Deleted Added
full compact
nfs_clport.c (194523) nfs_clport.c (194541)
1/*-
2 * Copyright (c) 1989, 1993
3 * The Regents of the University of California. All rights reserved.
4 *
5 * This code is derived from software contributed to Berkeley by
6 * Rick Macklem at The University of Guelph.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 4. Neither the name of the University nor the names of its contributors
17 * may be used to endorse or promote products derived from this software
18 * without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
31 *
32 */
33
34#include <sys/cdefs.h>
1/*-
2 * Copyright (c) 1989, 1993
3 * The Regents of the University of California. All rights reserved.
4 *
5 * This code is derived from software contributed to Berkeley by
6 * Rick Macklem at The University of Guelph.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 4. Neither the name of the University nor the names of its contributors
17 * may be used to endorse or promote products derived from this software
18 * without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
31 *
32 */
33
34#include <sys/cdefs.h>
35__FBSDID("$FreeBSD: head/sys/fs/nfsclient/nfs_clport.c 194523 2009-06-20 00:54:57Z rmacklem $");
35__FBSDID("$FreeBSD: head/sys/fs/nfsclient/nfs_clport.c 194541 2009-06-20 17:11:07Z rmacklem $");
36
37/*
38 * generally, I don't like #includes inside .h files, but it seems to
39 * be the easiest way to handle the port.
40 */
41#include <fs/nfs/nfsport.h>
42#include <netinet/if_ether.h>
43#include <net/if_types.h>
44
45extern u_int32_t newnfs_true, newnfs_false, newnfs_xdrneg1;
46extern struct vop_vector newnfs_vnodeops;
47extern struct vop_vector newnfs_fifoops;
48extern uma_zone_t newnfsnode_zone;
49extern struct buf_ops buf_ops_newnfs;
50extern int ncl_pbuf_freecnt;
51extern short nfsv4_cbport;
52extern int nfscl_enablecallb;
53extern int nfs_numnfscbd;
54extern int nfscl_inited;
55struct mtx nfs_clstate_mutex;
56struct mtx ncl_iod_mutex;
57NFSDLOCKMUTEX;
58
59extern void (*ncl_call_invalcaches)(struct vnode *);
60
61/*
62 * Comparison function for vfs_hash functions.
63 */
64int
65newnfs_vncmpf(struct vnode *vp, void *arg)
66{
67 struct nfsfh *nfhp = (struct nfsfh *)arg;
68 struct nfsnode *np = VTONFS(vp);
69
70 if (np->n_fhp->nfh_len != nfhp->nfh_len ||
71 NFSBCMP(np->n_fhp->nfh_fh, nfhp->nfh_fh, nfhp->nfh_len))
72 return (1);
73 return (0);
74}
75
76/*
77 * Look up a vnode/nfsnode by file handle.
78 * Callers must check for mount points!!
79 * In all cases, a pointer to a
80 * nfsnode structure is returned.
81 * This variant takes a "struct nfsfh *" as second argument and uses
82 * that structure up, either by hanging off the nfsnode or FREEing it.
83 */
84int
85nfscl_nget(struct mount *mntp, struct vnode *dvp, struct nfsfh *nfhp,
86 struct componentname *cnp, struct thread *td, struct nfsnode **npp,
87 void *stuff)
88{
89 struct nfsnode *np, *dnp;
90 struct vnode *vp, *nvp;
91 struct nfsv4node *newd, *oldd;
92 int error;
93 u_int hash;
94 struct nfsmount *nmp;
95
96 nmp = VFSTONFS(mntp);
97 dnp = VTONFS(dvp);
98 *npp = NULL;
99
100 hash = fnv_32_buf(nfhp->nfh_fh, nfhp->nfh_len, FNV1_32_INIT);
101
102 error = vfs_hash_get(mntp, hash, LK_EXCLUSIVE,
103 td, &nvp, newnfs_vncmpf, nfhp);
104 if (error == 0 && nvp != NULL) {
105 /*
106 * I believe there is a slight chance that vgonel() could
107 * get called on this vnode between when vn_lock() drops
108 * the VI_LOCK() and vget() acquires it again, so that it
109 * hasn't yet had v_usecount incremented. If this were to
110 * happen, the VI_DOOMED flag would be set, so check for
111 * that here. Since we now have the v_usecount incremented,
112 * we should be ok until we vrele() it, if the VI_DOOMED
113 * flag isn't set now.
114 */
115 VI_LOCK(nvp);
116 if ((nvp->v_iflag & VI_DOOMED)) {
117 VI_UNLOCK(nvp);
118 vrele(nvp);
119 error = ENOENT;
120 } else {
121 VI_UNLOCK(nvp);
122 }
123 }
124 if (error) {
125 FREE((caddr_t)nfhp, M_NFSFH);
126 return (error);
127 }
128 if (nvp != NULL) {
129 np = VTONFS(nvp);
130 /*
131 * For NFSv4, check to see if it is the same name and
132 * replace the name, if it is different.
133 */
134 oldd = newd = NULL;
135 if ((nmp->nm_flag & NFSMNT_NFSV4) && np->n_v4 != NULL &&
136 nvp->v_type == VREG &&
137 (np->n_v4->n4_namelen != cnp->cn_namelen ||
138 NFSBCMP(cnp->cn_nameptr, NFS4NODENAME(np->n_v4),
139 cnp->cn_namelen) ||
140 dnp->n_fhp->nfh_len != np->n_v4->n4_fhlen ||
141 NFSBCMP(dnp->n_fhp->nfh_fh, np->n_v4->n4_data,
142 dnp->n_fhp->nfh_len))) {
143 MALLOC(newd, struct nfsv4node *,
144 sizeof (struct nfsv4node) + dnp->n_fhp->nfh_len +
145 + cnp->cn_namelen - 1, M_NFSV4NODE, M_WAITOK);
146 NFSLOCKNODE(np);
147 if (newd != NULL && np->n_v4 != NULL && nvp->v_type == VREG
148 && (np->n_v4->n4_namelen != cnp->cn_namelen ||
149 NFSBCMP(cnp->cn_nameptr, NFS4NODENAME(np->n_v4),
150 cnp->cn_namelen) ||
151 dnp->n_fhp->nfh_len != np->n_v4->n4_fhlen ||
152 NFSBCMP(dnp->n_fhp->nfh_fh, np->n_v4->n4_data,
153 dnp->n_fhp->nfh_len))) {
154 oldd = np->n_v4;
155 np->n_v4 = newd;
156 newd = NULL;
157 np->n_v4->n4_fhlen = dnp->n_fhp->nfh_len;
158 np->n_v4->n4_namelen = cnp->cn_namelen;
159 NFSBCOPY(dnp->n_fhp->nfh_fh, np->n_v4->n4_data,
160 dnp->n_fhp->nfh_len);
161 NFSBCOPY(cnp->cn_nameptr, NFS4NODENAME(np->n_v4),
162 cnp->cn_namelen);
163 }
164 NFSUNLOCKNODE(np);
165 }
166 if (newd != NULL)
167 FREE((caddr_t)newd, M_NFSV4NODE);
168 if (oldd != NULL)
169 FREE((caddr_t)oldd, M_NFSV4NODE);
170 *npp = np;
171 FREE((caddr_t)nfhp, M_NFSFH);
172 return (0);
173 }
174
175 /*
176 * Allocate before getnewvnode since doing so afterward
177 * might cause a bogus v_data pointer to get dereferenced
178 * elsewhere if zalloc should block.
179 */
180 np = uma_zalloc(newnfsnode_zone, M_WAITOK | M_ZERO);
181
182 error = getnewvnode("newnfs", mntp, &newnfs_vnodeops, &nvp);
183 if (error) {
184 uma_zfree(newnfsnode_zone, np);
185 FREE((caddr_t)nfhp, M_NFSFH);
186 return (error);
187 }
188 vp = nvp;
189 vp->v_bufobj.bo_ops = &buf_ops_newnfs;
190 vp->v_data = np;
191 np->n_vnode = vp;
192 /*
193 * Initialize the mutex even if the vnode is going to be a loser.
194 * This simplifies the logic in reclaim, which can then unconditionally
195 * destroy the mutex (in the case of the loser, or if hash_insert
196 * happened to return an error no special casing is needed).
197 */
198 mtx_init(&np->n_mtx, "NEWNFSnode lock", NULL, MTX_DEF | MTX_DUPOK);
199
200 /*
201 * Are we getting the root? If so, make sure the vnode flags
202 * are correct
203 */
204 if ((nfhp->nfh_len == nmp->nm_fhsize) &&
205 !bcmp(nfhp->nfh_fh, nmp->nm_fh, nfhp->nfh_len)) {
206 if (vp->v_type == VNON)
207 vp->v_type = VDIR;
208 vp->v_vflag |= VV_ROOT;
209 }
210
211 np->n_fhp = nfhp;
212 /*
213 * For NFSv4, we have to attach the directory file handle and
214 * file name, so that Open Ops can be done later.
215 */
216 if (nmp->nm_flag & NFSMNT_NFSV4) {
217 MALLOC(np->n_v4, struct nfsv4node *, sizeof (struct nfsv4node)
218 + dnp->n_fhp->nfh_len + cnp->cn_namelen - 1, M_NFSV4NODE,
219 M_WAITOK);
220 np->n_v4->n4_fhlen = dnp->n_fhp->nfh_len;
221 np->n_v4->n4_namelen = cnp->cn_namelen;
222 NFSBCOPY(dnp->n_fhp->nfh_fh, np->n_v4->n4_data,
223 dnp->n_fhp->nfh_len);
224 NFSBCOPY(cnp->cn_nameptr, NFS4NODENAME(np->n_v4),
225 cnp->cn_namelen);
226 } else {
227 np->n_v4 = NULL;
228 }
229
230 /*
231 * NFS supports recursive and shared locking.
232 */
233 VN_LOCK_AREC(vp);
234 VN_LOCK_ASHARE(vp);
235 lockmgr(vp->v_vnlock, LK_EXCLUSIVE, NULL);
236 error = insmntque(vp, mntp);
237 if (error != 0) {
238 *npp = NULL;
239 mtx_destroy(&np->n_mtx);
240 FREE((caddr_t)nfhp, M_NFSFH);
241 if (np->n_v4 != NULL)
242 FREE((caddr_t)np->n_v4, M_NFSV4NODE);
243 uma_zfree(newnfsnode_zone, np);
244 return (error);
245 }
246 error = vfs_hash_insert(vp, hash, LK_EXCLUSIVE,
247 td, &nvp, newnfs_vncmpf, nfhp);
248 if (error)
249 return (error);
250 if (nvp != NULL) {
251 *npp = VTONFS(nvp);
252 /* vfs_hash_insert() vput()'s the losing vnode */
253 return (0);
254 }
255 *npp = np;
256
257 return (0);
258}
259
260/*
261 * Anothe variant of nfs_nget(). This one is only used by reopen. It
262 * takes almost the same args as nfs_nget(), but only succeeds if an entry
263 * exists in the cache. (Since files should already be "open" with a
264 * vnode ref cnt on the node when reopen calls this, it should always
265 * succeed.)
266 * Also, don't get a vnode lock, since it may already be locked by some
267 * other process that is handling it. This is ok, since all other threads
268 * on the client are blocked by the nfsc_lock being exclusively held by the
269 * caller of this function.
270 */
271int
272nfscl_ngetreopen(struct mount *mntp, u_int8_t *fhp, int fhsize,
273 struct thread *td, struct nfsnode **npp)
274{
275 struct vnode *nvp;
276 u_int hash;
277 struct nfsfh *nfhp;
278 int error;
279
280 *npp = NULL;
281 /* For forced dismounts, just return error. */
282 if ((mntp->mnt_kern_flag & MNTK_UNMOUNTF))
283 return (EINTR);
284 MALLOC(nfhp, struct nfsfh *, sizeof (struct nfsfh) + fhsize,
285 M_NFSFH, M_WAITOK);
286 bcopy(fhp, &nfhp->nfh_fh[0], fhsize);
287 nfhp->nfh_len = fhsize;
288
289 hash = fnv_32_buf(fhp, fhsize, FNV1_32_INIT);
290
291 /*
292 * First, try to get the vnode locked, but don't block for the lock.
293 */
294 error = vfs_hash_get(mntp, hash, (LK_EXCLUSIVE | LK_NOWAIT), td, &nvp,
295 newnfs_vncmpf, nfhp);
296 if (error == 0 && nvp != NULL) {
297 VOP_UNLOCK(nvp, 0);
298 } else if (error == EBUSY) {
299 /*
300 * The LK_EXCLOTHER lock type tells nfs_lock1() to not try
301 * and lock the vnode, but just get a v_usecount on it.
302 * LK_NOWAIT is set so that when vget() returns ENOENT,
303 * vfs_hash_get() fails instead of looping.
304 * If this succeeds, it is safe so long as a vflush() with
305 * FORCECLOSE has not been done. Since the Renew thread is
306 * stopped and the MNTK_UNMOUNTF flag is set before doing
307 * a vflush() with FORCECLOSE, we should be ok here.
308 */
309 if ((mntp->mnt_kern_flag & MNTK_UNMOUNTF))
310 error = EINTR;
311 else
312 error = vfs_hash_get(mntp, hash,
313 (LK_EXCLOTHER | LK_NOWAIT), td, &nvp,
314 newnfs_vncmpf, nfhp);
315 }
316 FREE(nfhp, M_NFSFH);
317 if (error)
318 return (error);
319 if (nvp != NULL) {
320 *npp = VTONFS(nvp);
321 return (0);
322 }
323 return (EINVAL);
324}
325
326/*
327 * Load the attribute cache (that lives in the nfsnode entry) with
328 * the attributes of the second argument and
329 * Iff vaper not NULL
330 * copy the attributes to *vaper
331 * Similar to nfs_loadattrcache(), except the attributes are passed in
332 * instead of being parsed out of the mbuf list.
333 */
334int
335nfscl_loadattrcache(struct vnode **vpp, struct nfsvattr *nap, void *nvaper,
336 void *stuff, int writeattr, int dontshrink)
337{
338 struct vnode *vp = *vpp;
339 struct vattr *vap, *nvap = &nap->na_vattr, *vaper = nvaper;
340 struct nfsnode *np;
341 struct nfsmount *nmp;
342 struct timespec mtime_save;
343 struct thread *td = curthread;
344
345 /*
346 * If v_type == VNON it is a new node, so fill in the v_type,
347 * n_mtime fields. Check to see if it represents a special
348 * device, and if so, check for a possible alias. Once the
349 * correct vnode has been obtained, fill in the rest of the
350 * information.
351 */
352 np = VTONFS(vp);
353 NFSLOCKNODE(np);
354 if (vp->v_type != nvap->va_type) {
355 vp->v_type = nvap->va_type;
356 if (vp->v_type == VFIFO)
357 vp->v_op = &newnfs_fifoops;
358 np->n_mtime = nvap->va_mtime;
359 }
360 nmp = VFSTONFS(vp->v_mount);
361 vap = &np->n_vattr.na_vattr;
362 mtime_save = vap->va_mtime;
363 if (writeattr) {
364 np->n_vattr.na_filerev = nap->na_filerev;
365 np->n_vattr.na_size = nap->na_size;
366 np->n_vattr.na_mtime = nap->na_mtime;
367 np->n_vattr.na_ctime = nap->na_ctime;
368 np->n_vattr.na_fsid = nap->na_fsid;
369 } else {
370 NFSBCOPY((caddr_t)nap, (caddr_t)&np->n_vattr,
371 sizeof (struct nfsvattr));
372 }
373
374 /*
375 * For NFSv4, if the node's fsid is not equal to the mount point's
376 * fsid, return the low order 32bits of the node's fsid. This
377 * allows getcwd(3) to work. There is a chance that the fsid might
378 * be the same as a local fs, but since this is in an NFS mount
379 * point, I don't think that will cause any problems?
380 */
381 if ((nmp->nm_flag & (NFSMNT_NFSV4 | NFSMNT_HASSETFSID)) ==
382 (NFSMNT_NFSV4 | NFSMNT_HASSETFSID) &&
383 (nmp->nm_fsid[0] != np->n_vattr.na_filesid[0] ||
384 nmp->nm_fsid[1] != np->n_vattr.na_filesid[1]))
385 vap->va_fsid = np->n_vattr.na_filesid[0];
386 else
387 vap->va_fsid = vp->v_mount->mnt_stat.f_fsid.val[0];
388 np->n_attrstamp = time_second;
389 /* Timestamp the NFS otw getattr fetch */
390 if (td->td_proc) {
391 np->n_ac_ts_tid = td->td_tid;
392 np->n_ac_ts_pid = td->td_proc->p_pid;
393 np->n_ac_ts_syscalls = td->td_syscalls;
394 } else
395 bzero(&np->n_ac_ts, sizeof(struct nfs_attrcache_timestamp));
396
397 if (vap->va_size != np->n_size) {
398 if (vap->va_type == VREG) {
399 if (dontshrink && vap->va_size < np->n_size) {
400 /*
401 * We've been told not to shrink the file;
402 * zero np->n_attrstamp to indicate that
403 * the attributes are stale.
404 */
405 vap->va_size = np->n_size;
406 np->n_attrstamp = 0;
407 } else if (np->n_flag & NMODIFIED) {
408 /*
409 * We've modified the file: Use the larger
410 * of our size, and the server's size.
411 */
412 if (vap->va_size < np->n_size) {
413 vap->va_size = np->n_size;
414 } else {
415 np->n_size = vap->va_size;
416 np->n_flag |= NSIZECHANGED;
417 }
418 } else {
419 np->n_size = vap->va_size;
420 np->n_flag |= NSIZECHANGED;
421 }
422 vnode_pager_setsize(vp, np->n_size);
423 } else {
424 np->n_size = vap->va_size;
425 }
426 }
427 /*
428 * The following checks are added to prevent a race between (say)
429 * a READDIR+ and a WRITE.
430 * READDIR+, WRITE requests sent out.
431 * READDIR+ resp, WRITE resp received on client.
432 * However, the WRITE resp was handled before the READDIR+ resp
433 * causing the post op attrs from the write to be loaded first
434 * and the attrs from the READDIR+ to be loaded later. If this
435 * happens, we have stale attrs loaded into the attrcache.
436 * We detect this by for the mtime moving back. We invalidate the
437 * attrcache when this happens.
438 */
439 if (timespeccmp(&mtime_save, &vap->va_mtime, >))
440 /* Size changed or mtime went backwards */
441 np->n_attrstamp = 0;
442 if (vaper != NULL) {
443 NFSBCOPY((caddr_t)vap, (caddr_t)vaper, sizeof(*vap));
444 if (np->n_flag & NCHG) {
445 if (np->n_flag & NACC)
446 vaper->va_atime = np->n_atim;
447 if (np->n_flag & NUPD)
448 vaper->va_mtime = np->n_mtim;
449 }
450 }
451 NFSUNLOCKNODE(np);
452 return (0);
453}
454
455/*
456 * Fill in the client id name. For these bytes:
457 * 1 - they must be unique
458 * 2 - they should be persistent across client reboots
459 * 1 is more critical than 2
460 * Use the mount point's unique id plus either the uuid or, if that
461 * isn't set, random junk.
462 */
463void
464nfscl_fillclid(u_int64_t clval, char *uuid, u_int8_t *cp, u_int16_t idlen)
465{
466 int uuidlen;
467
468 /*
469 * First, put in the 64bit mount point identifier.
470 */
471 if (idlen >= sizeof (u_int64_t)) {
472 NFSBCOPY((caddr_t)&clval, cp, sizeof (u_int64_t));
473 cp += sizeof (u_int64_t);
474 idlen -= sizeof (u_int64_t);
475 }
476
477 /*
478 * If uuid is non-zero length, use it.
479 */
480 uuidlen = strlen(uuid);
481 if (uuidlen > 0 && idlen >= uuidlen) {
482 NFSBCOPY(uuid, cp, uuidlen);
483 cp += uuidlen;
484 idlen -= uuidlen;
485 }
486
487 /*
488 * This only normally happens if the uuid isn't set.
489 */
490 while (idlen > 0) {
491 *cp++ = (u_int8_t)(arc4random() % 256);
492 idlen--;
493 }
494}
495
496/*
497 * Fill in a lock owner name. For now, pid + the process's creation time.
498 */
499void
500nfscl_filllockowner(struct thread *td, u_int8_t *cp)
501{
502 union {
503 u_int32_t lval;
504 u_int8_t cval[4];
505 } tl;
506 struct proc *p;
507
508if (td == NULL) {
509 printf("NULL td\n");
510 bzero(cp, 12);
511 return;
512}
513 p = td->td_proc;
514if (p == NULL) {
515 printf("NULL pid\n");
516 bzero(cp, 12);
517 return;
518}
519 tl.lval = p->p_pid;
520 *cp++ = tl.cval[0];
521 *cp++ = tl.cval[1];
522 *cp++ = tl.cval[2];
523 *cp++ = tl.cval[3];
524if (p->p_stats == NULL) {
525 printf("pstats null\n");
526 bzero(cp, 8);
527 return;
528}
529 tl.lval = p->p_stats->p_start.tv_sec;
530 *cp++ = tl.cval[0];
531 *cp++ = tl.cval[1];
532 *cp++ = tl.cval[2];
533 *cp++ = tl.cval[3];
534 tl.lval = p->p_stats->p_start.tv_usec;
535 *cp++ = tl.cval[0];
536 *cp++ = tl.cval[1];
537 *cp++ = tl.cval[2];
538 *cp = tl.cval[3];
539}
540
541/*
542 * Find the parent process for the thread passed in as an argument.
543 * If none exists, return NULL, otherwise return a thread for the parent.
544 * (Can be any of the threads, since it is only used for td->td_proc.)
545 */
546NFSPROC_T *
547nfscl_getparent(struct thread *td)
548{
549 struct proc *p;
550 struct thread *ptd;
551
552 if (td == NULL)
553 return (NULL);
554 p = td->td_proc;
555 if (p->p_pid == 0)
556 return (NULL);
557 p = p->p_pptr;
558 if (p == NULL)
559 return (NULL);
560 ptd = TAILQ_FIRST(&p->p_threads);
561 return (ptd);
562}
563
564/*
565 * Start up the renew kernel thread.
566 */
567static void
568start_nfscl(void *arg)
569{
570 struct nfsclclient *clp;
571 struct thread *td;
572
573 clp = (struct nfsclclient *)arg;
574 td = TAILQ_FIRST(&clp->nfsc_renewthread->p_threads);
575 nfscl_renewthread(clp, td);
576 kproc_exit(0);
577}
578
579void
580nfscl_start_renewthread(struct nfsclclient *clp)
581{
582
583 kproc_create(start_nfscl, (void *)clp, &clp->nfsc_renewthread, 0, 0,
584 "nfscl");
585}
586
587/*
588 * Handle wcc_data.
589 * For NFSv4, it assumes that nfsv4_wccattr() was used to set up the getattr
590 * as the first Op after PutFH.
591 * (For NFSv4, the postop attributes are after the Op, so they can't be
592 * parsed here. A separate call to nfscl_postop_attr() is required.)
593 */
594int
595nfscl_wcc_data(struct nfsrv_descript *nd, struct vnode *vp,
596 struct nfsvattr *nap, int *flagp, int *wccflagp, void *stuff)
597{
598 u_int32_t *tl;
599 struct nfsnode *np = VTONFS(vp);
600 struct nfsvattr nfsva;
601 int error = 0;
602
603 if (wccflagp != NULL)
604 *wccflagp = 0;
605 if (nd->nd_flag & ND_NFSV3) {
606 *flagp = 0;
607 NFSM_DISSECT(tl, u_int32_t *, NFSX_UNSIGNED);
608 if (*tl == newnfs_true) {
609 NFSM_DISSECT(tl, u_int32_t *, 6 * NFSX_UNSIGNED);
610 if (wccflagp != NULL) {
611 mtx_lock(&np->n_mtx);
612 *wccflagp = (np->n_mtime.tv_sec ==
613 fxdr_unsigned(u_int32_t, *(tl + 2)) &&
614 np->n_mtime.tv_nsec ==
615 fxdr_unsigned(u_int32_t, *(tl + 3)));
616 mtx_unlock(&np->n_mtx);
617 }
618 }
619 error = nfscl_postop_attr(nd, nap, flagp, stuff);
620 } else if ((nd->nd_flag & (ND_NOMOREDATA | ND_NFSV4 | ND_V4WCCATTR))
621 == (ND_NFSV4 | ND_V4WCCATTR)) {
622 error = nfsv4_loadattr(nd, NULL, &nfsva, NULL,
623 NULL, 0, NULL, NULL, NULL, NULL, NULL, 0,
624 NULL, NULL, NULL, NULL, NULL);
625 if (error)
626 return (error);
627 /*
628 * Get rid of Op# and status for next op.
629 */
630 NFSM_DISSECT(tl, u_int32_t *, 2 * NFSX_UNSIGNED);
631 if (*++tl)
632 nd->nd_flag |= ND_NOMOREDATA;
633 if (wccflagp != NULL &&
634 nfsva.na_vattr.va_mtime.tv_sec != 0) {
635 mtx_lock(&np->n_mtx);
636 *wccflagp = (np->n_mtime.tv_sec ==
637 nfsva.na_vattr.va_mtime.tv_sec &&
638 np->n_mtime.tv_nsec ==
639 nfsva.na_vattr.va_mtime.tv_sec);
640 mtx_unlock(&np->n_mtx);
641 }
642 }
643nfsmout:
644 return (error);
645}
646
647/*
648 * Get postop attributes.
649 */
650int
651nfscl_postop_attr(struct nfsrv_descript *nd, struct nfsvattr *nap, int *retp,
652 void *stuff)
653{
654 u_int32_t *tl;
655 int error = 0;
656
657 *retp = 0;
658 if (nd->nd_flag & ND_NOMOREDATA)
659 return (error);
660 if (nd->nd_flag & ND_NFSV3) {
661 NFSM_DISSECT(tl, u_int32_t *, NFSX_UNSIGNED);
662 *retp = fxdr_unsigned(int, *tl);
663 } else if (nd->nd_flag & ND_NFSV4) {
664 /*
665 * For NFSv4, the postop attr are at the end, so no point
666 * in looking if nd_repstat != 0.
667 */
668 if (!nd->nd_repstat) {
669 NFSM_DISSECT(tl, u_int32_t *, 2 * NFSX_UNSIGNED);
670 if (*(tl + 1))
671 /* should never happen since nd_repstat != 0 */
672 nd->nd_flag |= ND_NOMOREDATA;
673 else
674 *retp = 1;
675 }
676 } else if (!nd->nd_repstat) {
677 /* For NFSv2, the attributes are here iff nd_repstat == 0 */
678 *retp = 1;
679 }
680 if (*retp) {
681 error = nfsm_loadattr(nd, nap);
682 if (error)
683 *retp = 0;
684 }
685nfsmout:
686 return (error);
687}
688
689/*
690 * Fill in the setable attributes. The full argument indicates whether
691 * to fill in them all or just mode and time.
692 */
693void
694nfscl_fillsattr(struct nfsrv_descript *nd, struct vattr *vap,
695 struct vnode *vp, int flags, u_int32_t rdev)
696{
697 u_int32_t *tl;
698 struct nfsv2_sattr *sp;
699 nfsattrbit_t attrbits;
700 struct timeval curtime;
701
702 switch (nd->nd_flag & (ND_NFSV2 | ND_NFSV3 | ND_NFSV4)) {
703 case ND_NFSV2:
704 NFSM_BUILD(sp, struct nfsv2_sattr *, NFSX_V2SATTR);
705 if (vap->va_mode == (mode_t)VNOVAL)
706 sp->sa_mode = newnfs_xdrneg1;
707 else
708 sp->sa_mode = vtonfsv2_mode(vap->va_type, vap->va_mode);
709 if (vap->va_uid == (uid_t)VNOVAL)
710 sp->sa_uid = newnfs_xdrneg1;
711 else
712 sp->sa_uid = txdr_unsigned(vap->va_uid);
713 if (vap->va_gid == (gid_t)VNOVAL)
714 sp->sa_gid = newnfs_xdrneg1;
715 else
716 sp->sa_gid = txdr_unsigned(vap->va_gid);
717 if (flags & NFSSATTR_SIZE0)
718 sp->sa_size = 0;
719 else if (flags & NFSSATTR_SIZENEG1)
720 sp->sa_size = newnfs_xdrneg1;
721 else if (flags & NFSSATTR_SIZERDEV)
722 sp->sa_size = txdr_unsigned(rdev);
723 else
724 sp->sa_size = txdr_unsigned(vap->va_size);
725 txdr_nfsv2time(&vap->va_atime, &sp->sa_atime);
726 txdr_nfsv2time(&vap->va_mtime, &sp->sa_mtime);
727 break;
728 case ND_NFSV3:
729 getmicrotime(&curtime);
730 if (vap->va_mode != (mode_t)VNOVAL) {
731 NFSM_BUILD(tl, u_int32_t *, 2 * NFSX_UNSIGNED);
732 *tl++ = newnfs_true;
733 *tl = txdr_unsigned(vap->va_mode);
734 } else {
735 NFSM_BUILD(tl, u_int32_t *, NFSX_UNSIGNED);
736 *tl = newnfs_false;
737 }
738 if ((flags & NFSSATTR_FULL) && vap->va_uid != (uid_t)VNOVAL) {
739 NFSM_BUILD(tl, u_int32_t *, 2 * NFSX_UNSIGNED);
740 *tl++ = newnfs_true;
741 *tl = txdr_unsigned(vap->va_uid);
742 } else {
743 NFSM_BUILD(tl, u_int32_t *, NFSX_UNSIGNED);
744 *tl = newnfs_false;
745 }
746 if ((flags & NFSSATTR_FULL) && vap->va_gid != (gid_t)VNOVAL) {
747 NFSM_BUILD(tl, u_int32_t *, 2 * NFSX_UNSIGNED);
748 *tl++ = newnfs_true;
749 *tl = txdr_unsigned(vap->va_gid);
750 } else {
751 NFSM_BUILD(tl, u_int32_t *, NFSX_UNSIGNED);
752 *tl = newnfs_false;
753 }
754 if ((flags & NFSSATTR_FULL) && vap->va_size != VNOVAL) {
755 NFSM_BUILD(tl, u_int32_t *, 3 * NFSX_UNSIGNED);
756 *tl++ = newnfs_true;
757 txdr_hyper(vap->va_size, tl);
758 } else {
759 NFSM_BUILD(tl, u_int32_t *, NFSX_UNSIGNED);
760 *tl = newnfs_false;
761 }
762 if (vap->va_atime.tv_sec != VNOVAL) {
763 if (vap->va_atime.tv_sec != curtime.tv_sec) {
764 NFSM_BUILD(tl, u_int32_t *, 3 * NFSX_UNSIGNED);
765 *tl++ = txdr_unsigned(NFSV3SATTRTIME_TOCLIENT);
766 txdr_nfsv3time(&vap->va_atime, tl);
767 } else {
768 NFSM_BUILD(tl, u_int32_t *, NFSX_UNSIGNED);
769 *tl = txdr_unsigned(NFSV3SATTRTIME_TOSERVER);
770 }
771 } else {
772 NFSM_BUILD(tl, u_int32_t *, NFSX_UNSIGNED);
773 *tl = txdr_unsigned(NFSV3SATTRTIME_DONTCHANGE);
774 }
775 if (vap->va_mtime.tv_sec != VNOVAL) {
776 if (vap->va_mtime.tv_sec != curtime.tv_sec) {
777 NFSM_BUILD(tl, u_int32_t *, 3 * NFSX_UNSIGNED);
778 *tl++ = txdr_unsigned(NFSV3SATTRTIME_TOCLIENT);
779 txdr_nfsv3time(&vap->va_mtime, tl);
780 } else {
781 NFSM_BUILD(tl, u_int32_t *, NFSX_UNSIGNED);
782 *tl = txdr_unsigned(NFSV3SATTRTIME_TOSERVER);
783 }
784 } else {
785 NFSM_BUILD(tl, u_int32_t *, NFSX_UNSIGNED);
786 *tl = txdr_unsigned(NFSV3SATTRTIME_DONTCHANGE);
787 }
788 break;
789 case ND_NFSV4:
790 NFSZERO_ATTRBIT(&attrbits);
791 if (vap->va_mode != (mode_t)VNOVAL)
792 NFSSETBIT_ATTRBIT(&attrbits, NFSATTRBIT_MODE);
793 if ((flags & NFSSATTR_FULL) && vap->va_uid != (uid_t)VNOVAL)
794 NFSSETBIT_ATTRBIT(&attrbits, NFSATTRBIT_OWNER);
795 if ((flags & NFSSATTR_FULL) && vap->va_gid != (gid_t)VNOVAL)
796 NFSSETBIT_ATTRBIT(&attrbits, NFSATTRBIT_OWNERGROUP);
797 if ((flags & NFSSATTR_FULL) && vap->va_size != VNOVAL)
798 NFSSETBIT_ATTRBIT(&attrbits, NFSATTRBIT_SIZE);
799 if (vap->va_atime.tv_sec != VNOVAL)
800 NFSSETBIT_ATTRBIT(&attrbits, NFSATTRBIT_TIMEACCESSSET);
801 if (vap->va_mtime.tv_sec != VNOVAL)
802 NFSSETBIT_ATTRBIT(&attrbits, NFSATTRBIT_TIMEMODIFYSET);
803 (void) nfsv4_fillattr(nd, vp, NULL, vap, NULL, 0, &attrbits,
804 NULL, NULL, 0, 0);
805 break;
806 };
807}
808
809/*
810 * nfscl_request() - mostly a wrapper for newnfs_request().
811 */
812int
813nfscl_request(struct nfsrv_descript *nd, struct vnode *vp, NFSPROC_T *p,
814 struct ucred *cred, void *stuff)
815{
816 int ret, vers;
817 struct nfsmount *nmp;
818
819 nmp = VFSTONFS(vp->v_mount);
820 if (nd->nd_flag & ND_NFSV4)
821 vers = NFS_VER4;
822 else if (nd->nd_flag & ND_NFSV3)
823 vers = NFS_VER3;
824 else
825 vers = NFS_VER2;
826 ret = newnfs_request(nd, nmp, NULL, &nmp->nm_sockreq, vp, p, cred,
827 NFS_PROG, vers, NULL, 1, NULL);
828 return (ret);
829}
830
831/*
832 * fill in this bsden's variant of statfs using nfsstatfs.
833 */
834void
835nfscl_loadsbinfo(struct nfsmount *nmp, struct nfsstatfs *sfp, void *statfs)
836{
837 struct statfs *sbp = (struct statfs *)statfs;
838 nfsquad_t tquad;
839
840 if (nmp->nm_flag & (NFSMNT_NFSV3 | NFSMNT_NFSV4)) {
841 sbp->f_bsize = NFS_FABLKSIZE;
842 tquad.qval = sfp->sf_tbytes;
843 sbp->f_blocks = (long)(tquad.qval / ((u_quad_t)NFS_FABLKSIZE));
844 tquad.qval = sfp->sf_fbytes;
845 sbp->f_bfree = (long)(tquad.qval / ((u_quad_t)NFS_FABLKSIZE));
846 tquad.qval = sfp->sf_abytes;
847 sbp->f_bavail = (long)(tquad.qval / ((u_quad_t)NFS_FABLKSIZE));
848 tquad.qval = sfp->sf_tfiles;
849 sbp->f_files = (tquad.lval[0] & 0x7fffffff);
850 tquad.qval = sfp->sf_ffiles;
851 sbp->f_ffree = (tquad.lval[0] & 0x7fffffff);
852 } else if ((nmp->nm_flag & NFSMNT_NFSV4) == 0) {
853 sbp->f_bsize = (int32_t)sfp->sf_bsize;
854 sbp->f_blocks = (int32_t)sfp->sf_blocks;
855 sbp->f_bfree = (int32_t)sfp->sf_bfree;
856 sbp->f_bavail = (int32_t)sfp->sf_bavail;
857 sbp->f_files = 0;
858 sbp->f_ffree = 0;
859 }
860}
861
862/*
863 * Use the fsinfo stuff to update the mount point.
864 */
865void
866nfscl_loadfsinfo(struct nfsmount *nmp, struct nfsfsinfo *fsp)
867{
868
869 if ((nmp->nm_wsize == 0 || fsp->fs_wtpref < nmp->nm_wsize) &&
870 fsp->fs_wtpref >= NFS_FABLKSIZE)
871 nmp->nm_wsize = (fsp->fs_wtpref + NFS_FABLKSIZE - 1) &
872 ~(NFS_FABLKSIZE - 1);
873 if (fsp->fs_wtmax < nmp->nm_wsize && fsp->fs_wtmax > 0) {
874 nmp->nm_wsize = fsp->fs_wtmax & ~(NFS_FABLKSIZE - 1);
875 if (nmp->nm_wsize == 0)
876 nmp->nm_wsize = fsp->fs_wtmax;
877 }
878 if (nmp->nm_wsize < NFS_FABLKSIZE)
879 nmp->nm_wsize = NFS_FABLKSIZE;
880 if ((nmp->nm_rsize == 0 || fsp->fs_rtpref < nmp->nm_rsize) &&
881 fsp->fs_rtpref >= NFS_FABLKSIZE)
882 nmp->nm_rsize = (fsp->fs_rtpref + NFS_FABLKSIZE - 1) &
883 ~(NFS_FABLKSIZE - 1);
884 if (fsp->fs_rtmax < nmp->nm_rsize && fsp->fs_rtmax > 0) {
885 nmp->nm_rsize = fsp->fs_rtmax & ~(NFS_FABLKSIZE - 1);
886 if (nmp->nm_rsize == 0)
887 nmp->nm_rsize = fsp->fs_rtmax;
888 }
889 if (nmp->nm_rsize < NFS_FABLKSIZE)
890 nmp->nm_rsize = NFS_FABLKSIZE;
891 if ((nmp->nm_readdirsize == 0 || fsp->fs_dtpref < nmp->nm_readdirsize)
892 && fsp->fs_dtpref >= NFS_DIRBLKSIZ)
893 nmp->nm_readdirsize = (fsp->fs_dtpref + NFS_DIRBLKSIZ - 1) &
894 ~(NFS_DIRBLKSIZ - 1);
895 if (fsp->fs_rtmax < nmp->nm_readdirsize && fsp->fs_rtmax > 0) {
896 nmp->nm_readdirsize = fsp->fs_rtmax & ~(NFS_DIRBLKSIZ - 1);
897 if (nmp->nm_readdirsize == 0)
898 nmp->nm_readdirsize = fsp->fs_rtmax;
899 }
900 if (nmp->nm_readdirsize < NFS_DIRBLKSIZ)
901 nmp->nm_readdirsize = NFS_DIRBLKSIZ;
902 if (fsp->fs_maxfilesize > 0 &&
903 fsp->fs_maxfilesize < nmp->nm_maxfilesize)
904 nmp->nm_maxfilesize = fsp->fs_maxfilesize;
905 nmp->nm_mountp->mnt_stat.f_iosize = newnfs_iosize(nmp);
906 nmp->nm_state |= NFSSTA_GOTFSINFO;
907}
908
909/*
910 * Get a pointer to my IP addrress and return it.
911 * Return NULL if you can't find one.
912 */
913u_int8_t *
914nfscl_getmyip(struct nfsmount *nmp, int *isinet6p)
915{
916 struct sockaddr_in sad, *sin;
917 struct rtentry *rt;
918 u_int8_t *retp = NULL;
919 static struct in_addr laddr;
920
921 *isinet6p = 0;
922 /*
923 * Loop up a route for the destination address.
924 */
925 if (nmp->nm_nam->sa_family == AF_INET) {
926 bzero(&sad, sizeof (sad));
927 sin = (struct sockaddr_in *)nmp->nm_nam;
928 sad.sin_family = AF_INET;
929 sad.sin_len = sizeof (struct sockaddr_in);
930 sad.sin_addr.s_addr = sin->sin_addr.s_addr;
931 rt = rtalloc1((struct sockaddr *)&sad, 0, 0UL);
932 if (rt != NULL) {
933 if (rt->rt_ifp != NULL &&
934 rt->rt_ifa != NULL &&
935 ((rt->rt_ifp->if_flags & IFF_LOOPBACK) == 0) &&
936 rt->rt_ifa->ifa_addr->sa_family == AF_INET) {
937 sin = (struct sockaddr_in *)
938 rt->rt_ifa->ifa_addr;
939 laddr.s_addr = sin->sin_addr.s_addr;
940 retp = (u_int8_t *)&laddr;
941 }
942 RTFREE_LOCKED(rt);
943 }
944#ifdef INET6
945 } else if (nmp->nm_nam->sa_family == AF_INET6) {
946 struct sockaddr_in6 sad6, *sin6;
947 static struct in6_addr laddr6;
948
949 bzero(&sad6, sizeof (sad6));
950 sin6 = (struct sockaddr_in6 *)nmp->nm_nam;
951 sad6.sin6_family = AF_INET6;
952 sad6.sin6_len = sizeof (struct sockaddr_in6);
953 sad6.sin6_addr = sin6->sin6_addr;
954 rt = rtalloc1((struct sockaddr *)&sad6, 0, 0UL);
955 if (rt != NULL) {
956 if (rt->rt_ifp != NULL &&
957 rt->rt_ifa != NULL &&
958 ((rt->rt_ifp->if_flags & IFF_LOOPBACK) == 0) &&
959 rt->rt_ifa->ifa_addr->sa_family == AF_INET6) {
960 sin6 = (struct sockaddr_in6 *)
961 rt->rt_ifa->ifa_addr;
962 laddr6 = sin6->sin6_addr;
963 retp = (u_int8_t *)&laddr6;
964 *isinet6p = 1;
965 }
966 RTFREE_LOCKED(rt);
967 }
968#endif
969 }
970 return (retp);
971}
972
973/*
974 * Copy NFS uid, gids from the cred structure.
975 */
976void
977newnfs_copyincred(struct ucred *cr, struct nfscred *nfscr)
978{
979 int i;
980
981 nfscr->nfsc_uid = cr->cr_uid;
36
37/*
38 * generally, I don't like #includes inside .h files, but it seems to
39 * be the easiest way to handle the port.
40 */
41#include <fs/nfs/nfsport.h>
42#include <netinet/if_ether.h>
43#include <net/if_types.h>
44
45extern u_int32_t newnfs_true, newnfs_false, newnfs_xdrneg1;
46extern struct vop_vector newnfs_vnodeops;
47extern struct vop_vector newnfs_fifoops;
48extern uma_zone_t newnfsnode_zone;
49extern struct buf_ops buf_ops_newnfs;
50extern int ncl_pbuf_freecnt;
51extern short nfsv4_cbport;
52extern int nfscl_enablecallb;
53extern int nfs_numnfscbd;
54extern int nfscl_inited;
55struct mtx nfs_clstate_mutex;
56struct mtx ncl_iod_mutex;
57NFSDLOCKMUTEX;
58
59extern void (*ncl_call_invalcaches)(struct vnode *);
60
61/*
62 * Comparison function for vfs_hash functions.
63 */
64int
65newnfs_vncmpf(struct vnode *vp, void *arg)
66{
67 struct nfsfh *nfhp = (struct nfsfh *)arg;
68 struct nfsnode *np = VTONFS(vp);
69
70 if (np->n_fhp->nfh_len != nfhp->nfh_len ||
71 NFSBCMP(np->n_fhp->nfh_fh, nfhp->nfh_fh, nfhp->nfh_len))
72 return (1);
73 return (0);
74}
75
76/*
77 * Look up a vnode/nfsnode by file handle.
78 * Callers must check for mount points!!
79 * In all cases, a pointer to a
80 * nfsnode structure is returned.
81 * This variant takes a "struct nfsfh *" as second argument and uses
82 * that structure up, either by hanging off the nfsnode or FREEing it.
83 */
84int
85nfscl_nget(struct mount *mntp, struct vnode *dvp, struct nfsfh *nfhp,
86 struct componentname *cnp, struct thread *td, struct nfsnode **npp,
87 void *stuff)
88{
89 struct nfsnode *np, *dnp;
90 struct vnode *vp, *nvp;
91 struct nfsv4node *newd, *oldd;
92 int error;
93 u_int hash;
94 struct nfsmount *nmp;
95
96 nmp = VFSTONFS(mntp);
97 dnp = VTONFS(dvp);
98 *npp = NULL;
99
100 hash = fnv_32_buf(nfhp->nfh_fh, nfhp->nfh_len, FNV1_32_INIT);
101
102 error = vfs_hash_get(mntp, hash, LK_EXCLUSIVE,
103 td, &nvp, newnfs_vncmpf, nfhp);
104 if (error == 0 && nvp != NULL) {
105 /*
106 * I believe there is a slight chance that vgonel() could
107 * get called on this vnode between when vn_lock() drops
108 * the VI_LOCK() and vget() acquires it again, so that it
109 * hasn't yet had v_usecount incremented. If this were to
110 * happen, the VI_DOOMED flag would be set, so check for
111 * that here. Since we now have the v_usecount incremented,
112 * we should be ok until we vrele() it, if the VI_DOOMED
113 * flag isn't set now.
114 */
115 VI_LOCK(nvp);
116 if ((nvp->v_iflag & VI_DOOMED)) {
117 VI_UNLOCK(nvp);
118 vrele(nvp);
119 error = ENOENT;
120 } else {
121 VI_UNLOCK(nvp);
122 }
123 }
124 if (error) {
125 FREE((caddr_t)nfhp, M_NFSFH);
126 return (error);
127 }
128 if (nvp != NULL) {
129 np = VTONFS(nvp);
130 /*
131 * For NFSv4, check to see if it is the same name and
132 * replace the name, if it is different.
133 */
134 oldd = newd = NULL;
135 if ((nmp->nm_flag & NFSMNT_NFSV4) && np->n_v4 != NULL &&
136 nvp->v_type == VREG &&
137 (np->n_v4->n4_namelen != cnp->cn_namelen ||
138 NFSBCMP(cnp->cn_nameptr, NFS4NODENAME(np->n_v4),
139 cnp->cn_namelen) ||
140 dnp->n_fhp->nfh_len != np->n_v4->n4_fhlen ||
141 NFSBCMP(dnp->n_fhp->nfh_fh, np->n_v4->n4_data,
142 dnp->n_fhp->nfh_len))) {
143 MALLOC(newd, struct nfsv4node *,
144 sizeof (struct nfsv4node) + dnp->n_fhp->nfh_len +
145 + cnp->cn_namelen - 1, M_NFSV4NODE, M_WAITOK);
146 NFSLOCKNODE(np);
147 if (newd != NULL && np->n_v4 != NULL && nvp->v_type == VREG
148 && (np->n_v4->n4_namelen != cnp->cn_namelen ||
149 NFSBCMP(cnp->cn_nameptr, NFS4NODENAME(np->n_v4),
150 cnp->cn_namelen) ||
151 dnp->n_fhp->nfh_len != np->n_v4->n4_fhlen ||
152 NFSBCMP(dnp->n_fhp->nfh_fh, np->n_v4->n4_data,
153 dnp->n_fhp->nfh_len))) {
154 oldd = np->n_v4;
155 np->n_v4 = newd;
156 newd = NULL;
157 np->n_v4->n4_fhlen = dnp->n_fhp->nfh_len;
158 np->n_v4->n4_namelen = cnp->cn_namelen;
159 NFSBCOPY(dnp->n_fhp->nfh_fh, np->n_v4->n4_data,
160 dnp->n_fhp->nfh_len);
161 NFSBCOPY(cnp->cn_nameptr, NFS4NODENAME(np->n_v4),
162 cnp->cn_namelen);
163 }
164 NFSUNLOCKNODE(np);
165 }
166 if (newd != NULL)
167 FREE((caddr_t)newd, M_NFSV4NODE);
168 if (oldd != NULL)
169 FREE((caddr_t)oldd, M_NFSV4NODE);
170 *npp = np;
171 FREE((caddr_t)nfhp, M_NFSFH);
172 return (0);
173 }
174
175 /*
176 * Allocate before getnewvnode since doing so afterward
177 * might cause a bogus v_data pointer to get dereferenced
178 * elsewhere if zalloc should block.
179 */
180 np = uma_zalloc(newnfsnode_zone, M_WAITOK | M_ZERO);
181
182 error = getnewvnode("newnfs", mntp, &newnfs_vnodeops, &nvp);
183 if (error) {
184 uma_zfree(newnfsnode_zone, np);
185 FREE((caddr_t)nfhp, M_NFSFH);
186 return (error);
187 }
188 vp = nvp;
189 vp->v_bufobj.bo_ops = &buf_ops_newnfs;
190 vp->v_data = np;
191 np->n_vnode = vp;
192 /*
193 * Initialize the mutex even if the vnode is going to be a loser.
194 * This simplifies the logic in reclaim, which can then unconditionally
195 * destroy the mutex (in the case of the loser, or if hash_insert
196 * happened to return an error no special casing is needed).
197 */
198 mtx_init(&np->n_mtx, "NEWNFSnode lock", NULL, MTX_DEF | MTX_DUPOK);
199
200 /*
201 * Are we getting the root? If so, make sure the vnode flags
202 * are correct
203 */
204 if ((nfhp->nfh_len == nmp->nm_fhsize) &&
205 !bcmp(nfhp->nfh_fh, nmp->nm_fh, nfhp->nfh_len)) {
206 if (vp->v_type == VNON)
207 vp->v_type = VDIR;
208 vp->v_vflag |= VV_ROOT;
209 }
210
211 np->n_fhp = nfhp;
212 /*
213 * For NFSv4, we have to attach the directory file handle and
214 * file name, so that Open Ops can be done later.
215 */
216 if (nmp->nm_flag & NFSMNT_NFSV4) {
217 MALLOC(np->n_v4, struct nfsv4node *, sizeof (struct nfsv4node)
218 + dnp->n_fhp->nfh_len + cnp->cn_namelen - 1, M_NFSV4NODE,
219 M_WAITOK);
220 np->n_v4->n4_fhlen = dnp->n_fhp->nfh_len;
221 np->n_v4->n4_namelen = cnp->cn_namelen;
222 NFSBCOPY(dnp->n_fhp->nfh_fh, np->n_v4->n4_data,
223 dnp->n_fhp->nfh_len);
224 NFSBCOPY(cnp->cn_nameptr, NFS4NODENAME(np->n_v4),
225 cnp->cn_namelen);
226 } else {
227 np->n_v4 = NULL;
228 }
229
230 /*
231 * NFS supports recursive and shared locking.
232 */
233 VN_LOCK_AREC(vp);
234 VN_LOCK_ASHARE(vp);
235 lockmgr(vp->v_vnlock, LK_EXCLUSIVE, NULL);
236 error = insmntque(vp, mntp);
237 if (error != 0) {
238 *npp = NULL;
239 mtx_destroy(&np->n_mtx);
240 FREE((caddr_t)nfhp, M_NFSFH);
241 if (np->n_v4 != NULL)
242 FREE((caddr_t)np->n_v4, M_NFSV4NODE);
243 uma_zfree(newnfsnode_zone, np);
244 return (error);
245 }
246 error = vfs_hash_insert(vp, hash, LK_EXCLUSIVE,
247 td, &nvp, newnfs_vncmpf, nfhp);
248 if (error)
249 return (error);
250 if (nvp != NULL) {
251 *npp = VTONFS(nvp);
252 /* vfs_hash_insert() vput()'s the losing vnode */
253 return (0);
254 }
255 *npp = np;
256
257 return (0);
258}
259
260/*
261 * Anothe variant of nfs_nget(). This one is only used by reopen. It
262 * takes almost the same args as nfs_nget(), but only succeeds if an entry
263 * exists in the cache. (Since files should already be "open" with a
264 * vnode ref cnt on the node when reopen calls this, it should always
265 * succeed.)
266 * Also, don't get a vnode lock, since it may already be locked by some
267 * other process that is handling it. This is ok, since all other threads
268 * on the client are blocked by the nfsc_lock being exclusively held by the
269 * caller of this function.
270 */
271int
272nfscl_ngetreopen(struct mount *mntp, u_int8_t *fhp, int fhsize,
273 struct thread *td, struct nfsnode **npp)
274{
275 struct vnode *nvp;
276 u_int hash;
277 struct nfsfh *nfhp;
278 int error;
279
280 *npp = NULL;
281 /* For forced dismounts, just return error. */
282 if ((mntp->mnt_kern_flag & MNTK_UNMOUNTF))
283 return (EINTR);
284 MALLOC(nfhp, struct nfsfh *, sizeof (struct nfsfh) + fhsize,
285 M_NFSFH, M_WAITOK);
286 bcopy(fhp, &nfhp->nfh_fh[0], fhsize);
287 nfhp->nfh_len = fhsize;
288
289 hash = fnv_32_buf(fhp, fhsize, FNV1_32_INIT);
290
291 /*
292 * First, try to get the vnode locked, but don't block for the lock.
293 */
294 error = vfs_hash_get(mntp, hash, (LK_EXCLUSIVE | LK_NOWAIT), td, &nvp,
295 newnfs_vncmpf, nfhp);
296 if (error == 0 && nvp != NULL) {
297 VOP_UNLOCK(nvp, 0);
298 } else if (error == EBUSY) {
299 /*
300 * The LK_EXCLOTHER lock type tells nfs_lock1() to not try
301 * and lock the vnode, but just get a v_usecount on it.
302 * LK_NOWAIT is set so that when vget() returns ENOENT,
303 * vfs_hash_get() fails instead of looping.
304 * If this succeeds, it is safe so long as a vflush() with
305 * FORCECLOSE has not been done. Since the Renew thread is
306 * stopped and the MNTK_UNMOUNTF flag is set before doing
307 * a vflush() with FORCECLOSE, we should be ok here.
308 */
309 if ((mntp->mnt_kern_flag & MNTK_UNMOUNTF))
310 error = EINTR;
311 else
312 error = vfs_hash_get(mntp, hash,
313 (LK_EXCLOTHER | LK_NOWAIT), td, &nvp,
314 newnfs_vncmpf, nfhp);
315 }
316 FREE(nfhp, M_NFSFH);
317 if (error)
318 return (error);
319 if (nvp != NULL) {
320 *npp = VTONFS(nvp);
321 return (0);
322 }
323 return (EINVAL);
324}
325
326/*
327 * Load the attribute cache (that lives in the nfsnode entry) with
328 * the attributes of the second argument and
329 * Iff vaper not NULL
330 * copy the attributes to *vaper
331 * Similar to nfs_loadattrcache(), except the attributes are passed in
332 * instead of being parsed out of the mbuf list.
333 */
334int
335nfscl_loadattrcache(struct vnode **vpp, struct nfsvattr *nap, void *nvaper,
336 void *stuff, int writeattr, int dontshrink)
337{
338 struct vnode *vp = *vpp;
339 struct vattr *vap, *nvap = &nap->na_vattr, *vaper = nvaper;
340 struct nfsnode *np;
341 struct nfsmount *nmp;
342 struct timespec mtime_save;
343 struct thread *td = curthread;
344
345 /*
346 * If v_type == VNON it is a new node, so fill in the v_type,
347 * n_mtime fields. Check to see if it represents a special
348 * device, and if so, check for a possible alias. Once the
349 * correct vnode has been obtained, fill in the rest of the
350 * information.
351 */
352 np = VTONFS(vp);
353 NFSLOCKNODE(np);
354 if (vp->v_type != nvap->va_type) {
355 vp->v_type = nvap->va_type;
356 if (vp->v_type == VFIFO)
357 vp->v_op = &newnfs_fifoops;
358 np->n_mtime = nvap->va_mtime;
359 }
360 nmp = VFSTONFS(vp->v_mount);
361 vap = &np->n_vattr.na_vattr;
362 mtime_save = vap->va_mtime;
363 if (writeattr) {
364 np->n_vattr.na_filerev = nap->na_filerev;
365 np->n_vattr.na_size = nap->na_size;
366 np->n_vattr.na_mtime = nap->na_mtime;
367 np->n_vattr.na_ctime = nap->na_ctime;
368 np->n_vattr.na_fsid = nap->na_fsid;
369 } else {
370 NFSBCOPY((caddr_t)nap, (caddr_t)&np->n_vattr,
371 sizeof (struct nfsvattr));
372 }
373
374 /*
375 * For NFSv4, if the node's fsid is not equal to the mount point's
376 * fsid, return the low order 32bits of the node's fsid. This
377 * allows getcwd(3) to work. There is a chance that the fsid might
378 * be the same as a local fs, but since this is in an NFS mount
379 * point, I don't think that will cause any problems?
380 */
381 if ((nmp->nm_flag & (NFSMNT_NFSV4 | NFSMNT_HASSETFSID)) ==
382 (NFSMNT_NFSV4 | NFSMNT_HASSETFSID) &&
383 (nmp->nm_fsid[0] != np->n_vattr.na_filesid[0] ||
384 nmp->nm_fsid[1] != np->n_vattr.na_filesid[1]))
385 vap->va_fsid = np->n_vattr.na_filesid[0];
386 else
387 vap->va_fsid = vp->v_mount->mnt_stat.f_fsid.val[0];
388 np->n_attrstamp = time_second;
389 /* Timestamp the NFS otw getattr fetch */
390 if (td->td_proc) {
391 np->n_ac_ts_tid = td->td_tid;
392 np->n_ac_ts_pid = td->td_proc->p_pid;
393 np->n_ac_ts_syscalls = td->td_syscalls;
394 } else
395 bzero(&np->n_ac_ts, sizeof(struct nfs_attrcache_timestamp));
396
397 if (vap->va_size != np->n_size) {
398 if (vap->va_type == VREG) {
399 if (dontshrink && vap->va_size < np->n_size) {
400 /*
401 * We've been told not to shrink the file;
402 * zero np->n_attrstamp to indicate that
403 * the attributes are stale.
404 */
405 vap->va_size = np->n_size;
406 np->n_attrstamp = 0;
407 } else if (np->n_flag & NMODIFIED) {
408 /*
409 * We've modified the file: Use the larger
410 * of our size, and the server's size.
411 */
412 if (vap->va_size < np->n_size) {
413 vap->va_size = np->n_size;
414 } else {
415 np->n_size = vap->va_size;
416 np->n_flag |= NSIZECHANGED;
417 }
418 } else {
419 np->n_size = vap->va_size;
420 np->n_flag |= NSIZECHANGED;
421 }
422 vnode_pager_setsize(vp, np->n_size);
423 } else {
424 np->n_size = vap->va_size;
425 }
426 }
427 /*
428 * The following checks are added to prevent a race between (say)
429 * a READDIR+ and a WRITE.
430 * READDIR+, WRITE requests sent out.
431 * READDIR+ resp, WRITE resp received on client.
432 * However, the WRITE resp was handled before the READDIR+ resp
433 * causing the post op attrs from the write to be loaded first
434 * and the attrs from the READDIR+ to be loaded later. If this
435 * happens, we have stale attrs loaded into the attrcache.
436 * We detect this by for the mtime moving back. We invalidate the
437 * attrcache when this happens.
438 */
439 if (timespeccmp(&mtime_save, &vap->va_mtime, >))
440 /* Size changed or mtime went backwards */
441 np->n_attrstamp = 0;
442 if (vaper != NULL) {
443 NFSBCOPY((caddr_t)vap, (caddr_t)vaper, sizeof(*vap));
444 if (np->n_flag & NCHG) {
445 if (np->n_flag & NACC)
446 vaper->va_atime = np->n_atim;
447 if (np->n_flag & NUPD)
448 vaper->va_mtime = np->n_mtim;
449 }
450 }
451 NFSUNLOCKNODE(np);
452 return (0);
453}
454
455/*
456 * Fill in the client id name. For these bytes:
457 * 1 - they must be unique
458 * 2 - they should be persistent across client reboots
459 * 1 is more critical than 2
460 * Use the mount point's unique id plus either the uuid or, if that
461 * isn't set, random junk.
462 */
463void
464nfscl_fillclid(u_int64_t clval, char *uuid, u_int8_t *cp, u_int16_t idlen)
465{
466 int uuidlen;
467
468 /*
469 * First, put in the 64bit mount point identifier.
470 */
471 if (idlen >= sizeof (u_int64_t)) {
472 NFSBCOPY((caddr_t)&clval, cp, sizeof (u_int64_t));
473 cp += sizeof (u_int64_t);
474 idlen -= sizeof (u_int64_t);
475 }
476
477 /*
478 * If uuid is non-zero length, use it.
479 */
480 uuidlen = strlen(uuid);
481 if (uuidlen > 0 && idlen >= uuidlen) {
482 NFSBCOPY(uuid, cp, uuidlen);
483 cp += uuidlen;
484 idlen -= uuidlen;
485 }
486
487 /*
488 * This only normally happens if the uuid isn't set.
489 */
490 while (idlen > 0) {
491 *cp++ = (u_int8_t)(arc4random() % 256);
492 idlen--;
493 }
494}
495
496/*
497 * Fill in a lock owner name. For now, pid + the process's creation time.
498 */
499void
500nfscl_filllockowner(struct thread *td, u_int8_t *cp)
501{
502 union {
503 u_int32_t lval;
504 u_int8_t cval[4];
505 } tl;
506 struct proc *p;
507
508if (td == NULL) {
509 printf("NULL td\n");
510 bzero(cp, 12);
511 return;
512}
513 p = td->td_proc;
514if (p == NULL) {
515 printf("NULL pid\n");
516 bzero(cp, 12);
517 return;
518}
519 tl.lval = p->p_pid;
520 *cp++ = tl.cval[0];
521 *cp++ = tl.cval[1];
522 *cp++ = tl.cval[2];
523 *cp++ = tl.cval[3];
524if (p->p_stats == NULL) {
525 printf("pstats null\n");
526 bzero(cp, 8);
527 return;
528}
529 tl.lval = p->p_stats->p_start.tv_sec;
530 *cp++ = tl.cval[0];
531 *cp++ = tl.cval[1];
532 *cp++ = tl.cval[2];
533 *cp++ = tl.cval[3];
534 tl.lval = p->p_stats->p_start.tv_usec;
535 *cp++ = tl.cval[0];
536 *cp++ = tl.cval[1];
537 *cp++ = tl.cval[2];
538 *cp = tl.cval[3];
539}
540
541/*
542 * Find the parent process for the thread passed in as an argument.
543 * If none exists, return NULL, otherwise return a thread for the parent.
544 * (Can be any of the threads, since it is only used for td->td_proc.)
545 */
546NFSPROC_T *
547nfscl_getparent(struct thread *td)
548{
549 struct proc *p;
550 struct thread *ptd;
551
552 if (td == NULL)
553 return (NULL);
554 p = td->td_proc;
555 if (p->p_pid == 0)
556 return (NULL);
557 p = p->p_pptr;
558 if (p == NULL)
559 return (NULL);
560 ptd = TAILQ_FIRST(&p->p_threads);
561 return (ptd);
562}
563
564/*
565 * Start up the renew kernel thread.
566 */
567static void
568start_nfscl(void *arg)
569{
570 struct nfsclclient *clp;
571 struct thread *td;
572
573 clp = (struct nfsclclient *)arg;
574 td = TAILQ_FIRST(&clp->nfsc_renewthread->p_threads);
575 nfscl_renewthread(clp, td);
576 kproc_exit(0);
577}
578
579void
580nfscl_start_renewthread(struct nfsclclient *clp)
581{
582
583 kproc_create(start_nfscl, (void *)clp, &clp->nfsc_renewthread, 0, 0,
584 "nfscl");
585}
586
587/*
588 * Handle wcc_data.
589 * For NFSv4, it assumes that nfsv4_wccattr() was used to set up the getattr
590 * as the first Op after PutFH.
591 * (For NFSv4, the postop attributes are after the Op, so they can't be
592 * parsed here. A separate call to nfscl_postop_attr() is required.)
593 */
594int
595nfscl_wcc_data(struct nfsrv_descript *nd, struct vnode *vp,
596 struct nfsvattr *nap, int *flagp, int *wccflagp, void *stuff)
597{
598 u_int32_t *tl;
599 struct nfsnode *np = VTONFS(vp);
600 struct nfsvattr nfsva;
601 int error = 0;
602
603 if (wccflagp != NULL)
604 *wccflagp = 0;
605 if (nd->nd_flag & ND_NFSV3) {
606 *flagp = 0;
607 NFSM_DISSECT(tl, u_int32_t *, NFSX_UNSIGNED);
608 if (*tl == newnfs_true) {
609 NFSM_DISSECT(tl, u_int32_t *, 6 * NFSX_UNSIGNED);
610 if (wccflagp != NULL) {
611 mtx_lock(&np->n_mtx);
612 *wccflagp = (np->n_mtime.tv_sec ==
613 fxdr_unsigned(u_int32_t, *(tl + 2)) &&
614 np->n_mtime.tv_nsec ==
615 fxdr_unsigned(u_int32_t, *(tl + 3)));
616 mtx_unlock(&np->n_mtx);
617 }
618 }
619 error = nfscl_postop_attr(nd, nap, flagp, stuff);
620 } else if ((nd->nd_flag & (ND_NOMOREDATA | ND_NFSV4 | ND_V4WCCATTR))
621 == (ND_NFSV4 | ND_V4WCCATTR)) {
622 error = nfsv4_loadattr(nd, NULL, &nfsva, NULL,
623 NULL, 0, NULL, NULL, NULL, NULL, NULL, 0,
624 NULL, NULL, NULL, NULL, NULL);
625 if (error)
626 return (error);
627 /*
628 * Get rid of Op# and status for next op.
629 */
630 NFSM_DISSECT(tl, u_int32_t *, 2 * NFSX_UNSIGNED);
631 if (*++tl)
632 nd->nd_flag |= ND_NOMOREDATA;
633 if (wccflagp != NULL &&
634 nfsva.na_vattr.va_mtime.tv_sec != 0) {
635 mtx_lock(&np->n_mtx);
636 *wccflagp = (np->n_mtime.tv_sec ==
637 nfsva.na_vattr.va_mtime.tv_sec &&
638 np->n_mtime.tv_nsec ==
639 nfsva.na_vattr.va_mtime.tv_sec);
640 mtx_unlock(&np->n_mtx);
641 }
642 }
643nfsmout:
644 return (error);
645}
646
647/*
648 * Get postop attributes.
649 */
650int
651nfscl_postop_attr(struct nfsrv_descript *nd, struct nfsvattr *nap, int *retp,
652 void *stuff)
653{
654 u_int32_t *tl;
655 int error = 0;
656
657 *retp = 0;
658 if (nd->nd_flag & ND_NOMOREDATA)
659 return (error);
660 if (nd->nd_flag & ND_NFSV3) {
661 NFSM_DISSECT(tl, u_int32_t *, NFSX_UNSIGNED);
662 *retp = fxdr_unsigned(int, *tl);
663 } else if (nd->nd_flag & ND_NFSV4) {
664 /*
665 * For NFSv4, the postop attr are at the end, so no point
666 * in looking if nd_repstat != 0.
667 */
668 if (!nd->nd_repstat) {
669 NFSM_DISSECT(tl, u_int32_t *, 2 * NFSX_UNSIGNED);
670 if (*(tl + 1))
671 /* should never happen since nd_repstat != 0 */
672 nd->nd_flag |= ND_NOMOREDATA;
673 else
674 *retp = 1;
675 }
676 } else if (!nd->nd_repstat) {
677 /* For NFSv2, the attributes are here iff nd_repstat == 0 */
678 *retp = 1;
679 }
680 if (*retp) {
681 error = nfsm_loadattr(nd, nap);
682 if (error)
683 *retp = 0;
684 }
685nfsmout:
686 return (error);
687}
688
689/*
690 * Fill in the setable attributes. The full argument indicates whether
691 * to fill in them all or just mode and time.
692 */
693void
694nfscl_fillsattr(struct nfsrv_descript *nd, struct vattr *vap,
695 struct vnode *vp, int flags, u_int32_t rdev)
696{
697 u_int32_t *tl;
698 struct nfsv2_sattr *sp;
699 nfsattrbit_t attrbits;
700 struct timeval curtime;
701
702 switch (nd->nd_flag & (ND_NFSV2 | ND_NFSV3 | ND_NFSV4)) {
703 case ND_NFSV2:
704 NFSM_BUILD(sp, struct nfsv2_sattr *, NFSX_V2SATTR);
705 if (vap->va_mode == (mode_t)VNOVAL)
706 sp->sa_mode = newnfs_xdrneg1;
707 else
708 sp->sa_mode = vtonfsv2_mode(vap->va_type, vap->va_mode);
709 if (vap->va_uid == (uid_t)VNOVAL)
710 sp->sa_uid = newnfs_xdrneg1;
711 else
712 sp->sa_uid = txdr_unsigned(vap->va_uid);
713 if (vap->va_gid == (gid_t)VNOVAL)
714 sp->sa_gid = newnfs_xdrneg1;
715 else
716 sp->sa_gid = txdr_unsigned(vap->va_gid);
717 if (flags & NFSSATTR_SIZE0)
718 sp->sa_size = 0;
719 else if (flags & NFSSATTR_SIZENEG1)
720 sp->sa_size = newnfs_xdrneg1;
721 else if (flags & NFSSATTR_SIZERDEV)
722 sp->sa_size = txdr_unsigned(rdev);
723 else
724 sp->sa_size = txdr_unsigned(vap->va_size);
725 txdr_nfsv2time(&vap->va_atime, &sp->sa_atime);
726 txdr_nfsv2time(&vap->va_mtime, &sp->sa_mtime);
727 break;
728 case ND_NFSV3:
729 getmicrotime(&curtime);
730 if (vap->va_mode != (mode_t)VNOVAL) {
731 NFSM_BUILD(tl, u_int32_t *, 2 * NFSX_UNSIGNED);
732 *tl++ = newnfs_true;
733 *tl = txdr_unsigned(vap->va_mode);
734 } else {
735 NFSM_BUILD(tl, u_int32_t *, NFSX_UNSIGNED);
736 *tl = newnfs_false;
737 }
738 if ((flags & NFSSATTR_FULL) && vap->va_uid != (uid_t)VNOVAL) {
739 NFSM_BUILD(tl, u_int32_t *, 2 * NFSX_UNSIGNED);
740 *tl++ = newnfs_true;
741 *tl = txdr_unsigned(vap->va_uid);
742 } else {
743 NFSM_BUILD(tl, u_int32_t *, NFSX_UNSIGNED);
744 *tl = newnfs_false;
745 }
746 if ((flags & NFSSATTR_FULL) && vap->va_gid != (gid_t)VNOVAL) {
747 NFSM_BUILD(tl, u_int32_t *, 2 * NFSX_UNSIGNED);
748 *tl++ = newnfs_true;
749 *tl = txdr_unsigned(vap->va_gid);
750 } else {
751 NFSM_BUILD(tl, u_int32_t *, NFSX_UNSIGNED);
752 *tl = newnfs_false;
753 }
754 if ((flags & NFSSATTR_FULL) && vap->va_size != VNOVAL) {
755 NFSM_BUILD(tl, u_int32_t *, 3 * NFSX_UNSIGNED);
756 *tl++ = newnfs_true;
757 txdr_hyper(vap->va_size, tl);
758 } else {
759 NFSM_BUILD(tl, u_int32_t *, NFSX_UNSIGNED);
760 *tl = newnfs_false;
761 }
762 if (vap->va_atime.tv_sec != VNOVAL) {
763 if (vap->va_atime.tv_sec != curtime.tv_sec) {
764 NFSM_BUILD(tl, u_int32_t *, 3 * NFSX_UNSIGNED);
765 *tl++ = txdr_unsigned(NFSV3SATTRTIME_TOCLIENT);
766 txdr_nfsv3time(&vap->va_atime, tl);
767 } else {
768 NFSM_BUILD(tl, u_int32_t *, NFSX_UNSIGNED);
769 *tl = txdr_unsigned(NFSV3SATTRTIME_TOSERVER);
770 }
771 } else {
772 NFSM_BUILD(tl, u_int32_t *, NFSX_UNSIGNED);
773 *tl = txdr_unsigned(NFSV3SATTRTIME_DONTCHANGE);
774 }
775 if (vap->va_mtime.tv_sec != VNOVAL) {
776 if (vap->va_mtime.tv_sec != curtime.tv_sec) {
777 NFSM_BUILD(tl, u_int32_t *, 3 * NFSX_UNSIGNED);
778 *tl++ = txdr_unsigned(NFSV3SATTRTIME_TOCLIENT);
779 txdr_nfsv3time(&vap->va_mtime, tl);
780 } else {
781 NFSM_BUILD(tl, u_int32_t *, NFSX_UNSIGNED);
782 *tl = txdr_unsigned(NFSV3SATTRTIME_TOSERVER);
783 }
784 } else {
785 NFSM_BUILD(tl, u_int32_t *, NFSX_UNSIGNED);
786 *tl = txdr_unsigned(NFSV3SATTRTIME_DONTCHANGE);
787 }
788 break;
789 case ND_NFSV4:
790 NFSZERO_ATTRBIT(&attrbits);
791 if (vap->va_mode != (mode_t)VNOVAL)
792 NFSSETBIT_ATTRBIT(&attrbits, NFSATTRBIT_MODE);
793 if ((flags & NFSSATTR_FULL) && vap->va_uid != (uid_t)VNOVAL)
794 NFSSETBIT_ATTRBIT(&attrbits, NFSATTRBIT_OWNER);
795 if ((flags & NFSSATTR_FULL) && vap->va_gid != (gid_t)VNOVAL)
796 NFSSETBIT_ATTRBIT(&attrbits, NFSATTRBIT_OWNERGROUP);
797 if ((flags & NFSSATTR_FULL) && vap->va_size != VNOVAL)
798 NFSSETBIT_ATTRBIT(&attrbits, NFSATTRBIT_SIZE);
799 if (vap->va_atime.tv_sec != VNOVAL)
800 NFSSETBIT_ATTRBIT(&attrbits, NFSATTRBIT_TIMEACCESSSET);
801 if (vap->va_mtime.tv_sec != VNOVAL)
802 NFSSETBIT_ATTRBIT(&attrbits, NFSATTRBIT_TIMEMODIFYSET);
803 (void) nfsv4_fillattr(nd, vp, NULL, vap, NULL, 0, &attrbits,
804 NULL, NULL, 0, 0);
805 break;
806 };
807}
808
809/*
810 * nfscl_request() - mostly a wrapper for newnfs_request().
811 */
812int
813nfscl_request(struct nfsrv_descript *nd, struct vnode *vp, NFSPROC_T *p,
814 struct ucred *cred, void *stuff)
815{
816 int ret, vers;
817 struct nfsmount *nmp;
818
819 nmp = VFSTONFS(vp->v_mount);
820 if (nd->nd_flag & ND_NFSV4)
821 vers = NFS_VER4;
822 else if (nd->nd_flag & ND_NFSV3)
823 vers = NFS_VER3;
824 else
825 vers = NFS_VER2;
826 ret = newnfs_request(nd, nmp, NULL, &nmp->nm_sockreq, vp, p, cred,
827 NFS_PROG, vers, NULL, 1, NULL);
828 return (ret);
829}
830
831/*
832 * fill in this bsden's variant of statfs using nfsstatfs.
833 */
834void
835nfscl_loadsbinfo(struct nfsmount *nmp, struct nfsstatfs *sfp, void *statfs)
836{
837 struct statfs *sbp = (struct statfs *)statfs;
838 nfsquad_t tquad;
839
840 if (nmp->nm_flag & (NFSMNT_NFSV3 | NFSMNT_NFSV4)) {
841 sbp->f_bsize = NFS_FABLKSIZE;
842 tquad.qval = sfp->sf_tbytes;
843 sbp->f_blocks = (long)(tquad.qval / ((u_quad_t)NFS_FABLKSIZE));
844 tquad.qval = sfp->sf_fbytes;
845 sbp->f_bfree = (long)(tquad.qval / ((u_quad_t)NFS_FABLKSIZE));
846 tquad.qval = sfp->sf_abytes;
847 sbp->f_bavail = (long)(tquad.qval / ((u_quad_t)NFS_FABLKSIZE));
848 tquad.qval = sfp->sf_tfiles;
849 sbp->f_files = (tquad.lval[0] & 0x7fffffff);
850 tquad.qval = sfp->sf_ffiles;
851 sbp->f_ffree = (tquad.lval[0] & 0x7fffffff);
852 } else if ((nmp->nm_flag & NFSMNT_NFSV4) == 0) {
853 sbp->f_bsize = (int32_t)sfp->sf_bsize;
854 sbp->f_blocks = (int32_t)sfp->sf_blocks;
855 sbp->f_bfree = (int32_t)sfp->sf_bfree;
856 sbp->f_bavail = (int32_t)sfp->sf_bavail;
857 sbp->f_files = 0;
858 sbp->f_ffree = 0;
859 }
860}
861
862/*
863 * Use the fsinfo stuff to update the mount point.
864 */
865void
866nfscl_loadfsinfo(struct nfsmount *nmp, struct nfsfsinfo *fsp)
867{
868
869 if ((nmp->nm_wsize == 0 || fsp->fs_wtpref < nmp->nm_wsize) &&
870 fsp->fs_wtpref >= NFS_FABLKSIZE)
871 nmp->nm_wsize = (fsp->fs_wtpref + NFS_FABLKSIZE - 1) &
872 ~(NFS_FABLKSIZE - 1);
873 if (fsp->fs_wtmax < nmp->nm_wsize && fsp->fs_wtmax > 0) {
874 nmp->nm_wsize = fsp->fs_wtmax & ~(NFS_FABLKSIZE - 1);
875 if (nmp->nm_wsize == 0)
876 nmp->nm_wsize = fsp->fs_wtmax;
877 }
878 if (nmp->nm_wsize < NFS_FABLKSIZE)
879 nmp->nm_wsize = NFS_FABLKSIZE;
880 if ((nmp->nm_rsize == 0 || fsp->fs_rtpref < nmp->nm_rsize) &&
881 fsp->fs_rtpref >= NFS_FABLKSIZE)
882 nmp->nm_rsize = (fsp->fs_rtpref + NFS_FABLKSIZE - 1) &
883 ~(NFS_FABLKSIZE - 1);
884 if (fsp->fs_rtmax < nmp->nm_rsize && fsp->fs_rtmax > 0) {
885 nmp->nm_rsize = fsp->fs_rtmax & ~(NFS_FABLKSIZE - 1);
886 if (nmp->nm_rsize == 0)
887 nmp->nm_rsize = fsp->fs_rtmax;
888 }
889 if (nmp->nm_rsize < NFS_FABLKSIZE)
890 nmp->nm_rsize = NFS_FABLKSIZE;
891 if ((nmp->nm_readdirsize == 0 || fsp->fs_dtpref < nmp->nm_readdirsize)
892 && fsp->fs_dtpref >= NFS_DIRBLKSIZ)
893 nmp->nm_readdirsize = (fsp->fs_dtpref + NFS_DIRBLKSIZ - 1) &
894 ~(NFS_DIRBLKSIZ - 1);
895 if (fsp->fs_rtmax < nmp->nm_readdirsize && fsp->fs_rtmax > 0) {
896 nmp->nm_readdirsize = fsp->fs_rtmax & ~(NFS_DIRBLKSIZ - 1);
897 if (nmp->nm_readdirsize == 0)
898 nmp->nm_readdirsize = fsp->fs_rtmax;
899 }
900 if (nmp->nm_readdirsize < NFS_DIRBLKSIZ)
901 nmp->nm_readdirsize = NFS_DIRBLKSIZ;
902 if (fsp->fs_maxfilesize > 0 &&
903 fsp->fs_maxfilesize < nmp->nm_maxfilesize)
904 nmp->nm_maxfilesize = fsp->fs_maxfilesize;
905 nmp->nm_mountp->mnt_stat.f_iosize = newnfs_iosize(nmp);
906 nmp->nm_state |= NFSSTA_GOTFSINFO;
907}
908
909/*
910 * Get a pointer to my IP addrress and return it.
911 * Return NULL if you can't find one.
912 */
913u_int8_t *
914nfscl_getmyip(struct nfsmount *nmp, int *isinet6p)
915{
916 struct sockaddr_in sad, *sin;
917 struct rtentry *rt;
918 u_int8_t *retp = NULL;
919 static struct in_addr laddr;
920
921 *isinet6p = 0;
922 /*
923 * Loop up a route for the destination address.
924 */
925 if (nmp->nm_nam->sa_family == AF_INET) {
926 bzero(&sad, sizeof (sad));
927 sin = (struct sockaddr_in *)nmp->nm_nam;
928 sad.sin_family = AF_INET;
929 sad.sin_len = sizeof (struct sockaddr_in);
930 sad.sin_addr.s_addr = sin->sin_addr.s_addr;
931 rt = rtalloc1((struct sockaddr *)&sad, 0, 0UL);
932 if (rt != NULL) {
933 if (rt->rt_ifp != NULL &&
934 rt->rt_ifa != NULL &&
935 ((rt->rt_ifp->if_flags & IFF_LOOPBACK) == 0) &&
936 rt->rt_ifa->ifa_addr->sa_family == AF_INET) {
937 sin = (struct sockaddr_in *)
938 rt->rt_ifa->ifa_addr;
939 laddr.s_addr = sin->sin_addr.s_addr;
940 retp = (u_int8_t *)&laddr;
941 }
942 RTFREE_LOCKED(rt);
943 }
944#ifdef INET6
945 } else if (nmp->nm_nam->sa_family == AF_INET6) {
946 struct sockaddr_in6 sad6, *sin6;
947 static struct in6_addr laddr6;
948
949 bzero(&sad6, sizeof (sad6));
950 sin6 = (struct sockaddr_in6 *)nmp->nm_nam;
951 sad6.sin6_family = AF_INET6;
952 sad6.sin6_len = sizeof (struct sockaddr_in6);
953 sad6.sin6_addr = sin6->sin6_addr;
954 rt = rtalloc1((struct sockaddr *)&sad6, 0, 0UL);
955 if (rt != NULL) {
956 if (rt->rt_ifp != NULL &&
957 rt->rt_ifa != NULL &&
958 ((rt->rt_ifp->if_flags & IFF_LOOPBACK) == 0) &&
959 rt->rt_ifa->ifa_addr->sa_family == AF_INET6) {
960 sin6 = (struct sockaddr_in6 *)
961 rt->rt_ifa->ifa_addr;
962 laddr6 = sin6->sin6_addr;
963 retp = (u_int8_t *)&laddr6;
964 *isinet6p = 1;
965 }
966 RTFREE_LOCKED(rt);
967 }
968#endif
969 }
970 return (retp);
971}
972
973/*
974 * Copy NFS uid, gids from the cred structure.
975 */
976void
977newnfs_copyincred(struct ucred *cr, struct nfscred *nfscr)
978{
979 int i;
980
981 nfscr->nfsc_uid = cr->cr_uid;
982 nfscr->nfsc_ngroups = MIN(cr->cr_ngroups, RPCAUTH_UNIXGIDS + 1);
982 nfscr->nfsc_ngroups = MIN(cr->cr_ngroups, NFS_MAXGRPS + 1);
983 for (i = 0; i < nfscr->nfsc_ngroups; i++)
984 nfscr->nfsc_groups[i] = cr->cr_groups[i];
985}
986
987
988/*
989 * Do any client specific initialization.
990 */
991void
992nfscl_init(void)
993{
994 static int inited = 0;
995
996 if (inited)
997 return;
998 inited = 1;
999 nfscl_inited = 1;
1000 ncl_pbuf_freecnt = nswbuf / 2 + 1;
1001}
1002
1003/*
1004 * Check each of the attributes to be set, to ensure they aren't already
1005 * the correct value. Disable setting ones already correct.
1006 */
1007int
1008nfscl_checksattr(struct vattr *vap, struct nfsvattr *nvap)
1009{
1010
1011 if (vap->va_mode != (mode_t)VNOVAL) {
1012 if (vap->va_mode == nvap->na_mode)
1013 vap->va_mode = (mode_t)VNOVAL;
1014 }
1015 if (vap->va_uid != (uid_t)VNOVAL) {
1016 if (vap->va_uid == nvap->na_uid)
1017 vap->va_uid = (uid_t)VNOVAL;
1018 }
1019 if (vap->va_gid != (gid_t)VNOVAL) {
1020 if (vap->va_gid == nvap->na_gid)
1021 vap->va_gid = (gid_t)VNOVAL;
1022 }
1023 if (vap->va_size != VNOVAL) {
1024 if (vap->va_size == nvap->na_size)
1025 vap->va_size = VNOVAL;
1026 }
1027
1028 /*
1029 * We are normally called with only a partially initialized
1030 * VAP. Since the NFSv3 spec says that server may use the
1031 * file attributes to store the verifier, the spec requires
1032 * us to do a SETATTR RPC. FreeBSD servers store the verifier
1033 * in atime, but we can't really assume that all servers will
1034 * so we ensure that our SETATTR sets both atime and mtime.
1035 */
1036 if (vap->va_mtime.tv_sec == VNOVAL)
1037 vfs_timestamp(&vap->va_mtime);
1038 if (vap->va_atime.tv_sec == VNOVAL)
1039 vap->va_atime = vap->va_mtime;
1040 return (1);
1041}
1042
1043/*
1044 * Map nfsv4 errors to errno.h errors.
1045 * The uid and gid arguments are only used for NFSERR_BADOWNER and that
1046 * error should only be returned for the Open, Create and Setattr Ops.
1047 * As such, most calls can just pass in 0 for those arguments.
1048 */
1049APPLESTATIC int
1050nfscl_maperr(struct thread *td, int error, uid_t uid, gid_t gid)
1051{
1052 struct proc *p;
1053
1054 if (error < 10000)
1055 return (error);
1056 if (td != NULL)
1057 p = td->td_proc;
1058 else
1059 p = NULL;
1060 switch (error) {
1061 case NFSERR_BADOWNER:
1062 tprintf(p, LOG_INFO,
1063 "No name and/or group mapping for uid,gid:(%d,%d)\n",
1064 uid, gid);
1065 return (EPERM);
1066 case NFSERR_STALECLIENTID:
1067 case NFSERR_STALESTATEID:
1068 case NFSERR_EXPIRED:
1069 case NFSERR_BADSTATEID:
1070 printf("nfsv4 recover err returned %d\n", error);
1071 return (EIO);
1072 case NFSERR_BADHANDLE:
1073 case NFSERR_SERVERFAULT:
1074 case NFSERR_BADTYPE:
1075 case NFSERR_FHEXPIRED:
1076 case NFSERR_RESOURCE:
1077 case NFSERR_MOVED:
1078 case NFSERR_NOFILEHANDLE:
1079 case NFSERR_MINORVERMISMATCH:
1080 case NFSERR_OLDSTATEID:
1081 case NFSERR_BADSEQID:
1082 case NFSERR_LEASEMOVED:
1083 case NFSERR_RECLAIMBAD:
1084 case NFSERR_BADXDR:
1085 case NFSERR_BADCHAR:
1086 case NFSERR_BADNAME:
1087 case NFSERR_OPILLEGAL:
1088 printf("nfsv4 client/server protocol prob err=%d\n",
1089 error);
1090 return (EIO);
1091 default:
1092 tprintf(p, LOG_INFO, "nfsv4 err=%d\n", error);
1093 return (EIO);
1094 };
1095}
1096
1097/*
1098 * Locate a process by number; return only "live" processes -- i.e., neither
1099 * zombies nor newly born but incompletely initialized processes. By not
1100 * returning processes in the PRS_NEW state, we allow callers to avoid
1101 * testing for that condition to avoid dereferencing p_ucred, et al.
1102 * Identical to pfind() in kern_proc.c, except it assume the list is
1103 * already locked.
1104 */
1105static struct proc *
1106pfind_locked(pid_t pid)
1107{
1108 struct proc *p;
1109
1110 LIST_FOREACH(p, PIDHASH(pid), p_hash)
1111 if (p->p_pid == pid) {
1112 if (p->p_state == PRS_NEW) {
1113 p = NULL;
1114 break;
1115 }
1116 PROC_LOCK(p);
1117 break;
1118 }
1119 return (p);
1120}
1121
1122/*
1123 * Check to see if the process for this owner exists. Return 1 if it doesn't
1124 * and 0 otherwise.
1125 */
1126int
1127nfscl_procdoesntexist(u_int8_t *own)
1128{
1129 union {
1130 u_int32_t lval;
1131 u_int8_t cval[4];
1132 } tl;
1133 struct proc *p;
1134 pid_t pid;
1135 int ret = 0;
1136
1137 tl.cval[0] = *own++;
1138 tl.cval[1] = *own++;
1139 tl.cval[2] = *own++;
1140 tl.cval[3] = *own++;
1141 pid = tl.lval;
1142 p = pfind_locked(pid);
1143 if (p == NULL)
1144 return (1);
1145 if (p->p_stats == NULL) {
1146 PROC_UNLOCK(p);
1147 return (0);
1148 }
1149 tl.cval[0] = *own++;
1150 tl.cval[1] = *own++;
1151 tl.cval[2] = *own++;
1152 tl.cval[3] = *own++;
1153 if (tl.lval != p->p_stats->p_start.tv_sec) {
1154 ret = 1;
1155 } else {
1156 tl.cval[0] = *own++;
1157 tl.cval[1] = *own++;
1158 tl.cval[2] = *own++;
1159 tl.cval[3] = *own;
1160 if (tl.lval != p->p_stats->p_start.tv_usec)
1161 ret = 1;
1162 }
1163 PROC_UNLOCK(p);
1164 return (ret);
1165}
1166
1167/*
1168 * - nfs pseudo system call for the client
1169 */
1170/*
1171 * MPSAFE
1172 */
1173static int
1174nfssvc_nfscl(struct thread *td, struct nfssvc_args *uap)
1175{
1176 struct file *fp;
1177 struct nfscbd_args nfscbdarg;
1178 struct nfsd_nfscbd_args nfscbdarg2;
1179 int error;
1180
1181 if (uap->flag & NFSSVC_CBADDSOCK) {
1182 error = copyin(uap->argp, (caddr_t)&nfscbdarg, sizeof(nfscbdarg));
1183 if (error)
1184 return (error);
1185 if ((error = fget(td, nfscbdarg.sock, &fp)) != 0) {
1186 return (error);
1187 }
1188 if (fp->f_type != DTYPE_SOCKET) {
1189 fdrop(fp, td);
1190 return (EPERM);
1191 }
1192 error = nfscbd_addsock(fp);
1193 fdrop(fp, td);
1194 if (!error && nfscl_enablecallb == 0) {
1195 nfsv4_cbport = nfscbdarg.port;
1196 nfscl_enablecallb = 1;
1197 }
1198 } else if (uap->flag & NFSSVC_NFSCBD) {
1199 if (uap->argp == NULL)
1200 return (EINVAL);
1201 error = copyin(uap->argp, (caddr_t)&nfscbdarg2,
1202 sizeof(nfscbdarg2));
1203 if (error)
1204 return (error);
1205 error = nfscbd_nfsd(td, &nfscbdarg2);
1206 } else {
1207 error = EINVAL;
1208 }
1209 return (error);
1210}
1211
1212extern int (*nfsd_call_nfscl)(struct thread *, struct nfssvc_args *);
1213
1214/*
1215 * Called once to initialize data structures...
1216 */
1217static int
1218nfscl_modevent(module_t mod, int type, void *data)
1219{
1220 int error = 0;
1221 static int loaded = 0;
1222
1223 switch (type) {
1224 case MOD_LOAD:
1225 if (loaded)
1226 return (0);
1227 newnfs_portinit();
1228 mtx_init(&nfs_clstate_mutex, "nfs_clstate_mutex", NULL,
1229 MTX_DEF);
1230 mtx_init(&ncl_iod_mutex, "ncl_iod_mutex", NULL, MTX_DEF);
1231 nfscl_init();
1232 NFSD_LOCK();
1233 nfsrvd_cbinit(0);
1234 NFSD_UNLOCK();
1235 ncl_call_invalcaches = ncl_invalcaches;
1236 nfsd_call_nfscl = nfssvc_nfscl;
1237 loaded = 1;
1238 break;
1239
1240 case MOD_UNLOAD:
1241 if (nfs_numnfscbd != 0) {
1242 error = EBUSY;
1243 break;
1244 }
1245
1246 ncl_call_invalcaches = NULL;
1247 nfsd_call_nfscl = NULL;
1248 /* and get rid of the mutexes */
1249 mtx_destroy(&nfs_clstate_mutex);
1250 mtx_destroy(&ncl_iod_mutex);
1251 loaded = 0;
1252 break;
1253 default:
1254 error = EOPNOTSUPP;
1255 break;
1256 }
1257 return error;
1258}
1259static moduledata_t nfscl_mod = {
1260 "nfscl",
1261 nfscl_modevent,
1262 NULL,
1263};
1264DECLARE_MODULE(nfscl, nfscl_mod, SI_SUB_VFS, SI_ORDER_ANY);
1265
1266/* So that loader and kldload(2) can find us, wherever we are.. */
1267MODULE_VERSION(nfscl, 1);
1268MODULE_DEPEND(nfscl, nfscommon, 1, 1, 1);
1269
983 for (i = 0; i < nfscr->nfsc_ngroups; i++)
984 nfscr->nfsc_groups[i] = cr->cr_groups[i];
985}
986
987
988/*
989 * Do any client specific initialization.
990 */
991void
992nfscl_init(void)
993{
994 static int inited = 0;
995
996 if (inited)
997 return;
998 inited = 1;
999 nfscl_inited = 1;
1000 ncl_pbuf_freecnt = nswbuf / 2 + 1;
1001}
1002
1003/*
1004 * Check each of the attributes to be set, to ensure they aren't already
1005 * the correct value. Disable setting ones already correct.
1006 */
1007int
1008nfscl_checksattr(struct vattr *vap, struct nfsvattr *nvap)
1009{
1010
1011 if (vap->va_mode != (mode_t)VNOVAL) {
1012 if (vap->va_mode == nvap->na_mode)
1013 vap->va_mode = (mode_t)VNOVAL;
1014 }
1015 if (vap->va_uid != (uid_t)VNOVAL) {
1016 if (vap->va_uid == nvap->na_uid)
1017 vap->va_uid = (uid_t)VNOVAL;
1018 }
1019 if (vap->va_gid != (gid_t)VNOVAL) {
1020 if (vap->va_gid == nvap->na_gid)
1021 vap->va_gid = (gid_t)VNOVAL;
1022 }
1023 if (vap->va_size != VNOVAL) {
1024 if (vap->va_size == nvap->na_size)
1025 vap->va_size = VNOVAL;
1026 }
1027
1028 /*
1029 * We are normally called with only a partially initialized
1030 * VAP. Since the NFSv3 spec says that server may use the
1031 * file attributes to store the verifier, the spec requires
1032 * us to do a SETATTR RPC. FreeBSD servers store the verifier
1033 * in atime, but we can't really assume that all servers will
1034 * so we ensure that our SETATTR sets both atime and mtime.
1035 */
1036 if (vap->va_mtime.tv_sec == VNOVAL)
1037 vfs_timestamp(&vap->va_mtime);
1038 if (vap->va_atime.tv_sec == VNOVAL)
1039 vap->va_atime = vap->va_mtime;
1040 return (1);
1041}
1042
1043/*
1044 * Map nfsv4 errors to errno.h errors.
1045 * The uid and gid arguments are only used for NFSERR_BADOWNER and that
1046 * error should only be returned for the Open, Create and Setattr Ops.
1047 * As such, most calls can just pass in 0 for those arguments.
1048 */
1049APPLESTATIC int
1050nfscl_maperr(struct thread *td, int error, uid_t uid, gid_t gid)
1051{
1052 struct proc *p;
1053
1054 if (error < 10000)
1055 return (error);
1056 if (td != NULL)
1057 p = td->td_proc;
1058 else
1059 p = NULL;
1060 switch (error) {
1061 case NFSERR_BADOWNER:
1062 tprintf(p, LOG_INFO,
1063 "No name and/or group mapping for uid,gid:(%d,%d)\n",
1064 uid, gid);
1065 return (EPERM);
1066 case NFSERR_STALECLIENTID:
1067 case NFSERR_STALESTATEID:
1068 case NFSERR_EXPIRED:
1069 case NFSERR_BADSTATEID:
1070 printf("nfsv4 recover err returned %d\n", error);
1071 return (EIO);
1072 case NFSERR_BADHANDLE:
1073 case NFSERR_SERVERFAULT:
1074 case NFSERR_BADTYPE:
1075 case NFSERR_FHEXPIRED:
1076 case NFSERR_RESOURCE:
1077 case NFSERR_MOVED:
1078 case NFSERR_NOFILEHANDLE:
1079 case NFSERR_MINORVERMISMATCH:
1080 case NFSERR_OLDSTATEID:
1081 case NFSERR_BADSEQID:
1082 case NFSERR_LEASEMOVED:
1083 case NFSERR_RECLAIMBAD:
1084 case NFSERR_BADXDR:
1085 case NFSERR_BADCHAR:
1086 case NFSERR_BADNAME:
1087 case NFSERR_OPILLEGAL:
1088 printf("nfsv4 client/server protocol prob err=%d\n",
1089 error);
1090 return (EIO);
1091 default:
1092 tprintf(p, LOG_INFO, "nfsv4 err=%d\n", error);
1093 return (EIO);
1094 };
1095}
1096
1097/*
1098 * Locate a process by number; return only "live" processes -- i.e., neither
1099 * zombies nor newly born but incompletely initialized processes. By not
1100 * returning processes in the PRS_NEW state, we allow callers to avoid
1101 * testing for that condition to avoid dereferencing p_ucred, et al.
1102 * Identical to pfind() in kern_proc.c, except it assume the list is
1103 * already locked.
1104 */
1105static struct proc *
1106pfind_locked(pid_t pid)
1107{
1108 struct proc *p;
1109
1110 LIST_FOREACH(p, PIDHASH(pid), p_hash)
1111 if (p->p_pid == pid) {
1112 if (p->p_state == PRS_NEW) {
1113 p = NULL;
1114 break;
1115 }
1116 PROC_LOCK(p);
1117 break;
1118 }
1119 return (p);
1120}
1121
1122/*
1123 * Check to see if the process for this owner exists. Return 1 if it doesn't
1124 * and 0 otherwise.
1125 */
1126int
1127nfscl_procdoesntexist(u_int8_t *own)
1128{
1129 union {
1130 u_int32_t lval;
1131 u_int8_t cval[4];
1132 } tl;
1133 struct proc *p;
1134 pid_t pid;
1135 int ret = 0;
1136
1137 tl.cval[0] = *own++;
1138 tl.cval[1] = *own++;
1139 tl.cval[2] = *own++;
1140 tl.cval[3] = *own++;
1141 pid = tl.lval;
1142 p = pfind_locked(pid);
1143 if (p == NULL)
1144 return (1);
1145 if (p->p_stats == NULL) {
1146 PROC_UNLOCK(p);
1147 return (0);
1148 }
1149 tl.cval[0] = *own++;
1150 tl.cval[1] = *own++;
1151 tl.cval[2] = *own++;
1152 tl.cval[3] = *own++;
1153 if (tl.lval != p->p_stats->p_start.tv_sec) {
1154 ret = 1;
1155 } else {
1156 tl.cval[0] = *own++;
1157 tl.cval[1] = *own++;
1158 tl.cval[2] = *own++;
1159 tl.cval[3] = *own;
1160 if (tl.lval != p->p_stats->p_start.tv_usec)
1161 ret = 1;
1162 }
1163 PROC_UNLOCK(p);
1164 return (ret);
1165}
1166
1167/*
1168 * - nfs pseudo system call for the client
1169 */
1170/*
1171 * MPSAFE
1172 */
1173static int
1174nfssvc_nfscl(struct thread *td, struct nfssvc_args *uap)
1175{
1176 struct file *fp;
1177 struct nfscbd_args nfscbdarg;
1178 struct nfsd_nfscbd_args nfscbdarg2;
1179 int error;
1180
1181 if (uap->flag & NFSSVC_CBADDSOCK) {
1182 error = copyin(uap->argp, (caddr_t)&nfscbdarg, sizeof(nfscbdarg));
1183 if (error)
1184 return (error);
1185 if ((error = fget(td, nfscbdarg.sock, &fp)) != 0) {
1186 return (error);
1187 }
1188 if (fp->f_type != DTYPE_SOCKET) {
1189 fdrop(fp, td);
1190 return (EPERM);
1191 }
1192 error = nfscbd_addsock(fp);
1193 fdrop(fp, td);
1194 if (!error && nfscl_enablecallb == 0) {
1195 nfsv4_cbport = nfscbdarg.port;
1196 nfscl_enablecallb = 1;
1197 }
1198 } else if (uap->flag & NFSSVC_NFSCBD) {
1199 if (uap->argp == NULL)
1200 return (EINVAL);
1201 error = copyin(uap->argp, (caddr_t)&nfscbdarg2,
1202 sizeof(nfscbdarg2));
1203 if (error)
1204 return (error);
1205 error = nfscbd_nfsd(td, &nfscbdarg2);
1206 } else {
1207 error = EINVAL;
1208 }
1209 return (error);
1210}
1211
1212extern int (*nfsd_call_nfscl)(struct thread *, struct nfssvc_args *);
1213
1214/*
1215 * Called once to initialize data structures...
1216 */
1217static int
1218nfscl_modevent(module_t mod, int type, void *data)
1219{
1220 int error = 0;
1221 static int loaded = 0;
1222
1223 switch (type) {
1224 case MOD_LOAD:
1225 if (loaded)
1226 return (0);
1227 newnfs_portinit();
1228 mtx_init(&nfs_clstate_mutex, "nfs_clstate_mutex", NULL,
1229 MTX_DEF);
1230 mtx_init(&ncl_iod_mutex, "ncl_iod_mutex", NULL, MTX_DEF);
1231 nfscl_init();
1232 NFSD_LOCK();
1233 nfsrvd_cbinit(0);
1234 NFSD_UNLOCK();
1235 ncl_call_invalcaches = ncl_invalcaches;
1236 nfsd_call_nfscl = nfssvc_nfscl;
1237 loaded = 1;
1238 break;
1239
1240 case MOD_UNLOAD:
1241 if (nfs_numnfscbd != 0) {
1242 error = EBUSY;
1243 break;
1244 }
1245
1246 ncl_call_invalcaches = NULL;
1247 nfsd_call_nfscl = NULL;
1248 /* and get rid of the mutexes */
1249 mtx_destroy(&nfs_clstate_mutex);
1250 mtx_destroy(&ncl_iod_mutex);
1251 loaded = 0;
1252 break;
1253 default:
1254 error = EOPNOTSUPP;
1255 break;
1256 }
1257 return error;
1258}
1259static moduledata_t nfscl_mod = {
1260 "nfscl",
1261 nfscl_modevent,
1262 NULL,
1263};
1264DECLARE_MODULE(nfscl, nfscl_mod, SI_SUB_VFS, SI_ORDER_ANY);
1265
1266/* So that loader and kldload(2) can find us, wherever we are.. */
1267MODULE_VERSION(nfscl, 1);
1268MODULE_DEPEND(nfscl, nfscommon, 1, 1, 1);
1269