Deleted Added
full compact
notes (110523) notes (110592)
1$FreeBSD: head/sys/geom/notes 110523 2003-02-07 23:08:24Z phk $
1$FreeBSD: head/sys/geom/notes 110592 2003-02-09 17:04:57Z phk $
2
3For the lack of a better place to put them, this file will contain
4notes on some of the more intricate details of geom.
5
6-----------------------------------------------------------------------
7Locking of bio_children and bio_inbed
8
9bio_children is used by g_std_done() and g_clone_bio() to keep track

--- 23 unchanged lines hidden (view full) ---

33prematurely.
34
35In all other cases, this race needs to be mitigated, for instance
36by cloning all children before I/O is request on any of them.
37
38Notice that cloning an "extra" child and calling g_std_done() on
39it directly opens another race since the assumption is that
40g_std_done() only is called in the g_up thread.
2
3For the lack of a better place to put them, this file will contain
4notes on some of the more intricate details of geom.
5
6-----------------------------------------------------------------------
7Locking of bio_children and bio_inbed
8
9bio_children is used by g_std_done() and g_clone_bio() to keep track

--- 23 unchanged lines hidden (view full) ---

33prematurely.
34
35In all other cases, this race needs to be mitigated, for instance
36by cloning all children before I/O is request on any of them.
37
38Notice that cloning an "extra" child and calling g_std_done() on
39it directly opens another race since the assumption is that
40g_std_done() only is called in the g_up thread.
41
42-----------------------------------------------------------------------
43Statistics collection
44
45Statistics collection can run at three levels controlled by the
46"kern.geom.collectstats" sysctl.
47
48At level zero, only the number of transactions started and completed
49are counted, and this is only because GEOM internally uses the difference
50between these two as sanity checks.
51
52At level one we collect the full statistics. Higher levels are
53reserved for future use. Statistics are collected independently
54on both the provider and the consumer, because multiple consumers
55can be active against the same provider at the same time.
56
57The statistics collection falls in two parts:
58
59The first and simpler part consists of g_io_request() timestamping
60the struct bio when the request is first started and g_io_deliver()
61updating the consumer and providers statistics based on fields in
62the bio when it is completed. There are no concurrency or locking
63concerns in this part. The statistics collected consists of number
64of requests, number of bytes, number of ENOMEM errors, number of
65other errors and duration of the request for each of the three
66major request types: BIO_READ, BIO_WRITE and BIO_DELETE.
67
68The second part is trying to keep track of the "busy%".
69
70If in g_io_request() we find that there are no outstanding requests,
71(based on the counters for scheduled and completed requests being
72equal), we set a timestamp in the "wentbusy" field. Since there
73are no outstanding requests, and as long as there is only one thread
74pushing the g_down queue, we cannot possibly conflict with
75g_io_deliver() until we ship the current request down.
76
77In g_io_deliver() we calculate the delta-T from wentbusy and add this
78to the "bt" field, and set wentbusy to the current timestamp. We
79take care to do this before we increment the "requests completed"
80counter, since that prevents g_io_request() from touching the
81"wentbusy" timestamp concurrently.
82
83The statistics data is made available to userland through the use
84of a special allocator (in geom_stats.c) which through a device
85allows userland to mmap(2) the pages containing the statistics data.
86In order to indicate to userland when the data in a statstics
87structure might be inconsistent, g_io_deliver() atomically sets a
88flag "updating" and resets it when the structure is again consistent.