Deleted Added
full compact
tcp_syncache.c (105199) tcp_syncache.c (106696)
1/*-
2 * Copyright (c) 2001 Networks Associates Technology, Inc.
3 * All rights reserved.
4 *
5 * This software was developed for the FreeBSD Project by Jonathan Lemon
6 * and NAI Labs, the Security Research Division of Network Associates, Inc.
7 * under DARPA/SPAWAR contract N66001-01-C-8035 ("CBOSS"), as part of the
8 * DARPA CHATS research program.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. The name of the author may not be used to endorse or promote
19 * products derived from this software without specific prior written
20 * permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
33 *
1/*-
2 * Copyright (c) 2001 Networks Associates Technology, Inc.
3 * All rights reserved.
4 *
5 * This software was developed for the FreeBSD Project by Jonathan Lemon
6 * and NAI Labs, the Security Research Division of Network Associates, Inc.
7 * under DARPA/SPAWAR contract N66001-01-C-8035 ("CBOSS"), as part of the
8 * DARPA CHATS research program.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. The name of the author may not be used to endorse or promote
19 * products derived from this software without specific prior written
20 * permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
33 *
34 * $FreeBSD: head/sys/netinet/tcp_syncache.c 105199 2002-10-16 02:25:05Z sam $
34 * $FreeBSD: head/sys/netinet/tcp_syncache.c 106696 2002-11-09 12:55:07Z alfred $
35 */
36
37#include "opt_inet6.h"
38#include "opt_ipsec.h"
39#include "opt_mac.h"
40
41#include <sys/param.h>
42#include <sys/systm.h>
43#include <sys/kernel.h>
44#include <sys/sysctl.h>
45#include <sys/malloc.h>
46#include <sys/mac.h>
47#include <sys/mbuf.h>
48#include <sys/md5.h>
49#include <sys/proc.h> /* for proc0 declaration */
50#include <sys/random.h>
51#include <sys/socket.h>
52#include <sys/socketvar.h>
53
54#include <net/if.h>
55#include <net/route.h>
56
57#include <netinet/in.h>
58#include <netinet/in_systm.h>
59#include <netinet/ip.h>
60#include <netinet/in_var.h>
61#include <netinet/in_pcb.h>
62#include <netinet/ip_var.h>
63#ifdef INET6
64#include <netinet/ip6.h>
65#include <netinet/icmp6.h>
66#include <netinet6/nd6.h>
67#include <netinet6/ip6_var.h>
68#include <netinet6/in6_pcb.h>
69#endif
70#include <netinet/tcp.h>
71#include <netinet/tcp_fsm.h>
72#include <netinet/tcp_seq.h>
73#include <netinet/tcp_timer.h>
74#include <netinet/tcp_var.h>
75#ifdef INET6
76#include <netinet6/tcp6_var.h>
77#endif
78
79#ifdef IPSEC
80#include <netinet6/ipsec.h>
81#ifdef INET6
82#include <netinet6/ipsec6.h>
83#endif
84#endif /*IPSEC*/
85
86#ifdef FAST_IPSEC
87#include <netipsec/ipsec.h>
88#ifdef INET6
89#include <netipsec/ipsec6.h>
90#endif
91#include <netipsec/key.h>
92#define IPSEC
93#endif /*FAST_IPSEC*/
94
95#include <machine/in_cksum.h>
96#include <vm/uma.h>
97
98static int tcp_syncookies = 1;
99SYSCTL_INT(_net_inet_tcp, OID_AUTO, syncookies, CTLFLAG_RW,
100 &tcp_syncookies, 0,
101 "Use TCP SYN cookies if the syncache overflows");
102
103static void syncache_drop(struct syncache *, struct syncache_head *);
104static void syncache_free(struct syncache *);
105static void syncache_insert(struct syncache *, struct syncache_head *);
106struct syncache *syncache_lookup(struct in_conninfo *, struct syncache_head **);
107static int syncache_respond(struct syncache *, struct mbuf *);
108static struct socket *syncache_socket(struct syncache *, struct socket *,
109 struct mbuf *m);
110static void syncache_timer(void *);
111static u_int32_t syncookie_generate(struct syncache *);
112static struct syncache *syncookie_lookup(struct in_conninfo *,
113 struct tcphdr *, struct socket *);
114
115/*
116 * Transmit the SYN,ACK fewer times than TCP_MAXRXTSHIFT specifies.
117 * 3 retransmits corresponds to a timeout of (1 + 2 + 4 + 8 == 15) seconds,
118 * the odds are that the user has given up attempting to connect by then.
119 */
120#define SYNCACHE_MAXREXMTS 3
121
122/* Arbitrary values */
123#define TCP_SYNCACHE_HASHSIZE 512
124#define TCP_SYNCACHE_BUCKETLIMIT 30
125
126struct tcp_syncache {
127 struct syncache_head *hashbase;
128 uma_zone_t zone;
129 u_int hashsize;
130 u_int hashmask;
131 u_int bucket_limit;
132 u_int cache_count;
133 u_int cache_limit;
134 u_int rexmt_limit;
135 u_int hash_secret;
136 u_int next_reseed;
137 TAILQ_HEAD(, syncache) timerq[SYNCACHE_MAXREXMTS + 1];
138 struct callout tt_timerq[SYNCACHE_MAXREXMTS + 1];
139};
140static struct tcp_syncache tcp_syncache;
141
142SYSCTL_NODE(_net_inet_tcp, OID_AUTO, syncache, CTLFLAG_RW, 0, "TCP SYN cache");
143
144SYSCTL_INT(_net_inet_tcp_syncache, OID_AUTO, bucketlimit, CTLFLAG_RD,
145 &tcp_syncache.bucket_limit, 0, "Per-bucket hash limit for syncache");
146
147SYSCTL_INT(_net_inet_tcp_syncache, OID_AUTO, cachelimit, CTLFLAG_RD,
148 &tcp_syncache.cache_limit, 0, "Overall entry limit for syncache");
149
150SYSCTL_INT(_net_inet_tcp_syncache, OID_AUTO, count, CTLFLAG_RD,
151 &tcp_syncache.cache_count, 0, "Current number of entries in syncache");
152
153SYSCTL_INT(_net_inet_tcp_syncache, OID_AUTO, hashsize, CTLFLAG_RD,
154 &tcp_syncache.hashsize, 0, "Size of TCP syncache hashtable");
155
156SYSCTL_INT(_net_inet_tcp_syncache, OID_AUTO, rexmtlimit, CTLFLAG_RW,
157 &tcp_syncache.rexmt_limit, 0, "Limit on SYN/ACK retransmissions");
158
159static MALLOC_DEFINE(M_SYNCACHE, "syncache", "TCP syncache");
160
161#define SYNCACHE_HASH(inc, mask) \
162 ((tcp_syncache.hash_secret ^ \
163 (inc)->inc_faddr.s_addr ^ \
164 ((inc)->inc_faddr.s_addr >> 16) ^ \
165 (inc)->inc_fport ^ (inc)->inc_lport) & mask)
166
167#define SYNCACHE_HASH6(inc, mask) \
168 ((tcp_syncache.hash_secret ^ \
169 (inc)->inc6_faddr.s6_addr32[0] ^ \
170 (inc)->inc6_faddr.s6_addr32[3] ^ \
171 (inc)->inc_fport ^ (inc)->inc_lport) & mask)
172
173#define ENDPTS_EQ(a, b) ( \
174 (a)->ie_fport == (b)->ie_fport && \
175 (a)->ie_lport == (b)->ie_lport && \
176 (a)->ie_faddr.s_addr == (b)->ie_faddr.s_addr && \
177 (a)->ie_laddr.s_addr == (b)->ie_laddr.s_addr \
178)
179
180#define ENDPTS6_EQ(a, b) (memcmp(a, b, sizeof(*a)) == 0)
181
35 */
36
37#include "opt_inet6.h"
38#include "opt_ipsec.h"
39#include "opt_mac.h"
40
41#include <sys/param.h>
42#include <sys/systm.h>
43#include <sys/kernel.h>
44#include <sys/sysctl.h>
45#include <sys/malloc.h>
46#include <sys/mac.h>
47#include <sys/mbuf.h>
48#include <sys/md5.h>
49#include <sys/proc.h> /* for proc0 declaration */
50#include <sys/random.h>
51#include <sys/socket.h>
52#include <sys/socketvar.h>
53
54#include <net/if.h>
55#include <net/route.h>
56
57#include <netinet/in.h>
58#include <netinet/in_systm.h>
59#include <netinet/ip.h>
60#include <netinet/in_var.h>
61#include <netinet/in_pcb.h>
62#include <netinet/ip_var.h>
63#ifdef INET6
64#include <netinet/ip6.h>
65#include <netinet/icmp6.h>
66#include <netinet6/nd6.h>
67#include <netinet6/ip6_var.h>
68#include <netinet6/in6_pcb.h>
69#endif
70#include <netinet/tcp.h>
71#include <netinet/tcp_fsm.h>
72#include <netinet/tcp_seq.h>
73#include <netinet/tcp_timer.h>
74#include <netinet/tcp_var.h>
75#ifdef INET6
76#include <netinet6/tcp6_var.h>
77#endif
78
79#ifdef IPSEC
80#include <netinet6/ipsec.h>
81#ifdef INET6
82#include <netinet6/ipsec6.h>
83#endif
84#endif /*IPSEC*/
85
86#ifdef FAST_IPSEC
87#include <netipsec/ipsec.h>
88#ifdef INET6
89#include <netipsec/ipsec6.h>
90#endif
91#include <netipsec/key.h>
92#define IPSEC
93#endif /*FAST_IPSEC*/
94
95#include <machine/in_cksum.h>
96#include <vm/uma.h>
97
98static int tcp_syncookies = 1;
99SYSCTL_INT(_net_inet_tcp, OID_AUTO, syncookies, CTLFLAG_RW,
100 &tcp_syncookies, 0,
101 "Use TCP SYN cookies if the syncache overflows");
102
103static void syncache_drop(struct syncache *, struct syncache_head *);
104static void syncache_free(struct syncache *);
105static void syncache_insert(struct syncache *, struct syncache_head *);
106struct syncache *syncache_lookup(struct in_conninfo *, struct syncache_head **);
107static int syncache_respond(struct syncache *, struct mbuf *);
108static struct socket *syncache_socket(struct syncache *, struct socket *,
109 struct mbuf *m);
110static void syncache_timer(void *);
111static u_int32_t syncookie_generate(struct syncache *);
112static struct syncache *syncookie_lookup(struct in_conninfo *,
113 struct tcphdr *, struct socket *);
114
115/*
116 * Transmit the SYN,ACK fewer times than TCP_MAXRXTSHIFT specifies.
117 * 3 retransmits corresponds to a timeout of (1 + 2 + 4 + 8 == 15) seconds,
118 * the odds are that the user has given up attempting to connect by then.
119 */
120#define SYNCACHE_MAXREXMTS 3
121
122/* Arbitrary values */
123#define TCP_SYNCACHE_HASHSIZE 512
124#define TCP_SYNCACHE_BUCKETLIMIT 30
125
126struct tcp_syncache {
127 struct syncache_head *hashbase;
128 uma_zone_t zone;
129 u_int hashsize;
130 u_int hashmask;
131 u_int bucket_limit;
132 u_int cache_count;
133 u_int cache_limit;
134 u_int rexmt_limit;
135 u_int hash_secret;
136 u_int next_reseed;
137 TAILQ_HEAD(, syncache) timerq[SYNCACHE_MAXREXMTS + 1];
138 struct callout tt_timerq[SYNCACHE_MAXREXMTS + 1];
139};
140static struct tcp_syncache tcp_syncache;
141
142SYSCTL_NODE(_net_inet_tcp, OID_AUTO, syncache, CTLFLAG_RW, 0, "TCP SYN cache");
143
144SYSCTL_INT(_net_inet_tcp_syncache, OID_AUTO, bucketlimit, CTLFLAG_RD,
145 &tcp_syncache.bucket_limit, 0, "Per-bucket hash limit for syncache");
146
147SYSCTL_INT(_net_inet_tcp_syncache, OID_AUTO, cachelimit, CTLFLAG_RD,
148 &tcp_syncache.cache_limit, 0, "Overall entry limit for syncache");
149
150SYSCTL_INT(_net_inet_tcp_syncache, OID_AUTO, count, CTLFLAG_RD,
151 &tcp_syncache.cache_count, 0, "Current number of entries in syncache");
152
153SYSCTL_INT(_net_inet_tcp_syncache, OID_AUTO, hashsize, CTLFLAG_RD,
154 &tcp_syncache.hashsize, 0, "Size of TCP syncache hashtable");
155
156SYSCTL_INT(_net_inet_tcp_syncache, OID_AUTO, rexmtlimit, CTLFLAG_RW,
157 &tcp_syncache.rexmt_limit, 0, "Limit on SYN/ACK retransmissions");
158
159static MALLOC_DEFINE(M_SYNCACHE, "syncache", "TCP syncache");
160
161#define SYNCACHE_HASH(inc, mask) \
162 ((tcp_syncache.hash_secret ^ \
163 (inc)->inc_faddr.s_addr ^ \
164 ((inc)->inc_faddr.s_addr >> 16) ^ \
165 (inc)->inc_fport ^ (inc)->inc_lport) & mask)
166
167#define SYNCACHE_HASH6(inc, mask) \
168 ((tcp_syncache.hash_secret ^ \
169 (inc)->inc6_faddr.s6_addr32[0] ^ \
170 (inc)->inc6_faddr.s6_addr32[3] ^ \
171 (inc)->inc_fport ^ (inc)->inc_lport) & mask)
172
173#define ENDPTS_EQ(a, b) ( \
174 (a)->ie_fport == (b)->ie_fport && \
175 (a)->ie_lport == (b)->ie_lport && \
176 (a)->ie_faddr.s_addr == (b)->ie_faddr.s_addr && \
177 (a)->ie_laddr.s_addr == (b)->ie_laddr.s_addr \
178)
179
180#define ENDPTS6_EQ(a, b) (memcmp(a, b, sizeof(*a)) == 0)
181
182#define SYNCACHE_TIMEOUT(sc, slot) do { \
183 sc->sc_rxtslot = slot; \
184 sc->sc_rxttime = ticks + TCPTV_RTOBASE * tcp_backoff[slot]; \
185 TAILQ_INSERT_TAIL(&tcp_syncache.timerq[slot], sc, sc_timerq); \
186 if (!callout_active(&tcp_syncache.tt_timerq[slot])) \
187 callout_reset(&tcp_syncache.tt_timerq[slot], \
188 TCPTV_RTOBASE * tcp_backoff[slot], \
189 syncache_timer, (void *)((intptr_t)slot)); \
182#define SYNCACHE_TIMEOUT(sc, slot) do { \
183 sc->sc_rxtslot = (slot); \
184 sc->sc_rxttime = ticks + TCPTV_RTOBASE * tcp_backoff[(slot)]; \
185 TAILQ_INSERT_TAIL(&tcp_syncache.timerq[(slot)], sc, sc_timerq); \
186 if (!callout_active(&tcp_syncache.tt_timerq[(slot)])) \
187 callout_reset(&tcp_syncache.tt_timerq[(slot)], \
188 TCPTV_RTOBASE * tcp_backoff[(slot)], \
189 syncache_timer, (void *)((intptr_t)(slot))); \
190} while (0)
191
192static void
193syncache_free(struct syncache *sc)
194{
195 struct rtentry *rt;
196
197 if (sc->sc_ipopts)
198 (void) m_free(sc->sc_ipopts);
199#ifdef INET6
200 if (sc->sc_inc.inc_isipv6)
201 rt = sc->sc_route6.ro_rt;
202 else
203#endif
204 rt = sc->sc_route.ro_rt;
205 if (rt != NULL) {
206 /*
207 * If this is the only reference to a protocol cloned
208 * route, remove it immediately.
209 */
210 if (rt->rt_flags & RTF_WASCLONED &&
211 (sc->sc_flags & SCF_KEEPROUTE) == 0 &&
212 rt->rt_refcnt == 1)
213 rtrequest(RTM_DELETE, rt_key(rt),
214 rt->rt_gateway, rt_mask(rt),
215 rt->rt_flags, NULL);
216 RTFREE(rt);
217 }
218 uma_zfree(tcp_syncache.zone, sc);
219}
220
221void
222syncache_init(void)
223{
224 int i;
225
226 tcp_syncache.cache_count = 0;
227 tcp_syncache.hashsize = TCP_SYNCACHE_HASHSIZE;
228 tcp_syncache.bucket_limit = TCP_SYNCACHE_BUCKETLIMIT;
229 tcp_syncache.cache_limit =
230 tcp_syncache.hashsize * tcp_syncache.bucket_limit;
231 tcp_syncache.rexmt_limit = SYNCACHE_MAXREXMTS;
232 tcp_syncache.next_reseed = 0;
233 tcp_syncache.hash_secret = arc4random();
234
235 TUNABLE_INT_FETCH("net.inet.tcp.syncache.hashsize",
236 &tcp_syncache.hashsize);
237 TUNABLE_INT_FETCH("net.inet.tcp.syncache.cachelimit",
238 &tcp_syncache.cache_limit);
239 TUNABLE_INT_FETCH("net.inet.tcp.syncache.bucketlimit",
240 &tcp_syncache.bucket_limit);
241 if (!powerof2(tcp_syncache.hashsize)) {
242 printf("WARNING: syncache hash size is not a power of 2.\n");
243 tcp_syncache.hashsize = 512; /* safe default */
244 }
245 tcp_syncache.hashmask = tcp_syncache.hashsize - 1;
246
247 /* Allocate the hash table. */
248 MALLOC(tcp_syncache.hashbase, struct syncache_head *,
249 tcp_syncache.hashsize * sizeof(struct syncache_head),
250 M_SYNCACHE, M_WAITOK);
251
252 /* Initialize the hash buckets. */
253 for (i = 0; i < tcp_syncache.hashsize; i++) {
254 TAILQ_INIT(&tcp_syncache.hashbase[i].sch_bucket);
255 tcp_syncache.hashbase[i].sch_length = 0;
256 }
257
258 /* Initialize the timer queues. */
259 for (i = 0; i <= SYNCACHE_MAXREXMTS; i++) {
260 TAILQ_INIT(&tcp_syncache.timerq[i]);
261 callout_init(&tcp_syncache.tt_timerq[i], 0);
262 }
263
264 /*
265 * Allocate the syncache entries. Allow the zone to allocate one
266 * more entry than cache limit, so a new entry can bump out an
267 * older one.
268 */
269 tcp_syncache.cache_limit -= 1;
270 tcp_syncache.zone = uma_zcreate("syncache", sizeof(struct syncache),
271 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
272 uma_zone_set_max(tcp_syncache.zone, tcp_syncache.cache_limit);
273}
274
275static void
276syncache_insert(sc, sch)
277 struct syncache *sc;
278 struct syncache_head *sch;
279{
280 struct syncache *sc2;
281 int s, i;
282
283 /*
284 * Make sure that we don't overflow the per-bucket
285 * limit or the total cache size limit.
286 */
287 s = splnet();
288 if (sch->sch_length >= tcp_syncache.bucket_limit) {
289 /*
290 * The bucket is full, toss the oldest element.
291 */
292 sc2 = TAILQ_FIRST(&sch->sch_bucket);
293 sc2->sc_tp->ts_recent = ticks;
294 syncache_drop(sc2, sch);
295 tcpstat.tcps_sc_bucketoverflow++;
296 } else if (tcp_syncache.cache_count >= tcp_syncache.cache_limit) {
297 /*
298 * The cache is full. Toss the oldest entry in the
299 * entire cache. This is the front entry in the
300 * first non-empty timer queue with the largest
301 * timeout value.
302 */
303 for (i = SYNCACHE_MAXREXMTS; i >= 0; i--) {
304 sc2 = TAILQ_FIRST(&tcp_syncache.timerq[i]);
305 if (sc2 != NULL)
306 break;
307 }
308 sc2->sc_tp->ts_recent = ticks;
309 syncache_drop(sc2, NULL);
310 tcpstat.tcps_sc_cacheoverflow++;
311 }
312
313 /* Initialize the entry's timer. */
314 SYNCACHE_TIMEOUT(sc, 0);
315
316 /* Put it into the bucket. */
317 TAILQ_INSERT_TAIL(&sch->sch_bucket, sc, sc_hash);
318 sch->sch_length++;
319 tcp_syncache.cache_count++;
320 tcpstat.tcps_sc_added++;
321 splx(s);
322}
323
324static void
325syncache_drop(sc, sch)
326 struct syncache *sc;
327 struct syncache_head *sch;
328{
329 int s;
330
331 if (sch == NULL) {
332#ifdef INET6
333 if (sc->sc_inc.inc_isipv6) {
334 sch = &tcp_syncache.hashbase[
335 SYNCACHE_HASH6(&sc->sc_inc, tcp_syncache.hashmask)];
336 } else
337#endif
338 {
339 sch = &tcp_syncache.hashbase[
340 SYNCACHE_HASH(&sc->sc_inc, tcp_syncache.hashmask)];
341 }
342 }
343
344 s = splnet();
345
346 TAILQ_REMOVE(&sch->sch_bucket, sc, sc_hash);
347 sch->sch_length--;
348 tcp_syncache.cache_count--;
349
350 TAILQ_REMOVE(&tcp_syncache.timerq[sc->sc_rxtslot], sc, sc_timerq);
351 if (TAILQ_EMPTY(&tcp_syncache.timerq[sc->sc_rxtslot]))
352 callout_stop(&tcp_syncache.tt_timerq[sc->sc_rxtslot]);
353 splx(s);
354
355 syncache_free(sc);
356}
357
358/*
359 * Walk the timer queues, looking for SYN,ACKs that need to be retransmitted.
360 * If we have retransmitted an entry the maximum number of times, expire it.
361 */
362static void
363syncache_timer(xslot)
364 void *xslot;
365{
366 intptr_t slot = (intptr_t)xslot;
367 struct syncache *sc, *nsc;
368 struct inpcb *inp;
369 int s;
370
371 s = splnet();
372 if (callout_pending(&tcp_syncache.tt_timerq[slot]) ||
373 !callout_active(&tcp_syncache.tt_timerq[slot])) {
374 splx(s);
375 return;
376 }
377 callout_deactivate(&tcp_syncache.tt_timerq[slot]);
378
379 nsc = TAILQ_FIRST(&tcp_syncache.timerq[slot]);
380 INP_INFO_RLOCK(&tcbinfo);
381 while (nsc != NULL) {
382 if (ticks < nsc->sc_rxttime)
383 break;
384 sc = nsc;
385 inp = sc->sc_tp->t_inpcb;
386 INP_LOCK(inp);
387 if (slot == SYNCACHE_MAXREXMTS ||
388 slot >= tcp_syncache.rexmt_limit ||
389 inp->inp_gencnt != sc->sc_inp_gencnt) {
390 nsc = TAILQ_NEXT(sc, sc_timerq);
391 syncache_drop(sc, NULL);
392 tcpstat.tcps_sc_stale++;
393 INP_UNLOCK(inp);
394 continue;
395 }
396 /*
397 * syncache_respond() may call back into the syncache to
398 * to modify another entry, so do not obtain the next
399 * entry on the timer chain until it has completed.
400 */
401 (void) syncache_respond(sc, NULL);
402 INP_UNLOCK(inp);
403 nsc = TAILQ_NEXT(sc, sc_timerq);
404 tcpstat.tcps_sc_retransmitted++;
405 TAILQ_REMOVE(&tcp_syncache.timerq[slot], sc, sc_timerq);
406 SYNCACHE_TIMEOUT(sc, slot + 1);
407 }
408 INP_INFO_RUNLOCK(&tcbinfo);
409 if (nsc != NULL)
410 callout_reset(&tcp_syncache.tt_timerq[slot],
411 nsc->sc_rxttime - ticks, syncache_timer, (void *)(slot));
412 splx(s);
413}
414
415/*
416 * Find an entry in the syncache.
417 */
418struct syncache *
419syncache_lookup(inc, schp)
420 struct in_conninfo *inc;
421 struct syncache_head **schp;
422{
423 struct syncache *sc;
424 struct syncache_head *sch;
425 int s;
426
427#ifdef INET6
428 if (inc->inc_isipv6) {
429 sch = &tcp_syncache.hashbase[
430 SYNCACHE_HASH6(inc, tcp_syncache.hashmask)];
431 *schp = sch;
432 s = splnet();
433 TAILQ_FOREACH(sc, &sch->sch_bucket, sc_hash) {
434 if (ENDPTS6_EQ(&inc->inc_ie, &sc->sc_inc.inc_ie)) {
435 splx(s);
436 return (sc);
437 }
438 }
439 splx(s);
440 } else
441#endif
442 {
443 sch = &tcp_syncache.hashbase[
444 SYNCACHE_HASH(inc, tcp_syncache.hashmask)];
445 *schp = sch;
446 s = splnet();
447 TAILQ_FOREACH(sc, &sch->sch_bucket, sc_hash) {
448#ifdef INET6
449 if (sc->sc_inc.inc_isipv6)
450 continue;
451#endif
452 if (ENDPTS_EQ(&inc->inc_ie, &sc->sc_inc.inc_ie)) {
453 splx(s);
454 return (sc);
455 }
456 }
457 splx(s);
458 }
459 return (NULL);
460}
461
462/*
463 * This function is called when we get a RST for a
464 * non-existent connection, so that we can see if the
465 * connection is in the syn cache. If it is, zap it.
466 */
467void
468syncache_chkrst(inc, th)
469 struct in_conninfo *inc;
470 struct tcphdr *th;
471{
472 struct syncache *sc;
473 struct syncache_head *sch;
474
475 sc = syncache_lookup(inc, &sch);
476 if (sc == NULL)
477 return;
478 /*
479 * If the RST bit is set, check the sequence number to see
480 * if this is a valid reset segment.
481 * RFC 793 page 37:
482 * In all states except SYN-SENT, all reset (RST) segments
483 * are validated by checking their SEQ-fields. A reset is
484 * valid if its sequence number is in the window.
485 *
486 * The sequence number in the reset segment is normally an
487 * echo of our outgoing acknowlegement numbers, but some hosts
488 * send a reset with the sequence number at the rightmost edge
489 * of our receive window, and we have to handle this case.
490 */
491 if (SEQ_GEQ(th->th_seq, sc->sc_irs) &&
492 SEQ_LEQ(th->th_seq, sc->sc_irs + sc->sc_wnd)) {
493 syncache_drop(sc, sch);
494 tcpstat.tcps_sc_reset++;
495 }
496}
497
498void
499syncache_badack(inc)
500 struct in_conninfo *inc;
501{
502 struct syncache *sc;
503 struct syncache_head *sch;
504
505 sc = syncache_lookup(inc, &sch);
506 if (sc != NULL) {
507 syncache_drop(sc, sch);
508 tcpstat.tcps_sc_badack++;
509 }
510}
511
512void
513syncache_unreach(inc, th)
514 struct in_conninfo *inc;
515 struct tcphdr *th;
516{
517 struct syncache *sc;
518 struct syncache_head *sch;
519
520 /* we are called at splnet() here */
521 sc = syncache_lookup(inc, &sch);
522 if (sc == NULL)
523 return;
524
525 /* If the sequence number != sc_iss, then it's a bogus ICMP msg */
526 if (ntohl(th->th_seq) != sc->sc_iss)
527 return;
528
529 /*
530 * If we've rertransmitted 3 times and this is our second error,
531 * we remove the entry. Otherwise, we allow it to continue on.
532 * This prevents us from incorrectly nuking an entry during a
533 * spurious network outage.
534 *
535 * See tcp_notify().
536 */
537 if ((sc->sc_flags & SCF_UNREACH) == 0 || sc->sc_rxtslot < 3) {
538 sc->sc_flags |= SCF_UNREACH;
539 return;
540 }
541 syncache_drop(sc, sch);
542 tcpstat.tcps_sc_unreach++;
543}
544
545/*
546 * Build a new TCP socket structure from a syncache entry.
547 */
548static struct socket *
549syncache_socket(sc, lso, m)
550 struct syncache *sc;
551 struct socket *lso;
552 struct mbuf *m;
553{
554 struct inpcb *inp = NULL;
555 struct socket *so;
556 struct tcpcb *tp;
557
558 /*
559 * Ok, create the full blown connection, and set things up
560 * as they would have been set up if we had created the
561 * connection when the SYN arrived. If we can't create
562 * the connection, abort it.
563 */
564 so = sonewconn(lso, SS_ISCONNECTED);
565 if (so == NULL) {
566 /*
567 * Drop the connection; we will send a RST if the peer
568 * retransmits the ACK,
569 */
570 tcpstat.tcps_listendrop++;
571 goto abort;
572 }
573#ifdef MAC
574 mac_set_socket_peer_from_mbuf(m, so);
575#endif
576
577 inp = sotoinpcb(so);
578
579 /*
580 * Insert new socket into hash list.
581 */
582 inp->inp_inc.inc_isipv6 = sc->sc_inc.inc_isipv6;
583#ifdef INET6
584 if (sc->sc_inc.inc_isipv6) {
585 inp->in6p_laddr = sc->sc_inc.inc6_laddr;
586 } else {
587 inp->inp_vflag &= ~INP_IPV6;
588 inp->inp_vflag |= INP_IPV4;
589#endif
590 inp->inp_laddr = sc->sc_inc.inc_laddr;
591#ifdef INET6
592 }
593#endif
594 inp->inp_lport = sc->sc_inc.inc_lport;
595 if (in_pcbinshash(inp) != 0) {
596 /*
597 * Undo the assignments above if we failed to
598 * put the PCB on the hash lists.
599 */
600#ifdef INET6
601 if (sc->sc_inc.inc_isipv6)
602 inp->in6p_laddr = in6addr_any;
603 else
604#endif
605 inp->inp_laddr.s_addr = INADDR_ANY;
606 inp->inp_lport = 0;
607 goto abort;
608 }
609#ifdef IPSEC
610 /* copy old policy into new socket's */
611 if (ipsec_copy_policy(sotoinpcb(lso)->inp_sp, inp->inp_sp))
612 printf("syncache_expand: could not copy policy\n");
613#endif
614#ifdef INET6
615 if (sc->sc_inc.inc_isipv6) {
616 struct inpcb *oinp = sotoinpcb(lso);
617 struct in6_addr laddr6;
618 struct sockaddr_in6 *sin6;
619 /*
620 * Inherit socket options from the listening socket.
621 * Note that in6p_inputopts are not (and should not be)
622 * copied, since it stores previously received options and is
623 * used to detect if each new option is different than the
624 * previous one and hence should be passed to a user.
625 * If we copied in6p_inputopts, a user would not be able to
626 * receive options just after calling the accept system call.
627 */
628 inp->inp_flags |= oinp->inp_flags & INP_CONTROLOPTS;
629 if (oinp->in6p_outputopts)
630 inp->in6p_outputopts =
631 ip6_copypktopts(oinp->in6p_outputopts, M_NOWAIT);
632 inp->in6p_route = sc->sc_route6;
633 sc->sc_route6.ro_rt = NULL;
634
635 MALLOC(sin6, struct sockaddr_in6 *, sizeof *sin6,
636 M_SONAME, M_NOWAIT | M_ZERO);
637 if (sin6 == NULL)
638 goto abort;
639 sin6->sin6_family = AF_INET6;
640 sin6->sin6_len = sizeof(*sin6);
641 sin6->sin6_addr = sc->sc_inc.inc6_faddr;
642 sin6->sin6_port = sc->sc_inc.inc_fport;
643 laddr6 = inp->in6p_laddr;
644 if (IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_laddr))
645 inp->in6p_laddr = sc->sc_inc.inc6_laddr;
646 if (in6_pcbconnect(inp, (struct sockaddr *)sin6, &thread0)) {
647 inp->in6p_laddr = laddr6;
648 FREE(sin6, M_SONAME);
649 goto abort;
650 }
651 FREE(sin6, M_SONAME);
652 } else
653#endif
654 {
655 struct in_addr laddr;
656 struct sockaddr_in *sin;
657
658 inp->inp_options = ip_srcroute();
659 if (inp->inp_options == NULL) {
660 inp->inp_options = sc->sc_ipopts;
661 sc->sc_ipopts = NULL;
662 }
663 inp->inp_route = sc->sc_route;
664 sc->sc_route.ro_rt = NULL;
665
666 MALLOC(sin, struct sockaddr_in *, sizeof *sin,
667 M_SONAME, M_NOWAIT | M_ZERO);
668 if (sin == NULL)
669 goto abort;
670 sin->sin_family = AF_INET;
671 sin->sin_len = sizeof(*sin);
672 sin->sin_addr = sc->sc_inc.inc_faddr;
673 sin->sin_port = sc->sc_inc.inc_fport;
674 bzero((caddr_t)sin->sin_zero, sizeof(sin->sin_zero));
675 laddr = inp->inp_laddr;
676 if (inp->inp_laddr.s_addr == INADDR_ANY)
677 inp->inp_laddr = sc->sc_inc.inc_laddr;
678 if (in_pcbconnect(inp, (struct sockaddr *)sin, &thread0)) {
679 inp->inp_laddr = laddr;
680 FREE(sin, M_SONAME);
681 goto abort;
682 }
683 FREE(sin, M_SONAME);
684 }
685
686 tp = intotcpcb(inp);
687 tp->t_state = TCPS_SYN_RECEIVED;
688 tp->iss = sc->sc_iss;
689 tp->irs = sc->sc_irs;
690 tcp_rcvseqinit(tp);
691 tcp_sendseqinit(tp);
692 tp->snd_wl1 = sc->sc_irs;
693 tp->rcv_up = sc->sc_irs + 1;
694 tp->rcv_wnd = sc->sc_wnd;
695 tp->rcv_adv += tp->rcv_wnd;
696
697 tp->t_flags = sototcpcb(lso)->t_flags & (TF_NOPUSH|TF_NODELAY);
698 if (sc->sc_flags & SCF_NOOPT)
699 tp->t_flags |= TF_NOOPT;
700 if (sc->sc_flags & SCF_WINSCALE) {
701 tp->t_flags |= TF_REQ_SCALE|TF_RCVD_SCALE;
702 tp->requested_s_scale = sc->sc_requested_s_scale;
703 tp->request_r_scale = sc->sc_request_r_scale;
704 }
705 if (sc->sc_flags & SCF_TIMESTAMP) {
706 tp->t_flags |= TF_REQ_TSTMP|TF_RCVD_TSTMP;
707 tp->ts_recent = sc->sc_tsrecent;
708 tp->ts_recent_age = ticks;
709 }
710 if (sc->sc_flags & SCF_CC) {
711 /*
712 * Initialization of the tcpcb for transaction;
713 * set SND.WND = SEG.WND,
714 * initialize CCsend and CCrecv.
715 */
716 tp->t_flags |= TF_REQ_CC|TF_RCVD_CC;
717 tp->cc_send = sc->sc_cc_send;
718 tp->cc_recv = sc->sc_cc_recv;
719 }
720
721 tcp_mss(tp, sc->sc_peer_mss);
722
723 /*
724 * If the SYN,ACK was retransmitted, reset cwnd to 1 segment.
725 */
726 if (sc->sc_rxtslot != 0)
727 tp->snd_cwnd = tp->t_maxseg;
728 callout_reset(tp->tt_keep, tcp_keepinit, tcp_timer_keep, tp);
729
730 tcpstat.tcps_accepts++;
731 return (so);
732
733abort:
734 if (so != NULL)
735 (void) soabort(so);
736 return (NULL);
737}
738
739/*
740 * This function gets called when we receive an ACK for a
741 * socket in the LISTEN state. We look up the connection
742 * in the syncache, and if its there, we pull it out of
743 * the cache and turn it into a full-blown connection in
744 * the SYN-RECEIVED state.
745 */
746int
747syncache_expand(inc, th, sop, m)
748 struct in_conninfo *inc;
749 struct tcphdr *th;
750 struct socket **sop;
751 struct mbuf *m;
752{
753 struct syncache *sc;
754 struct syncache_head *sch;
755 struct socket *so;
756
757 sc = syncache_lookup(inc, &sch);
758 if (sc == NULL) {
759 /*
760 * There is no syncache entry, so see if this ACK is
761 * a returning syncookie. To do this, first:
762 * A. See if this socket has had a syncache entry dropped in
763 * the past. We don't want to accept a bogus syncookie
764 * if we've never received a SYN.
765 * B. check that the syncookie is valid. If it is, then
766 * cobble up a fake syncache entry, and return.
767 */
768 if (!tcp_syncookies)
769 return (0);
770 sc = syncookie_lookup(inc, th, *sop);
771 if (sc == NULL)
772 return (0);
773 sch = NULL;
774 tcpstat.tcps_sc_recvcookie++;
775 }
776
777 /*
778 * If seg contains an ACK, but not for our SYN/ACK, send a RST.
779 */
780 if (th->th_ack != sc->sc_iss + 1)
781 return (0);
782
783 so = syncache_socket(sc, *sop, m);
784 if (so == NULL) {
785#if 0
786resetandabort:
787 /* XXXjlemon check this - is this correct? */
788 (void) tcp_respond(NULL, m, m, th,
789 th->th_seq + tlen, (tcp_seq)0, TH_RST|TH_ACK);
790#endif
791 m_freem(m); /* XXX only needed for above */
792 tcpstat.tcps_sc_aborted++;
793 } else {
794 sc->sc_flags |= SCF_KEEPROUTE;
795 tcpstat.tcps_sc_completed++;
796 }
797 if (sch == NULL)
798 syncache_free(sc);
799 else
800 syncache_drop(sc, sch);
801 *sop = so;
802 return (1);
803}
804
805/*
806 * Given a LISTEN socket and an inbound SYN request, add
807 * this to the syn cache, and send back a segment:
808 * <SEQ=ISS><ACK=RCV_NXT><CTL=SYN,ACK>
809 * to the source.
810 *
811 * IMPORTANT NOTE: We do _NOT_ ACK data that might accompany the SYN.
812 * Doing so would require that we hold onto the data and deliver it
813 * to the application. However, if we are the target of a SYN-flood
814 * DoS attack, an attacker could send data which would eventually
815 * consume all available buffer space if it were ACKed. By not ACKing
816 * the data, we avoid this DoS scenario.
817 */
818int
819syncache_add(inc, to, th, sop, m)
820 struct in_conninfo *inc;
821 struct tcpopt *to;
822 struct tcphdr *th;
823 struct socket **sop;
824 struct mbuf *m;
825{
826 struct tcpcb *tp;
827 struct socket *so;
828 struct syncache *sc = NULL;
829 struct syncache_head *sch;
830 struct mbuf *ipopts = NULL;
831 struct rmxp_tao *taop;
832 int i, s, win;
833
834 so = *sop;
835 tp = sototcpcb(so);
836
837 /*
838 * Remember the IP options, if any.
839 */
840#ifdef INET6
841 if (!inc->inc_isipv6)
842#endif
843 ipopts = ip_srcroute();
844
845 /*
846 * See if we already have an entry for this connection.
847 * If we do, resend the SYN,ACK, and reset the retransmit timer.
848 *
849 * XXX
850 * should the syncache be re-initialized with the contents
851 * of the new SYN here (which may have different options?)
852 */
853 sc = syncache_lookup(inc, &sch);
854 if (sc != NULL) {
855 tcpstat.tcps_sc_dupsyn++;
856 if (ipopts) {
857 /*
858 * If we were remembering a previous source route,
859 * forget it and use the new one we've been given.
860 */
861 if (sc->sc_ipopts)
862 (void) m_free(sc->sc_ipopts);
863 sc->sc_ipopts = ipopts;
864 }
865 /*
866 * Update timestamp if present.
867 */
868 if (sc->sc_flags & SCF_TIMESTAMP)
869 sc->sc_tsrecent = to->to_tsval;
870 /*
871 * PCB may have changed, pick up new values.
872 */
873 sc->sc_tp = tp;
874 sc->sc_inp_gencnt = tp->t_inpcb->inp_gencnt;
875 if (syncache_respond(sc, m) == 0) {
876 s = splnet();
877 TAILQ_REMOVE(&tcp_syncache.timerq[sc->sc_rxtslot],
878 sc, sc_timerq);
879 SYNCACHE_TIMEOUT(sc, sc->sc_rxtslot);
880 splx(s);
881 tcpstat.tcps_sndacks++;
882 tcpstat.tcps_sndtotal++;
883 }
884 *sop = NULL;
885 return (1);
886 }
887
888 sc = uma_zalloc(tcp_syncache.zone, M_NOWAIT);
889 if (sc == NULL) {
890 /*
891 * The zone allocator couldn't provide more entries.
892 * Treat this as if the cache was full; drop the oldest
893 * entry and insert the new one.
894 */
895 s = splnet();
896 for (i = SYNCACHE_MAXREXMTS; i >= 0; i--) {
897 sc = TAILQ_FIRST(&tcp_syncache.timerq[i]);
898 if (sc != NULL)
899 break;
900 }
901 sc->sc_tp->ts_recent = ticks;
902 syncache_drop(sc, NULL);
903 splx(s);
904 tcpstat.tcps_sc_zonefail++;
905 sc = uma_zalloc(tcp_syncache.zone, M_NOWAIT);
906 if (sc == NULL) {
907 if (ipopts)
908 (void) m_free(ipopts);
909 return (0);
910 }
911 }
912
913 /*
914 * Fill in the syncache values.
915 */
916 bzero(sc, sizeof(*sc));
917 sc->sc_tp = tp;
918 sc->sc_inp_gencnt = tp->t_inpcb->inp_gencnt;
919 sc->sc_ipopts = ipopts;
920 sc->sc_inc.inc_fport = inc->inc_fport;
921 sc->sc_inc.inc_lport = inc->inc_lport;
922#ifdef INET6
923 sc->sc_inc.inc_isipv6 = inc->inc_isipv6;
924 if (inc->inc_isipv6) {
925 sc->sc_inc.inc6_faddr = inc->inc6_faddr;
926 sc->sc_inc.inc6_laddr = inc->inc6_laddr;
927 sc->sc_route6.ro_rt = NULL;
928 } else
929#endif
930 {
931 sc->sc_inc.inc_faddr = inc->inc_faddr;
932 sc->sc_inc.inc_laddr = inc->inc_laddr;
933 sc->sc_route.ro_rt = NULL;
934 }
935 sc->sc_irs = th->th_seq;
936 if (tcp_syncookies)
937 sc->sc_iss = syncookie_generate(sc);
938 else
939 sc->sc_iss = arc4random();
940
941 /* Initial receive window: clip sbspace to [0 .. TCP_MAXWIN] */
942 win = sbspace(&so->so_rcv);
943 win = imax(win, 0);
944 win = imin(win, TCP_MAXWIN);
945 sc->sc_wnd = win;
946
947 sc->sc_flags = 0;
948 sc->sc_peer_mss = to->to_flags & TOF_MSS ? to->to_mss : 0;
949 if (tcp_do_rfc1323) {
950 /*
951 * A timestamp received in a SYN makes
952 * it ok to send timestamp requests and replies.
953 */
954 if (to->to_flags & TOF_TS) {
955 sc->sc_tsrecent = to->to_tsval;
956 sc->sc_flags |= SCF_TIMESTAMP;
957 }
958 if (to->to_flags & TOF_SCALE) {
959 int wscale = 0;
960
961 /* Compute proper scaling value from buffer space */
962 while (wscale < TCP_MAX_WINSHIFT &&
963 (TCP_MAXWIN << wscale) < so->so_rcv.sb_hiwat)
964 wscale++;
965 sc->sc_request_r_scale = wscale;
966 sc->sc_requested_s_scale = to->to_requested_s_scale;
967 sc->sc_flags |= SCF_WINSCALE;
968 }
969 }
970 if (tcp_do_rfc1644) {
971 /*
972 * A CC or CC.new option received in a SYN makes
973 * it ok to send CC in subsequent segments.
974 */
975 if (to->to_flags & (TOF_CC|TOF_CCNEW)) {
976 sc->sc_cc_recv = to->to_cc;
977 sc->sc_cc_send = CC_INC(tcp_ccgen);
978 sc->sc_flags |= SCF_CC;
979 }
980 }
981 if (tp->t_flags & TF_NOOPT)
982 sc->sc_flags = SCF_NOOPT;
983
984 /*
985 * XXX
986 * We have the option here of not doing TAO (even if the segment
987 * qualifies) and instead fall back to a normal 3WHS via the syncache.
988 * This allows us to apply synflood protection to TAO-qualifying SYNs
989 * also. However, there should be a hueristic to determine when to
990 * do this, and is not present at the moment.
991 */
992
993 /*
994 * Perform TAO test on incoming CC (SEG.CC) option, if any.
995 * - compare SEG.CC against cached CC from the same host, if any.
996 * - if SEG.CC > chached value, SYN must be new and is accepted
997 * immediately: save new CC in the cache, mark the socket
998 * connected, enter ESTABLISHED state, turn on flag to
999 * send a SYN in the next segment.
1000 * A virtual advertised window is set in rcv_adv to
1001 * initialize SWS prevention. Then enter normal segment
1002 * processing: drop SYN, process data and FIN.
1003 * - otherwise do a normal 3-way handshake.
1004 */
1005 taop = tcp_gettaocache(&sc->sc_inc);
1006 if ((to->to_flags & TOF_CC) != 0) {
1007 if (((tp->t_flags & TF_NOPUSH) != 0) &&
1008 sc->sc_flags & SCF_CC &&
1009 taop != NULL && taop->tao_cc != 0 &&
1010 CC_GT(to->to_cc, taop->tao_cc)) {
1011 sc->sc_rxtslot = 0;
1012 so = syncache_socket(sc, *sop, m);
1013 if (so != NULL) {
1014 sc->sc_flags |= SCF_KEEPROUTE;
1015 taop->tao_cc = to->to_cc;
1016 *sop = so;
1017 }
1018 syncache_free(sc);
1019 return (so != NULL);
1020 }
1021 } else {
1022 /*
1023 * No CC option, but maybe CC.NEW: invalidate cached value.
1024 */
1025 if (taop != NULL)
1026 taop->tao_cc = 0;
1027 }
1028 /*
1029 * TAO test failed or there was no CC option,
1030 * do a standard 3-way handshake.
1031 */
1032 if (syncache_respond(sc, m) == 0) {
1033 syncache_insert(sc, sch);
1034 tcpstat.tcps_sndacks++;
1035 tcpstat.tcps_sndtotal++;
1036 } else {
1037 syncache_free(sc);
1038 tcpstat.tcps_sc_dropped++;
1039 }
1040 *sop = NULL;
1041 return (1);
1042}
1043
1044static int
1045syncache_respond(sc, m)
1046 struct syncache *sc;
1047 struct mbuf *m;
1048{
1049 u_int8_t *optp;
1050 int optlen, error;
1051 u_int16_t tlen, hlen, mssopt;
1052 struct ip *ip = NULL;
1053 struct rtentry *rt;
1054 struct tcphdr *th;
1055#ifdef INET6
1056 struct ip6_hdr *ip6 = NULL;
1057#endif
1058
1059#ifdef INET6
1060 if (sc->sc_inc.inc_isipv6) {
1061 rt = tcp_rtlookup6(&sc->sc_inc);
1062 if (rt != NULL)
1063 mssopt = rt->rt_ifp->if_mtu -
1064 (sizeof(struct ip6_hdr) + sizeof(struct tcphdr));
1065 else
1066 mssopt = tcp_v6mssdflt;
1067 hlen = sizeof(struct ip6_hdr);
1068 } else
1069#endif
1070 {
1071 rt = tcp_rtlookup(&sc->sc_inc);
1072 if (rt != NULL)
1073 mssopt = rt->rt_ifp->if_mtu -
1074 (sizeof(struct ip) + sizeof(struct tcphdr));
1075 else
1076 mssopt = tcp_mssdflt;
1077 hlen = sizeof(struct ip);
1078 }
1079
1080 /* Compute the size of the TCP options. */
1081 if (sc->sc_flags & SCF_NOOPT) {
1082 optlen = 0;
1083 } else {
1084 optlen = TCPOLEN_MAXSEG +
1085 ((sc->sc_flags & SCF_WINSCALE) ? 4 : 0) +
1086 ((sc->sc_flags & SCF_TIMESTAMP) ? TCPOLEN_TSTAMP_APPA : 0) +
1087 ((sc->sc_flags & SCF_CC) ? TCPOLEN_CC_APPA * 2 : 0);
1088 }
1089 tlen = hlen + sizeof(struct tcphdr) + optlen;
1090
1091 /*
1092 * XXX
1093 * assume that the entire packet will fit in a header mbuf
1094 */
1095 KASSERT(max_linkhdr + tlen <= MHLEN, ("syncache: mbuf too small"));
1096
1097 /*
1098 * XXX shouldn't this reuse the mbuf if possible ?
1099 * Create the IP+TCP header from scratch.
1100 */
1101 if (m)
1102 m_freem(m);
1103
1104 m = m_gethdr(M_DONTWAIT, MT_HEADER);
1105 if (m == NULL)
1106 return (ENOBUFS);
1107 m->m_data += max_linkhdr;
1108 m->m_len = tlen;
1109 m->m_pkthdr.len = tlen;
1110 m->m_pkthdr.rcvif = NULL;
1111#ifdef MAC
1112 mac_create_mbuf_from_socket(sc->sc_tp->t_inpcb->inp_socket, m);
1113#endif
1114
1115#ifdef INET6
1116 if (sc->sc_inc.inc_isipv6) {
1117 ip6 = mtod(m, struct ip6_hdr *);
1118 ip6->ip6_vfc = IPV6_VERSION;
1119 ip6->ip6_nxt = IPPROTO_TCP;
1120 ip6->ip6_src = sc->sc_inc.inc6_laddr;
1121 ip6->ip6_dst = sc->sc_inc.inc6_faddr;
1122 ip6->ip6_plen = htons(tlen - hlen);
1123 /* ip6_hlim is set after checksum */
1124 /* ip6_flow = ??? */
1125
1126 th = (struct tcphdr *)(ip6 + 1);
1127 } else
1128#endif
1129 {
1130 ip = mtod(m, struct ip *);
1131 ip->ip_v = IPVERSION;
1132 ip->ip_hl = sizeof(struct ip) >> 2;
1133 ip->ip_len = tlen;
1134 ip->ip_id = 0;
1135 ip->ip_off = 0;
1136 ip->ip_sum = 0;
1137 ip->ip_p = IPPROTO_TCP;
1138 ip->ip_src = sc->sc_inc.inc_laddr;
1139 ip->ip_dst = sc->sc_inc.inc_faddr;
1140 ip->ip_ttl = sc->sc_tp->t_inpcb->inp_ip_ttl; /* XXX */
1141 ip->ip_tos = sc->sc_tp->t_inpcb->inp_ip_tos; /* XXX */
1142
1143 /*
1144 * See if we should do MTU discovery. Route lookups are expensive,
1145 * so we will only unset the DF bit if:
1146 *
1147 * 1) path_mtu_discovery is disabled
1148 * 2) the SCF_UNREACH flag has been set
1149 */
1150 if (path_mtu_discovery
1151 && ((sc->sc_flags & SCF_UNREACH) == 0)) {
1152 ip->ip_off |= IP_DF;
1153 }
1154
1155 th = (struct tcphdr *)(ip + 1);
1156 }
1157 th->th_sport = sc->sc_inc.inc_lport;
1158 th->th_dport = sc->sc_inc.inc_fport;
1159
1160 th->th_seq = htonl(sc->sc_iss);
1161 th->th_ack = htonl(sc->sc_irs + 1);
1162 th->th_off = (sizeof(struct tcphdr) + optlen) >> 2;
1163 th->th_x2 = 0;
1164 th->th_flags = TH_SYN|TH_ACK;
1165 th->th_win = htons(sc->sc_wnd);
1166 th->th_urp = 0;
1167
1168 /* Tack on the TCP options. */
1169 if (optlen == 0)
1170 goto no_options;
1171 optp = (u_int8_t *)(th + 1);
1172 *optp++ = TCPOPT_MAXSEG;
1173 *optp++ = TCPOLEN_MAXSEG;
1174 *optp++ = (mssopt >> 8) & 0xff;
1175 *optp++ = mssopt & 0xff;
1176
1177 if (sc->sc_flags & SCF_WINSCALE) {
1178 *((u_int32_t *)optp) = htonl(TCPOPT_NOP << 24 |
1179 TCPOPT_WINDOW << 16 | TCPOLEN_WINDOW << 8 |
1180 sc->sc_request_r_scale);
1181 optp += 4;
1182 }
1183
1184 if (sc->sc_flags & SCF_TIMESTAMP) {
1185 u_int32_t *lp = (u_int32_t *)(optp);
1186
1187 /* Form timestamp option as shown in appendix A of RFC 1323. */
1188 *lp++ = htonl(TCPOPT_TSTAMP_HDR);
1189 *lp++ = htonl(ticks);
1190 *lp = htonl(sc->sc_tsrecent);
1191 optp += TCPOLEN_TSTAMP_APPA;
1192 }
1193
1194 /*
1195 * Send CC and CC.echo if we received CC from our peer.
1196 */
1197 if (sc->sc_flags & SCF_CC) {
1198 u_int32_t *lp = (u_int32_t *)(optp);
1199
1200 *lp++ = htonl(TCPOPT_CC_HDR(TCPOPT_CC));
1201 *lp++ = htonl(sc->sc_cc_send);
1202 *lp++ = htonl(TCPOPT_CC_HDR(TCPOPT_CCECHO));
1203 *lp = htonl(sc->sc_cc_recv);
1204 optp += TCPOLEN_CC_APPA * 2;
1205 }
1206no_options:
1207
1208#ifdef INET6
1209 if (sc->sc_inc.inc_isipv6) {
1210 struct route_in6 *ro6 = &sc->sc_route6;
1211
1212 th->th_sum = 0;
1213 th->th_sum = in6_cksum(m, IPPROTO_TCP, hlen, tlen - hlen);
1214 ip6->ip6_hlim = in6_selecthlim(NULL,
1215 ro6->ro_rt ? ro6->ro_rt->rt_ifp : NULL);
1216 error = ip6_output(m, NULL, ro6, 0, NULL, NULL,
1217 sc->sc_tp->t_inpcb);
1218 } else
1219#endif
1220 {
1221 th->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
1222 htons(tlen - hlen + IPPROTO_TCP));
1223 m->m_pkthdr.csum_flags = CSUM_TCP;
1224 m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
1225 error = ip_output(m, sc->sc_ipopts, &sc->sc_route, 0, NULL,
1226 sc->sc_tp->t_inpcb);
1227 }
1228 return (error);
1229}
1230
1231/*
1232 * cookie layers:
1233 *
1234 * |. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .|
1235 * | peer iss |
1236 * | MD5(laddr,faddr,lport,fport,secret) |. . . . . . .|
1237 * | 0 |(A)| |
1238 * (A): peer mss index
1239 */
1240
1241/*
1242 * The values below are chosen to minimize the size of the tcp_secret
1243 * table, as well as providing roughly a 4 second lifetime for the cookie.
1244 */
1245
1246#define SYNCOOKIE_HASHSHIFT 2 /* log2(# of 32bit words from hash) */
1247#define SYNCOOKIE_WNDBITS 7 /* exposed bits for window indexing */
1248#define SYNCOOKIE_TIMESHIFT 5 /* scale ticks to window time units */
1249
1250#define SYNCOOKIE_HASHMASK ((1 << SYNCOOKIE_HASHSHIFT) - 1)
1251#define SYNCOOKIE_WNDMASK ((1 << SYNCOOKIE_WNDBITS) - 1)
1252#define SYNCOOKIE_NSECRETS (1 << (SYNCOOKIE_WNDBITS - SYNCOOKIE_HASHSHIFT))
1253#define SYNCOOKIE_TIMEOUT \
1254 (hz * (1 << SYNCOOKIE_WNDBITS) / (1 << SYNCOOKIE_TIMESHIFT))
1255#define SYNCOOKIE_DATAMASK ((3 << SYNCOOKIE_WNDBITS) | SYNCOOKIE_WNDMASK)
1256
1257static struct {
1258 u_int32_t ts_secbits;
1259 u_int ts_expire;
1260} tcp_secret[SYNCOOKIE_NSECRETS];
1261
1262static int tcp_msstab[] = { 0, 536, 1460, 8960 };
1263
1264static MD5_CTX syn_ctx;
1265
1266#define MD5Add(v) MD5Update(&syn_ctx, (u_char *)&v, sizeof(v))
1267
1268/*
1269 * Consider the problem of a recreated (and retransmitted) cookie. If the
1270 * original SYN was accepted, the connection is established. The second
1271 * SYN is inflight, and if it arrives with an ISN that falls within the
1272 * receive window, the connection is killed.
1273 *
1274 * However, since cookies have other problems, this may not be worth
1275 * worrying about.
1276 */
1277
1278static u_int32_t
1279syncookie_generate(struct syncache *sc)
1280{
1281 u_int32_t md5_buffer[4];
1282 u_int32_t data;
1283 int wnd, idx;
1284
1285 wnd = ((ticks << SYNCOOKIE_TIMESHIFT) / hz) & SYNCOOKIE_WNDMASK;
1286 idx = wnd >> SYNCOOKIE_HASHSHIFT;
1287 if (tcp_secret[idx].ts_expire < ticks) {
1288 tcp_secret[idx].ts_secbits = arc4random();
1289 tcp_secret[idx].ts_expire = ticks + SYNCOOKIE_TIMEOUT;
1290 }
1291 for (data = sizeof(tcp_msstab) / sizeof(int) - 1; data > 0; data--)
1292 if (tcp_msstab[data] <= sc->sc_peer_mss)
1293 break;
1294 data = (data << SYNCOOKIE_WNDBITS) | wnd;
1295 data ^= sc->sc_irs; /* peer's iss */
1296 MD5Init(&syn_ctx);
1297#ifdef INET6
1298 if (sc->sc_inc.inc_isipv6) {
1299 MD5Add(sc->sc_inc.inc6_laddr);
1300 MD5Add(sc->sc_inc.inc6_faddr);
1301 } else
1302#endif
1303 {
1304 MD5Add(sc->sc_inc.inc_laddr);
1305 MD5Add(sc->sc_inc.inc_faddr);
1306 }
1307 MD5Add(sc->sc_inc.inc_lport);
1308 MD5Add(sc->sc_inc.inc_fport);
1309 MD5Add(tcp_secret[idx].ts_secbits);
1310 MD5Final((u_char *)&md5_buffer, &syn_ctx);
1311 data ^= (md5_buffer[wnd & SYNCOOKIE_HASHMASK] & ~SYNCOOKIE_WNDMASK);
1312 return (data);
1313}
1314
1315static struct syncache *
1316syncookie_lookup(inc, th, so)
1317 struct in_conninfo *inc;
1318 struct tcphdr *th;
1319 struct socket *so;
1320{
1321 u_int32_t md5_buffer[4];
1322 struct syncache *sc;
1323 u_int32_t data;
1324 int wnd, idx;
1325
1326 data = (th->th_ack - 1) ^ (th->th_seq - 1); /* remove ISS */
1327 wnd = data & SYNCOOKIE_WNDMASK;
1328 idx = wnd >> SYNCOOKIE_HASHSHIFT;
1329 if (tcp_secret[idx].ts_expire < ticks ||
1330 sototcpcb(so)->ts_recent + SYNCOOKIE_TIMEOUT < ticks)
1331 return (NULL);
1332 MD5Init(&syn_ctx);
1333#ifdef INET6
1334 if (inc->inc_isipv6) {
1335 MD5Add(inc->inc6_laddr);
1336 MD5Add(inc->inc6_faddr);
1337 } else
1338#endif
1339 {
1340 MD5Add(inc->inc_laddr);
1341 MD5Add(inc->inc_faddr);
1342 }
1343 MD5Add(inc->inc_lport);
1344 MD5Add(inc->inc_fport);
1345 MD5Add(tcp_secret[idx].ts_secbits);
1346 MD5Final((u_char *)&md5_buffer, &syn_ctx);
1347 data ^= md5_buffer[wnd & SYNCOOKIE_HASHMASK];
1348 if ((data & ~SYNCOOKIE_DATAMASK) != 0)
1349 return (NULL);
1350 data = data >> SYNCOOKIE_WNDBITS;
1351
1352 sc = uma_zalloc(tcp_syncache.zone, M_NOWAIT);
1353 if (sc == NULL)
1354 return (NULL);
1355 /*
1356 * Fill in the syncache values.
1357 * XXX duplicate code from syncache_add
1358 */
1359 sc->sc_ipopts = NULL;
1360 sc->sc_inc.inc_fport = inc->inc_fport;
1361 sc->sc_inc.inc_lport = inc->inc_lport;
1362#ifdef INET6
1363 sc->sc_inc.inc_isipv6 = inc->inc_isipv6;
1364 if (inc->inc_isipv6) {
1365 sc->sc_inc.inc6_faddr = inc->inc6_faddr;
1366 sc->sc_inc.inc6_laddr = inc->inc6_laddr;
1367 sc->sc_route6.ro_rt = NULL;
1368 } else
1369#endif
1370 {
1371 sc->sc_inc.inc_faddr = inc->inc_faddr;
1372 sc->sc_inc.inc_laddr = inc->inc_laddr;
1373 sc->sc_route.ro_rt = NULL;
1374 }
1375 sc->sc_irs = th->th_seq - 1;
1376 sc->sc_iss = th->th_ack - 1;
1377 wnd = sbspace(&so->so_rcv);
1378 wnd = imax(wnd, 0);
1379 wnd = imin(wnd, TCP_MAXWIN);
1380 sc->sc_wnd = wnd;
1381 sc->sc_flags = 0;
1382 sc->sc_rxtslot = 0;
1383 sc->sc_peer_mss = tcp_msstab[data];
1384 return (sc);
1385}
190} while (0)
191
192static void
193syncache_free(struct syncache *sc)
194{
195 struct rtentry *rt;
196
197 if (sc->sc_ipopts)
198 (void) m_free(sc->sc_ipopts);
199#ifdef INET6
200 if (sc->sc_inc.inc_isipv6)
201 rt = sc->sc_route6.ro_rt;
202 else
203#endif
204 rt = sc->sc_route.ro_rt;
205 if (rt != NULL) {
206 /*
207 * If this is the only reference to a protocol cloned
208 * route, remove it immediately.
209 */
210 if (rt->rt_flags & RTF_WASCLONED &&
211 (sc->sc_flags & SCF_KEEPROUTE) == 0 &&
212 rt->rt_refcnt == 1)
213 rtrequest(RTM_DELETE, rt_key(rt),
214 rt->rt_gateway, rt_mask(rt),
215 rt->rt_flags, NULL);
216 RTFREE(rt);
217 }
218 uma_zfree(tcp_syncache.zone, sc);
219}
220
221void
222syncache_init(void)
223{
224 int i;
225
226 tcp_syncache.cache_count = 0;
227 tcp_syncache.hashsize = TCP_SYNCACHE_HASHSIZE;
228 tcp_syncache.bucket_limit = TCP_SYNCACHE_BUCKETLIMIT;
229 tcp_syncache.cache_limit =
230 tcp_syncache.hashsize * tcp_syncache.bucket_limit;
231 tcp_syncache.rexmt_limit = SYNCACHE_MAXREXMTS;
232 tcp_syncache.next_reseed = 0;
233 tcp_syncache.hash_secret = arc4random();
234
235 TUNABLE_INT_FETCH("net.inet.tcp.syncache.hashsize",
236 &tcp_syncache.hashsize);
237 TUNABLE_INT_FETCH("net.inet.tcp.syncache.cachelimit",
238 &tcp_syncache.cache_limit);
239 TUNABLE_INT_FETCH("net.inet.tcp.syncache.bucketlimit",
240 &tcp_syncache.bucket_limit);
241 if (!powerof2(tcp_syncache.hashsize)) {
242 printf("WARNING: syncache hash size is not a power of 2.\n");
243 tcp_syncache.hashsize = 512; /* safe default */
244 }
245 tcp_syncache.hashmask = tcp_syncache.hashsize - 1;
246
247 /* Allocate the hash table. */
248 MALLOC(tcp_syncache.hashbase, struct syncache_head *,
249 tcp_syncache.hashsize * sizeof(struct syncache_head),
250 M_SYNCACHE, M_WAITOK);
251
252 /* Initialize the hash buckets. */
253 for (i = 0; i < tcp_syncache.hashsize; i++) {
254 TAILQ_INIT(&tcp_syncache.hashbase[i].sch_bucket);
255 tcp_syncache.hashbase[i].sch_length = 0;
256 }
257
258 /* Initialize the timer queues. */
259 for (i = 0; i <= SYNCACHE_MAXREXMTS; i++) {
260 TAILQ_INIT(&tcp_syncache.timerq[i]);
261 callout_init(&tcp_syncache.tt_timerq[i], 0);
262 }
263
264 /*
265 * Allocate the syncache entries. Allow the zone to allocate one
266 * more entry than cache limit, so a new entry can bump out an
267 * older one.
268 */
269 tcp_syncache.cache_limit -= 1;
270 tcp_syncache.zone = uma_zcreate("syncache", sizeof(struct syncache),
271 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
272 uma_zone_set_max(tcp_syncache.zone, tcp_syncache.cache_limit);
273}
274
275static void
276syncache_insert(sc, sch)
277 struct syncache *sc;
278 struct syncache_head *sch;
279{
280 struct syncache *sc2;
281 int s, i;
282
283 /*
284 * Make sure that we don't overflow the per-bucket
285 * limit or the total cache size limit.
286 */
287 s = splnet();
288 if (sch->sch_length >= tcp_syncache.bucket_limit) {
289 /*
290 * The bucket is full, toss the oldest element.
291 */
292 sc2 = TAILQ_FIRST(&sch->sch_bucket);
293 sc2->sc_tp->ts_recent = ticks;
294 syncache_drop(sc2, sch);
295 tcpstat.tcps_sc_bucketoverflow++;
296 } else if (tcp_syncache.cache_count >= tcp_syncache.cache_limit) {
297 /*
298 * The cache is full. Toss the oldest entry in the
299 * entire cache. This is the front entry in the
300 * first non-empty timer queue with the largest
301 * timeout value.
302 */
303 for (i = SYNCACHE_MAXREXMTS; i >= 0; i--) {
304 sc2 = TAILQ_FIRST(&tcp_syncache.timerq[i]);
305 if (sc2 != NULL)
306 break;
307 }
308 sc2->sc_tp->ts_recent = ticks;
309 syncache_drop(sc2, NULL);
310 tcpstat.tcps_sc_cacheoverflow++;
311 }
312
313 /* Initialize the entry's timer. */
314 SYNCACHE_TIMEOUT(sc, 0);
315
316 /* Put it into the bucket. */
317 TAILQ_INSERT_TAIL(&sch->sch_bucket, sc, sc_hash);
318 sch->sch_length++;
319 tcp_syncache.cache_count++;
320 tcpstat.tcps_sc_added++;
321 splx(s);
322}
323
324static void
325syncache_drop(sc, sch)
326 struct syncache *sc;
327 struct syncache_head *sch;
328{
329 int s;
330
331 if (sch == NULL) {
332#ifdef INET6
333 if (sc->sc_inc.inc_isipv6) {
334 sch = &tcp_syncache.hashbase[
335 SYNCACHE_HASH6(&sc->sc_inc, tcp_syncache.hashmask)];
336 } else
337#endif
338 {
339 sch = &tcp_syncache.hashbase[
340 SYNCACHE_HASH(&sc->sc_inc, tcp_syncache.hashmask)];
341 }
342 }
343
344 s = splnet();
345
346 TAILQ_REMOVE(&sch->sch_bucket, sc, sc_hash);
347 sch->sch_length--;
348 tcp_syncache.cache_count--;
349
350 TAILQ_REMOVE(&tcp_syncache.timerq[sc->sc_rxtslot], sc, sc_timerq);
351 if (TAILQ_EMPTY(&tcp_syncache.timerq[sc->sc_rxtslot]))
352 callout_stop(&tcp_syncache.tt_timerq[sc->sc_rxtslot]);
353 splx(s);
354
355 syncache_free(sc);
356}
357
358/*
359 * Walk the timer queues, looking for SYN,ACKs that need to be retransmitted.
360 * If we have retransmitted an entry the maximum number of times, expire it.
361 */
362static void
363syncache_timer(xslot)
364 void *xslot;
365{
366 intptr_t slot = (intptr_t)xslot;
367 struct syncache *sc, *nsc;
368 struct inpcb *inp;
369 int s;
370
371 s = splnet();
372 if (callout_pending(&tcp_syncache.tt_timerq[slot]) ||
373 !callout_active(&tcp_syncache.tt_timerq[slot])) {
374 splx(s);
375 return;
376 }
377 callout_deactivate(&tcp_syncache.tt_timerq[slot]);
378
379 nsc = TAILQ_FIRST(&tcp_syncache.timerq[slot]);
380 INP_INFO_RLOCK(&tcbinfo);
381 while (nsc != NULL) {
382 if (ticks < nsc->sc_rxttime)
383 break;
384 sc = nsc;
385 inp = sc->sc_tp->t_inpcb;
386 INP_LOCK(inp);
387 if (slot == SYNCACHE_MAXREXMTS ||
388 slot >= tcp_syncache.rexmt_limit ||
389 inp->inp_gencnt != sc->sc_inp_gencnt) {
390 nsc = TAILQ_NEXT(sc, sc_timerq);
391 syncache_drop(sc, NULL);
392 tcpstat.tcps_sc_stale++;
393 INP_UNLOCK(inp);
394 continue;
395 }
396 /*
397 * syncache_respond() may call back into the syncache to
398 * to modify another entry, so do not obtain the next
399 * entry on the timer chain until it has completed.
400 */
401 (void) syncache_respond(sc, NULL);
402 INP_UNLOCK(inp);
403 nsc = TAILQ_NEXT(sc, sc_timerq);
404 tcpstat.tcps_sc_retransmitted++;
405 TAILQ_REMOVE(&tcp_syncache.timerq[slot], sc, sc_timerq);
406 SYNCACHE_TIMEOUT(sc, slot + 1);
407 }
408 INP_INFO_RUNLOCK(&tcbinfo);
409 if (nsc != NULL)
410 callout_reset(&tcp_syncache.tt_timerq[slot],
411 nsc->sc_rxttime - ticks, syncache_timer, (void *)(slot));
412 splx(s);
413}
414
415/*
416 * Find an entry in the syncache.
417 */
418struct syncache *
419syncache_lookup(inc, schp)
420 struct in_conninfo *inc;
421 struct syncache_head **schp;
422{
423 struct syncache *sc;
424 struct syncache_head *sch;
425 int s;
426
427#ifdef INET6
428 if (inc->inc_isipv6) {
429 sch = &tcp_syncache.hashbase[
430 SYNCACHE_HASH6(inc, tcp_syncache.hashmask)];
431 *schp = sch;
432 s = splnet();
433 TAILQ_FOREACH(sc, &sch->sch_bucket, sc_hash) {
434 if (ENDPTS6_EQ(&inc->inc_ie, &sc->sc_inc.inc_ie)) {
435 splx(s);
436 return (sc);
437 }
438 }
439 splx(s);
440 } else
441#endif
442 {
443 sch = &tcp_syncache.hashbase[
444 SYNCACHE_HASH(inc, tcp_syncache.hashmask)];
445 *schp = sch;
446 s = splnet();
447 TAILQ_FOREACH(sc, &sch->sch_bucket, sc_hash) {
448#ifdef INET6
449 if (sc->sc_inc.inc_isipv6)
450 continue;
451#endif
452 if (ENDPTS_EQ(&inc->inc_ie, &sc->sc_inc.inc_ie)) {
453 splx(s);
454 return (sc);
455 }
456 }
457 splx(s);
458 }
459 return (NULL);
460}
461
462/*
463 * This function is called when we get a RST for a
464 * non-existent connection, so that we can see if the
465 * connection is in the syn cache. If it is, zap it.
466 */
467void
468syncache_chkrst(inc, th)
469 struct in_conninfo *inc;
470 struct tcphdr *th;
471{
472 struct syncache *sc;
473 struct syncache_head *sch;
474
475 sc = syncache_lookup(inc, &sch);
476 if (sc == NULL)
477 return;
478 /*
479 * If the RST bit is set, check the sequence number to see
480 * if this is a valid reset segment.
481 * RFC 793 page 37:
482 * In all states except SYN-SENT, all reset (RST) segments
483 * are validated by checking their SEQ-fields. A reset is
484 * valid if its sequence number is in the window.
485 *
486 * The sequence number in the reset segment is normally an
487 * echo of our outgoing acknowlegement numbers, but some hosts
488 * send a reset with the sequence number at the rightmost edge
489 * of our receive window, and we have to handle this case.
490 */
491 if (SEQ_GEQ(th->th_seq, sc->sc_irs) &&
492 SEQ_LEQ(th->th_seq, sc->sc_irs + sc->sc_wnd)) {
493 syncache_drop(sc, sch);
494 tcpstat.tcps_sc_reset++;
495 }
496}
497
498void
499syncache_badack(inc)
500 struct in_conninfo *inc;
501{
502 struct syncache *sc;
503 struct syncache_head *sch;
504
505 sc = syncache_lookup(inc, &sch);
506 if (sc != NULL) {
507 syncache_drop(sc, sch);
508 tcpstat.tcps_sc_badack++;
509 }
510}
511
512void
513syncache_unreach(inc, th)
514 struct in_conninfo *inc;
515 struct tcphdr *th;
516{
517 struct syncache *sc;
518 struct syncache_head *sch;
519
520 /* we are called at splnet() here */
521 sc = syncache_lookup(inc, &sch);
522 if (sc == NULL)
523 return;
524
525 /* If the sequence number != sc_iss, then it's a bogus ICMP msg */
526 if (ntohl(th->th_seq) != sc->sc_iss)
527 return;
528
529 /*
530 * If we've rertransmitted 3 times and this is our second error,
531 * we remove the entry. Otherwise, we allow it to continue on.
532 * This prevents us from incorrectly nuking an entry during a
533 * spurious network outage.
534 *
535 * See tcp_notify().
536 */
537 if ((sc->sc_flags & SCF_UNREACH) == 0 || sc->sc_rxtslot < 3) {
538 sc->sc_flags |= SCF_UNREACH;
539 return;
540 }
541 syncache_drop(sc, sch);
542 tcpstat.tcps_sc_unreach++;
543}
544
545/*
546 * Build a new TCP socket structure from a syncache entry.
547 */
548static struct socket *
549syncache_socket(sc, lso, m)
550 struct syncache *sc;
551 struct socket *lso;
552 struct mbuf *m;
553{
554 struct inpcb *inp = NULL;
555 struct socket *so;
556 struct tcpcb *tp;
557
558 /*
559 * Ok, create the full blown connection, and set things up
560 * as they would have been set up if we had created the
561 * connection when the SYN arrived. If we can't create
562 * the connection, abort it.
563 */
564 so = sonewconn(lso, SS_ISCONNECTED);
565 if (so == NULL) {
566 /*
567 * Drop the connection; we will send a RST if the peer
568 * retransmits the ACK,
569 */
570 tcpstat.tcps_listendrop++;
571 goto abort;
572 }
573#ifdef MAC
574 mac_set_socket_peer_from_mbuf(m, so);
575#endif
576
577 inp = sotoinpcb(so);
578
579 /*
580 * Insert new socket into hash list.
581 */
582 inp->inp_inc.inc_isipv6 = sc->sc_inc.inc_isipv6;
583#ifdef INET6
584 if (sc->sc_inc.inc_isipv6) {
585 inp->in6p_laddr = sc->sc_inc.inc6_laddr;
586 } else {
587 inp->inp_vflag &= ~INP_IPV6;
588 inp->inp_vflag |= INP_IPV4;
589#endif
590 inp->inp_laddr = sc->sc_inc.inc_laddr;
591#ifdef INET6
592 }
593#endif
594 inp->inp_lport = sc->sc_inc.inc_lport;
595 if (in_pcbinshash(inp) != 0) {
596 /*
597 * Undo the assignments above if we failed to
598 * put the PCB on the hash lists.
599 */
600#ifdef INET6
601 if (sc->sc_inc.inc_isipv6)
602 inp->in6p_laddr = in6addr_any;
603 else
604#endif
605 inp->inp_laddr.s_addr = INADDR_ANY;
606 inp->inp_lport = 0;
607 goto abort;
608 }
609#ifdef IPSEC
610 /* copy old policy into new socket's */
611 if (ipsec_copy_policy(sotoinpcb(lso)->inp_sp, inp->inp_sp))
612 printf("syncache_expand: could not copy policy\n");
613#endif
614#ifdef INET6
615 if (sc->sc_inc.inc_isipv6) {
616 struct inpcb *oinp = sotoinpcb(lso);
617 struct in6_addr laddr6;
618 struct sockaddr_in6 *sin6;
619 /*
620 * Inherit socket options from the listening socket.
621 * Note that in6p_inputopts are not (and should not be)
622 * copied, since it stores previously received options and is
623 * used to detect if each new option is different than the
624 * previous one and hence should be passed to a user.
625 * If we copied in6p_inputopts, a user would not be able to
626 * receive options just after calling the accept system call.
627 */
628 inp->inp_flags |= oinp->inp_flags & INP_CONTROLOPTS;
629 if (oinp->in6p_outputopts)
630 inp->in6p_outputopts =
631 ip6_copypktopts(oinp->in6p_outputopts, M_NOWAIT);
632 inp->in6p_route = sc->sc_route6;
633 sc->sc_route6.ro_rt = NULL;
634
635 MALLOC(sin6, struct sockaddr_in6 *, sizeof *sin6,
636 M_SONAME, M_NOWAIT | M_ZERO);
637 if (sin6 == NULL)
638 goto abort;
639 sin6->sin6_family = AF_INET6;
640 sin6->sin6_len = sizeof(*sin6);
641 sin6->sin6_addr = sc->sc_inc.inc6_faddr;
642 sin6->sin6_port = sc->sc_inc.inc_fport;
643 laddr6 = inp->in6p_laddr;
644 if (IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_laddr))
645 inp->in6p_laddr = sc->sc_inc.inc6_laddr;
646 if (in6_pcbconnect(inp, (struct sockaddr *)sin6, &thread0)) {
647 inp->in6p_laddr = laddr6;
648 FREE(sin6, M_SONAME);
649 goto abort;
650 }
651 FREE(sin6, M_SONAME);
652 } else
653#endif
654 {
655 struct in_addr laddr;
656 struct sockaddr_in *sin;
657
658 inp->inp_options = ip_srcroute();
659 if (inp->inp_options == NULL) {
660 inp->inp_options = sc->sc_ipopts;
661 sc->sc_ipopts = NULL;
662 }
663 inp->inp_route = sc->sc_route;
664 sc->sc_route.ro_rt = NULL;
665
666 MALLOC(sin, struct sockaddr_in *, sizeof *sin,
667 M_SONAME, M_NOWAIT | M_ZERO);
668 if (sin == NULL)
669 goto abort;
670 sin->sin_family = AF_INET;
671 sin->sin_len = sizeof(*sin);
672 sin->sin_addr = sc->sc_inc.inc_faddr;
673 sin->sin_port = sc->sc_inc.inc_fport;
674 bzero((caddr_t)sin->sin_zero, sizeof(sin->sin_zero));
675 laddr = inp->inp_laddr;
676 if (inp->inp_laddr.s_addr == INADDR_ANY)
677 inp->inp_laddr = sc->sc_inc.inc_laddr;
678 if (in_pcbconnect(inp, (struct sockaddr *)sin, &thread0)) {
679 inp->inp_laddr = laddr;
680 FREE(sin, M_SONAME);
681 goto abort;
682 }
683 FREE(sin, M_SONAME);
684 }
685
686 tp = intotcpcb(inp);
687 tp->t_state = TCPS_SYN_RECEIVED;
688 tp->iss = sc->sc_iss;
689 tp->irs = sc->sc_irs;
690 tcp_rcvseqinit(tp);
691 tcp_sendseqinit(tp);
692 tp->snd_wl1 = sc->sc_irs;
693 tp->rcv_up = sc->sc_irs + 1;
694 tp->rcv_wnd = sc->sc_wnd;
695 tp->rcv_adv += tp->rcv_wnd;
696
697 tp->t_flags = sototcpcb(lso)->t_flags & (TF_NOPUSH|TF_NODELAY);
698 if (sc->sc_flags & SCF_NOOPT)
699 tp->t_flags |= TF_NOOPT;
700 if (sc->sc_flags & SCF_WINSCALE) {
701 tp->t_flags |= TF_REQ_SCALE|TF_RCVD_SCALE;
702 tp->requested_s_scale = sc->sc_requested_s_scale;
703 tp->request_r_scale = sc->sc_request_r_scale;
704 }
705 if (sc->sc_flags & SCF_TIMESTAMP) {
706 tp->t_flags |= TF_REQ_TSTMP|TF_RCVD_TSTMP;
707 tp->ts_recent = sc->sc_tsrecent;
708 tp->ts_recent_age = ticks;
709 }
710 if (sc->sc_flags & SCF_CC) {
711 /*
712 * Initialization of the tcpcb for transaction;
713 * set SND.WND = SEG.WND,
714 * initialize CCsend and CCrecv.
715 */
716 tp->t_flags |= TF_REQ_CC|TF_RCVD_CC;
717 tp->cc_send = sc->sc_cc_send;
718 tp->cc_recv = sc->sc_cc_recv;
719 }
720
721 tcp_mss(tp, sc->sc_peer_mss);
722
723 /*
724 * If the SYN,ACK was retransmitted, reset cwnd to 1 segment.
725 */
726 if (sc->sc_rxtslot != 0)
727 tp->snd_cwnd = tp->t_maxseg;
728 callout_reset(tp->tt_keep, tcp_keepinit, tcp_timer_keep, tp);
729
730 tcpstat.tcps_accepts++;
731 return (so);
732
733abort:
734 if (so != NULL)
735 (void) soabort(so);
736 return (NULL);
737}
738
739/*
740 * This function gets called when we receive an ACK for a
741 * socket in the LISTEN state. We look up the connection
742 * in the syncache, and if its there, we pull it out of
743 * the cache and turn it into a full-blown connection in
744 * the SYN-RECEIVED state.
745 */
746int
747syncache_expand(inc, th, sop, m)
748 struct in_conninfo *inc;
749 struct tcphdr *th;
750 struct socket **sop;
751 struct mbuf *m;
752{
753 struct syncache *sc;
754 struct syncache_head *sch;
755 struct socket *so;
756
757 sc = syncache_lookup(inc, &sch);
758 if (sc == NULL) {
759 /*
760 * There is no syncache entry, so see if this ACK is
761 * a returning syncookie. To do this, first:
762 * A. See if this socket has had a syncache entry dropped in
763 * the past. We don't want to accept a bogus syncookie
764 * if we've never received a SYN.
765 * B. check that the syncookie is valid. If it is, then
766 * cobble up a fake syncache entry, and return.
767 */
768 if (!tcp_syncookies)
769 return (0);
770 sc = syncookie_lookup(inc, th, *sop);
771 if (sc == NULL)
772 return (0);
773 sch = NULL;
774 tcpstat.tcps_sc_recvcookie++;
775 }
776
777 /*
778 * If seg contains an ACK, but not for our SYN/ACK, send a RST.
779 */
780 if (th->th_ack != sc->sc_iss + 1)
781 return (0);
782
783 so = syncache_socket(sc, *sop, m);
784 if (so == NULL) {
785#if 0
786resetandabort:
787 /* XXXjlemon check this - is this correct? */
788 (void) tcp_respond(NULL, m, m, th,
789 th->th_seq + tlen, (tcp_seq)0, TH_RST|TH_ACK);
790#endif
791 m_freem(m); /* XXX only needed for above */
792 tcpstat.tcps_sc_aborted++;
793 } else {
794 sc->sc_flags |= SCF_KEEPROUTE;
795 tcpstat.tcps_sc_completed++;
796 }
797 if (sch == NULL)
798 syncache_free(sc);
799 else
800 syncache_drop(sc, sch);
801 *sop = so;
802 return (1);
803}
804
805/*
806 * Given a LISTEN socket and an inbound SYN request, add
807 * this to the syn cache, and send back a segment:
808 * <SEQ=ISS><ACK=RCV_NXT><CTL=SYN,ACK>
809 * to the source.
810 *
811 * IMPORTANT NOTE: We do _NOT_ ACK data that might accompany the SYN.
812 * Doing so would require that we hold onto the data and deliver it
813 * to the application. However, if we are the target of a SYN-flood
814 * DoS attack, an attacker could send data which would eventually
815 * consume all available buffer space if it were ACKed. By not ACKing
816 * the data, we avoid this DoS scenario.
817 */
818int
819syncache_add(inc, to, th, sop, m)
820 struct in_conninfo *inc;
821 struct tcpopt *to;
822 struct tcphdr *th;
823 struct socket **sop;
824 struct mbuf *m;
825{
826 struct tcpcb *tp;
827 struct socket *so;
828 struct syncache *sc = NULL;
829 struct syncache_head *sch;
830 struct mbuf *ipopts = NULL;
831 struct rmxp_tao *taop;
832 int i, s, win;
833
834 so = *sop;
835 tp = sototcpcb(so);
836
837 /*
838 * Remember the IP options, if any.
839 */
840#ifdef INET6
841 if (!inc->inc_isipv6)
842#endif
843 ipopts = ip_srcroute();
844
845 /*
846 * See if we already have an entry for this connection.
847 * If we do, resend the SYN,ACK, and reset the retransmit timer.
848 *
849 * XXX
850 * should the syncache be re-initialized with the contents
851 * of the new SYN here (which may have different options?)
852 */
853 sc = syncache_lookup(inc, &sch);
854 if (sc != NULL) {
855 tcpstat.tcps_sc_dupsyn++;
856 if (ipopts) {
857 /*
858 * If we were remembering a previous source route,
859 * forget it and use the new one we've been given.
860 */
861 if (sc->sc_ipopts)
862 (void) m_free(sc->sc_ipopts);
863 sc->sc_ipopts = ipopts;
864 }
865 /*
866 * Update timestamp if present.
867 */
868 if (sc->sc_flags & SCF_TIMESTAMP)
869 sc->sc_tsrecent = to->to_tsval;
870 /*
871 * PCB may have changed, pick up new values.
872 */
873 sc->sc_tp = tp;
874 sc->sc_inp_gencnt = tp->t_inpcb->inp_gencnt;
875 if (syncache_respond(sc, m) == 0) {
876 s = splnet();
877 TAILQ_REMOVE(&tcp_syncache.timerq[sc->sc_rxtslot],
878 sc, sc_timerq);
879 SYNCACHE_TIMEOUT(sc, sc->sc_rxtslot);
880 splx(s);
881 tcpstat.tcps_sndacks++;
882 tcpstat.tcps_sndtotal++;
883 }
884 *sop = NULL;
885 return (1);
886 }
887
888 sc = uma_zalloc(tcp_syncache.zone, M_NOWAIT);
889 if (sc == NULL) {
890 /*
891 * The zone allocator couldn't provide more entries.
892 * Treat this as if the cache was full; drop the oldest
893 * entry and insert the new one.
894 */
895 s = splnet();
896 for (i = SYNCACHE_MAXREXMTS; i >= 0; i--) {
897 sc = TAILQ_FIRST(&tcp_syncache.timerq[i]);
898 if (sc != NULL)
899 break;
900 }
901 sc->sc_tp->ts_recent = ticks;
902 syncache_drop(sc, NULL);
903 splx(s);
904 tcpstat.tcps_sc_zonefail++;
905 sc = uma_zalloc(tcp_syncache.zone, M_NOWAIT);
906 if (sc == NULL) {
907 if (ipopts)
908 (void) m_free(ipopts);
909 return (0);
910 }
911 }
912
913 /*
914 * Fill in the syncache values.
915 */
916 bzero(sc, sizeof(*sc));
917 sc->sc_tp = tp;
918 sc->sc_inp_gencnt = tp->t_inpcb->inp_gencnt;
919 sc->sc_ipopts = ipopts;
920 sc->sc_inc.inc_fport = inc->inc_fport;
921 sc->sc_inc.inc_lport = inc->inc_lport;
922#ifdef INET6
923 sc->sc_inc.inc_isipv6 = inc->inc_isipv6;
924 if (inc->inc_isipv6) {
925 sc->sc_inc.inc6_faddr = inc->inc6_faddr;
926 sc->sc_inc.inc6_laddr = inc->inc6_laddr;
927 sc->sc_route6.ro_rt = NULL;
928 } else
929#endif
930 {
931 sc->sc_inc.inc_faddr = inc->inc_faddr;
932 sc->sc_inc.inc_laddr = inc->inc_laddr;
933 sc->sc_route.ro_rt = NULL;
934 }
935 sc->sc_irs = th->th_seq;
936 if (tcp_syncookies)
937 sc->sc_iss = syncookie_generate(sc);
938 else
939 sc->sc_iss = arc4random();
940
941 /* Initial receive window: clip sbspace to [0 .. TCP_MAXWIN] */
942 win = sbspace(&so->so_rcv);
943 win = imax(win, 0);
944 win = imin(win, TCP_MAXWIN);
945 sc->sc_wnd = win;
946
947 sc->sc_flags = 0;
948 sc->sc_peer_mss = to->to_flags & TOF_MSS ? to->to_mss : 0;
949 if (tcp_do_rfc1323) {
950 /*
951 * A timestamp received in a SYN makes
952 * it ok to send timestamp requests and replies.
953 */
954 if (to->to_flags & TOF_TS) {
955 sc->sc_tsrecent = to->to_tsval;
956 sc->sc_flags |= SCF_TIMESTAMP;
957 }
958 if (to->to_flags & TOF_SCALE) {
959 int wscale = 0;
960
961 /* Compute proper scaling value from buffer space */
962 while (wscale < TCP_MAX_WINSHIFT &&
963 (TCP_MAXWIN << wscale) < so->so_rcv.sb_hiwat)
964 wscale++;
965 sc->sc_request_r_scale = wscale;
966 sc->sc_requested_s_scale = to->to_requested_s_scale;
967 sc->sc_flags |= SCF_WINSCALE;
968 }
969 }
970 if (tcp_do_rfc1644) {
971 /*
972 * A CC or CC.new option received in a SYN makes
973 * it ok to send CC in subsequent segments.
974 */
975 if (to->to_flags & (TOF_CC|TOF_CCNEW)) {
976 sc->sc_cc_recv = to->to_cc;
977 sc->sc_cc_send = CC_INC(tcp_ccgen);
978 sc->sc_flags |= SCF_CC;
979 }
980 }
981 if (tp->t_flags & TF_NOOPT)
982 sc->sc_flags = SCF_NOOPT;
983
984 /*
985 * XXX
986 * We have the option here of not doing TAO (even if the segment
987 * qualifies) and instead fall back to a normal 3WHS via the syncache.
988 * This allows us to apply synflood protection to TAO-qualifying SYNs
989 * also. However, there should be a hueristic to determine when to
990 * do this, and is not present at the moment.
991 */
992
993 /*
994 * Perform TAO test on incoming CC (SEG.CC) option, if any.
995 * - compare SEG.CC against cached CC from the same host, if any.
996 * - if SEG.CC > chached value, SYN must be new and is accepted
997 * immediately: save new CC in the cache, mark the socket
998 * connected, enter ESTABLISHED state, turn on flag to
999 * send a SYN in the next segment.
1000 * A virtual advertised window is set in rcv_adv to
1001 * initialize SWS prevention. Then enter normal segment
1002 * processing: drop SYN, process data and FIN.
1003 * - otherwise do a normal 3-way handshake.
1004 */
1005 taop = tcp_gettaocache(&sc->sc_inc);
1006 if ((to->to_flags & TOF_CC) != 0) {
1007 if (((tp->t_flags & TF_NOPUSH) != 0) &&
1008 sc->sc_flags & SCF_CC &&
1009 taop != NULL && taop->tao_cc != 0 &&
1010 CC_GT(to->to_cc, taop->tao_cc)) {
1011 sc->sc_rxtslot = 0;
1012 so = syncache_socket(sc, *sop, m);
1013 if (so != NULL) {
1014 sc->sc_flags |= SCF_KEEPROUTE;
1015 taop->tao_cc = to->to_cc;
1016 *sop = so;
1017 }
1018 syncache_free(sc);
1019 return (so != NULL);
1020 }
1021 } else {
1022 /*
1023 * No CC option, but maybe CC.NEW: invalidate cached value.
1024 */
1025 if (taop != NULL)
1026 taop->tao_cc = 0;
1027 }
1028 /*
1029 * TAO test failed or there was no CC option,
1030 * do a standard 3-way handshake.
1031 */
1032 if (syncache_respond(sc, m) == 0) {
1033 syncache_insert(sc, sch);
1034 tcpstat.tcps_sndacks++;
1035 tcpstat.tcps_sndtotal++;
1036 } else {
1037 syncache_free(sc);
1038 tcpstat.tcps_sc_dropped++;
1039 }
1040 *sop = NULL;
1041 return (1);
1042}
1043
1044static int
1045syncache_respond(sc, m)
1046 struct syncache *sc;
1047 struct mbuf *m;
1048{
1049 u_int8_t *optp;
1050 int optlen, error;
1051 u_int16_t tlen, hlen, mssopt;
1052 struct ip *ip = NULL;
1053 struct rtentry *rt;
1054 struct tcphdr *th;
1055#ifdef INET6
1056 struct ip6_hdr *ip6 = NULL;
1057#endif
1058
1059#ifdef INET6
1060 if (sc->sc_inc.inc_isipv6) {
1061 rt = tcp_rtlookup6(&sc->sc_inc);
1062 if (rt != NULL)
1063 mssopt = rt->rt_ifp->if_mtu -
1064 (sizeof(struct ip6_hdr) + sizeof(struct tcphdr));
1065 else
1066 mssopt = tcp_v6mssdflt;
1067 hlen = sizeof(struct ip6_hdr);
1068 } else
1069#endif
1070 {
1071 rt = tcp_rtlookup(&sc->sc_inc);
1072 if (rt != NULL)
1073 mssopt = rt->rt_ifp->if_mtu -
1074 (sizeof(struct ip) + sizeof(struct tcphdr));
1075 else
1076 mssopt = tcp_mssdflt;
1077 hlen = sizeof(struct ip);
1078 }
1079
1080 /* Compute the size of the TCP options. */
1081 if (sc->sc_flags & SCF_NOOPT) {
1082 optlen = 0;
1083 } else {
1084 optlen = TCPOLEN_MAXSEG +
1085 ((sc->sc_flags & SCF_WINSCALE) ? 4 : 0) +
1086 ((sc->sc_flags & SCF_TIMESTAMP) ? TCPOLEN_TSTAMP_APPA : 0) +
1087 ((sc->sc_flags & SCF_CC) ? TCPOLEN_CC_APPA * 2 : 0);
1088 }
1089 tlen = hlen + sizeof(struct tcphdr) + optlen;
1090
1091 /*
1092 * XXX
1093 * assume that the entire packet will fit in a header mbuf
1094 */
1095 KASSERT(max_linkhdr + tlen <= MHLEN, ("syncache: mbuf too small"));
1096
1097 /*
1098 * XXX shouldn't this reuse the mbuf if possible ?
1099 * Create the IP+TCP header from scratch.
1100 */
1101 if (m)
1102 m_freem(m);
1103
1104 m = m_gethdr(M_DONTWAIT, MT_HEADER);
1105 if (m == NULL)
1106 return (ENOBUFS);
1107 m->m_data += max_linkhdr;
1108 m->m_len = tlen;
1109 m->m_pkthdr.len = tlen;
1110 m->m_pkthdr.rcvif = NULL;
1111#ifdef MAC
1112 mac_create_mbuf_from_socket(sc->sc_tp->t_inpcb->inp_socket, m);
1113#endif
1114
1115#ifdef INET6
1116 if (sc->sc_inc.inc_isipv6) {
1117 ip6 = mtod(m, struct ip6_hdr *);
1118 ip6->ip6_vfc = IPV6_VERSION;
1119 ip6->ip6_nxt = IPPROTO_TCP;
1120 ip6->ip6_src = sc->sc_inc.inc6_laddr;
1121 ip6->ip6_dst = sc->sc_inc.inc6_faddr;
1122 ip6->ip6_plen = htons(tlen - hlen);
1123 /* ip6_hlim is set after checksum */
1124 /* ip6_flow = ??? */
1125
1126 th = (struct tcphdr *)(ip6 + 1);
1127 } else
1128#endif
1129 {
1130 ip = mtod(m, struct ip *);
1131 ip->ip_v = IPVERSION;
1132 ip->ip_hl = sizeof(struct ip) >> 2;
1133 ip->ip_len = tlen;
1134 ip->ip_id = 0;
1135 ip->ip_off = 0;
1136 ip->ip_sum = 0;
1137 ip->ip_p = IPPROTO_TCP;
1138 ip->ip_src = sc->sc_inc.inc_laddr;
1139 ip->ip_dst = sc->sc_inc.inc_faddr;
1140 ip->ip_ttl = sc->sc_tp->t_inpcb->inp_ip_ttl; /* XXX */
1141 ip->ip_tos = sc->sc_tp->t_inpcb->inp_ip_tos; /* XXX */
1142
1143 /*
1144 * See if we should do MTU discovery. Route lookups are expensive,
1145 * so we will only unset the DF bit if:
1146 *
1147 * 1) path_mtu_discovery is disabled
1148 * 2) the SCF_UNREACH flag has been set
1149 */
1150 if (path_mtu_discovery
1151 && ((sc->sc_flags & SCF_UNREACH) == 0)) {
1152 ip->ip_off |= IP_DF;
1153 }
1154
1155 th = (struct tcphdr *)(ip + 1);
1156 }
1157 th->th_sport = sc->sc_inc.inc_lport;
1158 th->th_dport = sc->sc_inc.inc_fport;
1159
1160 th->th_seq = htonl(sc->sc_iss);
1161 th->th_ack = htonl(sc->sc_irs + 1);
1162 th->th_off = (sizeof(struct tcphdr) + optlen) >> 2;
1163 th->th_x2 = 0;
1164 th->th_flags = TH_SYN|TH_ACK;
1165 th->th_win = htons(sc->sc_wnd);
1166 th->th_urp = 0;
1167
1168 /* Tack on the TCP options. */
1169 if (optlen == 0)
1170 goto no_options;
1171 optp = (u_int8_t *)(th + 1);
1172 *optp++ = TCPOPT_MAXSEG;
1173 *optp++ = TCPOLEN_MAXSEG;
1174 *optp++ = (mssopt >> 8) & 0xff;
1175 *optp++ = mssopt & 0xff;
1176
1177 if (sc->sc_flags & SCF_WINSCALE) {
1178 *((u_int32_t *)optp) = htonl(TCPOPT_NOP << 24 |
1179 TCPOPT_WINDOW << 16 | TCPOLEN_WINDOW << 8 |
1180 sc->sc_request_r_scale);
1181 optp += 4;
1182 }
1183
1184 if (sc->sc_flags & SCF_TIMESTAMP) {
1185 u_int32_t *lp = (u_int32_t *)(optp);
1186
1187 /* Form timestamp option as shown in appendix A of RFC 1323. */
1188 *lp++ = htonl(TCPOPT_TSTAMP_HDR);
1189 *lp++ = htonl(ticks);
1190 *lp = htonl(sc->sc_tsrecent);
1191 optp += TCPOLEN_TSTAMP_APPA;
1192 }
1193
1194 /*
1195 * Send CC and CC.echo if we received CC from our peer.
1196 */
1197 if (sc->sc_flags & SCF_CC) {
1198 u_int32_t *lp = (u_int32_t *)(optp);
1199
1200 *lp++ = htonl(TCPOPT_CC_HDR(TCPOPT_CC));
1201 *lp++ = htonl(sc->sc_cc_send);
1202 *lp++ = htonl(TCPOPT_CC_HDR(TCPOPT_CCECHO));
1203 *lp = htonl(sc->sc_cc_recv);
1204 optp += TCPOLEN_CC_APPA * 2;
1205 }
1206no_options:
1207
1208#ifdef INET6
1209 if (sc->sc_inc.inc_isipv6) {
1210 struct route_in6 *ro6 = &sc->sc_route6;
1211
1212 th->th_sum = 0;
1213 th->th_sum = in6_cksum(m, IPPROTO_TCP, hlen, tlen - hlen);
1214 ip6->ip6_hlim = in6_selecthlim(NULL,
1215 ro6->ro_rt ? ro6->ro_rt->rt_ifp : NULL);
1216 error = ip6_output(m, NULL, ro6, 0, NULL, NULL,
1217 sc->sc_tp->t_inpcb);
1218 } else
1219#endif
1220 {
1221 th->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
1222 htons(tlen - hlen + IPPROTO_TCP));
1223 m->m_pkthdr.csum_flags = CSUM_TCP;
1224 m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
1225 error = ip_output(m, sc->sc_ipopts, &sc->sc_route, 0, NULL,
1226 sc->sc_tp->t_inpcb);
1227 }
1228 return (error);
1229}
1230
1231/*
1232 * cookie layers:
1233 *
1234 * |. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .|
1235 * | peer iss |
1236 * | MD5(laddr,faddr,lport,fport,secret) |. . . . . . .|
1237 * | 0 |(A)| |
1238 * (A): peer mss index
1239 */
1240
1241/*
1242 * The values below are chosen to minimize the size of the tcp_secret
1243 * table, as well as providing roughly a 4 second lifetime for the cookie.
1244 */
1245
1246#define SYNCOOKIE_HASHSHIFT 2 /* log2(# of 32bit words from hash) */
1247#define SYNCOOKIE_WNDBITS 7 /* exposed bits for window indexing */
1248#define SYNCOOKIE_TIMESHIFT 5 /* scale ticks to window time units */
1249
1250#define SYNCOOKIE_HASHMASK ((1 << SYNCOOKIE_HASHSHIFT) - 1)
1251#define SYNCOOKIE_WNDMASK ((1 << SYNCOOKIE_WNDBITS) - 1)
1252#define SYNCOOKIE_NSECRETS (1 << (SYNCOOKIE_WNDBITS - SYNCOOKIE_HASHSHIFT))
1253#define SYNCOOKIE_TIMEOUT \
1254 (hz * (1 << SYNCOOKIE_WNDBITS) / (1 << SYNCOOKIE_TIMESHIFT))
1255#define SYNCOOKIE_DATAMASK ((3 << SYNCOOKIE_WNDBITS) | SYNCOOKIE_WNDMASK)
1256
1257static struct {
1258 u_int32_t ts_secbits;
1259 u_int ts_expire;
1260} tcp_secret[SYNCOOKIE_NSECRETS];
1261
1262static int tcp_msstab[] = { 0, 536, 1460, 8960 };
1263
1264static MD5_CTX syn_ctx;
1265
1266#define MD5Add(v) MD5Update(&syn_ctx, (u_char *)&v, sizeof(v))
1267
1268/*
1269 * Consider the problem of a recreated (and retransmitted) cookie. If the
1270 * original SYN was accepted, the connection is established. The second
1271 * SYN is inflight, and if it arrives with an ISN that falls within the
1272 * receive window, the connection is killed.
1273 *
1274 * However, since cookies have other problems, this may not be worth
1275 * worrying about.
1276 */
1277
1278static u_int32_t
1279syncookie_generate(struct syncache *sc)
1280{
1281 u_int32_t md5_buffer[4];
1282 u_int32_t data;
1283 int wnd, idx;
1284
1285 wnd = ((ticks << SYNCOOKIE_TIMESHIFT) / hz) & SYNCOOKIE_WNDMASK;
1286 idx = wnd >> SYNCOOKIE_HASHSHIFT;
1287 if (tcp_secret[idx].ts_expire < ticks) {
1288 tcp_secret[idx].ts_secbits = arc4random();
1289 tcp_secret[idx].ts_expire = ticks + SYNCOOKIE_TIMEOUT;
1290 }
1291 for (data = sizeof(tcp_msstab) / sizeof(int) - 1; data > 0; data--)
1292 if (tcp_msstab[data] <= sc->sc_peer_mss)
1293 break;
1294 data = (data << SYNCOOKIE_WNDBITS) | wnd;
1295 data ^= sc->sc_irs; /* peer's iss */
1296 MD5Init(&syn_ctx);
1297#ifdef INET6
1298 if (sc->sc_inc.inc_isipv6) {
1299 MD5Add(sc->sc_inc.inc6_laddr);
1300 MD5Add(sc->sc_inc.inc6_faddr);
1301 } else
1302#endif
1303 {
1304 MD5Add(sc->sc_inc.inc_laddr);
1305 MD5Add(sc->sc_inc.inc_faddr);
1306 }
1307 MD5Add(sc->sc_inc.inc_lport);
1308 MD5Add(sc->sc_inc.inc_fport);
1309 MD5Add(tcp_secret[idx].ts_secbits);
1310 MD5Final((u_char *)&md5_buffer, &syn_ctx);
1311 data ^= (md5_buffer[wnd & SYNCOOKIE_HASHMASK] & ~SYNCOOKIE_WNDMASK);
1312 return (data);
1313}
1314
1315static struct syncache *
1316syncookie_lookup(inc, th, so)
1317 struct in_conninfo *inc;
1318 struct tcphdr *th;
1319 struct socket *so;
1320{
1321 u_int32_t md5_buffer[4];
1322 struct syncache *sc;
1323 u_int32_t data;
1324 int wnd, idx;
1325
1326 data = (th->th_ack - 1) ^ (th->th_seq - 1); /* remove ISS */
1327 wnd = data & SYNCOOKIE_WNDMASK;
1328 idx = wnd >> SYNCOOKIE_HASHSHIFT;
1329 if (tcp_secret[idx].ts_expire < ticks ||
1330 sototcpcb(so)->ts_recent + SYNCOOKIE_TIMEOUT < ticks)
1331 return (NULL);
1332 MD5Init(&syn_ctx);
1333#ifdef INET6
1334 if (inc->inc_isipv6) {
1335 MD5Add(inc->inc6_laddr);
1336 MD5Add(inc->inc6_faddr);
1337 } else
1338#endif
1339 {
1340 MD5Add(inc->inc_laddr);
1341 MD5Add(inc->inc_faddr);
1342 }
1343 MD5Add(inc->inc_lport);
1344 MD5Add(inc->inc_fport);
1345 MD5Add(tcp_secret[idx].ts_secbits);
1346 MD5Final((u_char *)&md5_buffer, &syn_ctx);
1347 data ^= md5_buffer[wnd & SYNCOOKIE_HASHMASK];
1348 if ((data & ~SYNCOOKIE_DATAMASK) != 0)
1349 return (NULL);
1350 data = data >> SYNCOOKIE_WNDBITS;
1351
1352 sc = uma_zalloc(tcp_syncache.zone, M_NOWAIT);
1353 if (sc == NULL)
1354 return (NULL);
1355 /*
1356 * Fill in the syncache values.
1357 * XXX duplicate code from syncache_add
1358 */
1359 sc->sc_ipopts = NULL;
1360 sc->sc_inc.inc_fport = inc->inc_fport;
1361 sc->sc_inc.inc_lport = inc->inc_lport;
1362#ifdef INET6
1363 sc->sc_inc.inc_isipv6 = inc->inc_isipv6;
1364 if (inc->inc_isipv6) {
1365 sc->sc_inc.inc6_faddr = inc->inc6_faddr;
1366 sc->sc_inc.inc6_laddr = inc->inc6_laddr;
1367 sc->sc_route6.ro_rt = NULL;
1368 } else
1369#endif
1370 {
1371 sc->sc_inc.inc_faddr = inc->inc_faddr;
1372 sc->sc_inc.inc_laddr = inc->inc_laddr;
1373 sc->sc_route.ro_rt = NULL;
1374 }
1375 sc->sc_irs = th->th_seq - 1;
1376 sc->sc_iss = th->th_ack - 1;
1377 wnd = sbspace(&so->so_rcv);
1378 wnd = imax(wnd, 0);
1379 wnd = imin(wnd, TCP_MAXWIN);
1380 sc->sc_wnd = wnd;
1381 sc->sc_flags = 0;
1382 sc->sc_rxtslot = 0;
1383 sc->sc_peer_mss = tcp_msstab[data];
1384 return (sc);
1385}