!
5542 }
5543 }
5544 return getCouldNotCompute();
5545 }
5546
5547 // Otherwise we can only handle this if it is affine.
5548 if (!AddRec->isAffine())
5549 return getCouldNotCompute();
5550
5551 // If this is an affine expression, the execution count of this branch is
5552 // the minimum unsigned root of the following equation:
5553 //
5554 // Start + Step*N = 0 (mod 2^BW)
5555 //
5556 // equivalent to:
5557 //
5558 // Step*N = -Start (mod 2^BW)
5559 //
5560 // where BW is the common bit width of Start and Step.
5561
5562 // Get the initial value for the loop.
5563 const SCEV *Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop());
5564 const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1), L->getParentLoop());
5565
5566 // For now we handle only constant steps.
5567 //
5568 // TODO: Handle a nonconstant Step given AddRec<NUW>. If the
5569 // AddRec is NUW, then (in an unsigned sense) it cannot be counting up to wrap
5570 // to 0, it must be counting down to equal 0. Consequently, N = Start / -Step.
5571 // We have not yet seen any such cases.
5572 const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step);
5573 if (StepC == 0 || StepC->getValue()->equalsInt(0))
5574 return getCouldNotCompute();
5575
5576 // For positive steps (counting up until unsigned overflow):
5577 // N = -Start/Step (as unsigned)
5578 // For negative steps (counting down to zero):
5579 // N = Start/-Step
5580 // First compute the unsigned distance from zero in the direction of Step.
5581 bool CountDown = StepC->getValue()->getValue().isNegative();
5582 const SCEV *Distance = CountDown ? Start : getNegativeSCEV(Start);
5583
5584 // Handle unitary steps, which cannot wraparound.
5585 // 1*N = -Start; -1*N = Start (mod 2^BW), so:
5586 // N = Distance (as unsigned)
5587 if (StepC->getValue()->equalsInt(1) || StepC->getValue()->isAllOnesValue()) {
5588 ConstantRange CR = getUnsignedRange(Start);
5589 const SCEV *MaxBECount;
5590 if (!CountDown && CR.getUnsignedMin().isMinValue())
5591 // When counting up, the worst starting value is 1, not 0.
5592 MaxBECount = CR.getUnsignedMax().isMinValue()
5593 ? getConstant(APInt::getMinValue(CR.getBitWidth()))
5594 : getConstant(APInt::getMaxValue(CR.getBitWidth()));
5595 else
5596 MaxBECount = getConstant(CountDown ? CR.getUnsignedMax()
5597 : -CR.getUnsignedMin());
5598 return ExitLimit(Distance, MaxBECount);
5599 }
5600
5601 // If the recurrence is known not to wraparound, unsigned divide computes the
5602 // back edge count. (Ideally we would have an "isexact" bit for udiv). We know
5603 // that the value will either become zero (and thus the loop terminates), that
5604 // the loop will terminate through some other exit condition first, or that
5605 // the loop has undefined behavior. This means we can't "miss" the exit
5606 // value, even with nonunit stride.
5607 //
5608 // This is only valid for expressions that directly compute the loop exit. It
5609 // is invalid for subexpressions in which the loop may exit through this
5610 // branch even if this subexpression is false. In that case, the trip count
5611 // computed by this udiv could be smaller than the number of well-defined
5612 // iterations.
5613 if (!IsSubExpr && AddRec->getNoWrapFlags(SCEV::FlagNW))
5614 return getUDivExpr(Distance, CountDown ? getNegativeSCEV(Step) : Step);
5615
5616 // Then, try to solve the above equation provided that Start is constant.
5617 if (const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start))
5618 return SolveLinEquationWithOverflow(StepC->getValue()->getValue(),
5619 -StartC->getValue()->getValue(),
5620 *this);
5621 return getCouldNotCompute();
5622}
5623
5624/// HowFarToNonZero - Return the number of times a backedge checking the
5625/// specified value for nonzero will execute. If not computable, return
5626/// CouldNotCompute
5627ScalarEvolution::ExitLimit
5628ScalarEvolution::HowFarToNonZero(const SCEV *V, const Loop *L) {
5629 // Loops that look like: while (X == 0) are very strange indeed. We don't
5630 // handle them yet except for the trivial case. This could be expanded in the
5631 // future as needed.
5632
5633 // If the value is a constant, check to see if it is known to be non-zero
5634 // already. If so, the backedge will execute zero times.
5635 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
5636 if (!C->getValue()->isNullValue())
5637 return getConstant(C->getType(), 0);
5638 return getCouldNotCompute(); // Otherwise it will loop infinitely.
5639 }
5640
5641 // We could implement others, but I really doubt anyone writes loops like
5642 // this, and if they did, they would already be constant folded.
5643 return getCouldNotCompute();
5644}
5645
5646/// getPredecessorWithUniqueSuccessorForBB - Return a predecessor of BB
5647/// (which may not be an immediate predecessor) which has exactly one
5648/// successor from which BB is reachable, or null if no such block is
5649/// found.
5650///
5651std::pair<BasicBlock *, BasicBlock *>
5652ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB) {
5653 // If the block has a unique predecessor, then there is no path from the
5654 // predecessor to the block that does not go through the direct edge
5655 // from the predecessor to the block.
5656 if (BasicBlock *Pred = BB->getSinglePredecessor())
5657 return std::make_pair(Pred, BB);
5658
5659 // A loop's header is defined to be a block that dominates the loop.
5660 // If the header has a unique predecessor outside the loop, it must be
5661 // a block that has exactly one successor that can reach the loop.
5662 if (Loop *L = LI->getLoopFor(BB))
5663 return std::make_pair(L->getLoopPredecessor(), L->getHeader());
5664
5665 return std::pair<BasicBlock *, BasicBlock *>();
5666}
5667
5668/// HasSameValue - SCEV structural equivalence is usually sufficient for
5669/// testing whether two expressions are equal, however for the purposes of
5670/// looking for a condition guarding a loop, it can be useful to be a little
5671/// more general, since a front-end may have replicated the controlling
5672/// expression.
5673///
5674static bool HasSameValue(const SCEV *A, const SCEV *B) {
5675 // Quick check to see if they are the same SCEV.
5676 if (A == B) return true;
5677
5678 // Otherwise, if they're both SCEVUnknown, it's possible that they hold
5679 // two different instructions with the same value. Check for this case.
5680 if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A))
5681 if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B))
5682 if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue()))
5683 if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue()))
5684 if (AI->isIdenticalTo(BI) && !AI->mayReadFromMemory())
5685 return true;
5686
5687 // Otherwise assume they may have a different value.
5688 return false;
5689}
5690
5691/// SimplifyICmpOperands - Simplify LHS and RHS in a comparison with
5692/// predicate Pred. Return true iff any changes were made.
5693///
5694bool ScalarEvolution::SimplifyICmpOperands(ICmpInst::Predicate &Pred,
5695 const SCEV *&LHS, const SCEV *&RHS,
5696 unsigned Depth) {
5697 bool Changed = false;
5698
5699 // If we hit the max recursion limit bail out.
5700 if (Depth >= 3)
5701 return false;
5702
5703 // Canonicalize a constant to the right side.
5704 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
5705 // Check for both operands constant.
5706 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
5707 if (ConstantExpr::getICmp(Pred,
5708 LHSC->getValue(),
5709 RHSC->getValue())->isNullValue())
5710 goto trivially_false;
5711 else
5712 goto trivially_true;
5713 }
5714 // Otherwise swap the operands to put the constant on the right.
5715 std::swap(LHS, RHS);
5716 Pred = ICmpInst::getSwappedPredicate(Pred);
5717 Changed = true;
5718 }
5719
5720 // If we're comparing an addrec with a value which is loop-invariant in the
5721 // addrec's loop, put the addrec on the left. Also make a dominance check,
5722 // as both operands could be addrecs loop-invariant in each other's loop.
5723 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS)) {
5724 const Loop *L = AR->getLoop();
5725 if (isLoopInvariant(LHS, L) && properlyDominates(LHS, L->getHeader())) {
5726 std::swap(LHS, RHS);
5727 Pred = ICmpInst::getSwappedPredicate(Pred);
5728 Changed = true;
5729 }
5730 }
5731
5732 // If there's a constant operand, canonicalize comparisons with boundary
5733 // cases, and canonicalize *-or-equal comparisons to regular comparisons.
5734 if (const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS)) {
5735 const APInt &RA = RC->getValue()->getValue();
5736 switch (Pred) {
5737 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
5738 case ICmpInst::ICMP_EQ:
5739 case ICmpInst::ICMP_NE:
5740 // Fold ((-1) * %a) + %b == 0 (equivalent to %b-%a == 0) into %a == %b.
5741 if (!RA)
5742 if (const SCEVAddExpr *AE = dyn_cast<SCEVAddExpr>(LHS))
5743 if (const SCEVMulExpr *ME = dyn_cast<SCEVMulExpr>(AE->getOperand(0)))
5744 if (AE->getNumOperands() == 2 && ME->getNumOperands() == 2 &&
5745 ME->getOperand(0)->isAllOnesValue()) {
5746 RHS = AE->getOperand(1);
5747 LHS = ME->getOperand(1);
5748 Changed = true;
5749 }
5750 break;
5751 case ICmpInst::ICMP_UGE:
5752 if ((RA - 1).isMinValue()) {
5753 Pred = ICmpInst::ICMP_NE;
5754 RHS = getConstant(RA - 1);
5755 Changed = true;
5756 break;
5757 }
5758 if (RA.isMaxValue()) {
5759 Pred = ICmpInst::ICMP_EQ;
5760 Changed = true;
5761 break;
5762 }
5763 if (RA.isMinValue()) goto trivially_true;
5764
5765 Pred = ICmpInst::ICMP_UGT;
5766 RHS = getConstant(RA - 1);
5767 Changed = true;
5768 break;
5769 case ICmpInst::ICMP_ULE:
5770 if ((RA + 1).isMaxValue()) {
5771 Pred = ICmpInst::ICMP_NE;
5772 RHS = getConstant(RA + 1);
5773 Changed = true;
5774 break;
5775 }
5776 if (RA.isMinValue()) {
5777 Pred = ICmpInst::ICMP_EQ;
5778 Changed = true;
5779 break;
5780 }
5781 if (RA.isMaxValue()) goto trivially_true;
5782
5783 Pred = ICmpInst::ICMP_ULT;
5784 RHS = getConstant(RA + 1);
5785 Changed = true;
5786 break;
5787 case ICmpInst::ICMP_SGE:
5788 if ((RA - 1).isMinSignedValue()) {
5789 Pred = ICmpInst::ICMP_NE;
5790 RHS = getConstant(RA - 1);
5791 Changed = true;
5792 break;
5793 }
5794 if (RA.isMaxSignedValue()) {
5795 Pred = ICmpInst::ICMP_EQ;
5796 Changed = true;
5797 break;
5798 }
5799 if (RA.isMinSignedValue()) goto trivially_true;
5800
5801 Pred = ICmpInst::ICMP_SGT;
5802 RHS = getConstant(RA - 1);
5803 Changed = true;
5804 break;
5805 case ICmpInst::ICMP_SLE:
5806 if ((RA + 1).isMaxSignedValue()) {
5807 Pred = ICmpInst::ICMP_NE;
5808 RHS = getConstant(RA + 1);
5809 Changed = true;
5810 break;
5811 }
5812 if (RA.isMinSignedValue()) {
5813 Pred = ICmpInst::ICMP_EQ;
5814 Changed = true;
5815 break;
5816 }
5817 if (RA.isMaxSignedValue()) goto trivially_true;
5818
5819 Pred = ICmpInst::ICMP_SLT;
5820 RHS = getConstant(RA + 1);
5821 Changed = true;
5822 break;
5823 case ICmpInst::ICMP_UGT:
5824 if (RA.isMinValue()) {
5825 Pred = ICmpInst::ICMP_NE;
5826 Changed = true;
5827 break;
5828 }
5829 if ((RA + 1).isMaxValue()) {
5830 Pred = ICmpInst::ICMP_EQ;
5831 RHS = getConstant(RA + 1);
5832 Changed = true;
5833 break;
5834 }
5835 if (RA.isMaxValue()) goto trivially_false;
5836 break;
5837 case ICmpInst::ICMP_ULT:
5838 if (RA.isMaxValue()) {
5839 Pred = ICmpInst::ICMP_NE;
5840 Changed = true;
5841 break;
5842 }
5843 if ((RA - 1).isMinValue()) {
5844 Pred = ICmpInst::ICMP_EQ;
5845 RHS = getConstant(RA - 1);
5846 Changed = true;
5847 break;
5848 }
5849 if (RA.isMinValue()) goto trivially_false;
5850 break;
5851 case ICmpInst::ICMP_SGT:
5852 if (RA.isMinSignedValue()) {
5853 Pred = ICmpInst::ICMP_NE;
5854 Changed = true;
5855 break;
5856 }
5857 if ((RA + 1).isMaxSignedValue()) {
5858 Pred = ICmpInst::ICMP_EQ;
5859 RHS = getConstant(RA + 1);
5860 Changed = true;
5861 break;
5862 }
5863 if (RA.isMaxSignedValue()) goto trivially_false;
5864 break;
5865 case ICmpInst::ICMP_SLT:
5866 if (RA.isMaxSignedValue()) {
5867 Pred = ICmpInst::ICMP_NE;
5868 Changed = true;
5869 break;
5870 }
5871 if ((RA - 1).isMinSignedValue()) {
5872 Pred = ICmpInst::ICMP_EQ;
5873 RHS = getConstant(RA - 1);
5874 Changed = true;
5875 break;
5876 }
5877 if (RA.isMinSignedValue()) goto trivially_false;
5878 break;
5879 }
5880 }
5881
5882 // Check for obvious equality.
5883 if (HasSameValue(LHS, RHS)) {
5884 if (ICmpInst::isTrueWhenEqual(Pred))
5885 goto trivially_true;
5886 if (ICmpInst::isFalseWhenEqual(Pred))
5887 goto trivially_false;
5888 }
5889
5890 // If possible, canonicalize GE/LE comparisons to GT/LT comparisons, by
5891 // adding or subtracting 1 from one of the operands.
5892 switch (Pred) {
5893 case ICmpInst::ICMP_SLE:
5894 if (!getSignedRange(RHS).getSignedMax().isMaxSignedValue()) {
5895 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
5896 SCEV::FlagNSW);
5897 Pred = ICmpInst::ICMP_SLT;
5898 Changed = true;
5899 } else if (!getSignedRange(LHS).getSignedMin().isMinSignedValue()) {
5900 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS,
5901 SCEV::FlagNSW);
5902 Pred = ICmpInst::ICMP_SLT;
5903 Changed = true;
5904 }
5905 break;
5906 case ICmpInst::ICMP_SGE:
5907 if (!getSignedRange(RHS).getSignedMin().isMinSignedValue()) {
5908 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS,
5909 SCEV::FlagNSW);
5910 Pred = ICmpInst::ICMP_SGT;
5911 Changed = true;
5912 } else if (!getSignedRange(LHS).getSignedMax().isMaxSignedValue()) {
5913 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
5914 SCEV::FlagNSW);
5915 Pred = ICmpInst::ICMP_SGT;
5916 Changed = true;
5917 }
5918 break;
5919 case ICmpInst::ICMP_ULE:
5920 if (!getUnsignedRange(RHS).getUnsignedMax().isMaxValue()) {
5921 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
5922 SCEV::FlagNUW);
5923 Pred = ICmpInst::ICMP_ULT;
5924 Changed = true;
5925 } else if (!getUnsignedRange(LHS).getUnsignedMin().isMinValue()) {
5926 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS,
5927 SCEV::FlagNUW);
5928 Pred = ICmpInst::ICMP_ULT;
5929 Changed = true;
5930 }
5931 break;
5932 case ICmpInst::ICMP_UGE:
5933 if (!getUnsignedRange(RHS).getUnsignedMin().isMinValue()) {
5934 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS,
5935 SCEV::FlagNUW);
5936 Pred = ICmpInst::ICMP_UGT;
5937 Changed = true;
5938 } else if (!getUnsignedRange(LHS).getUnsignedMax().isMaxValue()) {
5939 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
5940 SCEV::FlagNUW);
5941 Pred = ICmpInst::ICMP_UGT;
5942 Changed = true;
5943 }
5944 break;
5945 default:
5946 break;
5947 }
5948
5949 // TODO: More simplifications are possible here.
5950
5951 // Recursively simplify until we either hit a recursion limit or nothing
5952 // changes.
5953 if (Changed)
5954 return SimplifyICmpOperands(Pred, LHS, RHS, Depth+1);
5955
5956 return Changed;
5957
5958trivially_true:
5959 // Return 0 == 0.
5960 LHS = RHS = getConstant(ConstantInt::getFalse(getContext()));
5961 Pred = ICmpInst::ICMP_EQ;
5962 return true;
5963
5964trivially_false:
5965 // Return 0 != 0.
5966 LHS = RHS = getConstant(ConstantInt::getFalse(getContext()));
5967 Pred = ICmpInst::ICMP_NE;
5968 return true;
5969}
5970
5971bool ScalarEvolution::isKnownNegative(const SCEV *S) {
5972 return getSignedRange(S).getSignedMax().isNegative();
5973}
5974
5975bool ScalarEvolution::isKnownPositive(const SCEV *S) {
5976 return getSignedRange(S).getSignedMin().isStrictlyPositive();
5977}
5978
5979bool ScalarEvolution::isKnownNonNegative(const SCEV *S) {
5980 return !getSignedRange(S).getSignedMin().isNegative();
5981}
5982
5983bool ScalarEvolution::isKnownNonPositive(const SCEV *S) {
5984 return !getSignedRange(S).getSignedMax().isStrictlyPositive();
5985}
5986
5987bool ScalarEvolution::isKnownNonZero(const SCEV *S) {
5988 return isKnownNegative(S) || isKnownPositive(S);
5989}
5990
5991bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred,
5992 const SCEV *LHS, const SCEV *RHS) {
5993 // Canonicalize the inputs first.
5994 (void)SimplifyICmpOperands(Pred, LHS, RHS);
5995
5996 // If LHS or RHS is an addrec, check to see if the condition is true in
5997 // every iteration of the loop.
5998 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS))
5999 if (isLoopEntryGuardedByCond(
6000 AR->getLoop(), Pred, AR->getStart(), RHS) &&
6001 isLoopBackedgeGuardedByCond(
6002 AR->getLoop(), Pred, AR->getPostIncExpr(*this), RHS))
6003 return true;
6004 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS))
6005 if (isLoopEntryGuardedByCond(
6006 AR->getLoop(), Pred, LHS, AR->getStart()) &&
6007 isLoopBackedgeGuardedByCond(
6008 AR->getLoop(), Pred, LHS, AR->getPostIncExpr(*this)))
6009 return true;
6010
6011 // Otherwise see what can be done with known constant ranges.
6012 return isKnownPredicateWithRanges(Pred, LHS, RHS);
6013}
6014
6015bool
6016ScalarEvolution::isKnownPredicateWithRanges(ICmpInst::Predicate Pred,
6017 const SCEV *LHS, const SCEV *RHS) {
6018 if (HasSameValue(LHS, RHS))
6019 return ICmpInst::isTrueWhenEqual(Pred);
6020
6021 // This code is split out from isKnownPredicate because it is called from
6022 // within isLoopEntryGuardedByCond.
6023 switch (Pred) {
6024 default:
6025 llvm_unreachable("Unexpected ICmpInst::Predicate value!");
6026 case ICmpInst::ICMP_SGT:
6027 Pred = ICmpInst::ICMP_SLT;
6028 std::swap(LHS, RHS);
6029 case ICmpInst::ICMP_SLT: {
6030 ConstantRange LHSRange = getSignedRange(LHS);
6031 ConstantRange RHSRange = getSignedRange(RHS);
6032 if (LHSRange.getSignedMax().slt(RHSRange.getSignedMin()))
6033 return true;
6034 if (LHSRange.getSignedMin().sge(RHSRange.getSignedMax()))
6035 return false;
6036 break;
6037 }
6038 case ICmpInst::ICMP_SGE:
6039 Pred = ICmpInst::ICMP_SLE;
6040 std::swap(LHS, RHS);
6041 case ICmpInst::ICMP_SLE: {
6042 ConstantRange LHSRange = getSignedRange(LHS);
6043 ConstantRange RHSRange = getSignedRange(RHS);
6044 if (LHSRange.getSignedMax().sle(RHSRange.getSignedMin()))
6045 return true;
6046 if (LHSRange.getSignedMin().sgt(RHSRange.getSignedMax()))
6047 return false;
6048 break;
6049 }
6050 case ICmpInst::ICMP_UGT:
6051 Pred = ICmpInst::ICMP_ULT;
6052 std::swap(LHS, RHS);
6053 case ICmpInst::ICMP_ULT: {
6054 ConstantRange LHSRange = getUnsignedRange(LHS);
6055 ConstantRange RHSRange = getUnsignedRange(RHS);
6056 if (LHSRange.getUnsignedMax().ult(RHSRange.getUnsignedMin()))
6057 return true;
6058 if (LHSRange.getUnsignedMin().uge(RHSRange.getUnsignedMax()))
6059 return false;
6060 break;
6061 }
6062 case ICmpInst::ICMP_UGE:
6063 Pred = ICmpInst::ICMP_ULE;
6064 std::swap(LHS, RHS);
6065 case ICmpInst::ICMP_ULE: {
6066 ConstantRange LHSRange = getUnsignedRange(LHS);
6067 ConstantRange RHSRange = getUnsignedRange(RHS);
6068 if (LHSRange.getUnsignedMax().ule(RHSRange.getUnsignedMin()))
6069 return true;
6070 if (LHSRange.getUnsignedMin().ugt(RHSRange.getUnsignedMax()))
6071 return false;
6072 break;
6073 }
6074 case ICmpInst::ICMP_NE: {
6075 if (getUnsignedRange(LHS).intersectWith(getUnsignedRange(RHS)).isEmptySet())
6076 return true;
6077 if (getSignedRange(LHS).intersectWith(getSignedRange(RHS)).isEmptySet())
6078 return true;
6079
6080 const SCEV *Diff = getMinusSCEV(LHS, RHS);
6081 if (isKnownNonZero(Diff))
6082 return true;
6083 break;
6084 }
6085 case ICmpInst::ICMP_EQ:
6086 // The check at the top of the function catches the case where
6087 // the values are known to be equal.
6088 break;
6089 }
6090 return false;
6091}
6092
6093/// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is
6094/// protected by a conditional between LHS and RHS. This is used to
6095/// to eliminate casts.
6096bool
6097ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L,
6098 ICmpInst::Predicate Pred,
6099 const SCEV *LHS, const SCEV *RHS) {
6100 // Interpret a null as meaning no loop, where there is obviously no guard
6101 // (interprocedural conditions notwithstanding).
6102 if (!L) return true;
6103
6104 BasicBlock *Latch = L->getLoopLatch();
6105 if (!Latch)
6106 return false;
6107
6108 BranchInst *LoopContinuePredicate =
6109 dyn_cast<BranchInst>(Latch->getTerminator());
6110 if (!LoopContinuePredicate ||
6111 LoopContinuePredicate->isUnconditional())
6112 return false;
6113
6114 return isImpliedCond(Pred, LHS, RHS,
6115 LoopContinuePredicate->getCondition(),
6116 LoopContinuePredicate->getSuccessor(0) != L->getHeader());
6117}
6118
6119/// isLoopEntryGuardedByCond - Test whether entry to the loop is protected
6120/// by a conditional between LHS and RHS. This is used to help avoid max
6121/// expressions in loop trip counts, and to eliminate casts.
6122bool
6123ScalarEvolution::isLoopEntryGuardedByCond(const Loop *L,
6124 ICmpInst::Predicate Pred,
6125 const SCEV *LHS, const SCEV *RHS) {
6126 // Interpret a null as meaning no loop, where there is obviously no guard
6127 // (interprocedural conditions notwithstanding).
6128 if (!L) return false;
6129
6130 // Starting at the loop predecessor, climb up the predecessor chain, as long
6131 // as there are predecessors that can be found that have unique successors
6132 // leading to the original header.
6133 for (std::pair<BasicBlock *, BasicBlock *>
6134 Pair(L->getLoopPredecessor(), L->getHeader());
6135 Pair.first;
6136 Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) {
6137
6138 BranchInst *LoopEntryPredicate =
6139 dyn_cast<BranchInst>(Pair.first->getTerminator());
6140 if (!LoopEntryPredicate ||
6141 LoopEntryPredicate->isUnconditional())
6142 continue;
6143
6144 if (isImpliedCond(Pred, LHS, RHS,
6145 LoopEntryPredicate->getCondition(),
6146 LoopEntryPredicate->getSuccessor(0) != Pair.second))
6147 return true;
6148 }
6149
6150 return false;
6151}
6152
6153/// RAII wrapper to prevent recursive application of isImpliedCond.
6154/// ScalarEvolution's PendingLoopPredicates set must be empty unless we are
6155/// currently evaluating isImpliedCond.
6156struct MarkPendingLoopPredicate {
6157 Value *Cond;
6158 DenseSet<Value*> &LoopPreds;
6159 bool Pending;
6160
6161 MarkPendingLoopPredicate(Value *C, DenseSet<Value*> &LP)
6162 : Cond(C), LoopPreds(LP) {
6163 Pending = !LoopPreds.insert(Cond).second;
6164 }
6165 ~MarkPendingLoopPredicate() {
6166 if (!Pending)
6167 LoopPreds.erase(Cond);
6168 }
6169};
6170
6171/// isImpliedCond - Test whether the condition described by Pred, LHS,
6172/// and RHS is true whenever the given Cond value evaluates to true.
6173bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred,
6174 const SCEV *LHS, const SCEV *RHS,
6175 Value *FoundCondValue,
6176 bool Inverse) {
6177 MarkPendingLoopPredicate Mark(FoundCondValue, PendingLoopPredicates);
6178 if (Mark.Pending)
6179 return false;
6180
6181 // Recursively handle And and Or conditions.
6182 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(FoundCondValue)) {
6183 if (BO->getOpcode() == Instruction::And) {
6184 if (!Inverse)
6185 return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) ||
6186 isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse);
6187 } else if (BO->getOpcode() == Instruction::Or) {
6188 if (Inverse)
6189 return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) ||
6190 isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse);
6191 }
6192 }
6193
6194 ICmpInst *ICI = dyn_cast<ICmpInst>(FoundCondValue);
6195 if (!ICI) return false;
6196
6197 // Bail if the ICmp's operands' types are wider than the needed type
6198 // before attempting to call getSCEV on them. This avoids infinite
6199 // recursion, since the analysis of widening casts can require loop
6200 // exit condition information for overflow checking, which would
6201 // lead back here.
6202 if (getTypeSizeInBits(LHS->getType()) <
6203 getTypeSizeInBits(ICI->getOperand(0)->getType()))
6204 return false;
6205
6206 // Now that we found a conditional branch that dominates the loop or controls
6207 // the loop latch. Check to see if it is the comparison we are looking for.
6208 ICmpInst::Predicate FoundPred;
6209 if (Inverse)
6210 FoundPred = ICI->getInversePredicate();
6211 else
6212 FoundPred = ICI->getPredicate();
6213
6214 const SCEV *FoundLHS = getSCEV(ICI->getOperand(0));
6215 const SCEV *FoundRHS = getSCEV(ICI->getOperand(1));
6216
6217 // Balance the types. The case where FoundLHS' type is wider than
6218 // LHS' type is checked for above.
6219 if (getTypeSizeInBits(LHS->getType()) >
6220 getTypeSizeInBits(FoundLHS->getType())) {
6221 if (CmpInst::isSigned(Pred)) {
6221 if (CmpInst::isSigned(FoundPred)) {
6222 FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType());
6223 FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType());
6224 } else {
6225 FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType());
6226 FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType());
6227 }
6228 }
6229
6230 // Canonicalize the query to match the way instcombine will have
6231 // canonicalized the comparison.
6232 if (SimplifyICmpOperands(Pred, LHS, RHS))
6233 if (LHS == RHS)
6234 return CmpInst::isTrueWhenEqual(Pred);
6235 if (SimplifyICmpOperands(FoundPred, FoundLHS, FoundRHS))
6236 if (FoundLHS == FoundRHS)
6237 return CmpInst::isFalseWhenEqual(FoundPred);
6238
6239 // Check to see if we can make the LHS or RHS match.
6240 if (LHS == FoundRHS || RHS == FoundLHS) {
6241 if (isa<SCEVConstant>(RHS)) {
6242 std::swap(FoundLHS, FoundRHS);
6243 FoundPred = ICmpInst::getSwappedPredicate(FoundPred);
6244 } else {
6245 std::swap(LHS, RHS);
6246 Pred = ICmpInst::getSwappedPredicate(Pred);
6247 }
6248 }
6249
6250 // Check whether the found predicate is the same as the desired predicate.
6251 if (FoundPred == Pred)
6252 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS);
6253
6254 // Check whether swapping the found predicate makes it the same as the
6255 // desired predicate.
6256 if (ICmpInst::getSwappedPredicate(FoundPred) == Pred) {
6257 if (isa<SCEVConstant>(RHS))
6258 return isImpliedCondOperands(Pred, LHS, RHS, FoundRHS, FoundLHS);
6259 else
6260 return isImpliedCondOperands(ICmpInst::getSwappedPredicate(Pred),
6261 RHS, LHS, FoundLHS, FoundRHS);
6262 }
6263
6264 // Check whether the actual condition is beyond sufficient.
6265 if (FoundPred == ICmpInst::ICMP_EQ)
6266 if (ICmpInst::isTrueWhenEqual(Pred))
6267 if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS))
6268 return true;
6269 if (Pred == ICmpInst::ICMP_NE)
6270 if (!ICmpInst::isTrueWhenEqual(FoundPred))
6271 if (isImpliedCondOperands(FoundPred, LHS, RHS, FoundLHS, FoundRHS))
6272 return true;
6273
6274 // Otherwise assume the worst.
6275 return false;
6276}
6277
6278/// isImpliedCondOperands - Test whether the condition described by Pred,
6279/// LHS, and RHS is true whenever the condition described by Pred, FoundLHS,
6280/// and FoundRHS is true.
6281bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred,
6282 const SCEV *LHS, const SCEV *RHS,
6283 const SCEV *FoundLHS,
6284 const SCEV *FoundRHS) {
6285 return isImpliedCondOperandsHelper(Pred, LHS, RHS,
6286 FoundLHS, FoundRHS) ||
6287 // ~x < ~y --> x > y
6288 isImpliedCondOperandsHelper(Pred, LHS, RHS,
6289 getNotSCEV(FoundRHS),
6290 getNotSCEV(FoundLHS));
6291}
6292
6293/// isImpliedCondOperandsHelper - Test whether the condition described by
6294/// Pred, LHS, and RHS is true whenever the condition described by Pred,
6295/// FoundLHS, and FoundRHS is true.
6296bool
6297ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred,
6298 const SCEV *LHS, const SCEV *RHS,
6299 const SCEV *FoundLHS,
6300 const SCEV *FoundRHS) {
6301 switch (Pred) {
6302 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
6303 case ICmpInst::ICMP_EQ:
6304 case ICmpInst::ICMP_NE:
6305 if (HasSameValue(LHS, FoundLHS) && HasSameValue(RHS, FoundRHS))
6306 return true;
6307 break;
6308 case ICmpInst::ICMP_SLT:
6309 case ICmpInst::ICMP_SLE:
6310 if (isKnownPredicateWithRanges(ICmpInst::ICMP_SLE, LHS, FoundLHS) &&
6311 isKnownPredicateWithRanges(ICmpInst::ICMP_SGE, RHS, FoundRHS))
6312 return true;
6313 break;
6314 case ICmpInst::ICMP_SGT:
6315 case ICmpInst::ICMP_SGE:
6316 if (isKnownPredicateWithRanges(ICmpInst::ICMP_SGE, LHS, FoundLHS) &&
6317 isKnownPredicateWithRanges(ICmpInst::ICMP_SLE, RHS, FoundRHS))
6318 return true;
6319 break;
6320 case ICmpInst::ICMP_ULT:
6321 case ICmpInst::ICMP_ULE:
6322 if (isKnownPredicateWithRanges(ICmpInst::ICMP_ULE, LHS, FoundLHS) &&
6323 isKnownPredicateWithRanges(ICmpInst::ICMP_UGE, RHS, FoundRHS))
6324 return true;
6325 break;
6326 case ICmpInst::ICMP_UGT:
6327 case ICmpInst::ICMP_UGE:
6328 if (isKnownPredicateWithRanges(ICmpInst::ICMP_UGE, LHS, FoundLHS) &&
6329 isKnownPredicateWithRanges(ICmpInst::ICMP_ULE, RHS, FoundRHS))
6330 return true;
6331 break;
6332 }
6333
6334 return false;
6335}
6336
6337// Verify if an linear IV with positive stride can overflow when in a
6338// less-than comparison, knowing the invariant term of the comparison, the
6339// stride and the knowledge of NSW/NUW flags on the recurrence.
6340bool ScalarEvolution::doesIVOverflowOnLT(const SCEV *RHS, const SCEV *Stride,
6341 bool IsSigned, bool NoWrap) {
6342 if (NoWrap) return false;
6343
6344 unsigned BitWidth = getTypeSizeInBits(RHS->getType());
6345 const SCEV *One = getConstant(Stride->getType(), 1);
6346
6347 if (IsSigned) {
6348 APInt MaxRHS = getSignedRange(RHS).getSignedMax();
6349 APInt MaxValue = APInt::getSignedMaxValue(BitWidth);
6350 APInt MaxStrideMinusOne = getSignedRange(getMinusSCEV(Stride, One))
6351 .getSignedMax();
6352
6353 // SMaxRHS + SMaxStrideMinusOne > SMaxValue => overflow!
6354 return (MaxValue - MaxStrideMinusOne).slt(MaxRHS);
6355 }
6356
6357 APInt MaxRHS = getUnsignedRange(RHS).getUnsignedMax();
6358 APInt MaxValue = APInt::getMaxValue(BitWidth);
6359 APInt MaxStrideMinusOne = getUnsignedRange(getMinusSCEV(Stride, One))
6360 .getUnsignedMax();
6361
6362 // UMaxRHS + UMaxStrideMinusOne > UMaxValue => overflow!
6363 return (MaxValue - MaxStrideMinusOne).ult(MaxRHS);
6364}
6365
6366// Verify if an linear IV with negative stride can overflow when in a
6367// greater-than comparison, knowing the invariant term of the comparison,
6368// the stride and the knowledge of NSW/NUW flags on the recurrence.
6369bool ScalarEvolution::doesIVOverflowOnGT(const SCEV *RHS, const SCEV *Stride,
6370 bool IsSigned, bool NoWrap) {
6371 if (NoWrap) return false;
6372
6373 unsigned BitWidth = getTypeSizeInBits(RHS->getType());
6374 const SCEV *One = getConstant(Stride->getType(), 1);
6375
6376 if (IsSigned) {
6377 APInt MinRHS = getSignedRange(RHS).getSignedMin();
6378 APInt MinValue = APInt::getSignedMinValue(BitWidth);
6379 APInt MaxStrideMinusOne = getSignedRange(getMinusSCEV(Stride, One))
6380 .getSignedMax();
6381
6382 // SMinRHS - SMaxStrideMinusOne < SMinValue => overflow!
6383 return (MinValue + MaxStrideMinusOne).sgt(MinRHS);
6384 }
6385
6386 APInt MinRHS = getUnsignedRange(RHS).getUnsignedMin();
6387 APInt MinValue = APInt::getMinValue(BitWidth);
6388 APInt MaxStrideMinusOne = getUnsignedRange(getMinusSCEV(Stride, One))
6389 .getUnsignedMax();
6390
6391 // UMinRHS - UMaxStrideMinusOne < UMinValue => overflow!
6392 return (MinValue + MaxStrideMinusOne).ugt(MinRHS);
6393}
6394
6395// Compute the backedge taken count knowing the interval difference, the
6396// stride and presence of the equality in the comparison.
6397const SCEV *ScalarEvolution::computeBECount(const SCEV *Delta, const SCEV *Step,
6398 bool Equality) {
6399 const SCEV *One = getConstant(Step->getType(), 1);
6400 Delta = Equality ? getAddExpr(Delta, Step)
6401 : getAddExpr(Delta, getMinusSCEV(Step, One));
6402 return getUDivExpr(Delta, Step);
6403}
6404
6405/// HowManyLessThans - Return the number of times a backedge containing the
6406/// specified less-than comparison will execute. If not computable, return
6407/// CouldNotCompute.
6408///
6409/// @param IsSubExpr is true when the LHS < RHS condition does not directly
6410/// control the branch. In this case, we can only compute an iteration count for
6411/// a subexpression that cannot overflow before evaluating true.
6412ScalarEvolution::ExitLimit
6413ScalarEvolution::HowManyLessThans(const SCEV *LHS, const SCEV *RHS,
6414 const Loop *L, bool IsSigned,
6415 bool IsSubExpr) {
6416 // We handle only IV < Invariant
6417 if (!isLoopInvariant(RHS, L))
6418 return getCouldNotCompute();
6419
6420 const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS);
6421
6422 // Avoid weird loops
6423 if (!IV || IV->getLoop() != L || !IV->isAffine())
6424 return getCouldNotCompute();
6425
6426 bool NoWrap = !IsSubExpr &&
6427 IV->getNoWrapFlags(IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW);
6428
6429 const SCEV *Stride = IV->getStepRecurrence(*this);
6430
6431 // Avoid negative or zero stride values
6432 if (!isKnownPositive(Stride))
6433 return getCouldNotCompute();
6434
6435 // Avoid proven overflow cases: this will ensure that the backedge taken count
6436 // will not generate any unsigned overflow. Relaxed no-overflow conditions
6437 // exploit NoWrapFlags, allowing to optimize in presence of undefined
6438 // behaviors like the case of C language.
6439 if (!Stride->isOne() && doesIVOverflowOnLT(RHS, Stride, IsSigned, NoWrap))
6440 return getCouldNotCompute();
6441
6442 ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SLT
6443 : ICmpInst::ICMP_ULT;
6444 const SCEV *Start = IV->getStart();
6445 const SCEV *End = RHS;
6446 if (!isLoopEntryGuardedByCond(L, Cond, getMinusSCEV(Start, Stride), RHS))
6447 End = IsSigned ? getSMaxExpr(RHS, Start)
6448 : getUMaxExpr(RHS, Start);
6449
6450 const SCEV *BECount = computeBECount(getMinusSCEV(End, Start), Stride, false);
6451
6452 APInt MinStart = IsSigned ? getSignedRange(Start).getSignedMin()
6453 : getUnsignedRange(Start).getUnsignedMin();
6454
6455 APInt MinStride = IsSigned ? getSignedRange(Stride).getSignedMin()
6456 : getUnsignedRange(Stride).getUnsignedMin();
6457
6458 unsigned BitWidth = getTypeSizeInBits(LHS->getType());
6459 APInt Limit = IsSigned ? APInt::getSignedMaxValue(BitWidth) - (MinStride - 1)
6460 : APInt::getMaxValue(BitWidth) - (MinStride - 1);
6461
6462 // Although End can be a MAX expression we estimate MaxEnd considering only
6463 // the case End = RHS. This is safe because in the other case (End - Start)
6464 // is zero, leading to a zero maximum backedge taken count.
6465 APInt MaxEnd =
6466 IsSigned ? APIntOps::smin(getSignedRange(RHS).getSignedMax(), Limit)
6467 : APIntOps::umin(getUnsignedRange(RHS).getUnsignedMax(), Limit);
6468
6469 const SCEV *MaxBECount = getCouldNotCompute();
6470 if (isa<SCEVConstant>(BECount))
6471 MaxBECount = BECount;
6472 else
6473 MaxBECount = computeBECount(getConstant(MaxEnd - MinStart),
6474 getConstant(MinStride), false);
6475
6476 if (isa<SCEVCouldNotCompute>(MaxBECount))
6477 MaxBECount = BECount;
6478
6479 return ExitLimit(BECount, MaxBECount);
6480}
6481
6482ScalarEvolution::ExitLimit
6483ScalarEvolution::HowManyGreaterThans(const SCEV *LHS, const SCEV *RHS,
6484 const Loop *L, bool IsSigned,
6485 bool IsSubExpr) {
6486 // We handle only IV > Invariant
6487 if (!isLoopInvariant(RHS, L))
6488 return getCouldNotCompute();
6489
6490 const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS);
6491
6492 // Avoid weird loops
6493 if (!IV || IV->getLoop() != L || !IV->isAffine())
6494 return getCouldNotCompute();
6495
6496 bool NoWrap = !IsSubExpr &&
6497 IV->getNoWrapFlags(IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW);
6498
6499 const SCEV *Stride = getNegativeSCEV(IV->getStepRecurrence(*this));
6500
6501 // Avoid negative or zero stride values
6502 if (!isKnownPositive(Stride))
6503 return getCouldNotCompute();
6504
6505 // Avoid proven overflow cases: this will ensure that the backedge taken count
6506 // will not generate any unsigned overflow. Relaxed no-overflow conditions
6507 // exploit NoWrapFlags, allowing to optimize in presence of undefined
6508 // behaviors like the case of C language.
6509 if (!Stride->isOne() && doesIVOverflowOnGT(RHS, Stride, IsSigned, NoWrap))
6510 return getCouldNotCompute();
6511
6512 ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SGT
6513 : ICmpInst::ICMP_UGT;
6514
6515 const SCEV *Start = IV->getStart();
6516 const SCEV *End = RHS;
6517 if (!isLoopEntryGuardedByCond(L, Cond, getAddExpr(Start, Stride), RHS))
6518 End = IsSigned ? getSMinExpr(RHS, Start)
6519 : getUMinExpr(RHS, Start);
6520
6521 const SCEV *BECount = computeBECount(getMinusSCEV(Start, End), Stride, false);
6522
6523 APInt MaxStart = IsSigned ? getSignedRange(Start).getSignedMax()
6524 : getUnsignedRange(Start).getUnsignedMax();
6525
6526 APInt MinStride = IsSigned ? getSignedRange(Stride).getSignedMin()
6527 : getUnsignedRange(Stride).getUnsignedMin();
6528
6529 unsigned BitWidth = getTypeSizeInBits(LHS->getType());
6530 APInt Limit = IsSigned ? APInt::getSignedMinValue(BitWidth) + (MinStride - 1)
6531 : APInt::getMinValue(BitWidth) + (MinStride - 1);
6532
6533 // Although End can be a MIN expression we estimate MinEnd considering only
6534 // the case End = RHS. This is safe because in the other case (Start - End)
6535 // is zero, leading to a zero maximum backedge taken count.
6536 APInt MinEnd =
6537 IsSigned ? APIntOps::smax(getSignedRange(RHS).getSignedMin(), Limit)
6538 : APIntOps::umax(getUnsignedRange(RHS).getUnsignedMin(), Limit);
6539
6540
6541 const SCEV *MaxBECount = getCouldNotCompute();
6542 if (isa<SCEVConstant>(BECount))
6543 MaxBECount = BECount;
6544 else
6545 MaxBECount = computeBECount(getConstant(MaxStart - MinEnd),
6546 getConstant(MinStride), false);
6547
6548 if (isa<SCEVCouldNotCompute>(MaxBECount))
6549 MaxBECount = BECount;
6550
6551 return ExitLimit(BECount, MaxBECount);
6552}
6553
6554/// getNumIterationsInRange - Return the number of iterations of this loop that
6555/// produce values in the specified constant range. Another way of looking at
6556/// this is that it returns the first iteration number where the value is not in
6557/// the condition, thus computing the exit count. If the iteration count can't
6558/// be computed, an instance of SCEVCouldNotCompute is returned.
6559const SCEV *SCEVAddRecExpr::getNumIterationsInRange(ConstantRange Range,
6560 ScalarEvolution &SE) const {
6561 if (Range.isFullSet()) // Infinite loop.
6562 return SE.getCouldNotCompute();
6563
6564 // If the start is a non-zero constant, shift the range to simplify things.
6565 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart()))
6566 if (!SC->getValue()->isZero()) {
6567 SmallVector<const SCEV *, 4> Operands(op_begin(), op_end());
6568 Operands[0] = SE.getConstant(SC->getType(), 0);
6569 const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop(),
6570 getNoWrapFlags(FlagNW));
6571 if (const SCEVAddRecExpr *ShiftedAddRec =
6572 dyn_cast<SCEVAddRecExpr>(Shifted))
6573 return ShiftedAddRec->getNumIterationsInRange(
6574 Range.subtract(SC->getValue()->getValue()), SE);
6575 // This is strange and shouldn't happen.
6576 return SE.getCouldNotCompute();
6577 }
6578
6579 // The only time we can solve this is when we have all constant indices.
6580 // Otherwise, we cannot determine the overflow conditions.
6581 for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
6582 if (!isa<SCEVConstant>(getOperand(i)))
6583 return SE.getCouldNotCompute();
6584
6585
6586 // Okay at this point we know that all elements of the chrec are constants and
6587 // that the start element is zero.
6588
6589 // First check to see if the range contains zero. If not, the first
6590 // iteration exits.
6591 unsigned BitWidth = SE.getTypeSizeInBits(getType());
6592 if (!Range.contains(APInt(BitWidth, 0)))
6593 return SE.getConstant(getType(), 0);
6594
6595 if (isAffine()) {
6596 // If this is an affine expression then we have this situation:
6597 // Solve {0,+,A} in Range === Ax in Range
6598
6599 // We know that zero is in the range. If A is positive then we know that
6600 // the upper value of the range must be the first possible exit value.
6601 // If A is negative then the lower of the range is the last possible loop
6602 // value. Also note that we already checked for a full range.
6603 APInt One(BitWidth,1);
6604 APInt A = cast<SCEVConstant>(getOperand(1))->getValue()->getValue();
6605 APInt End = A.sge(One) ? (Range.getUpper() - One) : Range.getLower();
6606
6607 // The exit value should be (End+A)/A.
6608 APInt ExitVal = (End + A).udiv(A);
6609 ConstantInt *ExitValue = ConstantInt::get(SE.getContext(), ExitVal);
6610
6611 // Evaluate at the exit value. If we really did fall out of the valid
6612 // range, then we computed our trip count, otherwise wrap around or other
6613 // things must have happened.
6614 ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE);
6615 if (Range.contains(Val->getValue()))
6616 return SE.getCouldNotCompute(); // Something strange happened
6617
6618 // Ensure that the previous value is in the range. This is a sanity check.
6619 assert(Range.contains(
6620 EvaluateConstantChrecAtConstant(this,
6621 ConstantInt::get(SE.getContext(), ExitVal - One), SE)->getValue()) &&
6622 "Linear scev computation is off in a bad way!");
6623 return SE.getConstant(ExitValue);
6624 } else if (isQuadratic()) {
6625 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of the
6626 // quadratic equation to solve it. To do this, we must frame our problem in
6627 // terms of figuring out when zero is crossed, instead of when
6628 // Range.getUpper() is crossed.
6629 SmallVector<const SCEV *, 4> NewOps(op_begin(), op_end());
6630 NewOps[0] = SE.getNegativeSCEV(SE.getConstant(Range.getUpper()));
6631 const SCEV *NewAddRec = SE.getAddRecExpr(NewOps, getLoop(),
6632 // getNoWrapFlags(FlagNW)
6633 FlagAnyWrap);
6634
6635 // Next, solve the constructed addrec
6636 std::pair<const SCEV *,const SCEV *> Roots =
6637 SolveQuadraticEquation(cast<SCEVAddRecExpr>(NewAddRec), SE);
6638 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
6639 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
6640 if (R1) {
6641 // Pick the smallest positive root value.
6642 if (ConstantInt *CB =
6643 dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT,
6644 R1->getValue(), R2->getValue()))) {
6645 if (CB->getZExtValue() == false)
6646 std::swap(R1, R2); // R1 is the minimum root now.
6647
6648 // Make sure the root is not off by one. The returned iteration should
6649 // not be in the range, but the previous one should be. When solving
6650 // for "X*X < 5", for example, we should not return a root of 2.
6651 ConstantInt *R1Val = EvaluateConstantChrecAtConstant(this,
6652 R1->getValue(),
6653 SE);
6654 if (Range.contains(R1Val->getValue())) {
6655 // The next iteration must be out of the range...
6656 ConstantInt *NextVal =
6657 ConstantInt::get(SE.getContext(), R1->getValue()->getValue()+1);
6658
6659 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
6660 if (!Range.contains(R1Val->getValue()))
6661 return SE.getConstant(NextVal);
6662 return SE.getCouldNotCompute(); // Something strange happened
6663 }
6664
6665 // If R1 was not in the range, then it is a good return value. Make
6666 // sure that R1-1 WAS in the range though, just in case.
6667 ConstantInt *NextVal =
6668 ConstantInt::get(SE.getContext(), R1->getValue()->getValue()-1);
6669 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
6670 if (Range.contains(R1Val->getValue()))
6671 return R1;
6672 return SE.getCouldNotCompute(); // Something strange happened
6673 }
6674 }
6675 }
6676
6677 return SE.getCouldNotCompute();
6678}
6679
6680static const APInt gcd(const SCEVConstant *C1, const SCEVConstant *C2) {
6681 APInt A = C1->getValue()->getValue().abs();
6682 APInt B = C2->getValue()->getValue().abs();
6683 uint32_t ABW = A.getBitWidth();
6684 uint32_t BBW = B.getBitWidth();
6685
6686 if (ABW > BBW)
6687 B = B.zext(ABW);
6688 else if (ABW < BBW)
6689 A = A.zext(BBW);
6690
6691 return APIntOps::GreatestCommonDivisor(A, B);
6692}
6693
6694static const APInt srem(const SCEVConstant *C1, const SCEVConstant *C2) {
6695 APInt A = C1->getValue()->getValue();
6696 APInt B = C2->getValue()->getValue();
6697 uint32_t ABW = A.getBitWidth();
6698 uint32_t BBW = B.getBitWidth();
6699
6700 if (ABW > BBW)
6701 B = B.sext(ABW);
6702 else if (ABW < BBW)
6703 A = A.sext(BBW);
6704
6705 return APIntOps::srem(A, B);
6706}
6707
6708static const APInt sdiv(const SCEVConstant *C1, const SCEVConstant *C2) {
6709 APInt A = C1->getValue()->getValue();
6710 APInt B = C2->getValue()->getValue();
6711 uint32_t ABW = A.getBitWidth();
6712 uint32_t BBW = B.getBitWidth();
6713
6714 if (ABW > BBW)
6715 B = B.sext(ABW);
6716 else if (ABW < BBW)
6717 A = A.sext(BBW);
6718
6719 return APIntOps::sdiv(A, B);
6720}
6721
6722namespace {
6723struct SCEVGCD : public SCEVVisitor<SCEVGCD, const SCEV *> {
6724public:
6725 // Pattern match Step into Start. When Step is a multiply expression, find
6726 // the largest subexpression of Step that appears in Start. When Start is an
6727 // add expression, try to match Step in the subexpressions of Start, non
6728 // matching subexpressions are returned under Remainder.
6729 static const SCEV *findGCD(ScalarEvolution &SE, const SCEV *Start,
6730 const SCEV *Step, const SCEV **Remainder) {
6731 assert(Remainder && "Remainder should not be NULL");
6732 SCEVGCD R(SE, Step, SE.getConstant(Step->getType(), 0));
6733 const SCEV *Res = R.visit(Start);
6734 *Remainder = R.Remainder;
6735 return Res;
6736 }
6737
6738 SCEVGCD(ScalarEvolution &S, const SCEV *G, const SCEV *R)
6739 : SE(S), GCD(G), Remainder(R) {
6740 Zero = SE.getConstant(GCD->getType(), 0);
6741 One = SE.getConstant(GCD->getType(), 1);
6742 }
6743
6744 const SCEV *visitConstant(const SCEVConstant *Constant) {
6745 if (GCD == Constant || Constant == Zero)
6746 return GCD;
6747
6748 if (const SCEVConstant *CGCD = dyn_cast<SCEVConstant>(GCD)) {
6749 const SCEV *Res = SE.getConstant(gcd(Constant, CGCD));
6750 if (Res != One)
6751 return Res;
6752
6753 Remainder = SE.getConstant(srem(Constant, CGCD));
6754 Constant = cast<SCEVConstant>(SE.getMinusSCEV(Constant, Remainder));
6755 Res = SE.getConstant(gcd(Constant, CGCD));
6756 return Res;
6757 }
6758
6759 // When GCD is not a constant, it could be that the GCD is an Add, Mul,
6760 // AddRec, etc., in which case we want to find out how many times the
6761 // Constant divides the GCD: we then return that as the new GCD.
6762 const SCEV *Rem = Zero;
6763 const SCEV *Res = findGCD(SE, GCD, Constant, &Rem);
6764
6765 if (Res == One || Rem != Zero) {
6766 Remainder = Constant;
6767 return One;
6768 }
6769
6770 assert(isa<SCEVConstant>(Res) && "Res should be a constant");
6771 Remainder = SE.getConstant(srem(Constant, cast<SCEVConstant>(Res)));
6772 return Res;
6773 }
6774
6775 const SCEV *visitTruncateExpr(const SCEVTruncateExpr *Expr) {
6776 if (GCD != Expr)
6777 Remainder = Expr;
6778 return GCD;
6779 }
6780
6781 const SCEV *visitZeroExtendExpr(const SCEVZeroExtendExpr *Expr) {
6782 if (GCD != Expr)
6783 Remainder = Expr;
6784 return GCD;
6785 }
6786
6787 const SCEV *visitSignExtendExpr(const SCEVSignExtendExpr *Expr) {
6788 if (GCD != Expr)
6789 Remainder = Expr;
6790 return GCD;
6791 }
6792
6793 const SCEV *visitAddExpr(const SCEVAddExpr *Expr) {
6794 if (GCD == Expr)
6795 return GCD;
6796
6797 for (int i = 0, e = Expr->getNumOperands(); i < e; ++i) {
6798 const SCEV *Rem = Zero;
6799 const SCEV *Res = findGCD(SE, Expr->getOperand(e - 1 - i), GCD, &Rem);
6800
6801 // FIXME: There may be ambiguous situations: for instance,
6802 // GCD(-4 + (3 * %m), 2 * %m) where 2 divides -4 and %m divides (3 * %m).
6803 // The order in which the AddExpr is traversed computes a different GCD
6804 // and Remainder.
6805 if (Res != One)
6806 GCD = Res;
6807 if (Rem != Zero)
6808 Remainder = SE.getAddExpr(Remainder, Rem);
6809 }
6810
6811 return GCD;
6812 }
6813
6814 const SCEV *visitMulExpr(const SCEVMulExpr *Expr) {
6815 if (GCD == Expr)
6816 return GCD;
6817
6818 for (int i = 0, e = Expr->getNumOperands(); i < e; ++i) {
6819 if (Expr->getOperand(i) == GCD)
6820 return GCD;
6821 }
6822
6823 // If we have not returned yet, it means that GCD is not part of Expr.
6824 const SCEV *PartialGCD = One;
6825 for (int i = 0, e = Expr->getNumOperands(); i < e; ++i) {
6826 const SCEV *Rem = Zero;
6827 const SCEV *Res = findGCD(SE, Expr->getOperand(i), GCD, &Rem);
6828 if (Rem != Zero)
6829 // GCD does not divide Expr->getOperand(i).
6830 continue;
6831
6832 if (Res == GCD)
6833 return GCD;
6834 PartialGCD = SE.getMulExpr(PartialGCD, Res);
6835 if (PartialGCD == GCD)
6836 return GCD;
6837 }
6838
6839 if (PartialGCD != One)
6840 return PartialGCD;
6841
6842 Remainder = Expr;
6843 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(GCD);
6844 if (!Mul)
6845 return PartialGCD;
6846
6847 // When the GCD is a multiply expression, try to decompose it:
6848 // this occurs when Step does not divide the Start expression
6849 // as in: {(-4 + (3 * %m)),+,(2 * %m)}
6850 for (int i = 0, e = Mul->getNumOperands(); i < e; ++i) {
6851 const SCEV *Rem = Zero;
6852 const SCEV *Res = findGCD(SE, Expr, Mul->getOperand(i), &Rem);
6853 if (Rem == Zero) {
6854 Remainder = Rem;
6855 return Res;
6856 }
6857 }
6858
6859 return PartialGCD;
6860 }
6861
6862 const SCEV *visitUDivExpr(const SCEVUDivExpr *Expr) {
6863 if (GCD != Expr)
6864 Remainder = Expr;
6865 return GCD;
6866 }
6867
6868 const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) {
6869 if (GCD == Expr)
6870 return GCD;
6871
6872 if (!Expr->isAffine()) {
6873 Remainder = Expr;
6874 return GCD;
6875 }
6876
6877 const SCEV *Rem = Zero;
6878 const SCEV *Res = findGCD(SE, Expr->getOperand(0), GCD, &Rem);
6879 if (Rem != Zero)
6880 Remainder = SE.getAddExpr(Remainder, Rem);
6881
6882 Rem = Zero;
6883 Res = findGCD(SE, Expr->getOperand(1), Res, &Rem);
6884 if (Rem != Zero) {
6885 Remainder = Expr;
6886 return GCD;
6887 }
6888
6889 return Res;
6890 }
6891
6892 const SCEV *visitSMaxExpr(const SCEVSMaxExpr *Expr) {
6893 if (GCD != Expr)
6894 Remainder = Expr;
6895 return GCD;
6896 }
6897
6898 const SCEV *visitUMaxExpr(const SCEVUMaxExpr *Expr) {
6899 if (GCD != Expr)
6900 Remainder = Expr;
6901 return GCD;
6902 }
6903
6904 const SCEV *visitUnknown(const SCEVUnknown *Expr) {
6905 if (GCD != Expr)
6906 Remainder = Expr;
6907 return GCD;
6908 }
6909
6910 const SCEV *visitCouldNotCompute(const SCEVCouldNotCompute *Expr) {
6911 return One;
6912 }
6913
6914private:
6915 ScalarEvolution &SE;
6916 const SCEV *GCD, *Remainder, *Zero, *One;
6917};
6918
6919struct SCEVDivision : public SCEVVisitor<SCEVDivision, const SCEV *> {
6920public:
6921 // Remove from Start all multiples of Step.
6922 static const SCEV *divide(ScalarEvolution &SE, const SCEV *Start,
6923 const SCEV *Step) {
6924 SCEVDivision D(SE, Step);
6925 const SCEV *Rem = D.Zero;
6926 (void)Rem;
6927 // The division is guaranteed to succeed: Step should divide Start with no
6928 // remainder.
6929 assert(Step == SCEVGCD::findGCD(SE, Start, Step, &Rem) && Rem == D.Zero &&
6930 "Step should divide Start with no remainder.");
6931 return D.visit(Start);
6932 }
6933
6934 SCEVDivision(ScalarEvolution &S, const SCEV *G) : SE(S), GCD(G) {
6935 Zero = SE.getConstant(GCD->getType(), 0);
6936 One = SE.getConstant(GCD->getType(), 1);
6937 }
6938
6939 const SCEV *visitConstant(const SCEVConstant *Constant) {
6940 if (GCD == Constant)
6941 return One;
6942
6943 if (const SCEVConstant *CGCD = dyn_cast<SCEVConstant>(GCD))
6944 return SE.getConstant(sdiv(Constant, CGCD));
6945 return Constant;
6946 }
6947
6948 const SCEV *visitTruncateExpr(const SCEVTruncateExpr *Expr) {
6949 if (GCD == Expr)
6950 return One;
6951 return Expr;
6952 }
6953
6954 const SCEV *visitZeroExtendExpr(const SCEVZeroExtendExpr *Expr) {
6955 if (GCD == Expr)
6956 return One;
6957 return Expr;
6958 }
6959
6960 const SCEV *visitSignExtendExpr(const SCEVSignExtendExpr *Expr) {
6961 if (GCD == Expr)
6962 return One;
6963 return Expr;
6964 }
6965
6966 const SCEV *visitAddExpr(const SCEVAddExpr *Expr) {
6967 if (GCD == Expr)
6968 return One;
6969
6970 SmallVector<const SCEV *, 2> Operands;
6971 for (int i = 0, e = Expr->getNumOperands(); i < e; ++i)
6972 Operands.push_back(divide(SE, Expr->getOperand(i), GCD));
6973
6974 if (Operands.size() == 1)
6975 return Operands[0];
6976 return SE.getAddExpr(Operands);
6977 }
6978
6979 const SCEV *visitMulExpr(const SCEVMulExpr *Expr) {
6980 if (GCD == Expr)
6981 return One;
6982
6983 bool FoundGCDTerm = false;
6984 for (int i = 0, e = Expr->getNumOperands(); i < e; ++i)
6985 if (Expr->getOperand(i) == GCD)
6986 FoundGCDTerm = true;
6987
6988 SmallVector<const SCEV *, 2> Operands;
6989 if (FoundGCDTerm) {
6990 FoundGCDTerm = false;
6991 for (int i = 0, e = Expr->getNumOperands(); i < e; ++i) {
6992 if (FoundGCDTerm)
6993 Operands.push_back(Expr->getOperand(i));
6994 else if (Expr->getOperand(i) == GCD)
6995 FoundGCDTerm = true;
6996 else
6997 Operands.push_back(Expr->getOperand(i));
6998 }
6999 } else {
7000 FoundGCDTerm = false;
7001 const SCEV *PartialGCD = One;
7002 for (int i = 0, e = Expr->getNumOperands(); i < e; ++i) {
7003 if (PartialGCD == GCD) {
7004 Operands.push_back(Expr->getOperand(i));
7005 continue;
7006 }
7007
7008 const SCEV *Rem = Zero;
7009 const SCEV *Res = SCEVGCD::findGCD(SE, Expr->getOperand(i), GCD, &Rem);
7010 if (Rem == Zero) {
7011 PartialGCD = SE.getMulExpr(PartialGCD, Res);
7012 Operands.push_back(divide(SE, Expr->getOperand(i), GCD));
7013 } else {
7014 Operands.push_back(Expr->getOperand(i));
7015 }
7016 }
7017 }
7018
7019 if (Operands.size() == 1)
7020 return Operands[0];
7021 return SE.getMulExpr(Operands);
7022 }
7023
7024 const SCEV *visitUDivExpr(const SCEVUDivExpr *Expr) {
7025 if (GCD == Expr)
7026 return One;
7027 return Expr;
7028 }
7029
7030 const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) {
7031 if (GCD == Expr)
7032 return One;
7033
7034 assert(Expr->isAffine() && "Expr should be affine");
7035
7036 const SCEV *Start = divide(SE, Expr->getStart(), GCD);
7037 const SCEV *Step = divide(SE, Expr->getStepRecurrence(SE), GCD);
7038
7039 return SE.getAddRecExpr(Start, Step, Expr->getLoop(),
7040 Expr->getNoWrapFlags());
7041 }
7042
7043 const SCEV *visitSMaxExpr(const SCEVSMaxExpr *Expr) {
7044 if (GCD == Expr)
7045 return One;
7046 return Expr;
7047 }
7048
7049 const SCEV *visitUMaxExpr(const SCEVUMaxExpr *Expr) {
7050 if (GCD == Expr)
7051 return One;
7052 return Expr;
7053 }
7054
7055 const SCEV *visitUnknown(const SCEVUnknown *Expr) {
7056 if (GCD == Expr)
7057 return One;
7058 return Expr;
7059 }
7060
7061 const SCEV *visitCouldNotCompute(const SCEVCouldNotCompute *Expr) {
7062 return Expr;
7063 }
7064
7065private:
7066 ScalarEvolution &SE;
7067 const SCEV *GCD, *Zero, *One;
7068};
7069}
7070
7071/// Splits the SCEV into two vectors of SCEVs representing the subscripts and
7072/// sizes of an array access. Returns the remainder of the delinearization that
7073/// is the offset start of the array. The SCEV->delinearize algorithm computes
7074/// the multiples of SCEV coefficients: that is a pattern matching of sub
7075/// expressions in the stride and base of a SCEV corresponding to the
7076/// computation of a GCD (greatest common divisor) of base and stride. When
7077/// SCEV->delinearize fails, it returns the SCEV unchanged.
7078///
7079/// For example: when analyzing the memory access A[i][j][k] in this loop nest
7080///
7081/// void foo(long n, long m, long o, double A[n][m][o]) {
7082///
7083/// for (long i = 0; i < n; i++)
7084/// for (long j = 0; j < m; j++)
7085/// for (long k = 0; k < o; k++)
7086/// A[i][j][k] = 1.0;
7087/// }
7088///
7089/// the delinearization input is the following AddRec SCEV:
7090///
7091/// AddRec: {{{%A,+,(8 * %m * %o)}<%for.i>,+,(8 * %o)}<%for.j>,+,8}<%for.k>
7092///
7093/// From this SCEV, we are able to say that the base offset of the access is %A
7094/// because it appears as an offset that does not divide any of the strides in
7095/// the loops:
7096///
7097/// CHECK: Base offset: %A
7098///
7099/// and then SCEV->delinearize determines the size of some of the dimensions of
7100/// the array as these are the multiples by which the strides are happening:
7101///
7102/// CHECK: ArrayDecl[UnknownSize][%m][%o] with elements of sizeof(double) bytes.
7103///
7104/// Note that the outermost dimension remains of UnknownSize because there are
7105/// no strides that would help identifying the size of the last dimension: when
7106/// the array has been statically allocated, one could compute the size of that
7107/// dimension by dividing the overall size of the array by the size of the known
7108/// dimensions: %m * %o * 8.
7109///
7110/// Finally delinearize provides the access functions for the array reference
7111/// that does correspond to A[i][j][k] of the above C testcase:
7112///
7113/// CHECK: ArrayRef[{0,+,1}<%for.i>][{0,+,1}<%for.j>][{0,+,1}<%for.k>]
7114///
7115/// The testcases are checking the output of a function pass:
7116/// DelinearizationPass that walks through all loads and stores of a function
7117/// asking for the SCEV of the memory access with respect to all enclosing
7118/// loops, calling SCEV->delinearize on that and printing the results.
7119
7120const SCEV *
7121SCEVAddRecExpr::delinearize(ScalarEvolution &SE,
7122 SmallVectorImpl<const SCEV *> &Subscripts,
7123 SmallVectorImpl<const SCEV *> &Sizes) const {
7124 // Early exit in case this SCEV is not an affine multivariate function.
7125 if (!this->isAffine())
7126 return this;
7127
7128 const SCEV *Start = this->getStart();
7129 const SCEV *Step = this->getStepRecurrence(SE);
7130
7131 // Build the SCEV representation of the cannonical induction variable in the
7132 // loop of this SCEV.
7133 const SCEV *Zero = SE.getConstant(this->getType(), 0);
7134 const SCEV *One = SE.getConstant(this->getType(), 1);
7135 const SCEV *IV =
7136 SE.getAddRecExpr(Zero, One, this->getLoop(), this->getNoWrapFlags());
7137
7138 DEBUG(dbgs() << "(delinearize: " << *this << "\n");
7139
7140 // Currently we fail to delinearize when the stride of this SCEV is 1. We
7141 // could decide to not fail in this case: we could just return 1 for the size
7142 // of the subscript, and this same SCEV for the access function.
7143 if (Step == One) {
7144 DEBUG(dbgs() << "failed to delinearize " << *this << "\n)\n");
7145 return this;
7146 }
7147
7148 // Find the GCD and Remainder of the Start and Step coefficients of this SCEV.
7149 const SCEV *Remainder = NULL;
7150 const SCEV *GCD = SCEVGCD::findGCD(SE, Start, Step, &Remainder);
7151
7152 DEBUG(dbgs() << "GCD: " << *GCD << "\n");
7153 DEBUG(dbgs() << "Remainder: " << *Remainder << "\n");
7154
7155 // Same remark as above: we currently fail the delinearization, although we
7156 // can very well handle this special case.
7157 if (GCD == One) {
7158 DEBUG(dbgs() << "failed to delinearize " << *this << "\n)\n");
7159 return this;
7160 }
7161
7162 // As findGCD computed Remainder, GCD divides "Start - Remainder." The
7163 // Quotient is then this SCEV without Remainder, scaled down by the GCD. The
7164 // Quotient is what will be used in the next subscript delinearization.
7165 const SCEV *Quotient =
7166 SCEVDivision::divide(SE, SE.getMinusSCEV(Start, Remainder), GCD);
7167 DEBUG(dbgs() << "Quotient: " << *Quotient << "\n");
7168
7169 const SCEV *Rem;
7170 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Quotient))
7171 // Recursively call delinearize on the Quotient until there are no more
7172 // multiples that can be recognized.
7173 Rem = AR->delinearize(SE, Subscripts, Sizes);
7174 else
7175 Rem = Quotient;
7176
7177 // Scale up the cannonical induction variable IV by whatever remains from the
7178 // Step after division by the GCD: the GCD is the size of all the sub-array.
7179 if (Step != GCD) {
7180 Step = SCEVDivision::divide(SE, Step, GCD);
7181 IV = SE.getMulExpr(IV, Step);
7182 }
7183 // The access function in the current subscript is computed as the cannonical
7184 // induction variable IV (potentially scaled up by the step) and offset by
7185 // Rem, the offset of delinearization in the sub-array.
7186 const SCEV *Index = SE.getAddExpr(IV, Rem);
7187
7188 // Record the access function and the size of the current subscript.
7189 Subscripts.push_back(Index);
7190 Sizes.push_back(GCD);
7191
7192#ifndef NDEBUG
7193 int Size = Sizes.size();
7194 DEBUG(dbgs() << "succeeded to delinearize " << *this << "\n");
7195 DEBUG(dbgs() << "ArrayDecl[UnknownSize]");
7196 for (int i = 0; i < Size - 1; i++)
7197 DEBUG(dbgs() << "[" << *Sizes[i] << "]");
7198 DEBUG(dbgs() << " with elements of " << *Sizes[Size - 1] << " bytes.\n");
7199
7200 DEBUG(dbgs() << "ArrayRef");
7201 for (int i = 0; i < Size; i++)
7202 DEBUG(dbgs() << "[" << *Subscripts[i] << "]");
7203 DEBUG(dbgs() << "\n)\n");
7204#endif
7205
7206 return Remainder;
7207}
7208
7209//===----------------------------------------------------------------------===//
7210// SCEVCallbackVH Class Implementation
7211//===----------------------------------------------------------------------===//
7212
7213void ScalarEvolution::SCEVCallbackVH::deleted() {
7214 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
7215 if (PHINode *PN = dyn_cast<PHINode>(getValPtr()))
7216 SE->ConstantEvolutionLoopExitValue.erase(PN);
7217 SE->ValueExprMap.erase(getValPtr());
7218 // this now dangles!
7219}
7220
7221void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *V) {
7222 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
7223
7224 // Forget all the expressions associated with users of the old value,
7225 // so that future queries will recompute the expressions using the new
7226 // value.
7227 Value *Old = getValPtr();
7228 SmallVector<User *, 16> Worklist;
7229 SmallPtrSet<User *, 8> Visited;
7230 for (Value::use_iterator UI = Old->use_begin(), UE = Old->use_end();
7231 UI != UE; ++UI)
7232 Worklist.push_back(*UI);
7233 while (!Worklist.empty()) {
7234 User *U = Worklist.pop_back_val();
7235 // Deleting the Old value will cause this to dangle. Postpone
7236 // that until everything else is done.
7237 if (U == Old)
7238 continue;
7239 if (!Visited.insert(U))
7240 continue;
7241 if (PHINode *PN = dyn_cast<PHINode>(U))
7242 SE->ConstantEvolutionLoopExitValue.erase(PN);
7243 SE->ValueExprMap.erase(U);
7244 for (Value::use_iterator UI = U->use_begin(), UE = U->use_end();
7245 UI != UE; ++UI)
7246 Worklist.push_back(*UI);
7247 }
7248 // Delete the Old value.
7249 if (PHINode *PN = dyn_cast<PHINode>(Old))
7250 SE->ConstantEvolutionLoopExitValue.erase(PN);
7251 SE->ValueExprMap.erase(Old);
7252 // this now dangles!
7253}
7254
7255ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se)
7256 : CallbackVH(V), SE(se) {}
7257
7258//===----------------------------------------------------------------------===//
7259// ScalarEvolution Class Implementation
7260//===----------------------------------------------------------------------===//
7261
7262ScalarEvolution::ScalarEvolution()
7263 : FunctionPass(ID), ValuesAtScopes(64), LoopDispositions(64), BlockDispositions(64), FirstUnknown(0) {
7264 initializeScalarEvolutionPass(*PassRegistry::getPassRegistry());
7265}
7266
7267bool ScalarEvolution::runOnFunction(Function &F) {
7268 this->F = &F;
7269 LI = &getAnalysis<LoopInfo>();
7270 TD = getAnalysisIfAvailable<DataLayout>();
7271 TLI = &getAnalysis<TargetLibraryInfo>();
7272 DT = &getAnalysis<DominatorTree>();
7273 return false;
7274}
7275
7276void ScalarEvolution::releaseMemory() {
7277 // Iterate through all the SCEVUnknown instances and call their
7278 // destructors, so that they release their references to their values.
7279 for (SCEVUnknown *U = FirstUnknown; U; U = U->Next)
7280 U->~SCEVUnknown();
7281 FirstUnknown = 0;
7282
7283 ValueExprMap.clear();
7284
7285 // Free any extra memory created for ExitNotTakenInfo in the unlikely event
7286 // that a loop had multiple computable exits.
7287 for (DenseMap<const Loop*, BackedgeTakenInfo>::iterator I =
7288 BackedgeTakenCounts.begin(), E = BackedgeTakenCounts.end();
7289 I != E; ++I) {
7290 I->second.clear();
7291 }
7292
7293 assert(PendingLoopPredicates.empty() && "isImpliedCond garbage");
7294
7295 BackedgeTakenCounts.clear();
7296 ConstantEvolutionLoopExitValue.clear();
7297 ValuesAtScopes.clear();
7298 LoopDispositions.clear();
7299 BlockDispositions.clear();
7300 UnsignedRanges.clear();
7301 SignedRanges.clear();
7302 UniqueSCEVs.clear();
7303 SCEVAllocator.Reset();
7304}
7305
7306void ScalarEvolution::getAnalysisUsage(AnalysisUsage &AU) const {
7307 AU.setPreservesAll();
7308 AU.addRequiredTransitive<LoopInfo>();
7309 AU.addRequiredTransitive<DominatorTree>();
7310 AU.addRequired<TargetLibraryInfo>();
7311}
7312
7313bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) {
7314 return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L));
7315}
7316
7317static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE,
7318 const Loop *L) {
7319 // Print all inner loops first
7320 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
7321 PrintLoopInfo(OS, SE, *I);
7322
7323 OS << "Loop ";
7324 WriteAsOperand(OS, L->getHeader(), /*PrintType=*/false);
7325 OS << ": ";
7326
7327 SmallVector<BasicBlock *, 8> ExitBlocks;
7328 L->getExitBlocks(ExitBlocks);
7329 if (ExitBlocks.size() != 1)
7330 OS << "<multiple exits> ";
7331
7332 if (SE->hasLoopInvariantBackedgeTakenCount(L)) {
7333 OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L);
7334 } else {
7335 OS << "Unpredictable backedge-taken count. ";
7336 }
7337
7338 OS << "\n"
7339 "Loop ";
7340 WriteAsOperand(OS, L->getHeader(), /*PrintType=*/false);
7341 OS << ": ";
7342
7343 if (!isa<SCEVCouldNotCompute>(SE->getMaxBackedgeTakenCount(L))) {
7344 OS << "max backedge-taken count is " << *SE->getMaxBackedgeTakenCount(L);
7345 } else {
7346 OS << "Unpredictable max backedge-taken count. ";
7347 }
7348
7349 OS << "\n";
7350}
7351
7352void ScalarEvolution::print(raw_ostream &OS, const Module *) const {
7353 // ScalarEvolution's implementation of the print method is to print
7354 // out SCEV values of all instructions that are interesting. Doing
7355 // this potentially causes it to create new SCEV objects though,
7356 // which technically conflicts with the const qualifier. This isn't
7357 // observable from outside the class though, so casting away the
7358 // const isn't dangerous.
7359 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
7360
7361 OS << "Classifying expressions for: ";
7362 WriteAsOperand(OS, F, /*PrintType=*/false);
7363 OS << "\n";
7364 for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I)
7365 if (isSCEVable(I->getType()) && !isa<CmpInst>(*I)) {
7366 OS << *I << '\n';
7367 OS << " --> ";
7368 const SCEV *SV = SE.getSCEV(&*I);
7369 SV->print(OS);
7370
7371 const Loop *L = LI->getLoopFor((*I).getParent());
7372
7373 const SCEV *AtUse = SE.getSCEVAtScope(SV, L);
7374 if (AtUse != SV) {
7375 OS << " --> ";
7376 AtUse->print(OS);
7377 }
7378
7379 if (L) {
7380 OS << "\t\t" "Exits: ";
7381 const SCEV *ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop());
7382 if (!SE.isLoopInvariant(ExitValue, L)) {
7383 OS << "<<Unknown>>";
7384 } else {
7385 OS << *ExitValue;
7386 }
7387 }
7388
7389 OS << "\n";
7390 }
7391
7392 OS << "Determining loop execution counts for: ";
7393 WriteAsOperand(OS, F, /*PrintType=*/false);
7394 OS << "\n";
7395 for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I)
7396 PrintLoopInfo(OS, &SE, *I);
7397}
7398
7399ScalarEvolution::LoopDisposition
7400ScalarEvolution::getLoopDisposition(const SCEV *S, const Loop *L) {
7401 SmallVector<std::pair<const Loop *, LoopDisposition>, 2> &Values = LoopDispositions[S];
7402 for (unsigned u = 0; u < Values.size(); u++) {
7403 if (Values[u].first == L)
7404 return Values[u].second;
7405 }
7406 Values.push_back(std::make_pair(L, LoopVariant));
7407 LoopDisposition D = computeLoopDisposition(S, L);
7408 SmallVector<std::pair<const Loop *, LoopDisposition>, 2> &Values2 = LoopDispositions[S];
7409 for (unsigned u = Values2.size(); u > 0; u--) {
7410 if (Values2[u - 1].first == L) {
7411 Values2[u - 1].second = D;
7412 break;
7413 }
7414 }
7415 return D;
7416}
7417
7418ScalarEvolution::LoopDisposition
7419ScalarEvolution::computeLoopDisposition(const SCEV *S, const Loop *L) {
7420 switch (S->getSCEVType()) {
7421 case scConstant:
7422 return LoopInvariant;
7423 case scTruncate:
7424 case scZeroExtend:
7425 case scSignExtend:
7426 return getLoopDisposition(cast<SCEVCastExpr>(S)->getOperand(), L);
7427 case scAddRecExpr: {
7428 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S);
7429
7430 // If L is the addrec's loop, it's computable.
7431 if (AR->getLoop() == L)
7432 return LoopComputable;
7433
7434 // Add recurrences are never invariant in the function-body (null loop).
7435 if (!L)
7436 return LoopVariant;
7437
7438 // This recurrence is variant w.r.t. L if L contains AR's loop.
7439 if (L->contains(AR->getLoop()))
7440 return LoopVariant;
7441
7442 // This recurrence is invariant w.r.t. L if AR's loop contains L.
7443 if (AR->getLoop()->contains(L))
7444 return LoopInvariant;
7445
7446 // This recurrence is variant w.r.t. L if any of its operands
7447 // are variant.
7448 for (SCEVAddRecExpr::op_iterator I = AR->op_begin(), E = AR->op_end();
7449 I != E; ++I)
7450 if (!isLoopInvariant(*I, L))
7451 return LoopVariant;
7452
7453 // Otherwise it's loop-invariant.
7454 return LoopInvariant;
7455 }
7456 case scAddExpr:
7457 case scMulExpr:
7458 case scUMaxExpr:
7459 case scSMaxExpr: {
7460 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S);
7461 bool HasVarying = false;
7462 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
7463 I != E; ++I) {
7464 LoopDisposition D = getLoopDisposition(*I, L);
7465 if (D == LoopVariant)
7466 return LoopVariant;
7467 if (D == LoopComputable)
7468 HasVarying = true;
7469 }
7470 return HasVarying ? LoopComputable : LoopInvariant;
7471 }
7472 case scUDivExpr: {
7473 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
7474 LoopDisposition LD = getLoopDisposition(UDiv->getLHS(), L);
7475 if (LD == LoopVariant)
7476 return LoopVariant;
7477 LoopDisposition RD = getLoopDisposition(UDiv->getRHS(), L);
7478 if (RD == LoopVariant)
7479 return LoopVariant;
7480 return (LD == LoopInvariant && RD == LoopInvariant) ?
7481 LoopInvariant : LoopComputable;
7482 }
7483 case scUnknown:
7484 // All non-instruction values are loop invariant. All instructions are loop
7485 // invariant if they are not contained in the specified loop.
7486 // Instructions are never considered invariant in the function body
7487 // (null loop) because they are defined within the "loop".
7488 if (Instruction *I = dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue()))
7489 return (L && !L->contains(I)) ? LoopInvariant : LoopVariant;
7490 return LoopInvariant;
7491 case scCouldNotCompute:
7492 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
7493 default: llvm_unreachable("Unknown SCEV kind!");
7494 }
7495}
7496
7497bool ScalarEvolution::isLoopInvariant(const SCEV *S, const Loop *L) {
7498 return getLoopDisposition(S, L) == LoopInvariant;
7499}
7500
7501bool ScalarEvolution::hasComputableLoopEvolution(const SCEV *S, const Loop *L) {
7502 return getLoopDisposition(S, L) == LoopComputable;
7503}
7504
7505ScalarEvolution::BlockDisposition
7506ScalarEvolution::getBlockDisposition(const SCEV *S, const BasicBlock *BB) {
7507 SmallVector<std::pair<const BasicBlock *, BlockDisposition>, 2> &Values = BlockDispositions[S];
7508 for (unsigned u = 0; u < Values.size(); u++) {
7509 if (Values[u].first == BB)
7510 return Values[u].second;
7511 }
7512 Values.push_back(std::make_pair(BB, DoesNotDominateBlock));
7513 BlockDisposition D = computeBlockDisposition(S, BB);
7514 SmallVector<std::pair<const BasicBlock *, BlockDisposition>, 2> &Values2 = BlockDispositions[S];
7515 for (unsigned u = Values2.size(); u > 0; u--) {
7516 if (Values2[u - 1].first == BB) {
7517 Values2[u - 1].second = D;
7518 break;
7519 }
7520 }
7521 return D;
7522}
7523
7524ScalarEvolution::BlockDisposition
7525ScalarEvolution::computeBlockDisposition(const SCEV *S, const BasicBlock *BB) {
7526 switch (S->getSCEVType()) {
7527 case scConstant:
7528 return ProperlyDominatesBlock;
7529 case scTruncate:
7530 case scZeroExtend:
7531 case scSignExtend:
7532 return getBlockDisposition(cast<SCEVCastExpr>(S)->getOperand(), BB);
7533 case scAddRecExpr: {
7534 // This uses a "dominates" query instead of "properly dominates" query
7535 // to test for proper dominance too, because the instruction which
7536 // produces the addrec's value is a PHI, and a PHI effectively properly
7537 // dominates its entire containing block.
7538 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S);
7539 if (!DT->dominates(AR->getLoop()->getHeader(), BB))
7540 return DoesNotDominateBlock;
7541 }
7542 // FALL THROUGH into SCEVNAryExpr handling.
7543 case scAddExpr:
7544 case scMulExpr:
7545 case scUMaxExpr:
7546 case scSMaxExpr: {
7547 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S);
7548 bool Proper = true;
7549 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
7550 I != E; ++I) {
7551 BlockDisposition D = getBlockDisposition(*I, BB);
7552 if (D == DoesNotDominateBlock)
7553 return DoesNotDominateBlock;
7554 if (D == DominatesBlock)
7555 Proper = false;
7556 }
7557 return Proper ? ProperlyDominatesBlock : DominatesBlock;
7558 }
7559 case scUDivExpr: {
7560 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
7561 const SCEV *LHS = UDiv->getLHS(), *RHS = UDiv->getRHS();
7562 BlockDisposition LD = getBlockDisposition(LHS, BB);
7563 if (LD == DoesNotDominateBlock)
7564 return DoesNotDominateBlock;
7565 BlockDisposition RD = getBlockDisposition(RHS, BB);
7566 if (RD == DoesNotDominateBlock)
7567 return DoesNotDominateBlock;
7568 return (LD == ProperlyDominatesBlock && RD == ProperlyDominatesBlock) ?
7569 ProperlyDominatesBlock : DominatesBlock;
7570 }
7571 case scUnknown:
7572 if (Instruction *I =
7573 dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) {
7574 if (I->getParent() == BB)
7575 return DominatesBlock;
7576 if (DT->properlyDominates(I->getParent(), BB))
7577 return ProperlyDominatesBlock;
7578 return DoesNotDominateBlock;
7579 }
7580 return ProperlyDominatesBlock;
7581 case scCouldNotCompute:
7582 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
7583 default:
7584 llvm_unreachable("Unknown SCEV kind!");
7585 }
7586}
7587
7588bool ScalarEvolution::dominates(const SCEV *S, const BasicBlock *BB) {
7589 return getBlockDisposition(S, BB) >= DominatesBlock;
7590}
7591
7592bool ScalarEvolution::properlyDominates(const SCEV *S, const BasicBlock *BB) {
7593 return getBlockDisposition(S, BB) == ProperlyDominatesBlock;
7594}
7595
7596namespace {
7597// Search for a SCEV expression node within an expression tree.
7598// Implements SCEVTraversal::Visitor.
7599struct SCEVSearch {
7600 const SCEV *Node;
7601 bool IsFound;
7602
7603 SCEVSearch(const SCEV *N): Node(N), IsFound(false) {}
7604
7605 bool follow(const SCEV *S) {
7606 IsFound |= (S == Node);
7607 return !IsFound;
7608 }
7609 bool isDone() const { return IsFound; }
7610};
7611}
7612
7613bool ScalarEvolution::hasOperand(const SCEV *S, const SCEV *Op) const {
7614 SCEVSearch Search(Op);
7615 visitAll(S, Search);
7616 return Search.IsFound;
7617}
7618
7619void ScalarEvolution::forgetMemoizedResults(const SCEV *S) {
7620 ValuesAtScopes.erase(S);
7621 LoopDispositions.erase(S);
7622 BlockDispositions.erase(S);
7623 UnsignedRanges.erase(S);
7624 SignedRanges.erase(S);
7625
7626 for (DenseMap<const Loop*, BackedgeTakenInfo>::iterator I =
7627 BackedgeTakenCounts.begin(), E = BackedgeTakenCounts.end(); I != E; ) {
7628 BackedgeTakenInfo &BEInfo = I->second;
7629 if (BEInfo.hasOperand(S, this)) {
7630 BEInfo.clear();
7631 BackedgeTakenCounts.erase(I++);
7632 }
7633 else
7634 ++I;
7635 }
7636}
7637
7638typedef DenseMap<const Loop *, std::string> VerifyMap;
7639
7640/// replaceSubString - Replaces all occurences of From in Str with To.
7641static void replaceSubString(std::string &Str, StringRef From, StringRef To) {
7642 size_t Pos = 0;
7643 while ((Pos = Str.find(From, Pos)) != std::string::npos) {
7644 Str.replace(Pos, From.size(), To.data(), To.size());
7645 Pos += To.size();
7646 }
7647}
7648
7649/// getLoopBackedgeTakenCounts - Helper method for verifyAnalysis.
7650static void
7651getLoopBackedgeTakenCounts(Loop *L, VerifyMap &Map, ScalarEvolution &SE) {
7652 for (Loop::reverse_iterator I = L->rbegin(), E = L->rend(); I != E; ++I) {
7653 getLoopBackedgeTakenCounts(*I, Map, SE); // recurse.
7654
7655 std::string &S = Map[L];
7656 if (S.empty()) {
7657 raw_string_ostream OS(S);
7658 SE.getBackedgeTakenCount(L)->print(OS);
7659
7660 // false and 0 are semantically equivalent. This can happen in dead loops.
7661 replaceSubString(OS.str(), "false", "0");
7662 // Remove wrap flags, their use in SCEV is highly fragile.
7663 // FIXME: Remove this when SCEV gets smarter about them.
7664 replaceSubString(OS.str(), "<nw>", "");
7665 replaceSubString(OS.str(), "<nsw>", "");
7666 replaceSubString(OS.str(), "<nuw>", "");
7667 }
7668 }
7669}
7670
7671void ScalarEvolution::verifyAnalysis() const {
7672 if (!VerifySCEV)
7673 return;
7674
7675 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
7676
7677 // Gather stringified backedge taken counts for all loops using SCEV's caches.
7678 // FIXME: It would be much better to store actual values instead of strings,
7679 // but SCEV pointers will change if we drop the caches.
7680 VerifyMap BackedgeDumpsOld, BackedgeDumpsNew;
7681 for (LoopInfo::reverse_iterator I = LI->rbegin(), E = LI->rend(); I != E; ++I)
7682 getLoopBackedgeTakenCounts(*I, BackedgeDumpsOld, SE);
7683
7684 // Gather stringified backedge taken counts for all loops without using
7685 // SCEV's caches.
7686 SE.releaseMemory();
7687 for (LoopInfo::reverse_iterator I = LI->rbegin(), E = LI->rend(); I != E; ++I)
7688 getLoopBackedgeTakenCounts(*I, BackedgeDumpsNew, SE);
7689
7690 // Now compare whether they're the same with and without caches. This allows
7691 // verifying that no pass changed the cache.
7692 assert(BackedgeDumpsOld.size() == BackedgeDumpsNew.size() &&
7693 "New loops suddenly appeared!");
7694
7695 for (VerifyMap::iterator OldI = BackedgeDumpsOld.begin(),
7696 OldE = BackedgeDumpsOld.end(),
7697 NewI = BackedgeDumpsNew.begin();
7698 OldI != OldE; ++OldI, ++NewI) {
7699 assert(OldI->first == NewI->first && "Loop order changed!");
7700
7701 // Compare the stringified SCEVs. We don't care if undef backedgetaken count
7702 // changes.
7703 // FIXME: We currently ignore SCEV changes from/to CouldNotCompute. This
7704 // means that a pass is buggy or SCEV has to learn a new pattern but is
7705 // usually not harmful.
7706 if (OldI->second != NewI->second &&
7707 OldI->second.find("undef") == std::string::npos &&
7708 NewI->second.find("undef") == std::string::npos &&
7709 OldI->second != "***COULDNOTCOMPUTE***" &&
7710 NewI->second != "***COULDNOTCOMPUTE***") {
7711 dbgs() << "SCEVValidator: SCEV for loop '"
7712 << OldI->first->getHeader()->getName()
7713 << "' changed from '" << OldI->second
7714 << "' to '" << NewI->second << "'!\n";
7715 std::abort();
7716 }
7717 }
7718
7719 // TODO: Verify more things.
7720}
6222 FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType());
6223 FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType());
6224 } else {
6225 FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType());
6226 FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType());
6227 }
6228 }
6229
6230 // Canonicalize the query to match the way instcombine will have
6231 // canonicalized the comparison.
6232 if (SimplifyICmpOperands(Pred, LHS, RHS))
6233 if (LHS == RHS)
6234 return CmpInst::isTrueWhenEqual(Pred);
6235 if (SimplifyICmpOperands(FoundPred, FoundLHS, FoundRHS))
6236 if (FoundLHS == FoundRHS)
6237 return CmpInst::isFalseWhenEqual(FoundPred);
6238
6239 // Check to see if we can make the LHS or RHS match.
6240 if (LHS == FoundRHS || RHS == FoundLHS) {
6241 if (isa<SCEVConstant>(RHS)) {
6242 std::swap(FoundLHS, FoundRHS);
6243 FoundPred = ICmpInst::getSwappedPredicate(FoundPred);
6244 } else {
6245 std::swap(LHS, RHS);
6246 Pred = ICmpInst::getSwappedPredicate(Pred);
6247 }
6248 }
6249
6250 // Check whether the found predicate is the same as the desired predicate.
6251 if (FoundPred == Pred)
6252 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS);
6253
6254 // Check whether swapping the found predicate makes it the same as the
6255 // desired predicate.
6256 if (ICmpInst::getSwappedPredicate(FoundPred) == Pred) {
6257 if (isa<SCEVConstant>(RHS))
6258 return isImpliedCondOperands(Pred, LHS, RHS, FoundRHS, FoundLHS);
6259 else
6260 return isImpliedCondOperands(ICmpInst::getSwappedPredicate(Pred),
6261 RHS, LHS, FoundLHS, FoundRHS);
6262 }
6263
6264 // Check whether the actual condition is beyond sufficient.
6265 if (FoundPred == ICmpInst::ICMP_EQ)
6266 if (ICmpInst::isTrueWhenEqual(Pred))
6267 if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS))
6268 return true;
6269 if (Pred == ICmpInst::ICMP_NE)
6270 if (!ICmpInst::isTrueWhenEqual(FoundPred))
6271 if (isImpliedCondOperands(FoundPred, LHS, RHS, FoundLHS, FoundRHS))
6272 return true;
6273
6274 // Otherwise assume the worst.
6275 return false;
6276}
6277
6278/// isImpliedCondOperands - Test whether the condition described by Pred,
6279/// LHS, and RHS is true whenever the condition described by Pred, FoundLHS,
6280/// and FoundRHS is true.
6281bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred,
6282 const SCEV *LHS, const SCEV *RHS,
6283 const SCEV *FoundLHS,
6284 const SCEV *FoundRHS) {
6285 return isImpliedCondOperandsHelper(Pred, LHS, RHS,
6286 FoundLHS, FoundRHS) ||
6287 // ~x < ~y --> x > y
6288 isImpliedCondOperandsHelper(Pred, LHS, RHS,
6289 getNotSCEV(FoundRHS),
6290 getNotSCEV(FoundLHS));
6291}
6292
6293/// isImpliedCondOperandsHelper - Test whether the condition described by
6294/// Pred, LHS, and RHS is true whenever the condition described by Pred,
6295/// FoundLHS, and FoundRHS is true.
6296bool
6297ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred,
6298 const SCEV *LHS, const SCEV *RHS,
6299 const SCEV *FoundLHS,
6300 const SCEV *FoundRHS) {
6301 switch (Pred) {
6302 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
6303 case ICmpInst::ICMP_EQ:
6304 case ICmpInst::ICMP_NE:
6305 if (HasSameValue(LHS, FoundLHS) && HasSameValue(RHS, FoundRHS))
6306 return true;
6307 break;
6308 case ICmpInst::ICMP_SLT:
6309 case ICmpInst::ICMP_SLE:
6310 if (isKnownPredicateWithRanges(ICmpInst::ICMP_SLE, LHS, FoundLHS) &&
6311 isKnownPredicateWithRanges(ICmpInst::ICMP_SGE, RHS, FoundRHS))
6312 return true;
6313 break;
6314 case ICmpInst::ICMP_SGT:
6315 case ICmpInst::ICMP_SGE:
6316 if (isKnownPredicateWithRanges(ICmpInst::ICMP_SGE, LHS, FoundLHS) &&
6317 isKnownPredicateWithRanges(ICmpInst::ICMP_SLE, RHS, FoundRHS))
6318 return true;
6319 break;
6320 case ICmpInst::ICMP_ULT:
6321 case ICmpInst::ICMP_ULE:
6322 if (isKnownPredicateWithRanges(ICmpInst::ICMP_ULE, LHS, FoundLHS) &&
6323 isKnownPredicateWithRanges(ICmpInst::ICMP_UGE, RHS, FoundRHS))
6324 return true;
6325 break;
6326 case ICmpInst::ICMP_UGT:
6327 case ICmpInst::ICMP_UGE:
6328 if (isKnownPredicateWithRanges(ICmpInst::ICMP_UGE, LHS, FoundLHS) &&
6329 isKnownPredicateWithRanges(ICmpInst::ICMP_ULE, RHS, FoundRHS))
6330 return true;
6331 break;
6332 }
6333
6334 return false;
6335}
6336
6337// Verify if an linear IV with positive stride can overflow when in a
6338// less-than comparison, knowing the invariant term of the comparison, the
6339// stride and the knowledge of NSW/NUW flags on the recurrence.
6340bool ScalarEvolution::doesIVOverflowOnLT(const SCEV *RHS, const SCEV *Stride,
6341 bool IsSigned, bool NoWrap) {
6342 if (NoWrap) return false;
6343
6344 unsigned BitWidth = getTypeSizeInBits(RHS->getType());
6345 const SCEV *One = getConstant(Stride->getType(), 1);
6346
6347 if (IsSigned) {
6348 APInt MaxRHS = getSignedRange(RHS).getSignedMax();
6349 APInt MaxValue = APInt::getSignedMaxValue(BitWidth);
6350 APInt MaxStrideMinusOne = getSignedRange(getMinusSCEV(Stride, One))
6351 .getSignedMax();
6352
6353 // SMaxRHS + SMaxStrideMinusOne > SMaxValue => overflow!
6354 return (MaxValue - MaxStrideMinusOne).slt(MaxRHS);
6355 }
6356
6357 APInt MaxRHS = getUnsignedRange(RHS).getUnsignedMax();
6358 APInt MaxValue = APInt::getMaxValue(BitWidth);
6359 APInt MaxStrideMinusOne = getUnsignedRange(getMinusSCEV(Stride, One))
6360 .getUnsignedMax();
6361
6362 // UMaxRHS + UMaxStrideMinusOne > UMaxValue => overflow!
6363 return (MaxValue - MaxStrideMinusOne).ult(MaxRHS);
6364}
6365
6366// Verify if an linear IV with negative stride can overflow when in a
6367// greater-than comparison, knowing the invariant term of the comparison,
6368// the stride and the knowledge of NSW/NUW flags on the recurrence.
6369bool ScalarEvolution::doesIVOverflowOnGT(const SCEV *RHS, const SCEV *Stride,
6370 bool IsSigned, bool NoWrap) {
6371 if (NoWrap) return false;
6372
6373 unsigned BitWidth = getTypeSizeInBits(RHS->getType());
6374 const SCEV *One = getConstant(Stride->getType(), 1);
6375
6376 if (IsSigned) {
6377 APInt MinRHS = getSignedRange(RHS).getSignedMin();
6378 APInt MinValue = APInt::getSignedMinValue(BitWidth);
6379 APInt MaxStrideMinusOne = getSignedRange(getMinusSCEV(Stride, One))
6380 .getSignedMax();
6381
6382 // SMinRHS - SMaxStrideMinusOne < SMinValue => overflow!
6383 return (MinValue + MaxStrideMinusOne).sgt(MinRHS);
6384 }
6385
6386 APInt MinRHS = getUnsignedRange(RHS).getUnsignedMin();
6387 APInt MinValue = APInt::getMinValue(BitWidth);
6388 APInt MaxStrideMinusOne = getUnsignedRange(getMinusSCEV(Stride, One))
6389 .getUnsignedMax();
6390
6391 // UMinRHS - UMaxStrideMinusOne < UMinValue => overflow!
6392 return (MinValue + MaxStrideMinusOne).ugt(MinRHS);
6393}
6394
6395// Compute the backedge taken count knowing the interval difference, the
6396// stride and presence of the equality in the comparison.
6397const SCEV *ScalarEvolution::computeBECount(const SCEV *Delta, const SCEV *Step,
6398 bool Equality) {
6399 const SCEV *One = getConstant(Step->getType(), 1);
6400 Delta = Equality ? getAddExpr(Delta, Step)
6401 : getAddExpr(Delta, getMinusSCEV(Step, One));
6402 return getUDivExpr(Delta, Step);
6403}
6404
6405/// HowManyLessThans - Return the number of times a backedge containing the
6406/// specified less-than comparison will execute. If not computable, return
6407/// CouldNotCompute.
6408///
6409/// @param IsSubExpr is true when the LHS < RHS condition does not directly
6410/// control the branch. In this case, we can only compute an iteration count for
6411/// a subexpression that cannot overflow before evaluating true.
6412ScalarEvolution::ExitLimit
6413ScalarEvolution::HowManyLessThans(const SCEV *LHS, const SCEV *RHS,
6414 const Loop *L, bool IsSigned,
6415 bool IsSubExpr) {
6416 // We handle only IV < Invariant
6417 if (!isLoopInvariant(RHS, L))
6418 return getCouldNotCompute();
6419
6420 const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS);
6421
6422 // Avoid weird loops
6423 if (!IV || IV->getLoop() != L || !IV->isAffine())
6424 return getCouldNotCompute();
6425
6426 bool NoWrap = !IsSubExpr &&
6427 IV->getNoWrapFlags(IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW);
6428
6429 const SCEV *Stride = IV->getStepRecurrence(*this);
6430
6431 // Avoid negative or zero stride values
6432 if (!isKnownPositive(Stride))
6433 return getCouldNotCompute();
6434
6435 // Avoid proven overflow cases: this will ensure that the backedge taken count
6436 // will not generate any unsigned overflow. Relaxed no-overflow conditions
6437 // exploit NoWrapFlags, allowing to optimize in presence of undefined
6438 // behaviors like the case of C language.
6439 if (!Stride->isOne() && doesIVOverflowOnLT(RHS, Stride, IsSigned, NoWrap))
6440 return getCouldNotCompute();
6441
6442 ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SLT
6443 : ICmpInst::ICMP_ULT;
6444 const SCEV *Start = IV->getStart();
6445 const SCEV *End = RHS;
6446 if (!isLoopEntryGuardedByCond(L, Cond, getMinusSCEV(Start, Stride), RHS))
6447 End = IsSigned ? getSMaxExpr(RHS, Start)
6448 : getUMaxExpr(RHS, Start);
6449
6450 const SCEV *BECount = computeBECount(getMinusSCEV(End, Start), Stride, false);
6451
6452 APInt MinStart = IsSigned ? getSignedRange(Start).getSignedMin()
6453 : getUnsignedRange(Start).getUnsignedMin();
6454
6455 APInt MinStride = IsSigned ? getSignedRange(Stride).getSignedMin()
6456 : getUnsignedRange(Stride).getUnsignedMin();
6457
6458 unsigned BitWidth = getTypeSizeInBits(LHS->getType());
6459 APInt Limit = IsSigned ? APInt::getSignedMaxValue(BitWidth) - (MinStride - 1)
6460 : APInt::getMaxValue(BitWidth) - (MinStride - 1);
6461
6462 // Although End can be a MAX expression we estimate MaxEnd considering only
6463 // the case End = RHS. This is safe because in the other case (End - Start)
6464 // is zero, leading to a zero maximum backedge taken count.
6465 APInt MaxEnd =
6466 IsSigned ? APIntOps::smin(getSignedRange(RHS).getSignedMax(), Limit)
6467 : APIntOps::umin(getUnsignedRange(RHS).getUnsignedMax(), Limit);
6468
6469 const SCEV *MaxBECount = getCouldNotCompute();
6470 if (isa<SCEVConstant>(BECount))
6471 MaxBECount = BECount;
6472 else
6473 MaxBECount = computeBECount(getConstant(MaxEnd - MinStart),
6474 getConstant(MinStride), false);
6475
6476 if (isa<SCEVCouldNotCompute>(MaxBECount))
6477 MaxBECount = BECount;
6478
6479 return ExitLimit(BECount, MaxBECount);
6480}
6481
6482ScalarEvolution::ExitLimit
6483ScalarEvolution::HowManyGreaterThans(const SCEV *LHS, const SCEV *RHS,
6484 const Loop *L, bool IsSigned,
6485 bool IsSubExpr) {
6486 // We handle only IV > Invariant
6487 if (!isLoopInvariant(RHS, L))
6488 return getCouldNotCompute();
6489
6490 const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS);
6491
6492 // Avoid weird loops
6493 if (!IV || IV->getLoop() != L || !IV->isAffine())
6494 return getCouldNotCompute();
6495
6496 bool NoWrap = !IsSubExpr &&
6497 IV->getNoWrapFlags(IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW);
6498
6499 const SCEV *Stride = getNegativeSCEV(IV->getStepRecurrence(*this));
6500
6501 // Avoid negative or zero stride values
6502 if (!isKnownPositive(Stride))
6503 return getCouldNotCompute();
6504
6505 // Avoid proven overflow cases: this will ensure that the backedge taken count
6506 // will not generate any unsigned overflow. Relaxed no-overflow conditions
6507 // exploit NoWrapFlags, allowing to optimize in presence of undefined
6508 // behaviors like the case of C language.
6509 if (!Stride->isOne() && doesIVOverflowOnGT(RHS, Stride, IsSigned, NoWrap))
6510 return getCouldNotCompute();
6511
6512 ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SGT
6513 : ICmpInst::ICMP_UGT;
6514
6515 const SCEV *Start = IV->getStart();
6516 const SCEV *End = RHS;
6517 if (!isLoopEntryGuardedByCond(L, Cond, getAddExpr(Start, Stride), RHS))
6518 End = IsSigned ? getSMinExpr(RHS, Start)
6519 : getUMinExpr(RHS, Start);
6520
6521 const SCEV *BECount = computeBECount(getMinusSCEV(Start, End), Stride, false);
6522
6523 APInt MaxStart = IsSigned ? getSignedRange(Start).getSignedMax()
6524 : getUnsignedRange(Start).getUnsignedMax();
6525
6526 APInt MinStride = IsSigned ? getSignedRange(Stride).getSignedMin()
6527 : getUnsignedRange(Stride).getUnsignedMin();
6528
6529 unsigned BitWidth = getTypeSizeInBits(LHS->getType());
6530 APInt Limit = IsSigned ? APInt::getSignedMinValue(BitWidth) + (MinStride - 1)
6531 : APInt::getMinValue(BitWidth) + (MinStride - 1);
6532
6533 // Although End can be a MIN expression we estimate MinEnd considering only
6534 // the case End = RHS. This is safe because in the other case (Start - End)
6535 // is zero, leading to a zero maximum backedge taken count.
6536 APInt MinEnd =
6537 IsSigned ? APIntOps::smax(getSignedRange(RHS).getSignedMin(), Limit)
6538 : APIntOps::umax(getUnsignedRange(RHS).getUnsignedMin(), Limit);
6539
6540
6541 const SCEV *MaxBECount = getCouldNotCompute();
6542 if (isa<SCEVConstant>(BECount))
6543 MaxBECount = BECount;
6544 else
6545 MaxBECount = computeBECount(getConstant(MaxStart - MinEnd),
6546 getConstant(MinStride), false);
6547
6548 if (isa<SCEVCouldNotCompute>(MaxBECount))
6549 MaxBECount = BECount;
6550
6551 return ExitLimit(BECount, MaxBECount);
6552}
6553
6554/// getNumIterationsInRange - Return the number of iterations of this loop that
6555/// produce values in the specified constant range. Another way of looking at
6556/// this is that it returns the first iteration number where the value is not in
6557/// the condition, thus computing the exit count. If the iteration count can't
6558/// be computed, an instance of SCEVCouldNotCompute is returned.
6559const SCEV *SCEVAddRecExpr::getNumIterationsInRange(ConstantRange Range,
6560 ScalarEvolution &SE) const {
6561 if (Range.isFullSet()) // Infinite loop.
6562 return SE.getCouldNotCompute();
6563
6564 // If the start is a non-zero constant, shift the range to simplify things.
6565 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart()))
6566 if (!SC->getValue()->isZero()) {
6567 SmallVector<const SCEV *, 4> Operands(op_begin(), op_end());
6568 Operands[0] = SE.getConstant(SC->getType(), 0);
6569 const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop(),
6570 getNoWrapFlags(FlagNW));
6571 if (const SCEVAddRecExpr *ShiftedAddRec =
6572 dyn_cast<SCEVAddRecExpr>(Shifted))
6573 return ShiftedAddRec->getNumIterationsInRange(
6574 Range.subtract(SC->getValue()->getValue()), SE);
6575 // This is strange and shouldn't happen.
6576 return SE.getCouldNotCompute();
6577 }
6578
6579 // The only time we can solve this is when we have all constant indices.
6580 // Otherwise, we cannot determine the overflow conditions.
6581 for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
6582 if (!isa<SCEVConstant>(getOperand(i)))
6583 return SE.getCouldNotCompute();
6584
6585
6586 // Okay at this point we know that all elements of the chrec are constants and
6587 // that the start element is zero.
6588
6589 // First check to see if the range contains zero. If not, the first
6590 // iteration exits.
6591 unsigned BitWidth = SE.getTypeSizeInBits(getType());
6592 if (!Range.contains(APInt(BitWidth, 0)))
6593 return SE.getConstant(getType(), 0);
6594
6595 if (isAffine()) {
6596 // If this is an affine expression then we have this situation:
6597 // Solve {0,+,A} in Range === Ax in Range
6598
6599 // We know that zero is in the range. If A is positive then we know that
6600 // the upper value of the range must be the first possible exit value.
6601 // If A is negative then the lower of the range is the last possible loop
6602 // value. Also note that we already checked for a full range.
6603 APInt One(BitWidth,1);
6604 APInt A = cast<SCEVConstant>(getOperand(1))->getValue()->getValue();
6605 APInt End = A.sge(One) ? (Range.getUpper() - One) : Range.getLower();
6606
6607 // The exit value should be (End+A)/A.
6608 APInt ExitVal = (End + A).udiv(A);
6609 ConstantInt *ExitValue = ConstantInt::get(SE.getContext(), ExitVal);
6610
6611 // Evaluate at the exit value. If we really did fall out of the valid
6612 // range, then we computed our trip count, otherwise wrap around or other
6613 // things must have happened.
6614 ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE);
6615 if (Range.contains(Val->getValue()))
6616 return SE.getCouldNotCompute(); // Something strange happened
6617
6618 // Ensure that the previous value is in the range. This is a sanity check.
6619 assert(Range.contains(
6620 EvaluateConstantChrecAtConstant(this,
6621 ConstantInt::get(SE.getContext(), ExitVal - One), SE)->getValue()) &&
6622 "Linear scev computation is off in a bad way!");
6623 return SE.getConstant(ExitValue);
6624 } else if (isQuadratic()) {
6625 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of the
6626 // quadratic equation to solve it. To do this, we must frame our problem in
6627 // terms of figuring out when zero is crossed, instead of when
6628 // Range.getUpper() is crossed.
6629 SmallVector<const SCEV *, 4> NewOps(op_begin(), op_end());
6630 NewOps[0] = SE.getNegativeSCEV(SE.getConstant(Range.getUpper()));
6631 const SCEV *NewAddRec = SE.getAddRecExpr(NewOps, getLoop(),
6632 // getNoWrapFlags(FlagNW)
6633 FlagAnyWrap);
6634
6635 // Next, solve the constructed addrec
6636 std::pair<const SCEV *,const SCEV *> Roots =
6637 SolveQuadraticEquation(cast<SCEVAddRecExpr>(NewAddRec), SE);
6638 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
6639 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
6640 if (R1) {
6641 // Pick the smallest positive root value.
6642 if (ConstantInt *CB =
6643 dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT,
6644 R1->getValue(), R2->getValue()))) {
6645 if (CB->getZExtValue() == false)
6646 std::swap(R1, R2); // R1 is the minimum root now.
6647
6648 // Make sure the root is not off by one. The returned iteration should
6649 // not be in the range, but the previous one should be. When solving
6650 // for "X*X < 5", for example, we should not return a root of 2.
6651 ConstantInt *R1Val = EvaluateConstantChrecAtConstant(this,
6652 R1->getValue(),
6653 SE);
6654 if (Range.contains(R1Val->getValue())) {
6655 // The next iteration must be out of the range...
6656 ConstantInt *NextVal =
6657 ConstantInt::get(SE.getContext(), R1->getValue()->getValue()+1);
6658
6659 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
6660 if (!Range.contains(R1Val->getValue()))
6661 return SE.getConstant(NextVal);
6662 return SE.getCouldNotCompute(); // Something strange happened
6663 }
6664
6665 // If R1 was not in the range, then it is a good return value. Make
6666 // sure that R1-1 WAS in the range though, just in case.
6667 ConstantInt *NextVal =
6668 ConstantInt::get(SE.getContext(), R1->getValue()->getValue()-1);
6669 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
6670 if (Range.contains(R1Val->getValue()))
6671 return R1;
6672 return SE.getCouldNotCompute(); // Something strange happened
6673 }
6674 }
6675 }
6676
6677 return SE.getCouldNotCompute();
6678}
6679
6680static const APInt gcd(const SCEVConstant *C1, const SCEVConstant *C2) {
6681 APInt A = C1->getValue()->getValue().abs();
6682 APInt B = C2->getValue()->getValue().abs();
6683 uint32_t ABW = A.getBitWidth();
6684 uint32_t BBW = B.getBitWidth();
6685
6686 if (ABW > BBW)
6687 B = B.zext(ABW);
6688 else if (ABW < BBW)
6689 A = A.zext(BBW);
6690
6691 return APIntOps::GreatestCommonDivisor(A, B);
6692}
6693
6694static const APInt srem(const SCEVConstant *C1, const SCEVConstant *C2) {
6695 APInt A = C1->getValue()->getValue();
6696 APInt B = C2->getValue()->getValue();
6697 uint32_t ABW = A.getBitWidth();
6698 uint32_t BBW = B.getBitWidth();
6699
6700 if (ABW > BBW)
6701 B = B.sext(ABW);
6702 else if (ABW < BBW)
6703 A = A.sext(BBW);
6704
6705 return APIntOps::srem(A, B);
6706}
6707
6708static const APInt sdiv(const SCEVConstant *C1, const SCEVConstant *C2) {
6709 APInt A = C1->getValue()->getValue();
6710 APInt B = C2->getValue()->getValue();
6711 uint32_t ABW = A.getBitWidth();
6712 uint32_t BBW = B.getBitWidth();
6713
6714 if (ABW > BBW)
6715 B = B.sext(ABW);
6716 else if (ABW < BBW)
6717 A = A.sext(BBW);
6718
6719 return APIntOps::sdiv(A, B);
6720}
6721
6722namespace {
6723struct SCEVGCD : public SCEVVisitor<SCEVGCD, const SCEV *> {
6724public:
6725 // Pattern match Step into Start. When Step is a multiply expression, find
6726 // the largest subexpression of Step that appears in Start. When Start is an
6727 // add expression, try to match Step in the subexpressions of Start, non
6728 // matching subexpressions are returned under Remainder.
6729 static const SCEV *findGCD(ScalarEvolution &SE, const SCEV *Start,
6730 const SCEV *Step, const SCEV **Remainder) {
6731 assert(Remainder && "Remainder should not be NULL");
6732 SCEVGCD R(SE, Step, SE.getConstant(Step->getType(), 0));
6733 const SCEV *Res = R.visit(Start);
6734 *Remainder = R.Remainder;
6735 return Res;
6736 }
6737
6738 SCEVGCD(ScalarEvolution &S, const SCEV *G, const SCEV *R)
6739 : SE(S), GCD(G), Remainder(R) {
6740 Zero = SE.getConstant(GCD->getType(), 0);
6741 One = SE.getConstant(GCD->getType(), 1);
6742 }
6743
6744 const SCEV *visitConstant(const SCEVConstant *Constant) {
6745 if (GCD == Constant || Constant == Zero)
6746 return GCD;
6747
6748 if (const SCEVConstant *CGCD = dyn_cast<SCEVConstant>(GCD)) {
6749 const SCEV *Res = SE.getConstant(gcd(Constant, CGCD));
6750 if (Res != One)
6751 return Res;
6752
6753 Remainder = SE.getConstant(srem(Constant, CGCD));
6754 Constant = cast<SCEVConstant>(SE.getMinusSCEV(Constant, Remainder));
6755 Res = SE.getConstant(gcd(Constant, CGCD));
6756 return Res;
6757 }
6758
6759 // When GCD is not a constant, it could be that the GCD is an Add, Mul,
6760 // AddRec, etc., in which case we want to find out how many times the
6761 // Constant divides the GCD: we then return that as the new GCD.
6762 const SCEV *Rem = Zero;
6763 const SCEV *Res = findGCD(SE, GCD, Constant, &Rem);
6764
6765 if (Res == One || Rem != Zero) {
6766 Remainder = Constant;
6767 return One;
6768 }
6769
6770 assert(isa<SCEVConstant>(Res) && "Res should be a constant");
6771 Remainder = SE.getConstant(srem(Constant, cast<SCEVConstant>(Res)));
6772 return Res;
6773 }
6774
6775 const SCEV *visitTruncateExpr(const SCEVTruncateExpr *Expr) {
6776 if (GCD != Expr)
6777 Remainder = Expr;
6778 return GCD;
6779 }
6780
6781 const SCEV *visitZeroExtendExpr(const SCEVZeroExtendExpr *Expr) {
6782 if (GCD != Expr)
6783 Remainder = Expr;
6784 return GCD;
6785 }
6786
6787 const SCEV *visitSignExtendExpr(const SCEVSignExtendExpr *Expr) {
6788 if (GCD != Expr)
6789 Remainder = Expr;
6790 return GCD;
6791 }
6792
6793 const SCEV *visitAddExpr(const SCEVAddExpr *Expr) {
6794 if (GCD == Expr)
6795 return GCD;
6796
6797 for (int i = 0, e = Expr->getNumOperands(); i < e; ++i) {
6798 const SCEV *Rem = Zero;
6799 const SCEV *Res = findGCD(SE, Expr->getOperand(e - 1 - i), GCD, &Rem);
6800
6801 // FIXME: There may be ambiguous situations: for instance,
6802 // GCD(-4 + (3 * %m), 2 * %m) where 2 divides -4 and %m divides (3 * %m).
6803 // The order in which the AddExpr is traversed computes a different GCD
6804 // and Remainder.
6805 if (Res != One)
6806 GCD = Res;
6807 if (Rem != Zero)
6808 Remainder = SE.getAddExpr(Remainder, Rem);
6809 }
6810
6811 return GCD;
6812 }
6813
6814 const SCEV *visitMulExpr(const SCEVMulExpr *Expr) {
6815 if (GCD == Expr)
6816 return GCD;
6817
6818 for (int i = 0, e = Expr->getNumOperands(); i < e; ++i) {
6819 if (Expr->getOperand(i) == GCD)
6820 return GCD;
6821 }
6822
6823 // If we have not returned yet, it means that GCD is not part of Expr.
6824 const SCEV *PartialGCD = One;
6825 for (int i = 0, e = Expr->getNumOperands(); i < e; ++i) {
6826 const SCEV *Rem = Zero;
6827 const SCEV *Res = findGCD(SE, Expr->getOperand(i), GCD, &Rem);
6828 if (Rem != Zero)
6829 // GCD does not divide Expr->getOperand(i).
6830 continue;
6831
6832 if (Res == GCD)
6833 return GCD;
6834 PartialGCD = SE.getMulExpr(PartialGCD, Res);
6835 if (PartialGCD == GCD)
6836 return GCD;
6837 }
6838
6839 if (PartialGCD != One)
6840 return PartialGCD;
6841
6842 Remainder = Expr;
6843 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(GCD);
6844 if (!Mul)
6845 return PartialGCD;
6846
6847 // When the GCD is a multiply expression, try to decompose it:
6848 // this occurs when Step does not divide the Start expression
6849 // as in: {(-4 + (3 * %m)),+,(2 * %m)}
6850 for (int i = 0, e = Mul->getNumOperands(); i < e; ++i) {
6851 const SCEV *Rem = Zero;
6852 const SCEV *Res = findGCD(SE, Expr, Mul->getOperand(i), &Rem);
6853 if (Rem == Zero) {
6854 Remainder = Rem;
6855 return Res;
6856 }
6857 }
6858
6859 return PartialGCD;
6860 }
6861
6862 const SCEV *visitUDivExpr(const SCEVUDivExpr *Expr) {
6863 if (GCD != Expr)
6864 Remainder = Expr;
6865 return GCD;
6866 }
6867
6868 const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) {
6869 if (GCD == Expr)
6870 return GCD;
6871
6872 if (!Expr->isAffine()) {
6873 Remainder = Expr;
6874 return GCD;
6875 }
6876
6877 const SCEV *Rem = Zero;
6878 const SCEV *Res = findGCD(SE, Expr->getOperand(0), GCD, &Rem);
6879 if (Rem != Zero)
6880 Remainder = SE.getAddExpr(Remainder, Rem);
6881
6882 Rem = Zero;
6883 Res = findGCD(SE, Expr->getOperand(1), Res, &Rem);
6884 if (Rem != Zero) {
6885 Remainder = Expr;
6886 return GCD;
6887 }
6888
6889 return Res;
6890 }
6891
6892 const SCEV *visitSMaxExpr(const SCEVSMaxExpr *Expr) {
6893 if (GCD != Expr)
6894 Remainder = Expr;
6895 return GCD;
6896 }
6897
6898 const SCEV *visitUMaxExpr(const SCEVUMaxExpr *Expr) {
6899 if (GCD != Expr)
6900 Remainder = Expr;
6901 return GCD;
6902 }
6903
6904 const SCEV *visitUnknown(const SCEVUnknown *Expr) {
6905 if (GCD != Expr)
6906 Remainder = Expr;
6907 return GCD;
6908 }
6909
6910 const SCEV *visitCouldNotCompute(const SCEVCouldNotCompute *Expr) {
6911 return One;
6912 }
6913
6914private:
6915 ScalarEvolution &SE;
6916 const SCEV *GCD, *Remainder, *Zero, *One;
6917};
6918
6919struct SCEVDivision : public SCEVVisitor<SCEVDivision, const SCEV *> {
6920public:
6921 // Remove from Start all multiples of Step.
6922 static const SCEV *divide(ScalarEvolution &SE, const SCEV *Start,
6923 const SCEV *Step) {
6924 SCEVDivision D(SE, Step);
6925 const SCEV *Rem = D.Zero;
6926 (void)Rem;
6927 // The division is guaranteed to succeed: Step should divide Start with no
6928 // remainder.
6929 assert(Step == SCEVGCD::findGCD(SE, Start, Step, &Rem) && Rem == D.Zero &&
6930 "Step should divide Start with no remainder.");
6931 return D.visit(Start);
6932 }
6933
6934 SCEVDivision(ScalarEvolution &S, const SCEV *G) : SE(S), GCD(G) {
6935 Zero = SE.getConstant(GCD->getType(), 0);
6936 One = SE.getConstant(GCD->getType(), 1);
6937 }
6938
6939 const SCEV *visitConstant(const SCEVConstant *Constant) {
6940 if (GCD == Constant)
6941 return One;
6942
6943 if (const SCEVConstant *CGCD = dyn_cast<SCEVConstant>(GCD))
6944 return SE.getConstant(sdiv(Constant, CGCD));
6945 return Constant;
6946 }
6947
6948 const SCEV *visitTruncateExpr(const SCEVTruncateExpr *Expr) {
6949 if (GCD == Expr)
6950 return One;
6951 return Expr;
6952 }
6953
6954 const SCEV *visitZeroExtendExpr(const SCEVZeroExtendExpr *Expr) {
6955 if (GCD == Expr)
6956 return One;
6957 return Expr;
6958 }
6959
6960 const SCEV *visitSignExtendExpr(const SCEVSignExtendExpr *Expr) {
6961 if (GCD == Expr)
6962 return One;
6963 return Expr;
6964 }
6965
6966 const SCEV *visitAddExpr(const SCEVAddExpr *Expr) {
6967 if (GCD == Expr)
6968 return One;
6969
6970 SmallVector<const SCEV *, 2> Operands;
6971 for (int i = 0, e = Expr->getNumOperands(); i < e; ++i)
6972 Operands.push_back(divide(SE, Expr->getOperand(i), GCD));
6973
6974 if (Operands.size() == 1)
6975 return Operands[0];
6976 return SE.getAddExpr(Operands);
6977 }
6978
6979 const SCEV *visitMulExpr(const SCEVMulExpr *Expr) {
6980 if (GCD == Expr)
6981 return One;
6982
6983 bool FoundGCDTerm = false;
6984 for (int i = 0, e = Expr->getNumOperands(); i < e; ++i)
6985 if (Expr->getOperand(i) == GCD)
6986 FoundGCDTerm = true;
6987
6988 SmallVector<const SCEV *, 2> Operands;
6989 if (FoundGCDTerm) {
6990 FoundGCDTerm = false;
6991 for (int i = 0, e = Expr->getNumOperands(); i < e; ++i) {
6992 if (FoundGCDTerm)
6993 Operands.push_back(Expr->getOperand(i));
6994 else if (Expr->getOperand(i) == GCD)
6995 FoundGCDTerm = true;
6996 else
6997 Operands.push_back(Expr->getOperand(i));
6998 }
6999 } else {
7000 FoundGCDTerm = false;
7001 const SCEV *PartialGCD = One;
7002 for (int i = 0, e = Expr->getNumOperands(); i < e; ++i) {
7003 if (PartialGCD == GCD) {
7004 Operands.push_back(Expr->getOperand(i));
7005 continue;
7006 }
7007
7008 const SCEV *Rem = Zero;
7009 const SCEV *Res = SCEVGCD::findGCD(SE, Expr->getOperand(i), GCD, &Rem);
7010 if (Rem == Zero) {
7011 PartialGCD = SE.getMulExpr(PartialGCD, Res);
7012 Operands.push_back(divide(SE, Expr->getOperand(i), GCD));
7013 } else {
7014 Operands.push_back(Expr->getOperand(i));
7015 }
7016 }
7017 }
7018
7019 if (Operands.size() == 1)
7020 return Operands[0];
7021 return SE.getMulExpr(Operands);
7022 }
7023
7024 const SCEV *visitUDivExpr(const SCEVUDivExpr *Expr) {
7025 if (GCD == Expr)
7026 return One;
7027 return Expr;
7028 }
7029
7030 const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) {
7031 if (GCD == Expr)
7032 return One;
7033
7034 assert(Expr->isAffine() && "Expr should be affine");
7035
7036 const SCEV *Start = divide(SE, Expr->getStart(), GCD);
7037 const SCEV *Step = divide(SE, Expr->getStepRecurrence(SE), GCD);
7038
7039 return SE.getAddRecExpr(Start, Step, Expr->getLoop(),
7040 Expr->getNoWrapFlags());
7041 }
7042
7043 const SCEV *visitSMaxExpr(const SCEVSMaxExpr *Expr) {
7044 if (GCD == Expr)
7045 return One;
7046 return Expr;
7047 }
7048
7049 const SCEV *visitUMaxExpr(const SCEVUMaxExpr *Expr) {
7050 if (GCD == Expr)
7051 return One;
7052 return Expr;
7053 }
7054
7055 const SCEV *visitUnknown(const SCEVUnknown *Expr) {
7056 if (GCD == Expr)
7057 return One;
7058 return Expr;
7059 }
7060
7061 const SCEV *visitCouldNotCompute(const SCEVCouldNotCompute *Expr) {
7062 return Expr;
7063 }
7064
7065private:
7066 ScalarEvolution &SE;
7067 const SCEV *GCD, *Zero, *One;
7068};
7069}
7070
7071/// Splits the SCEV into two vectors of SCEVs representing the subscripts and
7072/// sizes of an array access. Returns the remainder of the delinearization that
7073/// is the offset start of the array. The SCEV->delinearize algorithm computes
7074/// the multiples of SCEV coefficients: that is a pattern matching of sub
7075/// expressions in the stride and base of a SCEV corresponding to the
7076/// computation of a GCD (greatest common divisor) of base and stride. When
7077/// SCEV->delinearize fails, it returns the SCEV unchanged.
7078///
7079/// For example: when analyzing the memory access A[i][j][k] in this loop nest
7080///
7081/// void foo(long n, long m, long o, double A[n][m][o]) {
7082///
7083/// for (long i = 0; i < n; i++)
7084/// for (long j = 0; j < m; j++)
7085/// for (long k = 0; k < o; k++)
7086/// A[i][j][k] = 1.0;
7087/// }
7088///
7089/// the delinearization input is the following AddRec SCEV:
7090///
7091/// AddRec: {{{%A,+,(8 * %m * %o)}<%for.i>,+,(8 * %o)}<%for.j>,+,8}<%for.k>
7092///
7093/// From this SCEV, we are able to say that the base offset of the access is %A
7094/// because it appears as an offset that does not divide any of the strides in
7095/// the loops:
7096///
7097/// CHECK: Base offset: %A
7098///
7099/// and then SCEV->delinearize determines the size of some of the dimensions of
7100/// the array as these are the multiples by which the strides are happening:
7101///
7102/// CHECK: ArrayDecl[UnknownSize][%m][%o] with elements of sizeof(double) bytes.
7103///
7104/// Note that the outermost dimension remains of UnknownSize because there are
7105/// no strides that would help identifying the size of the last dimension: when
7106/// the array has been statically allocated, one could compute the size of that
7107/// dimension by dividing the overall size of the array by the size of the known
7108/// dimensions: %m * %o * 8.
7109///
7110/// Finally delinearize provides the access functions for the array reference
7111/// that does correspond to A[i][j][k] of the above C testcase:
7112///
7113/// CHECK: ArrayRef[{0,+,1}<%for.i>][{0,+,1}<%for.j>][{0,+,1}<%for.k>]
7114///
7115/// The testcases are checking the output of a function pass:
7116/// DelinearizationPass that walks through all loads and stores of a function
7117/// asking for the SCEV of the memory access with respect to all enclosing
7118/// loops, calling SCEV->delinearize on that and printing the results.
7119
7120const SCEV *
7121SCEVAddRecExpr::delinearize(ScalarEvolution &SE,
7122 SmallVectorImpl<const SCEV *> &Subscripts,
7123 SmallVectorImpl<const SCEV *> &Sizes) const {
7124 // Early exit in case this SCEV is not an affine multivariate function.
7125 if (!this->isAffine())
7126 return this;
7127
7128 const SCEV *Start = this->getStart();
7129 const SCEV *Step = this->getStepRecurrence(SE);
7130
7131 // Build the SCEV representation of the cannonical induction variable in the
7132 // loop of this SCEV.
7133 const SCEV *Zero = SE.getConstant(this->getType(), 0);
7134 const SCEV *One = SE.getConstant(this->getType(), 1);
7135 const SCEV *IV =
7136 SE.getAddRecExpr(Zero, One, this->getLoop(), this->getNoWrapFlags());
7137
7138 DEBUG(dbgs() << "(delinearize: " << *this << "\n");
7139
7140 // Currently we fail to delinearize when the stride of this SCEV is 1. We
7141 // could decide to not fail in this case: we could just return 1 for the size
7142 // of the subscript, and this same SCEV for the access function.
7143 if (Step == One) {
7144 DEBUG(dbgs() << "failed to delinearize " << *this << "\n)\n");
7145 return this;
7146 }
7147
7148 // Find the GCD and Remainder of the Start and Step coefficients of this SCEV.
7149 const SCEV *Remainder = NULL;
7150 const SCEV *GCD = SCEVGCD::findGCD(SE, Start, Step, &Remainder);
7151
7152 DEBUG(dbgs() << "GCD: " << *GCD << "\n");
7153 DEBUG(dbgs() << "Remainder: " << *Remainder << "\n");
7154
7155 // Same remark as above: we currently fail the delinearization, although we
7156 // can very well handle this special case.
7157 if (GCD == One) {
7158 DEBUG(dbgs() << "failed to delinearize " << *this << "\n)\n");
7159 return this;
7160 }
7161
7162 // As findGCD computed Remainder, GCD divides "Start - Remainder." The
7163 // Quotient is then this SCEV without Remainder, scaled down by the GCD. The
7164 // Quotient is what will be used in the next subscript delinearization.
7165 const SCEV *Quotient =
7166 SCEVDivision::divide(SE, SE.getMinusSCEV(Start, Remainder), GCD);
7167 DEBUG(dbgs() << "Quotient: " << *Quotient << "\n");
7168
7169 const SCEV *Rem;
7170 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Quotient))
7171 // Recursively call delinearize on the Quotient until there are no more
7172 // multiples that can be recognized.
7173 Rem = AR->delinearize(SE, Subscripts, Sizes);
7174 else
7175 Rem = Quotient;
7176
7177 // Scale up the cannonical induction variable IV by whatever remains from the
7178 // Step after division by the GCD: the GCD is the size of all the sub-array.
7179 if (Step != GCD) {
7180 Step = SCEVDivision::divide(SE, Step, GCD);
7181 IV = SE.getMulExpr(IV, Step);
7182 }
7183 // The access function in the current subscript is computed as the cannonical
7184 // induction variable IV (potentially scaled up by the step) and offset by
7185 // Rem, the offset of delinearization in the sub-array.
7186 const SCEV *Index = SE.getAddExpr(IV, Rem);
7187
7188 // Record the access function and the size of the current subscript.
7189 Subscripts.push_back(Index);
7190 Sizes.push_back(GCD);
7191
7192#ifndef NDEBUG
7193 int Size = Sizes.size();
7194 DEBUG(dbgs() << "succeeded to delinearize " << *this << "\n");
7195 DEBUG(dbgs() << "ArrayDecl[UnknownSize]");
7196 for (int i = 0; i < Size - 1; i++)
7197 DEBUG(dbgs() << "[" << *Sizes[i] << "]");
7198 DEBUG(dbgs() << " with elements of " << *Sizes[Size - 1] << " bytes.\n");
7199
7200 DEBUG(dbgs() << "ArrayRef");
7201 for (int i = 0; i < Size; i++)
7202 DEBUG(dbgs() << "[" << *Subscripts[i] << "]");
7203 DEBUG(dbgs() << "\n)\n");
7204#endif
7205
7206 return Remainder;
7207}
7208
7209//===----------------------------------------------------------------------===//
7210// SCEVCallbackVH Class Implementation
7211//===----------------------------------------------------------------------===//
7212
7213void ScalarEvolution::SCEVCallbackVH::deleted() {
7214 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
7215 if (PHINode *PN = dyn_cast<PHINode>(getValPtr()))
7216 SE->ConstantEvolutionLoopExitValue.erase(PN);
7217 SE->ValueExprMap.erase(getValPtr());
7218 // this now dangles!
7219}
7220
7221void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *V) {
7222 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
7223
7224 // Forget all the expressions associated with users of the old value,
7225 // so that future queries will recompute the expressions using the new
7226 // value.
7227 Value *Old = getValPtr();
7228 SmallVector<User *, 16> Worklist;
7229 SmallPtrSet<User *, 8> Visited;
7230 for (Value::use_iterator UI = Old->use_begin(), UE = Old->use_end();
7231 UI != UE; ++UI)
7232 Worklist.push_back(*UI);
7233 while (!Worklist.empty()) {
7234 User *U = Worklist.pop_back_val();
7235 // Deleting the Old value will cause this to dangle. Postpone
7236 // that until everything else is done.
7237 if (U == Old)
7238 continue;
7239 if (!Visited.insert(U))
7240 continue;
7241 if (PHINode *PN = dyn_cast<PHINode>(U))
7242 SE->ConstantEvolutionLoopExitValue.erase(PN);
7243 SE->ValueExprMap.erase(U);
7244 for (Value::use_iterator UI = U->use_begin(), UE = U->use_end();
7245 UI != UE; ++UI)
7246 Worklist.push_back(*UI);
7247 }
7248 // Delete the Old value.
7249 if (PHINode *PN = dyn_cast<PHINode>(Old))
7250 SE->ConstantEvolutionLoopExitValue.erase(PN);
7251 SE->ValueExprMap.erase(Old);
7252 // this now dangles!
7253}
7254
7255ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se)
7256 : CallbackVH(V), SE(se) {}
7257
7258//===----------------------------------------------------------------------===//
7259// ScalarEvolution Class Implementation
7260//===----------------------------------------------------------------------===//
7261
7262ScalarEvolution::ScalarEvolution()
7263 : FunctionPass(ID), ValuesAtScopes(64), LoopDispositions(64), BlockDispositions(64), FirstUnknown(0) {
7264 initializeScalarEvolutionPass(*PassRegistry::getPassRegistry());
7265}
7266
7267bool ScalarEvolution::runOnFunction(Function &F) {
7268 this->F = &F;
7269 LI = &getAnalysis<LoopInfo>();
7270 TD = getAnalysisIfAvailable<DataLayout>();
7271 TLI = &getAnalysis<TargetLibraryInfo>();
7272 DT = &getAnalysis<DominatorTree>();
7273 return false;
7274}
7275
7276void ScalarEvolution::releaseMemory() {
7277 // Iterate through all the SCEVUnknown instances and call their
7278 // destructors, so that they release their references to their values.
7279 for (SCEVUnknown *U = FirstUnknown; U; U = U->Next)
7280 U->~SCEVUnknown();
7281 FirstUnknown = 0;
7282
7283 ValueExprMap.clear();
7284
7285 // Free any extra memory created for ExitNotTakenInfo in the unlikely event
7286 // that a loop had multiple computable exits.
7287 for (DenseMap<const Loop*, BackedgeTakenInfo>::iterator I =
7288 BackedgeTakenCounts.begin(), E = BackedgeTakenCounts.end();
7289 I != E; ++I) {
7290 I->second.clear();
7291 }
7292
7293 assert(PendingLoopPredicates.empty() && "isImpliedCond garbage");
7294
7295 BackedgeTakenCounts.clear();
7296 ConstantEvolutionLoopExitValue.clear();
7297 ValuesAtScopes.clear();
7298 LoopDispositions.clear();
7299 BlockDispositions.clear();
7300 UnsignedRanges.clear();
7301 SignedRanges.clear();
7302 UniqueSCEVs.clear();
7303 SCEVAllocator.Reset();
7304}
7305
7306void ScalarEvolution::getAnalysisUsage(AnalysisUsage &AU) const {
7307 AU.setPreservesAll();
7308 AU.addRequiredTransitive<LoopInfo>();
7309 AU.addRequiredTransitive<DominatorTree>();
7310 AU.addRequired<TargetLibraryInfo>();
7311}
7312
7313bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) {
7314 return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L));
7315}
7316
7317static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE,
7318 const Loop *L) {
7319 // Print all inner loops first
7320 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
7321 PrintLoopInfo(OS, SE, *I);
7322
7323 OS << "Loop ";
7324 WriteAsOperand(OS, L->getHeader(), /*PrintType=*/false);
7325 OS << ": ";
7326
7327 SmallVector<BasicBlock *, 8> ExitBlocks;
7328 L->getExitBlocks(ExitBlocks);
7329 if (ExitBlocks.size() != 1)
7330 OS << "<multiple exits> ";
7331
7332 if (SE->hasLoopInvariantBackedgeTakenCount(L)) {
7333 OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L);
7334 } else {
7335 OS << "Unpredictable backedge-taken count. ";
7336 }
7337
7338 OS << "\n"
7339 "Loop ";
7340 WriteAsOperand(OS, L->getHeader(), /*PrintType=*/false);
7341 OS << ": ";
7342
7343 if (!isa<SCEVCouldNotCompute>(SE->getMaxBackedgeTakenCount(L))) {
7344 OS << "max backedge-taken count is " << *SE->getMaxBackedgeTakenCount(L);
7345 } else {
7346 OS << "Unpredictable max backedge-taken count. ";
7347 }
7348
7349 OS << "\n";
7350}
7351
7352void ScalarEvolution::print(raw_ostream &OS, const Module *) const {
7353 // ScalarEvolution's implementation of the print method is to print
7354 // out SCEV values of all instructions that are interesting. Doing
7355 // this potentially causes it to create new SCEV objects though,
7356 // which technically conflicts with the const qualifier. This isn't
7357 // observable from outside the class though, so casting away the
7358 // const isn't dangerous.
7359 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
7360
7361 OS << "Classifying expressions for: ";
7362 WriteAsOperand(OS, F, /*PrintType=*/false);
7363 OS << "\n";
7364 for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I)
7365 if (isSCEVable(I->getType()) && !isa<CmpInst>(*I)) {
7366 OS << *I << '\n';
7367 OS << " --> ";
7368 const SCEV *SV = SE.getSCEV(&*I);
7369 SV->print(OS);
7370
7371 const Loop *L = LI->getLoopFor((*I).getParent());
7372
7373 const SCEV *AtUse = SE.getSCEVAtScope(SV, L);
7374 if (AtUse != SV) {
7375 OS << " --> ";
7376 AtUse->print(OS);
7377 }
7378
7379 if (L) {
7380 OS << "\t\t" "Exits: ";
7381 const SCEV *ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop());
7382 if (!SE.isLoopInvariant(ExitValue, L)) {
7383 OS << "<<Unknown>>";
7384 } else {
7385 OS << *ExitValue;
7386 }
7387 }
7388
7389 OS << "\n";
7390 }
7391
7392 OS << "Determining loop execution counts for: ";
7393 WriteAsOperand(OS, F, /*PrintType=*/false);
7394 OS << "\n";
7395 for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I)
7396 PrintLoopInfo(OS, &SE, *I);
7397}
7398
7399ScalarEvolution::LoopDisposition
7400ScalarEvolution::getLoopDisposition(const SCEV *S, const Loop *L) {
7401 SmallVector<std::pair<const Loop *, LoopDisposition>, 2> &Values = LoopDispositions[S];
7402 for (unsigned u = 0; u < Values.size(); u++) {
7403 if (Values[u].first == L)
7404 return Values[u].second;
7405 }
7406 Values.push_back(std::make_pair(L, LoopVariant));
7407 LoopDisposition D = computeLoopDisposition(S, L);
7408 SmallVector<std::pair<const Loop *, LoopDisposition>, 2> &Values2 = LoopDispositions[S];
7409 for (unsigned u = Values2.size(); u > 0; u--) {
7410 if (Values2[u - 1].first == L) {
7411 Values2[u - 1].second = D;
7412 break;
7413 }
7414 }
7415 return D;
7416}
7417
7418ScalarEvolution::LoopDisposition
7419ScalarEvolution::computeLoopDisposition(const SCEV *S, const Loop *L) {
7420 switch (S->getSCEVType()) {
7421 case scConstant:
7422 return LoopInvariant;
7423 case scTruncate:
7424 case scZeroExtend:
7425 case scSignExtend:
7426 return getLoopDisposition(cast<SCEVCastExpr>(S)->getOperand(), L);
7427 case scAddRecExpr: {
7428 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S);
7429
7430 // If L is the addrec's loop, it's computable.
7431 if (AR->getLoop() == L)
7432 return LoopComputable;
7433
7434 // Add recurrences are never invariant in the function-body (null loop).
7435 if (!L)
7436 return LoopVariant;
7437
7438 // This recurrence is variant w.r.t. L if L contains AR's loop.
7439 if (L->contains(AR->getLoop()))
7440 return LoopVariant;
7441
7442 // This recurrence is invariant w.r.t. L if AR's loop contains L.
7443 if (AR->getLoop()->contains(L))
7444 return LoopInvariant;
7445
7446 // This recurrence is variant w.r.t. L if any of its operands
7447 // are variant.
7448 for (SCEVAddRecExpr::op_iterator I = AR->op_begin(), E = AR->op_end();
7449 I != E; ++I)
7450 if (!isLoopInvariant(*I, L))
7451 return LoopVariant;
7452
7453 // Otherwise it's loop-invariant.
7454 return LoopInvariant;
7455 }
7456 case scAddExpr:
7457 case scMulExpr:
7458 case scUMaxExpr:
7459 case scSMaxExpr: {
7460 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S);
7461 bool HasVarying = false;
7462 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
7463 I != E; ++I) {
7464 LoopDisposition D = getLoopDisposition(*I, L);
7465 if (D == LoopVariant)
7466 return LoopVariant;
7467 if (D == LoopComputable)
7468 HasVarying = true;
7469 }
7470 return HasVarying ? LoopComputable : LoopInvariant;
7471 }
7472 case scUDivExpr: {
7473 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
7474 LoopDisposition LD = getLoopDisposition(UDiv->getLHS(), L);
7475 if (LD == LoopVariant)
7476 return LoopVariant;
7477 LoopDisposition RD = getLoopDisposition(UDiv->getRHS(), L);
7478 if (RD == LoopVariant)
7479 return LoopVariant;
7480 return (LD == LoopInvariant && RD == LoopInvariant) ?
7481 LoopInvariant : LoopComputable;
7482 }
7483 case scUnknown:
7484 // All non-instruction values are loop invariant. All instructions are loop
7485 // invariant if they are not contained in the specified loop.
7486 // Instructions are never considered invariant in the function body
7487 // (null loop) because they are defined within the "loop".
7488 if (Instruction *I = dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue()))
7489 return (L && !L->contains(I)) ? LoopInvariant : LoopVariant;
7490 return LoopInvariant;
7491 case scCouldNotCompute:
7492 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
7493 default: llvm_unreachable("Unknown SCEV kind!");
7494 }
7495}
7496
7497bool ScalarEvolution::isLoopInvariant(const SCEV *S, const Loop *L) {
7498 return getLoopDisposition(S, L) == LoopInvariant;
7499}
7500
7501bool ScalarEvolution::hasComputableLoopEvolution(const SCEV *S, const Loop *L) {
7502 return getLoopDisposition(S, L) == LoopComputable;
7503}
7504
7505ScalarEvolution::BlockDisposition
7506ScalarEvolution::getBlockDisposition(const SCEV *S, const BasicBlock *BB) {
7507 SmallVector<std::pair<const BasicBlock *, BlockDisposition>, 2> &Values = BlockDispositions[S];
7508 for (unsigned u = 0; u < Values.size(); u++) {
7509 if (Values[u].first == BB)
7510 return Values[u].second;
7511 }
7512 Values.push_back(std::make_pair(BB, DoesNotDominateBlock));
7513 BlockDisposition D = computeBlockDisposition(S, BB);
7514 SmallVector<std::pair<const BasicBlock *, BlockDisposition>, 2> &Values2 = BlockDispositions[S];
7515 for (unsigned u = Values2.size(); u > 0; u--) {
7516 if (Values2[u - 1].first == BB) {
7517 Values2[u - 1].second = D;
7518 break;
7519 }
7520 }
7521 return D;
7522}
7523
7524ScalarEvolution::BlockDisposition
7525ScalarEvolution::computeBlockDisposition(const SCEV *S, const BasicBlock *BB) {
7526 switch (S->getSCEVType()) {
7527 case scConstant:
7528 return ProperlyDominatesBlock;
7529 case scTruncate:
7530 case scZeroExtend:
7531 case scSignExtend:
7532 return getBlockDisposition(cast<SCEVCastExpr>(S)->getOperand(), BB);
7533 case scAddRecExpr: {
7534 // This uses a "dominates" query instead of "properly dominates" query
7535 // to test for proper dominance too, because the instruction which
7536 // produces the addrec's value is a PHI, and a PHI effectively properly
7537 // dominates its entire containing block.
7538 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S);
7539 if (!DT->dominates(AR->getLoop()->getHeader(), BB))
7540 return DoesNotDominateBlock;
7541 }
7542 // FALL THROUGH into SCEVNAryExpr handling.
7543 case scAddExpr:
7544 case scMulExpr:
7545 case scUMaxExpr:
7546 case scSMaxExpr: {
7547 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S);
7548 bool Proper = true;
7549 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
7550 I != E; ++I) {
7551 BlockDisposition D = getBlockDisposition(*I, BB);
7552 if (D == DoesNotDominateBlock)
7553 return DoesNotDominateBlock;
7554 if (D == DominatesBlock)
7555 Proper = false;
7556 }
7557 return Proper ? ProperlyDominatesBlock : DominatesBlock;
7558 }
7559 case scUDivExpr: {
7560 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
7561 const SCEV *LHS = UDiv->getLHS(), *RHS = UDiv->getRHS();
7562 BlockDisposition LD = getBlockDisposition(LHS, BB);
7563 if (LD == DoesNotDominateBlock)
7564 return DoesNotDominateBlock;
7565 BlockDisposition RD = getBlockDisposition(RHS, BB);
7566 if (RD == DoesNotDominateBlock)
7567 return DoesNotDominateBlock;
7568 return (LD == ProperlyDominatesBlock && RD == ProperlyDominatesBlock) ?
7569 ProperlyDominatesBlock : DominatesBlock;
7570 }
7571 case scUnknown:
7572 if (Instruction *I =
7573 dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) {
7574 if (I->getParent() == BB)
7575 return DominatesBlock;
7576 if (DT->properlyDominates(I->getParent(), BB))
7577 return ProperlyDominatesBlock;
7578 return DoesNotDominateBlock;
7579 }
7580 return ProperlyDominatesBlock;
7581 case scCouldNotCompute:
7582 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
7583 default:
7584 llvm_unreachable("Unknown SCEV kind!");
7585 }
7586}
7587
7588bool ScalarEvolution::dominates(const SCEV *S, const BasicBlock *BB) {
7589 return getBlockDisposition(S, BB) >= DominatesBlock;
7590}
7591
7592bool ScalarEvolution::properlyDominates(const SCEV *S, const BasicBlock *BB) {
7593 return getBlockDisposition(S, BB) == ProperlyDominatesBlock;
7594}
7595
7596namespace {
7597// Search for a SCEV expression node within an expression tree.
7598// Implements SCEVTraversal::Visitor.
7599struct SCEVSearch {
7600 const SCEV *Node;
7601 bool IsFound;
7602
7603 SCEVSearch(const SCEV *N): Node(N), IsFound(false) {}
7604
7605 bool follow(const SCEV *S) {
7606 IsFound |= (S == Node);
7607 return !IsFound;
7608 }
7609 bool isDone() const { return IsFound; }
7610};
7611}
7612
7613bool ScalarEvolution::hasOperand(const SCEV *S, const SCEV *Op) const {
7614 SCEVSearch Search(Op);
7615 visitAll(S, Search);
7616 return Search.IsFound;
7617}
7618
7619void ScalarEvolution::forgetMemoizedResults(const SCEV *S) {
7620 ValuesAtScopes.erase(S);
7621 LoopDispositions.erase(S);
7622 BlockDispositions.erase(S);
7623 UnsignedRanges.erase(S);
7624 SignedRanges.erase(S);
7625
7626 for (DenseMap<const Loop*, BackedgeTakenInfo>::iterator I =
7627 BackedgeTakenCounts.begin(), E = BackedgeTakenCounts.end(); I != E; ) {
7628 BackedgeTakenInfo &BEInfo = I->second;
7629 if (BEInfo.hasOperand(S, this)) {
7630 BEInfo.clear();
7631 BackedgeTakenCounts.erase(I++);
7632 }
7633 else
7634 ++I;
7635 }
7636}
7637
7638typedef DenseMap<const Loop *, std::string> VerifyMap;
7639
7640/// replaceSubString - Replaces all occurences of From in Str with To.
7641static void replaceSubString(std::string &Str, StringRef From, StringRef To) {
7642 size_t Pos = 0;
7643 while ((Pos = Str.find(From, Pos)) != std::string::npos) {
7644 Str.replace(Pos, From.size(), To.data(), To.size());
7645 Pos += To.size();
7646 }
7647}
7648
7649/// getLoopBackedgeTakenCounts - Helper method for verifyAnalysis.
7650static void
7651getLoopBackedgeTakenCounts(Loop *L, VerifyMap &Map, ScalarEvolution &SE) {
7652 for (Loop::reverse_iterator I = L->rbegin(), E = L->rend(); I != E; ++I) {
7653 getLoopBackedgeTakenCounts(*I, Map, SE); // recurse.
7654
7655 std::string &S = Map[L];
7656 if (S.empty()) {
7657 raw_string_ostream OS(S);
7658 SE.getBackedgeTakenCount(L)->print(OS);
7659
7660 // false and 0 are semantically equivalent. This can happen in dead loops.
7661 replaceSubString(OS.str(), "false", "0");
7662 // Remove wrap flags, their use in SCEV is highly fragile.
7663 // FIXME: Remove this when SCEV gets smarter about them.
7664 replaceSubString(OS.str(), "<nw>", "");
7665 replaceSubString(OS.str(), "<nsw>", "");
7666 replaceSubString(OS.str(), "<nuw>", "");
7667 }
7668 }
7669}
7670
7671void ScalarEvolution::verifyAnalysis() const {
7672 if (!VerifySCEV)
7673 return;
7674
7675 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
7676
7677 // Gather stringified backedge taken counts for all loops using SCEV's caches.
7678 // FIXME: It would be much better to store actual values instead of strings,
7679 // but SCEV pointers will change if we drop the caches.
7680 VerifyMap BackedgeDumpsOld, BackedgeDumpsNew;
7681 for (LoopInfo::reverse_iterator I = LI->rbegin(), E = LI->rend(); I != E; ++I)
7682 getLoopBackedgeTakenCounts(*I, BackedgeDumpsOld, SE);
7683
7684 // Gather stringified backedge taken counts for all loops without using
7685 // SCEV's caches.
7686 SE.releaseMemory();
7687 for (LoopInfo::reverse_iterator I = LI->rbegin(), E = LI->rend(); I != E; ++I)
7688 getLoopBackedgeTakenCounts(*I, BackedgeDumpsNew, SE);
7689
7690 // Now compare whether they're the same with and without caches. This allows
7691 // verifying that no pass changed the cache.
7692 assert(BackedgeDumpsOld.size() == BackedgeDumpsNew.size() &&
7693 "New loops suddenly appeared!");
7694
7695 for (VerifyMap::iterator OldI = BackedgeDumpsOld.begin(),
7696 OldE = BackedgeDumpsOld.end(),
7697 NewI = BackedgeDumpsNew.begin();
7698 OldI != OldE; ++OldI, ++NewI) {
7699 assert(OldI->first == NewI->first && "Loop order changed!");
7700
7701 // Compare the stringified SCEVs. We don't care if undef backedgetaken count
7702 // changes.
7703 // FIXME: We currently ignore SCEV changes from/to CouldNotCompute. This
7704 // means that a pass is buggy or SCEV has to learn a new pattern but is
7705 // usually not harmful.
7706 if (OldI->second != NewI->second &&
7707 OldI->second.find("undef") == std::string::npos &&
7708 NewI->second.find("undef") == std::string::npos &&
7709 OldI->second != "***COULDNOTCOMPUTE***" &&
7710 NewI->second != "***COULDNOTCOMPUTE***") {
7711 dbgs() << "SCEVValidator: SCEV for loop '"
7712 << OldI->first->getHeader()->getName()
7713 << "' changed from '" << OldI->second
7714 << "' to '" << NewI->second << "'!\n";
7715 std::abort();
7716 }
7717 }
7718
7719 // TODO: Verify more things.
7720}