Deleted Added
full compact
kern_malloc.c (42453) kern_malloc.c (42957)
1/*
2 * Copyright (c) 1987, 1991, 1993
3 * The Regents of the University of California. All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 * notice, this list of conditions and the following disclaimer in the
12 * documentation and/or other materials provided with the distribution.
13 * 3. All advertising materials mentioning features or use of this software
14 * must display the following acknowledgement:
15 * This product includes software developed by the University of
16 * California, Berkeley and its contributors.
17 * 4. Neither the name of the University nor the names of its contributors
18 * may be used to endorse or promote products derived from this software
19 * without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 * SUCH DAMAGE.
32 *
33 * @(#)kern_malloc.c 8.3 (Berkeley) 1/4/94
1/*
2 * Copyright (c) 1987, 1991, 1993
3 * The Regents of the University of California. All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 * notice, this list of conditions and the following disclaimer in the
12 * documentation and/or other materials provided with the distribution.
13 * 3. All advertising materials mentioning features or use of this software
14 * must display the following acknowledgement:
15 * This product includes software developed by the University of
16 * California, Berkeley and its contributors.
17 * 4. Neither the name of the University nor the names of its contributors
18 * may be used to endorse or promote products derived from this software
19 * without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 * SUCH DAMAGE.
32 *
33 * @(#)kern_malloc.c 8.3 (Berkeley) 1/4/94
34 * $Id: kern_malloc.c,v 1.50 1999/01/08 17:31:09 eivind Exp $
34 * $Id: kern_malloc.c,v 1.51 1999/01/10 01:58:24 eivind Exp $
35 */
36
37#include "opt_vm.h"
38
39#include <sys/param.h>
40#include <sys/systm.h>
41#include <sys/kernel.h>
42#define MALLOC_INSTANTIATE
43#include <sys/malloc.h>
44#include <sys/mbuf.h>
45#include <sys/vmmeter.h>
46#include <sys/lock.h>
47
48#include <vm/vm.h>
49#include <vm/vm_param.h>
50#include <vm/vm_kern.h>
51#include <vm/vm_extern.h>
52#include <vm/pmap.h>
53#include <vm/vm_map.h>
54
55static void kmeminit __P((void *));
56SYSINIT(kmem, SI_SUB_KMEM, SI_ORDER_FIRST, kmeminit, NULL)
57
58static MALLOC_DEFINE(M_FREE, "free", "should be on free list");
59
60static struct malloc_type *kmemstatistics;
61static struct kmembuckets bucket[MINBUCKET + 16];
62static struct kmemusage *kmemusage;
63static char *kmembase;
64static char *kmemlimit;
65static int vm_kmem_size;
66
67#ifdef INVARIANTS
68/*
69 * This structure provides a set of masks to catch unaligned frees.
70 */
71static long addrmask[] = { 0,
72 0x00000001, 0x00000003, 0x00000007, 0x0000000f,
73 0x0000001f, 0x0000003f, 0x0000007f, 0x000000ff,
74 0x000001ff, 0x000003ff, 0x000007ff, 0x00000fff,
75 0x00001fff, 0x00003fff, 0x00007fff, 0x0000ffff,
76};
77
78/*
79 * The WEIRD_ADDR is used as known text to copy into free objects so
80 * that modifications after frees can be detected.
81 */
82#define WEIRD_ADDR 0xdeadc0de
83#define MAX_COPY 64
84
85/*
86 * Normally the first word of the structure is used to hold the list
87 * pointer for free objects. However, when running with diagnostics,
88 * we use the third and fourth fields, so as to catch modifications
89 * in the most commonly trashed first two words.
90 */
91struct freelist {
92 long spare0;
93 struct malloc_type *type;
94 long spare1;
95 caddr_t next;
96};
97#else /* !INVARIANTS */
98struct freelist {
99 caddr_t next;
100};
101#endif /* INVARIANTS */
102
103/*
35 */
36
37#include "opt_vm.h"
38
39#include <sys/param.h>
40#include <sys/systm.h>
41#include <sys/kernel.h>
42#define MALLOC_INSTANTIATE
43#include <sys/malloc.h>
44#include <sys/mbuf.h>
45#include <sys/vmmeter.h>
46#include <sys/lock.h>
47
48#include <vm/vm.h>
49#include <vm/vm_param.h>
50#include <vm/vm_kern.h>
51#include <vm/vm_extern.h>
52#include <vm/pmap.h>
53#include <vm/vm_map.h>
54
55static void kmeminit __P((void *));
56SYSINIT(kmem, SI_SUB_KMEM, SI_ORDER_FIRST, kmeminit, NULL)
57
58static MALLOC_DEFINE(M_FREE, "free", "should be on free list");
59
60static struct malloc_type *kmemstatistics;
61static struct kmembuckets bucket[MINBUCKET + 16];
62static struct kmemusage *kmemusage;
63static char *kmembase;
64static char *kmemlimit;
65static int vm_kmem_size;
66
67#ifdef INVARIANTS
68/*
69 * This structure provides a set of masks to catch unaligned frees.
70 */
71static long addrmask[] = { 0,
72 0x00000001, 0x00000003, 0x00000007, 0x0000000f,
73 0x0000001f, 0x0000003f, 0x0000007f, 0x000000ff,
74 0x000001ff, 0x000003ff, 0x000007ff, 0x00000fff,
75 0x00001fff, 0x00003fff, 0x00007fff, 0x0000ffff,
76};
77
78/*
79 * The WEIRD_ADDR is used as known text to copy into free objects so
80 * that modifications after frees can be detected.
81 */
82#define WEIRD_ADDR 0xdeadc0de
83#define MAX_COPY 64
84
85/*
86 * Normally the first word of the structure is used to hold the list
87 * pointer for free objects. However, when running with diagnostics,
88 * we use the third and fourth fields, so as to catch modifications
89 * in the most commonly trashed first two words.
90 */
91struct freelist {
92 long spare0;
93 struct malloc_type *type;
94 long spare1;
95 caddr_t next;
96};
97#else /* !INVARIANTS */
98struct freelist {
99 caddr_t next;
100};
101#endif /* INVARIANTS */
102
103/*
104 * Allocate a block of memory
104 * malloc:
105 *
106 * Allocate a block of memory.
107 *
108 * If M_NOWAIT is set, this routine will not block and return NULL if
109 * the allocation fails.
110 *
111 * If M_ASLEEP is set (M_NOWAIT must also be set), this routine
112 * will have the side effect of calling asleep() if it returns NULL,
113 * allowing the parent to await() at some future time.
105 */
106void *
107malloc(size, type, flags)
108 unsigned long size;
109 struct malloc_type *type;
110 int flags;
111{
112 register struct kmembuckets *kbp;
113 register struct kmemusage *kup;
114 register struct freelist *freep;
115 long indx, npg, allocsize;
116 int s;
117 caddr_t va, cp, savedlist;
118#ifdef INVARIANTS
119 long *end, *lp;
120 int copysize;
121 char *savedtype;
122#endif
123 register struct malloc_type *ksp = type;
124
114 */
115void *
116malloc(size, type, flags)
117 unsigned long size;
118 struct malloc_type *type;
119 int flags;
120{
121 register struct kmembuckets *kbp;
122 register struct kmemusage *kup;
123 register struct freelist *freep;
124 long indx, npg, allocsize;
125 int s;
126 caddr_t va, cp, savedlist;
127#ifdef INVARIANTS
128 long *end, *lp;
129 int copysize;
130 char *savedtype;
131#endif
132 register struct malloc_type *ksp = type;
133
125 if (!type->ks_next)
134 /*
135 * Must be at splmem() prior to initializing segment to handle
136 * potential initialization race.
137 */
138
139 s = splmem();
140
141 if (!type->ks_next) {
126 malloc_init(type);
142 malloc_init(type);
143 }
127
128 indx = BUCKETINDX(size);
129 kbp = &bucket[indx];
144
145 indx = BUCKETINDX(size);
146 kbp = &bucket[indx];
130 s = splmem();
147
131 while (ksp->ks_memuse >= ksp->ks_limit) {
148 while (ksp->ks_memuse >= ksp->ks_limit) {
149 if (flags & M_ASLEEP) {
150 if (ksp->ks_limblocks < 65535)
151 ksp->ks_limblocks++;
152 asleep((caddr_t)ksp, PSWP+2, type->ks_shortdesc, 0);
153 }
132 if (flags & M_NOWAIT) {
133 splx(s);
134 return ((void *) NULL);
135 }
136 if (ksp->ks_limblocks < 65535)
137 ksp->ks_limblocks++;
138 tsleep((caddr_t)ksp, PSWP+2, type->ks_shortdesc, 0);
139 }
140 ksp->ks_size |= 1 << indx;
141#ifdef INVARIANTS
142 copysize = 1 << indx < MAX_COPY ? 1 << indx : MAX_COPY;
143#endif
144 if (kbp->kb_next == NULL) {
145 kbp->kb_last = NULL;
146 if (size > MAXALLOCSAVE)
147 allocsize = roundup(size, PAGE_SIZE);
148 else
149 allocsize = 1 << indx;
150 npg = btoc(allocsize);
151 va = (caddr_t) kmem_malloc(kmem_map, (vm_size_t)ctob(npg), flags);
152 if (va == NULL) {
153 splx(s);
154 return ((void *) NULL);
155 }
156 kbp->kb_total += kbp->kb_elmpercl;
157 kup = btokup(va);
158 kup->ku_indx = indx;
159 if (allocsize > MAXALLOCSAVE) {
160 if (npg > 65535)
161 panic("malloc: allocation too large");
162 kup->ku_pagecnt = npg;
163 ksp->ks_memuse += allocsize;
164 goto out;
165 }
166 kup->ku_freecnt = kbp->kb_elmpercl;
167 kbp->kb_totalfree += kbp->kb_elmpercl;
168 /*
169 * Just in case we blocked while allocating memory,
170 * and someone else also allocated memory for this
171 * bucket, don't assume the list is still empty.
172 */
173 savedlist = kbp->kb_next;
174 kbp->kb_next = cp = va + (npg * PAGE_SIZE) - allocsize;
175 for (;;) {
176 freep = (struct freelist *)cp;
177#ifdef INVARIANTS
178 /*
179 * Copy in known text to detect modification
180 * after freeing.
181 */
182 end = (long *)&cp[copysize];
183 for (lp = (long *)cp; lp < end; lp++)
184 *lp = WEIRD_ADDR;
185 freep->type = M_FREE;
186#endif /* INVARIANTS */
187 if (cp <= va)
188 break;
189 cp -= allocsize;
190 freep->next = cp;
191 }
192 freep->next = savedlist;
193 if (kbp->kb_last == NULL)
194 kbp->kb_last = (caddr_t)freep;
195 }
196 va = kbp->kb_next;
197 kbp->kb_next = ((struct freelist *)va)->next;
198#ifdef INVARIANTS
199 freep = (struct freelist *)va;
200 savedtype = (char *) type->ks_shortdesc;
201#if BYTE_ORDER == BIG_ENDIAN
202 freep->type = (struct malloc_type *)WEIRD_ADDR >> 16;
203#endif
204#if BYTE_ORDER == LITTLE_ENDIAN
205 freep->type = (struct malloc_type *)WEIRD_ADDR;
206#endif
207 if ((intptr_t)(void *)&freep->next & 0x2)
208 freep->next = (caddr_t)((WEIRD_ADDR >> 16)|(WEIRD_ADDR << 16));
209 else
210 freep->next = (caddr_t)WEIRD_ADDR;
211 end = (long *)&va[copysize];
212 for (lp = (long *)va; lp < end; lp++) {
213 if (*lp == WEIRD_ADDR)
214 continue;
215 printf("%s %ld of object %p size %lu %s %s (0x%lx != 0x%lx)\n",
216 "Data modified on freelist: word",
217 (long)(lp - (long *)va), (void *)va, size,
218 "previous type", savedtype, *lp, (u_long)WEIRD_ADDR);
219 break;
220 }
221 freep->spare0 = 0;
222#endif /* INVARIANTS */
223 kup = btokup(va);
224 if (kup->ku_indx != indx)
225 panic("malloc: wrong bucket");
226 if (kup->ku_freecnt == 0)
227 panic("malloc: lost data");
228 kup->ku_freecnt--;
229 kbp->kb_totalfree--;
230 ksp->ks_memuse += 1 << indx;
231out:
232 kbp->kb_calls++;
233 ksp->ks_inuse++;
234 ksp->ks_calls++;
235 if (ksp->ks_memuse > ksp->ks_maxused)
236 ksp->ks_maxused = ksp->ks_memuse;
237 splx(s);
238 return ((void *) va);
239}
240
241/*
154 if (flags & M_NOWAIT) {
155 splx(s);
156 return ((void *) NULL);
157 }
158 if (ksp->ks_limblocks < 65535)
159 ksp->ks_limblocks++;
160 tsleep((caddr_t)ksp, PSWP+2, type->ks_shortdesc, 0);
161 }
162 ksp->ks_size |= 1 << indx;
163#ifdef INVARIANTS
164 copysize = 1 << indx < MAX_COPY ? 1 << indx : MAX_COPY;
165#endif
166 if (kbp->kb_next == NULL) {
167 kbp->kb_last = NULL;
168 if (size > MAXALLOCSAVE)
169 allocsize = roundup(size, PAGE_SIZE);
170 else
171 allocsize = 1 << indx;
172 npg = btoc(allocsize);
173 va = (caddr_t) kmem_malloc(kmem_map, (vm_size_t)ctob(npg), flags);
174 if (va == NULL) {
175 splx(s);
176 return ((void *) NULL);
177 }
178 kbp->kb_total += kbp->kb_elmpercl;
179 kup = btokup(va);
180 kup->ku_indx = indx;
181 if (allocsize > MAXALLOCSAVE) {
182 if (npg > 65535)
183 panic("malloc: allocation too large");
184 kup->ku_pagecnt = npg;
185 ksp->ks_memuse += allocsize;
186 goto out;
187 }
188 kup->ku_freecnt = kbp->kb_elmpercl;
189 kbp->kb_totalfree += kbp->kb_elmpercl;
190 /*
191 * Just in case we blocked while allocating memory,
192 * and someone else also allocated memory for this
193 * bucket, don't assume the list is still empty.
194 */
195 savedlist = kbp->kb_next;
196 kbp->kb_next = cp = va + (npg * PAGE_SIZE) - allocsize;
197 for (;;) {
198 freep = (struct freelist *)cp;
199#ifdef INVARIANTS
200 /*
201 * Copy in known text to detect modification
202 * after freeing.
203 */
204 end = (long *)&cp[copysize];
205 for (lp = (long *)cp; lp < end; lp++)
206 *lp = WEIRD_ADDR;
207 freep->type = M_FREE;
208#endif /* INVARIANTS */
209 if (cp <= va)
210 break;
211 cp -= allocsize;
212 freep->next = cp;
213 }
214 freep->next = savedlist;
215 if (kbp->kb_last == NULL)
216 kbp->kb_last = (caddr_t)freep;
217 }
218 va = kbp->kb_next;
219 kbp->kb_next = ((struct freelist *)va)->next;
220#ifdef INVARIANTS
221 freep = (struct freelist *)va;
222 savedtype = (char *) type->ks_shortdesc;
223#if BYTE_ORDER == BIG_ENDIAN
224 freep->type = (struct malloc_type *)WEIRD_ADDR >> 16;
225#endif
226#if BYTE_ORDER == LITTLE_ENDIAN
227 freep->type = (struct malloc_type *)WEIRD_ADDR;
228#endif
229 if ((intptr_t)(void *)&freep->next & 0x2)
230 freep->next = (caddr_t)((WEIRD_ADDR >> 16)|(WEIRD_ADDR << 16));
231 else
232 freep->next = (caddr_t)WEIRD_ADDR;
233 end = (long *)&va[copysize];
234 for (lp = (long *)va; lp < end; lp++) {
235 if (*lp == WEIRD_ADDR)
236 continue;
237 printf("%s %ld of object %p size %lu %s %s (0x%lx != 0x%lx)\n",
238 "Data modified on freelist: word",
239 (long)(lp - (long *)va), (void *)va, size,
240 "previous type", savedtype, *lp, (u_long)WEIRD_ADDR);
241 break;
242 }
243 freep->spare0 = 0;
244#endif /* INVARIANTS */
245 kup = btokup(va);
246 if (kup->ku_indx != indx)
247 panic("malloc: wrong bucket");
248 if (kup->ku_freecnt == 0)
249 panic("malloc: lost data");
250 kup->ku_freecnt--;
251 kbp->kb_totalfree--;
252 ksp->ks_memuse += 1 << indx;
253out:
254 kbp->kb_calls++;
255 ksp->ks_inuse++;
256 ksp->ks_calls++;
257 if (ksp->ks_memuse > ksp->ks_maxused)
258 ksp->ks_maxused = ksp->ks_memuse;
259 splx(s);
260 return ((void *) va);
261}
262
263/*
242 * Free a block of memory allocated by malloc.
264 * free:
265 *
266 * Free a block of memory allocated by malloc.
267 *
268 * This routine may not block.
243 */
244void
245free(addr, type)
246 void *addr;
247 struct malloc_type *type;
248{
249 register struct kmembuckets *kbp;
250 register struct kmemusage *kup;
251 register struct freelist *freep;
252 long size;
253 int s;
254#ifdef INVARIANTS
255 struct freelist *fp;
256 long *end, *lp, alloc, copysize;
257#endif
258 register struct malloc_type *ksp = type;
259
260 if (!type->ks_next)
261 panic("freeing with unknown type (%s)", type->ks_shortdesc);
262
263 KASSERT(kmembase <= (char *)addr && (char *)addr < kmemlimit,
264 ("free: address %p out of range", (void *)addr));
265 kup = btokup(addr);
266 size = 1 << kup->ku_indx;
267 kbp = &bucket[kup->ku_indx];
268 s = splmem();
269#ifdef INVARIANTS
270 /*
271 * Check for returns of data that do not point to the
272 * beginning of the allocation.
273 */
274 if (size > PAGE_SIZE)
275 alloc = addrmask[BUCKETINDX(PAGE_SIZE)];
276 else
277 alloc = addrmask[kup->ku_indx];
278 if (((uintptr_t)(void *)addr & alloc) != 0)
279 panic("free: unaligned addr %p, size %ld, type %s, mask %ld",
280 (void *)addr, size, type->ks_shortdesc, alloc);
281#endif /* INVARIANTS */
282 if (size > MAXALLOCSAVE) {
283 kmem_free(kmem_map, (vm_offset_t)addr, ctob(kup->ku_pagecnt));
284 size = kup->ku_pagecnt << PAGE_SHIFT;
285 ksp->ks_memuse -= size;
286 kup->ku_indx = 0;
287 kup->ku_pagecnt = 0;
288 if (ksp->ks_memuse + size >= ksp->ks_limit &&
289 ksp->ks_memuse < ksp->ks_limit)
290 wakeup((caddr_t)ksp);
291 ksp->ks_inuse--;
292 kbp->kb_total -= 1;
293 splx(s);
294 return;
295 }
296 freep = (struct freelist *)addr;
297#ifdef INVARIANTS
298 /*
299 * Check for multiple frees. Use a quick check to see if
300 * it looks free before laboriously searching the freelist.
301 */
302 if (freep->spare0 == WEIRD_ADDR) {
303 fp = (struct freelist *)kbp->kb_next;
304 while (fp) {
305 if (fp->spare0 != WEIRD_ADDR)
306 panic("free: free item %p modified", fp);
307 else if (addr == (caddr_t)fp)
308 panic("free: multiple freed item %p", addr);
309 fp = (struct freelist *)fp->next;
310 }
311 }
312 /*
313 * Copy in known text to detect modification after freeing
314 * and to make it look free. Also, save the type being freed
315 * so we can list likely culprit if modification is detected
316 * when the object is reallocated.
317 */
318 copysize = size < MAX_COPY ? size : MAX_COPY;
319 end = (long *)&((caddr_t)addr)[copysize];
320 for (lp = (long *)addr; lp < end; lp++)
321 *lp = WEIRD_ADDR;
322 freep->type = type;
323#endif /* INVARIANTS */
324 kup->ku_freecnt++;
325 if (kup->ku_freecnt >= kbp->kb_elmpercl)
326 if (kup->ku_freecnt > kbp->kb_elmpercl)
327 panic("free: multiple frees");
328 else if (kbp->kb_totalfree > kbp->kb_highwat)
329 kbp->kb_couldfree++;
330 kbp->kb_totalfree++;
331 ksp->ks_memuse -= size;
332 if (ksp->ks_memuse + size >= ksp->ks_limit &&
333 ksp->ks_memuse < ksp->ks_limit)
334 wakeup((caddr_t)ksp);
335 ksp->ks_inuse--;
336#ifdef OLD_MALLOC_MEMORY_POLICY
337 if (kbp->kb_next == NULL)
338 kbp->kb_next = addr;
339 else
340 ((struct freelist *)kbp->kb_last)->next = addr;
341 freep->next = NULL;
342 kbp->kb_last = addr;
343#else
344 /*
345 * Return memory to the head of the queue for quick reuse. This
346 * can improve performance by improving the probability of the
347 * item being in the cache when it is reused.
348 */
349 if (kbp->kb_next == NULL) {
350 kbp->kb_next = addr;
351 kbp->kb_last = addr;
352 freep->next = NULL;
353 } else {
354 freep->next = kbp->kb_next;
355 kbp->kb_next = addr;
356 }
357#endif
358 splx(s);
359}
360
361/*
362 * Initialize the kernel memory allocator
363 */
364/* ARGSUSED*/
365static void
366kmeminit(dummy)
367 void *dummy;
368{
369 register long indx;
370 int npg;
371 int mem_size;
372
373#if ((MAXALLOCSAVE & (MAXALLOCSAVE - 1)) != 0)
374#error "kmeminit: MAXALLOCSAVE not power of 2"
375#endif
376#if (MAXALLOCSAVE > MINALLOCSIZE * 32768)
377#error "kmeminit: MAXALLOCSAVE too big"
378#endif
379#if (MAXALLOCSAVE < PAGE_SIZE)
380#error "kmeminit: MAXALLOCSAVE too small"
381#endif
382
383 /*
384 * Try to auto-tune the kernel memory size, so that it is
385 * more applicable for a wider range of machine sizes.
386 * On an X86, a VM_KMEM_SIZE_SCALE value of 4 is good, while
387 * a VM_KMEM_SIZE of 12MB is a fair compromise. The
388 * VM_KMEM_SIZE_MAX is dependent on the maximum KVA space
389 * available, and on an X86 with a total KVA space of 256MB,
390 * try to keep VM_KMEM_SIZE_MAX at 80MB or below.
391 *
392 * Note that the kmem_map is also used by the zone allocator,
393 * so make sure that there is enough space.
394 */
395 vm_kmem_size = VM_KMEM_SIZE;
396 mem_size = cnt.v_page_count * PAGE_SIZE;
397
398#if defined(VM_KMEM_SIZE_SCALE)
399 if ((mem_size / VM_KMEM_SIZE_SCALE) > vm_kmem_size)
400 vm_kmem_size = mem_size / VM_KMEM_SIZE_SCALE;
401#endif
402
403#if defined(VM_KMEM_SIZE_MAX)
404 if (vm_kmem_size >= VM_KMEM_SIZE_MAX)
405 vm_kmem_size = VM_KMEM_SIZE_MAX;
406#endif
407
408 if (vm_kmem_size > 2 * (cnt.v_page_count * PAGE_SIZE))
409 vm_kmem_size = 2 * (cnt.v_page_count * PAGE_SIZE);
410
411 npg = (nmbufs * MSIZE + nmbclusters * MCLBYTES + vm_kmem_size)
412 / PAGE_SIZE;
413
414 kmemusage = (struct kmemusage *) kmem_alloc(kernel_map,
415 (vm_size_t)(npg * sizeof(struct kmemusage)));
416 kmem_map = kmem_suballoc(kernel_map, (vm_offset_t *)&kmembase,
417 (vm_offset_t *)&kmemlimit, (vm_size_t)(npg * PAGE_SIZE));
418 kmem_map->system_map = 1;
419 for (indx = 0; indx < MINBUCKET + 16; indx++) {
420 if (1 << indx >= PAGE_SIZE)
421 bucket[indx].kb_elmpercl = 1;
422 else
423 bucket[indx].kb_elmpercl = PAGE_SIZE / (1 << indx);
424 bucket[indx].kb_highwat = 5 * bucket[indx].kb_elmpercl;
425 }
426}
427
428void
429malloc_init(data)
430 void *data;
431{
432 struct malloc_type *type = (struct malloc_type *)data;
433
434 if (type->ks_magic != M_MAGIC)
435 panic("malloc type lacks magic");
436
437 if (type->ks_next)
438 return;
439
440 if (cnt.v_page_count == 0)
441 panic("malloc_init not allowed before vm init");
442
443 /*
444 * The default limits for each malloc region is 1/2 of the
445 * malloc portion of the kmem map size.
446 */
447 type->ks_limit = vm_kmem_size / 2;
448 type->ks_next = kmemstatistics;
449 kmemstatistics = type;
450}
451
452void
453malloc_uninit(data)
454 void *data;
455{
456 struct malloc_type *type = (struct malloc_type *)data;
457 struct malloc_type *t;
458
459 if (type->ks_magic != M_MAGIC)
460 panic("malloc type lacks magic");
461
462 if (cnt.v_page_count == 0)
463 panic("malloc_uninit not allowed before vm init");
464
465 if (type == kmemstatistics)
466 kmemstatistics = type->ks_next;
467 else {
468 for (t = kmemstatistics; t->ks_next != NULL; t = t->ks_next) {
469 if (t->ks_next == type) {
470 t->ks_next = type->ks_next;
471 break;
472 }
473 }
474 }
475}
269 */
270void
271free(addr, type)
272 void *addr;
273 struct malloc_type *type;
274{
275 register struct kmembuckets *kbp;
276 register struct kmemusage *kup;
277 register struct freelist *freep;
278 long size;
279 int s;
280#ifdef INVARIANTS
281 struct freelist *fp;
282 long *end, *lp, alloc, copysize;
283#endif
284 register struct malloc_type *ksp = type;
285
286 if (!type->ks_next)
287 panic("freeing with unknown type (%s)", type->ks_shortdesc);
288
289 KASSERT(kmembase <= (char *)addr && (char *)addr < kmemlimit,
290 ("free: address %p out of range", (void *)addr));
291 kup = btokup(addr);
292 size = 1 << kup->ku_indx;
293 kbp = &bucket[kup->ku_indx];
294 s = splmem();
295#ifdef INVARIANTS
296 /*
297 * Check for returns of data that do not point to the
298 * beginning of the allocation.
299 */
300 if (size > PAGE_SIZE)
301 alloc = addrmask[BUCKETINDX(PAGE_SIZE)];
302 else
303 alloc = addrmask[kup->ku_indx];
304 if (((uintptr_t)(void *)addr & alloc) != 0)
305 panic("free: unaligned addr %p, size %ld, type %s, mask %ld",
306 (void *)addr, size, type->ks_shortdesc, alloc);
307#endif /* INVARIANTS */
308 if (size > MAXALLOCSAVE) {
309 kmem_free(kmem_map, (vm_offset_t)addr, ctob(kup->ku_pagecnt));
310 size = kup->ku_pagecnt << PAGE_SHIFT;
311 ksp->ks_memuse -= size;
312 kup->ku_indx = 0;
313 kup->ku_pagecnt = 0;
314 if (ksp->ks_memuse + size >= ksp->ks_limit &&
315 ksp->ks_memuse < ksp->ks_limit)
316 wakeup((caddr_t)ksp);
317 ksp->ks_inuse--;
318 kbp->kb_total -= 1;
319 splx(s);
320 return;
321 }
322 freep = (struct freelist *)addr;
323#ifdef INVARIANTS
324 /*
325 * Check for multiple frees. Use a quick check to see if
326 * it looks free before laboriously searching the freelist.
327 */
328 if (freep->spare0 == WEIRD_ADDR) {
329 fp = (struct freelist *)kbp->kb_next;
330 while (fp) {
331 if (fp->spare0 != WEIRD_ADDR)
332 panic("free: free item %p modified", fp);
333 else if (addr == (caddr_t)fp)
334 panic("free: multiple freed item %p", addr);
335 fp = (struct freelist *)fp->next;
336 }
337 }
338 /*
339 * Copy in known text to detect modification after freeing
340 * and to make it look free. Also, save the type being freed
341 * so we can list likely culprit if modification is detected
342 * when the object is reallocated.
343 */
344 copysize = size < MAX_COPY ? size : MAX_COPY;
345 end = (long *)&((caddr_t)addr)[copysize];
346 for (lp = (long *)addr; lp < end; lp++)
347 *lp = WEIRD_ADDR;
348 freep->type = type;
349#endif /* INVARIANTS */
350 kup->ku_freecnt++;
351 if (kup->ku_freecnt >= kbp->kb_elmpercl)
352 if (kup->ku_freecnt > kbp->kb_elmpercl)
353 panic("free: multiple frees");
354 else if (kbp->kb_totalfree > kbp->kb_highwat)
355 kbp->kb_couldfree++;
356 kbp->kb_totalfree++;
357 ksp->ks_memuse -= size;
358 if (ksp->ks_memuse + size >= ksp->ks_limit &&
359 ksp->ks_memuse < ksp->ks_limit)
360 wakeup((caddr_t)ksp);
361 ksp->ks_inuse--;
362#ifdef OLD_MALLOC_MEMORY_POLICY
363 if (kbp->kb_next == NULL)
364 kbp->kb_next = addr;
365 else
366 ((struct freelist *)kbp->kb_last)->next = addr;
367 freep->next = NULL;
368 kbp->kb_last = addr;
369#else
370 /*
371 * Return memory to the head of the queue for quick reuse. This
372 * can improve performance by improving the probability of the
373 * item being in the cache when it is reused.
374 */
375 if (kbp->kb_next == NULL) {
376 kbp->kb_next = addr;
377 kbp->kb_last = addr;
378 freep->next = NULL;
379 } else {
380 freep->next = kbp->kb_next;
381 kbp->kb_next = addr;
382 }
383#endif
384 splx(s);
385}
386
387/*
388 * Initialize the kernel memory allocator
389 */
390/* ARGSUSED*/
391static void
392kmeminit(dummy)
393 void *dummy;
394{
395 register long indx;
396 int npg;
397 int mem_size;
398
399#if ((MAXALLOCSAVE & (MAXALLOCSAVE - 1)) != 0)
400#error "kmeminit: MAXALLOCSAVE not power of 2"
401#endif
402#if (MAXALLOCSAVE > MINALLOCSIZE * 32768)
403#error "kmeminit: MAXALLOCSAVE too big"
404#endif
405#if (MAXALLOCSAVE < PAGE_SIZE)
406#error "kmeminit: MAXALLOCSAVE too small"
407#endif
408
409 /*
410 * Try to auto-tune the kernel memory size, so that it is
411 * more applicable for a wider range of machine sizes.
412 * On an X86, a VM_KMEM_SIZE_SCALE value of 4 is good, while
413 * a VM_KMEM_SIZE of 12MB is a fair compromise. The
414 * VM_KMEM_SIZE_MAX is dependent on the maximum KVA space
415 * available, and on an X86 with a total KVA space of 256MB,
416 * try to keep VM_KMEM_SIZE_MAX at 80MB or below.
417 *
418 * Note that the kmem_map is also used by the zone allocator,
419 * so make sure that there is enough space.
420 */
421 vm_kmem_size = VM_KMEM_SIZE;
422 mem_size = cnt.v_page_count * PAGE_SIZE;
423
424#if defined(VM_KMEM_SIZE_SCALE)
425 if ((mem_size / VM_KMEM_SIZE_SCALE) > vm_kmem_size)
426 vm_kmem_size = mem_size / VM_KMEM_SIZE_SCALE;
427#endif
428
429#if defined(VM_KMEM_SIZE_MAX)
430 if (vm_kmem_size >= VM_KMEM_SIZE_MAX)
431 vm_kmem_size = VM_KMEM_SIZE_MAX;
432#endif
433
434 if (vm_kmem_size > 2 * (cnt.v_page_count * PAGE_SIZE))
435 vm_kmem_size = 2 * (cnt.v_page_count * PAGE_SIZE);
436
437 npg = (nmbufs * MSIZE + nmbclusters * MCLBYTES + vm_kmem_size)
438 / PAGE_SIZE;
439
440 kmemusage = (struct kmemusage *) kmem_alloc(kernel_map,
441 (vm_size_t)(npg * sizeof(struct kmemusage)));
442 kmem_map = kmem_suballoc(kernel_map, (vm_offset_t *)&kmembase,
443 (vm_offset_t *)&kmemlimit, (vm_size_t)(npg * PAGE_SIZE));
444 kmem_map->system_map = 1;
445 for (indx = 0; indx < MINBUCKET + 16; indx++) {
446 if (1 << indx >= PAGE_SIZE)
447 bucket[indx].kb_elmpercl = 1;
448 else
449 bucket[indx].kb_elmpercl = PAGE_SIZE / (1 << indx);
450 bucket[indx].kb_highwat = 5 * bucket[indx].kb_elmpercl;
451 }
452}
453
454void
455malloc_init(data)
456 void *data;
457{
458 struct malloc_type *type = (struct malloc_type *)data;
459
460 if (type->ks_magic != M_MAGIC)
461 panic("malloc type lacks magic");
462
463 if (type->ks_next)
464 return;
465
466 if (cnt.v_page_count == 0)
467 panic("malloc_init not allowed before vm init");
468
469 /*
470 * The default limits for each malloc region is 1/2 of the
471 * malloc portion of the kmem map size.
472 */
473 type->ks_limit = vm_kmem_size / 2;
474 type->ks_next = kmemstatistics;
475 kmemstatistics = type;
476}
477
478void
479malloc_uninit(data)
480 void *data;
481{
482 struct malloc_type *type = (struct malloc_type *)data;
483 struct malloc_type *t;
484
485 if (type->ks_magic != M_MAGIC)
486 panic("malloc type lacks magic");
487
488 if (cnt.v_page_count == 0)
489 panic("malloc_uninit not allowed before vm init");
490
491 if (type == kmemstatistics)
492 kmemstatistics = type->ks_next;
493 else {
494 for (t = kmemstatistics; t->ks_next != NULL; t = t->ks_next) {
495 if (t->ks_next == type) {
496 t->ks_next = type->ks_next;
497 break;
498 }
499 }
500 }
501}