Deleted Added
full compact
subr_syscall.c (68808) subr_syscall.c (68862)
1/*-
2 * Copyright (C) 1994, David Greenman
3 * Copyright (c) 1990, 1993
4 * The Regents of the University of California. All rights reserved.
5 *
6 * This code is derived from software contributed to Berkeley by
7 * the University of Utah, and William Jolitz.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 * must display the following acknowledgement:
19 * This product includes software developed by the University of
20 * California, Berkeley and its contributors.
21 * 4. Neither the name of the University nor the names of its contributors
22 * may be used to endorse or promote products derived from this software
23 * without specific prior written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
28 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
29 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
30 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
31 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
34 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35 * SUCH DAMAGE.
36 *
37 * from: @(#)trap.c 7.4 (Berkeley) 5/13/91
1/*-
2 * Copyright (C) 1994, David Greenman
3 * Copyright (c) 1990, 1993
4 * The Regents of the University of California. All rights reserved.
5 *
6 * This code is derived from software contributed to Berkeley by
7 * the University of Utah, and William Jolitz.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 * must display the following acknowledgement:
19 * This product includes software developed by the University of
20 * California, Berkeley and its contributors.
21 * 4. Neither the name of the University nor the names of its contributors
22 * may be used to endorse or promote products derived from this software
23 * without specific prior written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
28 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
29 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
30 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
31 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
34 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35 * SUCH DAMAGE.
36 *
37 * from: @(#)trap.c 7.4 (Berkeley) 5/13/91
38 * $FreeBSD: head/sys/kern/subr_trap.c 68808 2000-11-16 02:16:44Z jhb $
38 * $FreeBSD: head/sys/kern/subr_trap.c 68862 2000-11-17 18:09:18Z jake $
39 */
40
41/*
42 * 386 Trap and System call handling
43 */
44
45#include "opt_cpu.h"
46#include "opt_ddb.h"
47#include "opt_ktrace.h"
48#include "opt_clock.h"
49#include "opt_trap.h"
50
51#include <sys/param.h>
52#include <sys/bus.h>
53#include <sys/systm.h>
54#include <sys/proc.h>
55#include <sys/pioctl.h>
56#include <sys/ipl.h>
57#include <sys/kernel.h>
58#include <sys/ktr.h>
59#include <sys/mutex.h>
60#include <sys/resourcevar.h>
61#include <sys/signalvar.h>
62#include <sys/syscall.h>
63#include <sys/sysctl.h>
64#include <sys/sysent.h>
65#include <sys/uio.h>
66#include <sys/vmmeter.h>
67#ifdef KTRACE
68#include <sys/ktrace.h>
69#endif
70
71#include <vm/vm.h>
72#include <vm/vm_param.h>
73#include <sys/lock.h>
74#include <vm/pmap.h>
75#include <vm/vm_kern.h>
76#include <vm/vm_map.h>
77#include <vm/vm_page.h>
78#include <vm/vm_extern.h>
79
80#include <machine/cpu.h>
81#include <machine/md_var.h>
82#include <machine/pcb.h>
83#ifdef SMP
84#include <machine/smp.h>
85#endif
86#include <machine/tss.h>
87
88#include <i386/isa/icu.h>
89#include <i386/isa/intr_machdep.h>
90
91#ifdef POWERFAIL_NMI
92#include <sys/syslog.h>
93#include <machine/clock.h>
94#endif
95
96#include <machine/vm86.h>
97
98#include <ddb/ddb.h>
99
100#include "isa.h"
101#include "npx.h"
102
103#include <sys/sysctl.h>
104
105int (*pmath_emulate) __P((struct trapframe *));
106
107extern void trap __P((struct trapframe frame));
108extern int trapwrite __P((unsigned addr));
109extern void syscall2 __P((struct trapframe frame));
110extern void ast __P((struct trapframe frame));
111
112static int trap_pfault __P((struct trapframe *, int, vm_offset_t));
113static void trap_fatal __P((struct trapframe *, vm_offset_t));
114void dblfault_handler __P((void));
115
116extern inthand_t IDTVEC(syscall);
117
118#define MAX_TRAP_MSG 28
119static char *trap_msg[] = {
120 "", /* 0 unused */
121 "privileged instruction fault", /* 1 T_PRIVINFLT */
122 "", /* 2 unused */
123 "breakpoint instruction fault", /* 3 T_BPTFLT */
124 "", /* 4 unused */
125 "", /* 5 unused */
126 "arithmetic trap", /* 6 T_ARITHTRAP */
127 "system forced exception", /* 7 T_ASTFLT */
128 "", /* 8 unused */
129 "general protection fault", /* 9 T_PROTFLT */
130 "trace trap", /* 10 T_TRCTRAP */
131 "", /* 11 unused */
132 "page fault", /* 12 T_PAGEFLT */
133 "", /* 13 unused */
134 "alignment fault", /* 14 T_ALIGNFLT */
135 "", /* 15 unused */
136 "", /* 16 unused */
137 "", /* 17 unused */
138 "integer divide fault", /* 18 T_DIVIDE */
139 "non-maskable interrupt trap", /* 19 T_NMI */
140 "overflow trap", /* 20 T_OFLOW */
141 "FPU bounds check fault", /* 21 T_BOUND */
142 "FPU device not available", /* 22 T_DNA */
143 "double fault", /* 23 T_DOUBLEFLT */
144 "FPU operand fetch fault", /* 24 T_FPOPFLT */
145 "invalid TSS fault", /* 25 T_TSSFLT */
146 "segment not present fault", /* 26 T_SEGNPFLT */
147 "stack fault", /* 27 T_STKFLT */
148 "machine check trap", /* 28 T_MCHK */
149};
150
151static __inline int userret __P((struct proc *p, struct trapframe *frame,
152 u_quad_t oticks, int have_giant));
153
154#if defined(I586_CPU) && !defined(NO_F00F_HACK)
155extern int has_f00f_bug;
156#endif
157
158#ifdef DDB
159static int ddb_on_nmi = 1;
160SYSCTL_INT(_machdep, OID_AUTO, ddb_on_nmi, CTLFLAG_RW,
161 &ddb_on_nmi, 0, "Go to DDB on NMI");
162#endif
163static int panic_on_nmi = 1;
164SYSCTL_INT(_machdep, OID_AUTO, panic_on_nmi, CTLFLAG_RW,
165 &panic_on_nmi, 0, "Panic on NMI");
166
167static __inline int
168userret(p, frame, oticks, have_giant)
169 struct proc *p;
170 struct trapframe *frame;
171 u_quad_t oticks;
172 int have_giant;
173{
174 int sig, s;
175
176 while ((sig = CURSIG(p)) != 0) {
177 if (have_giant == 0) {
178 mtx_enter(&Giant, MTX_DEF);
179 have_giant = 1;
180 }
181 postsig(sig);
182 }
183
184 p->p_priority = p->p_usrpri;
185 if (resched_wanted()) {
186 /*
187 * Since we are curproc, clock will normally just change
188 * our priority without moving us from one queue to another
189 * (since the running process is not on a queue.)
190 * If that happened after we setrunqueue ourselves but before we
191 * mi_switch()'ed, we might not be on the queue indicated by
192 * our priority.
193 */
194 s = splhigh();
39 */
40
41/*
42 * 386 Trap and System call handling
43 */
44
45#include "opt_cpu.h"
46#include "opt_ddb.h"
47#include "opt_ktrace.h"
48#include "opt_clock.h"
49#include "opt_trap.h"
50
51#include <sys/param.h>
52#include <sys/bus.h>
53#include <sys/systm.h>
54#include <sys/proc.h>
55#include <sys/pioctl.h>
56#include <sys/ipl.h>
57#include <sys/kernel.h>
58#include <sys/ktr.h>
59#include <sys/mutex.h>
60#include <sys/resourcevar.h>
61#include <sys/signalvar.h>
62#include <sys/syscall.h>
63#include <sys/sysctl.h>
64#include <sys/sysent.h>
65#include <sys/uio.h>
66#include <sys/vmmeter.h>
67#ifdef KTRACE
68#include <sys/ktrace.h>
69#endif
70
71#include <vm/vm.h>
72#include <vm/vm_param.h>
73#include <sys/lock.h>
74#include <vm/pmap.h>
75#include <vm/vm_kern.h>
76#include <vm/vm_map.h>
77#include <vm/vm_page.h>
78#include <vm/vm_extern.h>
79
80#include <machine/cpu.h>
81#include <machine/md_var.h>
82#include <machine/pcb.h>
83#ifdef SMP
84#include <machine/smp.h>
85#endif
86#include <machine/tss.h>
87
88#include <i386/isa/icu.h>
89#include <i386/isa/intr_machdep.h>
90
91#ifdef POWERFAIL_NMI
92#include <sys/syslog.h>
93#include <machine/clock.h>
94#endif
95
96#include <machine/vm86.h>
97
98#include <ddb/ddb.h>
99
100#include "isa.h"
101#include "npx.h"
102
103#include <sys/sysctl.h>
104
105int (*pmath_emulate) __P((struct trapframe *));
106
107extern void trap __P((struct trapframe frame));
108extern int trapwrite __P((unsigned addr));
109extern void syscall2 __P((struct trapframe frame));
110extern void ast __P((struct trapframe frame));
111
112static int trap_pfault __P((struct trapframe *, int, vm_offset_t));
113static void trap_fatal __P((struct trapframe *, vm_offset_t));
114void dblfault_handler __P((void));
115
116extern inthand_t IDTVEC(syscall);
117
118#define MAX_TRAP_MSG 28
119static char *trap_msg[] = {
120 "", /* 0 unused */
121 "privileged instruction fault", /* 1 T_PRIVINFLT */
122 "", /* 2 unused */
123 "breakpoint instruction fault", /* 3 T_BPTFLT */
124 "", /* 4 unused */
125 "", /* 5 unused */
126 "arithmetic trap", /* 6 T_ARITHTRAP */
127 "system forced exception", /* 7 T_ASTFLT */
128 "", /* 8 unused */
129 "general protection fault", /* 9 T_PROTFLT */
130 "trace trap", /* 10 T_TRCTRAP */
131 "", /* 11 unused */
132 "page fault", /* 12 T_PAGEFLT */
133 "", /* 13 unused */
134 "alignment fault", /* 14 T_ALIGNFLT */
135 "", /* 15 unused */
136 "", /* 16 unused */
137 "", /* 17 unused */
138 "integer divide fault", /* 18 T_DIVIDE */
139 "non-maskable interrupt trap", /* 19 T_NMI */
140 "overflow trap", /* 20 T_OFLOW */
141 "FPU bounds check fault", /* 21 T_BOUND */
142 "FPU device not available", /* 22 T_DNA */
143 "double fault", /* 23 T_DOUBLEFLT */
144 "FPU operand fetch fault", /* 24 T_FPOPFLT */
145 "invalid TSS fault", /* 25 T_TSSFLT */
146 "segment not present fault", /* 26 T_SEGNPFLT */
147 "stack fault", /* 27 T_STKFLT */
148 "machine check trap", /* 28 T_MCHK */
149};
150
151static __inline int userret __P((struct proc *p, struct trapframe *frame,
152 u_quad_t oticks, int have_giant));
153
154#if defined(I586_CPU) && !defined(NO_F00F_HACK)
155extern int has_f00f_bug;
156#endif
157
158#ifdef DDB
159static int ddb_on_nmi = 1;
160SYSCTL_INT(_machdep, OID_AUTO, ddb_on_nmi, CTLFLAG_RW,
161 &ddb_on_nmi, 0, "Go to DDB on NMI");
162#endif
163static int panic_on_nmi = 1;
164SYSCTL_INT(_machdep, OID_AUTO, panic_on_nmi, CTLFLAG_RW,
165 &panic_on_nmi, 0, "Panic on NMI");
166
167static __inline int
168userret(p, frame, oticks, have_giant)
169 struct proc *p;
170 struct trapframe *frame;
171 u_quad_t oticks;
172 int have_giant;
173{
174 int sig, s;
175
176 while ((sig = CURSIG(p)) != 0) {
177 if (have_giant == 0) {
178 mtx_enter(&Giant, MTX_DEF);
179 have_giant = 1;
180 }
181 postsig(sig);
182 }
183
184 p->p_priority = p->p_usrpri;
185 if (resched_wanted()) {
186 /*
187 * Since we are curproc, clock will normally just change
188 * our priority without moving us from one queue to another
189 * (since the running process is not on a queue.)
190 * If that happened after we setrunqueue ourselves but before we
191 * mi_switch()'ed, we might not be on the queue indicated by
192 * our priority.
193 */
194 s = splhigh();
195 DROP_GIANT_NOSWITCH();
196 mtx_enter(&sched_lock, MTX_SPIN);
195 mtx_enter(&sched_lock, MTX_SPIN);
196 DROP_GIANT_NOSWITCH();
197 setrunqueue(p);
198 p->p_stats->p_ru.ru_nivcsw++;
199 mi_switch();
200 mtx_exit(&sched_lock, MTX_SPIN);
201 PICKUP_GIANT();
202 splx(s);
203 while ((sig = CURSIG(p)) != 0) {
204 if (have_giant == 0) {
205 mtx_enter(&Giant, MTX_DEF);
206 have_giant = 1;
207 }
208 postsig(sig);
209 }
210 }
211 /*
212 * Charge system time if profiling.
213 */
214 if (p->p_flag & P_PROFIL) {
215 if (have_giant == 0) {
216 mtx_enter(&Giant, MTX_DEF);
217 have_giant = 1;
218 }
219 addupc_task(p, frame->tf_eip,
220 (u_int)(p->p_sticks - oticks) * psratio);
221 }
222 curpriority = p->p_priority;
223 return(have_giant);
224}
225
226/*
227 * Exception, fault, and trap interface to the FreeBSD kernel.
228 * This common code is called from assembly language IDT gate entry
229 * routines that prepare a suitable stack frame, and restore this
230 * frame after the exception has been processed.
231 */
232
233void
234trap(frame)
235 struct trapframe frame;
236{
237 struct proc *p = curproc;
238 u_quad_t sticks = 0;
239 int i = 0, ucode = 0, type, code;
240 vm_offset_t eva;
241#ifdef POWERFAIL_NMI
242 static int lastalert = 0;
243#endif
244
245 atomic_add_int(&cnt.v_trap, 1);
246
247 if ((frame.tf_eflags & PSL_I) == 0) {
248 /*
249 * Buggy application or kernel code has disabled
250 * interrupts and then trapped. Enabling interrupts
251 * now is wrong, but it is better than running with
252 * interrupts disabled until they are accidentally
253 * enabled later. XXX Consider whether is this still
254 * correct.
255 */
256 type = frame.tf_trapno;
257 if (ISPL(frame.tf_cs) == SEL_UPL || (frame.tf_eflags & PSL_VM))
258 printf(
259 "pid %ld (%s): trap %d with interrupts disabled\n",
260 (long)curproc->p_pid, curproc->p_comm, type);
261 else if (type != T_BPTFLT && type != T_TRCTRAP)
262 /*
263 * XXX not quite right, since this may be for a
264 * multiple fault in user mode.
265 */
266 printf("kernel trap %d with interrupts disabled\n",
267 type);
268 enable_intr();
269 }
270
271 eva = 0;
272 if (frame.tf_trapno == T_PAGEFLT) {
273 /*
274 * For some Cyrix CPUs, %cr2 is clobbered by
275 * interrupts. This problem is worked around by using
276 * an interrupt gate for the pagefault handler. We
277 * are finally ready to read %cr2 and then must
278 * reenable interrupts.
279 */
280 eva = rcr2();
281 enable_intr();
282 }
283
284 mtx_enter(&Giant, MTX_DEF);
285
286#if defined(I586_CPU) && !defined(NO_F00F_HACK)
287restart:
288#endif
289
290 type = frame.tf_trapno;
291 code = frame.tf_err;
292
293 if ((ISPL(frame.tf_cs) == SEL_UPL) ||
294 ((frame.tf_eflags & PSL_VM) && !in_vm86call)) {
295 /* user trap */
296
297 sticks = p->p_sticks;
298 p->p_md.md_regs = &frame;
299
300 switch (type) {
301 case T_PRIVINFLT: /* privileged instruction fault */
302 ucode = type;
303 i = SIGILL;
304 break;
305
306 case T_BPTFLT: /* bpt instruction fault */
307 case T_TRCTRAP: /* trace trap */
308 frame.tf_eflags &= ~PSL_T;
309 i = SIGTRAP;
310 break;
311
312 case T_ARITHTRAP: /* arithmetic trap */
313 ucode = code;
314 i = SIGFPE;
315 break;
316
317 /*
318 * The following two traps can happen in
319 * vm86 mode, and, if so, we want to handle
320 * them specially.
321 */
322 case T_PROTFLT: /* general protection fault */
323 case T_STKFLT: /* stack fault */
324 if (frame.tf_eflags & PSL_VM) {
325 i = vm86_emulate((struct vm86frame *)&frame);
326 if (i == 0)
327 goto user;
328 break;
329 }
330 /* FALL THROUGH */
331
332 case T_SEGNPFLT: /* segment not present fault */
333 case T_TSSFLT: /* invalid TSS fault */
334 case T_DOUBLEFLT: /* double fault */
335 default:
336 ucode = code + BUS_SEGM_FAULT ;
337 i = SIGBUS;
338 break;
339
340 case T_PAGEFLT: /* page fault */
341 i = trap_pfault(&frame, TRUE, eva);
342#if defined(I586_CPU) && !defined(NO_F00F_HACK)
343 if (i == -2) {
344 /*
345 * f00f hack workaround has triggered, treat
346 * as illegal instruction not page fault.
347 */
348 frame.tf_trapno = T_PRIVINFLT;
349 goto restart;
350 }
351#endif
352 if (i == -1)
353 goto out;
354 if (i == 0)
355 goto user;
356
357 ucode = T_PAGEFLT;
358 break;
359
360 case T_DIVIDE: /* integer divide fault */
361 ucode = FPE_INTDIV;
362 i = SIGFPE;
363 break;
364
365#if NISA > 0
366 case T_NMI:
367#ifdef POWERFAIL_NMI
368#ifndef TIMER_FREQ
369# define TIMER_FREQ 1193182
370#endif
371 if (time_second - lastalert > 10) {
372 log(LOG_WARNING, "NMI: power fail\n");
373 sysbeep(TIMER_FREQ/880, hz);
374 lastalert = time_second;
375 }
376 goto out;
377#else /* !POWERFAIL_NMI */
378 /* machine/parity/power fail/"kitchen sink" faults */
379 if (isa_nmi(code) == 0) {
380#ifdef DDB
381 /*
382 * NMI can be hooked up to a pushbutton
383 * for debugging.
384 */
385 if (ddb_on_nmi) {
386 printf ("NMI ... going to debugger\n");
387 kdb_trap (type, 0, &frame);
388 }
389#endif /* DDB */
390 goto out;
391 } else if (panic_on_nmi)
392 panic("NMI indicates hardware failure");
393 break;
394#endif /* POWERFAIL_NMI */
395#endif /* NISA > 0 */
396
397 case T_OFLOW: /* integer overflow fault */
398 ucode = FPE_INTOVF;
399 i = SIGFPE;
400 break;
401
402 case T_BOUND: /* bounds check fault */
403 ucode = FPE_FLTSUB;
404 i = SIGFPE;
405 break;
406
407 case T_DNA:
408#if NNPX > 0
409 /* transparent fault (due to context switch "late") */
410 if (npxdna())
411 goto out;
412#endif
413 if (!pmath_emulate) {
414 i = SIGFPE;
415 ucode = FPE_FPU_NP_TRAP;
416 break;
417 }
418 i = (*pmath_emulate)(&frame);
419 if (i == 0) {
420 if (!(frame.tf_eflags & PSL_T))
421 goto out;
422 frame.tf_eflags &= ~PSL_T;
423 i = SIGTRAP;
424 }
425 /* else ucode = emulator_only_knows() XXX */
426 break;
427
428 case T_FPOPFLT: /* FPU operand fetch fault */
429 ucode = T_FPOPFLT;
430 i = SIGILL;
431 break;
432 }
433 } else {
434 /* kernel trap */
435
436 switch (type) {
437 case T_PAGEFLT: /* page fault */
438 (void) trap_pfault(&frame, FALSE, eva);
439 goto out;
440
441 case T_DNA:
442#if NNPX > 0
443 /*
444 * The kernel is apparently using npx for copying.
445 * XXX this should be fatal unless the kernel has
446 * registered such use.
447 */
448 if (npxdna())
449 goto out;
450#endif
451 break;
452
453 /*
454 * The following two traps can happen in
455 * vm86 mode, and, if so, we want to handle
456 * them specially.
457 */
458 case T_PROTFLT: /* general protection fault */
459 case T_STKFLT: /* stack fault */
460 if (frame.tf_eflags & PSL_VM) {
461 i = vm86_emulate((struct vm86frame *)&frame);
462 if (i != 0)
463 /*
464 * returns to original process
465 */
466 vm86_trap((struct vm86frame *)&frame);
467 goto out;
468 }
469 if (type == T_STKFLT)
470 break;
471
472 /* FALL THROUGH */
473
474 case T_SEGNPFLT: /* segment not present fault */
475 if (in_vm86call)
476 break;
477
478 if (intr_nesting_level != 0)
479 break;
480
481 /*
482 * Invalid %fs's and %gs's can be created using
483 * procfs or PT_SETREGS or by invalidating the
484 * underlying LDT entry. This causes a fault
485 * in kernel mode when the kernel attempts to
486 * switch contexts. Lose the bad context
487 * (XXX) so that we can continue, and generate
488 * a signal.
489 */
490 if (frame.tf_eip == (int)cpu_switch_load_gs) {
491 curpcb->pcb_gs = 0;
492 psignal(p, SIGBUS);
493 goto out;
494 }
495
496 /*
497 * Invalid segment selectors and out of bounds
498 * %eip's and %esp's can be set up in user mode.
499 * This causes a fault in kernel mode when the
500 * kernel tries to return to user mode. We want
501 * to get this fault so that we can fix the
502 * problem here and not have to check all the
503 * selectors and pointers when the user changes
504 * them.
505 */
506 if (frame.tf_eip == (int)doreti_iret) {
507 frame.tf_eip = (int)doreti_iret_fault;
508 goto out;
509 }
510 if (frame.tf_eip == (int)doreti_popl_ds) {
511 frame.tf_eip = (int)doreti_popl_ds_fault;
512 goto out;
513 }
514 if (frame.tf_eip == (int)doreti_popl_es) {
515 frame.tf_eip = (int)doreti_popl_es_fault;
516 goto out;
517 }
518 if (frame.tf_eip == (int)doreti_popl_fs) {
519 frame.tf_eip = (int)doreti_popl_fs_fault;
520 goto out;
521 }
522 if (curpcb && curpcb->pcb_onfault) {
523 frame.tf_eip = (int)curpcb->pcb_onfault;
524 goto out;
525 }
526 break;
527
528 case T_TSSFLT:
529 /*
530 * PSL_NT can be set in user mode and isn't cleared
531 * automatically when the kernel is entered. This
532 * causes a TSS fault when the kernel attempts to
533 * `iret' because the TSS link is uninitialized. We
534 * want to get this fault so that we can fix the
535 * problem here and not every time the kernel is
536 * entered.
537 */
538 if (frame.tf_eflags & PSL_NT) {
539 frame.tf_eflags &= ~PSL_NT;
540 goto out;
541 }
542 break;
543
544 case T_TRCTRAP: /* trace trap */
545 if (frame.tf_eip == (int)IDTVEC(syscall)) {
546 /*
547 * We've just entered system mode via the
548 * syscall lcall. Continue single stepping
549 * silently until the syscall handler has
550 * saved the flags.
551 */
552 goto out;
553 }
554 if (frame.tf_eip == (int)IDTVEC(syscall) + 1) {
555 /*
556 * The syscall handler has now saved the
557 * flags. Stop single stepping it.
558 */
559 frame.tf_eflags &= ~PSL_T;
560 goto out;
561 }
562 /*
563 * Ignore debug register trace traps due to
564 * accesses in the user's address space, which
565 * can happen under several conditions such as
566 * if a user sets a watchpoint on a buffer and
567 * then passes that buffer to a system call.
568 * We still want to get TRCTRAPS for addresses
569 * in kernel space because that is useful when
570 * debugging the kernel.
571 */
572 if (user_dbreg_trap() && !in_vm86call) {
573 /*
574 * Reset breakpoint bits because the
575 * processor doesn't
576 */
577 load_dr6(rdr6() & 0xfffffff0);
578 goto out;
579 }
580 /*
581 * Fall through (TRCTRAP kernel mode, kernel address)
582 */
583 case T_BPTFLT:
584 /*
585 * If DDB is enabled, let it handle the debugger trap.
586 * Otherwise, debugger traps "can't happen".
587 */
588#ifdef DDB
589 if (kdb_trap (type, 0, &frame))
590 goto out;
591#endif
592 break;
593
594#if NISA > 0
595 case T_NMI:
596#ifdef POWERFAIL_NMI
597 if (time_second - lastalert > 10) {
598 log(LOG_WARNING, "NMI: power fail\n");
599 sysbeep(TIMER_FREQ/880, hz);
600 lastalert = time_second;
601 }
602 goto out;
603#else /* !POWERFAIL_NMI */
604 /* machine/parity/power fail/"kitchen sink" faults */
605 if (isa_nmi(code) == 0) {
606#ifdef DDB
607 /*
608 * NMI can be hooked up to a pushbutton
609 * for debugging.
610 */
611 if (ddb_on_nmi) {
612 printf ("NMI ... going to debugger\n");
613 kdb_trap (type, 0, &frame);
614 }
615#endif /* DDB */
616 goto out;
617 } else if (panic_on_nmi == 0)
618 goto out;
619 /* FALL THROUGH */
620#endif /* POWERFAIL_NMI */
621#endif /* NISA > 0 */
622 }
623
624 trap_fatal(&frame, eva);
625 goto out;
626 }
627
628 /* Translate fault for emulators (e.g. Linux) */
629 if (*p->p_sysent->sv_transtrap)
630 i = (*p->p_sysent->sv_transtrap)(i, type);
631
632 trapsignal(p, i, ucode);
633
634#ifdef DEBUG
635 if (type <= MAX_TRAP_MSG) {
636 uprintf("fatal process exception: %s",
637 trap_msg[type]);
638 if ((type == T_PAGEFLT) || (type == T_PROTFLT))
639 uprintf(", fault VA = 0x%lx", (u_long)eva);
640 uprintf("\n");
641 }
642#endif
643
644user:
645 userret(p, &frame, sticks, 1);
646out:
647 mtx_exit(&Giant, MTX_DEF);
648}
649
650#ifdef notyet
651/*
652 * This version doesn't allow a page fault to user space while
653 * in the kernel. The rest of the kernel needs to be made "safe"
654 * before this can be used. I think the only things remaining
655 * to be made safe are the iBCS2 code and the process tracing/
656 * debugging code.
657 */
658static int
659trap_pfault(frame, usermode, eva)
660 struct trapframe *frame;
661 int usermode;
662 vm_offset_t eva;
663{
664 vm_offset_t va;
665 struct vmspace *vm = NULL;
666 vm_map_t map = 0;
667 int rv = 0;
668 vm_prot_t ftype;
669 struct proc *p = curproc;
670
671 if (frame->tf_err & PGEX_W)
672 ftype = VM_PROT_WRITE;
673 else
674 ftype = VM_PROT_READ;
675
676 va = trunc_page(eva);
677 if (va < VM_MIN_KERNEL_ADDRESS) {
678 vm_offset_t v;
679 vm_page_t mpte;
680
681 if (p == NULL ||
682 (!usermode && va < VM_MAXUSER_ADDRESS &&
683 (intr_nesting_level != 0 || curpcb == NULL ||
684 curpcb->pcb_onfault == NULL))) {
685 trap_fatal(frame, eva);
686 return (-1);
687 }
688
689 /*
690 * This is a fault on non-kernel virtual memory.
691 * vm is initialized above to NULL. If curproc is NULL
692 * or curproc->p_vmspace is NULL the fault is fatal.
693 */
694 vm = p->p_vmspace;
695 if (vm == NULL)
696 goto nogo;
697
698 map = &vm->vm_map;
699
700 /*
701 * Keep swapout from messing with us during this
702 * critical time.
703 */
704 ++p->p_lock;
705
706 /*
707 * Grow the stack if necessary
708 */
709 /* grow_stack returns false only if va falls into
710 * a growable stack region and the stack growth
711 * fails. It returns true if va was not within
712 * a growable stack region, or if the stack
713 * growth succeeded.
714 */
715 if (!grow_stack (p, va)) {
716 rv = KERN_FAILURE;
717 --p->p_lock;
718 goto nogo;
719 }
720
721 /* Fault in the user page: */
722 rv = vm_fault(map, va, ftype,
723 (ftype & VM_PROT_WRITE) ? VM_FAULT_DIRTY
724 : VM_FAULT_NORMAL);
725
726 --p->p_lock;
727 } else {
728 /*
729 * Don't allow user-mode faults in kernel address space.
730 */
731 if (usermode)
732 goto nogo;
733
734 /*
735 * Since we know that kernel virtual address addresses
736 * always have pte pages mapped, we just have to fault
737 * the page.
738 */
739 rv = vm_fault(kernel_map, va, ftype, VM_FAULT_NORMAL);
740 }
741
742 if (rv == KERN_SUCCESS)
743 return (0);
744nogo:
745 if (!usermode) {
746 if (intr_nesting_level == 0 && curpcb && curpcb->pcb_onfault) {
747 frame->tf_eip = (int)curpcb->pcb_onfault;
748 return (0);
749 }
750 trap_fatal(frame, eva);
751 return (-1);
752 }
753
754 /* kludge to pass faulting virtual address to sendsig */
755 frame->tf_err = eva;
756
757 return((rv == KERN_PROTECTION_FAILURE) ? SIGBUS : SIGSEGV);
758}
759#endif
760
761int
762trap_pfault(frame, usermode, eva)
763 struct trapframe *frame;
764 int usermode;
765 vm_offset_t eva;
766{
767 vm_offset_t va;
768 struct vmspace *vm = NULL;
769 vm_map_t map = 0;
770 int rv = 0;
771 vm_prot_t ftype;
772 struct proc *p = curproc;
773
774 va = trunc_page(eva);
775 if (va >= KERNBASE) {
776 /*
777 * Don't allow user-mode faults in kernel address space.
778 * An exception: if the faulting address is the invalid
779 * instruction entry in the IDT, then the Intel Pentium
780 * F00F bug workaround was triggered, and we need to
781 * treat it is as an illegal instruction, and not a page
782 * fault.
783 */
784#if defined(I586_CPU) && !defined(NO_F00F_HACK)
785 if ((eva == (unsigned int)&idt[6]) && has_f00f_bug)
786 return -2;
787#endif
788 if (usermode)
789 goto nogo;
790
791 map = kernel_map;
792 } else {
793 /*
794 * This is a fault on non-kernel virtual memory.
795 * vm is initialized above to NULL. If curproc is NULL
796 * or curproc->p_vmspace is NULL the fault is fatal.
797 */
798 if (p != NULL)
799 vm = p->p_vmspace;
800
801 if (vm == NULL)
802 goto nogo;
803
804 map = &vm->vm_map;
805 }
806
807 if (frame->tf_err & PGEX_W)
808 ftype = VM_PROT_WRITE;
809 else
810 ftype = VM_PROT_READ;
811
812 if (map != kernel_map) {
813 /*
814 * Keep swapout from messing with us during this
815 * critical time.
816 */
817 ++p->p_lock;
818
819 /*
820 * Grow the stack if necessary
821 */
822 /* grow_stack returns false only if va falls into
823 * a growable stack region and the stack growth
824 * fails. It returns true if va was not within
825 * a growable stack region, or if the stack
826 * growth succeeded.
827 */
828 if (!grow_stack (p, va)) {
829 rv = KERN_FAILURE;
830 --p->p_lock;
831 goto nogo;
832 }
833
834 /* Fault in the user page: */
835 rv = vm_fault(map, va, ftype,
836 (ftype & VM_PROT_WRITE) ? VM_FAULT_DIRTY
837 : VM_FAULT_NORMAL);
838
839 --p->p_lock;
840 } else {
841 /*
842 * Don't have to worry about process locking or stacks in the kernel.
843 */
844 rv = vm_fault(map, va, ftype, VM_FAULT_NORMAL);
845 }
846
847 if (rv == KERN_SUCCESS)
848 return (0);
849nogo:
850 if (!usermode) {
851 if (intr_nesting_level == 0 && curpcb && curpcb->pcb_onfault) {
852 frame->tf_eip = (int)curpcb->pcb_onfault;
853 return (0);
854 }
855 trap_fatal(frame, eva);
856 return (-1);
857 }
858
859 /* kludge to pass faulting virtual address to sendsig */
860 frame->tf_err = eva;
861
862 return((rv == KERN_PROTECTION_FAILURE) ? SIGBUS : SIGSEGV);
863}
864
865static void
866trap_fatal(frame, eva)
867 struct trapframe *frame;
868 vm_offset_t eva;
869{
870 int code, type, ss, esp;
871 struct soft_segment_descriptor softseg;
872
873 code = frame->tf_err;
874 type = frame->tf_trapno;
875 sdtossd(&gdt[IDXSEL(frame->tf_cs & 0xffff)].sd, &softseg);
876
877 if (type <= MAX_TRAP_MSG)
878 printf("\n\nFatal trap %d: %s while in %s mode\n",
879 type, trap_msg[type],
880 frame->tf_eflags & PSL_VM ? "vm86" :
881 ISPL(frame->tf_cs) == SEL_UPL ? "user" : "kernel");
882#ifdef SMP
883 /* two seperate prints in case of a trap on an unmapped page */
884 printf("cpuid = %d; ", cpuid);
885 printf("lapic.id = %08x\n", lapic.id);
886#endif
887 if (type == T_PAGEFLT) {
888 printf("fault virtual address = 0x%x\n", eva);
889 printf("fault code = %s %s, %s\n",
890 code & PGEX_U ? "user" : "supervisor",
891 code & PGEX_W ? "write" : "read",
892 code & PGEX_P ? "protection violation" : "page not present");
893 }
894 printf("instruction pointer = 0x%x:0x%x\n",
895 frame->tf_cs & 0xffff, frame->tf_eip);
896 if ((ISPL(frame->tf_cs) == SEL_UPL) || (frame->tf_eflags & PSL_VM)) {
897 ss = frame->tf_ss & 0xffff;
898 esp = frame->tf_esp;
899 } else {
900 ss = GSEL(GDATA_SEL, SEL_KPL);
901 esp = (int)&frame->tf_esp;
902 }
903 printf("stack pointer = 0x%x:0x%x\n", ss, esp);
904 printf("frame pointer = 0x%x:0x%x\n", ss, frame->tf_ebp);
905 printf("code segment = base 0x%x, limit 0x%x, type 0x%x\n",
906 softseg.ssd_base, softseg.ssd_limit, softseg.ssd_type);
907 printf(" = DPL %d, pres %d, def32 %d, gran %d\n",
908 softseg.ssd_dpl, softseg.ssd_p, softseg.ssd_def32,
909 softseg.ssd_gran);
910 printf("processor eflags = ");
911 if (frame->tf_eflags & PSL_T)
912 printf("trace trap, ");
913 if (frame->tf_eflags & PSL_I)
914 printf("interrupt enabled, ");
915 if (frame->tf_eflags & PSL_NT)
916 printf("nested task, ");
917 if (frame->tf_eflags & PSL_RF)
918 printf("resume, ");
919 if (frame->tf_eflags & PSL_VM)
920 printf("vm86, ");
921 printf("IOPL = %d\n", (frame->tf_eflags & PSL_IOPL) >> 12);
922 printf("current process = ");
923 if (curproc) {
924 printf("%lu (%s)\n",
925 (u_long)curproc->p_pid, curproc->p_comm ?
926 curproc->p_comm : "");
927 } else {
928 printf("Idle\n");
929 }
930
931#ifdef KDB
932 if (kdb_trap(&psl))
933 return;
934#endif
935#ifdef DDB
936 if ((debugger_on_panic || db_active) && kdb_trap(type, 0, frame))
937 return;
938#endif
939 printf("trap number = %d\n", type);
940 if (type <= MAX_TRAP_MSG)
941 panic(trap_msg[type]);
942 else
943 panic("unknown/reserved trap");
944}
945
946/*
947 * Double fault handler. Called when a fault occurs while writing
948 * a frame for a trap/exception onto the stack. This usually occurs
949 * when the stack overflows (such is the case with infinite recursion,
950 * for example).
951 *
952 * XXX Note that the current PTD gets replaced by IdlePTD when the
953 * task switch occurs. This means that the stack that was active at
954 * the time of the double fault is not available at <kstack> unless
955 * the machine was idle when the double fault occurred. The downside
956 * of this is that "trace <ebp>" in ddb won't work.
957 */
958void
959dblfault_handler()
960{
961 printf("\nFatal double fault:\n");
962 printf("eip = 0x%x\n", common_tss.tss_eip);
963 printf("esp = 0x%x\n", common_tss.tss_esp);
964 printf("ebp = 0x%x\n", common_tss.tss_ebp);
965#ifdef SMP
966 /* two seperate prints in case of a trap on an unmapped page */
967 printf("cpuid = %d; ", cpuid);
968 printf("lapic.id = %08x\n", lapic.id);
969#endif
970 panic("double fault");
971}
972
973/*
974 * Compensate for 386 brain damage (missing URKR).
975 * This is a little simpler than the pagefault handler in trap() because
976 * it the page tables have already been faulted in and high addresses
977 * are thrown out early for other reasons.
978 */
979int trapwrite(addr)
980 unsigned addr;
981{
982 struct proc *p;
983 vm_offset_t va;
984 struct vmspace *vm;
985 int rv;
986
987 va = trunc_page((vm_offset_t)addr);
988 /*
989 * XXX - MAX is END. Changed > to >= for temp. fix.
990 */
991 if (va >= VM_MAXUSER_ADDRESS)
992 return (1);
993
994 p = curproc;
995 vm = p->p_vmspace;
996
997 ++p->p_lock;
998
999 if (!grow_stack (p, va)) {
1000 --p->p_lock;
1001 return (1);
1002 }
1003
1004 /*
1005 * fault the data page
1006 */
1007 rv = vm_fault(&vm->vm_map, va, VM_PROT_WRITE, VM_FAULT_DIRTY);
1008
1009 --p->p_lock;
1010
1011 if (rv != KERN_SUCCESS)
1012 return 1;
1013
1014 return (0);
1015}
1016
1017/*
1018 * syscall2 - MP aware system call request C handler
1019 *
1020 * A system call is essentially treated as a trap except that the
1021 * MP lock is not held on entry or return. We are responsible for
1022 * obtaining the MP lock if necessary and for handling ASTs
1023 * (e.g. a task switch) prior to return.
1024 *
1025 * In general, only simple access and manipulation of curproc and
1026 * the current stack is allowed without having to hold MP lock.
1027 */
1028void
1029syscall2(frame)
1030 struct trapframe frame;
1031{
1032 caddr_t params;
1033 int i;
1034 struct sysent *callp;
1035 struct proc *p = curproc;
1036 u_quad_t sticks;
1037 int error;
1038 int narg;
1039 int args[8];
1040 int have_giant = 0;
1041 u_int code;
1042
1043 atomic_add_int(&cnt.v_syscall, 1);
1044
1045#ifdef DIAGNOSTIC
1046 if (ISPL(frame.tf_cs) != SEL_UPL) {
1047 mtx_enter(&Giant, MTX_DEF);
1048 panic("syscall");
1049 /* NOT REACHED */
1050 }
1051#endif
1052
1053 /*
1054 * handle atomicy by looping since interrupts are enabled and the
1055 * MP lock is not held.
1056 */
1057 sticks = ((volatile struct proc *)p)->p_sticks;
1058 while (sticks != ((volatile struct proc *)p)->p_sticks)
1059 sticks = ((volatile struct proc *)p)->p_sticks;
1060
1061 p->p_md.md_regs = &frame;
1062 params = (caddr_t)frame.tf_esp + sizeof(int);
1063 code = frame.tf_eax;
1064
1065 if (p->p_sysent->sv_prepsyscall) {
1066 /*
1067 * The prep code is not MP aware.
1068 */
1069 mtx_enter(&Giant, MTX_DEF);
1070 (*p->p_sysent->sv_prepsyscall)(&frame, args, &code, &params);
1071 mtx_exit(&Giant, MTX_DEF);
1072 } else {
1073 /*
1074 * Need to check if this is a 32 bit or 64 bit syscall.
1075 * fuword is MP aware.
1076 */
1077 if (code == SYS_syscall) {
1078 /*
1079 * Code is first argument, followed by actual args.
1080 */
1081 code = fuword(params);
1082 params += sizeof(int);
1083 } else if (code == SYS___syscall) {
1084 /*
1085 * Like syscall, but code is a quad, so as to maintain
1086 * quad alignment for the rest of the arguments.
1087 */
1088 code = fuword(params);
1089 params += sizeof(quad_t);
1090 }
1091 }
1092
1093 if (p->p_sysent->sv_mask)
1094 code &= p->p_sysent->sv_mask;
1095
1096 if (code >= p->p_sysent->sv_size)
1097 callp = &p->p_sysent->sv_table[0];
1098 else
1099 callp = &p->p_sysent->sv_table[code];
1100
1101 narg = callp->sy_narg & SYF_ARGMASK;
1102
1103 /*
1104 * copyin is MP aware, but the tracing code is not
1105 */
1106 if (params && (i = narg * sizeof(int)) &&
1107 (error = copyin(params, (caddr_t)args, (u_int)i))) {
1108 mtx_enter(&Giant, MTX_DEF);
1109 have_giant = 1;
1110#ifdef KTRACE
1111 if (KTRPOINT(p, KTR_SYSCALL))
1112 ktrsyscall(p->p_tracep, code, narg, args);
1113#endif
1114 goto bad;
1115 }
1116
1117 /*
1118 * Try to run the syscall without the MP lock if the syscall
1119 * is MP safe. We have to obtain the MP lock no matter what if
1120 * we are ktracing
1121 */
1122 if ((callp->sy_narg & SYF_MPSAFE) == 0) {
1123 mtx_enter(&Giant, MTX_DEF);
1124 have_giant = 1;
1125 }
1126
1127#ifdef KTRACE
1128 if (KTRPOINT(p, KTR_SYSCALL)) {
1129 if (have_giant == 0) {
1130 mtx_enter(&Giant, MTX_DEF);
1131 have_giant = 1;
1132 }
1133 ktrsyscall(p->p_tracep, code, narg, args);
1134 }
1135#endif
1136 p->p_retval[0] = 0;
1137 p->p_retval[1] = frame.tf_edx;
1138
1139 STOPEVENT(p, S_SCE, narg); /* MP aware */
1140
1141 error = (*callp->sy_call)(p, args);
1142
1143 /*
1144 * MP SAFE (we may or may not have the MP lock at this point)
1145 */
1146 switch (error) {
1147 case 0:
1148 /*
1149 * Reinitialize proc pointer `p' as it may be different
1150 * if this is a child returning from fork syscall.
1151 */
1152 p = curproc;
1153 frame.tf_eax = p->p_retval[0];
1154 frame.tf_edx = p->p_retval[1];
1155 frame.tf_eflags &= ~PSL_C;
1156 break;
1157
1158 case ERESTART:
1159 /*
1160 * Reconstruct pc, assuming lcall $X,y is 7 bytes,
1161 * int 0x80 is 2 bytes. We saved this in tf_err.
1162 */
1163 frame.tf_eip -= frame.tf_err;
1164 break;
1165
1166 case EJUSTRETURN:
1167 break;
1168
1169 default:
1170bad:
1171 if (p->p_sysent->sv_errsize) {
1172 if (error >= p->p_sysent->sv_errsize)
1173 error = -1; /* XXX */
1174 else
1175 error = p->p_sysent->sv_errtbl[error];
1176 }
1177 frame.tf_eax = error;
1178 frame.tf_eflags |= PSL_C;
1179 break;
1180 }
1181
1182 /*
1183 * Traced syscall. trapsignal() is not MP aware.
1184 */
1185 if ((frame.tf_eflags & PSL_T) && !(frame.tf_eflags & PSL_VM)) {
1186 if (have_giant == 0) {
1187 mtx_enter(&Giant, MTX_DEF);
1188 have_giant = 1;
1189 }
1190 frame.tf_eflags &= ~PSL_T;
1191 trapsignal(p, SIGTRAP, 0);
1192 }
1193
1194 /*
1195 * Handle reschedule and other end-of-syscall issues
1196 */
1197 have_giant = userret(p, &frame, sticks, have_giant);
1198
1199#ifdef KTRACE
1200 if (KTRPOINT(p, KTR_SYSRET)) {
1201 if (have_giant == 0) {
1202 mtx_enter(&Giant, MTX_DEF);
1203 have_giant = 1;
1204 }
1205 ktrsysret(p->p_tracep, code, error, p->p_retval[0]);
1206 }
1207#endif
1208
1209 /*
1210 * This works because errno is findable through the
1211 * register set. If we ever support an emulation where this
1212 * is not the case, this code will need to be revisited.
1213 */
1214 STOPEVENT(p, S_SCX, code);
1215
1216 /*
1217 * Release the MP lock if we had to get it
1218 */
1219 if (have_giant)
1220 mtx_exit(&Giant, MTX_DEF);
1221
1222 mtx_assert(&sched_lock, MA_NOTOWNED);
1223 mtx_assert(&Giant, MA_NOTOWNED);
1224}
1225
1226void
1227ast(frame)
1228 struct trapframe frame;
1229{
1230 struct proc *p = CURPROC;
1231 u_quad_t sticks;
1232
1233 /*
1234 * handle atomicy by looping since interrupts are enabled and the
1235 * MP lock is not held.
1236 */
1237 sticks = ((volatile struct proc *)p)->p_sticks;
1238 while (sticks != ((volatile struct proc *)p)->p_sticks)
1239 sticks = ((volatile struct proc *)p)->p_sticks;
1240
1241 astoff();
1242 atomic_add_int(&cnt.v_soft, 1);
1243 if (p->p_flag & P_OWEUPC) {
1244 mtx_enter(&Giant, MTX_DEF);
1245 p->p_flag &= ~P_OWEUPC;
1246 addupc_task(p, p->p_stats->p_prof.pr_addr,
1247 p->p_stats->p_prof.pr_ticks);
1248 }
1249 if (p->p_flag & P_ALRMPEND) {
1250 if (!mtx_owned(&Giant))
1251 mtx_enter(&Giant, MTX_DEF);
1252 p->p_flag &= ~P_ALRMPEND;
1253 psignal(p, SIGVTALRM);
1254 }
1255 if (p->p_flag & P_PROFPEND) {
1256 if (!mtx_owned(&Giant))
1257 mtx_enter(&Giant, MTX_DEF);
1258 p->p_flag &= ~P_PROFPEND;
1259 psignal(p, SIGPROF);
1260 }
1261 if (userret(p, &frame, sticks, mtx_owned(&Giant)) != 0)
1262 mtx_exit(&Giant, MTX_DEF);
1263}
1264
1265/*
1266 * Simplified back end of syscall(), used when returning from fork()
1267 * directly into user mode. Giant is not held on entry, and must not
1268 * be held on return.
1269 */
1270void
1271fork_return(p, frame)
1272 struct proc *p;
1273 struct trapframe frame;
1274{
1275 int have_giant;
1276
1277 frame.tf_eax = 0; /* Child returns zero */
1278 frame.tf_eflags &= ~PSL_C; /* success */
1279 frame.tf_edx = 1;
1280
1281 have_giant = userret(p, &frame, 0, mtx_owned(&Giant));
1282#ifdef KTRACE
1283 if (KTRPOINT(p, KTR_SYSRET)) {
1284 if (have_giant == 0) {
1285 mtx_enter(&Giant, MTX_DEF);
1286 have_giant = 1;
1287 }
1288 ktrsysret(p->p_tracep, SYS_fork, 0, 0);
1289 }
1290#endif
1291 if (have_giant)
1292 mtx_exit(&Giant, MTX_DEF);
1293}
197 setrunqueue(p);
198 p->p_stats->p_ru.ru_nivcsw++;
199 mi_switch();
200 mtx_exit(&sched_lock, MTX_SPIN);
201 PICKUP_GIANT();
202 splx(s);
203 while ((sig = CURSIG(p)) != 0) {
204 if (have_giant == 0) {
205 mtx_enter(&Giant, MTX_DEF);
206 have_giant = 1;
207 }
208 postsig(sig);
209 }
210 }
211 /*
212 * Charge system time if profiling.
213 */
214 if (p->p_flag & P_PROFIL) {
215 if (have_giant == 0) {
216 mtx_enter(&Giant, MTX_DEF);
217 have_giant = 1;
218 }
219 addupc_task(p, frame->tf_eip,
220 (u_int)(p->p_sticks - oticks) * psratio);
221 }
222 curpriority = p->p_priority;
223 return(have_giant);
224}
225
226/*
227 * Exception, fault, and trap interface to the FreeBSD kernel.
228 * This common code is called from assembly language IDT gate entry
229 * routines that prepare a suitable stack frame, and restore this
230 * frame after the exception has been processed.
231 */
232
233void
234trap(frame)
235 struct trapframe frame;
236{
237 struct proc *p = curproc;
238 u_quad_t sticks = 0;
239 int i = 0, ucode = 0, type, code;
240 vm_offset_t eva;
241#ifdef POWERFAIL_NMI
242 static int lastalert = 0;
243#endif
244
245 atomic_add_int(&cnt.v_trap, 1);
246
247 if ((frame.tf_eflags & PSL_I) == 0) {
248 /*
249 * Buggy application or kernel code has disabled
250 * interrupts and then trapped. Enabling interrupts
251 * now is wrong, but it is better than running with
252 * interrupts disabled until they are accidentally
253 * enabled later. XXX Consider whether is this still
254 * correct.
255 */
256 type = frame.tf_trapno;
257 if (ISPL(frame.tf_cs) == SEL_UPL || (frame.tf_eflags & PSL_VM))
258 printf(
259 "pid %ld (%s): trap %d with interrupts disabled\n",
260 (long)curproc->p_pid, curproc->p_comm, type);
261 else if (type != T_BPTFLT && type != T_TRCTRAP)
262 /*
263 * XXX not quite right, since this may be for a
264 * multiple fault in user mode.
265 */
266 printf("kernel trap %d with interrupts disabled\n",
267 type);
268 enable_intr();
269 }
270
271 eva = 0;
272 if (frame.tf_trapno == T_PAGEFLT) {
273 /*
274 * For some Cyrix CPUs, %cr2 is clobbered by
275 * interrupts. This problem is worked around by using
276 * an interrupt gate for the pagefault handler. We
277 * are finally ready to read %cr2 and then must
278 * reenable interrupts.
279 */
280 eva = rcr2();
281 enable_intr();
282 }
283
284 mtx_enter(&Giant, MTX_DEF);
285
286#if defined(I586_CPU) && !defined(NO_F00F_HACK)
287restart:
288#endif
289
290 type = frame.tf_trapno;
291 code = frame.tf_err;
292
293 if ((ISPL(frame.tf_cs) == SEL_UPL) ||
294 ((frame.tf_eflags & PSL_VM) && !in_vm86call)) {
295 /* user trap */
296
297 sticks = p->p_sticks;
298 p->p_md.md_regs = &frame;
299
300 switch (type) {
301 case T_PRIVINFLT: /* privileged instruction fault */
302 ucode = type;
303 i = SIGILL;
304 break;
305
306 case T_BPTFLT: /* bpt instruction fault */
307 case T_TRCTRAP: /* trace trap */
308 frame.tf_eflags &= ~PSL_T;
309 i = SIGTRAP;
310 break;
311
312 case T_ARITHTRAP: /* arithmetic trap */
313 ucode = code;
314 i = SIGFPE;
315 break;
316
317 /*
318 * The following two traps can happen in
319 * vm86 mode, and, if so, we want to handle
320 * them specially.
321 */
322 case T_PROTFLT: /* general protection fault */
323 case T_STKFLT: /* stack fault */
324 if (frame.tf_eflags & PSL_VM) {
325 i = vm86_emulate((struct vm86frame *)&frame);
326 if (i == 0)
327 goto user;
328 break;
329 }
330 /* FALL THROUGH */
331
332 case T_SEGNPFLT: /* segment not present fault */
333 case T_TSSFLT: /* invalid TSS fault */
334 case T_DOUBLEFLT: /* double fault */
335 default:
336 ucode = code + BUS_SEGM_FAULT ;
337 i = SIGBUS;
338 break;
339
340 case T_PAGEFLT: /* page fault */
341 i = trap_pfault(&frame, TRUE, eva);
342#if defined(I586_CPU) && !defined(NO_F00F_HACK)
343 if (i == -2) {
344 /*
345 * f00f hack workaround has triggered, treat
346 * as illegal instruction not page fault.
347 */
348 frame.tf_trapno = T_PRIVINFLT;
349 goto restart;
350 }
351#endif
352 if (i == -1)
353 goto out;
354 if (i == 0)
355 goto user;
356
357 ucode = T_PAGEFLT;
358 break;
359
360 case T_DIVIDE: /* integer divide fault */
361 ucode = FPE_INTDIV;
362 i = SIGFPE;
363 break;
364
365#if NISA > 0
366 case T_NMI:
367#ifdef POWERFAIL_NMI
368#ifndef TIMER_FREQ
369# define TIMER_FREQ 1193182
370#endif
371 if (time_second - lastalert > 10) {
372 log(LOG_WARNING, "NMI: power fail\n");
373 sysbeep(TIMER_FREQ/880, hz);
374 lastalert = time_second;
375 }
376 goto out;
377#else /* !POWERFAIL_NMI */
378 /* machine/parity/power fail/"kitchen sink" faults */
379 if (isa_nmi(code) == 0) {
380#ifdef DDB
381 /*
382 * NMI can be hooked up to a pushbutton
383 * for debugging.
384 */
385 if (ddb_on_nmi) {
386 printf ("NMI ... going to debugger\n");
387 kdb_trap (type, 0, &frame);
388 }
389#endif /* DDB */
390 goto out;
391 } else if (panic_on_nmi)
392 panic("NMI indicates hardware failure");
393 break;
394#endif /* POWERFAIL_NMI */
395#endif /* NISA > 0 */
396
397 case T_OFLOW: /* integer overflow fault */
398 ucode = FPE_INTOVF;
399 i = SIGFPE;
400 break;
401
402 case T_BOUND: /* bounds check fault */
403 ucode = FPE_FLTSUB;
404 i = SIGFPE;
405 break;
406
407 case T_DNA:
408#if NNPX > 0
409 /* transparent fault (due to context switch "late") */
410 if (npxdna())
411 goto out;
412#endif
413 if (!pmath_emulate) {
414 i = SIGFPE;
415 ucode = FPE_FPU_NP_TRAP;
416 break;
417 }
418 i = (*pmath_emulate)(&frame);
419 if (i == 0) {
420 if (!(frame.tf_eflags & PSL_T))
421 goto out;
422 frame.tf_eflags &= ~PSL_T;
423 i = SIGTRAP;
424 }
425 /* else ucode = emulator_only_knows() XXX */
426 break;
427
428 case T_FPOPFLT: /* FPU operand fetch fault */
429 ucode = T_FPOPFLT;
430 i = SIGILL;
431 break;
432 }
433 } else {
434 /* kernel trap */
435
436 switch (type) {
437 case T_PAGEFLT: /* page fault */
438 (void) trap_pfault(&frame, FALSE, eva);
439 goto out;
440
441 case T_DNA:
442#if NNPX > 0
443 /*
444 * The kernel is apparently using npx for copying.
445 * XXX this should be fatal unless the kernel has
446 * registered such use.
447 */
448 if (npxdna())
449 goto out;
450#endif
451 break;
452
453 /*
454 * The following two traps can happen in
455 * vm86 mode, and, if so, we want to handle
456 * them specially.
457 */
458 case T_PROTFLT: /* general protection fault */
459 case T_STKFLT: /* stack fault */
460 if (frame.tf_eflags & PSL_VM) {
461 i = vm86_emulate((struct vm86frame *)&frame);
462 if (i != 0)
463 /*
464 * returns to original process
465 */
466 vm86_trap((struct vm86frame *)&frame);
467 goto out;
468 }
469 if (type == T_STKFLT)
470 break;
471
472 /* FALL THROUGH */
473
474 case T_SEGNPFLT: /* segment not present fault */
475 if (in_vm86call)
476 break;
477
478 if (intr_nesting_level != 0)
479 break;
480
481 /*
482 * Invalid %fs's and %gs's can be created using
483 * procfs or PT_SETREGS or by invalidating the
484 * underlying LDT entry. This causes a fault
485 * in kernel mode when the kernel attempts to
486 * switch contexts. Lose the bad context
487 * (XXX) so that we can continue, and generate
488 * a signal.
489 */
490 if (frame.tf_eip == (int)cpu_switch_load_gs) {
491 curpcb->pcb_gs = 0;
492 psignal(p, SIGBUS);
493 goto out;
494 }
495
496 /*
497 * Invalid segment selectors and out of bounds
498 * %eip's and %esp's can be set up in user mode.
499 * This causes a fault in kernel mode when the
500 * kernel tries to return to user mode. We want
501 * to get this fault so that we can fix the
502 * problem here and not have to check all the
503 * selectors and pointers when the user changes
504 * them.
505 */
506 if (frame.tf_eip == (int)doreti_iret) {
507 frame.tf_eip = (int)doreti_iret_fault;
508 goto out;
509 }
510 if (frame.tf_eip == (int)doreti_popl_ds) {
511 frame.tf_eip = (int)doreti_popl_ds_fault;
512 goto out;
513 }
514 if (frame.tf_eip == (int)doreti_popl_es) {
515 frame.tf_eip = (int)doreti_popl_es_fault;
516 goto out;
517 }
518 if (frame.tf_eip == (int)doreti_popl_fs) {
519 frame.tf_eip = (int)doreti_popl_fs_fault;
520 goto out;
521 }
522 if (curpcb && curpcb->pcb_onfault) {
523 frame.tf_eip = (int)curpcb->pcb_onfault;
524 goto out;
525 }
526 break;
527
528 case T_TSSFLT:
529 /*
530 * PSL_NT can be set in user mode and isn't cleared
531 * automatically when the kernel is entered. This
532 * causes a TSS fault when the kernel attempts to
533 * `iret' because the TSS link is uninitialized. We
534 * want to get this fault so that we can fix the
535 * problem here and not every time the kernel is
536 * entered.
537 */
538 if (frame.tf_eflags & PSL_NT) {
539 frame.tf_eflags &= ~PSL_NT;
540 goto out;
541 }
542 break;
543
544 case T_TRCTRAP: /* trace trap */
545 if (frame.tf_eip == (int)IDTVEC(syscall)) {
546 /*
547 * We've just entered system mode via the
548 * syscall lcall. Continue single stepping
549 * silently until the syscall handler has
550 * saved the flags.
551 */
552 goto out;
553 }
554 if (frame.tf_eip == (int)IDTVEC(syscall) + 1) {
555 /*
556 * The syscall handler has now saved the
557 * flags. Stop single stepping it.
558 */
559 frame.tf_eflags &= ~PSL_T;
560 goto out;
561 }
562 /*
563 * Ignore debug register trace traps due to
564 * accesses in the user's address space, which
565 * can happen under several conditions such as
566 * if a user sets a watchpoint on a buffer and
567 * then passes that buffer to a system call.
568 * We still want to get TRCTRAPS for addresses
569 * in kernel space because that is useful when
570 * debugging the kernel.
571 */
572 if (user_dbreg_trap() && !in_vm86call) {
573 /*
574 * Reset breakpoint bits because the
575 * processor doesn't
576 */
577 load_dr6(rdr6() & 0xfffffff0);
578 goto out;
579 }
580 /*
581 * Fall through (TRCTRAP kernel mode, kernel address)
582 */
583 case T_BPTFLT:
584 /*
585 * If DDB is enabled, let it handle the debugger trap.
586 * Otherwise, debugger traps "can't happen".
587 */
588#ifdef DDB
589 if (kdb_trap (type, 0, &frame))
590 goto out;
591#endif
592 break;
593
594#if NISA > 0
595 case T_NMI:
596#ifdef POWERFAIL_NMI
597 if (time_second - lastalert > 10) {
598 log(LOG_WARNING, "NMI: power fail\n");
599 sysbeep(TIMER_FREQ/880, hz);
600 lastalert = time_second;
601 }
602 goto out;
603#else /* !POWERFAIL_NMI */
604 /* machine/parity/power fail/"kitchen sink" faults */
605 if (isa_nmi(code) == 0) {
606#ifdef DDB
607 /*
608 * NMI can be hooked up to a pushbutton
609 * for debugging.
610 */
611 if (ddb_on_nmi) {
612 printf ("NMI ... going to debugger\n");
613 kdb_trap (type, 0, &frame);
614 }
615#endif /* DDB */
616 goto out;
617 } else if (panic_on_nmi == 0)
618 goto out;
619 /* FALL THROUGH */
620#endif /* POWERFAIL_NMI */
621#endif /* NISA > 0 */
622 }
623
624 trap_fatal(&frame, eva);
625 goto out;
626 }
627
628 /* Translate fault for emulators (e.g. Linux) */
629 if (*p->p_sysent->sv_transtrap)
630 i = (*p->p_sysent->sv_transtrap)(i, type);
631
632 trapsignal(p, i, ucode);
633
634#ifdef DEBUG
635 if (type <= MAX_TRAP_MSG) {
636 uprintf("fatal process exception: %s",
637 trap_msg[type]);
638 if ((type == T_PAGEFLT) || (type == T_PROTFLT))
639 uprintf(", fault VA = 0x%lx", (u_long)eva);
640 uprintf("\n");
641 }
642#endif
643
644user:
645 userret(p, &frame, sticks, 1);
646out:
647 mtx_exit(&Giant, MTX_DEF);
648}
649
650#ifdef notyet
651/*
652 * This version doesn't allow a page fault to user space while
653 * in the kernel. The rest of the kernel needs to be made "safe"
654 * before this can be used. I think the only things remaining
655 * to be made safe are the iBCS2 code and the process tracing/
656 * debugging code.
657 */
658static int
659trap_pfault(frame, usermode, eva)
660 struct trapframe *frame;
661 int usermode;
662 vm_offset_t eva;
663{
664 vm_offset_t va;
665 struct vmspace *vm = NULL;
666 vm_map_t map = 0;
667 int rv = 0;
668 vm_prot_t ftype;
669 struct proc *p = curproc;
670
671 if (frame->tf_err & PGEX_W)
672 ftype = VM_PROT_WRITE;
673 else
674 ftype = VM_PROT_READ;
675
676 va = trunc_page(eva);
677 if (va < VM_MIN_KERNEL_ADDRESS) {
678 vm_offset_t v;
679 vm_page_t mpte;
680
681 if (p == NULL ||
682 (!usermode && va < VM_MAXUSER_ADDRESS &&
683 (intr_nesting_level != 0 || curpcb == NULL ||
684 curpcb->pcb_onfault == NULL))) {
685 trap_fatal(frame, eva);
686 return (-1);
687 }
688
689 /*
690 * This is a fault on non-kernel virtual memory.
691 * vm is initialized above to NULL. If curproc is NULL
692 * or curproc->p_vmspace is NULL the fault is fatal.
693 */
694 vm = p->p_vmspace;
695 if (vm == NULL)
696 goto nogo;
697
698 map = &vm->vm_map;
699
700 /*
701 * Keep swapout from messing with us during this
702 * critical time.
703 */
704 ++p->p_lock;
705
706 /*
707 * Grow the stack if necessary
708 */
709 /* grow_stack returns false only if va falls into
710 * a growable stack region and the stack growth
711 * fails. It returns true if va was not within
712 * a growable stack region, or if the stack
713 * growth succeeded.
714 */
715 if (!grow_stack (p, va)) {
716 rv = KERN_FAILURE;
717 --p->p_lock;
718 goto nogo;
719 }
720
721 /* Fault in the user page: */
722 rv = vm_fault(map, va, ftype,
723 (ftype & VM_PROT_WRITE) ? VM_FAULT_DIRTY
724 : VM_FAULT_NORMAL);
725
726 --p->p_lock;
727 } else {
728 /*
729 * Don't allow user-mode faults in kernel address space.
730 */
731 if (usermode)
732 goto nogo;
733
734 /*
735 * Since we know that kernel virtual address addresses
736 * always have pte pages mapped, we just have to fault
737 * the page.
738 */
739 rv = vm_fault(kernel_map, va, ftype, VM_FAULT_NORMAL);
740 }
741
742 if (rv == KERN_SUCCESS)
743 return (0);
744nogo:
745 if (!usermode) {
746 if (intr_nesting_level == 0 && curpcb && curpcb->pcb_onfault) {
747 frame->tf_eip = (int)curpcb->pcb_onfault;
748 return (0);
749 }
750 trap_fatal(frame, eva);
751 return (-1);
752 }
753
754 /* kludge to pass faulting virtual address to sendsig */
755 frame->tf_err = eva;
756
757 return((rv == KERN_PROTECTION_FAILURE) ? SIGBUS : SIGSEGV);
758}
759#endif
760
761int
762trap_pfault(frame, usermode, eva)
763 struct trapframe *frame;
764 int usermode;
765 vm_offset_t eva;
766{
767 vm_offset_t va;
768 struct vmspace *vm = NULL;
769 vm_map_t map = 0;
770 int rv = 0;
771 vm_prot_t ftype;
772 struct proc *p = curproc;
773
774 va = trunc_page(eva);
775 if (va >= KERNBASE) {
776 /*
777 * Don't allow user-mode faults in kernel address space.
778 * An exception: if the faulting address is the invalid
779 * instruction entry in the IDT, then the Intel Pentium
780 * F00F bug workaround was triggered, and we need to
781 * treat it is as an illegal instruction, and not a page
782 * fault.
783 */
784#if defined(I586_CPU) && !defined(NO_F00F_HACK)
785 if ((eva == (unsigned int)&idt[6]) && has_f00f_bug)
786 return -2;
787#endif
788 if (usermode)
789 goto nogo;
790
791 map = kernel_map;
792 } else {
793 /*
794 * This is a fault on non-kernel virtual memory.
795 * vm is initialized above to NULL. If curproc is NULL
796 * or curproc->p_vmspace is NULL the fault is fatal.
797 */
798 if (p != NULL)
799 vm = p->p_vmspace;
800
801 if (vm == NULL)
802 goto nogo;
803
804 map = &vm->vm_map;
805 }
806
807 if (frame->tf_err & PGEX_W)
808 ftype = VM_PROT_WRITE;
809 else
810 ftype = VM_PROT_READ;
811
812 if (map != kernel_map) {
813 /*
814 * Keep swapout from messing with us during this
815 * critical time.
816 */
817 ++p->p_lock;
818
819 /*
820 * Grow the stack if necessary
821 */
822 /* grow_stack returns false only if va falls into
823 * a growable stack region and the stack growth
824 * fails. It returns true if va was not within
825 * a growable stack region, or if the stack
826 * growth succeeded.
827 */
828 if (!grow_stack (p, va)) {
829 rv = KERN_FAILURE;
830 --p->p_lock;
831 goto nogo;
832 }
833
834 /* Fault in the user page: */
835 rv = vm_fault(map, va, ftype,
836 (ftype & VM_PROT_WRITE) ? VM_FAULT_DIRTY
837 : VM_FAULT_NORMAL);
838
839 --p->p_lock;
840 } else {
841 /*
842 * Don't have to worry about process locking or stacks in the kernel.
843 */
844 rv = vm_fault(map, va, ftype, VM_FAULT_NORMAL);
845 }
846
847 if (rv == KERN_SUCCESS)
848 return (0);
849nogo:
850 if (!usermode) {
851 if (intr_nesting_level == 0 && curpcb && curpcb->pcb_onfault) {
852 frame->tf_eip = (int)curpcb->pcb_onfault;
853 return (0);
854 }
855 trap_fatal(frame, eva);
856 return (-1);
857 }
858
859 /* kludge to pass faulting virtual address to sendsig */
860 frame->tf_err = eva;
861
862 return((rv == KERN_PROTECTION_FAILURE) ? SIGBUS : SIGSEGV);
863}
864
865static void
866trap_fatal(frame, eva)
867 struct trapframe *frame;
868 vm_offset_t eva;
869{
870 int code, type, ss, esp;
871 struct soft_segment_descriptor softseg;
872
873 code = frame->tf_err;
874 type = frame->tf_trapno;
875 sdtossd(&gdt[IDXSEL(frame->tf_cs & 0xffff)].sd, &softseg);
876
877 if (type <= MAX_TRAP_MSG)
878 printf("\n\nFatal trap %d: %s while in %s mode\n",
879 type, trap_msg[type],
880 frame->tf_eflags & PSL_VM ? "vm86" :
881 ISPL(frame->tf_cs) == SEL_UPL ? "user" : "kernel");
882#ifdef SMP
883 /* two seperate prints in case of a trap on an unmapped page */
884 printf("cpuid = %d; ", cpuid);
885 printf("lapic.id = %08x\n", lapic.id);
886#endif
887 if (type == T_PAGEFLT) {
888 printf("fault virtual address = 0x%x\n", eva);
889 printf("fault code = %s %s, %s\n",
890 code & PGEX_U ? "user" : "supervisor",
891 code & PGEX_W ? "write" : "read",
892 code & PGEX_P ? "protection violation" : "page not present");
893 }
894 printf("instruction pointer = 0x%x:0x%x\n",
895 frame->tf_cs & 0xffff, frame->tf_eip);
896 if ((ISPL(frame->tf_cs) == SEL_UPL) || (frame->tf_eflags & PSL_VM)) {
897 ss = frame->tf_ss & 0xffff;
898 esp = frame->tf_esp;
899 } else {
900 ss = GSEL(GDATA_SEL, SEL_KPL);
901 esp = (int)&frame->tf_esp;
902 }
903 printf("stack pointer = 0x%x:0x%x\n", ss, esp);
904 printf("frame pointer = 0x%x:0x%x\n", ss, frame->tf_ebp);
905 printf("code segment = base 0x%x, limit 0x%x, type 0x%x\n",
906 softseg.ssd_base, softseg.ssd_limit, softseg.ssd_type);
907 printf(" = DPL %d, pres %d, def32 %d, gran %d\n",
908 softseg.ssd_dpl, softseg.ssd_p, softseg.ssd_def32,
909 softseg.ssd_gran);
910 printf("processor eflags = ");
911 if (frame->tf_eflags & PSL_T)
912 printf("trace trap, ");
913 if (frame->tf_eflags & PSL_I)
914 printf("interrupt enabled, ");
915 if (frame->tf_eflags & PSL_NT)
916 printf("nested task, ");
917 if (frame->tf_eflags & PSL_RF)
918 printf("resume, ");
919 if (frame->tf_eflags & PSL_VM)
920 printf("vm86, ");
921 printf("IOPL = %d\n", (frame->tf_eflags & PSL_IOPL) >> 12);
922 printf("current process = ");
923 if (curproc) {
924 printf("%lu (%s)\n",
925 (u_long)curproc->p_pid, curproc->p_comm ?
926 curproc->p_comm : "");
927 } else {
928 printf("Idle\n");
929 }
930
931#ifdef KDB
932 if (kdb_trap(&psl))
933 return;
934#endif
935#ifdef DDB
936 if ((debugger_on_panic || db_active) && kdb_trap(type, 0, frame))
937 return;
938#endif
939 printf("trap number = %d\n", type);
940 if (type <= MAX_TRAP_MSG)
941 panic(trap_msg[type]);
942 else
943 panic("unknown/reserved trap");
944}
945
946/*
947 * Double fault handler. Called when a fault occurs while writing
948 * a frame for a trap/exception onto the stack. This usually occurs
949 * when the stack overflows (such is the case with infinite recursion,
950 * for example).
951 *
952 * XXX Note that the current PTD gets replaced by IdlePTD when the
953 * task switch occurs. This means that the stack that was active at
954 * the time of the double fault is not available at <kstack> unless
955 * the machine was idle when the double fault occurred. The downside
956 * of this is that "trace <ebp>" in ddb won't work.
957 */
958void
959dblfault_handler()
960{
961 printf("\nFatal double fault:\n");
962 printf("eip = 0x%x\n", common_tss.tss_eip);
963 printf("esp = 0x%x\n", common_tss.tss_esp);
964 printf("ebp = 0x%x\n", common_tss.tss_ebp);
965#ifdef SMP
966 /* two seperate prints in case of a trap on an unmapped page */
967 printf("cpuid = %d; ", cpuid);
968 printf("lapic.id = %08x\n", lapic.id);
969#endif
970 panic("double fault");
971}
972
973/*
974 * Compensate for 386 brain damage (missing URKR).
975 * This is a little simpler than the pagefault handler in trap() because
976 * it the page tables have already been faulted in and high addresses
977 * are thrown out early for other reasons.
978 */
979int trapwrite(addr)
980 unsigned addr;
981{
982 struct proc *p;
983 vm_offset_t va;
984 struct vmspace *vm;
985 int rv;
986
987 va = trunc_page((vm_offset_t)addr);
988 /*
989 * XXX - MAX is END. Changed > to >= for temp. fix.
990 */
991 if (va >= VM_MAXUSER_ADDRESS)
992 return (1);
993
994 p = curproc;
995 vm = p->p_vmspace;
996
997 ++p->p_lock;
998
999 if (!grow_stack (p, va)) {
1000 --p->p_lock;
1001 return (1);
1002 }
1003
1004 /*
1005 * fault the data page
1006 */
1007 rv = vm_fault(&vm->vm_map, va, VM_PROT_WRITE, VM_FAULT_DIRTY);
1008
1009 --p->p_lock;
1010
1011 if (rv != KERN_SUCCESS)
1012 return 1;
1013
1014 return (0);
1015}
1016
1017/*
1018 * syscall2 - MP aware system call request C handler
1019 *
1020 * A system call is essentially treated as a trap except that the
1021 * MP lock is not held on entry or return. We are responsible for
1022 * obtaining the MP lock if necessary and for handling ASTs
1023 * (e.g. a task switch) prior to return.
1024 *
1025 * In general, only simple access and manipulation of curproc and
1026 * the current stack is allowed without having to hold MP lock.
1027 */
1028void
1029syscall2(frame)
1030 struct trapframe frame;
1031{
1032 caddr_t params;
1033 int i;
1034 struct sysent *callp;
1035 struct proc *p = curproc;
1036 u_quad_t sticks;
1037 int error;
1038 int narg;
1039 int args[8];
1040 int have_giant = 0;
1041 u_int code;
1042
1043 atomic_add_int(&cnt.v_syscall, 1);
1044
1045#ifdef DIAGNOSTIC
1046 if (ISPL(frame.tf_cs) != SEL_UPL) {
1047 mtx_enter(&Giant, MTX_DEF);
1048 panic("syscall");
1049 /* NOT REACHED */
1050 }
1051#endif
1052
1053 /*
1054 * handle atomicy by looping since interrupts are enabled and the
1055 * MP lock is not held.
1056 */
1057 sticks = ((volatile struct proc *)p)->p_sticks;
1058 while (sticks != ((volatile struct proc *)p)->p_sticks)
1059 sticks = ((volatile struct proc *)p)->p_sticks;
1060
1061 p->p_md.md_regs = &frame;
1062 params = (caddr_t)frame.tf_esp + sizeof(int);
1063 code = frame.tf_eax;
1064
1065 if (p->p_sysent->sv_prepsyscall) {
1066 /*
1067 * The prep code is not MP aware.
1068 */
1069 mtx_enter(&Giant, MTX_DEF);
1070 (*p->p_sysent->sv_prepsyscall)(&frame, args, &code, &params);
1071 mtx_exit(&Giant, MTX_DEF);
1072 } else {
1073 /*
1074 * Need to check if this is a 32 bit or 64 bit syscall.
1075 * fuword is MP aware.
1076 */
1077 if (code == SYS_syscall) {
1078 /*
1079 * Code is first argument, followed by actual args.
1080 */
1081 code = fuword(params);
1082 params += sizeof(int);
1083 } else if (code == SYS___syscall) {
1084 /*
1085 * Like syscall, but code is a quad, so as to maintain
1086 * quad alignment for the rest of the arguments.
1087 */
1088 code = fuword(params);
1089 params += sizeof(quad_t);
1090 }
1091 }
1092
1093 if (p->p_sysent->sv_mask)
1094 code &= p->p_sysent->sv_mask;
1095
1096 if (code >= p->p_sysent->sv_size)
1097 callp = &p->p_sysent->sv_table[0];
1098 else
1099 callp = &p->p_sysent->sv_table[code];
1100
1101 narg = callp->sy_narg & SYF_ARGMASK;
1102
1103 /*
1104 * copyin is MP aware, but the tracing code is not
1105 */
1106 if (params && (i = narg * sizeof(int)) &&
1107 (error = copyin(params, (caddr_t)args, (u_int)i))) {
1108 mtx_enter(&Giant, MTX_DEF);
1109 have_giant = 1;
1110#ifdef KTRACE
1111 if (KTRPOINT(p, KTR_SYSCALL))
1112 ktrsyscall(p->p_tracep, code, narg, args);
1113#endif
1114 goto bad;
1115 }
1116
1117 /*
1118 * Try to run the syscall without the MP lock if the syscall
1119 * is MP safe. We have to obtain the MP lock no matter what if
1120 * we are ktracing
1121 */
1122 if ((callp->sy_narg & SYF_MPSAFE) == 0) {
1123 mtx_enter(&Giant, MTX_DEF);
1124 have_giant = 1;
1125 }
1126
1127#ifdef KTRACE
1128 if (KTRPOINT(p, KTR_SYSCALL)) {
1129 if (have_giant == 0) {
1130 mtx_enter(&Giant, MTX_DEF);
1131 have_giant = 1;
1132 }
1133 ktrsyscall(p->p_tracep, code, narg, args);
1134 }
1135#endif
1136 p->p_retval[0] = 0;
1137 p->p_retval[1] = frame.tf_edx;
1138
1139 STOPEVENT(p, S_SCE, narg); /* MP aware */
1140
1141 error = (*callp->sy_call)(p, args);
1142
1143 /*
1144 * MP SAFE (we may or may not have the MP lock at this point)
1145 */
1146 switch (error) {
1147 case 0:
1148 /*
1149 * Reinitialize proc pointer `p' as it may be different
1150 * if this is a child returning from fork syscall.
1151 */
1152 p = curproc;
1153 frame.tf_eax = p->p_retval[0];
1154 frame.tf_edx = p->p_retval[1];
1155 frame.tf_eflags &= ~PSL_C;
1156 break;
1157
1158 case ERESTART:
1159 /*
1160 * Reconstruct pc, assuming lcall $X,y is 7 bytes,
1161 * int 0x80 is 2 bytes. We saved this in tf_err.
1162 */
1163 frame.tf_eip -= frame.tf_err;
1164 break;
1165
1166 case EJUSTRETURN:
1167 break;
1168
1169 default:
1170bad:
1171 if (p->p_sysent->sv_errsize) {
1172 if (error >= p->p_sysent->sv_errsize)
1173 error = -1; /* XXX */
1174 else
1175 error = p->p_sysent->sv_errtbl[error];
1176 }
1177 frame.tf_eax = error;
1178 frame.tf_eflags |= PSL_C;
1179 break;
1180 }
1181
1182 /*
1183 * Traced syscall. trapsignal() is not MP aware.
1184 */
1185 if ((frame.tf_eflags & PSL_T) && !(frame.tf_eflags & PSL_VM)) {
1186 if (have_giant == 0) {
1187 mtx_enter(&Giant, MTX_DEF);
1188 have_giant = 1;
1189 }
1190 frame.tf_eflags &= ~PSL_T;
1191 trapsignal(p, SIGTRAP, 0);
1192 }
1193
1194 /*
1195 * Handle reschedule and other end-of-syscall issues
1196 */
1197 have_giant = userret(p, &frame, sticks, have_giant);
1198
1199#ifdef KTRACE
1200 if (KTRPOINT(p, KTR_SYSRET)) {
1201 if (have_giant == 0) {
1202 mtx_enter(&Giant, MTX_DEF);
1203 have_giant = 1;
1204 }
1205 ktrsysret(p->p_tracep, code, error, p->p_retval[0]);
1206 }
1207#endif
1208
1209 /*
1210 * This works because errno is findable through the
1211 * register set. If we ever support an emulation where this
1212 * is not the case, this code will need to be revisited.
1213 */
1214 STOPEVENT(p, S_SCX, code);
1215
1216 /*
1217 * Release the MP lock if we had to get it
1218 */
1219 if (have_giant)
1220 mtx_exit(&Giant, MTX_DEF);
1221
1222 mtx_assert(&sched_lock, MA_NOTOWNED);
1223 mtx_assert(&Giant, MA_NOTOWNED);
1224}
1225
1226void
1227ast(frame)
1228 struct trapframe frame;
1229{
1230 struct proc *p = CURPROC;
1231 u_quad_t sticks;
1232
1233 /*
1234 * handle atomicy by looping since interrupts are enabled and the
1235 * MP lock is not held.
1236 */
1237 sticks = ((volatile struct proc *)p)->p_sticks;
1238 while (sticks != ((volatile struct proc *)p)->p_sticks)
1239 sticks = ((volatile struct proc *)p)->p_sticks;
1240
1241 astoff();
1242 atomic_add_int(&cnt.v_soft, 1);
1243 if (p->p_flag & P_OWEUPC) {
1244 mtx_enter(&Giant, MTX_DEF);
1245 p->p_flag &= ~P_OWEUPC;
1246 addupc_task(p, p->p_stats->p_prof.pr_addr,
1247 p->p_stats->p_prof.pr_ticks);
1248 }
1249 if (p->p_flag & P_ALRMPEND) {
1250 if (!mtx_owned(&Giant))
1251 mtx_enter(&Giant, MTX_DEF);
1252 p->p_flag &= ~P_ALRMPEND;
1253 psignal(p, SIGVTALRM);
1254 }
1255 if (p->p_flag & P_PROFPEND) {
1256 if (!mtx_owned(&Giant))
1257 mtx_enter(&Giant, MTX_DEF);
1258 p->p_flag &= ~P_PROFPEND;
1259 psignal(p, SIGPROF);
1260 }
1261 if (userret(p, &frame, sticks, mtx_owned(&Giant)) != 0)
1262 mtx_exit(&Giant, MTX_DEF);
1263}
1264
1265/*
1266 * Simplified back end of syscall(), used when returning from fork()
1267 * directly into user mode. Giant is not held on entry, and must not
1268 * be held on return.
1269 */
1270void
1271fork_return(p, frame)
1272 struct proc *p;
1273 struct trapframe frame;
1274{
1275 int have_giant;
1276
1277 frame.tf_eax = 0; /* Child returns zero */
1278 frame.tf_eflags &= ~PSL_C; /* success */
1279 frame.tf_edx = 1;
1280
1281 have_giant = userret(p, &frame, 0, mtx_owned(&Giant));
1282#ifdef KTRACE
1283 if (KTRPOINT(p, KTR_SYSRET)) {
1284 if (have_giant == 0) {
1285 mtx_enter(&Giant, MTX_DEF);
1286 have_giant = 1;
1287 }
1288 ktrsysret(p->p_tracep, SYS_fork, 0, 0);
1289 }
1290#endif
1291 if (have_giant)
1292 mtx_exit(&Giant, MTX_DEF);
1293}