Deleted Added
full compact
pmap.c (265996) pmap.c (265998)
1/*-
2 * Copyright (C) 2007-2009 Semihalf, Rafal Jaworowski <raj@semihalf.com>
3 * Copyright (C) 2006 Semihalf, Marian Balakowicz <m8@semihalf.com>
4 * All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN
18 * NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
19 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
20 * TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
21 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
22 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
23 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
24 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25 *
26 * Some hw specific parts of this pmap were derived or influenced
27 * by NetBSD's ibm4xx pmap module. More generic code is shared with
28 * a few other pmap modules from the FreeBSD tree.
29 */
30
31 /*
32 * VM layout notes:
33 *
34 * Kernel and user threads run within one common virtual address space
35 * defined by AS=0.
36 *
37 * Virtual address space layout:
38 * -----------------------------
39 * 0x0000_0000 - 0xafff_ffff : user process
40 * 0xb000_0000 - 0xbfff_ffff : pmap_mapdev()-ed area (PCI/PCIE etc.)
41 * 0xc000_0000 - 0xc0ff_ffff : kernel reserved
42 * 0xc000_0000 - data_end : kernel code+data, env, metadata etc.
43 * 0xc100_0000 - 0xfeef_ffff : KVA
44 * 0xc100_0000 - 0xc100_3fff : reserved for page zero/copy
45 * 0xc100_4000 - 0xc200_3fff : reserved for ptbl bufs
46 * 0xc200_4000 - 0xc200_8fff : guard page + kstack0
47 * 0xc200_9000 - 0xfeef_ffff : actual free KVA space
48 * 0xfef0_0000 - 0xffff_ffff : I/O devices region
49 */
50
51#include <sys/cdefs.h>
1/*-
2 * Copyright (C) 2007-2009 Semihalf, Rafal Jaworowski <raj@semihalf.com>
3 * Copyright (C) 2006 Semihalf, Marian Balakowicz <m8@semihalf.com>
4 * All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN
18 * NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
19 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
20 * TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
21 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
22 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
23 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
24 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25 *
26 * Some hw specific parts of this pmap were derived or influenced
27 * by NetBSD's ibm4xx pmap module. More generic code is shared with
28 * a few other pmap modules from the FreeBSD tree.
29 */
30
31 /*
32 * VM layout notes:
33 *
34 * Kernel and user threads run within one common virtual address space
35 * defined by AS=0.
36 *
37 * Virtual address space layout:
38 * -----------------------------
39 * 0x0000_0000 - 0xafff_ffff : user process
40 * 0xb000_0000 - 0xbfff_ffff : pmap_mapdev()-ed area (PCI/PCIE etc.)
41 * 0xc000_0000 - 0xc0ff_ffff : kernel reserved
42 * 0xc000_0000 - data_end : kernel code+data, env, metadata etc.
43 * 0xc100_0000 - 0xfeef_ffff : KVA
44 * 0xc100_0000 - 0xc100_3fff : reserved for page zero/copy
45 * 0xc100_4000 - 0xc200_3fff : reserved for ptbl bufs
46 * 0xc200_4000 - 0xc200_8fff : guard page + kstack0
47 * 0xc200_9000 - 0xfeef_ffff : actual free KVA space
48 * 0xfef0_0000 - 0xffff_ffff : I/O devices region
49 */
50
51#include <sys/cdefs.h>
52__FBSDID("$FreeBSD: stable/10/sys/powerpc/booke/pmap.c 265996 2014-05-14 00:51:26Z ian $");
52__FBSDID("$FreeBSD: stable/10/sys/powerpc/booke/pmap.c 265998 2014-05-14 01:16:05Z ian $");
53
54#include <sys/param.h>
55#include <sys/malloc.h>
56#include <sys/ktr.h>
57#include <sys/proc.h>
58#include <sys/user.h>
59#include <sys/queue.h>
60#include <sys/systm.h>
61#include <sys/kernel.h>
62#include <sys/linker.h>
63#include <sys/msgbuf.h>
64#include <sys/lock.h>
65#include <sys/mutex.h>
66#include <sys/rwlock.h>
67#include <sys/sched.h>
68#include <sys/smp.h>
69#include <sys/vmmeter.h>
70
71#include <vm/vm.h>
72#include <vm/vm_page.h>
73#include <vm/vm_kern.h>
74#include <vm/vm_pageout.h>
75#include <vm/vm_extern.h>
76#include <vm/vm_object.h>
77#include <vm/vm_param.h>
78#include <vm/vm_map.h>
79#include <vm/vm_pager.h>
80#include <vm/uma.h>
81
82#include <machine/cpu.h>
83#include <machine/pcb.h>
84#include <machine/platform.h>
85
86#include <machine/tlb.h>
87#include <machine/spr.h>
88#include <machine/md_var.h>
89#include <machine/mmuvar.h>
90#include <machine/pmap.h>
91#include <machine/pte.h>
92
93#include "mmu_if.h"
94
95#ifdef DEBUG
96#define debugf(fmt, args...) printf(fmt, ##args)
97#else
98#define debugf(fmt, args...)
99#endif
100
101#define TODO panic("%s: not implemented", __func__);
102
103extern struct mtx sched_lock;
104
105extern int dumpsys_minidump;
106
107extern unsigned char _etext[];
108extern unsigned char _end[];
109
110extern uint32_t *bootinfo;
111
112#ifdef SMP
113extern uint32_t bp_ntlb1s;
114#endif
115
116vm_paddr_t kernload;
117vm_offset_t kernstart;
118vm_size_t kernsize;
119
120/* Message buffer and tables. */
121static vm_offset_t data_start;
122static vm_size_t data_end;
123
124/* Phys/avail memory regions. */
125static struct mem_region *availmem_regions;
126static int availmem_regions_sz;
127static struct mem_region *physmem_regions;
128static int physmem_regions_sz;
129
130/* Reserved KVA space and mutex for mmu_booke_zero_page. */
131static vm_offset_t zero_page_va;
132static struct mtx zero_page_mutex;
133
134static struct mtx tlbivax_mutex;
135
136/*
137 * Reserved KVA space for mmu_booke_zero_page_idle. This is used
138 * by idle thred only, no lock required.
139 */
140static vm_offset_t zero_page_idle_va;
141
142/* Reserved KVA space and mutex for mmu_booke_copy_page. */
143static vm_offset_t copy_page_src_va;
144static vm_offset_t copy_page_dst_va;
145static struct mtx copy_page_mutex;
146
147/**************************************************************************/
148/* PMAP */
149/**************************************************************************/
150
151static void mmu_booke_enter_locked(mmu_t, pmap_t, vm_offset_t, vm_page_t,
152 vm_prot_t, boolean_t);
153
154unsigned int kptbl_min; /* Index of the first kernel ptbl. */
155unsigned int kernel_ptbls; /* Number of KVA ptbls. */
156
157/*
158 * If user pmap is processed with mmu_booke_remove and the resident count
159 * drops to 0, there are no more pages to remove, so we need not continue.
160 */
161#define PMAP_REMOVE_DONE(pmap) \
162 ((pmap) != kernel_pmap && (pmap)->pm_stats.resident_count == 0)
163
164extern void tid_flush(tlbtid_t);
165
166/**************************************************************************/
167/* TLB and TID handling */
168/**************************************************************************/
169
170/* Translation ID busy table */
171static volatile pmap_t tidbusy[MAXCPU][TID_MAX + 1];
172
173/*
174 * TLB0 capabilities (entry, way numbers etc.). These can vary between e500
175 * core revisions and should be read from h/w registers during early config.
176 */
177uint32_t tlb0_entries;
178uint32_t tlb0_ways;
179uint32_t tlb0_entries_per_way;
180
181#define TLB0_ENTRIES (tlb0_entries)
182#define TLB0_WAYS (tlb0_ways)
183#define TLB0_ENTRIES_PER_WAY (tlb0_entries_per_way)
184
185#define TLB1_ENTRIES 16
186
187/* In-ram copy of the TLB1 */
188static tlb_entry_t tlb1[TLB1_ENTRIES];
189
190/* Next free entry in the TLB1 */
191static unsigned int tlb1_idx;
53
54#include <sys/param.h>
55#include <sys/malloc.h>
56#include <sys/ktr.h>
57#include <sys/proc.h>
58#include <sys/user.h>
59#include <sys/queue.h>
60#include <sys/systm.h>
61#include <sys/kernel.h>
62#include <sys/linker.h>
63#include <sys/msgbuf.h>
64#include <sys/lock.h>
65#include <sys/mutex.h>
66#include <sys/rwlock.h>
67#include <sys/sched.h>
68#include <sys/smp.h>
69#include <sys/vmmeter.h>
70
71#include <vm/vm.h>
72#include <vm/vm_page.h>
73#include <vm/vm_kern.h>
74#include <vm/vm_pageout.h>
75#include <vm/vm_extern.h>
76#include <vm/vm_object.h>
77#include <vm/vm_param.h>
78#include <vm/vm_map.h>
79#include <vm/vm_pager.h>
80#include <vm/uma.h>
81
82#include <machine/cpu.h>
83#include <machine/pcb.h>
84#include <machine/platform.h>
85
86#include <machine/tlb.h>
87#include <machine/spr.h>
88#include <machine/md_var.h>
89#include <machine/mmuvar.h>
90#include <machine/pmap.h>
91#include <machine/pte.h>
92
93#include "mmu_if.h"
94
95#ifdef DEBUG
96#define debugf(fmt, args...) printf(fmt, ##args)
97#else
98#define debugf(fmt, args...)
99#endif
100
101#define TODO panic("%s: not implemented", __func__);
102
103extern struct mtx sched_lock;
104
105extern int dumpsys_minidump;
106
107extern unsigned char _etext[];
108extern unsigned char _end[];
109
110extern uint32_t *bootinfo;
111
112#ifdef SMP
113extern uint32_t bp_ntlb1s;
114#endif
115
116vm_paddr_t kernload;
117vm_offset_t kernstart;
118vm_size_t kernsize;
119
120/* Message buffer and tables. */
121static vm_offset_t data_start;
122static vm_size_t data_end;
123
124/* Phys/avail memory regions. */
125static struct mem_region *availmem_regions;
126static int availmem_regions_sz;
127static struct mem_region *physmem_regions;
128static int physmem_regions_sz;
129
130/* Reserved KVA space and mutex for mmu_booke_zero_page. */
131static vm_offset_t zero_page_va;
132static struct mtx zero_page_mutex;
133
134static struct mtx tlbivax_mutex;
135
136/*
137 * Reserved KVA space for mmu_booke_zero_page_idle. This is used
138 * by idle thred only, no lock required.
139 */
140static vm_offset_t zero_page_idle_va;
141
142/* Reserved KVA space and mutex for mmu_booke_copy_page. */
143static vm_offset_t copy_page_src_va;
144static vm_offset_t copy_page_dst_va;
145static struct mtx copy_page_mutex;
146
147/**************************************************************************/
148/* PMAP */
149/**************************************************************************/
150
151static void mmu_booke_enter_locked(mmu_t, pmap_t, vm_offset_t, vm_page_t,
152 vm_prot_t, boolean_t);
153
154unsigned int kptbl_min; /* Index of the first kernel ptbl. */
155unsigned int kernel_ptbls; /* Number of KVA ptbls. */
156
157/*
158 * If user pmap is processed with mmu_booke_remove and the resident count
159 * drops to 0, there are no more pages to remove, so we need not continue.
160 */
161#define PMAP_REMOVE_DONE(pmap) \
162 ((pmap) != kernel_pmap && (pmap)->pm_stats.resident_count == 0)
163
164extern void tid_flush(tlbtid_t);
165
166/**************************************************************************/
167/* TLB and TID handling */
168/**************************************************************************/
169
170/* Translation ID busy table */
171static volatile pmap_t tidbusy[MAXCPU][TID_MAX + 1];
172
173/*
174 * TLB0 capabilities (entry, way numbers etc.). These can vary between e500
175 * core revisions and should be read from h/w registers during early config.
176 */
177uint32_t tlb0_entries;
178uint32_t tlb0_ways;
179uint32_t tlb0_entries_per_way;
180
181#define TLB0_ENTRIES (tlb0_entries)
182#define TLB0_WAYS (tlb0_ways)
183#define TLB0_ENTRIES_PER_WAY (tlb0_entries_per_way)
184
185#define TLB1_ENTRIES 16
186
187/* In-ram copy of the TLB1 */
188static tlb_entry_t tlb1[TLB1_ENTRIES];
189
190/* Next free entry in the TLB1 */
191static unsigned int tlb1_idx;
192static vm_offset_t tlb1_map_base = VM_MAX_KERNEL_ADDRESS;
192
193static tlbtid_t tid_alloc(struct pmap *);
194
195static void tlb_print_entry(int, uint32_t, uint32_t, uint32_t, uint32_t);
196
197static int tlb1_set_entry(vm_offset_t, vm_offset_t, vm_size_t, uint32_t);
198static void tlb1_write_entry(unsigned int);
199static int tlb1_iomapped(int, vm_paddr_t, vm_size_t, vm_offset_t *);
200static vm_size_t tlb1_mapin_region(vm_offset_t, vm_paddr_t, vm_size_t);
201
202static vm_size_t tsize2size(unsigned int);
203static unsigned int size2tsize(vm_size_t);
204static unsigned int ilog2(unsigned int);
205
206static void set_mas4_defaults(void);
207
208static inline void tlb0_flush_entry(vm_offset_t);
209static inline unsigned int tlb0_tableidx(vm_offset_t, unsigned int);
210
211/**************************************************************************/
212/* Page table management */
213/**************************************************************************/
214
215static struct rwlock_padalign pvh_global_lock;
216
217/* Data for the pv entry allocation mechanism */
218static uma_zone_t pvzone;
219static int pv_entry_count = 0, pv_entry_max = 0, pv_entry_high_water = 0;
220
221#define PV_ENTRY_ZONE_MIN 2048 /* min pv entries in uma zone */
222
223#ifndef PMAP_SHPGPERPROC
224#define PMAP_SHPGPERPROC 200
225#endif
226
227static void ptbl_init(void);
228static struct ptbl_buf *ptbl_buf_alloc(void);
229static void ptbl_buf_free(struct ptbl_buf *);
230static void ptbl_free_pmap_ptbl(pmap_t, pte_t *);
231
232static pte_t *ptbl_alloc(mmu_t, pmap_t, unsigned int);
233static void ptbl_free(mmu_t, pmap_t, unsigned int);
234static void ptbl_hold(mmu_t, pmap_t, unsigned int);
235static int ptbl_unhold(mmu_t, pmap_t, unsigned int);
236
237static vm_paddr_t pte_vatopa(mmu_t, pmap_t, vm_offset_t);
238static pte_t *pte_find(mmu_t, pmap_t, vm_offset_t);
239static void pte_enter(mmu_t, pmap_t, vm_page_t, vm_offset_t, uint32_t);
240static int pte_remove(mmu_t, pmap_t, vm_offset_t, uint8_t);
241
242static pv_entry_t pv_alloc(void);
243static void pv_free(pv_entry_t);
244static void pv_insert(pmap_t, vm_offset_t, vm_page_t);
245static void pv_remove(pmap_t, vm_offset_t, vm_page_t);
246
247/* Number of kva ptbl buffers, each covering one ptbl (PTBL_PAGES). */
248#define PTBL_BUFS (128 * 16)
249
250struct ptbl_buf {
251 TAILQ_ENTRY(ptbl_buf) link; /* list link */
252 vm_offset_t kva; /* va of mapping */
253};
254
255/* ptbl free list and a lock used for access synchronization. */
256static TAILQ_HEAD(, ptbl_buf) ptbl_buf_freelist;
257static struct mtx ptbl_buf_freelist_lock;
258
259/* Base address of kva space allocated fot ptbl bufs. */
260static vm_offset_t ptbl_buf_pool_vabase;
261
262/* Pointer to ptbl_buf structures. */
263static struct ptbl_buf *ptbl_bufs;
264
265void pmap_bootstrap_ap(volatile uint32_t *);
266
267/*
268 * Kernel MMU interface
269 */
270static void mmu_booke_change_wiring(mmu_t, pmap_t, vm_offset_t, boolean_t);
271static void mmu_booke_clear_modify(mmu_t, vm_page_t);
272static void mmu_booke_copy(mmu_t, pmap_t, pmap_t, vm_offset_t,
273 vm_size_t, vm_offset_t);
274static void mmu_booke_copy_page(mmu_t, vm_page_t, vm_page_t);
275static void mmu_booke_copy_pages(mmu_t, vm_page_t *,
276 vm_offset_t, vm_page_t *, vm_offset_t, int);
277static void mmu_booke_enter(mmu_t, pmap_t, vm_offset_t, vm_page_t,
278 vm_prot_t, boolean_t);
279static void mmu_booke_enter_object(mmu_t, pmap_t, vm_offset_t, vm_offset_t,
280 vm_page_t, vm_prot_t);
281static void mmu_booke_enter_quick(mmu_t, pmap_t, vm_offset_t, vm_page_t,
282 vm_prot_t);
283static vm_paddr_t mmu_booke_extract(mmu_t, pmap_t, vm_offset_t);
284static vm_page_t mmu_booke_extract_and_hold(mmu_t, pmap_t, vm_offset_t,
285 vm_prot_t);
286static void mmu_booke_init(mmu_t);
287static boolean_t mmu_booke_is_modified(mmu_t, vm_page_t);
288static boolean_t mmu_booke_is_prefaultable(mmu_t, pmap_t, vm_offset_t);
289static boolean_t mmu_booke_is_referenced(mmu_t, vm_page_t);
290static int mmu_booke_ts_referenced(mmu_t, vm_page_t);
291static vm_offset_t mmu_booke_map(mmu_t, vm_offset_t *, vm_paddr_t, vm_paddr_t,
292 int);
293static int mmu_booke_mincore(mmu_t, pmap_t, vm_offset_t,
294 vm_paddr_t *);
295static void mmu_booke_object_init_pt(mmu_t, pmap_t, vm_offset_t,
296 vm_object_t, vm_pindex_t, vm_size_t);
297static boolean_t mmu_booke_page_exists_quick(mmu_t, pmap_t, vm_page_t);
298static void mmu_booke_page_init(mmu_t, vm_page_t);
299static int mmu_booke_page_wired_mappings(mmu_t, vm_page_t);
300static void mmu_booke_pinit(mmu_t, pmap_t);
301static void mmu_booke_pinit0(mmu_t, pmap_t);
302static void mmu_booke_protect(mmu_t, pmap_t, vm_offset_t, vm_offset_t,
303 vm_prot_t);
304static void mmu_booke_qenter(mmu_t, vm_offset_t, vm_page_t *, int);
305static void mmu_booke_qremove(mmu_t, vm_offset_t, int);
306static void mmu_booke_release(mmu_t, pmap_t);
307static void mmu_booke_remove(mmu_t, pmap_t, vm_offset_t, vm_offset_t);
308static void mmu_booke_remove_all(mmu_t, vm_page_t);
309static void mmu_booke_remove_write(mmu_t, vm_page_t);
310static void mmu_booke_zero_page(mmu_t, vm_page_t);
311static void mmu_booke_zero_page_area(mmu_t, vm_page_t, int, int);
312static void mmu_booke_zero_page_idle(mmu_t, vm_page_t);
313static void mmu_booke_activate(mmu_t, struct thread *);
314static void mmu_booke_deactivate(mmu_t, struct thread *);
315static void mmu_booke_bootstrap(mmu_t, vm_offset_t, vm_offset_t);
316static void *mmu_booke_mapdev(mmu_t, vm_paddr_t, vm_size_t);
317static void *mmu_booke_mapdev_attr(mmu_t, vm_paddr_t, vm_size_t, vm_memattr_t);
318static void mmu_booke_unmapdev(mmu_t, vm_offset_t, vm_size_t);
319static vm_paddr_t mmu_booke_kextract(mmu_t, vm_offset_t);
320static void mmu_booke_kenter(mmu_t, vm_offset_t, vm_paddr_t);
321static void mmu_booke_kenter_attr(mmu_t, vm_offset_t, vm_paddr_t, vm_memattr_t);
322static void mmu_booke_kremove(mmu_t, vm_offset_t);
323static boolean_t mmu_booke_dev_direct_mapped(mmu_t, vm_paddr_t, vm_size_t);
324static void mmu_booke_sync_icache(mmu_t, pmap_t, vm_offset_t,
325 vm_size_t);
326static vm_offset_t mmu_booke_dumpsys_map(mmu_t, struct pmap_md *,
327 vm_size_t, vm_size_t *);
328static void mmu_booke_dumpsys_unmap(mmu_t, struct pmap_md *,
329 vm_size_t, vm_offset_t);
330static struct pmap_md *mmu_booke_scan_md(mmu_t, struct pmap_md *);
331
332static mmu_method_t mmu_booke_methods[] = {
333 /* pmap dispatcher interface */
334 MMUMETHOD(mmu_change_wiring, mmu_booke_change_wiring),
335 MMUMETHOD(mmu_clear_modify, mmu_booke_clear_modify),
336 MMUMETHOD(mmu_copy, mmu_booke_copy),
337 MMUMETHOD(mmu_copy_page, mmu_booke_copy_page),
338 MMUMETHOD(mmu_copy_pages, mmu_booke_copy_pages),
339 MMUMETHOD(mmu_enter, mmu_booke_enter),
340 MMUMETHOD(mmu_enter_object, mmu_booke_enter_object),
341 MMUMETHOD(mmu_enter_quick, mmu_booke_enter_quick),
342 MMUMETHOD(mmu_extract, mmu_booke_extract),
343 MMUMETHOD(mmu_extract_and_hold, mmu_booke_extract_and_hold),
344 MMUMETHOD(mmu_init, mmu_booke_init),
345 MMUMETHOD(mmu_is_modified, mmu_booke_is_modified),
346 MMUMETHOD(mmu_is_prefaultable, mmu_booke_is_prefaultable),
347 MMUMETHOD(mmu_is_referenced, mmu_booke_is_referenced),
348 MMUMETHOD(mmu_ts_referenced, mmu_booke_ts_referenced),
349 MMUMETHOD(mmu_map, mmu_booke_map),
350 MMUMETHOD(mmu_mincore, mmu_booke_mincore),
351 MMUMETHOD(mmu_object_init_pt, mmu_booke_object_init_pt),
352 MMUMETHOD(mmu_page_exists_quick,mmu_booke_page_exists_quick),
353 MMUMETHOD(mmu_page_init, mmu_booke_page_init),
354 MMUMETHOD(mmu_page_wired_mappings, mmu_booke_page_wired_mappings),
355 MMUMETHOD(mmu_pinit, mmu_booke_pinit),
356 MMUMETHOD(mmu_pinit0, mmu_booke_pinit0),
357 MMUMETHOD(mmu_protect, mmu_booke_protect),
358 MMUMETHOD(mmu_qenter, mmu_booke_qenter),
359 MMUMETHOD(mmu_qremove, mmu_booke_qremove),
360 MMUMETHOD(mmu_release, mmu_booke_release),
361 MMUMETHOD(mmu_remove, mmu_booke_remove),
362 MMUMETHOD(mmu_remove_all, mmu_booke_remove_all),
363 MMUMETHOD(mmu_remove_write, mmu_booke_remove_write),
364 MMUMETHOD(mmu_sync_icache, mmu_booke_sync_icache),
365 MMUMETHOD(mmu_zero_page, mmu_booke_zero_page),
366 MMUMETHOD(mmu_zero_page_area, mmu_booke_zero_page_area),
367 MMUMETHOD(mmu_zero_page_idle, mmu_booke_zero_page_idle),
368 MMUMETHOD(mmu_activate, mmu_booke_activate),
369 MMUMETHOD(mmu_deactivate, mmu_booke_deactivate),
370
371 /* Internal interfaces */
372 MMUMETHOD(mmu_bootstrap, mmu_booke_bootstrap),
373 MMUMETHOD(mmu_dev_direct_mapped,mmu_booke_dev_direct_mapped),
374 MMUMETHOD(mmu_mapdev, mmu_booke_mapdev),
375 MMUMETHOD(mmu_mapdev_attr, mmu_booke_mapdev_attr),
376 MMUMETHOD(mmu_kenter, mmu_booke_kenter),
377 MMUMETHOD(mmu_kenter_attr, mmu_booke_kenter_attr),
378 MMUMETHOD(mmu_kextract, mmu_booke_kextract),
379/* MMUMETHOD(mmu_kremove, mmu_booke_kremove), */
380 MMUMETHOD(mmu_unmapdev, mmu_booke_unmapdev),
381
382 /* dumpsys() support */
383 MMUMETHOD(mmu_dumpsys_map, mmu_booke_dumpsys_map),
384 MMUMETHOD(mmu_dumpsys_unmap, mmu_booke_dumpsys_unmap),
385 MMUMETHOD(mmu_scan_md, mmu_booke_scan_md),
386
387 { 0, 0 }
388};
389
390MMU_DEF(booke_mmu, MMU_TYPE_BOOKE, mmu_booke_methods, 0);
391
392static __inline uint32_t
393tlb_calc_wimg(vm_offset_t pa, vm_memattr_t ma)
394{
395 uint32_t attrib;
396 int i;
397
398 if (ma != VM_MEMATTR_DEFAULT) {
399 switch (ma) {
400 case VM_MEMATTR_UNCACHEABLE:
401 return (PTE_I | PTE_G);
402 case VM_MEMATTR_WRITE_COMBINING:
403 case VM_MEMATTR_WRITE_BACK:
404 case VM_MEMATTR_PREFETCHABLE:
405 return (PTE_I);
406 case VM_MEMATTR_WRITE_THROUGH:
407 return (PTE_W | PTE_M);
408 }
409 }
410
411 /*
412 * Assume the page is cache inhibited and access is guarded unless
413 * it's in our available memory array.
414 */
415 attrib = _TLB_ENTRY_IO;
416 for (i = 0; i < physmem_regions_sz; i++) {
417 if ((pa >= physmem_regions[i].mr_start) &&
418 (pa < (physmem_regions[i].mr_start +
419 physmem_regions[i].mr_size))) {
420 attrib = _TLB_ENTRY_MEM;
421 break;
422 }
423 }
424
425 return (attrib);
426}
427
428static inline void
429tlb_miss_lock(void)
430{
431#ifdef SMP
432 struct pcpu *pc;
433
434 if (!smp_started)
435 return;
436
437 STAILQ_FOREACH(pc, &cpuhead, pc_allcpu) {
438 if (pc != pcpup) {
439
440 CTR3(KTR_PMAP, "%s: tlb miss LOCK of CPU=%d, "
441 "tlb_lock=%p", __func__, pc->pc_cpuid, pc->pc_booke_tlb_lock);
442
443 KASSERT((pc->pc_cpuid != PCPU_GET(cpuid)),
444 ("tlb_miss_lock: tried to lock self"));
445
446 tlb_lock(pc->pc_booke_tlb_lock);
447
448 CTR1(KTR_PMAP, "%s: locked", __func__);
449 }
450 }
451#endif
452}
453
454static inline void
455tlb_miss_unlock(void)
456{
457#ifdef SMP
458 struct pcpu *pc;
459
460 if (!smp_started)
461 return;
462
463 STAILQ_FOREACH(pc, &cpuhead, pc_allcpu) {
464 if (pc != pcpup) {
465 CTR2(KTR_PMAP, "%s: tlb miss UNLOCK of CPU=%d",
466 __func__, pc->pc_cpuid);
467
468 tlb_unlock(pc->pc_booke_tlb_lock);
469
470 CTR1(KTR_PMAP, "%s: unlocked", __func__);
471 }
472 }
473#endif
474}
475
476/* Return number of entries in TLB0. */
477static __inline void
478tlb0_get_tlbconf(void)
479{
480 uint32_t tlb0_cfg;
481
482 tlb0_cfg = mfspr(SPR_TLB0CFG);
483 tlb0_entries = tlb0_cfg & TLBCFG_NENTRY_MASK;
484 tlb0_ways = (tlb0_cfg & TLBCFG_ASSOC_MASK) >> TLBCFG_ASSOC_SHIFT;
485 tlb0_entries_per_way = tlb0_entries / tlb0_ways;
486}
487
488/* Initialize pool of kva ptbl buffers. */
489static void
490ptbl_init(void)
491{
492 int i;
493
494 CTR3(KTR_PMAP, "%s: s (ptbl_bufs = 0x%08x size 0x%08x)", __func__,
495 (uint32_t)ptbl_bufs, sizeof(struct ptbl_buf) * PTBL_BUFS);
496 CTR3(KTR_PMAP, "%s: s (ptbl_buf_pool_vabase = 0x%08x size = 0x%08x)",
497 __func__, ptbl_buf_pool_vabase, PTBL_BUFS * PTBL_PAGES * PAGE_SIZE);
498
499 mtx_init(&ptbl_buf_freelist_lock, "ptbl bufs lock", NULL, MTX_DEF);
500 TAILQ_INIT(&ptbl_buf_freelist);
501
502 for (i = 0; i < PTBL_BUFS; i++) {
503 ptbl_bufs[i].kva = ptbl_buf_pool_vabase + i * PTBL_PAGES * PAGE_SIZE;
504 TAILQ_INSERT_TAIL(&ptbl_buf_freelist, &ptbl_bufs[i], link);
505 }
506}
507
508/* Get a ptbl_buf from the freelist. */
509static struct ptbl_buf *
510ptbl_buf_alloc(void)
511{
512 struct ptbl_buf *buf;
513
514 mtx_lock(&ptbl_buf_freelist_lock);
515 buf = TAILQ_FIRST(&ptbl_buf_freelist);
516 if (buf != NULL)
517 TAILQ_REMOVE(&ptbl_buf_freelist, buf, link);
518 mtx_unlock(&ptbl_buf_freelist_lock);
519
520 CTR2(KTR_PMAP, "%s: buf = %p", __func__, buf);
521
522 return (buf);
523}
524
525/* Return ptbl buff to free pool. */
526static void
527ptbl_buf_free(struct ptbl_buf *buf)
528{
529
530 CTR2(KTR_PMAP, "%s: buf = %p", __func__, buf);
531
532 mtx_lock(&ptbl_buf_freelist_lock);
533 TAILQ_INSERT_TAIL(&ptbl_buf_freelist, buf, link);
534 mtx_unlock(&ptbl_buf_freelist_lock);
535}
536
537/*
538 * Search the list of allocated ptbl bufs and find on list of allocated ptbls
539 */
540static void
541ptbl_free_pmap_ptbl(pmap_t pmap, pte_t *ptbl)
542{
543 struct ptbl_buf *pbuf;
544
545 CTR2(KTR_PMAP, "%s: ptbl = %p", __func__, ptbl);
546
547 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
548
549 TAILQ_FOREACH(pbuf, &pmap->pm_ptbl_list, link)
550 if (pbuf->kva == (vm_offset_t)ptbl) {
551 /* Remove from pmap ptbl buf list. */
552 TAILQ_REMOVE(&pmap->pm_ptbl_list, pbuf, link);
553
554 /* Free corresponding ptbl buf. */
555 ptbl_buf_free(pbuf);
556 break;
557 }
558}
559
560/* Allocate page table. */
561static pte_t *
562ptbl_alloc(mmu_t mmu, pmap_t pmap, unsigned int pdir_idx)
563{
564 vm_page_t mtbl[PTBL_PAGES];
565 vm_page_t m;
566 struct ptbl_buf *pbuf;
567 unsigned int pidx;
568 pte_t *ptbl;
569 int i;
570
571 CTR4(KTR_PMAP, "%s: pmap = %p su = %d pdir_idx = %d", __func__, pmap,
572 (pmap == kernel_pmap), pdir_idx);
573
574 KASSERT((pdir_idx <= (VM_MAXUSER_ADDRESS / PDIR_SIZE)),
575 ("ptbl_alloc: invalid pdir_idx"));
576 KASSERT((pmap->pm_pdir[pdir_idx] == NULL),
577 ("pte_alloc: valid ptbl entry exists!"));
578
579 pbuf = ptbl_buf_alloc();
580 if (pbuf == NULL)
581 panic("pte_alloc: couldn't alloc kernel virtual memory");
582
583 ptbl = (pte_t *)pbuf->kva;
584
585 CTR2(KTR_PMAP, "%s: ptbl kva = %p", __func__, ptbl);
586
587 /* Allocate ptbl pages, this will sleep! */
588 for (i = 0; i < PTBL_PAGES; i++) {
589 pidx = (PTBL_PAGES * pdir_idx) + i;
590 while ((m = vm_page_alloc(NULL, pidx,
591 VM_ALLOC_NOOBJ | VM_ALLOC_WIRED)) == NULL) {
592
593 PMAP_UNLOCK(pmap);
594 rw_wunlock(&pvh_global_lock);
595 VM_WAIT;
596 rw_wlock(&pvh_global_lock);
597 PMAP_LOCK(pmap);
598 }
599 mtbl[i] = m;
600 }
601
602 /* Map allocated pages into kernel_pmap. */
603 mmu_booke_qenter(mmu, (vm_offset_t)ptbl, mtbl, PTBL_PAGES);
604
605 /* Zero whole ptbl. */
606 bzero((caddr_t)ptbl, PTBL_PAGES * PAGE_SIZE);
607
608 /* Add pbuf to the pmap ptbl bufs list. */
609 TAILQ_INSERT_TAIL(&pmap->pm_ptbl_list, pbuf, link);
610
611 return (ptbl);
612}
613
614/* Free ptbl pages and invalidate pdir entry. */
615static void
616ptbl_free(mmu_t mmu, pmap_t pmap, unsigned int pdir_idx)
617{
618 pte_t *ptbl;
619 vm_paddr_t pa;
620 vm_offset_t va;
621 vm_page_t m;
622 int i;
623
624 CTR4(KTR_PMAP, "%s: pmap = %p su = %d pdir_idx = %d", __func__, pmap,
625 (pmap == kernel_pmap), pdir_idx);
626
627 KASSERT((pdir_idx <= (VM_MAXUSER_ADDRESS / PDIR_SIZE)),
628 ("ptbl_free: invalid pdir_idx"));
629
630 ptbl = pmap->pm_pdir[pdir_idx];
631
632 CTR2(KTR_PMAP, "%s: ptbl = %p", __func__, ptbl);
633
634 KASSERT((ptbl != NULL), ("ptbl_free: null ptbl"));
635
636 /*
637 * Invalidate the pdir entry as soon as possible, so that other CPUs
638 * don't attempt to look up the page tables we are releasing.
639 */
640 mtx_lock_spin(&tlbivax_mutex);
641 tlb_miss_lock();
642
643 pmap->pm_pdir[pdir_idx] = NULL;
644
645 tlb_miss_unlock();
646 mtx_unlock_spin(&tlbivax_mutex);
647
648 for (i = 0; i < PTBL_PAGES; i++) {
649 va = ((vm_offset_t)ptbl + (i * PAGE_SIZE));
650 pa = pte_vatopa(mmu, kernel_pmap, va);
651 m = PHYS_TO_VM_PAGE(pa);
652 vm_page_free_zero(m);
653 atomic_subtract_int(&cnt.v_wire_count, 1);
654 mmu_booke_kremove(mmu, va);
655 }
656
657 ptbl_free_pmap_ptbl(pmap, ptbl);
658}
659
660/*
661 * Decrement ptbl pages hold count and attempt to free ptbl pages.
662 * Called when removing pte entry from ptbl.
663 *
664 * Return 1 if ptbl pages were freed.
665 */
666static int
667ptbl_unhold(mmu_t mmu, pmap_t pmap, unsigned int pdir_idx)
668{
669 pte_t *ptbl;
670 vm_paddr_t pa;
671 vm_page_t m;
672 int i;
673
674 CTR4(KTR_PMAP, "%s: pmap = %p su = %d pdir_idx = %d", __func__, pmap,
675 (pmap == kernel_pmap), pdir_idx);
676
677 KASSERT((pdir_idx <= (VM_MAXUSER_ADDRESS / PDIR_SIZE)),
678 ("ptbl_unhold: invalid pdir_idx"));
679 KASSERT((pmap != kernel_pmap),
680 ("ptbl_unhold: unholding kernel ptbl!"));
681
682 ptbl = pmap->pm_pdir[pdir_idx];
683
684 //debugf("ptbl_unhold: ptbl = 0x%08x\n", (u_int32_t)ptbl);
685 KASSERT(((vm_offset_t)ptbl >= VM_MIN_KERNEL_ADDRESS),
686 ("ptbl_unhold: non kva ptbl"));
687
688 /* decrement hold count */
689 for (i = 0; i < PTBL_PAGES; i++) {
690 pa = pte_vatopa(mmu, kernel_pmap,
691 (vm_offset_t)ptbl + (i * PAGE_SIZE));
692 m = PHYS_TO_VM_PAGE(pa);
693 m->wire_count--;
694 }
695
696 /*
697 * Free ptbl pages if there are no pte etries in this ptbl.
698 * wire_count has the same value for all ptbl pages, so check the last
699 * page.
700 */
701 if (m->wire_count == 0) {
702 ptbl_free(mmu, pmap, pdir_idx);
703
704 //debugf("ptbl_unhold: e (freed ptbl)\n");
705 return (1);
706 }
707
708 return (0);
709}
710
711/*
712 * Increment hold count for ptbl pages. This routine is used when a new pte
713 * entry is being inserted into the ptbl.
714 */
715static void
716ptbl_hold(mmu_t mmu, pmap_t pmap, unsigned int pdir_idx)
717{
718 vm_paddr_t pa;
719 pte_t *ptbl;
720 vm_page_t m;
721 int i;
722
723 CTR3(KTR_PMAP, "%s: pmap = %p pdir_idx = %d", __func__, pmap,
724 pdir_idx);
725
726 KASSERT((pdir_idx <= (VM_MAXUSER_ADDRESS / PDIR_SIZE)),
727 ("ptbl_hold: invalid pdir_idx"));
728 KASSERT((pmap != kernel_pmap),
729 ("ptbl_hold: holding kernel ptbl!"));
730
731 ptbl = pmap->pm_pdir[pdir_idx];
732
733 KASSERT((ptbl != NULL), ("ptbl_hold: null ptbl"));
734
735 for (i = 0; i < PTBL_PAGES; i++) {
736 pa = pte_vatopa(mmu, kernel_pmap,
737 (vm_offset_t)ptbl + (i * PAGE_SIZE));
738 m = PHYS_TO_VM_PAGE(pa);
739 m->wire_count++;
740 }
741}
742
743/* Allocate pv_entry structure. */
744pv_entry_t
745pv_alloc(void)
746{
747 pv_entry_t pv;
748
749 pv_entry_count++;
750 if (pv_entry_count > pv_entry_high_water)
751 pagedaemon_wakeup();
752 pv = uma_zalloc(pvzone, M_NOWAIT);
753
754 return (pv);
755}
756
757/* Free pv_entry structure. */
758static __inline void
759pv_free(pv_entry_t pve)
760{
761
762 pv_entry_count--;
763 uma_zfree(pvzone, pve);
764}
765
766
767/* Allocate and initialize pv_entry structure. */
768static void
769pv_insert(pmap_t pmap, vm_offset_t va, vm_page_t m)
770{
771 pv_entry_t pve;
772
773 //int su = (pmap == kernel_pmap);
774 //debugf("pv_insert: s (su = %d pmap = 0x%08x va = 0x%08x m = 0x%08x)\n", su,
775 // (u_int32_t)pmap, va, (u_int32_t)m);
776
777 pve = pv_alloc();
778 if (pve == NULL)
779 panic("pv_insert: no pv entries!");
780
781 pve->pv_pmap = pmap;
782 pve->pv_va = va;
783
784 /* add to pv_list */
785 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
786 rw_assert(&pvh_global_lock, RA_WLOCKED);
787
788 TAILQ_INSERT_TAIL(&m->md.pv_list, pve, pv_link);
789
790 //debugf("pv_insert: e\n");
791}
792
793/* Destroy pv entry. */
794static void
795pv_remove(pmap_t pmap, vm_offset_t va, vm_page_t m)
796{
797 pv_entry_t pve;
798
799 //int su = (pmap == kernel_pmap);
800 //debugf("pv_remove: s (su = %d pmap = 0x%08x va = 0x%08x)\n", su, (u_int32_t)pmap, va);
801
802 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
803 rw_assert(&pvh_global_lock, RA_WLOCKED);
804
805 /* find pv entry */
806 TAILQ_FOREACH(pve, &m->md.pv_list, pv_link) {
807 if ((pmap == pve->pv_pmap) && (va == pve->pv_va)) {
808 /* remove from pv_list */
809 TAILQ_REMOVE(&m->md.pv_list, pve, pv_link);
810 if (TAILQ_EMPTY(&m->md.pv_list))
811 vm_page_aflag_clear(m, PGA_WRITEABLE);
812
813 /* free pv entry struct */
814 pv_free(pve);
815 break;
816 }
817 }
818
819 //debugf("pv_remove: e\n");
820}
821
822/*
823 * Clean pte entry, try to free page table page if requested.
824 *
825 * Return 1 if ptbl pages were freed, otherwise return 0.
826 */
827static int
828pte_remove(mmu_t mmu, pmap_t pmap, vm_offset_t va, uint8_t flags)
829{
830 unsigned int pdir_idx = PDIR_IDX(va);
831 unsigned int ptbl_idx = PTBL_IDX(va);
832 vm_page_t m;
833 pte_t *ptbl;
834 pte_t *pte;
835
836 //int su = (pmap == kernel_pmap);
837 //debugf("pte_remove: s (su = %d pmap = 0x%08x va = 0x%08x flags = %d)\n",
838 // su, (u_int32_t)pmap, va, flags);
839
840 ptbl = pmap->pm_pdir[pdir_idx];
841 KASSERT(ptbl, ("pte_remove: null ptbl"));
842
843 pte = &ptbl[ptbl_idx];
844
845 if (pte == NULL || !PTE_ISVALID(pte))
846 return (0);
847
848 if (PTE_ISWIRED(pte))
849 pmap->pm_stats.wired_count--;
850
851 /* Handle managed entry. */
852 if (PTE_ISMANAGED(pte)) {
853 /* Get vm_page_t for mapped pte. */
854 m = PHYS_TO_VM_PAGE(PTE_PA(pte));
855
856 if (PTE_ISMODIFIED(pte))
857 vm_page_dirty(m);
858
859 if (PTE_ISREFERENCED(pte))
860 vm_page_aflag_set(m, PGA_REFERENCED);
861
862 pv_remove(pmap, va, m);
863 }
864
865 mtx_lock_spin(&tlbivax_mutex);
866 tlb_miss_lock();
867
868 tlb0_flush_entry(va);
869 pte->flags = 0;
870 pte->rpn = 0;
871
872 tlb_miss_unlock();
873 mtx_unlock_spin(&tlbivax_mutex);
874
875 pmap->pm_stats.resident_count--;
876
877 if (flags & PTBL_UNHOLD) {
878 //debugf("pte_remove: e (unhold)\n");
879 return (ptbl_unhold(mmu, pmap, pdir_idx));
880 }
881
882 //debugf("pte_remove: e\n");
883 return (0);
884}
885
886/*
887 * Insert PTE for a given page and virtual address.
888 */
889static void
890pte_enter(mmu_t mmu, pmap_t pmap, vm_page_t m, vm_offset_t va, uint32_t flags)
891{
892 unsigned int pdir_idx = PDIR_IDX(va);
893 unsigned int ptbl_idx = PTBL_IDX(va);
894 pte_t *ptbl, *pte;
895
896 CTR4(KTR_PMAP, "%s: su = %d pmap = %p va = %p", __func__,
897 pmap == kernel_pmap, pmap, va);
898
899 /* Get the page table pointer. */
900 ptbl = pmap->pm_pdir[pdir_idx];
901
902 if (ptbl == NULL) {
903 /* Allocate page table pages. */
904 ptbl = ptbl_alloc(mmu, pmap, pdir_idx);
905 } else {
906 /*
907 * Check if there is valid mapping for requested
908 * va, if there is, remove it.
909 */
910 pte = &pmap->pm_pdir[pdir_idx][ptbl_idx];
911 if (PTE_ISVALID(pte)) {
912 pte_remove(mmu, pmap, va, PTBL_HOLD);
913 } else {
914 /*
915 * pte is not used, increment hold count
916 * for ptbl pages.
917 */
918 if (pmap != kernel_pmap)
919 ptbl_hold(mmu, pmap, pdir_idx);
920 }
921 }
922
923 /*
924 * Insert pv_entry into pv_list for mapped page if part of managed
925 * memory.
926 */
927 if ((m->oflags & VPO_UNMANAGED) == 0) {
928 flags |= PTE_MANAGED;
929
930 /* Create and insert pv entry. */
931 pv_insert(pmap, va, m);
932 }
933
934 pmap->pm_stats.resident_count++;
935
936 mtx_lock_spin(&tlbivax_mutex);
937 tlb_miss_lock();
938
939 tlb0_flush_entry(va);
940 if (pmap->pm_pdir[pdir_idx] == NULL) {
941 /*
942 * If we just allocated a new page table, hook it in
943 * the pdir.
944 */
945 pmap->pm_pdir[pdir_idx] = ptbl;
946 }
947 pte = &(pmap->pm_pdir[pdir_idx][ptbl_idx]);
948 pte->rpn = VM_PAGE_TO_PHYS(m) & ~PTE_PA_MASK;
949 pte->flags |= (PTE_VALID | flags);
950
951 tlb_miss_unlock();
952 mtx_unlock_spin(&tlbivax_mutex);
953}
954
955/* Return the pa for the given pmap/va. */
956static vm_paddr_t
957pte_vatopa(mmu_t mmu, pmap_t pmap, vm_offset_t va)
958{
959 vm_paddr_t pa = 0;
960 pte_t *pte;
961
962 pte = pte_find(mmu, pmap, va);
963 if ((pte != NULL) && PTE_ISVALID(pte))
964 pa = (PTE_PA(pte) | (va & PTE_PA_MASK));
965 return (pa);
966}
967
968/* Get a pointer to a PTE in a page table. */
969static pte_t *
970pte_find(mmu_t mmu, pmap_t pmap, vm_offset_t va)
971{
972 unsigned int pdir_idx = PDIR_IDX(va);
973 unsigned int ptbl_idx = PTBL_IDX(va);
974
975 KASSERT((pmap != NULL), ("pte_find: invalid pmap"));
976
977 if (pmap->pm_pdir[pdir_idx])
978 return (&(pmap->pm_pdir[pdir_idx][ptbl_idx]));
979
980 return (NULL);
981}
982
983/**************************************************************************/
984/* PMAP related */
985/**************************************************************************/
986
987/*
988 * This is called during booke_init, before the system is really initialized.
989 */
990static void
991mmu_booke_bootstrap(mmu_t mmu, vm_offset_t start, vm_offset_t kernelend)
992{
993 vm_offset_t phys_kernelend;
994 struct mem_region *mp, *mp1;
995 int cnt, i, j;
996 u_int s, e, sz;
997 u_int phys_avail_count;
998 vm_size_t physsz, hwphyssz, kstack0_sz;
999 vm_offset_t kernel_pdir, kstack0, va;
1000 vm_paddr_t kstack0_phys;
1001 void *dpcpu;
1002 pte_t *pte;
1003
1004 debugf("mmu_booke_bootstrap: entered\n");
1005
1006 /* Initialize invalidation mutex */
1007 mtx_init(&tlbivax_mutex, "tlbivax", NULL, MTX_SPIN);
1008
1009 /* Read TLB0 size and associativity. */
1010 tlb0_get_tlbconf();
1011
1012 /*
1013 * Align kernel start and end address (kernel image).
1014 * Note that kernel end does not necessarily relate to kernsize.
1015 * kernsize is the size of the kernel that is actually mapped.
1016 * Also note that "start - 1" is deliberate. With SMP, the
1017 * entry point is exactly a page from the actual load address.
1018 * As such, trunc_page() has no effect and we're off by a page.
1019 * Since we always have the ELF header between the load address
1020 * and the entry point, we can safely subtract 1 to compensate.
1021 */
1022 kernstart = trunc_page(start - 1);
1023 data_start = round_page(kernelend);
1024 data_end = data_start;
1025
1026 /*
1027 * Addresses of preloaded modules (like file systems) use
1028 * physical addresses. Make sure we relocate those into
1029 * virtual addresses.
1030 */
1031 preload_addr_relocate = kernstart - kernload;
1032
1033 /* Allocate the dynamic per-cpu area. */
1034 dpcpu = (void *)data_end;
1035 data_end += DPCPU_SIZE;
1036
1037 /* Allocate space for the message buffer. */
1038 msgbufp = (struct msgbuf *)data_end;
1039 data_end += msgbufsize;
1040 debugf(" msgbufp at 0x%08x end = 0x%08x\n", (uint32_t)msgbufp,
1041 data_end);
1042
1043 data_end = round_page(data_end);
1044
1045 /* Allocate space for ptbl_bufs. */
1046 ptbl_bufs = (struct ptbl_buf *)data_end;
1047 data_end += sizeof(struct ptbl_buf) * PTBL_BUFS;
1048 debugf(" ptbl_bufs at 0x%08x end = 0x%08x\n", (uint32_t)ptbl_bufs,
1049 data_end);
1050
1051 data_end = round_page(data_end);
1052
1053 /* Allocate PTE tables for kernel KVA. */
1054 kernel_pdir = data_end;
1055 kernel_ptbls = (VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS +
1056 PDIR_SIZE - 1) / PDIR_SIZE;
1057 data_end += kernel_ptbls * PTBL_PAGES * PAGE_SIZE;
1058 debugf(" kernel ptbls: %d\n", kernel_ptbls);
1059 debugf(" kernel pdir at 0x%08x end = 0x%08x\n", kernel_pdir, data_end);
1060
1061 debugf(" data_end: 0x%08x\n", data_end);
1062 if (data_end - kernstart > kernsize) {
1063 kernsize += tlb1_mapin_region(kernstart + kernsize,
1064 kernload + kernsize, (data_end - kernstart) - kernsize);
1065 }
1066 data_end = kernstart + kernsize;
1067 debugf(" updated data_end: 0x%08x\n", data_end);
1068
1069 /*
1070 * Clear the structures - note we can only do it safely after the
1071 * possible additional TLB1 translations are in place (above) so that
1072 * all range up to the currently calculated 'data_end' is covered.
1073 */
1074 dpcpu_init(dpcpu, 0);
1075 memset((void *)ptbl_bufs, 0, sizeof(struct ptbl_buf) * PTBL_SIZE);
1076 memset((void *)kernel_pdir, 0, kernel_ptbls * PTBL_PAGES * PAGE_SIZE);
1077
1078 /*******************************************************/
1079 /* Set the start and end of kva. */
1080 /*******************************************************/
1081 virtual_avail = round_page(data_end);
1082 virtual_end = VM_MAX_KERNEL_ADDRESS;
1083
1084 /* Allocate KVA space for page zero/copy operations. */
1085 zero_page_va = virtual_avail;
1086 virtual_avail += PAGE_SIZE;
1087 zero_page_idle_va = virtual_avail;
1088 virtual_avail += PAGE_SIZE;
1089 copy_page_src_va = virtual_avail;
1090 virtual_avail += PAGE_SIZE;
1091 copy_page_dst_va = virtual_avail;
1092 virtual_avail += PAGE_SIZE;
1093 debugf("zero_page_va = 0x%08x\n", zero_page_va);
1094 debugf("zero_page_idle_va = 0x%08x\n", zero_page_idle_va);
1095 debugf("copy_page_src_va = 0x%08x\n", copy_page_src_va);
1096 debugf("copy_page_dst_va = 0x%08x\n", copy_page_dst_va);
1097
1098 /* Initialize page zero/copy mutexes. */
1099 mtx_init(&zero_page_mutex, "mmu_booke_zero_page", NULL, MTX_DEF);
1100 mtx_init(&copy_page_mutex, "mmu_booke_copy_page", NULL, MTX_DEF);
1101
1102 /* Allocate KVA space for ptbl bufs. */
1103 ptbl_buf_pool_vabase = virtual_avail;
1104 virtual_avail += PTBL_BUFS * PTBL_PAGES * PAGE_SIZE;
1105 debugf("ptbl_buf_pool_vabase = 0x%08x end = 0x%08x\n",
1106 ptbl_buf_pool_vabase, virtual_avail);
1107
1108 /* Calculate corresponding physical addresses for the kernel region. */
1109 phys_kernelend = kernload + kernsize;
1110 debugf("kernel image and allocated data:\n");
1111 debugf(" kernload = 0x%08x\n", kernload);
1112 debugf(" kernstart = 0x%08x\n", kernstart);
1113 debugf(" kernsize = 0x%08x\n", kernsize);
1114
1115 if (sizeof(phys_avail) / sizeof(phys_avail[0]) < availmem_regions_sz)
1116 panic("mmu_booke_bootstrap: phys_avail too small");
1117
1118 /*
1119 * Remove kernel physical address range from avail regions list. Page
1120 * align all regions. Non-page aligned memory isn't very interesting
1121 * to us. Also, sort the entries for ascending addresses.
1122 */
1123
1124 /* Retrieve phys/avail mem regions */
1125 mem_regions(&physmem_regions, &physmem_regions_sz,
1126 &availmem_regions, &availmem_regions_sz);
1127 sz = 0;
1128 cnt = availmem_regions_sz;
1129 debugf("processing avail regions:\n");
1130 for (mp = availmem_regions; mp->mr_size; mp++) {
1131 s = mp->mr_start;
1132 e = mp->mr_start + mp->mr_size;
1133 debugf(" %08x-%08x -> ", s, e);
1134 /* Check whether this region holds all of the kernel. */
1135 if (s < kernload && e > phys_kernelend) {
1136 availmem_regions[cnt].mr_start = phys_kernelend;
1137 availmem_regions[cnt++].mr_size = e - phys_kernelend;
1138 e = kernload;
1139 }
1140 /* Look whether this regions starts within the kernel. */
1141 if (s >= kernload && s < phys_kernelend) {
1142 if (e <= phys_kernelend)
1143 goto empty;
1144 s = phys_kernelend;
1145 }
1146 /* Now look whether this region ends within the kernel. */
1147 if (e > kernload && e <= phys_kernelend) {
1148 if (s >= kernload)
1149 goto empty;
1150 e = kernload;
1151 }
1152 /* Now page align the start and size of the region. */
1153 s = round_page(s);
1154 e = trunc_page(e);
1155 if (e < s)
1156 e = s;
1157 sz = e - s;
1158 debugf("%08x-%08x = %x\n", s, e, sz);
1159
1160 /* Check whether some memory is left here. */
1161 if (sz == 0) {
1162 empty:
1163 memmove(mp, mp + 1,
1164 (cnt - (mp - availmem_regions)) * sizeof(*mp));
1165 cnt--;
1166 mp--;
1167 continue;
1168 }
1169
1170 /* Do an insertion sort. */
1171 for (mp1 = availmem_regions; mp1 < mp; mp1++)
1172 if (s < mp1->mr_start)
1173 break;
1174 if (mp1 < mp) {
1175 memmove(mp1 + 1, mp1, (char *)mp - (char *)mp1);
1176 mp1->mr_start = s;
1177 mp1->mr_size = sz;
1178 } else {
1179 mp->mr_start = s;
1180 mp->mr_size = sz;
1181 }
1182 }
1183 availmem_regions_sz = cnt;
1184
1185 /*******************************************************/
1186 /* Steal physical memory for kernel stack from the end */
1187 /* of the first avail region */
1188 /*******************************************************/
1189 kstack0_sz = KSTACK_PAGES * PAGE_SIZE;
1190 kstack0_phys = availmem_regions[0].mr_start +
1191 availmem_regions[0].mr_size;
1192 kstack0_phys -= kstack0_sz;
1193 availmem_regions[0].mr_size -= kstack0_sz;
1194
1195 /*******************************************************/
1196 /* Fill in phys_avail table, based on availmem_regions */
1197 /*******************************************************/
1198 phys_avail_count = 0;
1199 physsz = 0;
1200 hwphyssz = 0;
1201 TUNABLE_ULONG_FETCH("hw.physmem", (u_long *) &hwphyssz);
1202
1203 debugf("fill in phys_avail:\n");
1204 for (i = 0, j = 0; i < availmem_regions_sz; i++, j += 2) {
1205
1206 debugf(" region: 0x%08x - 0x%08x (0x%08x)\n",
1207 availmem_regions[i].mr_start,
1208 availmem_regions[i].mr_start +
1209 availmem_regions[i].mr_size,
1210 availmem_regions[i].mr_size);
1211
1212 if (hwphyssz != 0 &&
1213 (physsz + availmem_regions[i].mr_size) >= hwphyssz) {
1214 debugf(" hw.physmem adjust\n");
1215 if (physsz < hwphyssz) {
1216 phys_avail[j] = availmem_regions[i].mr_start;
1217 phys_avail[j + 1] =
1218 availmem_regions[i].mr_start +
1219 hwphyssz - physsz;
1220 physsz = hwphyssz;
1221 phys_avail_count++;
1222 }
1223 break;
1224 }
1225
1226 phys_avail[j] = availmem_regions[i].mr_start;
1227 phys_avail[j + 1] = availmem_regions[i].mr_start +
1228 availmem_regions[i].mr_size;
1229 phys_avail_count++;
1230 physsz += availmem_regions[i].mr_size;
1231 }
1232 physmem = btoc(physsz);
1233
1234 /* Calculate the last available physical address. */
1235 for (i = 0; phys_avail[i + 2] != 0; i += 2)
1236 ;
1237 Maxmem = powerpc_btop(phys_avail[i + 1]);
1238
1239 debugf("Maxmem = 0x%08lx\n", Maxmem);
1240 debugf("phys_avail_count = %d\n", phys_avail_count);
1241 debugf("physsz = 0x%08x physmem = %ld (0x%08lx)\n", physsz, physmem,
1242 physmem);
1243
1244 /*******************************************************/
1245 /* Initialize (statically allocated) kernel pmap. */
1246 /*******************************************************/
1247 PMAP_LOCK_INIT(kernel_pmap);
1248 kptbl_min = VM_MIN_KERNEL_ADDRESS / PDIR_SIZE;
1249
1250 debugf("kernel_pmap = 0x%08x\n", (uint32_t)kernel_pmap);
1251 debugf("kptbl_min = %d, kernel_ptbls = %d\n", kptbl_min, kernel_ptbls);
1252 debugf("kernel pdir range: 0x%08x - 0x%08x\n",
1253 kptbl_min * PDIR_SIZE, (kptbl_min + kernel_ptbls) * PDIR_SIZE - 1);
1254
1255 /* Initialize kernel pdir */
1256 for (i = 0; i < kernel_ptbls; i++)
1257 kernel_pmap->pm_pdir[kptbl_min + i] =
1258 (pte_t *)(kernel_pdir + (i * PAGE_SIZE * PTBL_PAGES));
1259
1260 for (i = 0; i < MAXCPU; i++) {
1261 kernel_pmap->pm_tid[i] = TID_KERNEL;
1262
1263 /* Initialize each CPU's tidbusy entry 0 with kernel_pmap */
1264 tidbusy[i][0] = kernel_pmap;
1265 }
1266
1267 /*
1268 * Fill in PTEs covering kernel code and data. They are not required
1269 * for address translation, as this area is covered by static TLB1
1270 * entries, but for pte_vatopa() to work correctly with kernel area
1271 * addresses.
1272 */
1273 for (va = kernstart; va < data_end; va += PAGE_SIZE) {
1274 pte = &(kernel_pmap->pm_pdir[PDIR_IDX(va)][PTBL_IDX(va)]);
1275 pte->rpn = kernload + (va - kernstart);
1276 pte->flags = PTE_M | PTE_SR | PTE_SW | PTE_SX | PTE_WIRED |
1277 PTE_VALID;
1278 }
1279 /* Mark kernel_pmap active on all CPUs */
1280 CPU_FILL(&kernel_pmap->pm_active);
1281
1282 /*
1283 * Initialize the global pv list lock.
1284 */
1285 rw_init(&pvh_global_lock, "pmap pv global");
1286
1287 /*******************************************************/
1288 /* Final setup */
1289 /*******************************************************/
1290
1291 /* Enter kstack0 into kernel map, provide guard page */
1292 kstack0 = virtual_avail + KSTACK_GUARD_PAGES * PAGE_SIZE;
1293 thread0.td_kstack = kstack0;
1294 thread0.td_kstack_pages = KSTACK_PAGES;
1295
1296 debugf("kstack_sz = 0x%08x\n", kstack0_sz);
1297 debugf("kstack0_phys at 0x%08x - 0x%08x\n",
1298 kstack0_phys, kstack0_phys + kstack0_sz);
1299 debugf("kstack0 at 0x%08x - 0x%08x\n", kstack0, kstack0 + kstack0_sz);
1300
1301 virtual_avail += KSTACK_GUARD_PAGES * PAGE_SIZE + kstack0_sz;
1302 for (i = 0; i < KSTACK_PAGES; i++) {
1303 mmu_booke_kenter(mmu, kstack0, kstack0_phys);
1304 kstack0 += PAGE_SIZE;
1305 kstack0_phys += PAGE_SIZE;
1306 }
1307
1308 debugf("virtual_avail = %08x\n", virtual_avail);
1309 debugf("virtual_end = %08x\n", virtual_end);
1310
1311 debugf("mmu_booke_bootstrap: exit\n");
1312}
1313
1314void
1315pmap_bootstrap_ap(volatile uint32_t *trcp __unused)
1316{
1317 int i;
1318
1319 /*
1320 * Finish TLB1 configuration: the BSP already set up its TLB1 and we
1321 * have the snapshot of its contents in the s/w tlb1[] table, so use
1322 * these values directly to (re)program AP's TLB1 hardware.
1323 */
1324 for (i = bp_ntlb1s; i < tlb1_idx; i++) {
1325 /* Skip invalid entries */
1326 if (!(tlb1[i].mas1 & MAS1_VALID))
1327 continue;
1328
1329 tlb1_write_entry(i);
1330 }
1331
1332 set_mas4_defaults();
1333}
1334
1335/*
1336 * Get the physical page address for the given pmap/virtual address.
1337 */
1338static vm_paddr_t
1339mmu_booke_extract(mmu_t mmu, pmap_t pmap, vm_offset_t va)
1340{
1341 vm_paddr_t pa;
1342
1343 PMAP_LOCK(pmap);
1344 pa = pte_vatopa(mmu, pmap, va);
1345 PMAP_UNLOCK(pmap);
1346
1347 return (pa);
1348}
1349
1350/*
1351 * Extract the physical page address associated with the given
1352 * kernel virtual address.
1353 */
1354static vm_paddr_t
1355mmu_booke_kextract(mmu_t mmu, vm_offset_t va)
1356{
1357 int i;
1358
1359 /* Check TLB1 mappings */
1360 for (i = 0; i < tlb1_idx; i++) {
1361 if (!(tlb1[i].mas1 & MAS1_VALID))
1362 continue;
1363 if (va >= tlb1[i].virt && va < tlb1[i].virt + tlb1[i].size)
1364 return (tlb1[i].phys + (va - tlb1[i].virt));
1365 }
1366
1367 return (pte_vatopa(mmu, kernel_pmap, va));
1368}
1369
1370/*
1371 * Initialize the pmap module.
1372 * Called by vm_init, to initialize any structures that the pmap
1373 * system needs to map virtual memory.
1374 */
1375static void
1376mmu_booke_init(mmu_t mmu)
1377{
1378 int shpgperproc = PMAP_SHPGPERPROC;
1379
1380 /*
1381 * Initialize the address space (zone) for the pv entries. Set a
1382 * high water mark so that the system can recover from excessive
1383 * numbers of pv entries.
1384 */
1385 pvzone = uma_zcreate("PV ENTRY", sizeof(struct pv_entry), NULL, NULL,
1386 NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_VM | UMA_ZONE_NOFREE);
1387
1388 TUNABLE_INT_FETCH("vm.pmap.shpgperproc", &shpgperproc);
1389 pv_entry_max = shpgperproc * maxproc + cnt.v_page_count;
1390
1391 TUNABLE_INT_FETCH("vm.pmap.pv_entries", &pv_entry_max);
1392 pv_entry_high_water = 9 * (pv_entry_max / 10);
1393
1394 uma_zone_reserve_kva(pvzone, pv_entry_max);
1395
1396 /* Pre-fill pvzone with initial number of pv entries. */
1397 uma_prealloc(pvzone, PV_ENTRY_ZONE_MIN);
1398
1399 /* Initialize ptbl allocation. */
1400 ptbl_init();
1401}
1402
1403/*
1404 * Map a list of wired pages into kernel virtual address space. This is
1405 * intended for temporary mappings which do not need page modification or
1406 * references recorded. Existing mappings in the region are overwritten.
1407 */
1408static void
1409mmu_booke_qenter(mmu_t mmu, vm_offset_t sva, vm_page_t *m, int count)
1410{
1411 vm_offset_t va;
1412
1413 va = sva;
1414 while (count-- > 0) {
1415 mmu_booke_kenter(mmu, va, VM_PAGE_TO_PHYS(*m));
1416 va += PAGE_SIZE;
1417 m++;
1418 }
1419}
1420
1421/*
1422 * Remove page mappings from kernel virtual address space. Intended for
1423 * temporary mappings entered by mmu_booke_qenter.
1424 */
1425static void
1426mmu_booke_qremove(mmu_t mmu, vm_offset_t sva, int count)
1427{
1428 vm_offset_t va;
1429
1430 va = sva;
1431 while (count-- > 0) {
1432 mmu_booke_kremove(mmu, va);
1433 va += PAGE_SIZE;
1434 }
1435}
1436
1437/*
1438 * Map a wired page into kernel virtual address space.
1439 */
1440static void
1441mmu_booke_kenter(mmu_t mmu, vm_offset_t va, vm_paddr_t pa)
1442{
1443
1444 mmu_booke_kenter_attr(mmu, va, pa, VM_MEMATTR_DEFAULT);
1445}
1446
1447static void
1448mmu_booke_kenter_attr(mmu_t mmu, vm_offset_t va, vm_paddr_t pa, vm_memattr_t ma)
1449{
1450 unsigned int pdir_idx = PDIR_IDX(va);
1451 unsigned int ptbl_idx = PTBL_IDX(va);
1452 uint32_t flags;
1453 pte_t *pte;
1454
1455 KASSERT(((va >= VM_MIN_KERNEL_ADDRESS) &&
1456 (va <= VM_MAX_KERNEL_ADDRESS)), ("mmu_booke_kenter: invalid va"));
1457
1458 flags = PTE_SR | PTE_SW | PTE_SX | PTE_WIRED | PTE_VALID;
1459 flags |= tlb_calc_wimg(pa, ma);
1460
1461 pte = &(kernel_pmap->pm_pdir[pdir_idx][ptbl_idx]);
1462
1463 mtx_lock_spin(&tlbivax_mutex);
1464 tlb_miss_lock();
1465
1466 if (PTE_ISVALID(pte)) {
1467
1468 CTR1(KTR_PMAP, "%s: replacing entry!", __func__);
1469
1470 /* Flush entry from TLB0 */
1471 tlb0_flush_entry(va);
1472 }
1473
1474 pte->rpn = pa & ~PTE_PA_MASK;
1475 pte->flags = flags;
1476
1477 //debugf("mmu_booke_kenter: pdir_idx = %d ptbl_idx = %d va=0x%08x "
1478 // "pa=0x%08x rpn=0x%08x flags=0x%08x\n",
1479 // pdir_idx, ptbl_idx, va, pa, pte->rpn, pte->flags);
1480
1481 /* Flush the real memory from the instruction cache. */
1482 if ((flags & (PTE_I | PTE_G)) == 0) {
1483 __syncicache((void *)va, PAGE_SIZE);
1484 }
1485
1486 tlb_miss_unlock();
1487 mtx_unlock_spin(&tlbivax_mutex);
1488}
1489
1490/*
1491 * Remove a page from kernel page table.
1492 */
1493static void
1494mmu_booke_kremove(mmu_t mmu, vm_offset_t va)
1495{
1496 unsigned int pdir_idx = PDIR_IDX(va);
1497 unsigned int ptbl_idx = PTBL_IDX(va);
1498 pte_t *pte;
1499
1500// CTR2(KTR_PMAP,("%s: s (va = 0x%08x)\n", __func__, va));
1501
1502 KASSERT(((va >= VM_MIN_KERNEL_ADDRESS) &&
1503 (va <= VM_MAX_KERNEL_ADDRESS)),
1504 ("mmu_booke_kremove: invalid va"));
1505
1506 pte = &(kernel_pmap->pm_pdir[pdir_idx][ptbl_idx]);
1507
1508 if (!PTE_ISVALID(pte)) {
1509
1510 CTR1(KTR_PMAP, "%s: invalid pte", __func__);
1511
1512 return;
1513 }
1514
1515 mtx_lock_spin(&tlbivax_mutex);
1516 tlb_miss_lock();
1517
1518 /* Invalidate entry in TLB0, update PTE. */
1519 tlb0_flush_entry(va);
1520 pte->flags = 0;
1521 pte->rpn = 0;
1522
1523 tlb_miss_unlock();
1524 mtx_unlock_spin(&tlbivax_mutex);
1525}
1526
1527/*
1528 * Initialize pmap associated with process 0.
1529 */
1530static void
1531mmu_booke_pinit0(mmu_t mmu, pmap_t pmap)
1532{
1533
1534 PMAP_LOCK_INIT(pmap);
1535 mmu_booke_pinit(mmu, pmap);
1536 PCPU_SET(curpmap, pmap);
1537}
1538
1539/*
1540 * Initialize a preallocated and zeroed pmap structure,
1541 * such as one in a vmspace structure.
1542 */
1543static void
1544mmu_booke_pinit(mmu_t mmu, pmap_t pmap)
1545{
1546 int i;
1547
1548 CTR4(KTR_PMAP, "%s: pmap = %p, proc %d '%s'", __func__, pmap,
1549 curthread->td_proc->p_pid, curthread->td_proc->p_comm);
1550
1551 KASSERT((pmap != kernel_pmap), ("pmap_pinit: initializing kernel_pmap"));
1552
1553 for (i = 0; i < MAXCPU; i++)
1554 pmap->pm_tid[i] = TID_NONE;
1555 CPU_ZERO(&kernel_pmap->pm_active);
1556 bzero(&pmap->pm_stats, sizeof(pmap->pm_stats));
1557 bzero(&pmap->pm_pdir, sizeof(pte_t *) * PDIR_NENTRIES);
1558 TAILQ_INIT(&pmap->pm_ptbl_list);
1559}
1560
1561/*
1562 * Release any resources held by the given physical map.
1563 * Called when a pmap initialized by mmu_booke_pinit is being released.
1564 * Should only be called if the map contains no valid mappings.
1565 */
1566static void
1567mmu_booke_release(mmu_t mmu, pmap_t pmap)
1568{
1569
1570 KASSERT(pmap->pm_stats.resident_count == 0,
1571 ("pmap_release: pmap resident count %ld != 0",
1572 pmap->pm_stats.resident_count));
1573}
1574
1575/*
1576 * Insert the given physical page at the specified virtual address in the
1577 * target physical map with the protection requested. If specified the page
1578 * will be wired down.
1579 */
1580static void
1581mmu_booke_enter(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_page_t m,
1582 vm_prot_t prot, boolean_t wired)
1583{
1584
1585 rw_wlock(&pvh_global_lock);
1586 PMAP_LOCK(pmap);
1587 mmu_booke_enter_locked(mmu, pmap, va, m, prot, wired);
1588 rw_wunlock(&pvh_global_lock);
1589 PMAP_UNLOCK(pmap);
1590}
1591
1592static void
1593mmu_booke_enter_locked(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_page_t m,
1594 vm_prot_t prot, boolean_t wired)
1595{
1596 pte_t *pte;
1597 vm_paddr_t pa;
1598 uint32_t flags;
1599 int su, sync;
1600
1601 pa = VM_PAGE_TO_PHYS(m);
1602 su = (pmap == kernel_pmap);
1603 sync = 0;
1604
1605 //debugf("mmu_booke_enter_locked: s (pmap=0x%08x su=%d tid=%d m=0x%08x va=0x%08x "
1606 // "pa=0x%08x prot=0x%08x wired=%d)\n",
1607 // (u_int32_t)pmap, su, pmap->pm_tid,
1608 // (u_int32_t)m, va, pa, prot, wired);
1609
1610 if (su) {
1611 KASSERT(((va >= virtual_avail) &&
1612 (va <= VM_MAX_KERNEL_ADDRESS)),
1613 ("mmu_booke_enter_locked: kernel pmap, non kernel va"));
1614 } else {
1615 KASSERT((va <= VM_MAXUSER_ADDRESS),
1616 ("mmu_booke_enter_locked: user pmap, non user va"));
1617 }
1618 if ((m->oflags & VPO_UNMANAGED) == 0 && !vm_page_xbusied(m))
1619 VM_OBJECT_ASSERT_LOCKED(m->object);
1620
1621 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1622
1623 /*
1624 * If there is an existing mapping, and the physical address has not
1625 * changed, must be protection or wiring change.
1626 */
1627 if (((pte = pte_find(mmu, pmap, va)) != NULL) &&
1628 (PTE_ISVALID(pte)) && (PTE_PA(pte) == pa)) {
1629
1630 /*
1631 * Before actually updating pte->flags we calculate and
1632 * prepare its new value in a helper var.
1633 */
1634 flags = pte->flags;
1635 flags &= ~(PTE_UW | PTE_UX | PTE_SW | PTE_SX | PTE_MODIFIED);
1636
1637 /* Wiring change, just update stats. */
1638 if (wired) {
1639 if (!PTE_ISWIRED(pte)) {
1640 flags |= PTE_WIRED;
1641 pmap->pm_stats.wired_count++;
1642 }
1643 } else {
1644 if (PTE_ISWIRED(pte)) {
1645 flags &= ~PTE_WIRED;
1646 pmap->pm_stats.wired_count--;
1647 }
1648 }
1649
1650 if (prot & VM_PROT_WRITE) {
1651 /* Add write permissions. */
1652 flags |= PTE_SW;
1653 if (!su)
1654 flags |= PTE_UW;
1655
1656 if ((flags & PTE_MANAGED) != 0)
1657 vm_page_aflag_set(m, PGA_WRITEABLE);
1658 } else {
1659 /* Handle modified pages, sense modify status. */
1660
1661 /*
1662 * The PTE_MODIFIED flag could be set by underlying
1663 * TLB misses since we last read it (above), possibly
1664 * other CPUs could update it so we check in the PTE
1665 * directly rather than rely on that saved local flags
1666 * copy.
1667 */
1668 if (PTE_ISMODIFIED(pte))
1669 vm_page_dirty(m);
1670 }
1671
1672 if (prot & VM_PROT_EXECUTE) {
1673 flags |= PTE_SX;
1674 if (!su)
1675 flags |= PTE_UX;
1676
1677 /*
1678 * Check existing flags for execute permissions: if we
1679 * are turning execute permissions on, icache should
1680 * be flushed.
1681 */
1682 if ((pte->flags & (PTE_UX | PTE_SX)) == 0)
1683 sync++;
1684 }
1685
1686 flags &= ~PTE_REFERENCED;
1687
1688 /*
1689 * The new flags value is all calculated -- only now actually
1690 * update the PTE.
1691 */
1692 mtx_lock_spin(&tlbivax_mutex);
1693 tlb_miss_lock();
1694
1695 tlb0_flush_entry(va);
1696 pte->flags = flags;
1697
1698 tlb_miss_unlock();
1699 mtx_unlock_spin(&tlbivax_mutex);
1700
1701 } else {
1702 /*
1703 * If there is an existing mapping, but it's for a different
1704 * physical address, pte_enter() will delete the old mapping.
1705 */
1706 //if ((pte != NULL) && PTE_ISVALID(pte))
1707 // debugf("mmu_booke_enter_locked: replace\n");
1708 //else
1709 // debugf("mmu_booke_enter_locked: new\n");
1710
1711 /* Now set up the flags and install the new mapping. */
1712 flags = (PTE_SR | PTE_VALID);
1713 flags |= PTE_M;
1714
1715 if (!su)
1716 flags |= PTE_UR;
1717
1718 if (prot & VM_PROT_WRITE) {
1719 flags |= PTE_SW;
1720 if (!su)
1721 flags |= PTE_UW;
1722
1723 if ((m->oflags & VPO_UNMANAGED) == 0)
1724 vm_page_aflag_set(m, PGA_WRITEABLE);
1725 }
1726
1727 if (prot & VM_PROT_EXECUTE) {
1728 flags |= PTE_SX;
1729 if (!su)
1730 flags |= PTE_UX;
1731 }
1732
1733 /* If its wired update stats. */
1734 if (wired) {
1735 pmap->pm_stats.wired_count++;
1736 flags |= PTE_WIRED;
1737 }
1738
1739 pte_enter(mmu, pmap, m, va, flags);
1740
1741 /* Flush the real memory from the instruction cache. */
1742 if (prot & VM_PROT_EXECUTE)
1743 sync++;
1744 }
1745
1746 if (sync && (su || pmap == PCPU_GET(curpmap))) {
1747 __syncicache((void *)va, PAGE_SIZE);
1748 sync = 0;
1749 }
1750}
1751
1752/*
1753 * Maps a sequence of resident pages belonging to the same object.
1754 * The sequence begins with the given page m_start. This page is
1755 * mapped at the given virtual address start. Each subsequent page is
1756 * mapped at a virtual address that is offset from start by the same
1757 * amount as the page is offset from m_start within the object. The
1758 * last page in the sequence is the page with the largest offset from
1759 * m_start that can be mapped at a virtual address less than the given
1760 * virtual address end. Not every virtual page between start and end
1761 * is mapped; only those for which a resident page exists with the
1762 * corresponding offset from m_start are mapped.
1763 */
1764static void
1765mmu_booke_enter_object(mmu_t mmu, pmap_t pmap, vm_offset_t start,
1766 vm_offset_t end, vm_page_t m_start, vm_prot_t prot)
1767{
1768 vm_page_t m;
1769 vm_pindex_t diff, psize;
1770
1771 VM_OBJECT_ASSERT_LOCKED(m_start->object);
1772
1773 psize = atop(end - start);
1774 m = m_start;
1775 rw_wlock(&pvh_global_lock);
1776 PMAP_LOCK(pmap);
1777 while (m != NULL && (diff = m->pindex - m_start->pindex) < psize) {
1778 mmu_booke_enter_locked(mmu, pmap, start + ptoa(diff), m,
1779 prot & (VM_PROT_READ | VM_PROT_EXECUTE), FALSE);
1780 m = TAILQ_NEXT(m, listq);
1781 }
1782 rw_wunlock(&pvh_global_lock);
1783 PMAP_UNLOCK(pmap);
1784}
1785
1786static void
1787mmu_booke_enter_quick(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_page_t m,
1788 vm_prot_t prot)
1789{
1790
1791 rw_wlock(&pvh_global_lock);
1792 PMAP_LOCK(pmap);
1793 mmu_booke_enter_locked(mmu, pmap, va, m,
1794 prot & (VM_PROT_READ | VM_PROT_EXECUTE), FALSE);
1795 rw_wunlock(&pvh_global_lock);
1796 PMAP_UNLOCK(pmap);
1797}
1798
1799/*
1800 * Remove the given range of addresses from the specified map.
1801 *
1802 * It is assumed that the start and end are properly rounded to the page size.
1803 */
1804static void
1805mmu_booke_remove(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_offset_t endva)
1806{
1807 pte_t *pte;
1808 uint8_t hold_flag;
1809
1810 int su = (pmap == kernel_pmap);
1811
1812 //debugf("mmu_booke_remove: s (su = %d pmap=0x%08x tid=%d va=0x%08x endva=0x%08x)\n",
1813 // su, (u_int32_t)pmap, pmap->pm_tid, va, endva);
1814
1815 if (su) {
1816 KASSERT(((va >= virtual_avail) &&
1817 (va <= VM_MAX_KERNEL_ADDRESS)),
1818 ("mmu_booke_remove: kernel pmap, non kernel va"));
1819 } else {
1820 KASSERT((va <= VM_MAXUSER_ADDRESS),
1821 ("mmu_booke_remove: user pmap, non user va"));
1822 }
1823
1824 if (PMAP_REMOVE_DONE(pmap)) {
1825 //debugf("mmu_booke_remove: e (empty)\n");
1826 return;
1827 }
1828
1829 hold_flag = PTBL_HOLD_FLAG(pmap);
1830 //debugf("mmu_booke_remove: hold_flag = %d\n", hold_flag);
1831
1832 rw_wlock(&pvh_global_lock);
1833 PMAP_LOCK(pmap);
1834 for (; va < endva; va += PAGE_SIZE) {
1835 pte = pte_find(mmu, pmap, va);
1836 if ((pte != NULL) && PTE_ISVALID(pte))
1837 pte_remove(mmu, pmap, va, hold_flag);
1838 }
1839 PMAP_UNLOCK(pmap);
1840 rw_wunlock(&pvh_global_lock);
1841
1842 //debugf("mmu_booke_remove: e\n");
1843}
1844
1845/*
1846 * Remove physical page from all pmaps in which it resides.
1847 */
1848static void
1849mmu_booke_remove_all(mmu_t mmu, vm_page_t m)
1850{
1851 pv_entry_t pv, pvn;
1852 uint8_t hold_flag;
1853
1854 rw_wlock(&pvh_global_lock);
1855 for (pv = TAILQ_FIRST(&m->md.pv_list); pv != NULL; pv = pvn) {
1856 pvn = TAILQ_NEXT(pv, pv_link);
1857
1858 PMAP_LOCK(pv->pv_pmap);
1859 hold_flag = PTBL_HOLD_FLAG(pv->pv_pmap);
1860 pte_remove(mmu, pv->pv_pmap, pv->pv_va, hold_flag);
1861 PMAP_UNLOCK(pv->pv_pmap);
1862 }
1863 vm_page_aflag_clear(m, PGA_WRITEABLE);
1864 rw_wunlock(&pvh_global_lock);
1865}
1866
1867/*
1868 * Map a range of physical addresses into kernel virtual address space.
1869 */
1870static vm_offset_t
1871mmu_booke_map(mmu_t mmu, vm_offset_t *virt, vm_paddr_t pa_start,
1872 vm_paddr_t pa_end, int prot)
1873{
1874 vm_offset_t sva = *virt;
1875 vm_offset_t va = sva;
1876
1877 //debugf("mmu_booke_map: s (sva = 0x%08x pa_start = 0x%08x pa_end = 0x%08x)\n",
1878 // sva, pa_start, pa_end);
1879
1880 while (pa_start < pa_end) {
1881 mmu_booke_kenter(mmu, va, pa_start);
1882 va += PAGE_SIZE;
1883 pa_start += PAGE_SIZE;
1884 }
1885 *virt = va;
1886
1887 //debugf("mmu_booke_map: e (va = 0x%08x)\n", va);
1888 return (sva);
1889}
1890
1891/*
1892 * The pmap must be activated before it's address space can be accessed in any
1893 * way.
1894 */
1895static void
1896mmu_booke_activate(mmu_t mmu, struct thread *td)
1897{
1898 pmap_t pmap;
1899 u_int cpuid;
1900
1901 pmap = &td->td_proc->p_vmspace->vm_pmap;
1902
1903 CTR5(KTR_PMAP, "%s: s (td = %p, proc = '%s', id = %d, pmap = 0x%08x)",
1904 __func__, td, td->td_proc->p_comm, td->td_proc->p_pid, pmap);
1905
1906 KASSERT((pmap != kernel_pmap), ("mmu_booke_activate: kernel_pmap!"));
1907
1908 mtx_lock_spin(&sched_lock);
1909
1910 cpuid = PCPU_GET(cpuid);
1911 CPU_SET_ATOMIC(cpuid, &pmap->pm_active);
1912 PCPU_SET(curpmap, pmap);
1913
1914 if (pmap->pm_tid[cpuid] == TID_NONE)
1915 tid_alloc(pmap);
1916
1917 /* Load PID0 register with pmap tid value. */
1918 mtspr(SPR_PID0, pmap->pm_tid[cpuid]);
1919 __asm __volatile("isync");
1920
1921 mtx_unlock_spin(&sched_lock);
1922
1923 CTR3(KTR_PMAP, "%s: e (tid = %d for '%s')", __func__,
1924 pmap->pm_tid[PCPU_GET(cpuid)], td->td_proc->p_comm);
1925}
1926
1927/*
1928 * Deactivate the specified process's address space.
1929 */
1930static void
1931mmu_booke_deactivate(mmu_t mmu, struct thread *td)
1932{
1933 pmap_t pmap;
1934
1935 pmap = &td->td_proc->p_vmspace->vm_pmap;
1936
1937 CTR5(KTR_PMAP, "%s: td=%p, proc = '%s', id = %d, pmap = 0x%08x",
1938 __func__, td, td->td_proc->p_comm, td->td_proc->p_pid, pmap);
1939
1940 CPU_CLR_ATOMIC(PCPU_GET(cpuid), &pmap->pm_active);
1941 PCPU_SET(curpmap, NULL);
1942}
1943
1944/*
1945 * Copy the range specified by src_addr/len
1946 * from the source map to the range dst_addr/len
1947 * in the destination map.
1948 *
1949 * This routine is only advisory and need not do anything.
1950 */
1951static void
1952mmu_booke_copy(mmu_t mmu, pmap_t dst_pmap, pmap_t src_pmap,
1953 vm_offset_t dst_addr, vm_size_t len, vm_offset_t src_addr)
1954{
1955
1956}
1957
1958/*
1959 * Set the physical protection on the specified range of this map as requested.
1960 */
1961static void
1962mmu_booke_protect(mmu_t mmu, pmap_t pmap, vm_offset_t sva, vm_offset_t eva,
1963 vm_prot_t prot)
1964{
1965 vm_offset_t va;
1966 vm_page_t m;
1967 pte_t *pte;
1968
1969 if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
1970 mmu_booke_remove(mmu, pmap, sva, eva);
1971 return;
1972 }
1973
1974 if (prot & VM_PROT_WRITE)
1975 return;
1976
1977 PMAP_LOCK(pmap);
1978 for (va = sva; va < eva; va += PAGE_SIZE) {
1979 if ((pte = pte_find(mmu, pmap, va)) != NULL) {
1980 if (PTE_ISVALID(pte)) {
1981 m = PHYS_TO_VM_PAGE(PTE_PA(pte));
1982
1983 mtx_lock_spin(&tlbivax_mutex);
1984 tlb_miss_lock();
1985
1986 /* Handle modified pages. */
1987 if (PTE_ISMODIFIED(pte) && PTE_ISMANAGED(pte))
1988 vm_page_dirty(m);
1989
1990 tlb0_flush_entry(va);
1991 pte->flags &= ~(PTE_UW | PTE_SW | PTE_MODIFIED);
1992
1993 tlb_miss_unlock();
1994 mtx_unlock_spin(&tlbivax_mutex);
1995 }
1996 }
1997 }
1998 PMAP_UNLOCK(pmap);
1999}
2000
2001/*
2002 * Clear the write and modified bits in each of the given page's mappings.
2003 */
2004static void
2005mmu_booke_remove_write(mmu_t mmu, vm_page_t m)
2006{
2007 pv_entry_t pv;
2008 pte_t *pte;
2009
2010 KASSERT((m->oflags & VPO_UNMANAGED) == 0,
2011 ("mmu_booke_remove_write: page %p is not managed", m));
2012
2013 /*
2014 * If the page is not exclusive busied, then PGA_WRITEABLE cannot be
2015 * set by another thread while the object is locked. Thus,
2016 * if PGA_WRITEABLE is clear, no page table entries need updating.
2017 */
2018 VM_OBJECT_ASSERT_WLOCKED(m->object);
2019 if (!vm_page_xbusied(m) && (m->aflags & PGA_WRITEABLE) == 0)
2020 return;
2021 rw_wlock(&pvh_global_lock);
2022 TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
2023 PMAP_LOCK(pv->pv_pmap);
2024 if ((pte = pte_find(mmu, pv->pv_pmap, pv->pv_va)) != NULL) {
2025 if (PTE_ISVALID(pte)) {
2026 m = PHYS_TO_VM_PAGE(PTE_PA(pte));
2027
2028 mtx_lock_spin(&tlbivax_mutex);
2029 tlb_miss_lock();
2030
2031 /* Handle modified pages. */
2032 if (PTE_ISMODIFIED(pte))
2033 vm_page_dirty(m);
2034
2035 /* Flush mapping from TLB0. */
2036 pte->flags &= ~(PTE_UW | PTE_SW | PTE_MODIFIED);
2037
2038 tlb_miss_unlock();
2039 mtx_unlock_spin(&tlbivax_mutex);
2040 }
2041 }
2042 PMAP_UNLOCK(pv->pv_pmap);
2043 }
2044 vm_page_aflag_clear(m, PGA_WRITEABLE);
2045 rw_wunlock(&pvh_global_lock);
2046}
2047
2048static void
2049mmu_booke_sync_icache(mmu_t mmu, pmap_t pm, vm_offset_t va, vm_size_t sz)
2050{
2051 pte_t *pte;
2052 pmap_t pmap;
2053 vm_page_t m;
2054 vm_offset_t addr;
2055 vm_paddr_t pa;
2056 int active, valid;
2057
2058 va = trunc_page(va);
2059 sz = round_page(sz);
2060
2061 rw_wlock(&pvh_global_lock);
2062 pmap = PCPU_GET(curpmap);
2063 active = (pm == kernel_pmap || pm == pmap) ? 1 : 0;
2064 while (sz > 0) {
2065 PMAP_LOCK(pm);
2066 pte = pte_find(mmu, pm, va);
2067 valid = (pte != NULL && PTE_ISVALID(pte)) ? 1 : 0;
2068 if (valid)
2069 pa = PTE_PA(pte);
2070 PMAP_UNLOCK(pm);
2071 if (valid) {
2072 if (!active) {
2073 /* Create a mapping in the active pmap. */
2074 addr = 0;
2075 m = PHYS_TO_VM_PAGE(pa);
2076 PMAP_LOCK(pmap);
2077 pte_enter(mmu, pmap, m, addr,
2078 PTE_SR | PTE_VALID | PTE_UR);
2079 __syncicache((void *)addr, PAGE_SIZE);
2080 pte_remove(mmu, pmap, addr, PTBL_UNHOLD);
2081 PMAP_UNLOCK(pmap);
2082 } else
2083 __syncicache((void *)va, PAGE_SIZE);
2084 }
2085 va += PAGE_SIZE;
2086 sz -= PAGE_SIZE;
2087 }
2088 rw_wunlock(&pvh_global_lock);
2089}
2090
2091/*
2092 * Atomically extract and hold the physical page with the given
2093 * pmap and virtual address pair if that mapping permits the given
2094 * protection.
2095 */
2096static vm_page_t
2097mmu_booke_extract_and_hold(mmu_t mmu, pmap_t pmap, vm_offset_t va,
2098 vm_prot_t prot)
2099{
2100 pte_t *pte;
2101 vm_page_t m;
2102 uint32_t pte_wbit;
2103 vm_paddr_t pa;
2104
2105 m = NULL;
2106 pa = 0;
2107 PMAP_LOCK(pmap);
2108retry:
2109 pte = pte_find(mmu, pmap, va);
2110 if ((pte != NULL) && PTE_ISVALID(pte)) {
2111 if (pmap == kernel_pmap)
2112 pte_wbit = PTE_SW;
2113 else
2114 pte_wbit = PTE_UW;
2115
2116 if ((pte->flags & pte_wbit) || ((prot & VM_PROT_WRITE) == 0)) {
2117 if (vm_page_pa_tryrelock(pmap, PTE_PA(pte), &pa))
2118 goto retry;
2119 m = PHYS_TO_VM_PAGE(PTE_PA(pte));
2120 vm_page_hold(m);
2121 }
2122 }
2123
2124 PA_UNLOCK_COND(pa);
2125 PMAP_UNLOCK(pmap);
2126 return (m);
2127}
2128
2129/*
2130 * Initialize a vm_page's machine-dependent fields.
2131 */
2132static void
2133mmu_booke_page_init(mmu_t mmu, vm_page_t m)
2134{
2135
2136 TAILQ_INIT(&m->md.pv_list);
2137}
2138
2139/*
2140 * mmu_booke_zero_page_area zeros the specified hardware page by
2141 * mapping it into virtual memory and using bzero to clear
2142 * its contents.
2143 *
2144 * off and size must reside within a single page.
2145 */
2146static void
2147mmu_booke_zero_page_area(mmu_t mmu, vm_page_t m, int off, int size)
2148{
2149 vm_offset_t va;
2150
2151 /* XXX KASSERT off and size are within a single page? */
2152
2153 mtx_lock(&zero_page_mutex);
2154 va = zero_page_va;
2155
2156 mmu_booke_kenter(mmu, va, VM_PAGE_TO_PHYS(m));
2157 bzero((caddr_t)va + off, size);
2158 mmu_booke_kremove(mmu, va);
2159
2160 mtx_unlock(&zero_page_mutex);
2161}
2162
2163/*
2164 * mmu_booke_zero_page zeros the specified hardware page.
2165 */
2166static void
2167mmu_booke_zero_page(mmu_t mmu, vm_page_t m)
2168{
2169
2170 mmu_booke_zero_page_area(mmu, m, 0, PAGE_SIZE);
2171}
2172
2173/*
2174 * mmu_booke_copy_page copies the specified (machine independent) page by
2175 * mapping the page into virtual memory and using memcopy to copy the page,
2176 * one machine dependent page at a time.
2177 */
2178static void
2179mmu_booke_copy_page(mmu_t mmu, vm_page_t sm, vm_page_t dm)
2180{
2181 vm_offset_t sva, dva;
2182
2183 sva = copy_page_src_va;
2184 dva = copy_page_dst_va;
2185
2186 mtx_lock(&copy_page_mutex);
2187 mmu_booke_kenter(mmu, sva, VM_PAGE_TO_PHYS(sm));
2188 mmu_booke_kenter(mmu, dva, VM_PAGE_TO_PHYS(dm));
2189 memcpy((caddr_t)dva, (caddr_t)sva, PAGE_SIZE);
2190 mmu_booke_kremove(mmu, dva);
2191 mmu_booke_kremove(mmu, sva);
2192 mtx_unlock(&copy_page_mutex);
2193}
2194
2195static inline void
2196mmu_booke_copy_pages(mmu_t mmu, vm_page_t *ma, vm_offset_t a_offset,
2197 vm_page_t *mb, vm_offset_t b_offset, int xfersize)
2198{
2199 void *a_cp, *b_cp;
2200 vm_offset_t a_pg_offset, b_pg_offset;
2201 int cnt;
2202
2203 mtx_lock(&copy_page_mutex);
2204 while (xfersize > 0) {
2205 a_pg_offset = a_offset & PAGE_MASK;
2206 cnt = min(xfersize, PAGE_SIZE - a_pg_offset);
2207 mmu_booke_kenter(mmu, copy_page_src_va,
2208 VM_PAGE_TO_PHYS(ma[a_offset >> PAGE_SHIFT]));
2209 a_cp = (char *)copy_page_src_va + a_pg_offset;
2210 b_pg_offset = b_offset & PAGE_MASK;
2211 cnt = min(cnt, PAGE_SIZE - b_pg_offset);
2212 mmu_booke_kenter(mmu, copy_page_dst_va,
2213 VM_PAGE_TO_PHYS(mb[b_offset >> PAGE_SHIFT]));
2214 b_cp = (char *)copy_page_dst_va + b_pg_offset;
2215 bcopy(a_cp, b_cp, cnt);
2216 mmu_booke_kremove(mmu, copy_page_dst_va);
2217 mmu_booke_kremove(mmu, copy_page_src_va);
2218 a_offset += cnt;
2219 b_offset += cnt;
2220 xfersize -= cnt;
2221 }
2222 mtx_unlock(&copy_page_mutex);
2223}
2224
2225/*
2226 * mmu_booke_zero_page_idle zeros the specified hardware page by mapping it
2227 * into virtual memory and using bzero to clear its contents. This is intended
2228 * to be called from the vm_pagezero process only and outside of Giant. No
2229 * lock is required.
2230 */
2231static void
2232mmu_booke_zero_page_idle(mmu_t mmu, vm_page_t m)
2233{
2234 vm_offset_t va;
2235
2236 va = zero_page_idle_va;
2237 mmu_booke_kenter(mmu, va, VM_PAGE_TO_PHYS(m));
2238 bzero((caddr_t)va, PAGE_SIZE);
2239 mmu_booke_kremove(mmu, va);
2240}
2241
2242/*
2243 * Return whether or not the specified physical page was modified
2244 * in any of physical maps.
2245 */
2246static boolean_t
2247mmu_booke_is_modified(mmu_t mmu, vm_page_t m)
2248{
2249 pte_t *pte;
2250 pv_entry_t pv;
2251 boolean_t rv;
2252
2253 KASSERT((m->oflags & VPO_UNMANAGED) == 0,
2254 ("mmu_booke_is_modified: page %p is not managed", m));
2255 rv = FALSE;
2256
2257 /*
2258 * If the page is not exclusive busied, then PGA_WRITEABLE cannot be
2259 * concurrently set while the object is locked. Thus, if PGA_WRITEABLE
2260 * is clear, no PTEs can be modified.
2261 */
2262 VM_OBJECT_ASSERT_WLOCKED(m->object);
2263 if (!vm_page_xbusied(m) && (m->aflags & PGA_WRITEABLE) == 0)
2264 return (rv);
2265 rw_wlock(&pvh_global_lock);
2266 TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
2267 PMAP_LOCK(pv->pv_pmap);
2268 if ((pte = pte_find(mmu, pv->pv_pmap, pv->pv_va)) != NULL &&
2269 PTE_ISVALID(pte)) {
2270 if (PTE_ISMODIFIED(pte))
2271 rv = TRUE;
2272 }
2273 PMAP_UNLOCK(pv->pv_pmap);
2274 if (rv)
2275 break;
2276 }
2277 rw_wunlock(&pvh_global_lock);
2278 return (rv);
2279}
2280
2281/*
2282 * Return whether or not the specified virtual address is eligible
2283 * for prefault.
2284 */
2285static boolean_t
2286mmu_booke_is_prefaultable(mmu_t mmu, pmap_t pmap, vm_offset_t addr)
2287{
2288
2289 return (FALSE);
2290}
2291
2292/*
2293 * Return whether or not the specified physical page was referenced
2294 * in any physical maps.
2295 */
2296static boolean_t
2297mmu_booke_is_referenced(mmu_t mmu, vm_page_t m)
2298{
2299 pte_t *pte;
2300 pv_entry_t pv;
2301 boolean_t rv;
2302
2303 KASSERT((m->oflags & VPO_UNMANAGED) == 0,
2304 ("mmu_booke_is_referenced: page %p is not managed", m));
2305 rv = FALSE;
2306 rw_wlock(&pvh_global_lock);
2307 TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
2308 PMAP_LOCK(pv->pv_pmap);
2309 if ((pte = pte_find(mmu, pv->pv_pmap, pv->pv_va)) != NULL &&
2310 PTE_ISVALID(pte)) {
2311 if (PTE_ISREFERENCED(pte))
2312 rv = TRUE;
2313 }
2314 PMAP_UNLOCK(pv->pv_pmap);
2315 if (rv)
2316 break;
2317 }
2318 rw_wunlock(&pvh_global_lock);
2319 return (rv);
2320}
2321
2322/*
2323 * Clear the modify bits on the specified physical page.
2324 */
2325static void
2326mmu_booke_clear_modify(mmu_t mmu, vm_page_t m)
2327{
2328 pte_t *pte;
2329 pv_entry_t pv;
2330
2331 KASSERT((m->oflags & VPO_UNMANAGED) == 0,
2332 ("mmu_booke_clear_modify: page %p is not managed", m));
2333 VM_OBJECT_ASSERT_WLOCKED(m->object);
2334 KASSERT(!vm_page_xbusied(m),
2335 ("mmu_booke_clear_modify: page %p is exclusive busied", m));
2336
2337 /*
2338 * If the page is not PG_AWRITEABLE, then no PTEs can be modified.
2339 * If the object containing the page is locked and the page is not
2340 * exclusive busied, then PG_AWRITEABLE cannot be concurrently set.
2341 */
2342 if ((m->aflags & PGA_WRITEABLE) == 0)
2343 return;
2344 rw_wlock(&pvh_global_lock);
2345 TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
2346 PMAP_LOCK(pv->pv_pmap);
2347 if ((pte = pte_find(mmu, pv->pv_pmap, pv->pv_va)) != NULL &&
2348 PTE_ISVALID(pte)) {
2349 mtx_lock_spin(&tlbivax_mutex);
2350 tlb_miss_lock();
2351
2352 if (pte->flags & (PTE_SW | PTE_UW | PTE_MODIFIED)) {
2353 tlb0_flush_entry(pv->pv_va);
2354 pte->flags &= ~(PTE_SW | PTE_UW | PTE_MODIFIED |
2355 PTE_REFERENCED);
2356 }
2357
2358 tlb_miss_unlock();
2359 mtx_unlock_spin(&tlbivax_mutex);
2360 }
2361 PMAP_UNLOCK(pv->pv_pmap);
2362 }
2363 rw_wunlock(&pvh_global_lock);
2364}
2365
2366/*
2367 * Return a count of reference bits for a page, clearing those bits.
2368 * It is not necessary for every reference bit to be cleared, but it
2369 * is necessary that 0 only be returned when there are truly no
2370 * reference bits set.
2371 *
2372 * XXX: The exact number of bits to check and clear is a matter that
2373 * should be tested and standardized at some point in the future for
2374 * optimal aging of shared pages.
2375 */
2376static int
2377mmu_booke_ts_referenced(mmu_t mmu, vm_page_t m)
2378{
2379 pte_t *pte;
2380 pv_entry_t pv;
2381 int count;
2382
2383 KASSERT((m->oflags & VPO_UNMANAGED) == 0,
2384 ("mmu_booke_ts_referenced: page %p is not managed", m));
2385 count = 0;
2386 rw_wlock(&pvh_global_lock);
2387 TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
2388 PMAP_LOCK(pv->pv_pmap);
2389 if ((pte = pte_find(mmu, pv->pv_pmap, pv->pv_va)) != NULL &&
2390 PTE_ISVALID(pte)) {
2391 if (PTE_ISREFERENCED(pte)) {
2392 mtx_lock_spin(&tlbivax_mutex);
2393 tlb_miss_lock();
2394
2395 tlb0_flush_entry(pv->pv_va);
2396 pte->flags &= ~PTE_REFERENCED;
2397
2398 tlb_miss_unlock();
2399 mtx_unlock_spin(&tlbivax_mutex);
2400
2401 if (++count > 4) {
2402 PMAP_UNLOCK(pv->pv_pmap);
2403 break;
2404 }
2405 }
2406 }
2407 PMAP_UNLOCK(pv->pv_pmap);
2408 }
2409 rw_wunlock(&pvh_global_lock);
2410 return (count);
2411}
2412
2413/*
2414 * Change wiring attribute for a map/virtual-address pair.
2415 */
2416static void
2417mmu_booke_change_wiring(mmu_t mmu, pmap_t pmap, vm_offset_t va, boolean_t wired)
2418{
2419 pte_t *pte;
2420
2421 PMAP_LOCK(pmap);
2422 if ((pte = pte_find(mmu, pmap, va)) != NULL) {
2423 if (wired) {
2424 if (!PTE_ISWIRED(pte)) {
2425 pte->flags |= PTE_WIRED;
2426 pmap->pm_stats.wired_count++;
2427 }
2428 } else {
2429 if (PTE_ISWIRED(pte)) {
2430 pte->flags &= ~PTE_WIRED;
2431 pmap->pm_stats.wired_count--;
2432 }
2433 }
2434 }
2435 PMAP_UNLOCK(pmap);
2436}
2437
2438/*
2439 * Return true if the pmap's pv is one of the first 16 pvs linked to from this
2440 * page. This count may be changed upwards or downwards in the future; it is
2441 * only necessary that true be returned for a small subset of pmaps for proper
2442 * page aging.
2443 */
2444static boolean_t
2445mmu_booke_page_exists_quick(mmu_t mmu, pmap_t pmap, vm_page_t m)
2446{
2447 pv_entry_t pv;
2448 int loops;
2449 boolean_t rv;
2450
2451 KASSERT((m->oflags & VPO_UNMANAGED) == 0,
2452 ("mmu_booke_page_exists_quick: page %p is not managed", m));
2453 loops = 0;
2454 rv = FALSE;
2455 rw_wlock(&pvh_global_lock);
2456 TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
2457 if (pv->pv_pmap == pmap) {
2458 rv = TRUE;
2459 break;
2460 }
2461 if (++loops >= 16)
2462 break;
2463 }
2464 rw_wunlock(&pvh_global_lock);
2465 return (rv);
2466}
2467
2468/*
2469 * Return the number of managed mappings to the given physical page that are
2470 * wired.
2471 */
2472static int
2473mmu_booke_page_wired_mappings(mmu_t mmu, vm_page_t m)
2474{
2475 pv_entry_t pv;
2476 pte_t *pte;
2477 int count = 0;
2478
2479 if ((m->oflags & VPO_UNMANAGED) != 0)
2480 return (count);
2481 rw_wlock(&pvh_global_lock);
2482 TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
2483 PMAP_LOCK(pv->pv_pmap);
2484 if ((pte = pte_find(mmu, pv->pv_pmap, pv->pv_va)) != NULL)
2485 if (PTE_ISVALID(pte) && PTE_ISWIRED(pte))
2486 count++;
2487 PMAP_UNLOCK(pv->pv_pmap);
2488 }
2489 rw_wunlock(&pvh_global_lock);
2490 return (count);
2491}
2492
2493static int
2494mmu_booke_dev_direct_mapped(mmu_t mmu, vm_paddr_t pa, vm_size_t size)
2495{
2496 int i;
2497 vm_offset_t va;
2498
2499 /*
2500 * This currently does not work for entries that
2501 * overlap TLB1 entries.
2502 */
2503 for (i = 0; i < tlb1_idx; i ++) {
2504 if (tlb1_iomapped(i, pa, size, &va) == 0)
2505 return (0);
2506 }
2507
2508 return (EFAULT);
2509}
2510
2511vm_offset_t
2512mmu_booke_dumpsys_map(mmu_t mmu, struct pmap_md *md, vm_size_t ofs,
2513 vm_size_t *sz)
2514{
2515 vm_paddr_t pa, ppa;
2516 vm_offset_t va;
2517 vm_size_t gran;
2518
2519 /* Raw physical memory dumps don't have a virtual address. */
2520 if (md->md_vaddr == ~0UL) {
2521 /* We always map a 256MB page at 256M. */
2522 gran = 256 * 1024 * 1024;
2523 pa = md->md_paddr + ofs;
2524 ppa = pa & ~(gran - 1);
2525 ofs = pa - ppa;
2526 va = gran;
2527 tlb1_set_entry(va, ppa, gran, _TLB_ENTRY_IO);
2528 if (*sz > (gran - ofs))
2529 *sz = gran - ofs;
2530 return (va + ofs);
2531 }
2532
2533 /* Minidumps are based on virtual memory addresses. */
2534 va = md->md_vaddr + ofs;
2535 if (va >= kernstart + kernsize) {
2536 gran = PAGE_SIZE - (va & PAGE_MASK);
2537 if (*sz > gran)
2538 *sz = gran;
2539 }
2540 return (va);
2541}
2542
2543void
2544mmu_booke_dumpsys_unmap(mmu_t mmu, struct pmap_md *md, vm_size_t ofs,
2545 vm_offset_t va)
2546{
2547
2548 /* Raw physical memory dumps don't have a virtual address. */
2549 if (md->md_vaddr == ~0UL) {
2550 tlb1_idx--;
2551 tlb1[tlb1_idx].mas1 = 0;
2552 tlb1[tlb1_idx].mas2 = 0;
2553 tlb1[tlb1_idx].mas3 = 0;
2554 tlb1_write_entry(tlb1_idx);
2555 return;
2556 }
2557
2558 /* Minidumps are based on virtual memory addresses. */
2559 /* Nothing to do... */
2560}
2561
2562struct pmap_md *
2563mmu_booke_scan_md(mmu_t mmu, struct pmap_md *prev)
2564{
2565 static struct pmap_md md;
2566 pte_t *pte;
2567 vm_offset_t va;
2568
2569 if (dumpsys_minidump) {
2570 md.md_paddr = ~0UL; /* Minidumps use virtual addresses. */
2571 if (prev == NULL) {
2572 /* 1st: kernel .data and .bss. */
2573 md.md_index = 1;
2574 md.md_vaddr = trunc_page((uintptr_t)_etext);
2575 md.md_size = round_page((uintptr_t)_end) - md.md_vaddr;
2576 return (&md);
2577 }
2578 switch (prev->md_index) {
2579 case 1:
2580 /* 2nd: msgbuf and tables (see pmap_bootstrap()). */
2581 md.md_index = 2;
2582 md.md_vaddr = data_start;
2583 md.md_size = data_end - data_start;
2584 break;
2585 case 2:
2586 /* 3rd: kernel VM. */
2587 va = prev->md_vaddr + prev->md_size;
2588 /* Find start of next chunk (from va). */
2589 while (va < virtual_end) {
2590 /* Don't dump the buffer cache. */
2591 if (va >= kmi.buffer_sva &&
2592 va < kmi.buffer_eva) {
2593 va = kmi.buffer_eva;
2594 continue;
2595 }
2596 pte = pte_find(mmu, kernel_pmap, va);
2597 if (pte != NULL && PTE_ISVALID(pte))
2598 break;
2599 va += PAGE_SIZE;
2600 }
2601 if (va < virtual_end) {
2602 md.md_vaddr = va;
2603 va += PAGE_SIZE;
2604 /* Find last page in chunk. */
2605 while (va < virtual_end) {
2606 /* Don't run into the buffer cache. */
2607 if (va == kmi.buffer_sva)
2608 break;
2609 pte = pte_find(mmu, kernel_pmap, va);
2610 if (pte == NULL || !PTE_ISVALID(pte))
2611 break;
2612 va += PAGE_SIZE;
2613 }
2614 md.md_size = va - md.md_vaddr;
2615 break;
2616 }
2617 md.md_index = 3;
2618 /* FALLTHROUGH */
2619 default:
2620 return (NULL);
2621 }
2622 } else { /* minidumps */
2623 mem_regions(&physmem_regions, &physmem_regions_sz,
2624 &availmem_regions, &availmem_regions_sz);
2625
2626 if (prev == NULL) {
2627 /* first physical chunk. */
2628 md.md_paddr = physmem_regions[0].mr_start;
2629 md.md_size = physmem_regions[0].mr_size;
2630 md.md_vaddr = ~0UL;
2631 md.md_index = 1;
2632 } else if (md.md_index < physmem_regions_sz) {
2633 md.md_paddr = physmem_regions[md.md_index].mr_start;
2634 md.md_size = physmem_regions[md.md_index].mr_size;
2635 md.md_vaddr = ~0UL;
2636 md.md_index++;
2637 } else {
2638 /* There's no next physical chunk. */
2639 return (NULL);
2640 }
2641 }
2642
2643 return (&md);
2644}
2645
2646/*
2647 * Map a set of physical memory pages into the kernel virtual address space.
2648 * Return a pointer to where it is mapped. This routine is intended to be used
2649 * for mapping device memory, NOT real memory.
2650 */
2651static void *
2652mmu_booke_mapdev(mmu_t mmu, vm_paddr_t pa, vm_size_t size)
2653{
2654
2655 return (mmu_booke_mapdev_attr(mmu, pa, size, VM_MEMATTR_DEFAULT));
2656}
2657
2658static void *
2659mmu_booke_mapdev_attr(mmu_t mmu, vm_paddr_t pa, vm_size_t size, vm_memattr_t ma)
2660{
2661 void *res;
2662 uintptr_t va;
2663 vm_size_t sz;
2664 int i;
2665
2666 /*
2667 * Check if this is premapped in TLB1. Note: this should probably also
2668 * check whether a sequence of TLB1 entries exist that match the
2669 * requirement, but now only checks the easy case.
2670 */
2671 if (ma == VM_MEMATTR_DEFAULT) {
2672 for (i = 0; i < tlb1_idx; i++) {
2673 if (!(tlb1[i].mas1 & MAS1_VALID))
2674 continue;
2675 if (pa >= tlb1[i].phys &&
2676 (pa + size) <= (tlb1[i].phys + tlb1[i].size))
2677 return (void *)(tlb1[i].virt +
2678 (pa - tlb1[i].phys));
2679 }
2680 }
2681
2682 size = roundup(size, PAGE_SIZE);
2683
193
194static tlbtid_t tid_alloc(struct pmap *);
195
196static void tlb_print_entry(int, uint32_t, uint32_t, uint32_t, uint32_t);
197
198static int tlb1_set_entry(vm_offset_t, vm_offset_t, vm_size_t, uint32_t);
199static void tlb1_write_entry(unsigned int);
200static int tlb1_iomapped(int, vm_paddr_t, vm_size_t, vm_offset_t *);
201static vm_size_t tlb1_mapin_region(vm_offset_t, vm_paddr_t, vm_size_t);
202
203static vm_size_t tsize2size(unsigned int);
204static unsigned int size2tsize(vm_size_t);
205static unsigned int ilog2(unsigned int);
206
207static void set_mas4_defaults(void);
208
209static inline void tlb0_flush_entry(vm_offset_t);
210static inline unsigned int tlb0_tableidx(vm_offset_t, unsigned int);
211
212/**************************************************************************/
213/* Page table management */
214/**************************************************************************/
215
216static struct rwlock_padalign pvh_global_lock;
217
218/* Data for the pv entry allocation mechanism */
219static uma_zone_t pvzone;
220static int pv_entry_count = 0, pv_entry_max = 0, pv_entry_high_water = 0;
221
222#define PV_ENTRY_ZONE_MIN 2048 /* min pv entries in uma zone */
223
224#ifndef PMAP_SHPGPERPROC
225#define PMAP_SHPGPERPROC 200
226#endif
227
228static void ptbl_init(void);
229static struct ptbl_buf *ptbl_buf_alloc(void);
230static void ptbl_buf_free(struct ptbl_buf *);
231static void ptbl_free_pmap_ptbl(pmap_t, pte_t *);
232
233static pte_t *ptbl_alloc(mmu_t, pmap_t, unsigned int);
234static void ptbl_free(mmu_t, pmap_t, unsigned int);
235static void ptbl_hold(mmu_t, pmap_t, unsigned int);
236static int ptbl_unhold(mmu_t, pmap_t, unsigned int);
237
238static vm_paddr_t pte_vatopa(mmu_t, pmap_t, vm_offset_t);
239static pte_t *pte_find(mmu_t, pmap_t, vm_offset_t);
240static void pte_enter(mmu_t, pmap_t, vm_page_t, vm_offset_t, uint32_t);
241static int pte_remove(mmu_t, pmap_t, vm_offset_t, uint8_t);
242
243static pv_entry_t pv_alloc(void);
244static void pv_free(pv_entry_t);
245static void pv_insert(pmap_t, vm_offset_t, vm_page_t);
246static void pv_remove(pmap_t, vm_offset_t, vm_page_t);
247
248/* Number of kva ptbl buffers, each covering one ptbl (PTBL_PAGES). */
249#define PTBL_BUFS (128 * 16)
250
251struct ptbl_buf {
252 TAILQ_ENTRY(ptbl_buf) link; /* list link */
253 vm_offset_t kva; /* va of mapping */
254};
255
256/* ptbl free list and a lock used for access synchronization. */
257static TAILQ_HEAD(, ptbl_buf) ptbl_buf_freelist;
258static struct mtx ptbl_buf_freelist_lock;
259
260/* Base address of kva space allocated fot ptbl bufs. */
261static vm_offset_t ptbl_buf_pool_vabase;
262
263/* Pointer to ptbl_buf structures. */
264static struct ptbl_buf *ptbl_bufs;
265
266void pmap_bootstrap_ap(volatile uint32_t *);
267
268/*
269 * Kernel MMU interface
270 */
271static void mmu_booke_change_wiring(mmu_t, pmap_t, vm_offset_t, boolean_t);
272static void mmu_booke_clear_modify(mmu_t, vm_page_t);
273static void mmu_booke_copy(mmu_t, pmap_t, pmap_t, vm_offset_t,
274 vm_size_t, vm_offset_t);
275static void mmu_booke_copy_page(mmu_t, vm_page_t, vm_page_t);
276static void mmu_booke_copy_pages(mmu_t, vm_page_t *,
277 vm_offset_t, vm_page_t *, vm_offset_t, int);
278static void mmu_booke_enter(mmu_t, pmap_t, vm_offset_t, vm_page_t,
279 vm_prot_t, boolean_t);
280static void mmu_booke_enter_object(mmu_t, pmap_t, vm_offset_t, vm_offset_t,
281 vm_page_t, vm_prot_t);
282static void mmu_booke_enter_quick(mmu_t, pmap_t, vm_offset_t, vm_page_t,
283 vm_prot_t);
284static vm_paddr_t mmu_booke_extract(mmu_t, pmap_t, vm_offset_t);
285static vm_page_t mmu_booke_extract_and_hold(mmu_t, pmap_t, vm_offset_t,
286 vm_prot_t);
287static void mmu_booke_init(mmu_t);
288static boolean_t mmu_booke_is_modified(mmu_t, vm_page_t);
289static boolean_t mmu_booke_is_prefaultable(mmu_t, pmap_t, vm_offset_t);
290static boolean_t mmu_booke_is_referenced(mmu_t, vm_page_t);
291static int mmu_booke_ts_referenced(mmu_t, vm_page_t);
292static vm_offset_t mmu_booke_map(mmu_t, vm_offset_t *, vm_paddr_t, vm_paddr_t,
293 int);
294static int mmu_booke_mincore(mmu_t, pmap_t, vm_offset_t,
295 vm_paddr_t *);
296static void mmu_booke_object_init_pt(mmu_t, pmap_t, vm_offset_t,
297 vm_object_t, vm_pindex_t, vm_size_t);
298static boolean_t mmu_booke_page_exists_quick(mmu_t, pmap_t, vm_page_t);
299static void mmu_booke_page_init(mmu_t, vm_page_t);
300static int mmu_booke_page_wired_mappings(mmu_t, vm_page_t);
301static void mmu_booke_pinit(mmu_t, pmap_t);
302static void mmu_booke_pinit0(mmu_t, pmap_t);
303static void mmu_booke_protect(mmu_t, pmap_t, vm_offset_t, vm_offset_t,
304 vm_prot_t);
305static void mmu_booke_qenter(mmu_t, vm_offset_t, vm_page_t *, int);
306static void mmu_booke_qremove(mmu_t, vm_offset_t, int);
307static void mmu_booke_release(mmu_t, pmap_t);
308static void mmu_booke_remove(mmu_t, pmap_t, vm_offset_t, vm_offset_t);
309static void mmu_booke_remove_all(mmu_t, vm_page_t);
310static void mmu_booke_remove_write(mmu_t, vm_page_t);
311static void mmu_booke_zero_page(mmu_t, vm_page_t);
312static void mmu_booke_zero_page_area(mmu_t, vm_page_t, int, int);
313static void mmu_booke_zero_page_idle(mmu_t, vm_page_t);
314static void mmu_booke_activate(mmu_t, struct thread *);
315static void mmu_booke_deactivate(mmu_t, struct thread *);
316static void mmu_booke_bootstrap(mmu_t, vm_offset_t, vm_offset_t);
317static void *mmu_booke_mapdev(mmu_t, vm_paddr_t, vm_size_t);
318static void *mmu_booke_mapdev_attr(mmu_t, vm_paddr_t, vm_size_t, vm_memattr_t);
319static void mmu_booke_unmapdev(mmu_t, vm_offset_t, vm_size_t);
320static vm_paddr_t mmu_booke_kextract(mmu_t, vm_offset_t);
321static void mmu_booke_kenter(mmu_t, vm_offset_t, vm_paddr_t);
322static void mmu_booke_kenter_attr(mmu_t, vm_offset_t, vm_paddr_t, vm_memattr_t);
323static void mmu_booke_kremove(mmu_t, vm_offset_t);
324static boolean_t mmu_booke_dev_direct_mapped(mmu_t, vm_paddr_t, vm_size_t);
325static void mmu_booke_sync_icache(mmu_t, pmap_t, vm_offset_t,
326 vm_size_t);
327static vm_offset_t mmu_booke_dumpsys_map(mmu_t, struct pmap_md *,
328 vm_size_t, vm_size_t *);
329static void mmu_booke_dumpsys_unmap(mmu_t, struct pmap_md *,
330 vm_size_t, vm_offset_t);
331static struct pmap_md *mmu_booke_scan_md(mmu_t, struct pmap_md *);
332
333static mmu_method_t mmu_booke_methods[] = {
334 /* pmap dispatcher interface */
335 MMUMETHOD(mmu_change_wiring, mmu_booke_change_wiring),
336 MMUMETHOD(mmu_clear_modify, mmu_booke_clear_modify),
337 MMUMETHOD(mmu_copy, mmu_booke_copy),
338 MMUMETHOD(mmu_copy_page, mmu_booke_copy_page),
339 MMUMETHOD(mmu_copy_pages, mmu_booke_copy_pages),
340 MMUMETHOD(mmu_enter, mmu_booke_enter),
341 MMUMETHOD(mmu_enter_object, mmu_booke_enter_object),
342 MMUMETHOD(mmu_enter_quick, mmu_booke_enter_quick),
343 MMUMETHOD(mmu_extract, mmu_booke_extract),
344 MMUMETHOD(mmu_extract_and_hold, mmu_booke_extract_and_hold),
345 MMUMETHOD(mmu_init, mmu_booke_init),
346 MMUMETHOD(mmu_is_modified, mmu_booke_is_modified),
347 MMUMETHOD(mmu_is_prefaultable, mmu_booke_is_prefaultable),
348 MMUMETHOD(mmu_is_referenced, mmu_booke_is_referenced),
349 MMUMETHOD(mmu_ts_referenced, mmu_booke_ts_referenced),
350 MMUMETHOD(mmu_map, mmu_booke_map),
351 MMUMETHOD(mmu_mincore, mmu_booke_mincore),
352 MMUMETHOD(mmu_object_init_pt, mmu_booke_object_init_pt),
353 MMUMETHOD(mmu_page_exists_quick,mmu_booke_page_exists_quick),
354 MMUMETHOD(mmu_page_init, mmu_booke_page_init),
355 MMUMETHOD(mmu_page_wired_mappings, mmu_booke_page_wired_mappings),
356 MMUMETHOD(mmu_pinit, mmu_booke_pinit),
357 MMUMETHOD(mmu_pinit0, mmu_booke_pinit0),
358 MMUMETHOD(mmu_protect, mmu_booke_protect),
359 MMUMETHOD(mmu_qenter, mmu_booke_qenter),
360 MMUMETHOD(mmu_qremove, mmu_booke_qremove),
361 MMUMETHOD(mmu_release, mmu_booke_release),
362 MMUMETHOD(mmu_remove, mmu_booke_remove),
363 MMUMETHOD(mmu_remove_all, mmu_booke_remove_all),
364 MMUMETHOD(mmu_remove_write, mmu_booke_remove_write),
365 MMUMETHOD(mmu_sync_icache, mmu_booke_sync_icache),
366 MMUMETHOD(mmu_zero_page, mmu_booke_zero_page),
367 MMUMETHOD(mmu_zero_page_area, mmu_booke_zero_page_area),
368 MMUMETHOD(mmu_zero_page_idle, mmu_booke_zero_page_idle),
369 MMUMETHOD(mmu_activate, mmu_booke_activate),
370 MMUMETHOD(mmu_deactivate, mmu_booke_deactivate),
371
372 /* Internal interfaces */
373 MMUMETHOD(mmu_bootstrap, mmu_booke_bootstrap),
374 MMUMETHOD(mmu_dev_direct_mapped,mmu_booke_dev_direct_mapped),
375 MMUMETHOD(mmu_mapdev, mmu_booke_mapdev),
376 MMUMETHOD(mmu_mapdev_attr, mmu_booke_mapdev_attr),
377 MMUMETHOD(mmu_kenter, mmu_booke_kenter),
378 MMUMETHOD(mmu_kenter_attr, mmu_booke_kenter_attr),
379 MMUMETHOD(mmu_kextract, mmu_booke_kextract),
380/* MMUMETHOD(mmu_kremove, mmu_booke_kremove), */
381 MMUMETHOD(mmu_unmapdev, mmu_booke_unmapdev),
382
383 /* dumpsys() support */
384 MMUMETHOD(mmu_dumpsys_map, mmu_booke_dumpsys_map),
385 MMUMETHOD(mmu_dumpsys_unmap, mmu_booke_dumpsys_unmap),
386 MMUMETHOD(mmu_scan_md, mmu_booke_scan_md),
387
388 { 0, 0 }
389};
390
391MMU_DEF(booke_mmu, MMU_TYPE_BOOKE, mmu_booke_methods, 0);
392
393static __inline uint32_t
394tlb_calc_wimg(vm_offset_t pa, vm_memattr_t ma)
395{
396 uint32_t attrib;
397 int i;
398
399 if (ma != VM_MEMATTR_DEFAULT) {
400 switch (ma) {
401 case VM_MEMATTR_UNCACHEABLE:
402 return (PTE_I | PTE_G);
403 case VM_MEMATTR_WRITE_COMBINING:
404 case VM_MEMATTR_WRITE_BACK:
405 case VM_MEMATTR_PREFETCHABLE:
406 return (PTE_I);
407 case VM_MEMATTR_WRITE_THROUGH:
408 return (PTE_W | PTE_M);
409 }
410 }
411
412 /*
413 * Assume the page is cache inhibited and access is guarded unless
414 * it's in our available memory array.
415 */
416 attrib = _TLB_ENTRY_IO;
417 for (i = 0; i < physmem_regions_sz; i++) {
418 if ((pa >= physmem_regions[i].mr_start) &&
419 (pa < (physmem_regions[i].mr_start +
420 physmem_regions[i].mr_size))) {
421 attrib = _TLB_ENTRY_MEM;
422 break;
423 }
424 }
425
426 return (attrib);
427}
428
429static inline void
430tlb_miss_lock(void)
431{
432#ifdef SMP
433 struct pcpu *pc;
434
435 if (!smp_started)
436 return;
437
438 STAILQ_FOREACH(pc, &cpuhead, pc_allcpu) {
439 if (pc != pcpup) {
440
441 CTR3(KTR_PMAP, "%s: tlb miss LOCK of CPU=%d, "
442 "tlb_lock=%p", __func__, pc->pc_cpuid, pc->pc_booke_tlb_lock);
443
444 KASSERT((pc->pc_cpuid != PCPU_GET(cpuid)),
445 ("tlb_miss_lock: tried to lock self"));
446
447 tlb_lock(pc->pc_booke_tlb_lock);
448
449 CTR1(KTR_PMAP, "%s: locked", __func__);
450 }
451 }
452#endif
453}
454
455static inline void
456tlb_miss_unlock(void)
457{
458#ifdef SMP
459 struct pcpu *pc;
460
461 if (!smp_started)
462 return;
463
464 STAILQ_FOREACH(pc, &cpuhead, pc_allcpu) {
465 if (pc != pcpup) {
466 CTR2(KTR_PMAP, "%s: tlb miss UNLOCK of CPU=%d",
467 __func__, pc->pc_cpuid);
468
469 tlb_unlock(pc->pc_booke_tlb_lock);
470
471 CTR1(KTR_PMAP, "%s: unlocked", __func__);
472 }
473 }
474#endif
475}
476
477/* Return number of entries in TLB0. */
478static __inline void
479tlb0_get_tlbconf(void)
480{
481 uint32_t tlb0_cfg;
482
483 tlb0_cfg = mfspr(SPR_TLB0CFG);
484 tlb0_entries = tlb0_cfg & TLBCFG_NENTRY_MASK;
485 tlb0_ways = (tlb0_cfg & TLBCFG_ASSOC_MASK) >> TLBCFG_ASSOC_SHIFT;
486 tlb0_entries_per_way = tlb0_entries / tlb0_ways;
487}
488
489/* Initialize pool of kva ptbl buffers. */
490static void
491ptbl_init(void)
492{
493 int i;
494
495 CTR3(KTR_PMAP, "%s: s (ptbl_bufs = 0x%08x size 0x%08x)", __func__,
496 (uint32_t)ptbl_bufs, sizeof(struct ptbl_buf) * PTBL_BUFS);
497 CTR3(KTR_PMAP, "%s: s (ptbl_buf_pool_vabase = 0x%08x size = 0x%08x)",
498 __func__, ptbl_buf_pool_vabase, PTBL_BUFS * PTBL_PAGES * PAGE_SIZE);
499
500 mtx_init(&ptbl_buf_freelist_lock, "ptbl bufs lock", NULL, MTX_DEF);
501 TAILQ_INIT(&ptbl_buf_freelist);
502
503 for (i = 0; i < PTBL_BUFS; i++) {
504 ptbl_bufs[i].kva = ptbl_buf_pool_vabase + i * PTBL_PAGES * PAGE_SIZE;
505 TAILQ_INSERT_TAIL(&ptbl_buf_freelist, &ptbl_bufs[i], link);
506 }
507}
508
509/* Get a ptbl_buf from the freelist. */
510static struct ptbl_buf *
511ptbl_buf_alloc(void)
512{
513 struct ptbl_buf *buf;
514
515 mtx_lock(&ptbl_buf_freelist_lock);
516 buf = TAILQ_FIRST(&ptbl_buf_freelist);
517 if (buf != NULL)
518 TAILQ_REMOVE(&ptbl_buf_freelist, buf, link);
519 mtx_unlock(&ptbl_buf_freelist_lock);
520
521 CTR2(KTR_PMAP, "%s: buf = %p", __func__, buf);
522
523 return (buf);
524}
525
526/* Return ptbl buff to free pool. */
527static void
528ptbl_buf_free(struct ptbl_buf *buf)
529{
530
531 CTR2(KTR_PMAP, "%s: buf = %p", __func__, buf);
532
533 mtx_lock(&ptbl_buf_freelist_lock);
534 TAILQ_INSERT_TAIL(&ptbl_buf_freelist, buf, link);
535 mtx_unlock(&ptbl_buf_freelist_lock);
536}
537
538/*
539 * Search the list of allocated ptbl bufs and find on list of allocated ptbls
540 */
541static void
542ptbl_free_pmap_ptbl(pmap_t pmap, pte_t *ptbl)
543{
544 struct ptbl_buf *pbuf;
545
546 CTR2(KTR_PMAP, "%s: ptbl = %p", __func__, ptbl);
547
548 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
549
550 TAILQ_FOREACH(pbuf, &pmap->pm_ptbl_list, link)
551 if (pbuf->kva == (vm_offset_t)ptbl) {
552 /* Remove from pmap ptbl buf list. */
553 TAILQ_REMOVE(&pmap->pm_ptbl_list, pbuf, link);
554
555 /* Free corresponding ptbl buf. */
556 ptbl_buf_free(pbuf);
557 break;
558 }
559}
560
561/* Allocate page table. */
562static pte_t *
563ptbl_alloc(mmu_t mmu, pmap_t pmap, unsigned int pdir_idx)
564{
565 vm_page_t mtbl[PTBL_PAGES];
566 vm_page_t m;
567 struct ptbl_buf *pbuf;
568 unsigned int pidx;
569 pte_t *ptbl;
570 int i;
571
572 CTR4(KTR_PMAP, "%s: pmap = %p su = %d pdir_idx = %d", __func__, pmap,
573 (pmap == kernel_pmap), pdir_idx);
574
575 KASSERT((pdir_idx <= (VM_MAXUSER_ADDRESS / PDIR_SIZE)),
576 ("ptbl_alloc: invalid pdir_idx"));
577 KASSERT((pmap->pm_pdir[pdir_idx] == NULL),
578 ("pte_alloc: valid ptbl entry exists!"));
579
580 pbuf = ptbl_buf_alloc();
581 if (pbuf == NULL)
582 panic("pte_alloc: couldn't alloc kernel virtual memory");
583
584 ptbl = (pte_t *)pbuf->kva;
585
586 CTR2(KTR_PMAP, "%s: ptbl kva = %p", __func__, ptbl);
587
588 /* Allocate ptbl pages, this will sleep! */
589 for (i = 0; i < PTBL_PAGES; i++) {
590 pidx = (PTBL_PAGES * pdir_idx) + i;
591 while ((m = vm_page_alloc(NULL, pidx,
592 VM_ALLOC_NOOBJ | VM_ALLOC_WIRED)) == NULL) {
593
594 PMAP_UNLOCK(pmap);
595 rw_wunlock(&pvh_global_lock);
596 VM_WAIT;
597 rw_wlock(&pvh_global_lock);
598 PMAP_LOCK(pmap);
599 }
600 mtbl[i] = m;
601 }
602
603 /* Map allocated pages into kernel_pmap. */
604 mmu_booke_qenter(mmu, (vm_offset_t)ptbl, mtbl, PTBL_PAGES);
605
606 /* Zero whole ptbl. */
607 bzero((caddr_t)ptbl, PTBL_PAGES * PAGE_SIZE);
608
609 /* Add pbuf to the pmap ptbl bufs list. */
610 TAILQ_INSERT_TAIL(&pmap->pm_ptbl_list, pbuf, link);
611
612 return (ptbl);
613}
614
615/* Free ptbl pages and invalidate pdir entry. */
616static void
617ptbl_free(mmu_t mmu, pmap_t pmap, unsigned int pdir_idx)
618{
619 pte_t *ptbl;
620 vm_paddr_t pa;
621 vm_offset_t va;
622 vm_page_t m;
623 int i;
624
625 CTR4(KTR_PMAP, "%s: pmap = %p su = %d pdir_idx = %d", __func__, pmap,
626 (pmap == kernel_pmap), pdir_idx);
627
628 KASSERT((pdir_idx <= (VM_MAXUSER_ADDRESS / PDIR_SIZE)),
629 ("ptbl_free: invalid pdir_idx"));
630
631 ptbl = pmap->pm_pdir[pdir_idx];
632
633 CTR2(KTR_PMAP, "%s: ptbl = %p", __func__, ptbl);
634
635 KASSERT((ptbl != NULL), ("ptbl_free: null ptbl"));
636
637 /*
638 * Invalidate the pdir entry as soon as possible, so that other CPUs
639 * don't attempt to look up the page tables we are releasing.
640 */
641 mtx_lock_spin(&tlbivax_mutex);
642 tlb_miss_lock();
643
644 pmap->pm_pdir[pdir_idx] = NULL;
645
646 tlb_miss_unlock();
647 mtx_unlock_spin(&tlbivax_mutex);
648
649 for (i = 0; i < PTBL_PAGES; i++) {
650 va = ((vm_offset_t)ptbl + (i * PAGE_SIZE));
651 pa = pte_vatopa(mmu, kernel_pmap, va);
652 m = PHYS_TO_VM_PAGE(pa);
653 vm_page_free_zero(m);
654 atomic_subtract_int(&cnt.v_wire_count, 1);
655 mmu_booke_kremove(mmu, va);
656 }
657
658 ptbl_free_pmap_ptbl(pmap, ptbl);
659}
660
661/*
662 * Decrement ptbl pages hold count and attempt to free ptbl pages.
663 * Called when removing pte entry from ptbl.
664 *
665 * Return 1 if ptbl pages were freed.
666 */
667static int
668ptbl_unhold(mmu_t mmu, pmap_t pmap, unsigned int pdir_idx)
669{
670 pte_t *ptbl;
671 vm_paddr_t pa;
672 vm_page_t m;
673 int i;
674
675 CTR4(KTR_PMAP, "%s: pmap = %p su = %d pdir_idx = %d", __func__, pmap,
676 (pmap == kernel_pmap), pdir_idx);
677
678 KASSERT((pdir_idx <= (VM_MAXUSER_ADDRESS / PDIR_SIZE)),
679 ("ptbl_unhold: invalid pdir_idx"));
680 KASSERT((pmap != kernel_pmap),
681 ("ptbl_unhold: unholding kernel ptbl!"));
682
683 ptbl = pmap->pm_pdir[pdir_idx];
684
685 //debugf("ptbl_unhold: ptbl = 0x%08x\n", (u_int32_t)ptbl);
686 KASSERT(((vm_offset_t)ptbl >= VM_MIN_KERNEL_ADDRESS),
687 ("ptbl_unhold: non kva ptbl"));
688
689 /* decrement hold count */
690 for (i = 0; i < PTBL_PAGES; i++) {
691 pa = pte_vatopa(mmu, kernel_pmap,
692 (vm_offset_t)ptbl + (i * PAGE_SIZE));
693 m = PHYS_TO_VM_PAGE(pa);
694 m->wire_count--;
695 }
696
697 /*
698 * Free ptbl pages if there are no pte etries in this ptbl.
699 * wire_count has the same value for all ptbl pages, so check the last
700 * page.
701 */
702 if (m->wire_count == 0) {
703 ptbl_free(mmu, pmap, pdir_idx);
704
705 //debugf("ptbl_unhold: e (freed ptbl)\n");
706 return (1);
707 }
708
709 return (0);
710}
711
712/*
713 * Increment hold count for ptbl pages. This routine is used when a new pte
714 * entry is being inserted into the ptbl.
715 */
716static void
717ptbl_hold(mmu_t mmu, pmap_t pmap, unsigned int pdir_idx)
718{
719 vm_paddr_t pa;
720 pte_t *ptbl;
721 vm_page_t m;
722 int i;
723
724 CTR3(KTR_PMAP, "%s: pmap = %p pdir_idx = %d", __func__, pmap,
725 pdir_idx);
726
727 KASSERT((pdir_idx <= (VM_MAXUSER_ADDRESS / PDIR_SIZE)),
728 ("ptbl_hold: invalid pdir_idx"));
729 KASSERT((pmap != kernel_pmap),
730 ("ptbl_hold: holding kernel ptbl!"));
731
732 ptbl = pmap->pm_pdir[pdir_idx];
733
734 KASSERT((ptbl != NULL), ("ptbl_hold: null ptbl"));
735
736 for (i = 0; i < PTBL_PAGES; i++) {
737 pa = pte_vatopa(mmu, kernel_pmap,
738 (vm_offset_t)ptbl + (i * PAGE_SIZE));
739 m = PHYS_TO_VM_PAGE(pa);
740 m->wire_count++;
741 }
742}
743
744/* Allocate pv_entry structure. */
745pv_entry_t
746pv_alloc(void)
747{
748 pv_entry_t pv;
749
750 pv_entry_count++;
751 if (pv_entry_count > pv_entry_high_water)
752 pagedaemon_wakeup();
753 pv = uma_zalloc(pvzone, M_NOWAIT);
754
755 return (pv);
756}
757
758/* Free pv_entry structure. */
759static __inline void
760pv_free(pv_entry_t pve)
761{
762
763 pv_entry_count--;
764 uma_zfree(pvzone, pve);
765}
766
767
768/* Allocate and initialize pv_entry structure. */
769static void
770pv_insert(pmap_t pmap, vm_offset_t va, vm_page_t m)
771{
772 pv_entry_t pve;
773
774 //int su = (pmap == kernel_pmap);
775 //debugf("pv_insert: s (su = %d pmap = 0x%08x va = 0x%08x m = 0x%08x)\n", su,
776 // (u_int32_t)pmap, va, (u_int32_t)m);
777
778 pve = pv_alloc();
779 if (pve == NULL)
780 panic("pv_insert: no pv entries!");
781
782 pve->pv_pmap = pmap;
783 pve->pv_va = va;
784
785 /* add to pv_list */
786 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
787 rw_assert(&pvh_global_lock, RA_WLOCKED);
788
789 TAILQ_INSERT_TAIL(&m->md.pv_list, pve, pv_link);
790
791 //debugf("pv_insert: e\n");
792}
793
794/* Destroy pv entry. */
795static void
796pv_remove(pmap_t pmap, vm_offset_t va, vm_page_t m)
797{
798 pv_entry_t pve;
799
800 //int su = (pmap == kernel_pmap);
801 //debugf("pv_remove: s (su = %d pmap = 0x%08x va = 0x%08x)\n", su, (u_int32_t)pmap, va);
802
803 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
804 rw_assert(&pvh_global_lock, RA_WLOCKED);
805
806 /* find pv entry */
807 TAILQ_FOREACH(pve, &m->md.pv_list, pv_link) {
808 if ((pmap == pve->pv_pmap) && (va == pve->pv_va)) {
809 /* remove from pv_list */
810 TAILQ_REMOVE(&m->md.pv_list, pve, pv_link);
811 if (TAILQ_EMPTY(&m->md.pv_list))
812 vm_page_aflag_clear(m, PGA_WRITEABLE);
813
814 /* free pv entry struct */
815 pv_free(pve);
816 break;
817 }
818 }
819
820 //debugf("pv_remove: e\n");
821}
822
823/*
824 * Clean pte entry, try to free page table page if requested.
825 *
826 * Return 1 if ptbl pages were freed, otherwise return 0.
827 */
828static int
829pte_remove(mmu_t mmu, pmap_t pmap, vm_offset_t va, uint8_t flags)
830{
831 unsigned int pdir_idx = PDIR_IDX(va);
832 unsigned int ptbl_idx = PTBL_IDX(va);
833 vm_page_t m;
834 pte_t *ptbl;
835 pte_t *pte;
836
837 //int su = (pmap == kernel_pmap);
838 //debugf("pte_remove: s (su = %d pmap = 0x%08x va = 0x%08x flags = %d)\n",
839 // su, (u_int32_t)pmap, va, flags);
840
841 ptbl = pmap->pm_pdir[pdir_idx];
842 KASSERT(ptbl, ("pte_remove: null ptbl"));
843
844 pte = &ptbl[ptbl_idx];
845
846 if (pte == NULL || !PTE_ISVALID(pte))
847 return (0);
848
849 if (PTE_ISWIRED(pte))
850 pmap->pm_stats.wired_count--;
851
852 /* Handle managed entry. */
853 if (PTE_ISMANAGED(pte)) {
854 /* Get vm_page_t for mapped pte. */
855 m = PHYS_TO_VM_PAGE(PTE_PA(pte));
856
857 if (PTE_ISMODIFIED(pte))
858 vm_page_dirty(m);
859
860 if (PTE_ISREFERENCED(pte))
861 vm_page_aflag_set(m, PGA_REFERENCED);
862
863 pv_remove(pmap, va, m);
864 }
865
866 mtx_lock_spin(&tlbivax_mutex);
867 tlb_miss_lock();
868
869 tlb0_flush_entry(va);
870 pte->flags = 0;
871 pte->rpn = 0;
872
873 tlb_miss_unlock();
874 mtx_unlock_spin(&tlbivax_mutex);
875
876 pmap->pm_stats.resident_count--;
877
878 if (flags & PTBL_UNHOLD) {
879 //debugf("pte_remove: e (unhold)\n");
880 return (ptbl_unhold(mmu, pmap, pdir_idx));
881 }
882
883 //debugf("pte_remove: e\n");
884 return (0);
885}
886
887/*
888 * Insert PTE for a given page and virtual address.
889 */
890static void
891pte_enter(mmu_t mmu, pmap_t pmap, vm_page_t m, vm_offset_t va, uint32_t flags)
892{
893 unsigned int pdir_idx = PDIR_IDX(va);
894 unsigned int ptbl_idx = PTBL_IDX(va);
895 pte_t *ptbl, *pte;
896
897 CTR4(KTR_PMAP, "%s: su = %d pmap = %p va = %p", __func__,
898 pmap == kernel_pmap, pmap, va);
899
900 /* Get the page table pointer. */
901 ptbl = pmap->pm_pdir[pdir_idx];
902
903 if (ptbl == NULL) {
904 /* Allocate page table pages. */
905 ptbl = ptbl_alloc(mmu, pmap, pdir_idx);
906 } else {
907 /*
908 * Check if there is valid mapping for requested
909 * va, if there is, remove it.
910 */
911 pte = &pmap->pm_pdir[pdir_idx][ptbl_idx];
912 if (PTE_ISVALID(pte)) {
913 pte_remove(mmu, pmap, va, PTBL_HOLD);
914 } else {
915 /*
916 * pte is not used, increment hold count
917 * for ptbl pages.
918 */
919 if (pmap != kernel_pmap)
920 ptbl_hold(mmu, pmap, pdir_idx);
921 }
922 }
923
924 /*
925 * Insert pv_entry into pv_list for mapped page if part of managed
926 * memory.
927 */
928 if ((m->oflags & VPO_UNMANAGED) == 0) {
929 flags |= PTE_MANAGED;
930
931 /* Create and insert pv entry. */
932 pv_insert(pmap, va, m);
933 }
934
935 pmap->pm_stats.resident_count++;
936
937 mtx_lock_spin(&tlbivax_mutex);
938 tlb_miss_lock();
939
940 tlb0_flush_entry(va);
941 if (pmap->pm_pdir[pdir_idx] == NULL) {
942 /*
943 * If we just allocated a new page table, hook it in
944 * the pdir.
945 */
946 pmap->pm_pdir[pdir_idx] = ptbl;
947 }
948 pte = &(pmap->pm_pdir[pdir_idx][ptbl_idx]);
949 pte->rpn = VM_PAGE_TO_PHYS(m) & ~PTE_PA_MASK;
950 pte->flags |= (PTE_VALID | flags);
951
952 tlb_miss_unlock();
953 mtx_unlock_spin(&tlbivax_mutex);
954}
955
956/* Return the pa for the given pmap/va. */
957static vm_paddr_t
958pte_vatopa(mmu_t mmu, pmap_t pmap, vm_offset_t va)
959{
960 vm_paddr_t pa = 0;
961 pte_t *pte;
962
963 pte = pte_find(mmu, pmap, va);
964 if ((pte != NULL) && PTE_ISVALID(pte))
965 pa = (PTE_PA(pte) | (va & PTE_PA_MASK));
966 return (pa);
967}
968
969/* Get a pointer to a PTE in a page table. */
970static pte_t *
971pte_find(mmu_t mmu, pmap_t pmap, vm_offset_t va)
972{
973 unsigned int pdir_idx = PDIR_IDX(va);
974 unsigned int ptbl_idx = PTBL_IDX(va);
975
976 KASSERT((pmap != NULL), ("pte_find: invalid pmap"));
977
978 if (pmap->pm_pdir[pdir_idx])
979 return (&(pmap->pm_pdir[pdir_idx][ptbl_idx]));
980
981 return (NULL);
982}
983
984/**************************************************************************/
985/* PMAP related */
986/**************************************************************************/
987
988/*
989 * This is called during booke_init, before the system is really initialized.
990 */
991static void
992mmu_booke_bootstrap(mmu_t mmu, vm_offset_t start, vm_offset_t kernelend)
993{
994 vm_offset_t phys_kernelend;
995 struct mem_region *mp, *mp1;
996 int cnt, i, j;
997 u_int s, e, sz;
998 u_int phys_avail_count;
999 vm_size_t physsz, hwphyssz, kstack0_sz;
1000 vm_offset_t kernel_pdir, kstack0, va;
1001 vm_paddr_t kstack0_phys;
1002 void *dpcpu;
1003 pte_t *pte;
1004
1005 debugf("mmu_booke_bootstrap: entered\n");
1006
1007 /* Initialize invalidation mutex */
1008 mtx_init(&tlbivax_mutex, "tlbivax", NULL, MTX_SPIN);
1009
1010 /* Read TLB0 size and associativity. */
1011 tlb0_get_tlbconf();
1012
1013 /*
1014 * Align kernel start and end address (kernel image).
1015 * Note that kernel end does not necessarily relate to kernsize.
1016 * kernsize is the size of the kernel that is actually mapped.
1017 * Also note that "start - 1" is deliberate. With SMP, the
1018 * entry point is exactly a page from the actual load address.
1019 * As such, trunc_page() has no effect and we're off by a page.
1020 * Since we always have the ELF header between the load address
1021 * and the entry point, we can safely subtract 1 to compensate.
1022 */
1023 kernstart = trunc_page(start - 1);
1024 data_start = round_page(kernelend);
1025 data_end = data_start;
1026
1027 /*
1028 * Addresses of preloaded modules (like file systems) use
1029 * physical addresses. Make sure we relocate those into
1030 * virtual addresses.
1031 */
1032 preload_addr_relocate = kernstart - kernload;
1033
1034 /* Allocate the dynamic per-cpu area. */
1035 dpcpu = (void *)data_end;
1036 data_end += DPCPU_SIZE;
1037
1038 /* Allocate space for the message buffer. */
1039 msgbufp = (struct msgbuf *)data_end;
1040 data_end += msgbufsize;
1041 debugf(" msgbufp at 0x%08x end = 0x%08x\n", (uint32_t)msgbufp,
1042 data_end);
1043
1044 data_end = round_page(data_end);
1045
1046 /* Allocate space for ptbl_bufs. */
1047 ptbl_bufs = (struct ptbl_buf *)data_end;
1048 data_end += sizeof(struct ptbl_buf) * PTBL_BUFS;
1049 debugf(" ptbl_bufs at 0x%08x end = 0x%08x\n", (uint32_t)ptbl_bufs,
1050 data_end);
1051
1052 data_end = round_page(data_end);
1053
1054 /* Allocate PTE tables for kernel KVA. */
1055 kernel_pdir = data_end;
1056 kernel_ptbls = (VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS +
1057 PDIR_SIZE - 1) / PDIR_SIZE;
1058 data_end += kernel_ptbls * PTBL_PAGES * PAGE_SIZE;
1059 debugf(" kernel ptbls: %d\n", kernel_ptbls);
1060 debugf(" kernel pdir at 0x%08x end = 0x%08x\n", kernel_pdir, data_end);
1061
1062 debugf(" data_end: 0x%08x\n", data_end);
1063 if (data_end - kernstart > kernsize) {
1064 kernsize += tlb1_mapin_region(kernstart + kernsize,
1065 kernload + kernsize, (data_end - kernstart) - kernsize);
1066 }
1067 data_end = kernstart + kernsize;
1068 debugf(" updated data_end: 0x%08x\n", data_end);
1069
1070 /*
1071 * Clear the structures - note we can only do it safely after the
1072 * possible additional TLB1 translations are in place (above) so that
1073 * all range up to the currently calculated 'data_end' is covered.
1074 */
1075 dpcpu_init(dpcpu, 0);
1076 memset((void *)ptbl_bufs, 0, sizeof(struct ptbl_buf) * PTBL_SIZE);
1077 memset((void *)kernel_pdir, 0, kernel_ptbls * PTBL_PAGES * PAGE_SIZE);
1078
1079 /*******************************************************/
1080 /* Set the start and end of kva. */
1081 /*******************************************************/
1082 virtual_avail = round_page(data_end);
1083 virtual_end = VM_MAX_KERNEL_ADDRESS;
1084
1085 /* Allocate KVA space for page zero/copy operations. */
1086 zero_page_va = virtual_avail;
1087 virtual_avail += PAGE_SIZE;
1088 zero_page_idle_va = virtual_avail;
1089 virtual_avail += PAGE_SIZE;
1090 copy_page_src_va = virtual_avail;
1091 virtual_avail += PAGE_SIZE;
1092 copy_page_dst_va = virtual_avail;
1093 virtual_avail += PAGE_SIZE;
1094 debugf("zero_page_va = 0x%08x\n", zero_page_va);
1095 debugf("zero_page_idle_va = 0x%08x\n", zero_page_idle_va);
1096 debugf("copy_page_src_va = 0x%08x\n", copy_page_src_va);
1097 debugf("copy_page_dst_va = 0x%08x\n", copy_page_dst_va);
1098
1099 /* Initialize page zero/copy mutexes. */
1100 mtx_init(&zero_page_mutex, "mmu_booke_zero_page", NULL, MTX_DEF);
1101 mtx_init(&copy_page_mutex, "mmu_booke_copy_page", NULL, MTX_DEF);
1102
1103 /* Allocate KVA space for ptbl bufs. */
1104 ptbl_buf_pool_vabase = virtual_avail;
1105 virtual_avail += PTBL_BUFS * PTBL_PAGES * PAGE_SIZE;
1106 debugf("ptbl_buf_pool_vabase = 0x%08x end = 0x%08x\n",
1107 ptbl_buf_pool_vabase, virtual_avail);
1108
1109 /* Calculate corresponding physical addresses for the kernel region. */
1110 phys_kernelend = kernload + kernsize;
1111 debugf("kernel image and allocated data:\n");
1112 debugf(" kernload = 0x%08x\n", kernload);
1113 debugf(" kernstart = 0x%08x\n", kernstart);
1114 debugf(" kernsize = 0x%08x\n", kernsize);
1115
1116 if (sizeof(phys_avail) / sizeof(phys_avail[0]) < availmem_regions_sz)
1117 panic("mmu_booke_bootstrap: phys_avail too small");
1118
1119 /*
1120 * Remove kernel physical address range from avail regions list. Page
1121 * align all regions. Non-page aligned memory isn't very interesting
1122 * to us. Also, sort the entries for ascending addresses.
1123 */
1124
1125 /* Retrieve phys/avail mem regions */
1126 mem_regions(&physmem_regions, &physmem_regions_sz,
1127 &availmem_regions, &availmem_regions_sz);
1128 sz = 0;
1129 cnt = availmem_regions_sz;
1130 debugf("processing avail regions:\n");
1131 for (mp = availmem_regions; mp->mr_size; mp++) {
1132 s = mp->mr_start;
1133 e = mp->mr_start + mp->mr_size;
1134 debugf(" %08x-%08x -> ", s, e);
1135 /* Check whether this region holds all of the kernel. */
1136 if (s < kernload && e > phys_kernelend) {
1137 availmem_regions[cnt].mr_start = phys_kernelend;
1138 availmem_regions[cnt++].mr_size = e - phys_kernelend;
1139 e = kernload;
1140 }
1141 /* Look whether this regions starts within the kernel. */
1142 if (s >= kernload && s < phys_kernelend) {
1143 if (e <= phys_kernelend)
1144 goto empty;
1145 s = phys_kernelend;
1146 }
1147 /* Now look whether this region ends within the kernel. */
1148 if (e > kernload && e <= phys_kernelend) {
1149 if (s >= kernload)
1150 goto empty;
1151 e = kernload;
1152 }
1153 /* Now page align the start and size of the region. */
1154 s = round_page(s);
1155 e = trunc_page(e);
1156 if (e < s)
1157 e = s;
1158 sz = e - s;
1159 debugf("%08x-%08x = %x\n", s, e, sz);
1160
1161 /* Check whether some memory is left here. */
1162 if (sz == 0) {
1163 empty:
1164 memmove(mp, mp + 1,
1165 (cnt - (mp - availmem_regions)) * sizeof(*mp));
1166 cnt--;
1167 mp--;
1168 continue;
1169 }
1170
1171 /* Do an insertion sort. */
1172 for (mp1 = availmem_regions; mp1 < mp; mp1++)
1173 if (s < mp1->mr_start)
1174 break;
1175 if (mp1 < mp) {
1176 memmove(mp1 + 1, mp1, (char *)mp - (char *)mp1);
1177 mp1->mr_start = s;
1178 mp1->mr_size = sz;
1179 } else {
1180 mp->mr_start = s;
1181 mp->mr_size = sz;
1182 }
1183 }
1184 availmem_regions_sz = cnt;
1185
1186 /*******************************************************/
1187 /* Steal physical memory for kernel stack from the end */
1188 /* of the first avail region */
1189 /*******************************************************/
1190 kstack0_sz = KSTACK_PAGES * PAGE_SIZE;
1191 kstack0_phys = availmem_regions[0].mr_start +
1192 availmem_regions[0].mr_size;
1193 kstack0_phys -= kstack0_sz;
1194 availmem_regions[0].mr_size -= kstack0_sz;
1195
1196 /*******************************************************/
1197 /* Fill in phys_avail table, based on availmem_regions */
1198 /*******************************************************/
1199 phys_avail_count = 0;
1200 physsz = 0;
1201 hwphyssz = 0;
1202 TUNABLE_ULONG_FETCH("hw.physmem", (u_long *) &hwphyssz);
1203
1204 debugf("fill in phys_avail:\n");
1205 for (i = 0, j = 0; i < availmem_regions_sz; i++, j += 2) {
1206
1207 debugf(" region: 0x%08x - 0x%08x (0x%08x)\n",
1208 availmem_regions[i].mr_start,
1209 availmem_regions[i].mr_start +
1210 availmem_regions[i].mr_size,
1211 availmem_regions[i].mr_size);
1212
1213 if (hwphyssz != 0 &&
1214 (physsz + availmem_regions[i].mr_size) >= hwphyssz) {
1215 debugf(" hw.physmem adjust\n");
1216 if (physsz < hwphyssz) {
1217 phys_avail[j] = availmem_regions[i].mr_start;
1218 phys_avail[j + 1] =
1219 availmem_regions[i].mr_start +
1220 hwphyssz - physsz;
1221 physsz = hwphyssz;
1222 phys_avail_count++;
1223 }
1224 break;
1225 }
1226
1227 phys_avail[j] = availmem_regions[i].mr_start;
1228 phys_avail[j + 1] = availmem_regions[i].mr_start +
1229 availmem_regions[i].mr_size;
1230 phys_avail_count++;
1231 physsz += availmem_regions[i].mr_size;
1232 }
1233 physmem = btoc(physsz);
1234
1235 /* Calculate the last available physical address. */
1236 for (i = 0; phys_avail[i + 2] != 0; i += 2)
1237 ;
1238 Maxmem = powerpc_btop(phys_avail[i + 1]);
1239
1240 debugf("Maxmem = 0x%08lx\n", Maxmem);
1241 debugf("phys_avail_count = %d\n", phys_avail_count);
1242 debugf("physsz = 0x%08x physmem = %ld (0x%08lx)\n", physsz, physmem,
1243 physmem);
1244
1245 /*******************************************************/
1246 /* Initialize (statically allocated) kernel pmap. */
1247 /*******************************************************/
1248 PMAP_LOCK_INIT(kernel_pmap);
1249 kptbl_min = VM_MIN_KERNEL_ADDRESS / PDIR_SIZE;
1250
1251 debugf("kernel_pmap = 0x%08x\n", (uint32_t)kernel_pmap);
1252 debugf("kptbl_min = %d, kernel_ptbls = %d\n", kptbl_min, kernel_ptbls);
1253 debugf("kernel pdir range: 0x%08x - 0x%08x\n",
1254 kptbl_min * PDIR_SIZE, (kptbl_min + kernel_ptbls) * PDIR_SIZE - 1);
1255
1256 /* Initialize kernel pdir */
1257 for (i = 0; i < kernel_ptbls; i++)
1258 kernel_pmap->pm_pdir[kptbl_min + i] =
1259 (pte_t *)(kernel_pdir + (i * PAGE_SIZE * PTBL_PAGES));
1260
1261 for (i = 0; i < MAXCPU; i++) {
1262 kernel_pmap->pm_tid[i] = TID_KERNEL;
1263
1264 /* Initialize each CPU's tidbusy entry 0 with kernel_pmap */
1265 tidbusy[i][0] = kernel_pmap;
1266 }
1267
1268 /*
1269 * Fill in PTEs covering kernel code and data. They are not required
1270 * for address translation, as this area is covered by static TLB1
1271 * entries, but for pte_vatopa() to work correctly with kernel area
1272 * addresses.
1273 */
1274 for (va = kernstart; va < data_end; va += PAGE_SIZE) {
1275 pte = &(kernel_pmap->pm_pdir[PDIR_IDX(va)][PTBL_IDX(va)]);
1276 pte->rpn = kernload + (va - kernstart);
1277 pte->flags = PTE_M | PTE_SR | PTE_SW | PTE_SX | PTE_WIRED |
1278 PTE_VALID;
1279 }
1280 /* Mark kernel_pmap active on all CPUs */
1281 CPU_FILL(&kernel_pmap->pm_active);
1282
1283 /*
1284 * Initialize the global pv list lock.
1285 */
1286 rw_init(&pvh_global_lock, "pmap pv global");
1287
1288 /*******************************************************/
1289 /* Final setup */
1290 /*******************************************************/
1291
1292 /* Enter kstack0 into kernel map, provide guard page */
1293 kstack0 = virtual_avail + KSTACK_GUARD_PAGES * PAGE_SIZE;
1294 thread0.td_kstack = kstack0;
1295 thread0.td_kstack_pages = KSTACK_PAGES;
1296
1297 debugf("kstack_sz = 0x%08x\n", kstack0_sz);
1298 debugf("kstack0_phys at 0x%08x - 0x%08x\n",
1299 kstack0_phys, kstack0_phys + kstack0_sz);
1300 debugf("kstack0 at 0x%08x - 0x%08x\n", kstack0, kstack0 + kstack0_sz);
1301
1302 virtual_avail += KSTACK_GUARD_PAGES * PAGE_SIZE + kstack0_sz;
1303 for (i = 0; i < KSTACK_PAGES; i++) {
1304 mmu_booke_kenter(mmu, kstack0, kstack0_phys);
1305 kstack0 += PAGE_SIZE;
1306 kstack0_phys += PAGE_SIZE;
1307 }
1308
1309 debugf("virtual_avail = %08x\n", virtual_avail);
1310 debugf("virtual_end = %08x\n", virtual_end);
1311
1312 debugf("mmu_booke_bootstrap: exit\n");
1313}
1314
1315void
1316pmap_bootstrap_ap(volatile uint32_t *trcp __unused)
1317{
1318 int i;
1319
1320 /*
1321 * Finish TLB1 configuration: the BSP already set up its TLB1 and we
1322 * have the snapshot of its contents in the s/w tlb1[] table, so use
1323 * these values directly to (re)program AP's TLB1 hardware.
1324 */
1325 for (i = bp_ntlb1s; i < tlb1_idx; i++) {
1326 /* Skip invalid entries */
1327 if (!(tlb1[i].mas1 & MAS1_VALID))
1328 continue;
1329
1330 tlb1_write_entry(i);
1331 }
1332
1333 set_mas4_defaults();
1334}
1335
1336/*
1337 * Get the physical page address for the given pmap/virtual address.
1338 */
1339static vm_paddr_t
1340mmu_booke_extract(mmu_t mmu, pmap_t pmap, vm_offset_t va)
1341{
1342 vm_paddr_t pa;
1343
1344 PMAP_LOCK(pmap);
1345 pa = pte_vatopa(mmu, pmap, va);
1346 PMAP_UNLOCK(pmap);
1347
1348 return (pa);
1349}
1350
1351/*
1352 * Extract the physical page address associated with the given
1353 * kernel virtual address.
1354 */
1355static vm_paddr_t
1356mmu_booke_kextract(mmu_t mmu, vm_offset_t va)
1357{
1358 int i;
1359
1360 /* Check TLB1 mappings */
1361 for (i = 0; i < tlb1_idx; i++) {
1362 if (!(tlb1[i].mas1 & MAS1_VALID))
1363 continue;
1364 if (va >= tlb1[i].virt && va < tlb1[i].virt + tlb1[i].size)
1365 return (tlb1[i].phys + (va - tlb1[i].virt));
1366 }
1367
1368 return (pte_vatopa(mmu, kernel_pmap, va));
1369}
1370
1371/*
1372 * Initialize the pmap module.
1373 * Called by vm_init, to initialize any structures that the pmap
1374 * system needs to map virtual memory.
1375 */
1376static void
1377mmu_booke_init(mmu_t mmu)
1378{
1379 int shpgperproc = PMAP_SHPGPERPROC;
1380
1381 /*
1382 * Initialize the address space (zone) for the pv entries. Set a
1383 * high water mark so that the system can recover from excessive
1384 * numbers of pv entries.
1385 */
1386 pvzone = uma_zcreate("PV ENTRY", sizeof(struct pv_entry), NULL, NULL,
1387 NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_VM | UMA_ZONE_NOFREE);
1388
1389 TUNABLE_INT_FETCH("vm.pmap.shpgperproc", &shpgperproc);
1390 pv_entry_max = shpgperproc * maxproc + cnt.v_page_count;
1391
1392 TUNABLE_INT_FETCH("vm.pmap.pv_entries", &pv_entry_max);
1393 pv_entry_high_water = 9 * (pv_entry_max / 10);
1394
1395 uma_zone_reserve_kva(pvzone, pv_entry_max);
1396
1397 /* Pre-fill pvzone with initial number of pv entries. */
1398 uma_prealloc(pvzone, PV_ENTRY_ZONE_MIN);
1399
1400 /* Initialize ptbl allocation. */
1401 ptbl_init();
1402}
1403
1404/*
1405 * Map a list of wired pages into kernel virtual address space. This is
1406 * intended for temporary mappings which do not need page modification or
1407 * references recorded. Existing mappings in the region are overwritten.
1408 */
1409static void
1410mmu_booke_qenter(mmu_t mmu, vm_offset_t sva, vm_page_t *m, int count)
1411{
1412 vm_offset_t va;
1413
1414 va = sva;
1415 while (count-- > 0) {
1416 mmu_booke_kenter(mmu, va, VM_PAGE_TO_PHYS(*m));
1417 va += PAGE_SIZE;
1418 m++;
1419 }
1420}
1421
1422/*
1423 * Remove page mappings from kernel virtual address space. Intended for
1424 * temporary mappings entered by mmu_booke_qenter.
1425 */
1426static void
1427mmu_booke_qremove(mmu_t mmu, vm_offset_t sva, int count)
1428{
1429 vm_offset_t va;
1430
1431 va = sva;
1432 while (count-- > 0) {
1433 mmu_booke_kremove(mmu, va);
1434 va += PAGE_SIZE;
1435 }
1436}
1437
1438/*
1439 * Map a wired page into kernel virtual address space.
1440 */
1441static void
1442mmu_booke_kenter(mmu_t mmu, vm_offset_t va, vm_paddr_t pa)
1443{
1444
1445 mmu_booke_kenter_attr(mmu, va, pa, VM_MEMATTR_DEFAULT);
1446}
1447
1448static void
1449mmu_booke_kenter_attr(mmu_t mmu, vm_offset_t va, vm_paddr_t pa, vm_memattr_t ma)
1450{
1451 unsigned int pdir_idx = PDIR_IDX(va);
1452 unsigned int ptbl_idx = PTBL_IDX(va);
1453 uint32_t flags;
1454 pte_t *pte;
1455
1456 KASSERT(((va >= VM_MIN_KERNEL_ADDRESS) &&
1457 (va <= VM_MAX_KERNEL_ADDRESS)), ("mmu_booke_kenter: invalid va"));
1458
1459 flags = PTE_SR | PTE_SW | PTE_SX | PTE_WIRED | PTE_VALID;
1460 flags |= tlb_calc_wimg(pa, ma);
1461
1462 pte = &(kernel_pmap->pm_pdir[pdir_idx][ptbl_idx]);
1463
1464 mtx_lock_spin(&tlbivax_mutex);
1465 tlb_miss_lock();
1466
1467 if (PTE_ISVALID(pte)) {
1468
1469 CTR1(KTR_PMAP, "%s: replacing entry!", __func__);
1470
1471 /* Flush entry from TLB0 */
1472 tlb0_flush_entry(va);
1473 }
1474
1475 pte->rpn = pa & ~PTE_PA_MASK;
1476 pte->flags = flags;
1477
1478 //debugf("mmu_booke_kenter: pdir_idx = %d ptbl_idx = %d va=0x%08x "
1479 // "pa=0x%08x rpn=0x%08x flags=0x%08x\n",
1480 // pdir_idx, ptbl_idx, va, pa, pte->rpn, pte->flags);
1481
1482 /* Flush the real memory from the instruction cache. */
1483 if ((flags & (PTE_I | PTE_G)) == 0) {
1484 __syncicache((void *)va, PAGE_SIZE);
1485 }
1486
1487 tlb_miss_unlock();
1488 mtx_unlock_spin(&tlbivax_mutex);
1489}
1490
1491/*
1492 * Remove a page from kernel page table.
1493 */
1494static void
1495mmu_booke_kremove(mmu_t mmu, vm_offset_t va)
1496{
1497 unsigned int pdir_idx = PDIR_IDX(va);
1498 unsigned int ptbl_idx = PTBL_IDX(va);
1499 pte_t *pte;
1500
1501// CTR2(KTR_PMAP,("%s: s (va = 0x%08x)\n", __func__, va));
1502
1503 KASSERT(((va >= VM_MIN_KERNEL_ADDRESS) &&
1504 (va <= VM_MAX_KERNEL_ADDRESS)),
1505 ("mmu_booke_kremove: invalid va"));
1506
1507 pte = &(kernel_pmap->pm_pdir[pdir_idx][ptbl_idx]);
1508
1509 if (!PTE_ISVALID(pte)) {
1510
1511 CTR1(KTR_PMAP, "%s: invalid pte", __func__);
1512
1513 return;
1514 }
1515
1516 mtx_lock_spin(&tlbivax_mutex);
1517 tlb_miss_lock();
1518
1519 /* Invalidate entry in TLB0, update PTE. */
1520 tlb0_flush_entry(va);
1521 pte->flags = 0;
1522 pte->rpn = 0;
1523
1524 tlb_miss_unlock();
1525 mtx_unlock_spin(&tlbivax_mutex);
1526}
1527
1528/*
1529 * Initialize pmap associated with process 0.
1530 */
1531static void
1532mmu_booke_pinit0(mmu_t mmu, pmap_t pmap)
1533{
1534
1535 PMAP_LOCK_INIT(pmap);
1536 mmu_booke_pinit(mmu, pmap);
1537 PCPU_SET(curpmap, pmap);
1538}
1539
1540/*
1541 * Initialize a preallocated and zeroed pmap structure,
1542 * such as one in a vmspace structure.
1543 */
1544static void
1545mmu_booke_pinit(mmu_t mmu, pmap_t pmap)
1546{
1547 int i;
1548
1549 CTR4(KTR_PMAP, "%s: pmap = %p, proc %d '%s'", __func__, pmap,
1550 curthread->td_proc->p_pid, curthread->td_proc->p_comm);
1551
1552 KASSERT((pmap != kernel_pmap), ("pmap_pinit: initializing kernel_pmap"));
1553
1554 for (i = 0; i < MAXCPU; i++)
1555 pmap->pm_tid[i] = TID_NONE;
1556 CPU_ZERO(&kernel_pmap->pm_active);
1557 bzero(&pmap->pm_stats, sizeof(pmap->pm_stats));
1558 bzero(&pmap->pm_pdir, sizeof(pte_t *) * PDIR_NENTRIES);
1559 TAILQ_INIT(&pmap->pm_ptbl_list);
1560}
1561
1562/*
1563 * Release any resources held by the given physical map.
1564 * Called when a pmap initialized by mmu_booke_pinit is being released.
1565 * Should only be called if the map contains no valid mappings.
1566 */
1567static void
1568mmu_booke_release(mmu_t mmu, pmap_t pmap)
1569{
1570
1571 KASSERT(pmap->pm_stats.resident_count == 0,
1572 ("pmap_release: pmap resident count %ld != 0",
1573 pmap->pm_stats.resident_count));
1574}
1575
1576/*
1577 * Insert the given physical page at the specified virtual address in the
1578 * target physical map with the protection requested. If specified the page
1579 * will be wired down.
1580 */
1581static void
1582mmu_booke_enter(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_page_t m,
1583 vm_prot_t prot, boolean_t wired)
1584{
1585
1586 rw_wlock(&pvh_global_lock);
1587 PMAP_LOCK(pmap);
1588 mmu_booke_enter_locked(mmu, pmap, va, m, prot, wired);
1589 rw_wunlock(&pvh_global_lock);
1590 PMAP_UNLOCK(pmap);
1591}
1592
1593static void
1594mmu_booke_enter_locked(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_page_t m,
1595 vm_prot_t prot, boolean_t wired)
1596{
1597 pte_t *pte;
1598 vm_paddr_t pa;
1599 uint32_t flags;
1600 int su, sync;
1601
1602 pa = VM_PAGE_TO_PHYS(m);
1603 su = (pmap == kernel_pmap);
1604 sync = 0;
1605
1606 //debugf("mmu_booke_enter_locked: s (pmap=0x%08x su=%d tid=%d m=0x%08x va=0x%08x "
1607 // "pa=0x%08x prot=0x%08x wired=%d)\n",
1608 // (u_int32_t)pmap, su, pmap->pm_tid,
1609 // (u_int32_t)m, va, pa, prot, wired);
1610
1611 if (su) {
1612 KASSERT(((va >= virtual_avail) &&
1613 (va <= VM_MAX_KERNEL_ADDRESS)),
1614 ("mmu_booke_enter_locked: kernel pmap, non kernel va"));
1615 } else {
1616 KASSERT((va <= VM_MAXUSER_ADDRESS),
1617 ("mmu_booke_enter_locked: user pmap, non user va"));
1618 }
1619 if ((m->oflags & VPO_UNMANAGED) == 0 && !vm_page_xbusied(m))
1620 VM_OBJECT_ASSERT_LOCKED(m->object);
1621
1622 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1623
1624 /*
1625 * If there is an existing mapping, and the physical address has not
1626 * changed, must be protection or wiring change.
1627 */
1628 if (((pte = pte_find(mmu, pmap, va)) != NULL) &&
1629 (PTE_ISVALID(pte)) && (PTE_PA(pte) == pa)) {
1630
1631 /*
1632 * Before actually updating pte->flags we calculate and
1633 * prepare its new value in a helper var.
1634 */
1635 flags = pte->flags;
1636 flags &= ~(PTE_UW | PTE_UX | PTE_SW | PTE_SX | PTE_MODIFIED);
1637
1638 /* Wiring change, just update stats. */
1639 if (wired) {
1640 if (!PTE_ISWIRED(pte)) {
1641 flags |= PTE_WIRED;
1642 pmap->pm_stats.wired_count++;
1643 }
1644 } else {
1645 if (PTE_ISWIRED(pte)) {
1646 flags &= ~PTE_WIRED;
1647 pmap->pm_stats.wired_count--;
1648 }
1649 }
1650
1651 if (prot & VM_PROT_WRITE) {
1652 /* Add write permissions. */
1653 flags |= PTE_SW;
1654 if (!su)
1655 flags |= PTE_UW;
1656
1657 if ((flags & PTE_MANAGED) != 0)
1658 vm_page_aflag_set(m, PGA_WRITEABLE);
1659 } else {
1660 /* Handle modified pages, sense modify status. */
1661
1662 /*
1663 * The PTE_MODIFIED flag could be set by underlying
1664 * TLB misses since we last read it (above), possibly
1665 * other CPUs could update it so we check in the PTE
1666 * directly rather than rely on that saved local flags
1667 * copy.
1668 */
1669 if (PTE_ISMODIFIED(pte))
1670 vm_page_dirty(m);
1671 }
1672
1673 if (prot & VM_PROT_EXECUTE) {
1674 flags |= PTE_SX;
1675 if (!su)
1676 flags |= PTE_UX;
1677
1678 /*
1679 * Check existing flags for execute permissions: if we
1680 * are turning execute permissions on, icache should
1681 * be flushed.
1682 */
1683 if ((pte->flags & (PTE_UX | PTE_SX)) == 0)
1684 sync++;
1685 }
1686
1687 flags &= ~PTE_REFERENCED;
1688
1689 /*
1690 * The new flags value is all calculated -- only now actually
1691 * update the PTE.
1692 */
1693 mtx_lock_spin(&tlbivax_mutex);
1694 tlb_miss_lock();
1695
1696 tlb0_flush_entry(va);
1697 pte->flags = flags;
1698
1699 tlb_miss_unlock();
1700 mtx_unlock_spin(&tlbivax_mutex);
1701
1702 } else {
1703 /*
1704 * If there is an existing mapping, but it's for a different
1705 * physical address, pte_enter() will delete the old mapping.
1706 */
1707 //if ((pte != NULL) && PTE_ISVALID(pte))
1708 // debugf("mmu_booke_enter_locked: replace\n");
1709 //else
1710 // debugf("mmu_booke_enter_locked: new\n");
1711
1712 /* Now set up the flags and install the new mapping. */
1713 flags = (PTE_SR | PTE_VALID);
1714 flags |= PTE_M;
1715
1716 if (!su)
1717 flags |= PTE_UR;
1718
1719 if (prot & VM_PROT_WRITE) {
1720 flags |= PTE_SW;
1721 if (!su)
1722 flags |= PTE_UW;
1723
1724 if ((m->oflags & VPO_UNMANAGED) == 0)
1725 vm_page_aflag_set(m, PGA_WRITEABLE);
1726 }
1727
1728 if (prot & VM_PROT_EXECUTE) {
1729 flags |= PTE_SX;
1730 if (!su)
1731 flags |= PTE_UX;
1732 }
1733
1734 /* If its wired update stats. */
1735 if (wired) {
1736 pmap->pm_stats.wired_count++;
1737 flags |= PTE_WIRED;
1738 }
1739
1740 pte_enter(mmu, pmap, m, va, flags);
1741
1742 /* Flush the real memory from the instruction cache. */
1743 if (prot & VM_PROT_EXECUTE)
1744 sync++;
1745 }
1746
1747 if (sync && (su || pmap == PCPU_GET(curpmap))) {
1748 __syncicache((void *)va, PAGE_SIZE);
1749 sync = 0;
1750 }
1751}
1752
1753/*
1754 * Maps a sequence of resident pages belonging to the same object.
1755 * The sequence begins with the given page m_start. This page is
1756 * mapped at the given virtual address start. Each subsequent page is
1757 * mapped at a virtual address that is offset from start by the same
1758 * amount as the page is offset from m_start within the object. The
1759 * last page in the sequence is the page with the largest offset from
1760 * m_start that can be mapped at a virtual address less than the given
1761 * virtual address end. Not every virtual page between start and end
1762 * is mapped; only those for which a resident page exists with the
1763 * corresponding offset from m_start are mapped.
1764 */
1765static void
1766mmu_booke_enter_object(mmu_t mmu, pmap_t pmap, vm_offset_t start,
1767 vm_offset_t end, vm_page_t m_start, vm_prot_t prot)
1768{
1769 vm_page_t m;
1770 vm_pindex_t diff, psize;
1771
1772 VM_OBJECT_ASSERT_LOCKED(m_start->object);
1773
1774 psize = atop(end - start);
1775 m = m_start;
1776 rw_wlock(&pvh_global_lock);
1777 PMAP_LOCK(pmap);
1778 while (m != NULL && (diff = m->pindex - m_start->pindex) < psize) {
1779 mmu_booke_enter_locked(mmu, pmap, start + ptoa(diff), m,
1780 prot & (VM_PROT_READ | VM_PROT_EXECUTE), FALSE);
1781 m = TAILQ_NEXT(m, listq);
1782 }
1783 rw_wunlock(&pvh_global_lock);
1784 PMAP_UNLOCK(pmap);
1785}
1786
1787static void
1788mmu_booke_enter_quick(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_page_t m,
1789 vm_prot_t prot)
1790{
1791
1792 rw_wlock(&pvh_global_lock);
1793 PMAP_LOCK(pmap);
1794 mmu_booke_enter_locked(mmu, pmap, va, m,
1795 prot & (VM_PROT_READ | VM_PROT_EXECUTE), FALSE);
1796 rw_wunlock(&pvh_global_lock);
1797 PMAP_UNLOCK(pmap);
1798}
1799
1800/*
1801 * Remove the given range of addresses from the specified map.
1802 *
1803 * It is assumed that the start and end are properly rounded to the page size.
1804 */
1805static void
1806mmu_booke_remove(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_offset_t endva)
1807{
1808 pte_t *pte;
1809 uint8_t hold_flag;
1810
1811 int su = (pmap == kernel_pmap);
1812
1813 //debugf("mmu_booke_remove: s (su = %d pmap=0x%08x tid=%d va=0x%08x endva=0x%08x)\n",
1814 // su, (u_int32_t)pmap, pmap->pm_tid, va, endva);
1815
1816 if (su) {
1817 KASSERT(((va >= virtual_avail) &&
1818 (va <= VM_MAX_KERNEL_ADDRESS)),
1819 ("mmu_booke_remove: kernel pmap, non kernel va"));
1820 } else {
1821 KASSERT((va <= VM_MAXUSER_ADDRESS),
1822 ("mmu_booke_remove: user pmap, non user va"));
1823 }
1824
1825 if (PMAP_REMOVE_DONE(pmap)) {
1826 //debugf("mmu_booke_remove: e (empty)\n");
1827 return;
1828 }
1829
1830 hold_flag = PTBL_HOLD_FLAG(pmap);
1831 //debugf("mmu_booke_remove: hold_flag = %d\n", hold_flag);
1832
1833 rw_wlock(&pvh_global_lock);
1834 PMAP_LOCK(pmap);
1835 for (; va < endva; va += PAGE_SIZE) {
1836 pte = pte_find(mmu, pmap, va);
1837 if ((pte != NULL) && PTE_ISVALID(pte))
1838 pte_remove(mmu, pmap, va, hold_flag);
1839 }
1840 PMAP_UNLOCK(pmap);
1841 rw_wunlock(&pvh_global_lock);
1842
1843 //debugf("mmu_booke_remove: e\n");
1844}
1845
1846/*
1847 * Remove physical page from all pmaps in which it resides.
1848 */
1849static void
1850mmu_booke_remove_all(mmu_t mmu, vm_page_t m)
1851{
1852 pv_entry_t pv, pvn;
1853 uint8_t hold_flag;
1854
1855 rw_wlock(&pvh_global_lock);
1856 for (pv = TAILQ_FIRST(&m->md.pv_list); pv != NULL; pv = pvn) {
1857 pvn = TAILQ_NEXT(pv, pv_link);
1858
1859 PMAP_LOCK(pv->pv_pmap);
1860 hold_flag = PTBL_HOLD_FLAG(pv->pv_pmap);
1861 pte_remove(mmu, pv->pv_pmap, pv->pv_va, hold_flag);
1862 PMAP_UNLOCK(pv->pv_pmap);
1863 }
1864 vm_page_aflag_clear(m, PGA_WRITEABLE);
1865 rw_wunlock(&pvh_global_lock);
1866}
1867
1868/*
1869 * Map a range of physical addresses into kernel virtual address space.
1870 */
1871static vm_offset_t
1872mmu_booke_map(mmu_t mmu, vm_offset_t *virt, vm_paddr_t pa_start,
1873 vm_paddr_t pa_end, int prot)
1874{
1875 vm_offset_t sva = *virt;
1876 vm_offset_t va = sva;
1877
1878 //debugf("mmu_booke_map: s (sva = 0x%08x pa_start = 0x%08x pa_end = 0x%08x)\n",
1879 // sva, pa_start, pa_end);
1880
1881 while (pa_start < pa_end) {
1882 mmu_booke_kenter(mmu, va, pa_start);
1883 va += PAGE_SIZE;
1884 pa_start += PAGE_SIZE;
1885 }
1886 *virt = va;
1887
1888 //debugf("mmu_booke_map: e (va = 0x%08x)\n", va);
1889 return (sva);
1890}
1891
1892/*
1893 * The pmap must be activated before it's address space can be accessed in any
1894 * way.
1895 */
1896static void
1897mmu_booke_activate(mmu_t mmu, struct thread *td)
1898{
1899 pmap_t pmap;
1900 u_int cpuid;
1901
1902 pmap = &td->td_proc->p_vmspace->vm_pmap;
1903
1904 CTR5(KTR_PMAP, "%s: s (td = %p, proc = '%s', id = %d, pmap = 0x%08x)",
1905 __func__, td, td->td_proc->p_comm, td->td_proc->p_pid, pmap);
1906
1907 KASSERT((pmap != kernel_pmap), ("mmu_booke_activate: kernel_pmap!"));
1908
1909 mtx_lock_spin(&sched_lock);
1910
1911 cpuid = PCPU_GET(cpuid);
1912 CPU_SET_ATOMIC(cpuid, &pmap->pm_active);
1913 PCPU_SET(curpmap, pmap);
1914
1915 if (pmap->pm_tid[cpuid] == TID_NONE)
1916 tid_alloc(pmap);
1917
1918 /* Load PID0 register with pmap tid value. */
1919 mtspr(SPR_PID0, pmap->pm_tid[cpuid]);
1920 __asm __volatile("isync");
1921
1922 mtx_unlock_spin(&sched_lock);
1923
1924 CTR3(KTR_PMAP, "%s: e (tid = %d for '%s')", __func__,
1925 pmap->pm_tid[PCPU_GET(cpuid)], td->td_proc->p_comm);
1926}
1927
1928/*
1929 * Deactivate the specified process's address space.
1930 */
1931static void
1932mmu_booke_deactivate(mmu_t mmu, struct thread *td)
1933{
1934 pmap_t pmap;
1935
1936 pmap = &td->td_proc->p_vmspace->vm_pmap;
1937
1938 CTR5(KTR_PMAP, "%s: td=%p, proc = '%s', id = %d, pmap = 0x%08x",
1939 __func__, td, td->td_proc->p_comm, td->td_proc->p_pid, pmap);
1940
1941 CPU_CLR_ATOMIC(PCPU_GET(cpuid), &pmap->pm_active);
1942 PCPU_SET(curpmap, NULL);
1943}
1944
1945/*
1946 * Copy the range specified by src_addr/len
1947 * from the source map to the range dst_addr/len
1948 * in the destination map.
1949 *
1950 * This routine is only advisory and need not do anything.
1951 */
1952static void
1953mmu_booke_copy(mmu_t mmu, pmap_t dst_pmap, pmap_t src_pmap,
1954 vm_offset_t dst_addr, vm_size_t len, vm_offset_t src_addr)
1955{
1956
1957}
1958
1959/*
1960 * Set the physical protection on the specified range of this map as requested.
1961 */
1962static void
1963mmu_booke_protect(mmu_t mmu, pmap_t pmap, vm_offset_t sva, vm_offset_t eva,
1964 vm_prot_t prot)
1965{
1966 vm_offset_t va;
1967 vm_page_t m;
1968 pte_t *pte;
1969
1970 if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
1971 mmu_booke_remove(mmu, pmap, sva, eva);
1972 return;
1973 }
1974
1975 if (prot & VM_PROT_WRITE)
1976 return;
1977
1978 PMAP_LOCK(pmap);
1979 for (va = sva; va < eva; va += PAGE_SIZE) {
1980 if ((pte = pte_find(mmu, pmap, va)) != NULL) {
1981 if (PTE_ISVALID(pte)) {
1982 m = PHYS_TO_VM_PAGE(PTE_PA(pte));
1983
1984 mtx_lock_spin(&tlbivax_mutex);
1985 tlb_miss_lock();
1986
1987 /* Handle modified pages. */
1988 if (PTE_ISMODIFIED(pte) && PTE_ISMANAGED(pte))
1989 vm_page_dirty(m);
1990
1991 tlb0_flush_entry(va);
1992 pte->flags &= ~(PTE_UW | PTE_SW | PTE_MODIFIED);
1993
1994 tlb_miss_unlock();
1995 mtx_unlock_spin(&tlbivax_mutex);
1996 }
1997 }
1998 }
1999 PMAP_UNLOCK(pmap);
2000}
2001
2002/*
2003 * Clear the write and modified bits in each of the given page's mappings.
2004 */
2005static void
2006mmu_booke_remove_write(mmu_t mmu, vm_page_t m)
2007{
2008 pv_entry_t pv;
2009 pte_t *pte;
2010
2011 KASSERT((m->oflags & VPO_UNMANAGED) == 0,
2012 ("mmu_booke_remove_write: page %p is not managed", m));
2013
2014 /*
2015 * If the page is not exclusive busied, then PGA_WRITEABLE cannot be
2016 * set by another thread while the object is locked. Thus,
2017 * if PGA_WRITEABLE is clear, no page table entries need updating.
2018 */
2019 VM_OBJECT_ASSERT_WLOCKED(m->object);
2020 if (!vm_page_xbusied(m) && (m->aflags & PGA_WRITEABLE) == 0)
2021 return;
2022 rw_wlock(&pvh_global_lock);
2023 TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
2024 PMAP_LOCK(pv->pv_pmap);
2025 if ((pte = pte_find(mmu, pv->pv_pmap, pv->pv_va)) != NULL) {
2026 if (PTE_ISVALID(pte)) {
2027 m = PHYS_TO_VM_PAGE(PTE_PA(pte));
2028
2029 mtx_lock_spin(&tlbivax_mutex);
2030 tlb_miss_lock();
2031
2032 /* Handle modified pages. */
2033 if (PTE_ISMODIFIED(pte))
2034 vm_page_dirty(m);
2035
2036 /* Flush mapping from TLB0. */
2037 pte->flags &= ~(PTE_UW | PTE_SW | PTE_MODIFIED);
2038
2039 tlb_miss_unlock();
2040 mtx_unlock_spin(&tlbivax_mutex);
2041 }
2042 }
2043 PMAP_UNLOCK(pv->pv_pmap);
2044 }
2045 vm_page_aflag_clear(m, PGA_WRITEABLE);
2046 rw_wunlock(&pvh_global_lock);
2047}
2048
2049static void
2050mmu_booke_sync_icache(mmu_t mmu, pmap_t pm, vm_offset_t va, vm_size_t sz)
2051{
2052 pte_t *pte;
2053 pmap_t pmap;
2054 vm_page_t m;
2055 vm_offset_t addr;
2056 vm_paddr_t pa;
2057 int active, valid;
2058
2059 va = trunc_page(va);
2060 sz = round_page(sz);
2061
2062 rw_wlock(&pvh_global_lock);
2063 pmap = PCPU_GET(curpmap);
2064 active = (pm == kernel_pmap || pm == pmap) ? 1 : 0;
2065 while (sz > 0) {
2066 PMAP_LOCK(pm);
2067 pte = pte_find(mmu, pm, va);
2068 valid = (pte != NULL && PTE_ISVALID(pte)) ? 1 : 0;
2069 if (valid)
2070 pa = PTE_PA(pte);
2071 PMAP_UNLOCK(pm);
2072 if (valid) {
2073 if (!active) {
2074 /* Create a mapping in the active pmap. */
2075 addr = 0;
2076 m = PHYS_TO_VM_PAGE(pa);
2077 PMAP_LOCK(pmap);
2078 pte_enter(mmu, pmap, m, addr,
2079 PTE_SR | PTE_VALID | PTE_UR);
2080 __syncicache((void *)addr, PAGE_SIZE);
2081 pte_remove(mmu, pmap, addr, PTBL_UNHOLD);
2082 PMAP_UNLOCK(pmap);
2083 } else
2084 __syncicache((void *)va, PAGE_SIZE);
2085 }
2086 va += PAGE_SIZE;
2087 sz -= PAGE_SIZE;
2088 }
2089 rw_wunlock(&pvh_global_lock);
2090}
2091
2092/*
2093 * Atomically extract and hold the physical page with the given
2094 * pmap and virtual address pair if that mapping permits the given
2095 * protection.
2096 */
2097static vm_page_t
2098mmu_booke_extract_and_hold(mmu_t mmu, pmap_t pmap, vm_offset_t va,
2099 vm_prot_t prot)
2100{
2101 pte_t *pte;
2102 vm_page_t m;
2103 uint32_t pte_wbit;
2104 vm_paddr_t pa;
2105
2106 m = NULL;
2107 pa = 0;
2108 PMAP_LOCK(pmap);
2109retry:
2110 pte = pte_find(mmu, pmap, va);
2111 if ((pte != NULL) && PTE_ISVALID(pte)) {
2112 if (pmap == kernel_pmap)
2113 pte_wbit = PTE_SW;
2114 else
2115 pte_wbit = PTE_UW;
2116
2117 if ((pte->flags & pte_wbit) || ((prot & VM_PROT_WRITE) == 0)) {
2118 if (vm_page_pa_tryrelock(pmap, PTE_PA(pte), &pa))
2119 goto retry;
2120 m = PHYS_TO_VM_PAGE(PTE_PA(pte));
2121 vm_page_hold(m);
2122 }
2123 }
2124
2125 PA_UNLOCK_COND(pa);
2126 PMAP_UNLOCK(pmap);
2127 return (m);
2128}
2129
2130/*
2131 * Initialize a vm_page's machine-dependent fields.
2132 */
2133static void
2134mmu_booke_page_init(mmu_t mmu, vm_page_t m)
2135{
2136
2137 TAILQ_INIT(&m->md.pv_list);
2138}
2139
2140/*
2141 * mmu_booke_zero_page_area zeros the specified hardware page by
2142 * mapping it into virtual memory and using bzero to clear
2143 * its contents.
2144 *
2145 * off and size must reside within a single page.
2146 */
2147static void
2148mmu_booke_zero_page_area(mmu_t mmu, vm_page_t m, int off, int size)
2149{
2150 vm_offset_t va;
2151
2152 /* XXX KASSERT off and size are within a single page? */
2153
2154 mtx_lock(&zero_page_mutex);
2155 va = zero_page_va;
2156
2157 mmu_booke_kenter(mmu, va, VM_PAGE_TO_PHYS(m));
2158 bzero((caddr_t)va + off, size);
2159 mmu_booke_kremove(mmu, va);
2160
2161 mtx_unlock(&zero_page_mutex);
2162}
2163
2164/*
2165 * mmu_booke_zero_page zeros the specified hardware page.
2166 */
2167static void
2168mmu_booke_zero_page(mmu_t mmu, vm_page_t m)
2169{
2170
2171 mmu_booke_zero_page_area(mmu, m, 0, PAGE_SIZE);
2172}
2173
2174/*
2175 * mmu_booke_copy_page copies the specified (machine independent) page by
2176 * mapping the page into virtual memory and using memcopy to copy the page,
2177 * one machine dependent page at a time.
2178 */
2179static void
2180mmu_booke_copy_page(mmu_t mmu, vm_page_t sm, vm_page_t dm)
2181{
2182 vm_offset_t sva, dva;
2183
2184 sva = copy_page_src_va;
2185 dva = copy_page_dst_va;
2186
2187 mtx_lock(&copy_page_mutex);
2188 mmu_booke_kenter(mmu, sva, VM_PAGE_TO_PHYS(sm));
2189 mmu_booke_kenter(mmu, dva, VM_PAGE_TO_PHYS(dm));
2190 memcpy((caddr_t)dva, (caddr_t)sva, PAGE_SIZE);
2191 mmu_booke_kremove(mmu, dva);
2192 mmu_booke_kremove(mmu, sva);
2193 mtx_unlock(&copy_page_mutex);
2194}
2195
2196static inline void
2197mmu_booke_copy_pages(mmu_t mmu, vm_page_t *ma, vm_offset_t a_offset,
2198 vm_page_t *mb, vm_offset_t b_offset, int xfersize)
2199{
2200 void *a_cp, *b_cp;
2201 vm_offset_t a_pg_offset, b_pg_offset;
2202 int cnt;
2203
2204 mtx_lock(&copy_page_mutex);
2205 while (xfersize > 0) {
2206 a_pg_offset = a_offset & PAGE_MASK;
2207 cnt = min(xfersize, PAGE_SIZE - a_pg_offset);
2208 mmu_booke_kenter(mmu, copy_page_src_va,
2209 VM_PAGE_TO_PHYS(ma[a_offset >> PAGE_SHIFT]));
2210 a_cp = (char *)copy_page_src_va + a_pg_offset;
2211 b_pg_offset = b_offset & PAGE_MASK;
2212 cnt = min(cnt, PAGE_SIZE - b_pg_offset);
2213 mmu_booke_kenter(mmu, copy_page_dst_va,
2214 VM_PAGE_TO_PHYS(mb[b_offset >> PAGE_SHIFT]));
2215 b_cp = (char *)copy_page_dst_va + b_pg_offset;
2216 bcopy(a_cp, b_cp, cnt);
2217 mmu_booke_kremove(mmu, copy_page_dst_va);
2218 mmu_booke_kremove(mmu, copy_page_src_va);
2219 a_offset += cnt;
2220 b_offset += cnt;
2221 xfersize -= cnt;
2222 }
2223 mtx_unlock(&copy_page_mutex);
2224}
2225
2226/*
2227 * mmu_booke_zero_page_idle zeros the specified hardware page by mapping it
2228 * into virtual memory and using bzero to clear its contents. This is intended
2229 * to be called from the vm_pagezero process only and outside of Giant. No
2230 * lock is required.
2231 */
2232static void
2233mmu_booke_zero_page_idle(mmu_t mmu, vm_page_t m)
2234{
2235 vm_offset_t va;
2236
2237 va = zero_page_idle_va;
2238 mmu_booke_kenter(mmu, va, VM_PAGE_TO_PHYS(m));
2239 bzero((caddr_t)va, PAGE_SIZE);
2240 mmu_booke_kremove(mmu, va);
2241}
2242
2243/*
2244 * Return whether or not the specified physical page was modified
2245 * in any of physical maps.
2246 */
2247static boolean_t
2248mmu_booke_is_modified(mmu_t mmu, vm_page_t m)
2249{
2250 pte_t *pte;
2251 pv_entry_t pv;
2252 boolean_t rv;
2253
2254 KASSERT((m->oflags & VPO_UNMANAGED) == 0,
2255 ("mmu_booke_is_modified: page %p is not managed", m));
2256 rv = FALSE;
2257
2258 /*
2259 * If the page is not exclusive busied, then PGA_WRITEABLE cannot be
2260 * concurrently set while the object is locked. Thus, if PGA_WRITEABLE
2261 * is clear, no PTEs can be modified.
2262 */
2263 VM_OBJECT_ASSERT_WLOCKED(m->object);
2264 if (!vm_page_xbusied(m) && (m->aflags & PGA_WRITEABLE) == 0)
2265 return (rv);
2266 rw_wlock(&pvh_global_lock);
2267 TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
2268 PMAP_LOCK(pv->pv_pmap);
2269 if ((pte = pte_find(mmu, pv->pv_pmap, pv->pv_va)) != NULL &&
2270 PTE_ISVALID(pte)) {
2271 if (PTE_ISMODIFIED(pte))
2272 rv = TRUE;
2273 }
2274 PMAP_UNLOCK(pv->pv_pmap);
2275 if (rv)
2276 break;
2277 }
2278 rw_wunlock(&pvh_global_lock);
2279 return (rv);
2280}
2281
2282/*
2283 * Return whether or not the specified virtual address is eligible
2284 * for prefault.
2285 */
2286static boolean_t
2287mmu_booke_is_prefaultable(mmu_t mmu, pmap_t pmap, vm_offset_t addr)
2288{
2289
2290 return (FALSE);
2291}
2292
2293/*
2294 * Return whether or not the specified physical page was referenced
2295 * in any physical maps.
2296 */
2297static boolean_t
2298mmu_booke_is_referenced(mmu_t mmu, vm_page_t m)
2299{
2300 pte_t *pte;
2301 pv_entry_t pv;
2302 boolean_t rv;
2303
2304 KASSERT((m->oflags & VPO_UNMANAGED) == 0,
2305 ("mmu_booke_is_referenced: page %p is not managed", m));
2306 rv = FALSE;
2307 rw_wlock(&pvh_global_lock);
2308 TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
2309 PMAP_LOCK(pv->pv_pmap);
2310 if ((pte = pte_find(mmu, pv->pv_pmap, pv->pv_va)) != NULL &&
2311 PTE_ISVALID(pte)) {
2312 if (PTE_ISREFERENCED(pte))
2313 rv = TRUE;
2314 }
2315 PMAP_UNLOCK(pv->pv_pmap);
2316 if (rv)
2317 break;
2318 }
2319 rw_wunlock(&pvh_global_lock);
2320 return (rv);
2321}
2322
2323/*
2324 * Clear the modify bits on the specified physical page.
2325 */
2326static void
2327mmu_booke_clear_modify(mmu_t mmu, vm_page_t m)
2328{
2329 pte_t *pte;
2330 pv_entry_t pv;
2331
2332 KASSERT((m->oflags & VPO_UNMANAGED) == 0,
2333 ("mmu_booke_clear_modify: page %p is not managed", m));
2334 VM_OBJECT_ASSERT_WLOCKED(m->object);
2335 KASSERT(!vm_page_xbusied(m),
2336 ("mmu_booke_clear_modify: page %p is exclusive busied", m));
2337
2338 /*
2339 * If the page is not PG_AWRITEABLE, then no PTEs can be modified.
2340 * If the object containing the page is locked and the page is not
2341 * exclusive busied, then PG_AWRITEABLE cannot be concurrently set.
2342 */
2343 if ((m->aflags & PGA_WRITEABLE) == 0)
2344 return;
2345 rw_wlock(&pvh_global_lock);
2346 TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
2347 PMAP_LOCK(pv->pv_pmap);
2348 if ((pte = pte_find(mmu, pv->pv_pmap, pv->pv_va)) != NULL &&
2349 PTE_ISVALID(pte)) {
2350 mtx_lock_spin(&tlbivax_mutex);
2351 tlb_miss_lock();
2352
2353 if (pte->flags & (PTE_SW | PTE_UW | PTE_MODIFIED)) {
2354 tlb0_flush_entry(pv->pv_va);
2355 pte->flags &= ~(PTE_SW | PTE_UW | PTE_MODIFIED |
2356 PTE_REFERENCED);
2357 }
2358
2359 tlb_miss_unlock();
2360 mtx_unlock_spin(&tlbivax_mutex);
2361 }
2362 PMAP_UNLOCK(pv->pv_pmap);
2363 }
2364 rw_wunlock(&pvh_global_lock);
2365}
2366
2367/*
2368 * Return a count of reference bits for a page, clearing those bits.
2369 * It is not necessary for every reference bit to be cleared, but it
2370 * is necessary that 0 only be returned when there are truly no
2371 * reference bits set.
2372 *
2373 * XXX: The exact number of bits to check and clear is a matter that
2374 * should be tested and standardized at some point in the future for
2375 * optimal aging of shared pages.
2376 */
2377static int
2378mmu_booke_ts_referenced(mmu_t mmu, vm_page_t m)
2379{
2380 pte_t *pte;
2381 pv_entry_t pv;
2382 int count;
2383
2384 KASSERT((m->oflags & VPO_UNMANAGED) == 0,
2385 ("mmu_booke_ts_referenced: page %p is not managed", m));
2386 count = 0;
2387 rw_wlock(&pvh_global_lock);
2388 TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
2389 PMAP_LOCK(pv->pv_pmap);
2390 if ((pte = pte_find(mmu, pv->pv_pmap, pv->pv_va)) != NULL &&
2391 PTE_ISVALID(pte)) {
2392 if (PTE_ISREFERENCED(pte)) {
2393 mtx_lock_spin(&tlbivax_mutex);
2394 tlb_miss_lock();
2395
2396 tlb0_flush_entry(pv->pv_va);
2397 pte->flags &= ~PTE_REFERENCED;
2398
2399 tlb_miss_unlock();
2400 mtx_unlock_spin(&tlbivax_mutex);
2401
2402 if (++count > 4) {
2403 PMAP_UNLOCK(pv->pv_pmap);
2404 break;
2405 }
2406 }
2407 }
2408 PMAP_UNLOCK(pv->pv_pmap);
2409 }
2410 rw_wunlock(&pvh_global_lock);
2411 return (count);
2412}
2413
2414/*
2415 * Change wiring attribute for a map/virtual-address pair.
2416 */
2417static void
2418mmu_booke_change_wiring(mmu_t mmu, pmap_t pmap, vm_offset_t va, boolean_t wired)
2419{
2420 pte_t *pte;
2421
2422 PMAP_LOCK(pmap);
2423 if ((pte = pte_find(mmu, pmap, va)) != NULL) {
2424 if (wired) {
2425 if (!PTE_ISWIRED(pte)) {
2426 pte->flags |= PTE_WIRED;
2427 pmap->pm_stats.wired_count++;
2428 }
2429 } else {
2430 if (PTE_ISWIRED(pte)) {
2431 pte->flags &= ~PTE_WIRED;
2432 pmap->pm_stats.wired_count--;
2433 }
2434 }
2435 }
2436 PMAP_UNLOCK(pmap);
2437}
2438
2439/*
2440 * Return true if the pmap's pv is one of the first 16 pvs linked to from this
2441 * page. This count may be changed upwards or downwards in the future; it is
2442 * only necessary that true be returned for a small subset of pmaps for proper
2443 * page aging.
2444 */
2445static boolean_t
2446mmu_booke_page_exists_quick(mmu_t mmu, pmap_t pmap, vm_page_t m)
2447{
2448 pv_entry_t pv;
2449 int loops;
2450 boolean_t rv;
2451
2452 KASSERT((m->oflags & VPO_UNMANAGED) == 0,
2453 ("mmu_booke_page_exists_quick: page %p is not managed", m));
2454 loops = 0;
2455 rv = FALSE;
2456 rw_wlock(&pvh_global_lock);
2457 TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
2458 if (pv->pv_pmap == pmap) {
2459 rv = TRUE;
2460 break;
2461 }
2462 if (++loops >= 16)
2463 break;
2464 }
2465 rw_wunlock(&pvh_global_lock);
2466 return (rv);
2467}
2468
2469/*
2470 * Return the number of managed mappings to the given physical page that are
2471 * wired.
2472 */
2473static int
2474mmu_booke_page_wired_mappings(mmu_t mmu, vm_page_t m)
2475{
2476 pv_entry_t pv;
2477 pte_t *pte;
2478 int count = 0;
2479
2480 if ((m->oflags & VPO_UNMANAGED) != 0)
2481 return (count);
2482 rw_wlock(&pvh_global_lock);
2483 TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
2484 PMAP_LOCK(pv->pv_pmap);
2485 if ((pte = pte_find(mmu, pv->pv_pmap, pv->pv_va)) != NULL)
2486 if (PTE_ISVALID(pte) && PTE_ISWIRED(pte))
2487 count++;
2488 PMAP_UNLOCK(pv->pv_pmap);
2489 }
2490 rw_wunlock(&pvh_global_lock);
2491 return (count);
2492}
2493
2494static int
2495mmu_booke_dev_direct_mapped(mmu_t mmu, vm_paddr_t pa, vm_size_t size)
2496{
2497 int i;
2498 vm_offset_t va;
2499
2500 /*
2501 * This currently does not work for entries that
2502 * overlap TLB1 entries.
2503 */
2504 for (i = 0; i < tlb1_idx; i ++) {
2505 if (tlb1_iomapped(i, pa, size, &va) == 0)
2506 return (0);
2507 }
2508
2509 return (EFAULT);
2510}
2511
2512vm_offset_t
2513mmu_booke_dumpsys_map(mmu_t mmu, struct pmap_md *md, vm_size_t ofs,
2514 vm_size_t *sz)
2515{
2516 vm_paddr_t pa, ppa;
2517 vm_offset_t va;
2518 vm_size_t gran;
2519
2520 /* Raw physical memory dumps don't have a virtual address. */
2521 if (md->md_vaddr == ~0UL) {
2522 /* We always map a 256MB page at 256M. */
2523 gran = 256 * 1024 * 1024;
2524 pa = md->md_paddr + ofs;
2525 ppa = pa & ~(gran - 1);
2526 ofs = pa - ppa;
2527 va = gran;
2528 tlb1_set_entry(va, ppa, gran, _TLB_ENTRY_IO);
2529 if (*sz > (gran - ofs))
2530 *sz = gran - ofs;
2531 return (va + ofs);
2532 }
2533
2534 /* Minidumps are based on virtual memory addresses. */
2535 va = md->md_vaddr + ofs;
2536 if (va >= kernstart + kernsize) {
2537 gran = PAGE_SIZE - (va & PAGE_MASK);
2538 if (*sz > gran)
2539 *sz = gran;
2540 }
2541 return (va);
2542}
2543
2544void
2545mmu_booke_dumpsys_unmap(mmu_t mmu, struct pmap_md *md, vm_size_t ofs,
2546 vm_offset_t va)
2547{
2548
2549 /* Raw physical memory dumps don't have a virtual address. */
2550 if (md->md_vaddr == ~0UL) {
2551 tlb1_idx--;
2552 tlb1[tlb1_idx].mas1 = 0;
2553 tlb1[tlb1_idx].mas2 = 0;
2554 tlb1[tlb1_idx].mas3 = 0;
2555 tlb1_write_entry(tlb1_idx);
2556 return;
2557 }
2558
2559 /* Minidumps are based on virtual memory addresses. */
2560 /* Nothing to do... */
2561}
2562
2563struct pmap_md *
2564mmu_booke_scan_md(mmu_t mmu, struct pmap_md *prev)
2565{
2566 static struct pmap_md md;
2567 pte_t *pte;
2568 vm_offset_t va;
2569
2570 if (dumpsys_minidump) {
2571 md.md_paddr = ~0UL; /* Minidumps use virtual addresses. */
2572 if (prev == NULL) {
2573 /* 1st: kernel .data and .bss. */
2574 md.md_index = 1;
2575 md.md_vaddr = trunc_page((uintptr_t)_etext);
2576 md.md_size = round_page((uintptr_t)_end) - md.md_vaddr;
2577 return (&md);
2578 }
2579 switch (prev->md_index) {
2580 case 1:
2581 /* 2nd: msgbuf and tables (see pmap_bootstrap()). */
2582 md.md_index = 2;
2583 md.md_vaddr = data_start;
2584 md.md_size = data_end - data_start;
2585 break;
2586 case 2:
2587 /* 3rd: kernel VM. */
2588 va = prev->md_vaddr + prev->md_size;
2589 /* Find start of next chunk (from va). */
2590 while (va < virtual_end) {
2591 /* Don't dump the buffer cache. */
2592 if (va >= kmi.buffer_sva &&
2593 va < kmi.buffer_eva) {
2594 va = kmi.buffer_eva;
2595 continue;
2596 }
2597 pte = pte_find(mmu, kernel_pmap, va);
2598 if (pte != NULL && PTE_ISVALID(pte))
2599 break;
2600 va += PAGE_SIZE;
2601 }
2602 if (va < virtual_end) {
2603 md.md_vaddr = va;
2604 va += PAGE_SIZE;
2605 /* Find last page in chunk. */
2606 while (va < virtual_end) {
2607 /* Don't run into the buffer cache. */
2608 if (va == kmi.buffer_sva)
2609 break;
2610 pte = pte_find(mmu, kernel_pmap, va);
2611 if (pte == NULL || !PTE_ISVALID(pte))
2612 break;
2613 va += PAGE_SIZE;
2614 }
2615 md.md_size = va - md.md_vaddr;
2616 break;
2617 }
2618 md.md_index = 3;
2619 /* FALLTHROUGH */
2620 default:
2621 return (NULL);
2622 }
2623 } else { /* minidumps */
2624 mem_regions(&physmem_regions, &physmem_regions_sz,
2625 &availmem_regions, &availmem_regions_sz);
2626
2627 if (prev == NULL) {
2628 /* first physical chunk. */
2629 md.md_paddr = physmem_regions[0].mr_start;
2630 md.md_size = physmem_regions[0].mr_size;
2631 md.md_vaddr = ~0UL;
2632 md.md_index = 1;
2633 } else if (md.md_index < physmem_regions_sz) {
2634 md.md_paddr = physmem_regions[md.md_index].mr_start;
2635 md.md_size = physmem_regions[md.md_index].mr_size;
2636 md.md_vaddr = ~0UL;
2637 md.md_index++;
2638 } else {
2639 /* There's no next physical chunk. */
2640 return (NULL);
2641 }
2642 }
2643
2644 return (&md);
2645}
2646
2647/*
2648 * Map a set of physical memory pages into the kernel virtual address space.
2649 * Return a pointer to where it is mapped. This routine is intended to be used
2650 * for mapping device memory, NOT real memory.
2651 */
2652static void *
2653mmu_booke_mapdev(mmu_t mmu, vm_paddr_t pa, vm_size_t size)
2654{
2655
2656 return (mmu_booke_mapdev_attr(mmu, pa, size, VM_MEMATTR_DEFAULT));
2657}
2658
2659static void *
2660mmu_booke_mapdev_attr(mmu_t mmu, vm_paddr_t pa, vm_size_t size, vm_memattr_t ma)
2661{
2662 void *res;
2663 uintptr_t va;
2664 vm_size_t sz;
2665 int i;
2666
2667 /*
2668 * Check if this is premapped in TLB1. Note: this should probably also
2669 * check whether a sequence of TLB1 entries exist that match the
2670 * requirement, but now only checks the easy case.
2671 */
2672 if (ma == VM_MEMATTR_DEFAULT) {
2673 for (i = 0; i < tlb1_idx; i++) {
2674 if (!(tlb1[i].mas1 & MAS1_VALID))
2675 continue;
2676 if (pa >= tlb1[i].phys &&
2677 (pa + size) <= (tlb1[i].phys + tlb1[i].size))
2678 return (void *)(tlb1[i].virt +
2679 (pa - tlb1[i].phys));
2680 }
2681 }
2682
2683 size = roundup(size, PAGE_SIZE);
2684
2685 /*
2686 * We leave a hole for device direct mapping between the maximum user
2687 * address (0x8000000) and the minimum KVA address (0xc0000000). If
2688 * devices are in there, just map them 1:1. If not, map them to the
2689 * device mapping area about VM_MAX_KERNEL_ADDRESS. These mapped
2690 * addresses should be pulled from an allocator, but since we do not
2691 * ever free TLB1 entries, it is safe just to increment a counter.
2692 * Note that there isn't a lot of address space here (128 MB) and it
2693 * is not at all difficult to imagine running out, since that is a 4:1
2694 * compression from the 0xc0000000 - 0xf0000000 address space that gets
2695 * mapped there.
2696 */
2684 if (pa >= (VM_MAXUSER_ADDRESS + PAGE_SIZE) &&
2685 (pa + size - 1) < VM_MIN_KERNEL_ADDRESS)
2686 va = pa;
2687 else
2697 if (pa >= (VM_MAXUSER_ADDRESS + PAGE_SIZE) &&
2698 (pa + size - 1) < VM_MIN_KERNEL_ADDRESS)
2699 va = pa;
2700 else
2688 va = kva_alloc(size);
2701 va = atomic_fetchadd_int(&tlb1_map_base, size);
2689 res = (void *)va;
2690
2691 do {
2692 sz = 1 << (ilog2(size) & ~1);
2693 if (bootverbose)
2694 printf("Wiring VA=%x to PA=%x (size=%x), "
2695 "using TLB1[%d]\n", va, pa, sz, tlb1_idx);
2696 tlb1_set_entry(va, pa, sz, tlb_calc_wimg(pa, ma));
2697 size -= sz;
2698 pa += sz;
2699 va += sz;
2700 } while (size > 0);
2701
2702 return (res);
2703}
2704
2705/*
2706 * 'Unmap' a range mapped by mmu_booke_mapdev().
2707 */
2708static void
2709mmu_booke_unmapdev(mmu_t mmu, vm_offset_t va, vm_size_t size)
2710{
2711#ifdef SUPPORTS_SHRINKING_TLB1
2712 vm_offset_t base, offset;
2713
2714 /*
2715 * Unmap only if this is inside kernel virtual space.
2716 */
2717 if ((va >= VM_MIN_KERNEL_ADDRESS) && (va <= VM_MAX_KERNEL_ADDRESS)) {
2718 base = trunc_page(va);
2719 offset = va & PAGE_MASK;
2720 size = roundup(offset + size, PAGE_SIZE);
2721 kva_free(base, size);
2722 }
2723#endif
2724}
2725
2726/*
2727 * mmu_booke_object_init_pt preloads the ptes for a given object into the
2728 * specified pmap. This eliminates the blast of soft faults on process startup
2729 * and immediately after an mmap.
2730 */
2731static void
2732mmu_booke_object_init_pt(mmu_t mmu, pmap_t pmap, vm_offset_t addr,
2733 vm_object_t object, vm_pindex_t pindex, vm_size_t size)
2734{
2735
2736 VM_OBJECT_ASSERT_WLOCKED(object);
2737 KASSERT(object->type == OBJT_DEVICE || object->type == OBJT_SG,
2738 ("mmu_booke_object_init_pt: non-device object"));
2739}
2740
2741/*
2742 * Perform the pmap work for mincore.
2743 */
2744static int
2745mmu_booke_mincore(mmu_t mmu, pmap_t pmap, vm_offset_t addr,
2746 vm_paddr_t *locked_pa)
2747{
2748
2749 TODO;
2750 return (0);
2751}
2752
2753/**************************************************************************/
2754/* TID handling */
2755/**************************************************************************/
2756
2757/*
2758 * Allocate a TID. If necessary, steal one from someone else.
2759 * The new TID is flushed from the TLB before returning.
2760 */
2761static tlbtid_t
2762tid_alloc(pmap_t pmap)
2763{
2764 tlbtid_t tid;
2765 int thiscpu;
2766
2767 KASSERT((pmap != kernel_pmap), ("tid_alloc: kernel pmap"));
2768
2769 CTR2(KTR_PMAP, "%s: s (pmap = %p)", __func__, pmap);
2770
2771 thiscpu = PCPU_GET(cpuid);
2772
2773 tid = PCPU_GET(tid_next);
2774 if (tid > TID_MAX)
2775 tid = TID_MIN;
2776 PCPU_SET(tid_next, tid + 1);
2777
2778 /* If we are stealing TID then clear the relevant pmap's field */
2779 if (tidbusy[thiscpu][tid] != NULL) {
2780
2781 CTR2(KTR_PMAP, "%s: warning: stealing tid %d", __func__, tid);
2782
2783 tidbusy[thiscpu][tid]->pm_tid[thiscpu] = TID_NONE;
2784
2785 /* Flush all entries from TLB0 matching this TID. */
2786 tid_flush(tid);
2787 }
2788
2789 tidbusy[thiscpu][tid] = pmap;
2790 pmap->pm_tid[thiscpu] = tid;
2791 __asm __volatile("msync; isync");
2792
2793 CTR3(KTR_PMAP, "%s: e (%02d next = %02d)", __func__, tid,
2794 PCPU_GET(tid_next));
2795
2796 return (tid);
2797}
2798
2799/**************************************************************************/
2800/* TLB0 handling */
2801/**************************************************************************/
2802
2803static void
2804tlb_print_entry(int i, uint32_t mas1, uint32_t mas2, uint32_t mas3,
2805 uint32_t mas7)
2806{
2807 int as;
2808 char desc[3];
2809 tlbtid_t tid;
2810 vm_size_t size;
2811 unsigned int tsize;
2812
2813 desc[2] = '\0';
2814 if (mas1 & MAS1_VALID)
2815 desc[0] = 'V';
2816 else
2817 desc[0] = ' ';
2818
2819 if (mas1 & MAS1_IPROT)
2820 desc[1] = 'P';
2821 else
2822 desc[1] = ' ';
2823
2824 as = (mas1 & MAS1_TS_MASK) ? 1 : 0;
2825 tid = MAS1_GETTID(mas1);
2826
2827 tsize = (mas1 & MAS1_TSIZE_MASK) >> MAS1_TSIZE_SHIFT;
2828 size = 0;
2829 if (tsize)
2830 size = tsize2size(tsize);
2831
2832 debugf("%3d: (%s) [AS=%d] "
2833 "sz = 0x%08x tsz = %d tid = %d mas1 = 0x%08x "
2834 "mas2(va) = 0x%08x mas3(pa) = 0x%08x mas7 = 0x%08x\n",
2835 i, desc, as, size, tsize, tid, mas1, mas2, mas3, mas7);
2836}
2837
2838/* Convert TLB0 va and way number to tlb0[] table index. */
2839static inline unsigned int
2840tlb0_tableidx(vm_offset_t va, unsigned int way)
2841{
2842 unsigned int idx;
2843
2844 idx = (way * TLB0_ENTRIES_PER_WAY);
2845 idx += (va & MAS2_TLB0_ENTRY_IDX_MASK) >> MAS2_TLB0_ENTRY_IDX_SHIFT;
2846 return (idx);
2847}
2848
2849/*
2850 * Invalidate TLB0 entry.
2851 */
2852static inline void
2853tlb0_flush_entry(vm_offset_t va)
2854{
2855
2856 CTR2(KTR_PMAP, "%s: s va=0x%08x", __func__, va);
2857
2858 mtx_assert(&tlbivax_mutex, MA_OWNED);
2859
2860 __asm __volatile("tlbivax 0, %0" :: "r"(va & MAS2_EPN_MASK));
2861 __asm __volatile("isync; msync");
2862 __asm __volatile("tlbsync; msync");
2863
2864 CTR1(KTR_PMAP, "%s: e", __func__);
2865}
2866
2867/* Print out contents of the MAS registers for each TLB0 entry */
2868void
2869tlb0_print_tlbentries(void)
2870{
2871 uint32_t mas0, mas1, mas2, mas3, mas7;
2872 int entryidx, way, idx;
2873
2874 debugf("TLB0 entries:\n");
2875 for (way = 0; way < TLB0_WAYS; way ++)
2876 for (entryidx = 0; entryidx < TLB0_ENTRIES_PER_WAY; entryidx++) {
2877
2878 mas0 = MAS0_TLBSEL(0) | MAS0_ESEL(way);
2879 mtspr(SPR_MAS0, mas0);
2880 __asm __volatile("isync");
2881
2882 mas2 = entryidx << MAS2_TLB0_ENTRY_IDX_SHIFT;
2883 mtspr(SPR_MAS2, mas2);
2884
2885 __asm __volatile("isync; tlbre");
2886
2887 mas1 = mfspr(SPR_MAS1);
2888 mas2 = mfspr(SPR_MAS2);
2889 mas3 = mfspr(SPR_MAS3);
2890 mas7 = mfspr(SPR_MAS7);
2891
2892 idx = tlb0_tableidx(mas2, way);
2893 tlb_print_entry(idx, mas1, mas2, mas3, mas7);
2894 }
2895}
2896
2897/**************************************************************************/
2898/* TLB1 handling */
2899/**************************************************************************/
2900
2901/*
2902 * TLB1 mapping notes:
2903 *
2904 * TLB1[0] Kernel text and data.
2905 * TLB1[1-15] Additional kernel text and data mappings (if required), PCI
2906 * windows, other devices mappings.
2907 */
2908
2909/*
2910 * Write given entry to TLB1 hardware.
2911 * Use 32 bit pa, clear 4 high-order bits of RPN (mas7).
2912 */
2913static void
2914tlb1_write_entry(unsigned int idx)
2915{
2916 uint32_t mas0, mas7;
2917
2918 //debugf("tlb1_write_entry: s\n");
2919
2920 /* Clear high order RPN bits */
2921 mas7 = 0;
2922
2923 /* Select entry */
2924 mas0 = MAS0_TLBSEL(1) | MAS0_ESEL(idx);
2925 //debugf("tlb1_write_entry: mas0 = 0x%08x\n", mas0);
2926
2927 mtspr(SPR_MAS0, mas0);
2928 __asm __volatile("isync");
2929 mtspr(SPR_MAS1, tlb1[idx].mas1);
2930 __asm __volatile("isync");
2931 mtspr(SPR_MAS2, tlb1[idx].mas2);
2932 __asm __volatile("isync");
2933 mtspr(SPR_MAS3, tlb1[idx].mas3);
2934 __asm __volatile("isync");
2935 mtspr(SPR_MAS7, mas7);
2936 __asm __volatile("isync; tlbwe; isync; msync");
2937
2938 //debugf("tlb1_write_entry: e\n");
2939}
2940
2941/*
2942 * Return the largest uint value log such that 2^log <= num.
2943 */
2944static unsigned int
2945ilog2(unsigned int num)
2946{
2947 int lz;
2948
2949 __asm ("cntlzw %0, %1" : "=r" (lz) : "r" (num));
2950 return (31 - lz);
2951}
2952
2953/*
2954 * Convert TLB TSIZE value to mapped region size.
2955 */
2956static vm_size_t
2957tsize2size(unsigned int tsize)
2958{
2959
2960 /*
2961 * size = 4^tsize KB
2962 * size = 4^tsize * 2^10 = 2^(2 * tsize - 10)
2963 */
2964
2965 return ((1 << (2 * tsize)) * 1024);
2966}
2967
2968/*
2969 * Convert region size (must be power of 4) to TLB TSIZE value.
2970 */
2971static unsigned int
2972size2tsize(vm_size_t size)
2973{
2974
2975 return (ilog2(size) / 2 - 5);
2976}
2977
2978/*
2979 * Register permanent kernel mapping in TLB1.
2980 *
2981 * Entries are created starting from index 0 (current free entry is
2982 * kept in tlb1_idx) and are not supposed to be invalidated.
2983 */
2984static int
2985tlb1_set_entry(vm_offset_t va, vm_offset_t pa, vm_size_t size,
2986 uint32_t flags)
2987{
2988 uint32_t ts, tid;
2989 int tsize, index;
2990
2991 index = atomic_fetchadd_int(&tlb1_idx, 1);
2992 if (index >= TLB1_ENTRIES) {
2993 printf("tlb1_set_entry: TLB1 full!\n");
2994 return (-1);
2995 }
2996
2997 /* Convert size to TSIZE */
2998 tsize = size2tsize(size);
2999
3000 tid = (TID_KERNEL << MAS1_TID_SHIFT) & MAS1_TID_MASK;
3001 /* XXX TS is hard coded to 0 for now as we only use single address space */
3002 ts = (0 << MAS1_TS_SHIFT) & MAS1_TS_MASK;
3003
3004 /*
3005 * Atomicity is preserved by the atomic increment above since nothing
3006 * is ever removed from tlb1.
3007 */
3008
3009 tlb1[index].phys = pa;
3010 tlb1[index].virt = va;
3011 tlb1[index].size = size;
3012 tlb1[index].mas1 = MAS1_VALID | MAS1_IPROT | ts | tid;
3013 tlb1[index].mas1 |= ((tsize << MAS1_TSIZE_SHIFT) & MAS1_TSIZE_MASK);
3014 tlb1[index].mas2 = (va & MAS2_EPN_MASK) | flags;
3015
3016 /* Set supervisor RWX permission bits */
3017 tlb1[index].mas3 = (pa & MAS3_RPN) | MAS3_SR | MAS3_SW | MAS3_SX;
3018
3019 tlb1_write_entry(index);
3020
3021 /*
3022 * XXX in general TLB1 updates should be propagated between CPUs,
3023 * since current design assumes to have the same TLB1 set-up on all
3024 * cores.
3025 */
3026 return (0);
3027}
3028
3029/*
3030 * Map in contiguous RAM region into the TLB1 using maximum of
3031 * KERNEL_REGION_MAX_TLB_ENTRIES entries.
3032 *
3033 * If necessary round up last entry size and return total size
3034 * used by all allocated entries.
3035 */
3036vm_size_t
3037tlb1_mapin_region(vm_offset_t va, vm_paddr_t pa, vm_size_t size)
3038{
3039 vm_size_t pgs[KERNEL_REGION_MAX_TLB_ENTRIES];
3040 vm_size_t mapped, pgsz, base, mask;
3041 int idx, nents;
3042
3043 /* Round up to the next 1M */
3044 size = (size + (1 << 20) - 1) & ~((1 << 20) - 1);
3045
3046 mapped = 0;
3047 idx = 0;
3048 base = va;
3049 pgsz = 64*1024*1024;
3050 while (mapped < size) {
3051 while (mapped < size && idx < KERNEL_REGION_MAX_TLB_ENTRIES) {
3052 while (pgsz > (size - mapped))
3053 pgsz >>= 2;
3054 pgs[idx++] = pgsz;
3055 mapped += pgsz;
3056 }
3057
3058 /* We under-map. Correct for this. */
3059 if (mapped < size) {
3060 while (pgs[idx - 1] == pgsz) {
3061 idx--;
3062 mapped -= pgsz;
3063 }
3064 /* XXX We may increase beyond out starting point. */
3065 pgsz <<= 2;
3066 pgs[idx++] = pgsz;
3067 mapped += pgsz;
3068 }
3069 }
3070
3071 nents = idx;
3072 mask = pgs[0] - 1;
3073 /* Align address to the boundary */
3074 if (va & mask) {
3075 va = (va + mask) & ~mask;
3076 pa = (pa + mask) & ~mask;
3077 }
3078
3079 for (idx = 0; idx < nents; idx++) {
3080 pgsz = pgs[idx];
3081 debugf("%u: %x -> %x, size=%x\n", idx, pa, va, pgsz);
3082 tlb1_set_entry(va, pa, pgsz, _TLB_ENTRY_MEM);
3083 pa += pgsz;
3084 va += pgsz;
3085 }
3086
3087 mapped = (va - base);
2702 res = (void *)va;
2703
2704 do {
2705 sz = 1 << (ilog2(size) & ~1);
2706 if (bootverbose)
2707 printf("Wiring VA=%x to PA=%x (size=%x), "
2708 "using TLB1[%d]\n", va, pa, sz, tlb1_idx);
2709 tlb1_set_entry(va, pa, sz, tlb_calc_wimg(pa, ma));
2710 size -= sz;
2711 pa += sz;
2712 va += sz;
2713 } while (size > 0);
2714
2715 return (res);
2716}
2717
2718/*
2719 * 'Unmap' a range mapped by mmu_booke_mapdev().
2720 */
2721static void
2722mmu_booke_unmapdev(mmu_t mmu, vm_offset_t va, vm_size_t size)
2723{
2724#ifdef SUPPORTS_SHRINKING_TLB1
2725 vm_offset_t base, offset;
2726
2727 /*
2728 * Unmap only if this is inside kernel virtual space.
2729 */
2730 if ((va >= VM_MIN_KERNEL_ADDRESS) && (va <= VM_MAX_KERNEL_ADDRESS)) {
2731 base = trunc_page(va);
2732 offset = va & PAGE_MASK;
2733 size = roundup(offset + size, PAGE_SIZE);
2734 kva_free(base, size);
2735 }
2736#endif
2737}
2738
2739/*
2740 * mmu_booke_object_init_pt preloads the ptes for a given object into the
2741 * specified pmap. This eliminates the blast of soft faults on process startup
2742 * and immediately after an mmap.
2743 */
2744static void
2745mmu_booke_object_init_pt(mmu_t mmu, pmap_t pmap, vm_offset_t addr,
2746 vm_object_t object, vm_pindex_t pindex, vm_size_t size)
2747{
2748
2749 VM_OBJECT_ASSERT_WLOCKED(object);
2750 KASSERT(object->type == OBJT_DEVICE || object->type == OBJT_SG,
2751 ("mmu_booke_object_init_pt: non-device object"));
2752}
2753
2754/*
2755 * Perform the pmap work for mincore.
2756 */
2757static int
2758mmu_booke_mincore(mmu_t mmu, pmap_t pmap, vm_offset_t addr,
2759 vm_paddr_t *locked_pa)
2760{
2761
2762 TODO;
2763 return (0);
2764}
2765
2766/**************************************************************************/
2767/* TID handling */
2768/**************************************************************************/
2769
2770/*
2771 * Allocate a TID. If necessary, steal one from someone else.
2772 * The new TID is flushed from the TLB before returning.
2773 */
2774static tlbtid_t
2775tid_alloc(pmap_t pmap)
2776{
2777 tlbtid_t tid;
2778 int thiscpu;
2779
2780 KASSERT((pmap != kernel_pmap), ("tid_alloc: kernel pmap"));
2781
2782 CTR2(KTR_PMAP, "%s: s (pmap = %p)", __func__, pmap);
2783
2784 thiscpu = PCPU_GET(cpuid);
2785
2786 tid = PCPU_GET(tid_next);
2787 if (tid > TID_MAX)
2788 tid = TID_MIN;
2789 PCPU_SET(tid_next, tid + 1);
2790
2791 /* If we are stealing TID then clear the relevant pmap's field */
2792 if (tidbusy[thiscpu][tid] != NULL) {
2793
2794 CTR2(KTR_PMAP, "%s: warning: stealing tid %d", __func__, tid);
2795
2796 tidbusy[thiscpu][tid]->pm_tid[thiscpu] = TID_NONE;
2797
2798 /* Flush all entries from TLB0 matching this TID. */
2799 tid_flush(tid);
2800 }
2801
2802 tidbusy[thiscpu][tid] = pmap;
2803 pmap->pm_tid[thiscpu] = tid;
2804 __asm __volatile("msync; isync");
2805
2806 CTR3(KTR_PMAP, "%s: e (%02d next = %02d)", __func__, tid,
2807 PCPU_GET(tid_next));
2808
2809 return (tid);
2810}
2811
2812/**************************************************************************/
2813/* TLB0 handling */
2814/**************************************************************************/
2815
2816static void
2817tlb_print_entry(int i, uint32_t mas1, uint32_t mas2, uint32_t mas3,
2818 uint32_t mas7)
2819{
2820 int as;
2821 char desc[3];
2822 tlbtid_t tid;
2823 vm_size_t size;
2824 unsigned int tsize;
2825
2826 desc[2] = '\0';
2827 if (mas1 & MAS1_VALID)
2828 desc[0] = 'V';
2829 else
2830 desc[0] = ' ';
2831
2832 if (mas1 & MAS1_IPROT)
2833 desc[1] = 'P';
2834 else
2835 desc[1] = ' ';
2836
2837 as = (mas1 & MAS1_TS_MASK) ? 1 : 0;
2838 tid = MAS1_GETTID(mas1);
2839
2840 tsize = (mas1 & MAS1_TSIZE_MASK) >> MAS1_TSIZE_SHIFT;
2841 size = 0;
2842 if (tsize)
2843 size = tsize2size(tsize);
2844
2845 debugf("%3d: (%s) [AS=%d] "
2846 "sz = 0x%08x tsz = %d tid = %d mas1 = 0x%08x "
2847 "mas2(va) = 0x%08x mas3(pa) = 0x%08x mas7 = 0x%08x\n",
2848 i, desc, as, size, tsize, tid, mas1, mas2, mas3, mas7);
2849}
2850
2851/* Convert TLB0 va and way number to tlb0[] table index. */
2852static inline unsigned int
2853tlb0_tableidx(vm_offset_t va, unsigned int way)
2854{
2855 unsigned int idx;
2856
2857 idx = (way * TLB0_ENTRIES_PER_WAY);
2858 idx += (va & MAS2_TLB0_ENTRY_IDX_MASK) >> MAS2_TLB0_ENTRY_IDX_SHIFT;
2859 return (idx);
2860}
2861
2862/*
2863 * Invalidate TLB0 entry.
2864 */
2865static inline void
2866tlb0_flush_entry(vm_offset_t va)
2867{
2868
2869 CTR2(KTR_PMAP, "%s: s va=0x%08x", __func__, va);
2870
2871 mtx_assert(&tlbivax_mutex, MA_OWNED);
2872
2873 __asm __volatile("tlbivax 0, %0" :: "r"(va & MAS2_EPN_MASK));
2874 __asm __volatile("isync; msync");
2875 __asm __volatile("tlbsync; msync");
2876
2877 CTR1(KTR_PMAP, "%s: e", __func__);
2878}
2879
2880/* Print out contents of the MAS registers for each TLB0 entry */
2881void
2882tlb0_print_tlbentries(void)
2883{
2884 uint32_t mas0, mas1, mas2, mas3, mas7;
2885 int entryidx, way, idx;
2886
2887 debugf("TLB0 entries:\n");
2888 for (way = 0; way < TLB0_WAYS; way ++)
2889 for (entryidx = 0; entryidx < TLB0_ENTRIES_PER_WAY; entryidx++) {
2890
2891 mas0 = MAS0_TLBSEL(0) | MAS0_ESEL(way);
2892 mtspr(SPR_MAS0, mas0);
2893 __asm __volatile("isync");
2894
2895 mas2 = entryidx << MAS2_TLB0_ENTRY_IDX_SHIFT;
2896 mtspr(SPR_MAS2, mas2);
2897
2898 __asm __volatile("isync; tlbre");
2899
2900 mas1 = mfspr(SPR_MAS1);
2901 mas2 = mfspr(SPR_MAS2);
2902 mas3 = mfspr(SPR_MAS3);
2903 mas7 = mfspr(SPR_MAS7);
2904
2905 idx = tlb0_tableidx(mas2, way);
2906 tlb_print_entry(idx, mas1, mas2, mas3, mas7);
2907 }
2908}
2909
2910/**************************************************************************/
2911/* TLB1 handling */
2912/**************************************************************************/
2913
2914/*
2915 * TLB1 mapping notes:
2916 *
2917 * TLB1[0] Kernel text and data.
2918 * TLB1[1-15] Additional kernel text and data mappings (if required), PCI
2919 * windows, other devices mappings.
2920 */
2921
2922/*
2923 * Write given entry to TLB1 hardware.
2924 * Use 32 bit pa, clear 4 high-order bits of RPN (mas7).
2925 */
2926static void
2927tlb1_write_entry(unsigned int idx)
2928{
2929 uint32_t mas0, mas7;
2930
2931 //debugf("tlb1_write_entry: s\n");
2932
2933 /* Clear high order RPN bits */
2934 mas7 = 0;
2935
2936 /* Select entry */
2937 mas0 = MAS0_TLBSEL(1) | MAS0_ESEL(idx);
2938 //debugf("tlb1_write_entry: mas0 = 0x%08x\n", mas0);
2939
2940 mtspr(SPR_MAS0, mas0);
2941 __asm __volatile("isync");
2942 mtspr(SPR_MAS1, tlb1[idx].mas1);
2943 __asm __volatile("isync");
2944 mtspr(SPR_MAS2, tlb1[idx].mas2);
2945 __asm __volatile("isync");
2946 mtspr(SPR_MAS3, tlb1[idx].mas3);
2947 __asm __volatile("isync");
2948 mtspr(SPR_MAS7, mas7);
2949 __asm __volatile("isync; tlbwe; isync; msync");
2950
2951 //debugf("tlb1_write_entry: e\n");
2952}
2953
2954/*
2955 * Return the largest uint value log such that 2^log <= num.
2956 */
2957static unsigned int
2958ilog2(unsigned int num)
2959{
2960 int lz;
2961
2962 __asm ("cntlzw %0, %1" : "=r" (lz) : "r" (num));
2963 return (31 - lz);
2964}
2965
2966/*
2967 * Convert TLB TSIZE value to mapped region size.
2968 */
2969static vm_size_t
2970tsize2size(unsigned int tsize)
2971{
2972
2973 /*
2974 * size = 4^tsize KB
2975 * size = 4^tsize * 2^10 = 2^(2 * tsize - 10)
2976 */
2977
2978 return ((1 << (2 * tsize)) * 1024);
2979}
2980
2981/*
2982 * Convert region size (must be power of 4) to TLB TSIZE value.
2983 */
2984static unsigned int
2985size2tsize(vm_size_t size)
2986{
2987
2988 return (ilog2(size) / 2 - 5);
2989}
2990
2991/*
2992 * Register permanent kernel mapping in TLB1.
2993 *
2994 * Entries are created starting from index 0 (current free entry is
2995 * kept in tlb1_idx) and are not supposed to be invalidated.
2996 */
2997static int
2998tlb1_set_entry(vm_offset_t va, vm_offset_t pa, vm_size_t size,
2999 uint32_t flags)
3000{
3001 uint32_t ts, tid;
3002 int tsize, index;
3003
3004 index = atomic_fetchadd_int(&tlb1_idx, 1);
3005 if (index >= TLB1_ENTRIES) {
3006 printf("tlb1_set_entry: TLB1 full!\n");
3007 return (-1);
3008 }
3009
3010 /* Convert size to TSIZE */
3011 tsize = size2tsize(size);
3012
3013 tid = (TID_KERNEL << MAS1_TID_SHIFT) & MAS1_TID_MASK;
3014 /* XXX TS is hard coded to 0 for now as we only use single address space */
3015 ts = (0 << MAS1_TS_SHIFT) & MAS1_TS_MASK;
3016
3017 /*
3018 * Atomicity is preserved by the atomic increment above since nothing
3019 * is ever removed from tlb1.
3020 */
3021
3022 tlb1[index].phys = pa;
3023 tlb1[index].virt = va;
3024 tlb1[index].size = size;
3025 tlb1[index].mas1 = MAS1_VALID | MAS1_IPROT | ts | tid;
3026 tlb1[index].mas1 |= ((tsize << MAS1_TSIZE_SHIFT) & MAS1_TSIZE_MASK);
3027 tlb1[index].mas2 = (va & MAS2_EPN_MASK) | flags;
3028
3029 /* Set supervisor RWX permission bits */
3030 tlb1[index].mas3 = (pa & MAS3_RPN) | MAS3_SR | MAS3_SW | MAS3_SX;
3031
3032 tlb1_write_entry(index);
3033
3034 /*
3035 * XXX in general TLB1 updates should be propagated between CPUs,
3036 * since current design assumes to have the same TLB1 set-up on all
3037 * cores.
3038 */
3039 return (0);
3040}
3041
3042/*
3043 * Map in contiguous RAM region into the TLB1 using maximum of
3044 * KERNEL_REGION_MAX_TLB_ENTRIES entries.
3045 *
3046 * If necessary round up last entry size and return total size
3047 * used by all allocated entries.
3048 */
3049vm_size_t
3050tlb1_mapin_region(vm_offset_t va, vm_paddr_t pa, vm_size_t size)
3051{
3052 vm_size_t pgs[KERNEL_REGION_MAX_TLB_ENTRIES];
3053 vm_size_t mapped, pgsz, base, mask;
3054 int idx, nents;
3055
3056 /* Round up to the next 1M */
3057 size = (size + (1 << 20) - 1) & ~((1 << 20) - 1);
3058
3059 mapped = 0;
3060 idx = 0;
3061 base = va;
3062 pgsz = 64*1024*1024;
3063 while (mapped < size) {
3064 while (mapped < size && idx < KERNEL_REGION_MAX_TLB_ENTRIES) {
3065 while (pgsz > (size - mapped))
3066 pgsz >>= 2;
3067 pgs[idx++] = pgsz;
3068 mapped += pgsz;
3069 }
3070
3071 /* We under-map. Correct for this. */
3072 if (mapped < size) {
3073 while (pgs[idx - 1] == pgsz) {
3074 idx--;
3075 mapped -= pgsz;
3076 }
3077 /* XXX We may increase beyond out starting point. */
3078 pgsz <<= 2;
3079 pgs[idx++] = pgsz;
3080 mapped += pgsz;
3081 }
3082 }
3083
3084 nents = idx;
3085 mask = pgs[0] - 1;
3086 /* Align address to the boundary */
3087 if (va & mask) {
3088 va = (va + mask) & ~mask;
3089 pa = (pa + mask) & ~mask;
3090 }
3091
3092 for (idx = 0; idx < nents; idx++) {
3093 pgsz = pgs[idx];
3094 debugf("%u: %x -> %x, size=%x\n", idx, pa, va, pgsz);
3095 tlb1_set_entry(va, pa, pgsz, _TLB_ENTRY_MEM);
3096 pa += pgsz;
3097 va += pgsz;
3098 }
3099
3100 mapped = (va - base);
3088 debugf("mapped size 0x%08x (wasted space 0x%08x)\n",
3101 printf("mapped size 0x%08x (wasted space 0x%08x)\n",
3089 mapped, mapped - size);
3090 return (mapped);
3091}
3092
3093/*
3094 * TLB1 initialization routine, to be called after the very first
3095 * assembler level setup done in locore.S.
3096 */
3097void
3098tlb1_init()
3099{
3100 uint32_t mas0, mas1, mas2, mas3;
3101 uint32_t tsz;
3102 u_int i;
3103
3104 if (bootinfo != NULL && bootinfo[0] != 1) {
3105 tlb1_idx = *((uint16_t *)(bootinfo + 8));
3106 } else
3107 tlb1_idx = 1;
3108
3109 /* The first entry/entries are used to map the kernel. */
3110 for (i = 0; i < tlb1_idx; i++) {
3111 mas0 = MAS0_TLBSEL(1) | MAS0_ESEL(i);
3112 mtspr(SPR_MAS0, mas0);
3113 __asm __volatile("isync; tlbre");
3114
3115 mas1 = mfspr(SPR_MAS1);
3116 if ((mas1 & MAS1_VALID) == 0)
3117 continue;
3118
3119 mas2 = mfspr(SPR_MAS2);
3120 mas3 = mfspr(SPR_MAS3);
3121
3122 tlb1[i].mas1 = mas1;
3123 tlb1[i].mas2 = mfspr(SPR_MAS2);
3124 tlb1[i].mas3 = mas3;
3125 tlb1[i].virt = mas2 & MAS2_EPN_MASK;
3126 tlb1[i].phys = mas3 & MAS3_RPN;
3127
3128 if (i == 0)
3129 kernload = mas3 & MAS3_RPN;
3130
3131 tsz = (mas1 & MAS1_TSIZE_MASK) >> MAS1_TSIZE_SHIFT;
3132 tlb1[i].size = (tsz > 0) ? tsize2size(tsz) : 0;
3133 kernsize += tlb1[i].size;
3134 }
3135
3136#ifdef SMP
3137 bp_ntlb1s = tlb1_idx;
3138#endif
3139
3140 /* Purge the remaining entries */
3141 for (i = tlb1_idx; i < TLB1_ENTRIES; i++)
3142 tlb1_write_entry(i);
3143
3144 /* Setup TLB miss defaults */
3145 set_mas4_defaults();
3146}
3147
3148vm_offset_t
3149pmap_early_io_map(vm_paddr_t pa, vm_size_t size)
3150{
3102 mapped, mapped - size);
3103 return (mapped);
3104}
3105
3106/*
3107 * TLB1 initialization routine, to be called after the very first
3108 * assembler level setup done in locore.S.
3109 */
3110void
3111tlb1_init()
3112{
3113 uint32_t mas0, mas1, mas2, mas3;
3114 uint32_t tsz;
3115 u_int i;
3116
3117 if (bootinfo != NULL && bootinfo[0] != 1) {
3118 tlb1_idx = *((uint16_t *)(bootinfo + 8));
3119 } else
3120 tlb1_idx = 1;
3121
3122 /* The first entry/entries are used to map the kernel. */
3123 for (i = 0; i < tlb1_idx; i++) {
3124 mas0 = MAS0_TLBSEL(1) | MAS0_ESEL(i);
3125 mtspr(SPR_MAS0, mas0);
3126 __asm __volatile("isync; tlbre");
3127
3128 mas1 = mfspr(SPR_MAS1);
3129 if ((mas1 & MAS1_VALID) == 0)
3130 continue;
3131
3132 mas2 = mfspr(SPR_MAS2);
3133 mas3 = mfspr(SPR_MAS3);
3134
3135 tlb1[i].mas1 = mas1;
3136 tlb1[i].mas2 = mfspr(SPR_MAS2);
3137 tlb1[i].mas3 = mas3;
3138 tlb1[i].virt = mas2 & MAS2_EPN_MASK;
3139 tlb1[i].phys = mas3 & MAS3_RPN;
3140
3141 if (i == 0)
3142 kernload = mas3 & MAS3_RPN;
3143
3144 tsz = (mas1 & MAS1_TSIZE_MASK) >> MAS1_TSIZE_SHIFT;
3145 tlb1[i].size = (tsz > 0) ? tsize2size(tsz) : 0;
3146 kernsize += tlb1[i].size;
3147 }
3148
3149#ifdef SMP
3150 bp_ntlb1s = tlb1_idx;
3151#endif
3152
3153 /* Purge the remaining entries */
3154 for (i = tlb1_idx; i < TLB1_ENTRIES; i++)
3155 tlb1_write_entry(i);
3156
3157 /* Setup TLB miss defaults */
3158 set_mas4_defaults();
3159}
3160
3161vm_offset_t
3162pmap_early_io_map(vm_paddr_t pa, vm_size_t size)
3163{
3151 static vm_offset_t early_io_map_base = VM_MAX_KERNEL_ADDRESS;
3152 vm_paddr_t pa_base;
3153 vm_offset_t va, sz;
3154 int i;
3155
3156 KASSERT(!pmap_bootstrapped, ("Do not use after PMAP is up!"));
3157
3158 for (i = 0; i < tlb1_idx; i++) {
3159 if (!(tlb1[i].mas1 & MAS1_VALID))
3160 continue;
3161 if (pa >= tlb1[i].phys && (pa + size) <=
3162 (tlb1[i].phys + tlb1[i].size))
3163 return (tlb1[i].virt + (pa - tlb1[i].phys));
3164 }
3165
3166 pa_base = trunc_page(pa);
3167 size = roundup(size + (pa - pa_base), PAGE_SIZE);
3164 vm_paddr_t pa_base;
3165 vm_offset_t va, sz;
3166 int i;
3167
3168 KASSERT(!pmap_bootstrapped, ("Do not use after PMAP is up!"));
3169
3170 for (i = 0; i < tlb1_idx; i++) {
3171 if (!(tlb1[i].mas1 & MAS1_VALID))
3172 continue;
3173 if (pa >= tlb1[i].phys && (pa + size) <=
3174 (tlb1[i].phys + tlb1[i].size))
3175 return (tlb1[i].virt + (pa - tlb1[i].phys));
3176 }
3177
3178 pa_base = trunc_page(pa);
3179 size = roundup(size + (pa - pa_base), PAGE_SIZE);
3168 va = early_io_map_base + (pa - pa_base);
3180 va = tlb1_map_base + (pa - pa_base);
3169
3170 do {
3171 sz = 1 << (ilog2(size) & ~1);
3181
3182 do {
3183 sz = 1 << (ilog2(size) & ~1);
3172 tlb1_set_entry(early_io_map_base, pa_base, sz, _TLB_ENTRY_IO);
3184 tlb1_set_entry(tlb1_map_base, pa_base, sz, _TLB_ENTRY_IO);
3173 size -= sz;
3174 pa_base += sz;
3185 size -= sz;
3186 pa_base += sz;
3175 early_io_map_base += sz;
3187 tlb1_map_base += sz;
3176 } while (size > 0);
3177
3178#ifdef SMP
3179 bp_ntlb1s = tlb1_idx;
3180#endif
3181
3182 return (va);
3183}
3184
3185/*
3186 * Setup MAS4 defaults.
3187 * These values are loaded to MAS0-2 on a TLB miss.
3188 */
3189static void
3190set_mas4_defaults(void)
3191{
3192 uint32_t mas4;
3193
3194 /* Defaults: TLB0, PID0, TSIZED=4K */
3195 mas4 = MAS4_TLBSELD0;
3196 mas4 |= (TLB_SIZE_4K << MAS4_TSIZED_SHIFT) & MAS4_TSIZED_MASK;
3197#ifdef SMP
3198 mas4 |= MAS4_MD;
3199#endif
3200 mtspr(SPR_MAS4, mas4);
3201 __asm __volatile("isync");
3202}
3203
3204/*
3205 * Print out contents of the MAS registers for each TLB1 entry
3206 */
3207void
3208tlb1_print_tlbentries(void)
3209{
3210 uint32_t mas0, mas1, mas2, mas3, mas7;
3211 int i;
3212
3213 debugf("TLB1 entries:\n");
3214 for (i = 0; i < TLB1_ENTRIES; i++) {
3215
3216 mas0 = MAS0_TLBSEL(1) | MAS0_ESEL(i);
3217 mtspr(SPR_MAS0, mas0);
3218
3219 __asm __volatile("isync; tlbre");
3220
3221 mas1 = mfspr(SPR_MAS1);
3222 mas2 = mfspr(SPR_MAS2);
3223 mas3 = mfspr(SPR_MAS3);
3224 mas7 = mfspr(SPR_MAS7);
3225
3226 tlb_print_entry(i, mas1, mas2, mas3, mas7);
3227 }
3228}
3229
3230/*
3231 * Print out contents of the in-ram tlb1 table.
3232 */
3233void
3234tlb1_print_entries(void)
3235{
3236 int i;
3237
3238 debugf("tlb1[] table entries:\n");
3239 for (i = 0; i < TLB1_ENTRIES; i++)
3240 tlb_print_entry(i, tlb1[i].mas1, tlb1[i].mas2, tlb1[i].mas3, 0);
3241}
3242
3243/*
3244 * Return 0 if the physical IO range is encompassed by one of the
3245 * the TLB1 entries, otherwise return related error code.
3246 */
3247static int
3248tlb1_iomapped(int i, vm_paddr_t pa, vm_size_t size, vm_offset_t *va)
3249{
3250 uint32_t prot;
3251 vm_paddr_t pa_start;
3252 vm_paddr_t pa_end;
3253 unsigned int entry_tsize;
3254 vm_size_t entry_size;
3255
3256 *va = (vm_offset_t)NULL;
3257
3258 /* Skip invalid entries */
3259 if (!(tlb1[i].mas1 & MAS1_VALID))
3260 return (EINVAL);
3261
3262 /*
3263 * The entry must be cache-inhibited, guarded, and r/w
3264 * so it can function as an i/o page
3265 */
3266 prot = tlb1[i].mas2 & (MAS2_I | MAS2_G);
3267 if (prot != (MAS2_I | MAS2_G))
3268 return (EPERM);
3269
3270 prot = tlb1[i].mas3 & (MAS3_SR | MAS3_SW);
3271 if (prot != (MAS3_SR | MAS3_SW))
3272 return (EPERM);
3273
3274 /* The address should be within the entry range. */
3275 entry_tsize = (tlb1[i].mas1 & MAS1_TSIZE_MASK) >> MAS1_TSIZE_SHIFT;
3276 KASSERT((entry_tsize), ("tlb1_iomapped: invalid entry tsize"));
3277
3278 entry_size = tsize2size(entry_tsize);
3279 pa_start = tlb1[i].mas3 & MAS3_RPN;
3280 pa_end = pa_start + entry_size - 1;
3281
3282 if ((pa < pa_start) || ((pa + size) > pa_end))
3283 return (ERANGE);
3284
3285 /* Return virtual address of this mapping. */
3286 *va = (tlb1[i].mas2 & MAS2_EPN_MASK) + (pa - pa_start);
3287 return (0);
3288}
3188 } while (size > 0);
3189
3190#ifdef SMP
3191 bp_ntlb1s = tlb1_idx;
3192#endif
3193
3194 return (va);
3195}
3196
3197/*
3198 * Setup MAS4 defaults.
3199 * These values are loaded to MAS0-2 on a TLB miss.
3200 */
3201static void
3202set_mas4_defaults(void)
3203{
3204 uint32_t mas4;
3205
3206 /* Defaults: TLB0, PID0, TSIZED=4K */
3207 mas4 = MAS4_TLBSELD0;
3208 mas4 |= (TLB_SIZE_4K << MAS4_TSIZED_SHIFT) & MAS4_TSIZED_MASK;
3209#ifdef SMP
3210 mas4 |= MAS4_MD;
3211#endif
3212 mtspr(SPR_MAS4, mas4);
3213 __asm __volatile("isync");
3214}
3215
3216/*
3217 * Print out contents of the MAS registers for each TLB1 entry
3218 */
3219void
3220tlb1_print_tlbentries(void)
3221{
3222 uint32_t mas0, mas1, mas2, mas3, mas7;
3223 int i;
3224
3225 debugf("TLB1 entries:\n");
3226 for (i = 0; i < TLB1_ENTRIES; i++) {
3227
3228 mas0 = MAS0_TLBSEL(1) | MAS0_ESEL(i);
3229 mtspr(SPR_MAS0, mas0);
3230
3231 __asm __volatile("isync; tlbre");
3232
3233 mas1 = mfspr(SPR_MAS1);
3234 mas2 = mfspr(SPR_MAS2);
3235 mas3 = mfspr(SPR_MAS3);
3236 mas7 = mfspr(SPR_MAS7);
3237
3238 tlb_print_entry(i, mas1, mas2, mas3, mas7);
3239 }
3240}
3241
3242/*
3243 * Print out contents of the in-ram tlb1 table.
3244 */
3245void
3246tlb1_print_entries(void)
3247{
3248 int i;
3249
3250 debugf("tlb1[] table entries:\n");
3251 for (i = 0; i < TLB1_ENTRIES; i++)
3252 tlb_print_entry(i, tlb1[i].mas1, tlb1[i].mas2, tlb1[i].mas3, 0);
3253}
3254
3255/*
3256 * Return 0 if the physical IO range is encompassed by one of the
3257 * the TLB1 entries, otherwise return related error code.
3258 */
3259static int
3260tlb1_iomapped(int i, vm_paddr_t pa, vm_size_t size, vm_offset_t *va)
3261{
3262 uint32_t prot;
3263 vm_paddr_t pa_start;
3264 vm_paddr_t pa_end;
3265 unsigned int entry_tsize;
3266 vm_size_t entry_size;
3267
3268 *va = (vm_offset_t)NULL;
3269
3270 /* Skip invalid entries */
3271 if (!(tlb1[i].mas1 & MAS1_VALID))
3272 return (EINVAL);
3273
3274 /*
3275 * The entry must be cache-inhibited, guarded, and r/w
3276 * so it can function as an i/o page
3277 */
3278 prot = tlb1[i].mas2 & (MAS2_I | MAS2_G);
3279 if (prot != (MAS2_I | MAS2_G))
3280 return (EPERM);
3281
3282 prot = tlb1[i].mas3 & (MAS3_SR | MAS3_SW);
3283 if (prot != (MAS3_SR | MAS3_SW))
3284 return (EPERM);
3285
3286 /* The address should be within the entry range. */
3287 entry_tsize = (tlb1[i].mas1 & MAS1_TSIZE_MASK) >> MAS1_TSIZE_SHIFT;
3288 KASSERT((entry_tsize), ("tlb1_iomapped: invalid entry tsize"));
3289
3290 entry_size = tsize2size(entry_tsize);
3291 pa_start = tlb1[i].mas3 & MAS3_RPN;
3292 pa_end = pa_start + entry_size - 1;
3293
3294 if ((pa < pa_start) || ((pa + size) > pa_end))
3295 return (ERANGE);
3296
3297 /* Return virtual address of this mapping. */
3298 *va = (tlb1[i].mas2 & MAS2_EPN_MASK) + (pa - pa_start);
3299 return (0);
3300}