Deleted Added
full compact
vm_kern.c (38799) vm_kern.c (42957)
1/*
2 * Copyright (c) 1991, 1993
3 * The Regents of the University of California. All rights reserved.
4 *
5 * This code is derived from software contributed to Berkeley by
6 * The Mach Operating System project at Carnegie-Mellon University.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 * must display the following acknowledgement:
18 * This product includes software developed by the University of
19 * California, Berkeley and its contributors.
20 * 4. Neither the name of the University nor the names of its contributors
21 * may be used to endorse or promote products derived from this software
22 * without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
35 *
36 * from: @(#)vm_kern.c 8.3 (Berkeley) 1/12/94
37 *
38 *
39 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
40 * All rights reserved.
41 *
42 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
43 *
44 * Permission to use, copy, modify and distribute this software and
45 * its documentation is hereby granted, provided that both the copyright
46 * notice and this permission notice appear in all copies of the
47 * software, derivative works or modified versions, and any portions
48 * thereof, and that both notices appear in supporting documentation.
49 *
50 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
51 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
52 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
53 *
54 * Carnegie Mellon requests users of this software to return to
55 *
56 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
57 * School of Computer Science
58 * Carnegie Mellon University
59 * Pittsburgh PA 15213-3890
60 *
61 * any improvements or extensions that they make and grant Carnegie the
62 * rights to redistribute these changes.
63 *
1/*
2 * Copyright (c) 1991, 1993
3 * The Regents of the University of California. All rights reserved.
4 *
5 * This code is derived from software contributed to Berkeley by
6 * The Mach Operating System project at Carnegie-Mellon University.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 * must display the following acknowledgement:
18 * This product includes software developed by the University of
19 * California, Berkeley and its contributors.
20 * 4. Neither the name of the University nor the names of its contributors
21 * may be used to endorse or promote products derived from this software
22 * without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
35 *
36 * from: @(#)vm_kern.c 8.3 (Berkeley) 1/12/94
37 *
38 *
39 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
40 * All rights reserved.
41 *
42 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
43 *
44 * Permission to use, copy, modify and distribute this software and
45 * its documentation is hereby granted, provided that both the copyright
46 * notice and this permission notice appear in all copies of the
47 * software, derivative works or modified versions, and any portions
48 * thereof, and that both notices appear in supporting documentation.
49 *
50 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
51 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
52 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
53 *
54 * Carnegie Mellon requests users of this software to return to
55 *
56 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
57 * School of Computer Science
58 * Carnegie Mellon University
59 * Pittsburgh PA 15213-3890
60 *
61 * any improvements or extensions that they make and grant Carnegie the
62 * rights to redistribute these changes.
63 *
64 * $Id: vm_kern.c,v 1.49 1998/08/24 08:39:37 dfr Exp $
64 * $Id: vm_kern.c,v 1.50 1998/09/04 08:06:57 dfr Exp $
65 */
66
67/*
68 * Kernel memory management.
69 */
70
71#include <sys/param.h>
72#include <sys/systm.h>
73#include <sys/proc.h>
74#include <sys/malloc.h>
75
76#include <vm/vm.h>
77#include <vm/vm_param.h>
78#include <vm/vm_prot.h>
79#include <sys/lock.h>
80#include <vm/pmap.h>
81#include <vm/vm_map.h>
82#include <vm/vm_object.h>
83#include <vm/vm_page.h>
84#include <vm/vm_pageout.h>
85#include <vm/vm_extern.h>
86
87vm_map_t kernel_map=0;
88vm_map_t kmem_map=0;
89vm_map_t exec_map=0;
90vm_map_t clean_map=0;
91vm_map_t u_map=0;
92vm_map_t buffer_map=0;
93vm_map_t mb_map=0;
94int mb_map_full=0;
95vm_map_t io_map=0;
96vm_map_t phys_map=0;
97
98/*
99 * kmem_alloc_pageable:
100 *
101 * Allocate pageable memory to the kernel's address map.
102 * "map" must be kernel_map or a submap of kernel_map.
103 */
104
105vm_offset_t
106kmem_alloc_pageable(map, size)
107 vm_map_t map;
108 register vm_size_t size;
109{
110 vm_offset_t addr;
111 register int result;
112
113 size = round_page(size);
114 addr = vm_map_min(map);
115 result = vm_map_find(map, NULL, (vm_offset_t) 0,
116 &addr, size, TRUE, VM_PROT_ALL, VM_PROT_ALL, 0);
117 if (result != KERN_SUCCESS) {
118 return (0);
119 }
120 return (addr);
121}
122
123/*
124 * Allocate wired-down memory in the kernel's address map
125 * or a submap.
126 */
127vm_offset_t
128kmem_alloc(map, size)
129 register vm_map_t map;
130 register vm_size_t size;
131{
132 vm_offset_t addr;
133 register vm_offset_t offset;
134 vm_offset_t i;
135
136 size = round_page(size);
137
138 /*
139 * Use the kernel object for wired-down kernel pages. Assume that no
140 * region of the kernel object is referenced more than once.
141 */
142
143 /*
144 * Locate sufficient space in the map. This will give us the final
145 * virtual address for the new memory, and thus will tell us the
146 * offset within the kernel map.
147 */
148 vm_map_lock(map);
149 if (vm_map_findspace(map, vm_map_min(map), size, &addr)) {
150 vm_map_unlock(map);
151 return (0);
152 }
153 offset = addr - VM_MIN_KERNEL_ADDRESS;
154 vm_object_reference(kernel_object);
155 vm_map_insert(map, kernel_object, offset, addr, addr + size,
156 VM_PROT_ALL, VM_PROT_ALL, 0);
157 vm_map_unlock(map);
158
159 /*
160 * Guarantee that there are pages already in this object before
161 * calling vm_map_pageable. This is to prevent the following
162 * scenario:
163 *
164 * 1) Threads have swapped out, so that there is a pager for the
165 * kernel_object. 2) The kmsg zone is empty, and so we are
166 * kmem_allocing a new page for it. 3) vm_map_pageable calls vm_fault;
167 * there is no page, but there is a pager, so we call
168 * pager_data_request. But the kmsg zone is empty, so we must
169 * kmem_alloc. 4) goto 1 5) Even if the kmsg zone is not empty: when
170 * we get the data back from the pager, it will be (very stale)
171 * non-zero data. kmem_alloc is defined to return zero-filled memory.
172 *
173 * We're intentionally not activating the pages we allocate to prevent a
174 * race with page-out. vm_map_pageable will wire the pages.
175 */
176
177 for (i = 0; i < size; i += PAGE_SIZE) {
178 vm_page_t mem;
179
180 mem = vm_page_grab(kernel_object, OFF_TO_IDX(offset + i),
181 VM_ALLOC_ZERO | VM_ALLOC_RETRY);
182 if ((mem->flags & PG_ZERO) == 0)
183 vm_page_zero_fill(mem);
65 */
66
67/*
68 * Kernel memory management.
69 */
70
71#include <sys/param.h>
72#include <sys/systm.h>
73#include <sys/proc.h>
74#include <sys/malloc.h>
75
76#include <vm/vm.h>
77#include <vm/vm_param.h>
78#include <vm/vm_prot.h>
79#include <sys/lock.h>
80#include <vm/pmap.h>
81#include <vm/vm_map.h>
82#include <vm/vm_object.h>
83#include <vm/vm_page.h>
84#include <vm/vm_pageout.h>
85#include <vm/vm_extern.h>
86
87vm_map_t kernel_map=0;
88vm_map_t kmem_map=0;
89vm_map_t exec_map=0;
90vm_map_t clean_map=0;
91vm_map_t u_map=0;
92vm_map_t buffer_map=0;
93vm_map_t mb_map=0;
94int mb_map_full=0;
95vm_map_t io_map=0;
96vm_map_t phys_map=0;
97
98/*
99 * kmem_alloc_pageable:
100 *
101 * Allocate pageable memory to the kernel's address map.
102 * "map" must be kernel_map or a submap of kernel_map.
103 */
104
105vm_offset_t
106kmem_alloc_pageable(map, size)
107 vm_map_t map;
108 register vm_size_t size;
109{
110 vm_offset_t addr;
111 register int result;
112
113 size = round_page(size);
114 addr = vm_map_min(map);
115 result = vm_map_find(map, NULL, (vm_offset_t) 0,
116 &addr, size, TRUE, VM_PROT_ALL, VM_PROT_ALL, 0);
117 if (result != KERN_SUCCESS) {
118 return (0);
119 }
120 return (addr);
121}
122
123/*
124 * Allocate wired-down memory in the kernel's address map
125 * or a submap.
126 */
127vm_offset_t
128kmem_alloc(map, size)
129 register vm_map_t map;
130 register vm_size_t size;
131{
132 vm_offset_t addr;
133 register vm_offset_t offset;
134 vm_offset_t i;
135
136 size = round_page(size);
137
138 /*
139 * Use the kernel object for wired-down kernel pages. Assume that no
140 * region of the kernel object is referenced more than once.
141 */
142
143 /*
144 * Locate sufficient space in the map. This will give us the final
145 * virtual address for the new memory, and thus will tell us the
146 * offset within the kernel map.
147 */
148 vm_map_lock(map);
149 if (vm_map_findspace(map, vm_map_min(map), size, &addr)) {
150 vm_map_unlock(map);
151 return (0);
152 }
153 offset = addr - VM_MIN_KERNEL_ADDRESS;
154 vm_object_reference(kernel_object);
155 vm_map_insert(map, kernel_object, offset, addr, addr + size,
156 VM_PROT_ALL, VM_PROT_ALL, 0);
157 vm_map_unlock(map);
158
159 /*
160 * Guarantee that there are pages already in this object before
161 * calling vm_map_pageable. This is to prevent the following
162 * scenario:
163 *
164 * 1) Threads have swapped out, so that there is a pager for the
165 * kernel_object. 2) The kmsg zone is empty, and so we are
166 * kmem_allocing a new page for it. 3) vm_map_pageable calls vm_fault;
167 * there is no page, but there is a pager, so we call
168 * pager_data_request. But the kmsg zone is empty, so we must
169 * kmem_alloc. 4) goto 1 5) Even if the kmsg zone is not empty: when
170 * we get the data back from the pager, it will be (very stale)
171 * non-zero data. kmem_alloc is defined to return zero-filled memory.
172 *
173 * We're intentionally not activating the pages we allocate to prevent a
174 * race with page-out. vm_map_pageable will wire the pages.
175 */
176
177 for (i = 0; i < size; i += PAGE_SIZE) {
178 vm_page_t mem;
179
180 mem = vm_page_grab(kernel_object, OFF_TO_IDX(offset + i),
181 VM_ALLOC_ZERO | VM_ALLOC_RETRY);
182 if ((mem->flags & PG_ZERO) == 0)
183 vm_page_zero_fill(mem);
184 vm_page_flag_clear(mem, (PG_BUSY | PG_ZERO));
185 mem->valid = VM_PAGE_BITS_ALL;
184 mem->valid = VM_PAGE_BITS_ALL;
185 vm_page_flag_clear(mem, PG_ZERO);
186 vm_page_wakeup(mem);
186 }
187
188 /*
189 * And finally, mark the data as non-pageable.
190 */
191
192 (void) vm_map_pageable(map, (vm_offset_t) addr, addr + size, FALSE);
193
194 return (addr);
195}
196
197/*
198 * kmem_free:
199 *
200 * Release a region of kernel virtual memory allocated
201 * with kmem_alloc, and return the physical pages
202 * associated with that region.
187 }
188
189 /*
190 * And finally, mark the data as non-pageable.
191 */
192
193 (void) vm_map_pageable(map, (vm_offset_t) addr, addr + size, FALSE);
194
195 return (addr);
196}
197
198/*
199 * kmem_free:
200 *
201 * Release a region of kernel virtual memory allocated
202 * with kmem_alloc, and return the physical pages
203 * associated with that region.
204 *
205 * This routine may not block on kernel maps.
203 */
204void
205kmem_free(map, addr, size)
206 vm_map_t map;
207 register vm_offset_t addr;
208 vm_size_t size;
209{
210 (void) vm_map_remove(map, trunc_page(addr), round_page(addr + size));
211}
212
213/*
214 * kmem_suballoc:
215 *
216 * Allocates a map to manage a subrange
217 * of the kernel virtual address space.
218 *
219 * Arguments are as follows:
220 *
221 * parent Map to take range from
222 * size Size of range to find
223 * min, max Returned endpoints of map
224 * pageable Can the region be paged
225 */
226vm_map_t
227kmem_suballoc(parent, min, max, size)
228 register vm_map_t parent;
229 vm_offset_t *min, *max;
230 register vm_size_t size;
231{
232 register int ret;
233 vm_map_t result;
234
235 size = round_page(size);
236
237 *min = (vm_offset_t) vm_map_min(parent);
238 ret = vm_map_find(parent, NULL, (vm_offset_t) 0,
239 min, size, TRUE, VM_PROT_ALL, VM_PROT_ALL, 0);
240 if (ret != KERN_SUCCESS) {
241 printf("kmem_suballoc: bad status return of %d.\n", ret);
242 panic("kmem_suballoc");
243 }
244 *max = *min + size;
245 pmap_reference(vm_map_pmap(parent));
246 result = vm_map_create(vm_map_pmap(parent), *min, *max);
247 if (result == NULL)
248 panic("kmem_suballoc: cannot create submap");
249 if ((ret = vm_map_submap(parent, *min, *max, result)) != KERN_SUCCESS)
250 panic("kmem_suballoc: unable to change range to submap");
251 return (result);
252}
253
254/*
206 */
207void
208kmem_free(map, addr, size)
209 vm_map_t map;
210 register vm_offset_t addr;
211 vm_size_t size;
212{
213 (void) vm_map_remove(map, trunc_page(addr), round_page(addr + size));
214}
215
216/*
217 * kmem_suballoc:
218 *
219 * Allocates a map to manage a subrange
220 * of the kernel virtual address space.
221 *
222 * Arguments are as follows:
223 *
224 * parent Map to take range from
225 * size Size of range to find
226 * min, max Returned endpoints of map
227 * pageable Can the region be paged
228 */
229vm_map_t
230kmem_suballoc(parent, min, max, size)
231 register vm_map_t parent;
232 vm_offset_t *min, *max;
233 register vm_size_t size;
234{
235 register int ret;
236 vm_map_t result;
237
238 size = round_page(size);
239
240 *min = (vm_offset_t) vm_map_min(parent);
241 ret = vm_map_find(parent, NULL, (vm_offset_t) 0,
242 min, size, TRUE, VM_PROT_ALL, VM_PROT_ALL, 0);
243 if (ret != KERN_SUCCESS) {
244 printf("kmem_suballoc: bad status return of %d.\n", ret);
245 panic("kmem_suballoc");
246 }
247 *max = *min + size;
248 pmap_reference(vm_map_pmap(parent));
249 result = vm_map_create(vm_map_pmap(parent), *min, *max);
250 if (result == NULL)
251 panic("kmem_suballoc: cannot create submap");
252 if ((ret = vm_map_submap(parent, *min, *max, result)) != KERN_SUCCESS)
253 panic("kmem_suballoc: unable to change range to submap");
254 return (result);
255}
256
257/*
255 * Allocate wired-down memory in the kernel's address map for the higher
256 * level kernel memory allocator (kern/kern_malloc.c). We cannot use
257 * kmem_alloc() because we may need to allocate memory at interrupt
258 * level where we cannot block (canwait == FALSE).
258 * kmem_malloc:
259 *
259 *
260 * This routine has its own private kernel submap (kmem_map) and object
261 * (kmem_object). This, combined with the fact that only malloc uses
262 * this routine, ensures that we will never block in map or object waits.
260 * Allocate wired-down memory in the kernel's address map for the higher
261 * level kernel memory allocator (kern/kern_malloc.c). We cannot use
262 * kmem_alloc() because we may need to allocate memory at interrupt
263 * level where we cannot block (canwait == FALSE).
263 *
264 *
264 * Note that this still only works in a uni-processor environment and
265 * when called at splhigh().
265 * This routine has its own private kernel submap (kmem_map) and object
266 * (kmem_object). This, combined with the fact that only malloc uses
267 * this routine, ensures that we will never block in map or object waits.
266 *
268 *
267 * We don't worry about expanding the map (adding entries) since entries
268 * for wired maps are statically allocated.
269 * Note that this still only works in a uni-processor environment and
270 * when called at splhigh().
271 *
272 * We don't worry about expanding the map (adding entries) since entries
273 * for wired maps are statically allocated.
274 *
275 * NOTE: This routine is not supposed to block if M_NOWAIT is set, but
276 * I have not verified that it actually does not block.
269 */
270vm_offset_t
277 */
278vm_offset_t
271kmem_malloc(map, size, waitflag)
279kmem_malloc(map, size, flags)
272 register vm_map_t map;
273 register vm_size_t size;
280 register vm_map_t map;
281 register vm_size_t size;
274 boolean_t waitflag;
282 int flags;
275{
276 register vm_offset_t offset, i;
277 vm_map_entry_t entry;
278 vm_offset_t addr;
279 vm_page_t m;
280
281 if (map != kmem_map && map != mb_map)
282 panic("kmem_malloc: map != {kmem,mb}_map");
283
284 size = round_page(size);
285 addr = vm_map_min(map);
286
287 /*
288 * Locate sufficient space in the map. This will give us the final
289 * virtual address for the new memory, and thus will tell us the
290 * offset within the kernel map.
291 */
292 vm_map_lock(map);
293 if (vm_map_findspace(map, vm_map_min(map), size, &addr)) {
294 vm_map_unlock(map);
295 if (map == mb_map) {
296 mb_map_full = TRUE;
297 printf("Out of mbuf clusters - adjust NMBCLUSTERS or increase maxusers!\n");
298 return (0);
299 }
283{
284 register vm_offset_t offset, i;
285 vm_map_entry_t entry;
286 vm_offset_t addr;
287 vm_page_t m;
288
289 if (map != kmem_map && map != mb_map)
290 panic("kmem_malloc: map != {kmem,mb}_map");
291
292 size = round_page(size);
293 addr = vm_map_min(map);
294
295 /*
296 * Locate sufficient space in the map. This will give us the final
297 * virtual address for the new memory, and thus will tell us the
298 * offset within the kernel map.
299 */
300 vm_map_lock(map);
301 if (vm_map_findspace(map, vm_map_min(map), size, &addr)) {
302 vm_map_unlock(map);
303 if (map == mb_map) {
304 mb_map_full = TRUE;
305 printf("Out of mbuf clusters - adjust NMBCLUSTERS or increase maxusers!\n");
306 return (0);
307 }
300 if (waitflag == M_WAITOK)
308 if ((flags & M_NOWAIT) == 0)
301 panic("kmem_malloc(%d): kmem_map too small: %d total allocated",
302 size, map->size);
303 return (0);
304 }
305 offset = addr - VM_MIN_KERNEL_ADDRESS;
306 vm_object_reference(kmem_object);
307 vm_map_insert(map, kmem_object, offset, addr, addr + size,
308 VM_PROT_ALL, VM_PROT_ALL, 0);
309
310 for (i = 0; i < size; i += PAGE_SIZE) {
309 panic("kmem_malloc(%d): kmem_map too small: %d total allocated",
310 size, map->size);
311 return (0);
312 }
313 offset = addr - VM_MIN_KERNEL_ADDRESS;
314 vm_object_reference(kmem_object);
315 vm_map_insert(map, kmem_object, offset, addr, addr + size,
316 VM_PROT_ALL, VM_PROT_ALL, 0);
317
318 for (i = 0; i < size; i += PAGE_SIZE) {
319 /*
320 * Note: if M_NOWAIT specified alone, allocate from
321 * interrupt-safe queues only (just the free list). If
322 * M_ASLEEP or M_USE_RESERVE is also specified, we can also
323 * allocate from the cache. Neither of the latter two
324 * flags may be specified from an interrupt since interrupts
325 * are not allowed to mess with the cache queue.
326 */
311retry:
312 m = vm_page_alloc(kmem_object, OFF_TO_IDX(offset + i),
327retry:
328 m = vm_page_alloc(kmem_object, OFF_TO_IDX(offset + i),
313 (waitflag == M_NOWAIT) ? VM_ALLOC_INTERRUPT : VM_ALLOC_SYSTEM);
329 ((flags & (M_NOWAIT|M_ASLEEP|M_USE_RESERVE)) == M_NOWAIT) ?
330 VM_ALLOC_INTERRUPT :
331 VM_ALLOC_SYSTEM);
314
315 /*
316 * Ran out of space, free everything up and return. Don't need
317 * to lock page queues here as we know that the pages we got
318 * aren't on any queues.
319 */
320 if (m == NULL) {
332
333 /*
334 * Ran out of space, free everything up and return. Don't need
335 * to lock page queues here as we know that the pages we got
336 * aren't on any queues.
337 */
338 if (m == NULL) {
321 if (waitflag == M_WAITOK) {
339 if ((flags & M_NOWAIT) == 0) {
322 VM_WAIT;
323 goto retry;
324 }
325 while (i != 0) {
326 i -= PAGE_SIZE;
327 m = vm_page_lookup(kmem_object,
328 OFF_TO_IDX(offset + i));
329 vm_page_free(m);
330 }
331 vm_map_delete(map, addr, addr + size);
332 vm_map_unlock(map);
340 VM_WAIT;
341 goto retry;
342 }
343 while (i != 0) {
344 i -= PAGE_SIZE;
345 m = vm_page_lookup(kmem_object,
346 OFF_TO_IDX(offset + i));
347 vm_page_free(m);
348 }
349 vm_map_delete(map, addr, addr + size);
350 vm_map_unlock(map);
351 if (flags & M_ASLEEP) {
352 VM_AWAIT;
353 }
333 return (0);
334 }
335 vm_page_flag_clear(m, PG_ZERO);
336 m->valid = VM_PAGE_BITS_ALL;
337 }
338
339 /*
340 * Mark map entry as non-pageable. Assert: vm_map_insert() will never
341 * be able to extend the previous entry so there will be a new entry
342 * exactly corresponding to this address range and it will have
343 * wired_count == 0.
344 */
345 if (!vm_map_lookup_entry(map, addr, &entry) ||
346 entry->start != addr || entry->end != addr + size ||
347 entry->wired_count)
348 panic("kmem_malloc: entry not found or misaligned");
349 entry->wired_count++;
350
351 vm_map_simplify_entry(map, entry);
352
353 /*
354 * Loop thru pages, entering them in the pmap. (We cannot add them to
355 * the wired count without wrapping the vm_page_queue_lock in
356 * splimp...)
357 */
358 for (i = 0; i < size; i += PAGE_SIZE) {
359 m = vm_page_lookup(kmem_object, OFF_TO_IDX(offset + i));
360 vm_page_wire(m);
361 vm_page_wakeup(m);
354 return (0);
355 }
356 vm_page_flag_clear(m, PG_ZERO);
357 m->valid = VM_PAGE_BITS_ALL;
358 }
359
360 /*
361 * Mark map entry as non-pageable. Assert: vm_map_insert() will never
362 * be able to extend the previous entry so there will be a new entry
363 * exactly corresponding to this address range and it will have
364 * wired_count == 0.
365 */
366 if (!vm_map_lookup_entry(map, addr, &entry) ||
367 entry->start != addr || entry->end != addr + size ||
368 entry->wired_count)
369 panic("kmem_malloc: entry not found or misaligned");
370 entry->wired_count++;
371
372 vm_map_simplify_entry(map, entry);
373
374 /*
375 * Loop thru pages, entering them in the pmap. (We cannot add them to
376 * the wired count without wrapping the vm_page_queue_lock in
377 * splimp...)
378 */
379 for (i = 0; i < size; i += PAGE_SIZE) {
380 m = vm_page_lookup(kmem_object, OFF_TO_IDX(offset + i));
381 vm_page_wire(m);
382 vm_page_wakeup(m);
383 /*
384 * Because this is kernel_pmap, this call will not block.
385 */
362 pmap_enter(kernel_pmap, addr + i, VM_PAGE_TO_PHYS(m),
363 VM_PROT_ALL, 1);
364 vm_page_flag_set(m, PG_MAPPED | PG_WRITEABLE | PG_REFERENCED);
365 }
366 vm_map_unlock(map);
367
368 return (addr);
369}
370
371/*
386 pmap_enter(kernel_pmap, addr + i, VM_PAGE_TO_PHYS(m),
387 VM_PROT_ALL, 1);
388 vm_page_flag_set(m, PG_MAPPED | PG_WRITEABLE | PG_REFERENCED);
389 }
390 vm_map_unlock(map);
391
392 return (addr);
393}
394
395/*
372 * kmem_alloc_wait
396 * kmem_alloc_wait:
373 *
374 * Allocates pageable memory from a sub-map of the kernel. If the submap
375 * has no room, the caller sleeps waiting for more memory in the submap.
376 *
397 *
398 * Allocates pageable memory from a sub-map of the kernel. If the submap
399 * has no room, the caller sleeps waiting for more memory in the submap.
400 *
401 * This routine may block.
377 */
402 */
403
378vm_offset_t
379kmem_alloc_wait(map, size)
380 vm_map_t map;
381 vm_size_t size;
382{
383 vm_offset_t addr;
384
385 size = round_page(size);
386
387 for (;;) {
388 /*
389 * To make this work for more than one map, use the map's lock
390 * to lock out sleepers/wakers.
391 */
392 vm_map_lock(map);
393 if (vm_map_findspace(map, vm_map_min(map), size, &addr) == 0)
394 break;
395 /* no space now; see if we can ever get space */
396 if (vm_map_max(map) - vm_map_min(map) < size) {
397 vm_map_unlock(map);
398 return (0);
399 }
400 vm_map_unlock(map);
401 tsleep(map, PVM, "kmaw", 0);
402 }
403 vm_map_insert(map, NULL, (vm_offset_t) 0, addr, addr + size, VM_PROT_ALL, VM_PROT_ALL, 0);
404 vm_map_unlock(map);
405 return (addr);
406}
407
408/*
404vm_offset_t
405kmem_alloc_wait(map, size)
406 vm_map_t map;
407 vm_size_t size;
408{
409 vm_offset_t addr;
410
411 size = round_page(size);
412
413 for (;;) {
414 /*
415 * To make this work for more than one map, use the map's lock
416 * to lock out sleepers/wakers.
417 */
418 vm_map_lock(map);
419 if (vm_map_findspace(map, vm_map_min(map), size, &addr) == 0)
420 break;
421 /* no space now; see if we can ever get space */
422 if (vm_map_max(map) - vm_map_min(map) < size) {
423 vm_map_unlock(map);
424 return (0);
425 }
426 vm_map_unlock(map);
427 tsleep(map, PVM, "kmaw", 0);
428 }
429 vm_map_insert(map, NULL, (vm_offset_t) 0, addr, addr + size, VM_PROT_ALL, VM_PROT_ALL, 0);
430 vm_map_unlock(map);
431 return (addr);
432}
433
434/*
409 * kmem_free_wakeup
435 * kmem_free_wakeup:
410 *
411 * Returns memory to a submap of the kernel, and wakes up any processes
412 * waiting for memory in that map.
413 */
414void
415kmem_free_wakeup(map, addr, size)
416 vm_map_t map;
417 vm_offset_t addr;
418 vm_size_t size;
419{
420 vm_map_lock(map);
421 (void) vm_map_delete(map, trunc_page(addr), round_page(addr + size));
422 wakeup(map);
423 vm_map_unlock(map);
424}
425
426/*
436 *
437 * Returns memory to a submap of the kernel, and wakes up any processes
438 * waiting for memory in that map.
439 */
440void
441kmem_free_wakeup(map, addr, size)
442 vm_map_t map;
443 vm_offset_t addr;
444 vm_size_t size;
445{
446 vm_map_lock(map);
447 (void) vm_map_delete(map, trunc_page(addr), round_page(addr + size));
448 wakeup(map);
449 vm_map_unlock(map);
450}
451
452/*
427 * Create the kernel map; insert a mapping covering kernel text, data, bss,
428 * and all space allocated thus far (`boostrap' data). The new map will thus
429 * map the range between VM_MIN_KERNEL_ADDRESS and `start' as allocated, and
430 * the range between `start' and `end' as free.
453 * kmem_init:
454 *
455 * Create the kernel map; insert a mapping covering kernel text,
456 * data, bss, and all space allocated thus far (`boostrap' data). The
457 * new map will thus map the range between VM_MIN_KERNEL_ADDRESS and
458 * `start' as allocated, and the range between `start' and `end' as free.
431 */
459 */
460
432void
433kmem_init(start, end)
434 vm_offset_t start, end;
435{
436 register vm_map_t m;
437
438 m = vm_map_create(kernel_pmap, VM_MIN_KERNEL_ADDRESS, end);
439 vm_map_lock(m);
440 /* N.B.: cannot use kgdb to debug, starting with this assignment ... */
441 kernel_map = m;
442 kernel_map->system_map = 1;
443 (void) vm_map_insert(m, NULL, (vm_offset_t) 0,
444 VM_MIN_KERNEL_ADDRESS, start, VM_PROT_ALL, VM_PROT_ALL, 0);
445 /* ... and ending with the completion of the above `insert' */
446 vm_map_unlock(m);
447}
461void
462kmem_init(start, end)
463 vm_offset_t start, end;
464{
465 register vm_map_t m;
466
467 m = vm_map_create(kernel_pmap, VM_MIN_KERNEL_ADDRESS, end);
468 vm_map_lock(m);
469 /* N.B.: cannot use kgdb to debug, starting with this assignment ... */
470 kernel_map = m;
471 kernel_map->system_map = 1;
472 (void) vm_map_insert(m, NULL, (vm_offset_t) 0,
473 VM_MIN_KERNEL_ADDRESS, start, VM_PROT_ALL, VM_PROT_ALL, 0);
474 /* ... and ending with the completion of the above `insert' */
475 vm_map_unlock(m);
476}
477