Deleted Added
full compact
midway.c (32925) midway.c (33181)
1/* $NetBSD: midway.c,v 1.25 1997/03/20 21:34:42 chuck Exp $ */
2/* (sync'd to midway.c 1.67) */
3
4/*
5 *
6 * Copyright (c) 1996 Charles D. Cranor and Washington University.
7 * All rights reserved.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 * must display the following acknowledgement:
19 * This product includes software developed by Charles D. Cranor and
20 * Washington University.
21 * 4. The name of the author may not be used to endorse or promote products
22 * derived from this software without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
25 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
26 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
27 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
28 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
29 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
30 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
31 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
32 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
33 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
34 */
35
36/*
37 *
38 * m i d w a y . c e n i 1 5 5 d r i v e r
39 *
40 * author: Chuck Cranor <chuck@ccrc.wustl.edu>
41 * started: spring, 1996 (written from scratch).
42 *
43 * notes from the author:
44 * Extra special thanks go to Werner Almesberger, EPFL LRC. Werner's
45 * ENI driver was especially useful in figuring out how this card works.
46 * I would also like to thank Werner for promptly answering email and being
47 * generally helpful.
48 */
49
50
51#undef EN_DEBUG
52#undef EN_DEBUG_RANGE /* check ranges on en_read/en_write's? */
53#define EN_MBUF_OPT /* try and put more stuff in mbuf? */
54#define EN_DIAG
55#define EN_STAT
56#ifndef EN_DMA
57#define EN_DMA 1 /* use dma? */
58#endif
59#define EN_NOTXDMA 0 /* hook to disable tx dma only */
60#define EN_NORXDMA 0 /* hook to disable rx dma only */
61#define EN_NOWMAYBE 1 /* hook to disable word maybe DMA */
62 /* XXX: WMAYBE doesn't work, needs debugging */
63#define EN_DDBHOOK 1 /* compile in ddb functions */
64#ifdef __FreeBSD__
65/* somehow, misaligned DMA doesn't work on FreeBSD with ENI card.
66 * not sure if this is specific to FreeBSD.
67 * anyway, always fix unaligned or word fragmented mbufs. --kjc */
68#define EN_FIXMBUF
69#endif
70
71#if defined(DIAGNOSTIC) && !defined(EN_DIAG)
72#define EN_DIAG /* link in with master DIAG option */
73#endif
74#ifdef EN_STAT
75#define EN_COUNT(X) (X)++
76#else
77#define EN_COUNT(X) /* nothing */
78#endif
79
80#ifdef EN_DEBUG
81#undef EN_DDBHOOK
82#define EN_DDBHOOK 1
83#define STATIC /* nothing */
84#define INLINE /* nothing */
85#else /* EN_DEBUG */
86#define STATIC static
87#define INLINE inline
88#endif /* EN_DEBUG */
89
90#ifdef __FreeBSD__
91#include "en.h"
92#include "opt_inet.h"
93#include "opt_natm.h"
94#endif
95
96#if NEN > 0 || !defined(__FreeBSD__)
97
98#include <sys/param.h>
99#include <sys/systm.h>
100#if defined(__NetBSD__) || defined(__OpenBSD__) || defined(__bsdi__)
101#include <sys/device.h>
102#endif
103#include <sys/sockio.h>
104#include <sys/mbuf.h>
105#include <sys/socket.h>
106
107#include <net/if.h>
108#include <net/if_atm.h>
109
110#include <vm/vm.h>
111
112#ifdef INET
113#include <netinet/if_atm.h>
114#endif
115
116#ifdef NATM
117#include <netinet/in.h>
118#include <netnatm/natm.h>
119#endif
120
121
122#if !defined(sparc) && !defined(__FreeBSD__)
123#include <machine/bus.h>
124#endif
125
126#if defined(__NetBSD__) || defined(__OpenBSD__)
127#include <dev/ic/midwayreg.h>
128#include <dev/ic/midwayvar.h>
129#if defined(__alpha__)
130/* XXX XXX NEED REAL DMA MAPPING SUPPORT XXX XXX */
131#undef vtophys
132#define vtophys(va) alpha_XXX_dmamap((vm_offset_t)(va))
133#endif
134#elif defined(__FreeBSD__)
135#include <machine/clock.h> /* for DELAY */
136#include <dev/en/midwayreg.h>
137#include <dev/en/midwayvar.h>
138#include <vm/pmap.h> /* for vtophys proto */
139
140/*
141 * 2.1.x does not have if_softc. detect this by seeing if IFF_NOTRAILERS
142 * is defined, as per kjc.
143 */
144#ifdef IFF_NOTRAILERS
145#define MISSING_IF_SOFTC
146#else
147#define IFF_NOTRAILERS 0
148#endif
149
150#endif /* __FreeBSD__ */
151
152/*
153 * params
154 */
155
156#ifndef EN_TXHIWAT
157#define EN_TXHIWAT (64*1024) /* max 64 KB waiting to be DMAd out */
158#endif
159
160#ifndef EN_MINDMA
161#define EN_MINDMA 32 /* don't DMA anything less than this (bytes) */
162#endif
163
164#define RX_NONE 0xffff /* recv VC not in use */
165
166#define EN_OBHDR ATM_PH_DRIVER7 /* TBD in first mbuf ! */
167#define EN_OBTRL ATM_PH_DRIVER8 /* PDU trailier in last mbuf ! */
168
169#define ENOTHER_FREE 0x01 /* free rxslot */
170#define ENOTHER_DRAIN 0x02 /* almost free (drain DRQ dma) */
171#define ENOTHER_RAW 0x04 /* 'raw' access (aka boodi mode) */
172#define ENOTHER_SWSL 0x08 /* in software service list */
173
1/* $NetBSD: midway.c,v 1.25 1997/03/20 21:34:42 chuck Exp $ */
2/* (sync'd to midway.c 1.67) */
3
4/*
5 *
6 * Copyright (c) 1996 Charles D. Cranor and Washington University.
7 * All rights reserved.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 * must display the following acknowledgement:
19 * This product includes software developed by Charles D. Cranor and
20 * Washington University.
21 * 4. The name of the author may not be used to endorse or promote products
22 * derived from this software without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
25 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
26 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
27 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
28 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
29 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
30 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
31 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
32 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
33 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
34 */
35
36/*
37 *
38 * m i d w a y . c e n i 1 5 5 d r i v e r
39 *
40 * author: Chuck Cranor <chuck@ccrc.wustl.edu>
41 * started: spring, 1996 (written from scratch).
42 *
43 * notes from the author:
44 * Extra special thanks go to Werner Almesberger, EPFL LRC. Werner's
45 * ENI driver was especially useful in figuring out how this card works.
46 * I would also like to thank Werner for promptly answering email and being
47 * generally helpful.
48 */
49
50
51#undef EN_DEBUG
52#undef EN_DEBUG_RANGE /* check ranges on en_read/en_write's? */
53#define EN_MBUF_OPT /* try and put more stuff in mbuf? */
54#define EN_DIAG
55#define EN_STAT
56#ifndef EN_DMA
57#define EN_DMA 1 /* use dma? */
58#endif
59#define EN_NOTXDMA 0 /* hook to disable tx dma only */
60#define EN_NORXDMA 0 /* hook to disable rx dma only */
61#define EN_NOWMAYBE 1 /* hook to disable word maybe DMA */
62 /* XXX: WMAYBE doesn't work, needs debugging */
63#define EN_DDBHOOK 1 /* compile in ddb functions */
64#ifdef __FreeBSD__
65/* somehow, misaligned DMA doesn't work on FreeBSD with ENI card.
66 * not sure if this is specific to FreeBSD.
67 * anyway, always fix unaligned or word fragmented mbufs. --kjc */
68#define EN_FIXMBUF
69#endif
70
71#if defined(DIAGNOSTIC) && !defined(EN_DIAG)
72#define EN_DIAG /* link in with master DIAG option */
73#endif
74#ifdef EN_STAT
75#define EN_COUNT(X) (X)++
76#else
77#define EN_COUNT(X) /* nothing */
78#endif
79
80#ifdef EN_DEBUG
81#undef EN_DDBHOOK
82#define EN_DDBHOOK 1
83#define STATIC /* nothing */
84#define INLINE /* nothing */
85#else /* EN_DEBUG */
86#define STATIC static
87#define INLINE inline
88#endif /* EN_DEBUG */
89
90#ifdef __FreeBSD__
91#include "en.h"
92#include "opt_inet.h"
93#include "opt_natm.h"
94#endif
95
96#if NEN > 0 || !defined(__FreeBSD__)
97
98#include <sys/param.h>
99#include <sys/systm.h>
100#if defined(__NetBSD__) || defined(__OpenBSD__) || defined(__bsdi__)
101#include <sys/device.h>
102#endif
103#include <sys/sockio.h>
104#include <sys/mbuf.h>
105#include <sys/socket.h>
106
107#include <net/if.h>
108#include <net/if_atm.h>
109
110#include <vm/vm.h>
111
112#ifdef INET
113#include <netinet/if_atm.h>
114#endif
115
116#ifdef NATM
117#include <netinet/in.h>
118#include <netnatm/natm.h>
119#endif
120
121
122#if !defined(sparc) && !defined(__FreeBSD__)
123#include <machine/bus.h>
124#endif
125
126#if defined(__NetBSD__) || defined(__OpenBSD__)
127#include <dev/ic/midwayreg.h>
128#include <dev/ic/midwayvar.h>
129#if defined(__alpha__)
130/* XXX XXX NEED REAL DMA MAPPING SUPPORT XXX XXX */
131#undef vtophys
132#define vtophys(va) alpha_XXX_dmamap((vm_offset_t)(va))
133#endif
134#elif defined(__FreeBSD__)
135#include <machine/clock.h> /* for DELAY */
136#include <dev/en/midwayreg.h>
137#include <dev/en/midwayvar.h>
138#include <vm/pmap.h> /* for vtophys proto */
139
140/*
141 * 2.1.x does not have if_softc. detect this by seeing if IFF_NOTRAILERS
142 * is defined, as per kjc.
143 */
144#ifdef IFF_NOTRAILERS
145#define MISSING_IF_SOFTC
146#else
147#define IFF_NOTRAILERS 0
148#endif
149
150#endif /* __FreeBSD__ */
151
152/*
153 * params
154 */
155
156#ifndef EN_TXHIWAT
157#define EN_TXHIWAT (64*1024) /* max 64 KB waiting to be DMAd out */
158#endif
159
160#ifndef EN_MINDMA
161#define EN_MINDMA 32 /* don't DMA anything less than this (bytes) */
162#endif
163
164#define RX_NONE 0xffff /* recv VC not in use */
165
166#define EN_OBHDR ATM_PH_DRIVER7 /* TBD in first mbuf ! */
167#define EN_OBTRL ATM_PH_DRIVER8 /* PDU trailier in last mbuf ! */
168
169#define ENOTHER_FREE 0x01 /* free rxslot */
170#define ENOTHER_DRAIN 0x02 /* almost free (drain DRQ dma) */
171#define ENOTHER_RAW 0x04 /* 'raw' access (aka boodi mode) */
172#define ENOTHER_SWSL 0x08 /* in software service list */
173
174int en_dma = EN_DMA; /* use DMA (switch off for dbg) */
174static int en_dma = EN_DMA; /* use DMA (switch off for dbg) */
175
176/*
177 * autoconfig attachments
178 */
179
180struct cfdriver en_cd = {
181 0, "en", DV_IFNET,
182};
183
184/*
185 * local structures
186 */
187
188/*
189 * params to en_txlaunch() function
190 */
191
192struct en_launch {
193 u_int32_t tbd1; /* TBD 1 */
194 u_int32_t tbd2; /* TBD 2 */
195 u_int32_t pdu1; /* PDU 1 (aal5) */
196 int nodma; /* don't use DMA */
197 int need; /* total space we need (pad out if less data) */
198 int mlen; /* length of mbuf (for dtq) */
199 struct mbuf *t; /* data */
200 u_int32_t aal; /* aal code */
201 u_int32_t atm_vci; /* vci */
202 u_int8_t atm_flags; /* flags */
203};
204
205
206/*
207 * dma table (index by # of words)
208 *
209 * plan A: use WMAYBE
210 * plan B: avoid WMAYBE
211 */
212
213struct en_dmatab {
214 u_int8_t bcode; /* code */
215 u_int8_t divshift; /* byte divisor */
216};
217
218static struct en_dmatab en_dma_planA[] = {
219 { 0, 0 }, /* 0 */ { MIDDMA_WORD, 2 }, /* 1 */
220 { MIDDMA_2WORD, 3}, /* 2 */ { MIDDMA_4WMAYBE, 2}, /* 3 */
221 { MIDDMA_4WORD, 4}, /* 4 */ { MIDDMA_8WMAYBE, 2}, /* 5 */
222 { MIDDMA_8WMAYBE, 2}, /* 6 */ { MIDDMA_8WMAYBE, 2}, /* 7 */
223 { MIDDMA_8WORD, 5}, /* 8 */ { MIDDMA_16WMAYBE, 2}, /* 9 */
224 { MIDDMA_16WMAYBE,2}, /* 10 */ { MIDDMA_16WMAYBE, 2}, /* 11 */
225 { MIDDMA_16WMAYBE,2}, /* 12 */ { MIDDMA_16WMAYBE, 2}, /* 13 */
226 { MIDDMA_16WMAYBE,2}, /* 14 */ { MIDDMA_16WMAYBE, 2}, /* 15 */
227 { MIDDMA_16WORD, 6}, /* 16 */
228};
229
230static struct en_dmatab en_dma_planB[] = {
231 { 0, 0 }, /* 0 */ { MIDDMA_WORD, 2}, /* 1 */
232 { MIDDMA_2WORD, 3}, /* 2 */ { MIDDMA_WORD, 2}, /* 3 */
233 { MIDDMA_4WORD, 4}, /* 4 */ { MIDDMA_WORD, 2}, /* 5 */
234 { MIDDMA_2WORD, 3}, /* 6 */ { MIDDMA_WORD, 2}, /* 7 */
235 { MIDDMA_8WORD, 5}, /* 8 */ { MIDDMA_WORD, 2}, /* 9 */
236 { MIDDMA_2WORD, 3}, /* 10 */ { MIDDMA_WORD, 2}, /* 11 */
237 { MIDDMA_4WORD, 4}, /* 12 */ { MIDDMA_WORD, 2}, /* 13 */
238 { MIDDMA_2WORD, 3}, /* 14 */ { MIDDMA_WORD, 2}, /* 15 */
239 { MIDDMA_16WORD, 6}, /* 16 */
240};
241
242static struct en_dmatab *en_dmaplan = en_dma_planA;
243
244/*
245 * prototypes
246 */
247
248STATIC int en_b2sz __P((int));
249#ifdef EN_DDBHOOK
250int en_dump __P((int,int));
251int en_dumpmem __P((int,int,int));
252#endif
253STATIC void en_dmaprobe __P((struct en_softc *));
254STATIC int en_dmaprobe_doit __P((struct en_softc *, u_int8_t *,
255 u_int8_t *, int));
256STATIC int en_dqneed __P((struct en_softc *, caddr_t, u_int, u_int));
257STATIC void en_init __P((struct en_softc *));
258STATIC int en_ioctl __P((struct ifnet *, EN_IOCTL_CMDT, caddr_t));
259STATIC int en_k2sz __P((int));
260STATIC void en_loadvc __P((struct en_softc *, int));
261STATIC int en_mfix __P((struct en_softc *, struct mbuf **, struct mbuf *));
262STATIC struct mbuf *en_mget __P((struct en_softc *, u_int, u_int *));
263STATIC u_int32_t en_read __P((struct en_softc *, u_int32_t));
264STATIC int en_rxctl __P((struct en_softc *, struct atm_pseudoioctl *, int));
265STATIC void en_txdma __P((struct en_softc *, int));
266STATIC void en_txlaunch __P((struct en_softc *, int, struct en_launch *));
267STATIC void en_service __P((struct en_softc *));
268STATIC void en_start __P((struct ifnet *));
269STATIC int en_sz2b __P((int));
270STATIC void en_write __P((struct en_softc *, u_int32_t, u_int32_t));
271
272/*
273 * macros/inline
274 */
275
276/*
277 * raw read/write macros
278 */
279
280#define EN_READDAT(SC,R) en_read(SC,R)
281#define EN_WRITEDAT(SC,R,V) en_write(SC,R,V)
282
283/*
284 * cooked read/write macros
285 */
286
287#define EN_READ(SC,R) ntohl(en_read(SC,R))
288#define EN_WRITE(SC,R,V) en_write(SC,R, htonl(V))
289
290#define EN_WRAPADD(START,STOP,CUR,VAL) { \
291 (CUR) = (CUR) + (VAL); \
292 if ((CUR) >= (STOP)) \
293 (CUR) = (START) + ((CUR) - (STOP)); \
294 }
295
296#define WORD_IDX(START, X) (((X) - (START)) / sizeof(u_int32_t))
297
298/* we store sc->dtq and sc->drq data in the following format... */
299#define EN_DQ_MK(SLOT,LEN) (((SLOT) << 20)|(LEN)|(0x80000))
300 /* the 0x80000 ensures we != 0 */
301#define EN_DQ_SLOT(X) ((X) >> 20)
302#define EN_DQ_LEN(X) ((X) & 0x3ffff)
303
304/* format of DTQ/DRQ word 1 differs between ENI and ADP */
305#if defined(MIDWAY_ENIONLY)
306
307#define MID_MK_TXQ(SC,CNT,CHAN,END,BCODE) \
308 EN_WRITE((SC), (SC)->dtq_us, \
309 MID_MK_TXQ_ENI((CNT), (CHAN), (END), (BCODE)));
310
311#define MID_MK_RXQ(SC,CNT,VCI,END,BCODE) \
312 EN_WRITE((SC), (SC)->drq_us, \
313 MID_MK_RXQ_ENI((CNT), (VCI), (END), (BCODE)));
314
315#elif defined(MIDWAY_ADPONLY)
316
317#define MID_MK_TXQ(SC,CNT,CHAN,END,JK) \
318 EN_WRITE((SC), (SC)->dtq_us, \
319 MID_MK_TXQ_ADP((CNT), (CHAN), (END), (JK)));
320
321#define MID_MK_RXQ(SC,CNT,VCI,END,JK) \
322 EN_WRITE((SC), (SC)->drq_us, \
323 MID_MK_RXQ_ADP((CNT), (VCI), (END), (JK)));
324
325#else
326
327#define MID_MK_TXQ(SC,CNT,CHAN,END,JK_OR_BCODE) { \
328 if ((SC)->is_adaptec) \
329 EN_WRITE((SC), (SC)->dtq_us, \
330 MID_MK_TXQ_ADP((CNT), (CHAN), (END), (JK_OR_BCODE))); \
331 else \
332 EN_WRITE((SC), (SC)->dtq_us, \
333 MID_MK_TXQ_ENI((CNT), (CHAN), (END), (JK_OR_BCODE))); \
334 }
335
336#define MID_MK_RXQ(SC,CNT,VCI,END,JK_OR_BCODE) { \
337 if ((SC)->is_adaptec) \
338 EN_WRITE((SC), (SC)->drq_us, \
339 MID_MK_RXQ_ADP((CNT), (VCI), (END), (JK_OR_BCODE))); \
340 else \
341 EN_WRITE((SC), (SC)->drq_us, \
342 MID_MK_RXQ_ENI((CNT), (VCI), (END), (JK_OR_BCODE))); \
343 }
344
345#endif
346
347/* add an item to the DTQ */
348#define EN_DTQADD(SC,CNT,CHAN,JK_OR_BCODE,ADDR,LEN,END) { \
349 if (END) \
350 (SC)->dtq[MID_DTQ_A2REG((SC)->dtq_us)] = EN_DQ_MK(CHAN,LEN); \
351 MID_MK_TXQ(SC,CNT,CHAN,END,JK_OR_BCODE); \
352 (SC)->dtq_us += 4; \
353 EN_WRITE((SC), (SC)->dtq_us, (ADDR)); \
354 EN_WRAPADD(MID_DTQOFF, MID_DTQEND, (SC)->dtq_us, 4); \
355 (SC)->dtq_free--; \
356 if (END) \
357 EN_WRITE((SC), MID_DMA_WRTX, MID_DTQ_A2REG((SC)->dtq_us)); \
358}
359
360/* DRQ add macro */
361#define EN_DRQADD(SC,CNT,VCI,JK_OR_BCODE,ADDR,LEN,SLOT,END) { \
362 if (END) \
363 (SC)->drq[MID_DRQ_A2REG((SC)->drq_us)] = EN_DQ_MK(SLOT,LEN); \
364 MID_MK_RXQ(SC,CNT,VCI,END,JK_OR_BCODE); \
365 (SC)->drq_us += 4; \
366 EN_WRITE((SC), (SC)->drq_us, (ADDR)); \
367 EN_WRAPADD(MID_DRQOFF, MID_DRQEND, (SC)->drq_us, 4); \
368 (SC)->drq_free--; \
369 if (END) \
370 EN_WRITE((SC), MID_DMA_WRRX, MID_DRQ_A2REG((SC)->drq_us)); \
371}
372
373/*
374 * the driver code
375 *
376 * the code is arranged in a specific way:
377 * [1] short/inline functions
378 * [2] autoconfig stuff
379 * [3] ioctl stuff
380 * [4] reset -> init -> trasmit -> intr -> receive functions
381 *
382 */
383
384/***********************************************************************/
385
386/*
387 * en_read: read a word from the card. this is the only function
388 * that reads from the card.
389 */
390
391STATIC INLINE u_int32_t en_read(sc, r)
392
393struct en_softc *sc;
394u_int32_t r;
395
396{
397
398#ifdef EN_DEBUG_RANGE
399 if (r > MID_MAXOFF || (r % 4)) {
400 printf("en_read out of range, r=0x%x\n", r);
401 panic("en_read");
402 }
403#endif
404
405 return(bus_space_read_4(sc->en_memt, sc->en_base, r));
406}
407
408/*
409 * en_write: write a word to the card. this is the only function that
410 * writes to the card.
411 */
412
413STATIC INLINE void en_write(sc, r, v)
414
415struct en_softc *sc;
416u_int32_t r, v;
417
418{
419#ifdef EN_DEBUG_RANGE
420 if (r > MID_MAXOFF || (r % 4)) {
421 printf("en_write out of range, r=0x%x\n", r);
422 panic("en_write");
423 }
424#endif
425
426 bus_space_write_4(sc->en_memt, sc->en_base, r, v);
427}
428
429/*
430 * en_k2sz: convert KBytes to a size parameter (a log2)
431 */
432
433STATIC INLINE int en_k2sz(k)
434
435int k;
436
437{
438 switch(k) {
439 case 1: return(0);
440 case 2: return(1);
441 case 4: return(2);
442 case 8: return(3);
443 case 16: return(4);
444 case 32: return(5);
445 case 64: return(6);
446 case 128: return(7);
447 default: panic("en_k2sz");
448 }
449 return(0);
450}
451#define en_log2(X) en_k2sz(X)
452
453
454/*
455 * en_b2sz: convert a DMA burst code to its byte size
456 */
457
458STATIC INLINE int en_b2sz(b)
459
460int b;
461
462{
463 switch (b) {
464 case MIDDMA_WORD: return(1*4);
465 case MIDDMA_2WMAYBE:
466 case MIDDMA_2WORD: return(2*4);
467 case MIDDMA_4WMAYBE:
468 case MIDDMA_4WORD: return(4*4);
469 case MIDDMA_8WMAYBE:
470 case MIDDMA_8WORD: return(8*4);
471 case MIDDMA_16WMAYBE:
472 case MIDDMA_16WORD: return(16*4);
473 default: panic("en_b2sz");
474 }
475 return(0);
476}
477
478
479/*
480 * en_sz2b: convert a burst size (bytes) to DMA burst code
481 */
482
483STATIC INLINE int en_sz2b(sz)
484
485int sz;
486
487{
488 switch (sz) {
489 case 1*4: return(MIDDMA_WORD);
490 case 2*4: return(MIDDMA_2WORD);
491 case 4*4: return(MIDDMA_4WORD);
492 case 8*4: return(MIDDMA_8WORD);
493 case 16*4: return(MIDDMA_16WORD);
494 default: panic("en_sz2b");
495 }
496 return(0);
497}
498
499
500/*
501 * en_dqneed: calculate number of DTQ/DRQ's needed for a buffer
502 */
503
504STATIC INLINE int en_dqneed(sc, data, len, tx)
505
506struct en_softc *sc;
507caddr_t data;
508u_int len, tx;
509
510{
511 int result, needalign, sz;
512
513#if !defined(MIDWAY_ENIONLY)
514#if !defined(MIDWAY_ADPONLY)
515 if (sc->is_adaptec)
516#endif /* !MIDWAY_ADPONLY */
517 return(1); /* adaptec can DMA anything in one go */
518#endif
519
520#if !defined(MIDWAY_ADPONLY)
521 result = 0;
522 if (len < EN_MINDMA) {
523 if (!tx) /* XXX: conservative */
524 return(1); /* will copy/DMA_JK */
525 }
526
527 if (tx) { /* byte burst? */
528 needalign = (((unsigned long) data) % sizeof(u_int32_t));
529 if (needalign) {
530 result++;
531 sz = min(len, sizeof(u_int32_t) - needalign);
532 len -= sz;
533 data += sz;
534 }
535 }
536
537 if (sc->alburst && len) {
538 needalign = (((unsigned long) data) & sc->bestburstmask);
539 if (needalign) {
540 result++; /* alburst */
541 sz = min(len, sc->bestburstlen - needalign);
542 len -= sz;
543 }
544 }
545
546 if (len >= sc->bestburstlen) {
547 sz = len / sc->bestburstlen;
548 sz = sz * sc->bestburstlen;
549 len -= sz;
550 result++; /* best shot */
551 }
552
553 if (len) {
554 result++; /* clean up */
555 if (tx && (len % sizeof(u_int32_t)) != 0)
556 result++; /* byte cleanup */
557 }
558
559 return(result);
560#endif /* !MIDWAY_ADPONLY */
561}
562
563
564/*
565 * en_mget: get an mbuf chain that can hold totlen bytes and return it
566 * (for recv) [based on am7990_get from if_le and ieget from if_ie]
567 * after this call the sum of all the m_len's in the chain will be totlen.
568 */
569
570STATIC INLINE struct mbuf *en_mget(sc, totlen, drqneed)
571
572struct en_softc *sc;
573u_int totlen, *drqneed;
574
575{
576 struct mbuf *m;
577 struct mbuf *top, **mp;
578 *drqneed = 0;
579
580 MGETHDR(m, M_DONTWAIT, MT_DATA);
581 if (m == NULL)
582 return(NULL);
583 m->m_pkthdr.rcvif = &sc->enif;
584 m->m_pkthdr.len = totlen;
585 m->m_len = MHLEN;
586 top = NULL;
587 mp = &top;
588
589 /* if (top != NULL) then we've already got 1 mbuf on the chain */
590 while (totlen > 0) {
591 if (top) {
592 MGET(m, M_DONTWAIT, MT_DATA);
593 if (!m) {
594 m_freem(top);
595 return(NULL); /* out of mbufs */
596 }
597 m->m_len = MLEN;
598 }
599 if (top && totlen >= MINCLSIZE) {
600 MCLGET(m, M_DONTWAIT);
601 if (m->m_flags & M_EXT)
602 m->m_len = MCLBYTES;
603 }
604 m->m_len = min(totlen, m->m_len);
605 totlen -= m->m_len;
606 *mp = m;
607 mp = &m->m_next;
608
609 *drqneed += en_dqneed(sc, m->m_data, m->m_len, 0);
610
611 }
612 return(top);
613}
614
615/***********************************************************************/
616
617/*
618 * autoconfig stuff
619 */
620
621void en_attach(sc)
622
623struct en_softc *sc;
624
625{
626 struct ifnet *ifp = &sc->enif;
627 int sz;
628 u_int32_t reg, lcv, check, ptr, sav, midvloc;
629
630 /*
631 * probe card to determine memory size. the stupid ENI card always
632 * reports to PCI that it needs 4MB of space (2MB regs and 2MB RAM).
633 * if it has less than 2MB RAM the addresses wrap in the RAM address space.
634 * (i.e. on a 512KB card addresses 0x3ffffc, 0x37fffc, and 0x2ffffc
635 * are aliases for 0x27fffc [note that RAM starts at offset 0x200000]).
636 */
637
638 if (sc->en_busreset)
639 sc->en_busreset(sc);
640 EN_WRITE(sc, MID_RESID, 0x0); /* reset card before touching RAM */
641 for (lcv = MID_PROBEOFF; lcv <= MID_MAXOFF ; lcv += MID_PROBSIZE) {
642 EN_WRITE(sc, lcv, lcv); /* data[address] = address */
643 for (check = MID_PROBEOFF ; check < lcv ; check += MID_PROBSIZE) {
644 reg = EN_READ(sc, check);
645 if (reg != check) { /* found an alias! */
646 goto done_probe; /* and quit */
647 }
648 }
649 }
650done_probe:
651 lcv -= MID_PROBSIZE; /* take one step back */
652 sc->en_obmemsz = (lcv + 4) - MID_RAMOFF;
653
654 /*
655 * determine the largest DMA burst supported
656 */
657
658 en_dmaprobe(sc);
659
660 /*
661 * "hello world"
662 */
663
664 if (sc->en_busreset)
665 sc->en_busreset(sc);
666 EN_WRITE(sc, MID_RESID, 0x0); /* reset */
667 for (lcv = MID_RAMOFF ; lcv < MID_RAMOFF + sc->en_obmemsz ; lcv += 4)
668 EN_WRITE(sc, lcv, 0); /* zero memory */
669
670 reg = EN_READ(sc, MID_RESID);
671
672 printf("%s: ATM midway v%d, board IDs %d.%d, %s%s%s, %ldKB on-board RAM\n",
673 sc->sc_dev.dv_xname, MID_VER(reg), MID_MID(reg), MID_DID(reg),
674 (MID_IS_SABRE(reg)) ? "sabre controller, " : "",
675 (MID_IS_SUNI(reg)) ? "SUNI" : "Utopia",
676 (!MID_IS_SUNI(reg) && MID_IS_UPIPE(reg)) ? " (pipelined)" : "",
677 sc->en_obmemsz / 1024);
678
679 if (sc->is_adaptec) {
680 if (sc->bestburstlen == 64 && sc->alburst == 0)
681 printf("%s: passed 64 byte DMA test\n", sc->sc_dev.dv_xname);
682 else
683 printf("%s: FAILED DMA TEST: burst=%d, alburst=%d\n",
684 sc->sc_dev.dv_xname, sc->bestburstlen, sc->alburst);
685 } else {
686 printf("%s: maximum DMA burst length = %d bytes%s\n", sc->sc_dev.dv_xname,
687 sc->bestburstlen, (sc->alburst) ? " (must align)" : "");
688 }
689
690#if 0 /* WMAYBE doesn't work, don't complain about it */
691 /* check if en_dmaprobe disabled wmaybe */
692 if (en_dmaplan == en_dma_planB)
693 printf("%s: note: WMAYBE DMA has been disabled\n", sc->sc_dev.dv_xname);
694#endif
695
696 /*
697 * link into network subsystem and prepare card
698 */
699
700#if defined(__NetBSD__) || defined(__OpenBSD__)
701 bcopy(sc->sc_dev.dv_xname, sc->enif.if_xname, IFNAMSIZ);
702#endif
703#if !defined(MISSING_IF_SOFTC)
704 sc->enif.if_softc = sc;
705#endif
706 ifp->if_flags = IFF_SIMPLEX|IFF_NOTRAILERS;
707 ifp->if_ioctl = en_ioctl;
708 ifp->if_output = atm_output;
709 ifp->if_start = en_start;
710
711 /*
712 * init softc
713 */
714
715 for (lcv = 0 ; lcv < MID_N_VC ; lcv++) {
716 sc->rxvc2slot[lcv] = RX_NONE;
717 sc->txspeed[lcv] = 0; /* full */
718 sc->txvc2slot[lcv] = 0; /* full speed == slot 0 */
719 }
720
721 sz = sc->en_obmemsz - (MID_BUFOFF - MID_RAMOFF);
722 ptr = sav = MID_BUFOFF;
723 ptr = roundup(ptr, EN_TXSZ * 1024); /* align */
724 sz = sz - (ptr - sav);
725 if (EN_TXSZ*1024 * EN_NTX > sz) {
726 printf("%s: EN_NTX/EN_TXSZ too big\n", sc->sc_dev.dv_xname);
727 return;
728 }
729 for (lcv = 0 ; lcv < EN_NTX ; lcv++) {
730 sc->txslot[lcv].mbsize = 0;
731 sc->txslot[lcv].start = ptr;
732 ptr += (EN_TXSZ * 1024);
733 sz -= (EN_TXSZ * 1024);
734 sc->txslot[lcv].stop = ptr;
735 sc->txslot[lcv].nref = 0;
736 bzero(&sc->txslot[lcv].indma, sizeof(sc->txslot[lcv].indma));
737 bzero(&sc->txslot[lcv].q, sizeof(sc->txslot[lcv].q));
738#ifdef EN_DEBUG
739 printf("%s: tx%d: start 0x%x, stop 0x%x\n", sc->sc_dev.dv_xname, lcv,
740 sc->txslot[lcv].start, sc->txslot[lcv].stop);
741#endif
742 }
743
744 sav = ptr;
745 ptr = roundup(ptr, EN_RXSZ * 1024); /* align */
746 sz = sz - (ptr - sav);
747 sc->en_nrx = sz / (EN_RXSZ * 1024);
748 if (sc->en_nrx <= 0) {
749 printf("%s: EN_NTX/EN_TXSZ/EN_RXSZ too big\n", sc->sc_dev.dv_xname);
750 return;
751 }
752#if 1
753 /* leave one entry in the ringbuf unused to avoid wraparound */
754 if (sc->en_nrx >= MID_N_VC)
755 sc->en_nrx = MID_N_VC - 1;
756#endif
757 for (lcv = 0 ; lcv < sc->en_nrx ; lcv++) {
758 sc->rxslot[lcv].rxhand = NULL;
759 sc->rxslot[lcv].oth_flags = ENOTHER_FREE;
760 bzero(&sc->rxslot[lcv].indma, sizeof(sc->rxslot[lcv].indma));
761 bzero(&sc->rxslot[lcv].q, sizeof(sc->rxslot[lcv].q));
762 midvloc = sc->rxslot[lcv].start = ptr;
763 ptr += (EN_RXSZ * 1024);
764 sz -= (EN_RXSZ * 1024);
765 sc->rxslot[lcv].stop = ptr;
766 midvloc = midvloc - MID_RAMOFF;
767 midvloc = (midvloc & ~((EN_RXSZ*1024) - 1)) >> 2; /* mask, cvt to words */
768 midvloc = midvloc >> MIDV_LOCTOPSHFT; /* we only want the top 11 bits */
769 midvloc = (midvloc & MIDV_LOCMASK) << MIDV_LOCSHIFT;
770 sc->rxslot[lcv].mode = midvloc |
771 (en_k2sz(EN_RXSZ) << MIDV_SZSHIFT) | MIDV_TRASH;
772
773#ifdef EN_DEBUG
774 printf("%s: rx%d: start 0x%x, stop 0x%x, mode 0x%x\n", sc->sc_dev.dv_xname,
775 lcv, sc->rxslot[lcv].start, sc->rxslot[lcv].stop, sc->rxslot[lcv].mode);
776#endif
777 }
778
779#ifdef EN_STAT
780 sc->vtrash = sc->otrash = sc->mfix = sc->txmbovr = sc->dmaovr = 0;
781 sc->txoutspace = sc->txdtqout = sc->launch = sc->lheader = sc->ltail = 0;
782 sc->hwpull = sc->swadd = sc->rxqnotus = sc->rxqus = sc->rxoutboth = 0;
783 sc->rxdrqout = sc->ttrash = sc->rxmbufout = sc->mfixfail = 0;
784 sc->headbyte = sc->tailbyte = sc->tailflush = 0;
785#endif
786 sc->need_drqs = sc->need_dtqs = 0;
787
788 printf("%s: %d %dKB receive buffers, %d %dKB transmit buffers allocated\n",
789 sc->sc_dev.dv_xname, sc->en_nrx, EN_RXSZ, EN_NTX, EN_TXSZ);
790
791 /*
792 * final commit
793 */
794
795 if_attach(ifp);
796 atm_ifattach(ifp);
797
798}
799
800
801/*
802 * en_dmaprobe: helper function for en_attach.
803 *
804 * see how the card handles DMA by running a few DMA tests. we need
805 * to figure out the largest number of bytes we can DMA in one burst
806 * ("bestburstlen"), and if the starting address for a burst needs to
807 * be aligned on any sort of boundary or not ("alburst").
808 *
809 * typical findings:
810 * sparc1: bestburstlen=4, alburst=0 (ick, broken DMA!)
811 * sparc2: bestburstlen=64, alburst=1
812 * p166: bestburstlen=64, alburst=0
813 */
814
815STATIC void en_dmaprobe(sc)
816
817struct en_softc *sc;
818
819{
820 u_int32_t srcbuf[64], dstbuf[64];
821 u_int8_t *sp, *dp;
822 int bestalgn, bestnotalgn, lcv, try, fail;
823
824 sc->alburst = 0;
825
826 sp = (u_int8_t *) srcbuf;
827 while ((((unsigned long) sp) % MIDDMA_MAXBURST) != 0)
828 sp += 4;
829 dp = (u_int8_t *) dstbuf;
830 while ((((unsigned long) dp) % MIDDMA_MAXBURST) != 0)
831 dp += 4;
832
833 bestalgn = bestnotalgn = en_dmaprobe_doit(sc, sp, dp, 0);
834
835 for (lcv = 4 ; lcv < MIDDMA_MAXBURST ; lcv += 4) {
836 try = en_dmaprobe_doit(sc, sp+lcv, dp+lcv, 0);
837 if (try < bestnotalgn)
838 bestnotalgn = try;
839 }
840
841 if (bestalgn != bestnotalgn) /* need bursts aligned */
842 sc->alburst = 1;
843
844 sc->bestburstlen = bestalgn;
845 sc->bestburstshift = en_log2(bestalgn);
846 sc->bestburstmask = sc->bestburstlen - 1; /* must be power of 2 */
847 sc->bestburstcode = en_sz2b(bestalgn);
848
849 if (sc->bestburstlen <= 2*sizeof(u_int32_t))
850 return; /* won't be using WMAYBE */
851
852 /*
853 * adaptec does not have (or need) wmaybe. do not bother testing
854 * for it.
855 */
856 if (sc->is_adaptec) {
857 /* XXX, actually don't need a DMA plan: adaptec is smarter than that */
858 en_dmaplan = en_dma_planB;
859 return;
860 }
861
862 /*
863 * test that WMAYBE dma works like we think it should
864 * (i.e. no alignment restrictions on host address other than alburst)
865 */
866
867 try = sc->bestburstlen - 4;
868 fail = 0;
869 fail += en_dmaprobe_doit(sc, sp, dp, try);
870 for (lcv = 4 ; lcv < sc->bestburstlen ; lcv += 4) {
871 fail += en_dmaprobe_doit(sc, sp+lcv, dp+lcv, try);
872 if (sc->alburst)
873 try -= 4;
874 }
875 if (EN_NOWMAYBE || fail) {
876 if (fail)
877 printf("%s: WARNING: WMAYBE DMA test failed %d time(s)\n",
878 sc->sc_dev.dv_xname, fail);
879 en_dmaplan = en_dma_planB; /* fall back to plan B */
880 }
881
882}
883
884
885/*
886 * en_dmaprobe_doit: do actual testing
887 */
888
889int
890en_dmaprobe_doit(sc, sp, dp, wmtry)
891
892struct en_softc *sc;
893u_int8_t *sp, *dp;
894int wmtry;
895
896{
897 int lcv, retval = 4, cnt, count;
898 u_int32_t reg, bcode, midvloc;
899
900 /*
901 * set up a 1k buffer at MID_BUFOFF
902 */
903
904 if (sc->en_busreset)
905 sc->en_busreset(sc);
906 EN_WRITE(sc, MID_RESID, 0x0); /* reset card before touching RAM */
907
908 midvloc = ((MID_BUFOFF - MID_RAMOFF) / sizeof(u_int32_t)) >> MIDV_LOCTOPSHFT;
909 EN_WRITE(sc, MIDX_PLACE(0), MIDX_MKPLACE(en_k2sz(1), midvloc));
910 EN_WRITE(sc, MID_VC(0), (midvloc << MIDV_LOCSHIFT)
911 | (en_k2sz(1) << MIDV_SZSHIFT) | MIDV_TRASH);
912 EN_WRITE(sc, MID_DST_RP(0), 0);
913 EN_WRITE(sc, MID_WP_ST_CNT(0), 0);
914
915 for (lcv = 0 ; lcv < 68 ; lcv++) /* set up sample data */
916 sp[lcv] = lcv+1;
917 EN_WRITE(sc, MID_MAST_CSR, MID_MCSR_ENDMA); /* enable DMA (only) */
918
919 sc->drq_chip = MID_DRQ_REG2A(EN_READ(sc, MID_DMA_RDRX));
920 sc->dtq_chip = MID_DTQ_REG2A(EN_READ(sc, MID_DMA_RDTX));
921
922 /*
923 * try it now . . . DMA it out, then DMA it back in and compare
924 *
925 * note: in order to get the dma stuff to reverse directions it wants
926 * the "end" flag set! since we are not dma'ing valid data we may
927 * get an ident mismatch interrupt (which we will ignore).
928 *
929 * note: we've got two different tests rolled up in the same loop
930 * if (wmtry)
931 * then we are doing a wmaybe test and wmtry is a byte count
932 * else we are doing a burst test
933 */
934
935 for (lcv = 8 ; lcv <= MIDDMA_MAXBURST ; lcv = lcv * 2) {
936
937 /* zero SRAM and dest buffer */
938 for (cnt = 0 ; cnt < 1024; cnt += 4)
939 EN_WRITE(sc, MID_BUFOFF+cnt, 0); /* zero memory */
940 for (cnt = 0 ; cnt < 68 ; cnt++)
941 dp[cnt] = 0;
942
943 if (wmtry) {
944 count = (sc->bestburstlen - sizeof(u_int32_t)) / sizeof(u_int32_t);
945 bcode = en_dmaplan[count].bcode;
946 count = wmtry >> en_dmaplan[count].divshift;
947 } else {
948 bcode = en_sz2b(lcv);
949 count = 1;
950 }
951 if (sc->is_adaptec)
952 EN_WRITE(sc, sc->dtq_chip, MID_MK_TXQ_ADP(lcv, 0, MID_DMA_END, 0));
953 else
954 EN_WRITE(sc, sc->dtq_chip, MID_MK_TXQ_ENI(count, 0, MID_DMA_END, bcode));
955 EN_WRITE(sc, sc->dtq_chip+4, vtophys(sp));
956 EN_WRITE(sc, MID_DMA_WRTX, MID_DTQ_A2REG(sc->dtq_chip+8));
957 cnt = 1000;
958 while (EN_READ(sc, MID_DMA_RDTX) == MID_DTQ_A2REG(sc->dtq_chip)) {
959 DELAY(1);
960 cnt--;
961 if (cnt == 0) {
962 printf("%s: unexpected timeout in tx DMA test\n", sc->sc_dev.dv_xname);
963 return(retval); /* timeout, give up */
964 }
965 }
966 EN_WRAPADD(MID_DTQOFF, MID_DTQEND, sc->dtq_chip, 8);
967 reg = EN_READ(sc, MID_INTACK);
968 if ((reg & MID_INT_DMA_TX) != MID_INT_DMA_TX) {
969 printf("%s: unexpected status in tx DMA test: 0x%x\n",
970 sc->sc_dev.dv_xname, reg);
971 return(retval);
972 }
973 EN_WRITE(sc, MID_MAST_CSR, MID_MCSR_ENDMA); /* re-enable DMA (only) */
974
975 /* "return to sender..." address is known ... */
976
977 if (sc->is_adaptec)
978 EN_WRITE(sc, sc->drq_chip, MID_MK_RXQ_ADP(lcv, 0, MID_DMA_END, 0));
979 else
980 EN_WRITE(sc, sc->drq_chip, MID_MK_RXQ_ENI(count, 0, MID_DMA_END, bcode));
981 EN_WRITE(sc, sc->drq_chip+4, vtophys(dp));
982 EN_WRITE(sc, MID_DMA_WRRX, MID_DRQ_A2REG(sc->drq_chip+8));
983 cnt = 1000;
984 while (EN_READ(sc, MID_DMA_RDRX) == MID_DRQ_A2REG(sc->drq_chip)) {
985 DELAY(1);
986 cnt--;
987 if (cnt == 0) {
988 printf("%s: unexpected timeout in rx DMA test\n", sc->sc_dev.dv_xname);
989 return(retval); /* timeout, give up */
990 }
991 }
992 EN_WRAPADD(MID_DRQOFF, MID_DRQEND, sc->drq_chip, 8);
993 reg = EN_READ(sc, MID_INTACK);
994 if ((reg & MID_INT_DMA_RX) != MID_INT_DMA_RX) {
995 printf("%s: unexpected status in rx DMA test: 0x%x\n",
996 sc->sc_dev.dv_xname, reg);
997 return(retval);
998 }
999 EN_WRITE(sc, MID_MAST_CSR, MID_MCSR_ENDMA); /* re-enable DMA (only) */
1000
1001 if (wmtry) {
1002 return(bcmp(sp, dp, wmtry)); /* wmtry always exits here, no looping */
1003 }
1004
1005 if (bcmp(sp, dp, lcv))
1006 return(retval); /* failed, use last value */
1007
1008 retval = lcv;
1009
1010 }
1011 return(retval); /* studly 64 byte DMA present! oh baby!! */
1012}
1013
1014/***********************************************************************/
1015
1016/*
1017 * en_ioctl: handle ioctl requests
1018 *
1019 * NOTE: if you add an ioctl to set txspeed, you should choose a new
1020 * TX channel/slot. Choose the one with the lowest sc->txslot[slot].nref
1021 * value, subtract one from sc->txslot[0].nref, add one to the
1022 * sc->txslot[slot].nref, set sc->txvc2slot[vci] = slot, and then set
1023 * txspeed[vci].
1024 */
1025
1026STATIC int en_ioctl(ifp, cmd, data)
1027
1028struct ifnet *ifp;
1029EN_IOCTL_CMDT cmd;
1030caddr_t data;
1031
1032{
1033#ifdef MISSING_IF_SOFTC
1034 struct en_softc *sc = (struct en_softc *) en_cd.cd_devs[ifp->if_unit];
1035#else
1036 struct en_softc *sc = (struct en_softc *) ifp->if_softc;
1037#endif
1038 struct ifaddr *ifa = (struct ifaddr *) data;
1039 struct ifreq *ifr = (struct ifreq *) data;
1040 struct atm_pseudoioctl *api = (struct atm_pseudoioctl *)data;
1041#ifdef NATM
1042 struct atm_rawioctl *ario = (struct atm_rawioctl *)data;
1043 int slot;
1044#endif
1045 int s, error = 0;
1046
1047 s = splnet();
1048
1049 switch (cmd) {
1050 case SIOCATMENA: /* enable circuit for recv */
1051 error = en_rxctl(sc, api, 1);
1052 break;
1053
1054 case SIOCATMDIS: /* disable circuit for recv */
1055 error = en_rxctl(sc, api, 0);
1056 break;
1057
1058#ifdef NATM
1059 case SIOCXRAWATM:
1060 if ((slot = sc->rxvc2slot[ario->npcb->npcb_vci]) == RX_NONE) {
1061 error = EINVAL;
1062 break;
1063 }
1064 if (ario->rawvalue > EN_RXSZ*1024)
1065 ario->rawvalue = EN_RXSZ*1024;
1066 if (ario->rawvalue) {
1067 sc->rxslot[slot].oth_flags |= ENOTHER_RAW;
1068 sc->rxslot[slot].raw_threshold = ario->rawvalue;
1069 } else {
1070 sc->rxslot[slot].oth_flags &= (~ENOTHER_RAW);
1071 sc->rxslot[slot].raw_threshold = 0;
1072 }
1073#ifdef EN_DEBUG
1074 printf("%s: rxvci%d: turn %s raw (boodi) mode\n",
1075 sc->sc_dev.dv_xname, ario->npcb->npcb_vci,
1076 (ario->rawvalue) ? "on" : "off");
1077#endif
1078 break;
1079#endif
1080 case SIOCSIFADDR:
1081 ifp->if_flags |= IFF_UP;
1082#ifdef INET
1083 if (ifa->ifa_addr->sa_family == AF_INET) {
1084 en_reset(sc);
1085 en_init(sc);
1086 ifa->ifa_rtrequest = atm_rtrequest; /* ??? */
1087 break;
1088 }
1089#endif /* INET */
1090 /* what to do if not INET? */
1091 en_reset(sc);
1092 en_init(sc);
1093 break;
1094
1095 case SIOCGIFADDR:
1096 error = EINVAL;
1097 break;
1098
1099 case SIOCSIFFLAGS:
1100 error = EINVAL;
1101 break;
1102
1103#if defined(SIOCSIFMTU) /* ??? copied from if_de */
1104#if !defined(ifr_mtu)
1105#define ifr_mtu ifr_metric
1106#endif
1107 case SIOCSIFMTU:
1108 /*
1109 * Set the interface MTU.
1110 */
1111#ifdef notsure
1112 if (ifr->ifr_mtu > ATMMTU) {
1113 error = EINVAL;
1114 break;
1115 }
1116#endif
1117 ifp->if_mtu = ifr->ifr_mtu;
1118 /* XXXCDC: do we really need to reset on MTU size change? */
1119 en_reset(sc);
1120 en_init(sc);
1121 break;
1122#endif /* SIOCSIFMTU */
1123
1124 default:
1125 error = EINVAL;
1126 break;
1127 }
1128 splx(s);
1129 return error;
1130}
1131
1132
1133/*
1134 * en_rxctl: turn on and off VCs for recv.
1135 */
1136
1137STATIC int en_rxctl(sc, pi, on)
1138
1139struct en_softc *sc;
1140struct atm_pseudoioctl *pi;
1141int on;
1142
1143{
1144 u_int s, vci, flags, slot;
1145 u_int32_t oldmode, newmode;
1146
1147 vci = ATM_PH_VCI(&pi->aph);
1148 flags = ATM_PH_FLAGS(&pi->aph);
1149
1150#ifdef EN_DEBUG
1151 printf("%s: %s vpi=%d, vci=%d, flags=%d\n", sc->sc_dev.dv_xname,
1152 (on) ? "enable" : "disable", ATM_PH_VPI(&pi->aph), vci, flags);
1153#endif
1154
1155 if (ATM_PH_VPI(&pi->aph) || vci >= MID_N_VC)
1156 return(EINVAL);
1157
1158 /*
1159 * turn on VCI!
1160 */
1161
1162 if (on) {
1163 if (sc->rxvc2slot[vci] != RX_NONE)
1164 return(EINVAL);
1165 for (slot = 0 ; slot < sc->en_nrx ; slot++)
1166 if (sc->rxslot[slot].oth_flags & ENOTHER_FREE)
1167 break;
1168 if (slot == sc->en_nrx)
1169 return(ENOSPC);
1170 sc->rxvc2slot[vci] = slot;
1171 sc->rxslot[slot].rxhand = NULL;
1172 oldmode = sc->rxslot[slot].mode;
1173 newmode = (flags & ATM_PH_AAL5) ? MIDV_AAL5 : MIDV_NOAAL;
1174 sc->rxslot[slot].mode = MIDV_SETMODE(oldmode, newmode);
1175 sc->rxslot[slot].atm_vci = vci;
1176 sc->rxslot[slot].atm_flags = flags;
1177 sc->rxslot[slot].oth_flags = 0;
1178 sc->rxslot[slot].rxhand = pi->rxhand;
1179 if (sc->rxslot[slot].indma.ifq_head || sc->rxslot[slot].q.ifq_head)
1180 panic("en_rxctl: left over mbufs on enable");
1181 sc->txspeed[vci] = 0; /* full speed to start */
1182 sc->txvc2slot[vci] = 0; /* init value */
1183 sc->txslot[0].nref++; /* bump reference count */
1184 en_loadvc(sc, vci); /* does debug printf for us */
1185 return(0);
1186 }
1187
1188 /*
1189 * turn off VCI
1190 */
1191
1192 if (sc->rxvc2slot[vci] == RX_NONE)
1193 return(EINVAL);
1194 slot = sc->rxvc2slot[vci];
1195 if ((sc->rxslot[slot].oth_flags & (ENOTHER_FREE|ENOTHER_DRAIN)) != 0)
1196 return(EINVAL);
1197 s = splimp(); /* block out enintr() */
1198 oldmode = EN_READ(sc, MID_VC(vci));
1199 newmode = MIDV_SETMODE(oldmode, MIDV_TRASH) & ~MIDV_INSERVICE;
1200 EN_WRITE(sc, MID_VC(vci), (newmode | (oldmode & MIDV_INSERVICE)));
1201 /* halt in tracks, be careful to preserve inserivce bit */
1202 DELAY(27);
1203 sc->rxslot[slot].rxhand = NULL;
1204 sc->rxslot[slot].mode = newmode;
1205
1206 sc->txslot[sc->txvc2slot[vci]].nref--;
1207 sc->txspeed[vci] = 0;
1208 sc->txvc2slot[vci] = 0;
1209
1210 /* if stuff is still going on we are going to have to drain it out */
1211 if (sc->rxslot[slot].indma.ifq_head ||
1212 sc->rxslot[slot].q.ifq_head ||
1213 (sc->rxslot[slot].oth_flags & ENOTHER_SWSL) != 0) {
1214 sc->rxslot[slot].oth_flags |= ENOTHER_DRAIN;
1215 } else {
1216 sc->rxslot[slot].oth_flags = ENOTHER_FREE;
1217 sc->rxslot[slot].atm_vci = RX_NONE;
1218 sc->rxvc2slot[vci] = RX_NONE;
1219 }
1220 splx(s); /* enable enintr() */
1221#ifdef EN_DEBUG
1222 printf("%s: rx%d: VCI %d is now %s\n", sc->sc_dev.dv_xname, slot, vci,
1223 (sc->rxslot[slot].oth_flags & ENOTHER_DRAIN) ? "draining" : "free");
1224#endif
1225 return(0);
1226}
1227
1228/***********************************************************************/
1229
1230/*
1231 * en_reset: reset the board, throw away work in progress.
1232 * must en_init to recover.
1233 */
1234
1235void en_reset(sc)
1236
1237struct en_softc *sc;
1238
1239{
1240 struct mbuf *m;
1241 int lcv, slot;
1242
1243#ifdef EN_DEBUG
1244 printf("%s: reset\n", sc->sc_dev.dv_xname);
1245#endif
1246
1247 if (sc->en_busreset)
1248 sc->en_busreset(sc);
1249 EN_WRITE(sc, MID_RESID, 0x0); /* reset hardware */
1250
1251 /*
1252 * recv: dump any mbufs we are dma'ing into, if DRAINing, then a reset
1253 * will free us!
1254 */
1255
1256 for (lcv = 0 ; lcv < MID_N_VC ; lcv++) {
1257 if (sc->rxvc2slot[lcv] == RX_NONE)
1258 continue;
1259 slot = sc->rxvc2slot[lcv];
1260 while (1) {
1261 IF_DEQUEUE(&sc->rxslot[slot].indma, m);
1262 if (m == NULL)
1263 break; /* >>> exit 'while(1)' here <<< */
1264 m_freem(m);
1265 }
1266 while (1) {
1267 IF_DEQUEUE(&sc->rxslot[slot].q, m);
1268 if (m == NULL)
1269 break; /* >>> exit 'while(1)' here <<< */
1270 m_freem(m);
1271 }
1272 sc->rxslot[slot].oth_flags &= ~ENOTHER_SWSL;
1273 if (sc->rxslot[slot].oth_flags & ENOTHER_DRAIN) {
1274 sc->rxslot[slot].oth_flags = ENOTHER_FREE;
1275 sc->rxvc2slot[lcv] = RX_NONE;
1276#ifdef EN_DEBUG
1277 printf("%s: rx%d: VCI %d is now free\n", sc->sc_dev.dv_xname, slot, lcv);
1278#endif
1279 }
1280 }
1281
1282 /*
1283 * xmit: dump everything
1284 */
1285
1286 for (lcv = 0 ; lcv < EN_NTX ; lcv++) {
1287 while (1) {
1288 IF_DEQUEUE(&sc->txslot[lcv].indma, m);
1289 if (m == NULL)
1290 break; /* >>> exit 'while(1)' here <<< */
1291 m_freem(m);
1292 }
1293 while (1) {
1294 IF_DEQUEUE(&sc->txslot[lcv].q, m);
1295 if (m == NULL)
1296 break; /* >>> exit 'while(1)' here <<< */
1297 m_freem(m);
1298 }
1299 sc->txslot[lcv].mbsize = 0;
1300 }
1301
1302 return;
1303}
1304
1305
1306/*
1307 * en_init: init board and sync the card with the data in the softc.
1308 */
1309
1310STATIC void en_init(sc)
1311
1312struct en_softc *sc;
1313
1314{
1315 int vc, slot;
1316 u_int32_t loc;
1317
1318 if ((sc->enif.if_flags & IFF_UP) == 0) {
1319#ifdef EN_DEBUG
1320 printf("%s: going down\n", sc->sc_dev.dv_xname);
1321#endif
1322 en_reset(sc); /* to be safe */
1323 sc->enif.if_flags &= ~IFF_RUNNING; /* disable */
1324 return;
1325 }
1326
1327#ifdef EN_DEBUG
1328 printf("%s: going up\n", sc->sc_dev.dv_xname);
1329#endif
1330 sc->enif.if_flags |= IFF_RUNNING; /* enable */
1331
1332 if (sc->en_busreset)
1333 sc->en_busreset(sc);
1334 EN_WRITE(sc, MID_RESID, 0x0); /* reset */
1335
1336 /*
1337 * init obmem data structures: vc tab, dma q's, slist.
1338 */
1339
1340 for (vc = 0 ; vc < MID_N_VC ; vc++)
1341 en_loadvc(sc, vc);
1342
1343 bzero(&sc->drq, sizeof(sc->drq));
1344#if 1
1345 /* leave one entry in the ringbuf unused to avoid wraparound */
1346 sc->drq_free = MID_DRQ_N - 1;
1347#else
1348 sc->drq_free = MID_DRQ_N;
1349#endif
1350 sc->drq_chip = MID_DRQ_REG2A(EN_READ(sc, MID_DMA_RDRX));
1351 EN_WRITE(sc, MID_DMA_WRRX, MID_DRQ_A2REG(sc->drq_chip));
1352 /* ensure zero queue */
1353 sc->drq_us = sc->drq_chip;
1354
1355 bzero(&sc->dtq, sizeof(sc->dtq));
1356#if 1
1357 /* leave one entry in the ringbuf unused to avoid wraparound */
1358 sc->dtq_free = MID_DTQ_N - 1;
1359#else
1360 sc->dtq_free = MID_DTQ_N;
1361#endif
1362 sc->dtq_chip = MID_DTQ_REG2A(EN_READ(sc, MID_DMA_RDTX));
1363 EN_WRITE(sc, MID_DMA_WRTX, MID_DRQ_A2REG(sc->dtq_chip));
1364 /* ensure zero queue */
1365 sc->dtq_us = sc->dtq_chip;
1366
1367 sc->hwslistp = MID_SL_REG2A(EN_READ(sc, MID_SERV_WRITE));
1368 sc->swsl_size = sc->swsl_head = sc->swsl_tail = 0;
1369
1370#ifdef EN_DEBUG
1371 printf("%s: drq free/chip: %d/0x%x, dtq free/chip: %d/0x%x, hwslist: 0x%x\n",
1372 sc->sc_dev.dv_xname, sc->drq_free, sc->drq_chip,
1373 sc->dtq_free, sc->dtq_chip, sc->hwslistp);
1374#endif
1375
1376 for (slot = 0 ; slot < EN_NTX ; slot++) {
1377 sc->txslot[slot].bfree = EN_TXSZ * 1024;
1378 EN_WRITE(sc, MIDX_READPTR(slot), 0);
1379 EN_WRITE(sc, MIDX_DESCSTART(slot), 0);
1380 loc = sc->txslot[slot].cur = sc->txslot[slot].start;
1381 loc = loc - MID_RAMOFF;
1382 loc = (loc & ~((EN_TXSZ*1024) - 1)) >> 2; /* mask, cvt to words */
1383 loc = loc >> MIDV_LOCTOPSHFT; /* top 11 bits */
1384 EN_WRITE(sc, MIDX_PLACE(slot), MIDX_MKPLACE(en_k2sz(EN_TXSZ), loc));
1385#ifdef EN_DEBUG
1386 printf("%s: tx%d: place 0x%x\n", sc->sc_dev.dv_xname, slot,
1387 EN_READ(sc, MIDX_PLACE(slot)));
1388#endif
1389 }
1390
1391 /*
1392 * enable!
1393 */
1394
1395 EN_WRITE(sc, MID_INTENA, MID_INT_TX|MID_INT_DMA_OVR|MID_INT_IDENT|
1396 MID_INT_LERR|MID_INT_DMA_ERR|MID_INT_DMA_RX|MID_INT_DMA_TX|
1397 MID_INT_SERVICE| /* >>> MID_INT_SUNI| XXXCDC<<< */ MID_INT_STATS);
1398 EN_WRITE(sc, MID_MAST_CSR, MID_SETIPL(sc->ipl)|MID_MCSR_ENDMA|
1399 MID_MCSR_ENTX|MID_MCSR_ENRX);
1400
1401}
1402
1403
1404/*
1405 * en_loadvc: load a vc tab entry from a slot
1406 */
1407
1408STATIC void en_loadvc(sc, vc)
1409
1410struct en_softc *sc;
1411int vc;
1412
1413{
1414 int slot;
1415 u_int32_t reg = EN_READ(sc, MID_VC(vc));
1416
1417 reg = MIDV_SETMODE(reg, MIDV_TRASH);
1418 EN_WRITE(sc, MID_VC(vc), reg);
1419 DELAY(27);
1420
1421 if ((slot = sc->rxvc2slot[vc]) == RX_NONE)
1422 return;
1423
1424 /* no need to set CRC */
1425 EN_WRITE(sc, MID_DST_RP(vc), 0); /* read pointer = 0, desc. start = 0 */
1426 EN_WRITE(sc, MID_WP_ST_CNT(vc), 0); /* write pointer = 0 */
1427 EN_WRITE(sc, MID_VC(vc), sc->rxslot[slot].mode); /* set mode, size, loc */
1428 sc->rxslot[slot].cur = sc->rxslot[slot].start;
1429
1430#ifdef EN_DEBUG
1431 printf("%s: rx%d: assigned to VCI %d\n", sc->sc_dev.dv_xname, slot, vc);
1432#endif
1433}
1434
1435
1436/*
1437 * en_start: start transmitting the next packet that needs to go out
1438 * if there is one. note that atm_output() has already splimp()'d us.
1439 */
1440
1441STATIC void en_start(ifp)
1442
1443struct ifnet *ifp;
1444
1445{
1446#ifdef MISSING_IF_SOFTC
1447 struct en_softc *sc = (struct en_softc *) en_cd.cd_devs[ifp->if_unit];
1448#else
1449 struct en_softc *sc = (struct en_softc *) ifp->if_softc;
1450#endif
1451 struct ifqueue *ifq = &ifp->if_snd; /* if INPUT QUEUE */
1452 struct mbuf *m, *lastm, *prev;
1453 struct atm_pseudohdr *ap, *new_ap;
1454 int txchan, mlen, got, need, toadd, cellcnt, first;
1455 u_int32_t atm_vpi, atm_vci, atm_flags, *dat, aal;
1456 u_int8_t *cp;
1457
1458 if ((ifp->if_flags & IFF_RUNNING) == 0)
1459 return;
1460
1461 /*
1462 * remove everything from interface queue since we handle all queueing
1463 * locally ...
1464 */
1465
1466 while (1) {
1467
1468 IF_DEQUEUE(ifq, m);
1469 if (m == NULL)
1470 return; /* EMPTY: >>> exit here <<< */
1471
1472 /*
1473 * calculate size of packet (in bytes)
1474 * also, if we are not doing transmit DMA we eliminate all stupid
1475 * (non-word) alignments here using en_mfix(). calls to en_mfix()
1476 * seem to be due to tcp retransmits for the most part.
1477 *
1478 * after this loop mlen total length of mbuf chain (including atm_ph),
1479 * and lastm is a pointer to the last mbuf on the chain.
1480 */
1481
1482 lastm = m;
1483 mlen = 0;
1484 prev = NULL;
1485 while (1) {
1486#ifdef EN_FIXMBUF
1487 /* if eni, always fix misaligned mbuf */
1488 if (!sc->is_adaptec || EN_NOTXDMA || !en_dma) {
1489#else
1490 if (EN_NOTXDMA || !en_dma) { /* no DMA? */
1491#endif
1492 if ( (mtod(lastm, unsigned long) % sizeof(u_int32_t)) != 0 ||
1493 ((lastm->m_len % sizeof(u_int32_t)) != 0 && lastm->m_next)) {
1494 first = (lastm == m);
1495 if (en_mfix(sc, &lastm, prev) == 0) { /* failed? */
1496 m_freem(m);
1497 m = NULL;
1498 break;
1499 }
1500 if (first)
1501 m = lastm; /* update */
1502 }
1503 prev = lastm;
1504 }
1505 mlen += lastm->m_len;
1506 if (lastm->m_next == NULL)
1507 break;
1508 lastm = lastm->m_next;
1509 }
1510
1511 if (m == NULL) /* happens only if mfix fails */
1512 continue;
1513
1514 ap = mtod(m, struct atm_pseudohdr *);
1515
1516 atm_vpi = ATM_PH_VPI(ap);
1517 atm_vci = ATM_PH_VCI(ap);
1518 atm_flags = ATM_PH_FLAGS(ap) & ~(EN_OBHDR|EN_OBTRL);
1519 aal = ((atm_flags & ATM_PH_AAL5) != 0)
1520 ? MID_TBD_AAL5 : MID_TBD_NOAAL5;
1521
1522 /*
1523 * check that vpi/vci is one we can use
1524 */
1525
1526 if (atm_vpi || atm_vci > MID_N_VC) {
1527 printf("%s: output vpi=%d, vci=%d out of card range, dropping...\n",
1528 sc->sc_dev.dv_xname, atm_vpi, atm_vci);
1529 m_freem(m);
1530 continue;
1531 }
1532
1533 /*
1534 * computing how much padding we need on the end of the mbuf, then
1535 * see if we can put the TBD at the front of the mbuf where the
1536 * link header goes (well behaved protocols will reserve room for us).
1537 * last, check if room for PDU tail.
1538 *
1539 * got = number of bytes of data we have
1540 * cellcnt = number of cells in this mbuf
1541 * need = number of bytes of data + padding we need (excludes TBD)
1542 * toadd = number of bytes of data we need to add to end of mbuf,
1543 * [including AAL5 PDU, if AAL5]
1544 */
1545
1546 got = mlen - sizeof(struct atm_pseudohdr *);
1547 toadd = (aal == MID_TBD_AAL5) ? MID_PDU_SIZE : 0; /* PDU */
1548 cellcnt = (got + toadd + (MID_ATMDATASZ - 1)) / MID_ATMDATASZ;
1549 need = cellcnt * MID_ATMDATASZ;
1550 toadd = need - got; /* recompute, including zero padding */
1551
1552#ifdef EN_DEBUG
1553 printf("%s: txvci%d: mlen=%d, got=%d, need=%d, toadd=%d, cell#=%d\n",
1554 sc->sc_dev.dv_xname, atm_vci, mlen, got, need, toadd, cellcnt);
1555 printf(" leading_space=%d, trailing_space=%d\n",
1556 M_LEADINGSPACE(m), M_TRAILINGSPACE(lastm));
1557#endif
1558
1559#ifdef EN_MBUF_OPT
1560
1561 /*
1562 * note: external storage (M_EXT) can be shared between mbufs
1563 * to avoid copying (see m_copym()). this means that the same
1564 * data buffer could be shared by several mbufs, and thus it isn't
1565 * a good idea to try and write TBDs or PDUs to M_EXT data areas.
1566 */
1567
1568 if (M_LEADINGSPACE(m) >= MID_TBD_SIZE && (m->m_flags & M_EXT) == 0) {
1569 m->m_data -= MID_TBD_SIZE;
1570 m->m_len += MID_TBD_SIZE;
1571 mlen += MID_TBD_SIZE;
1572 new_ap = mtod(m, struct atm_pseudohdr *);
1573 *new_ap = *ap; /* move it back */
1574 ap = new_ap;
1575 dat = ((u_int32_t *) ap) + 1;
1576 /* make sure the TBD is in proper byte order */
1577 *dat++ = htonl(MID_TBD_MK1(aal, sc->txspeed[atm_vci], cellcnt));
1578 *dat = htonl(MID_TBD_MK2(atm_vci, 0, 0));
1579 atm_flags |= EN_OBHDR;
1580 }
1581
1582 if (toadd && (lastm->m_flags & M_EXT) == 0 &&
1583 M_TRAILINGSPACE(lastm) >= toadd) {
1584 cp = mtod(lastm, u_int8_t *) + lastm->m_len;
1585 lastm->m_len += toadd;
1586 mlen += toadd;
1587 if (aal == MID_TBD_AAL5) {
1588 bzero(cp, toadd - MID_PDU_SIZE);
1589 dat = (u_int32_t *)(cp + toadd - MID_PDU_SIZE);
1590 /* make sure the PDU is in proper byte order */
1591 *dat = htonl(MID_PDU_MK1(0, 0, got));
1592 } else {
1593 bzero(cp, toadd);
1594 }
1595 atm_flags |= EN_OBTRL;
1596 }
1597 ATM_PH_FLAGS(ap) = atm_flags; /* update EN_OBHDR/EN_OBTRL bits */
1598#endif /* EN_MBUF_OPT */
1599
1600 /*
1601 * get assigned channel (will be zero unless txspeed[atm_vci] is set)
1602 */
1603
1604 txchan = sc->txvc2slot[atm_vci];
1605
1606 if (sc->txslot[txchan].mbsize > EN_TXHIWAT) {
1607 EN_COUNT(sc->txmbovr);
1608 m_freem(m);
1609#ifdef EN_DEBUG
1610 printf("%s: tx%d: buffer space shortage\n", sc->sc_dev.dv_xname,
1611 txchan);
1612#endif
1613 continue;
1614 }
1615
1616 sc->txslot[txchan].mbsize += mlen;
1617
1618#ifdef EN_DEBUG
1619 printf("%s: tx%d: VPI=%d, VCI=%d, FLAGS=0x%x, speed=0x%x\n",
1620 sc->sc_dev.dv_xname, txchan, atm_vpi, atm_vci, atm_flags,
1621 sc->txspeed[atm_vci]);
1622 printf(" adjusted mlen=%d, mbsize=%d\n", mlen,
1623 sc->txslot[txchan].mbsize);
1624#endif
1625
1626 IF_ENQUEUE(&sc->txslot[txchan].q, m);
1627 en_txdma(sc, txchan);
1628
1629 }
1630 /*NOTREACHED*/
1631}
1632
1633
1634/*
1635 * en_mfix: fix a stupid mbuf
1636 */
1637STATIC int en_makeexclusive(struct en_softc *, struct mbuf **, struct mbuf *);
1638
1639STATIC int en_makeexclusive(sc, mm, prev)
1640 struct en_softc *sc;
1641 struct mbuf **mm, *prev;
1642{
1643 struct mbuf *m, *new;
1644
1645 m = *mm;
1646
1647 if (m->m_flags & M_EXT) {
1648 if (m->m_ext.ext_free) {
1649 /* external buffer isn't an ordinary mbuf cluster! */
1650 printf("%s: mfix: special buffer! can't make a copy!\n",
1651 sc->sc_dev.dv_xname);
1652 return (0);
1653 }
1654
1655 if (mclrefcnt[mtocl(m->m_ext.ext_buf)] > 1) {
1656 /* make a real copy of the M_EXT mbuf since it is shared */
1657 MGET(new, M_DONTWAIT, MT_DATA);
1658 if (!new) {
1659 EN_COUNT(sc->mfixfail);
1660 return(0);
1661 }
1662 if (m->m_flags & M_PKTHDR)
1663 M_COPY_PKTHDR(new, m);
1664 MCLGET(new, M_DONTWAIT);
1665 if ((new->m_flags & M_EXT) == 0) {
1666 m_free(new);
1667 EN_COUNT(sc->mfixfail);
1668 return(0);
1669 }
1670 bcopy(m->m_data, new->m_data, m->m_len);
1671 new->m_len = m->m_len;
1672 new->m_next = m->m_next;
1673 if (prev)
1674 prev->m_next = new;
1675 m_free(m);
1676 *mm = new;
1677 }
1678 else {
1679 /* the buffer is not shared, align the data offset using
1680 this buffer. */
1681 u_char *d = mtod(m, u_char *);
1682 int off = ((u_long)d) % sizeof(u_int32_t);
1683
1684 if (off > 0) {
1685 bcopy(d, d - off, m->m_len);
1686 m->m_data = (caddr_t)d - off;
1687 }
1688 }
1689 }
1690 return (1);
1691}
1692
1693STATIC int en_mfix(sc, mm, prev)
1694
1695struct en_softc *sc;
1696struct mbuf **mm, *prev;
1697
1698{
1699 struct mbuf *m;
1700 u_char *d, *cp;
1701 int off;
1702 struct mbuf *nxt;
1703
1704 m = *mm;
1705
1706 EN_COUNT(sc->mfix); /* count # of calls */
1707#ifdef EN_DEBUG
1708 printf("%s: mfix mbuf m_data=0x%x, m_len=%d\n", sc->sc_dev.dv_xname,
1709 m->m_data, m->m_len);
1710#endif
1711
1712 d = mtod(m, u_char *);
1713 off = ((unsigned long) d) % sizeof(u_int32_t);
1714
1715 if (off) {
1716 if ((m->m_flags & M_EXT) == 0) {
1717 bcopy(d, d - off, m->m_len); /* ALIGN! (with costly data copy...) */
1718 d -= off;
1719 m->m_data = (caddr_t)d;
1720 } else {
1721 /* can't write to an M_EXT mbuf since it may be shared */
1722 if (en_makeexclusive(sc, &m, prev) == 0)
1723 return (0);
1724 *mm = m; /* note: 'd' now invalid */
1725 }
1726 }
1727
1728 off = m->m_len % sizeof(u_int32_t);
1729 if (off == 0)
1730 return(1);
1731
1732 if (m->m_flags & M_EXT) {
1733 /* can't write to an M_EXT mbuf since it may be shared */
1734 if (en_makeexclusive(sc, &m, prev) == 0)
1735 return (0);
1736 *mm = m; /* note: 'd' now invalid */
1737 }
1738
1739 d = mtod(m, u_char *) + m->m_len;
1740 off = sizeof(u_int32_t) - off;
1741
1742 nxt = m->m_next;
1743 while (off--) {
1744 if (nxt != NULL && nxt->m_len == 0) {
1745 /* remove an empty mbuf. this avoids odd byte padding to an empty
1746 last mbuf. */
1747 m->m_next = nxt = m_free(nxt);
1748 }
1749 if (nxt == NULL) { /* out of data, zero fill */
1750 *d++ = 0;
1751 continue; /* next "off" */
1752 }
1753 cp = mtod(nxt, u_char *);
1754 *d++ = *cp++;
1755 m->m_len++;
1756 nxt->m_len--;
1757 nxt->m_data = (caddr_t)cp;
1758 }
1759 if (nxt != NULL && nxt->m_len == 0)
1760 m->m_next = m_free(nxt);
1761 return(1);
1762}
1763
1764
1765/*
1766 * en_txdma: start trasmit DMA, if possible
1767 */
1768
1769STATIC void en_txdma(sc, chan)
1770
1771struct en_softc *sc;
1772int chan;
1773
1774{
1775 struct mbuf *tmp;
1776 struct atm_pseudohdr *ap;
1777 struct en_launch launch;
1778 int datalen = 0, dtqneed, len, ncells;
1779 u_int8_t *cp;
1780
1781#ifdef EN_DEBUG
1782 printf("%s: tx%d: starting...\n", sc->sc_dev.dv_xname, chan);
1783#endif
1784
1785 /*
1786 * note: now that txlaunch handles non-word aligned/sized requests
1787 * the only time you can safely set launch.nodma is if you've en_mfix()'d
1788 * the mbuf chain. this happens only if EN_NOTXDMA || !en_dma.
1789 */
1790
1791 launch.nodma = (EN_NOTXDMA || !en_dma);
1792
1793again:
1794
1795 /*
1796 * get an mbuf waiting for DMA
1797 */
1798
1799 launch.t = sc->txslot[chan].q.ifq_head; /* peek at head of queue */
1800
1801 if (launch.t == NULL) {
1802#ifdef EN_DEBUG
1803 printf("%s: tx%d: ...done!\n", sc->sc_dev.dv_xname, chan);
1804#endif
1805 return; /* >>> exit here if no data waiting for DMA <<< */
1806 }
1807
1808 /*
1809 * get flags, vci
1810 *
1811 * note: launch.need = # bytes we need to get on the card
1812 * dtqneed = # of DTQs we need for this packet
1813 * launch.mlen = # of bytes in in mbuf chain (<= launch.need)
1814 */
1815
1816 ap = mtod(launch.t, struct atm_pseudohdr *);
1817 launch.atm_vci = ATM_PH_VCI(ap);
1818 launch.atm_flags = ATM_PH_FLAGS(ap);
1819 launch.aal = ((launch.atm_flags & ATM_PH_AAL5) != 0) ?
1820 MID_TBD_AAL5 : MID_TBD_NOAAL5;
1821
1822 /*
1823 * XXX: have to recompute the length again, even though we already did
1824 * it in en_start(). might as well compute dtqneed here as well, so
1825 * this isn't that bad.
1826 */
1827
1828 if ((launch.atm_flags & EN_OBHDR) == 0) {
1829 dtqneed = 1; /* header still needs to be added */
1830 launch.need = MID_TBD_SIZE; /* not includeded with mbuf */
1831 } else {
1832 dtqneed = 0; /* header on-board, dma with mbuf */
1833 launch.need = 0;
1834 }
1835
1836 launch.mlen = 0;
1837 for (tmp = launch.t ; tmp != NULL ; tmp = tmp->m_next) {
1838 len = tmp->m_len;
1839 launch.mlen += len;
1840 cp = mtod(tmp, u_int8_t *);
1841 if (tmp == launch.t) {
1842 len -= sizeof(struct atm_pseudohdr); /* don't count this! */
1843 cp += sizeof(struct atm_pseudohdr);
1844 }
1845 launch.need += len;
1846 if (len == 0)
1847 continue; /* atm_pseudohdr alone in first mbuf */
1848
1849 dtqneed += en_dqneed(sc, (caddr_t) cp, len, 1);
1850 }
1851
1852 if ((launch.need % sizeof(u_int32_t)) != 0)
1853 dtqneed++; /* need DTQ to FLUSH internal buffer */
1854
1855 if ((launch.atm_flags & EN_OBTRL) == 0) {
1856 if (launch.aal == MID_TBD_AAL5) {
1857 datalen = launch.need - MID_TBD_SIZE;
1858 launch.need += MID_PDU_SIZE; /* AAL5: need PDU tail */
1859 }
1860 dtqneed++; /* need to work on the end a bit */
1861 }
1862
1863 /*
1864 * finish calculation of launch.need (need to figure out how much padding
1865 * we will need). launch.need includes MID_TBD_SIZE, but we need to
1866 * remove that to so we can round off properly. we have to add
1867 * MID_TBD_SIZE back in after calculating ncells.
1868 */
1869
1870 launch.need = roundup(launch.need - MID_TBD_SIZE, MID_ATMDATASZ);
1871 ncells = launch.need / MID_ATMDATASZ;
1872 launch.need += MID_TBD_SIZE;
1873
1874 if (launch.need > EN_TXSZ * 1024) {
1875 printf("%s: tx%d: packet larger than xmit buffer (%d > %d)\n",
1876 sc->sc_dev.dv_xname, chan, launch.need, EN_TXSZ * 1024);
1877 goto dequeue_drop;
1878 }
1879
1880 if (launch.need > sc->txslot[chan].bfree) {
1881 EN_COUNT(sc->txoutspace);
1882#ifdef EN_DEBUG
1883 printf("%s: tx%d: out of transmit space\n", sc->sc_dev.dv_xname, chan);
1884#endif
1885 return; /* >>> exit here if out of obmem buffer space <<< */
1886 }
1887
1888 /*
1889 * ensure we have enough dtqs to go, if not, wait for more.
1890 */
1891
1892 if (launch.nodma) {
1893 dtqneed = 1;
1894 }
1895 if (dtqneed > sc->dtq_free) {
1896 sc->need_dtqs = 1;
1897 EN_COUNT(sc->txdtqout);
1898#ifdef EN_DEBUG
1899 printf("%s: tx%d: out of transmit DTQs\n", sc->sc_dev.dv_xname, chan);
1900#endif
1901 return; /* >>> exit here if out of dtqs <<< */
1902 }
1903
1904 /*
1905 * it is a go, commit! dequeue mbuf start working on the xfer.
1906 */
1907
1908 IF_DEQUEUE(&sc->txslot[chan].q, tmp);
1909#ifdef EN_DIAG
1910 if (launch.t != tmp)
1911 panic("en dequeue");
1912#endif /* EN_DIAG */
1913
1914 /*
1915 * launch!
1916 */
1917
1918 EN_COUNT(sc->launch);
1919 sc->enif.if_opackets++;
1920 if ((launch.atm_flags & EN_OBHDR) == 0) {
1921 EN_COUNT(sc->lheader);
1922 /* store tbd1/tbd2 in host byte order */
1923 launch.tbd1 = MID_TBD_MK1(launch.aal, sc->txspeed[launch.atm_vci], ncells);
1924 launch.tbd2 = MID_TBD_MK2(launch.atm_vci, 0, 0);
1925 }
1926 if ((launch.atm_flags & EN_OBTRL) == 0 && launch.aal == MID_TBD_AAL5) {
1927 EN_COUNT(sc->ltail);
1928 launch.pdu1 = MID_PDU_MK1(0, 0, datalen); /* host byte order */
1929 }
1930
1931 en_txlaunch(sc, chan, &launch);
1932
1933 /*
1934 * do some housekeeping and get the next packet
1935 */
1936
1937 sc->txslot[chan].bfree -= launch.need;
1938 IF_ENQUEUE(&sc->txslot[chan].indma, launch.t);
1939 goto again;
1940
1941 /*
1942 * END of txdma loop!
1943 */
1944
1945 /*
1946 * error handles
1947 */
1948
1949dequeue_drop:
1950 IF_DEQUEUE(&sc->txslot[chan].q, tmp);
1951 if (launch.t != tmp)
1952 panic("en dequeue drop");
1953 m_freem(launch.t);
1954 sc->txslot[chan].mbsize -= launch.mlen;
1955 goto again;
1956}
1957
1958
1959/*
1960 * en_txlaunch: launch an mbuf into the dma pool!
1961 */
1962
1963STATIC void en_txlaunch(sc, chan, l)
1964
1965struct en_softc *sc;
1966int chan;
1967struct en_launch *l;
1968
1969{
1970 struct mbuf *tmp;
1971 u_int32_t cur = sc->txslot[chan].cur,
1972 start = sc->txslot[chan].start,
1973 stop = sc->txslot[chan].stop,
1974 dma, *data, *datastop, count, bcode;
1975 int pad, addtail, need, len, needalign, cnt, end, mx;
1976
1977
1978 /*
1979 * vars:
1980 * need = # bytes card still needs (decr. to zero)
1981 * len = # of bytes left in current mbuf
1982 * cur = our current pointer
1983 * dma = last place we programmed into the DMA
1984 * data = pointer into data area of mbuf that needs to go next
1985 * cnt = # of bytes to transfer in this DTQ
1986 * bcode/count = DMA burst code, and chip's version of cnt
1987 *
1988 * a single buffer can require up to 5 DTQs depending on its size
1989 * and alignment requirements. the 5 possible requests are:
1990 * [1] 1, 2, or 3 byte DMA to align src data pointer to word boundary
1991 * [2] alburst DMA to align src data pointer to bestburstlen
1992 * [3] 1 or more bestburstlen DMAs
1993 * [4] clean up burst (to last word boundary)
1994 * [5] 1, 2, or 3 byte final clean up DMA
1995 */
1996
1997 need = l->need;
1998 dma = cur;
1999 addtail = (l->atm_flags & EN_OBTRL) == 0; /* add a tail? */
2000
2001#ifdef EN_DIAG
2002 if ((need - MID_TBD_SIZE) % MID_ATMDATASZ)
2003 printf("%s: tx%d: bogus trasmit needs (%d)\n", sc->sc_dev.dv_xname, chan,
2004 need);
2005#endif
2006#ifdef EN_DEBUG
2007 printf("%s: tx%d: launch mbuf %p! cur=0x%x[%d], need=%d, addtail=%d\n",
2008 sc->sc_dev.dv_xname, chan, l->t, cur, (cur-start)/4, need, addtail);
2009 count = EN_READ(sc, MIDX_PLACE(chan));
2010 printf(" HW: base_address=0x%x, size=%d, read=%d, descstart=%d\n",
2011 MIDX_BASE(count), MIDX_SZ(count), EN_READ(sc, MIDX_READPTR(chan)),
2012 EN_READ(sc, MIDX_DESCSTART(chan)));
2013#endif
2014
2015 /*
2016 * do we need to insert the TBD by hand?
2017 * note that tbd1/tbd2/pdu1 are in host byte order.
2018 */
2019
2020 if ((l->atm_flags & EN_OBHDR) == 0) {
2021#ifdef EN_DEBUG
2022 printf("%s: tx%d: insert header 0x%x 0x%x\n", sc->sc_dev.dv_xname,
2023 chan, l->tbd1, l->tbd2);
2024#endif
2025 EN_WRITE(sc, cur, l->tbd1);
2026 EN_WRAPADD(start, stop, cur, 4);
2027 EN_WRITE(sc, cur, l->tbd2);
2028 EN_WRAPADD(start, stop, cur, 4);
2029 need -= 8;
2030 }
2031
2032 /*
2033 * now do the mbufs...
2034 */
2035
2036 for (tmp = l->t ; tmp != NULL ; tmp = tmp->m_next) {
2037
2038 /* get pointer to data and length */
2039 data = mtod(tmp, u_int32_t *);
2040 len = tmp->m_len;
2041 if (tmp == l->t) {
2042 data += sizeof(struct atm_pseudohdr)/sizeof(u_int32_t);
2043 len -= sizeof(struct atm_pseudohdr);
2044 }
2045
2046 /* now, determine if we should copy it */
2047 if (l->nodma || (len < EN_MINDMA &&
2048 (len % 4) == 0 && ((unsigned long) data % 4) == 0 && (cur % 4) == 0)) {
2049
2050 /*
2051 * roundup len: the only time this will change the value of len
2052 * is when l->nodma is true, tmp is the last mbuf, and there is
2053 * a non-word number of bytes to transmit. in this case it is
2054 * safe to round up because we've en_mfix'd the mbuf (so the first
2055 * byte is word aligned there must be enough free bytes at the end
2056 * to round off to the next word boundary)...
2057 */
2058 len = roundup(len, sizeof(u_int32_t));
2059 datastop = data + (len / sizeof(u_int32_t));
2060 /* copy loop: preserve byte order!!! use WRITEDAT */
2061 while (data != datastop) {
2062 EN_WRITEDAT(sc, cur, *data);
2063 data++;
2064 EN_WRAPADD(start, stop, cur, 4);
2065 }
2066 need -= len;
2067#ifdef EN_DEBUG
2068 printf("%s: tx%d: copied %d bytes (%d left, cur now 0x%x)\n",
2069 sc->sc_dev.dv_xname, chan, len, need, cur);
2070#endif
2071 continue; /* continue on to next mbuf */
2072 }
2073
2074 /* going to do DMA, first make sure the dtq is in sync. */
2075 if (dma != cur) {
2076 EN_DTQADD(sc, WORD_IDX(start,cur), chan, MIDDMA_JK, 0, 0, 0);
2077#ifdef EN_DEBUG
2078 printf("%s: tx%d: dtq_sync: advance pointer to %d\n",
2079 sc->sc_dev.dv_xname, chan, cur);
2080#endif
2081 }
2082
2083 /*
2084 * if this is the last buffer, and it looks like we are going to need to
2085 * flush the internal buffer, can we extend the length of this mbuf to
2086 * avoid the FLUSH?
2087 */
2088
2089 if (tmp->m_next == NULL) {
2090 cnt = (need - len) % sizeof(u_int32_t);
2091 if (cnt && M_TRAILINGSPACE(tmp) >= cnt)
2092 len += cnt; /* pad for FLUSH */
2093 }
2094
2095#if !defined(MIDWAY_ENIONLY)
2096
2097 /*
2098 * the adaptec DMA engine is smart and handles everything for us.
2099 */
2100
2101 if (sc->is_adaptec) {
2102 /* need to DMA "len" bytes out to card */
2103 need -= len;
2104 EN_WRAPADD(start, stop, cur, len);
2105#ifdef EN_DEBUG
2106 printf("%s: tx%d: adp_dma %d bytes (%d left, cur now 0x%x)\n",
2107 sc->sc_dev.dv_xname, chan, len, need, cur);
2108#endif
2109 end = (need == 0) ? MID_DMA_END : 0;
2110 EN_DTQADD(sc, len, chan, 0, vtophys(data), l->mlen, end);
2111 if (end)
2112 goto done;
2113 dma = cur; /* update dma pointer */
2114 continue;
2115 }
2116#endif /* !MIDWAY_ENIONLY */
2117
2118#if !defined(MIDWAY_ADPONLY)
2119
2120 /*
2121 * the ENI DMA engine is not so smart and need more help from us
2122 */
2123
2124 /* do we need to do a DMA op to align to word boundary? */
2125 needalign = (unsigned long) data % sizeof(u_int32_t);
2126 if (needalign) {
2127 EN_COUNT(sc->headbyte);
2128 cnt = sizeof(u_int32_t) - needalign;
2129 if (cnt == 2 && len >= cnt) {
2130 count = 1;
2131 bcode = MIDDMA_2BYTE;
2132 } else {
2133 cnt = min(cnt, len); /* prevent overflow */
2134 count = cnt;
2135 bcode = MIDDMA_BYTE;
2136 }
2137 need -= cnt;
2138 EN_WRAPADD(start, stop, cur, cnt);
2139#ifdef EN_DEBUG
2140 printf("%s: tx%d: small al_dma %d bytes (%d left, cur now 0x%x)\n",
2141 sc->sc_dev.dv_xname, chan, cnt, need, cur);
2142#endif
2143 len -= cnt;
2144 end = (need == 0) ? MID_DMA_END : 0;
2145 EN_DTQADD(sc, count, chan, bcode, vtophys(data), l->mlen, end);
2146 if (end)
2147 goto done;
2148 data = (u_int32_t *) ((u_char *)data + cnt);
2149 }
2150
2151 /* do we need to do a DMA op to align? */
2152 if (sc->alburst &&
2153 (needalign = (((unsigned long) data) & sc->bestburstmask)) != 0
2154 && len >= sizeof(u_int32_t)) {
2155 cnt = sc->bestburstlen - needalign;
2156 mx = len & ~(sizeof(u_int32_t)-1); /* don't go past end */
2157 if (cnt > mx) {
2158 cnt = mx;
2159 count = cnt / sizeof(u_int32_t);
2160 bcode = MIDDMA_WORD;
2161 } else {
2162 count = cnt / sizeof(u_int32_t);
2163 bcode = en_dmaplan[count].bcode;
2164 count = cnt >> en_dmaplan[count].divshift;
2165 }
2166 need -= cnt;
2167 EN_WRAPADD(start, stop, cur, cnt);
2168#ifdef EN_DEBUG
2169 printf("%s: tx%d: al_dma %d bytes (%d left, cur now 0x%x)\n",
2170 sc->sc_dev.dv_xname, chan, cnt, need, cur);
2171#endif
2172 len -= cnt;
2173 end = (need == 0) ? MID_DMA_END : 0;
2174 EN_DTQADD(sc, count, chan, bcode, vtophys(data), l->mlen, end);
2175 if (end)
2176 goto done;
2177 data = (u_int32_t *) ((u_char *)data + cnt);
2178 }
2179
2180 /* do we need to do a max-sized burst? */
2181 if (len >= sc->bestburstlen) {
2182 count = len >> sc->bestburstshift;
2183 cnt = count << sc->bestburstshift;
2184 bcode = sc->bestburstcode;
2185 need -= cnt;
2186 EN_WRAPADD(start, stop, cur, cnt);
2187#ifdef EN_DEBUG
2188 printf("%s: tx%d: best_dma %d bytes (%d left, cur now 0x%x)\n",
2189 sc->sc_dev.dv_xname, chan, cnt, need, cur);
2190#endif
2191 len -= cnt;
2192 end = (need == 0) ? MID_DMA_END : 0;
2193 EN_DTQADD(sc, count, chan, bcode, vtophys(data), l->mlen, end);
2194 if (end)
2195 goto done;
2196 data = (u_int32_t *) ((u_char *)data + cnt);
2197 }
2198
2199 /* do we need to do a cleanup burst? */
2200 cnt = len & ~(sizeof(u_int32_t)-1);
2201 if (cnt) {
2202 count = cnt / sizeof(u_int32_t);
2203 bcode = en_dmaplan[count].bcode;
2204 count = cnt >> en_dmaplan[count].divshift;
2205 need -= cnt;
2206 EN_WRAPADD(start, stop, cur, cnt);
2207#ifdef EN_DEBUG
2208 printf("%s: tx%d: cleanup_dma %d bytes (%d left, cur now 0x%x)\n",
2209 sc->sc_dev.dv_xname, chan, cnt, need, cur);
2210#endif
2211 len -= cnt;
2212 end = (need == 0) ? MID_DMA_END : 0;
2213 EN_DTQADD(sc, count, chan, bcode, vtophys(data), l->mlen, end);
2214 if (end)
2215 goto done;
2216 data = (u_int32_t *) ((u_char *)data + cnt);
2217 }
2218
2219 /* any word fragments left? */
2220 if (len) {
2221 EN_COUNT(sc->tailbyte);
2222 if (len == 2) {
2223 count = 1;
2224 bcode = MIDDMA_2BYTE; /* use 2byte mode */
2225 } else {
2226 count = len;
2227 bcode = MIDDMA_BYTE; /* use 1 byte mode */
2228 }
2229 need -= len;
2230 EN_WRAPADD(start, stop, cur, len);
2231#ifdef EN_DEBUG
2232 printf("%s: tx%d: byte cleanup_dma %d bytes (%d left, cur now 0x%x)\n",
2233 sc->sc_dev.dv_xname, chan, len, need, cur);
2234#endif
2235 end = (need == 0) ? MID_DMA_END : 0;
2236 EN_DTQADD(sc, count, chan, bcode, vtophys(data), l->mlen, end);
2237 if (end)
2238 goto done;
2239 }
2240
2241 dma = cur; /* update dma pointer */
2242#endif /* !MIDWAY_ADPONLY */
2243
2244 } /* next mbuf, please */
2245
2246 /*
2247 * all mbuf data has been copied out to the obmem (or set up to be DMAd).
2248 * if the trailer or padding needs to be put in, do it now.
2249 *
2250 * NOTE: experimental results reveal the following fact:
2251 * if you DMA "X" bytes to the card, where X is not a multiple of 4,
2252 * then the card will internally buffer the last (X % 4) bytes (in
2253 * hopes of getting (4 - (X % 4)) more bytes to make a complete word).
2254 * it is imporant to make sure we don't leave any important data in
2255 * this internal buffer because it is discarded on the last (end) DTQ.
2256 * one way to do this is to DMA in (4 - (X % 4)) more bytes to flush
2257 * the darn thing out.
2258 */
2259
2260 if (addtail) {
2261
2262 pad = need % sizeof(u_int32_t);
2263 if (pad) {
2264 /*
2265 * FLUSH internal data buffer. pad out with random data from the front
2266 * of the mbuf chain...
2267 */
2268 bcode = (sc->is_adaptec) ? 0 : MIDDMA_BYTE;
2269 EN_COUNT(sc->tailflush);
2270 EN_WRAPADD(start, stop, cur, pad);
2271 EN_DTQADD(sc, pad, chan, bcode, vtophys(l->t->m_data), 0, 0);
2272 need -= pad;
2273#ifdef EN_DEBUG
2274 printf("%s: tx%d: pad/FLUSH dma %d bytes (%d left, cur now 0x%x)\n",
2275 sc->sc_dev.dv_xname, chan, pad, need, cur);
2276#endif
2277 }
2278
2279 /* copy data */
2280 pad = need / sizeof(u_int32_t); /* round *down* */
2281 if (l->aal == MID_TBD_AAL5)
2282 pad -= 2;
2283#ifdef EN_DEBUG
2284 printf("%s: tx%d: padding %d bytes (cur now 0x%x)\n",
2285 sc->sc_dev.dv_xname, chan, pad * sizeof(u_int32_t), cur);
2286#endif
2287 while (pad--) {
2288 EN_WRITEDAT(sc, cur, 0); /* no byte order issues with zero */
2289 EN_WRAPADD(start, stop, cur, 4);
2290 }
2291 if (l->aal == MID_TBD_AAL5) {
2292 EN_WRITE(sc, cur, l->pdu1); /* in host byte order */
2293 EN_WRAPADD(start, stop, cur, 8);
2294 }
2295 }
2296
2297 if (addtail || dma != cur) {
2298 /* write final descritor */
2299 EN_DTQADD(sc, WORD_IDX(start,cur), chan, MIDDMA_JK, 0,
2300 l->mlen, MID_DMA_END);
2301 /* dma = cur; */ /* not necessary since we are done */
2302 }
2303
2304done:
2305 /* update current pointer */
2306 sc->txslot[chan].cur = cur;
2307#ifdef EN_DEBUG
2308 printf("%s: tx%d: DONE! cur now = 0x%x\n",
2309 sc->sc_dev.dv_xname, chan, cur);
2310#endif
2311
2312 return;
2313}
2314
2315
2316/*
2317 * interrupt handler
2318 */
2319
2320EN_INTR_TYPE en_intr(arg)
2321
2322void *arg;
2323
2324{
2325 struct en_softc *sc = (struct en_softc *) arg;
2326 struct mbuf *m;
2327 struct atm_pseudohdr ah;
2328 u_int32_t reg, kick, val, mask, chip, vci, slot, dtq, drq;
2329 int lcv, idx, need_softserv = 0;
2330
2331 reg = EN_READ(sc, MID_INTACK);
2332
2333 if ((reg & MID_INT_ANY) == 0)
2334 EN_INTR_RET(0); /* not us */
2335
2336#ifdef EN_DEBUG
2337 printf("%s: interrupt=0x%b\n", sc->sc_dev.dv_xname, reg, MID_INTBITS);
2338#endif
2339
2340 /*
2341 * unexpected errors that need a reset
2342 */
2343
2344 if ((reg & (MID_INT_IDENT|MID_INT_LERR|MID_INT_DMA_ERR|MID_INT_SUNI)) != 0) {
2345 printf("%s: unexpected interrupt=0x%b, resetting card\n",
2346 sc->sc_dev.dv_xname, reg, MID_INTBITS);
2347#ifdef EN_DEBUG
2348#ifdef DDB
2349 Debugger();
2350#endif /* DDB */
2351 sc->enif.if_flags &= ~IFF_RUNNING; /* FREEZE! */
2352#else
2353 en_reset(sc);
2354 en_init(sc);
2355#endif
2356 EN_INTR_RET(1); /* for us */
2357 }
2358
2359 /*******************
2360 * xmit interrupts *
2361 ******************/
2362
2363 kick = 0; /* bitmask of channels to kick */
2364 if (reg & MID_INT_TX) { /* TX done! */
2365
2366 /*
2367 * check for tx complete, if detected then this means that some space
2368 * has come free on the card. we must account for it and arrange to
2369 * kick the channel to life (in case it is stalled waiting on the card).
2370 */
2371 for (mask = 1, lcv = 0 ; lcv < EN_NTX ; lcv++, mask = mask * 2) {
2372 if (reg & MID_TXCHAN(lcv)) {
2373 kick = kick | mask; /* want to kick later */
2374 val = EN_READ(sc, MIDX_READPTR(lcv)); /* current read pointer */
2375 val = (val * sizeof(u_int32_t)) + sc->txslot[lcv].start;
2376 /* convert to offset */
2377 if (val > sc->txslot[lcv].cur)
2378 sc->txslot[lcv].bfree = val - sc->txslot[lcv].cur;
2379 else
2380 sc->txslot[lcv].bfree = (val + (EN_TXSZ*1024)) - sc->txslot[lcv].cur;
2381#ifdef EN_DEBUG
2382 printf("%s: tx%d: trasmit done. %d bytes now free in buffer\n",
2383 sc->sc_dev.dv_xname, lcv, sc->txslot[lcv].bfree);
2384#endif
2385 }
2386 }
2387 }
2388
2389 if (reg & MID_INT_DMA_TX) { /* TX DMA done! */
2390
2391 /*
2392 * check for TX DMA complete, if detected then this means that some DTQs
2393 * are now free. it also means some indma mbufs can be freed.
2394 * if we needed DTQs, kick all channels.
2395 */
2396 val = EN_READ(sc, MID_DMA_RDTX); /* chip's current location */
2397 idx = MID_DTQ_A2REG(sc->dtq_chip);/* where we last saw chip */
2398 if (sc->need_dtqs) {
2399 kick = MID_NTX_CH - 1; /* assume power of 2, kick all! */
2400 sc->need_dtqs = 0; /* recalculated in "kick" loop below */
2401#ifdef EN_DEBUG
2402 printf("%s: cleared need DTQ condition\n", sc->sc_dev.dv_xname);
2403#endif
2404 }
2405 while (idx != val) {
2406 sc->dtq_free++;
2407 if ((dtq = sc->dtq[idx]) != 0) {
2408 sc->dtq[idx] = 0; /* don't forget to zero it out when done */
2409 slot = EN_DQ_SLOT(dtq);
2410 IF_DEQUEUE(&sc->txslot[slot].indma, m);
2411 if (!m) panic("enintr: dtqsync");
2412 sc->txslot[slot].mbsize -= EN_DQ_LEN(dtq);
2413#ifdef EN_DEBUG
2414 printf("%s: tx%d: free %d dma bytes, mbsize now %d\n",
2415 sc->sc_dev.dv_xname, slot, EN_DQ_LEN(dtq),
2416 sc->txslot[slot].mbsize);
2417#endif
2418 m_freem(m);
2419 }
2420 EN_WRAPADD(0, MID_DTQ_N, idx, 1);
2421 }
2422 sc->dtq_chip = MID_DTQ_REG2A(val); /* sync softc */
2423 }
2424
2425
2426 /*
2427 * kick xmit channels as needed
2428 */
2429
2430 if (kick) {
2431#ifdef EN_DEBUG
2432 printf("%s: tx kick mask = 0x%x\n", sc->sc_dev.dv_xname, kick);
2433#endif
2434 for (mask = 1, lcv = 0 ; lcv < EN_NTX ; lcv++, mask = mask * 2) {
2435 if ((kick & mask) && sc->txslot[lcv].q.ifq_head) {
2436 en_txdma(sc, lcv); /* kick it! */
2437 }
2438 } /* for each slot */
2439 } /* if kick */
2440
2441
2442 /*******************
2443 * recv interrupts *
2444 ******************/
2445
2446 /*
2447 * check for RX DMA complete, and pass the data "upstairs"
2448 */
2449
2450 if (reg & MID_INT_DMA_RX) {
2451 val = EN_READ(sc, MID_DMA_RDRX); /* chip's current location */
2452 idx = MID_DRQ_A2REG(sc->drq_chip);/* where we last saw chip */
2453 while (idx != val) {
2454 sc->drq_free++;
2455 if ((drq = sc->drq[idx]) != 0) {
2456 sc->drq[idx] = 0; /* don't forget to zero it out when done */
2457 slot = EN_DQ_SLOT(drq);
2458 if (EN_DQ_LEN(drq) == 0) { /* "JK" trash DMA? */
2459 m = NULL;
2460 } else {
2461 IF_DEQUEUE(&sc->rxslot[slot].indma, m);
2462 if (!m) {
2463 printf("%s: lost mbuf in slot %d!\n", sc->sc_dev.dv_xname, slot);
2464 panic("enintr: drqsync");
2465 }
2466 }
2467 /* do something with this mbuf */
2468 if (sc->rxslot[slot].oth_flags & ENOTHER_DRAIN) { /* drain? */
2469 if (m)
2470 m_freem(m);
2471 vci = sc->rxslot[slot].atm_vci;
2472 if (sc->rxslot[slot].indma.ifq_head == NULL &&
2473 sc->rxslot[slot].q.ifq_head == NULL &&
2474 (EN_READ(sc, MID_VC(vci)) & MIDV_INSERVICE) == 0 &&
2475 (sc->rxslot[slot].oth_flags & ENOTHER_SWSL) == 0) {
2476 sc->rxslot[slot].oth_flags = ENOTHER_FREE; /* done drain */
2477 sc->rxslot[slot].atm_vci = RX_NONE;
2478 sc->rxvc2slot[vci] = RX_NONE;
2479#ifdef EN_DEBUG
2480 printf("%s: rx%d: VCI %d now free\n", sc->sc_dev.dv_xname,
2481 slot, vci);
2482#endif
2483 }
2484 } else if (m != NULL) {
2485 ATM_PH_FLAGS(&ah) = sc->rxslot[slot].atm_flags;
2486 ATM_PH_VPI(&ah) = 0;
2487 ATM_PH_SETVCI(&ah, sc->rxslot[slot].atm_vci);
2488#ifdef EN_DEBUG
2489 printf("%s: rx%d: rxvci%d: atm_input, mbuf %p, len %d, hand %p\n",
2490 sc->sc_dev.dv_xname, slot, sc->rxslot[slot].atm_vci, m,
2491 EN_DQ_LEN(drq), sc->rxslot[slot].rxhand);
2492#endif
2493 sc->enif.if_ipackets++;
2494
2495 atm_input(&sc->enif, &ah, m, sc->rxslot[slot].rxhand);
2496 }
2497
2498 }
2499 EN_WRAPADD(0, MID_DRQ_N, idx, 1);
2500 }
2501 sc->drq_chip = MID_DRQ_REG2A(val); /* sync softc */
2502
2503 if (sc->need_drqs) { /* true if we had a DRQ shortage */
2504 need_softserv = 1;
2505 sc->need_drqs = 0;
2506#ifdef EN_DEBUG
2507 printf("%s: cleared need DRQ condition\n", sc->sc_dev.dv_xname);
2508#endif
2509 }
2510 }
2511
2512 /*
2513 * handle service interrupts
2514 */
2515
2516 if (reg & MID_INT_SERVICE) {
2517 chip = MID_SL_REG2A(EN_READ(sc, MID_SERV_WRITE));
2518
2519 while (sc->hwslistp != chip) {
2520
2521 /* fetch and remove it from hardware service list */
2522 vci = EN_READ(sc, sc->hwslistp);
2523 EN_WRAPADD(MID_SLOFF, MID_SLEND, sc->hwslistp, 4);/* advance hw ptr */
2524 slot = sc->rxvc2slot[vci];
2525 if (slot == RX_NONE) {
2526#ifdef EN_DEBUG
2527 printf("%s: unexpected rx interrupt on VCI %d\n",
2528 sc->sc_dev.dv_xname, vci);
2529#endif
2530 EN_WRITE(sc, MID_VC(vci), MIDV_TRASH); /* rx off, damn it! */
2531 continue; /* next */
2532 }
2533 EN_WRITE(sc, MID_VC(vci), sc->rxslot[slot].mode); /* remove from hwsl */
2534 EN_COUNT(sc->hwpull);
2535
2536#ifdef EN_DEBUG
2537 printf("%s: pulled VCI %d off hwslist\n", sc->sc_dev.dv_xname, vci);
2538#endif
2539
2540 /* add it to the software service list (if needed) */
2541 if ((sc->rxslot[slot].oth_flags & ENOTHER_SWSL) == 0) {
2542 EN_COUNT(sc->swadd);
2543 need_softserv = 1;
2544 sc->rxslot[slot].oth_flags |= ENOTHER_SWSL;
2545 sc->swslist[sc->swsl_tail] = slot;
2546 EN_WRAPADD(0, MID_SL_N, sc->swsl_tail, 1);
2547 sc->swsl_size++;
2548#ifdef EN_DEBUG
2549 printf("%s: added VCI %d to swslist\n", sc->sc_dev.dv_xname, vci);
2550#endif
2551 }
2552 }
2553 }
2554
2555 /*
2556 * now service (function too big to include here)
2557 */
2558
2559 if (need_softserv)
2560 en_service(sc);
2561
2562 /*
2563 * keep our stats
2564 */
2565
2566 if (reg & MID_INT_DMA_OVR) {
2567 EN_COUNT(sc->dmaovr);
2568#ifdef EN_DEBUG
2569 printf("%s: MID_INT_DMA_OVR\n", sc->sc_dev.dv_xname);
2570#endif
2571 }
2572 reg = EN_READ(sc, MID_STAT);
2573#ifdef EN_STAT
2574 sc->otrash += MID_OTRASH(reg);
2575 sc->vtrash += MID_VTRASH(reg);
2576#endif
2577
2578 EN_INTR_RET(1); /* for us */
2579}
2580
2581
2582/*
2583 * en_service: handle a service interrupt
2584 *
2585 * Q: why do we need a software service list?
2586 *
2587 * A: if we remove a VCI from the hardware list and we find that we are
2588 * out of DRQs we must defer processing until some DRQs become free.
2589 * so we must remember to look at this RX VCI/slot later, but we can't
2590 * put it back on the hardware service list (since that isn't allowed).
2591 * so we instead save it on the software service list. it would be nice
2592 * if we could peek at the VCI on top of the hwservice list without removing
2593 * it, however this leads to a race condition: if we peek at it and
2594 * decide we are done with it new data could come in before we have a
2595 * chance to remove it from the hwslist. by the time we get it out of
2596 * the list the interrupt for the new data will be lost. oops!
2597 *
2598 */
2599
2600STATIC void en_service(sc)
2601
2602struct en_softc *sc;
2603
2604{
2605 struct mbuf *m, *tmp;
2606 u_int32_t cur, dstart, rbd, pdu, *sav, dma, bcode, count, *data, *datastop;
2607 u_int32_t start, stop, cnt, needalign;
2608 int slot, raw, aal5, llc, vci, fill, mlen, tlen, drqneed, need, needfill, end;
2609
2610 aal5 = 0; /* Silence gcc */
2611next_vci:
2612 if (sc->swsl_size == 0) {
2613#ifdef EN_DEBUG
2614 printf("%s: en_service done\n", sc->sc_dev.dv_xname);
2615#endif
2616 return; /* >>> exit here if swsl now empty <<< */
2617 }
2618
2619 /*
2620 * get slot/vci to service
2621 */
2622
2623 slot = sc->swslist[sc->swsl_head];
2624 vci = sc->rxslot[slot].atm_vci;
2625#ifdef EN_DIAG
2626 if (sc->rxvc2slot[vci] != slot) panic("en_service rx slot/vci sync");
2627#endif
2628
2629 /*
2630 * determine our mode and if we've got any work to do
2631 */
2632
2633 raw = sc->rxslot[slot].oth_flags & ENOTHER_RAW;
2634 start= sc->rxslot[slot].start;
2635 stop= sc->rxslot[slot].stop;
2636 cur = sc->rxslot[slot].cur;
2637
2638#ifdef EN_DEBUG
2639 printf("%s: rx%d: service vci=%d raw=%d start/stop/cur=0x%x 0x%x 0x%x\n",
2640 sc->sc_dev.dv_xname, slot, vci, raw, start, stop, cur);
2641#endif
2642
2643same_vci:
2644 dstart = MIDV_DSTART(EN_READ(sc, MID_DST_RP(vci)));
2645 dstart = (dstart * sizeof(u_int32_t)) + start;
2646
2647 /* check to see if there is any data at all */
2648 if (dstart == cur) {
2649defer: /* defer processing */
2650 EN_WRAPADD(0, MID_SL_N, sc->swsl_head, 1);
2651 sc->rxslot[slot].oth_flags &= ~ENOTHER_SWSL;
2652 sc->swsl_size--;
2653 /* >>> remove from swslist <<< */
2654#ifdef EN_DEBUG
2655 printf("%s: rx%d: remove vci %d from swslist\n",
2656 sc->sc_dev.dv_xname, slot, vci);
2657#endif
2658 goto next_vci;
2659 }
2660
2661 /*
2662 * figure out how many bytes we need
2663 * [mlen = # bytes to go in mbufs, fill = # bytes to dump (MIDDMA_JK)]
2664 */
2665
2666 if (raw) {
2667
2668 /* raw mode (aka boodi mode) */
2669 fill = 0;
2670 if (dstart > cur)
2671 mlen = dstart - cur;
2672 else
2673 mlen = (dstart + (EN_RXSZ*1024)) - cur;
2674
2675 if (mlen < sc->rxslot[slot].raw_threshold)
2676 goto defer; /* too little data to deal with */
2677
2678 } else {
2679
2680 /* normal mode */
2681 aal5 = (sc->rxslot[slot].atm_flags & ATM_PH_AAL5);
2682 llc = (aal5 && (sc->rxslot[slot].atm_flags & ATM_PH_LLCSNAP)) ? 1 : 0;
2683 rbd = EN_READ(sc, cur);
2684 if (MID_RBD_ID(rbd) != MID_RBD_STDID)
2685 panic("en_service: id mismatch\n");
2686
2687 if (rbd & MID_RBD_T) {
2688 mlen = 0; /* we've got trash */
2689 fill = MID_RBD_SIZE;
2690 EN_COUNT(sc->ttrash);
2691 } else if (!aal5) {
2692 mlen = MID_RBD_SIZE + MID_CHDR_SIZE + MID_ATMDATASZ; /* 1 cell (ick!) */
2693 fill = 0;
2694 } else {
2695 tlen = (MID_RBD_CNT(rbd) * MID_ATMDATASZ) + MID_RBD_SIZE;
2696 pdu = cur + tlen - MID_PDU_SIZE;
2697 if (pdu >= stop)
2698 pdu -= (EN_RXSZ*1024);
2699 pdu = EN_READ(sc, pdu); /* get PDU in correct byte order */
2700 fill = tlen - MID_RBD_SIZE - MID_PDU_LEN(pdu);
2701 if (fill < 0 || (rbd & MID_RBD_CRCERR) != 0) {
2702 printf("%s: invalid AAL5 PDU length or CRC detected, dropping frame\n",
2703 sc->sc_dev.dv_xname);
2704 printf("%s: got %d cells (%d bytes), AAL5 len is %d bytes (pdu=0x%x) CRCERR=%d\n",
2705 sc->sc_dev.dv_xname, MID_RBD_CNT(rbd), tlen - MID_RBD_SIZE,
2706 MID_PDU_LEN(pdu), pdu, (rbd & MID_RBD_CRCERR)?1:0);
2707 fill = tlen;
2708 }
2709 mlen = tlen - fill;
2710 }
2711
2712 }
2713
2714 /*
2715 * now allocate mbufs for mlen bytes of data, if out of mbufs, trash all
2716 *
2717 * notes:
2718 * 1. it is possible that we've already allocated an mbuf for this pkt
2719 * but ran out of DRQs, in which case we saved the allocated mbuf on
2720 * "q".
2721 * 2. if we save an mbuf in "q" we store the "cur" (pointer) in the front
2722 * of the mbuf as an identity (that we can check later), and we also
2723 * store drqneed (so we don't have to recompute it).
2724 * 3. after this block of code, if m is still NULL then we ran out of mbufs
2725 */
2726
2727 m = sc->rxslot[slot].q.ifq_head;
2728 drqneed = 1;
2729 if (m) {
2730 sav = mtod(m, u_int32_t *);
2731 if (sav[0] != cur) {
2732#ifdef EN_DEBUG
2733 printf("%s: rx%d: q'ed mbuf %p not ours\n",
2734 sc->sc_dev.dv_xname, slot, m);
2735#endif
2736 m = NULL; /* wasn't ours */
2737 EN_COUNT(sc->rxqnotus);
2738 } else {
2739 EN_COUNT(sc->rxqus);
2740 IF_DEQUEUE(&sc->rxslot[slot].q, m);
2741 drqneed = sav[1];
2742#ifdef EN_DEBUG
2743 printf("%s: rx%d: recovered q'ed mbuf %p (drqneed=%d)\n",
2744 sc->sc_dev.dv_xname, slot, m, drqneed);
2745#endif
2746 }
2747 }
2748
2749 if (mlen != 0 && m == NULL) {
2750 m = en_mget(sc, mlen, &drqneed); /* allocate! */
2751 if (m == NULL) {
2752 fill += mlen;
2753 mlen = 0;
2754 EN_COUNT(sc->rxmbufout);
2755#ifdef EN_DEBUG
2756 printf("%s: rx%d: out of mbufs\n", sc->sc_dev.dv_xname, slot);
2757#endif
2758 }
2759#ifdef EN_DEBUG
2760 printf("%s: rx%d: allocate mbuf %p, mlen=%d, drqneed=%d\n",
2761 sc->sc_dev.dv_xname, slot, m, mlen, drqneed);
2762#endif
2763 }
2764
2765#ifdef EN_DEBUG
2766 printf("%s: rx%d: VCI %d, mbuf_chain %p, mlen %d, fill %d\n",
2767 sc->sc_dev.dv_xname, slot, vci, m, mlen, fill);
2768#endif
2769
2770 /*
2771 * now check to see if we've got the DRQs needed. if we are out of
2772 * DRQs we must quit (saving our mbuf, if we've got one).
2773 */
2774
2775 needfill = (fill) ? 1 : 0;
2776 if (drqneed + needfill > sc->drq_free) {
2777 sc->need_drqs = 1; /* flag condition */
2778 if (m == NULL) {
2779 EN_COUNT(sc->rxoutboth);
2780#ifdef EN_DEBUG
2781 printf("%s: rx%d: out of DRQs *and* mbufs!\n", sc->sc_dev.dv_xname, slot);
2782#endif
2783 return; /* >>> exit here if out of both mbufs and DRQs <<< */
2784 }
2785 sav = mtod(m, u_int32_t *);
2786 sav[0] = cur;
2787 sav[1] = drqneed;
2788 IF_ENQUEUE(&sc->rxslot[slot].q, m);
2789 EN_COUNT(sc->rxdrqout);
2790#ifdef EN_DEBUG
2791 printf("%s: rx%d: out of DRQs\n", sc->sc_dev.dv_xname, slot);
2792#endif
2793 return; /* >>> exit here if out of DRQs <<< */
2794 }
2795
2796 /*
2797 * at this point all resources have been allocated and we are commited
2798 * to servicing this slot.
2799 *
2800 * dma = last location we told chip about
2801 * cur = current location
2802 * mlen = space in the mbuf we want
2803 * need = bytes to xfer in (decrs to zero)
2804 * fill = how much fill we need
2805 * tlen = how much data to transfer to this mbuf
2806 * cnt/bcode/count = <same as xmit>
2807 *
2808 * 'needfill' not used after this point
2809 */
2810
2811 dma = cur; /* dma = last location we told chip about */
2812 need = roundup(mlen, sizeof(u_int32_t));
2813 fill = fill - (need - mlen); /* note: may invalidate 'needfill' */
2814
2815 for (tmp = m ; tmp != NULL && need > 0 ; tmp = tmp->m_next) {
2816 tlen = roundup(tmp->m_len, sizeof(u_int32_t)); /* m_len set by en_mget */
2817 data = mtod(tmp, u_int32_t *);
2818
2819#ifdef EN_DEBUG
2820 printf("%s: rx%d: load mbuf %p, m_len=%d, m_data=%p, tlen=%d\n",
2821 sc->sc_dev.dv_xname, slot, tmp, tmp->m_len, tmp->m_data, tlen);
2822#endif
2823
2824 /* copy data */
2825 if (EN_NORXDMA || !en_dma || tlen < EN_MINDMA) {
2826 datastop = (u_int32_t *)((u_char *) data + tlen);
2827 /* copy loop: preserve byte order!!! use READDAT */
2828 while (data != datastop) {
2829 *data = EN_READDAT(sc, cur);
2830 data++;
2831 EN_WRAPADD(start, stop, cur, 4);
2832 }
2833 need -= tlen;
2834#ifdef EN_DEBUG
2835 printf("%s: rx%d: vci%d: copied %d bytes (%d left)\n",
2836 sc->sc_dev.dv_xname, slot, vci, tlen, need);
2837#endif
2838 continue;
2839 }
2840
2841 /* DMA data (check to see if we need to sync DRQ first) */
2842 if (dma != cur) {
2843 EN_DRQADD(sc, WORD_IDX(start,cur), vci, MIDDMA_JK, 0, 0, 0, 0);
2844#ifdef EN_DEBUG
2845 printf("%s: rx%d: vci%d: drq_sync: advance pointer to %d\n",
2846 sc->sc_dev.dv_xname, slot, vci, cur);
2847#endif
2848 }
2849
2850#if !defined(MIDWAY_ENIONLY)
2851
2852 /*
2853 * the adaptec DMA engine is smart and handles everything for us.
2854 */
2855
2856 if (sc->is_adaptec) {
2857 need -= tlen;
2858 EN_WRAPADD(start, stop, cur, tlen);
2859#ifdef EN_DEBUG
2860 printf("%s: rx%d: vci%d: adp_dma %d bytes (%d left)\n",
2861 sc->sc_dev.dv_xname, slot, vci, tlen, need);
2862#endif
2863 end = (need == 0 && !fill) ? MID_DMA_END : 0;
2864 EN_DRQADD(sc, tlen, vci, 0, vtophys(data), mlen, slot, end);
2865 if (end)
2866 goto done;
2867 dma = cur; /* update dma pointer */
2868 continue;
2869 }
2870#endif /* !MIDWAY_ENIONLY */
2871
2872
2873#if !defined(MIDWAY_ADPONLY)
2874
2875 /*
2876 * the ENI DMA engine is not so smart and need more help from us
2877 */
2878
2879 /* do we need to do a DMA op to align? */
2880 if (sc->alburst &&
2881 (needalign = (((unsigned long) data) & sc->bestburstmask)) != 0) {
2882 cnt = sc->bestburstlen - needalign;
2883 if (cnt > tlen) {
2884 cnt = tlen;
2885 count = cnt / sizeof(u_int32_t);
2886 bcode = MIDDMA_WORD;
2887 } else {
2888 count = cnt / sizeof(u_int32_t);
2889 bcode = en_dmaplan[count].bcode;
2890 count = cnt >> en_dmaplan[count].divshift;
2891 }
2892 need -= cnt;
2893 EN_WRAPADD(start, stop, cur, cnt);
2894#ifdef EN_DEBUG
2895 printf("%s: rx%d: vci%d: al_dma %d bytes (%d left)\n",
2896 sc->sc_dev.dv_xname, slot, vci, cnt, need);
2897#endif
2898 tlen -= cnt;
2899 end = (need == 0 && !fill) ? MID_DMA_END : 0;
2900 EN_DRQADD(sc, count, vci, bcode, vtophys(data), mlen, slot, end);
2901 if (end)
2902 goto done;
2903 data = (u_int32_t *)((u_char *) data + cnt);
2904 }
2905
2906 /* do we need a max-sized burst? */
2907 if (tlen >= sc->bestburstlen) {
2908 count = tlen >> sc->bestburstshift;
2909 cnt = count << sc->bestburstshift;
2910 bcode = sc->bestburstcode;
2911 need -= cnt;
2912 EN_WRAPADD(start, stop, cur, cnt);
2913#ifdef EN_DEBUG
2914 printf("%s: rx%d: vci%d: best_dma %d bytes (%d left)\n",
2915 sc->sc_dev.dv_xname, slot, vci, cnt, need);
2916#endif
2917 tlen -= cnt;
2918 end = (need == 0 && !fill) ? MID_DMA_END : 0;
2919 EN_DRQADD(sc, count, vci, bcode, vtophys(data), mlen, slot, end);
2920 if (end)
2921 goto done;
2922 data = (u_int32_t *)((u_char *) data + cnt);
2923 }
2924
2925 /* do we need to do a cleanup burst? */
2926 if (tlen) {
2927 count = tlen / sizeof(u_int32_t);
2928 bcode = en_dmaplan[count].bcode;
2929 count = tlen >> en_dmaplan[count].divshift;
2930 need -= tlen;
2931 EN_WRAPADD(start, stop, cur, tlen);
2932#ifdef EN_DEBUG
2933 printf("%s: rx%d: vci%d: cleanup_dma %d bytes (%d left)\n",
2934 sc->sc_dev.dv_xname, slot, vci, tlen, need);
2935#endif
2936 end = (need == 0 && !fill) ? MID_DMA_END : 0;
2937 EN_DRQADD(sc, count, vci, bcode, vtophys(data), mlen, slot, end);
2938 if (end)
2939 goto done;
2940 }
2941
2942 dma = cur; /* update dma pointer */
2943
2944#endif /* !MIDWAY_ADPONLY */
2945
2946 }
2947
2948 /* skip the end */
2949 if (fill || dma != cur) {
2950#ifdef EN_DEBUG
2951 if (fill)
2952 printf("%s: rx%d: vci%d: skipping %d bytes of fill\n",
2953 sc->sc_dev.dv_xname, slot, vci, fill);
2954 else
2955 printf("%s: rx%d: vci%d: syncing chip from 0x%x to 0x%x [cur]\n",
2956 sc->sc_dev.dv_xname, slot, vci, dma, cur);
2957#endif
2958 EN_WRAPADD(start, stop, cur, fill);
2959 EN_DRQADD(sc, WORD_IDX(start,cur), vci, MIDDMA_JK, 0, mlen,
2960 slot, MID_DMA_END);
2961 /* dma = cur; */ /* not necessary since we are done */
2962 }
2963
2964 /*
2965 * done, remove stuff we don't want to pass up:
2966 * raw mode (boodi mode): pass everything up for later processing
2967 * aal5: remove RBD
2968 * aal0: remove RBD + cell header
2969 */
2970
2971done:
2972 if (m) {
2973 if (!raw) {
2974 cnt = MID_RBD_SIZE;
2975 if (!aal5) cnt += MID_CHDR_SIZE;
2976 m->m_len -= cnt; /* chop! */
2977 m->m_pkthdr.len -= cnt;
2978 m->m_data += cnt;
2979 }
2980 IF_ENQUEUE(&sc->rxslot[slot].indma, m);
2981 }
2982 sc->rxslot[slot].cur = cur; /* update master copy of 'cur' */
2983
2984#ifdef EN_DEBUG
2985 printf("%s: rx%d: vci%d: DONE! cur now =0x%x\n",
2986 sc->sc_dev.dv_xname, slot, vci, cur);
2987#endif
2988
2989 goto same_vci; /* get next packet in this slot */
2990}
2991
2992
2993#ifdef EN_DDBHOOK
2994/*
2995 * functions we can call from ddb
2996 */
2997
2998/*
2999 * en_dump: dump the state
3000 */
3001
3002#define END_SWSL 0x00000040 /* swsl state */
3003#define END_DRQ 0x00000020 /* drq state */
3004#define END_DTQ 0x00000010 /* dtq state */
3005#define END_RX 0x00000008 /* rx state */
3006#define END_TX 0x00000004 /* tx state */
3007#define END_MREGS 0x00000002 /* registers */
3008#define END_STATS 0x00000001 /* dump stats */
3009
3010#define END_BITS "\20\7SWSL\6DRQ\5DTQ\4RX\3TX\2MREGS\1STATS"
3011
3012int en_dump(unit, level)
3013
3014int unit, level;
3015
3016{
3017 struct en_softc *sc;
3018 int lcv, cnt, slot;
3019 u_int32_t ptr, reg;
3020
3021 for (lcv = 0 ; lcv < en_cd.cd_ndevs ; lcv++) {
3022 sc = (struct en_softc *) en_cd.cd_devs[lcv];
3023 if (sc == NULL) continue;
3024 if (unit != -1 && unit != lcv)
3025 continue;
3026
3027 printf("dumping device %s at level 0x%b\n", sc->sc_dev.dv_xname, level,
3028 END_BITS);
3029
3030 if (sc->dtq_us == 0) {
3031 printf("<hasn't been en_init'd yet>\n");
3032 continue;
3033 }
3034
3035 if (level & END_STATS) {
3036 printf(" en_stats:\n");
3037 printf(" %d mfix (%d failed); %d/%d head/tail byte DMAs, %d flushes\n",
3038 sc->mfix, sc->mfixfail, sc->headbyte, sc->tailbyte, sc->tailflush);
3039 printf(" %d rx dma overflow interrupts\n", sc->dmaovr);
3040 printf(" %d times we ran out of TX space and stalled\n",
3041 sc->txoutspace);
3042 printf(" %d times we ran out of DTQs\n", sc->txdtqout);
3043 printf(" %d times we launched a packet\n", sc->launch);
3044 printf(" %d times we launched without on-board header\n", sc->lheader);
3045 printf(" %d times we launched without on-board tail\n", sc->ltail);
3046 printf(" %d times we pulled the hw service list\n", sc->hwpull);
3047 printf(" %d times we pushed a vci on the sw service list\n",
3048 sc->swadd);
3049 printf(" %d times RX pulled an mbuf from Q that wasn't ours\n",
3050 sc->rxqnotus);
3051 printf(" %d times RX pulled a good mbuf from Q\n", sc->rxqus);
3052 printf(" %d times we ran out of mbufs *and* DRQs\n", sc->rxoutboth);
3053 printf(" %d times we ran out of DRQs\n", sc->rxdrqout);
3054
3055 printf(" %d trasmit packets dropped due to mbsize\n", sc->txmbovr);
3056 printf(" %d cells trashed due to turned off rxvc\n", sc->vtrash);
3057 printf(" %d cells trashed due to totally full buffer\n", sc->otrash);
3058 printf(" %d cells trashed due almost full buffer\n", sc->ttrash);
3059 printf(" %d rx mbuf allocation failures\n", sc->rxmbufout);
3060#ifdef NATM
3061 printf(" %d drops at natmintrq\n", natmintrq.ifq_drops);
3062#ifdef NATM_STAT
3063 printf(" natmintr so_rcv: ok/drop cnt: %d/%d, ok/drop bytes: %d/%d\n",
3064 natm_sookcnt, natm_sodropcnt, natm_sookbytes, natm_sodropbytes);
3065#endif
3066#endif
3067 }
3068
3069 if (level & END_MREGS) {
3070 printf("mregs:\n");
3071 printf("resid = 0x%x\n", EN_READ(sc, MID_RESID));
3072 printf("interrupt status = 0x%b\n",
3073 EN_READ(sc, MID_INTSTAT), MID_INTBITS);
3074 printf("interrupt enable = 0x%b\n",
3075 EN_READ(sc, MID_INTENA), MID_INTBITS);
3076 printf("mcsr = 0x%b\n", EN_READ(sc, MID_MAST_CSR), MID_MCSRBITS);
3077 printf("serv_write = [chip=%d] [us=%d]\n", EN_READ(sc, MID_SERV_WRITE),
3078 MID_SL_A2REG(sc->hwslistp));
3079 printf("dma addr = 0x%x\n", EN_READ(sc, MID_DMA_ADDR));
3080 printf("DRQ: chip[rd=0x%x,wr=0x%x], sc[chip=0x%x,us=0x%x]\n",
3081 MID_DRQ_REG2A(EN_READ(sc, MID_DMA_RDRX)),
3082 MID_DRQ_REG2A(EN_READ(sc, MID_DMA_WRRX)), sc->drq_chip, sc->drq_us);
3083 printf("DTQ: chip[rd=0x%x,wr=0x%x], sc[chip=0x%x,us=0x%x]\n",
3084 MID_DTQ_REG2A(EN_READ(sc, MID_DMA_RDTX)),
3085 MID_DTQ_REG2A(EN_READ(sc, MID_DMA_WRTX)), sc->dtq_chip, sc->dtq_us);
3086
3087 printf(" unusal txspeeds: ");
3088 for (cnt = 0 ; cnt < MID_N_VC ; cnt++)
3089 if (sc->txspeed[cnt])
3090 printf(" vci%d=0x%x", cnt, sc->txspeed[cnt]);
3091 printf("\n");
3092
3093 printf(" rxvc slot mappings: ");
3094 for (cnt = 0 ; cnt < MID_N_VC ; cnt++)
3095 if (sc->rxvc2slot[cnt] != RX_NONE)
3096 printf(" %d->%d", cnt, sc->rxvc2slot[cnt]);
3097 printf("\n");
3098
3099 }
3100
3101 if (level & END_TX) {
3102 printf("tx:\n");
3103 for (slot = 0 ; slot < EN_NTX; slot++) {
3104 printf("tx%d: start/stop/cur=0x%x/0x%x/0x%x [%d] ", slot,
3105 sc->txslot[slot].start, sc->txslot[slot].stop, sc->txslot[slot].cur,
3106 (sc->txslot[slot].cur - sc->txslot[slot].start)/4);
3107 printf("mbsize=%d, bfree=%d\n", sc->txslot[slot].mbsize,
3108 sc->txslot[slot].bfree);
3109 printf("txhw: base_address=0x%x, size=%d, read=%d, descstart=%d\n",
3110 MIDX_BASE(EN_READ(sc, MIDX_PLACE(slot))),
3111 MIDX_SZ(EN_READ(sc, MIDX_PLACE(slot))),
3112 EN_READ(sc, MIDX_READPTR(slot)), EN_READ(sc, MIDX_DESCSTART(slot)));
3113 }
3114 }
3115
3116 if (level & END_RX) {
3117 printf(" recv slots:\n");
3118 for (slot = 0 ; slot < sc->en_nrx; slot++) {
3119 printf("rx%d: vci=%d: start/stop/cur=0x%x/0x%x/0x%x ", slot,
3120 sc->rxslot[slot].atm_vci, sc->rxslot[slot].start,
3121 sc->rxslot[slot].stop, sc->rxslot[slot].cur);
3122 printf("mode=0x%x, atm_flags=0x%x, oth_flags=0x%x\n",
3123 sc->rxslot[slot].mode, sc->rxslot[slot].atm_flags,
3124 sc->rxslot[slot].oth_flags);
3125 printf("RXHW: mode=0x%x, DST_RP=0x%x, WP_ST_CNT=0x%x\n",
3126 EN_READ(sc, MID_VC(sc->rxslot[slot].atm_vci)),
3127 EN_READ(sc, MID_DST_RP(sc->rxslot[slot].atm_vci)),
3128 EN_READ(sc, MID_WP_ST_CNT(sc->rxslot[slot].atm_vci)));
3129 }
3130 }
3131
3132 if (level & END_DTQ) {
3133 printf(" dtq [need_dtqs=%d,dtq_free=%d]:\n",
3134 sc->need_dtqs, sc->dtq_free);
3135 ptr = sc->dtq_chip;
3136 while (ptr != sc->dtq_us) {
3137 reg = EN_READ(sc, ptr);
3138 printf("\t0x%x=[cnt=%d, chan=%d, end=%d, type=%d @ 0x%x]\n",
3139 sc->dtq[MID_DTQ_A2REG(ptr)], MID_DMA_CNT(reg), MID_DMA_TXCHAN(reg),
3140 (reg & MID_DMA_END) != 0, MID_DMA_TYPE(reg), EN_READ(sc, ptr+4));
3141 EN_WRAPADD(MID_DTQOFF, MID_DTQEND, ptr, 8);
3142 }
3143 }
3144
3145 if (level & END_DRQ) {
3146 printf(" drq [need_drqs=%d,drq_free=%d]:\n",
3147 sc->need_drqs, sc->drq_free);
3148 ptr = sc->drq_chip;
3149 while (ptr != sc->drq_us) {
3150 reg = EN_READ(sc, ptr);
3151 printf("\t0x%x=[cnt=%d, chan=%d, end=%d, type=%d @ 0x%x]\n",
3152 sc->drq[MID_DRQ_A2REG(ptr)], MID_DMA_CNT(reg), MID_DMA_RXVCI(reg),
3153 (reg & MID_DMA_END) != 0, MID_DMA_TYPE(reg), EN_READ(sc, ptr+4));
3154 EN_WRAPADD(MID_DRQOFF, MID_DRQEND, ptr, 8);
3155 }
3156 }
3157
3158 if (level & END_SWSL) {
3159 printf(" swslist [size=%d]: ", sc->swsl_size);
3160 for (cnt = sc->swsl_head ; cnt != sc->swsl_tail ;
3161 cnt = (cnt + 1) % MID_SL_N)
3162 printf("0x%x ", sc->swslist[cnt]);
3163 printf("\n");
3164 }
3165
3166 }
3167 return(0);
3168}
3169
3170/*
3171 * en_dumpmem: dump the memory
3172 */
3173
3174int en_dumpmem(unit, addr, len)
3175
3176int unit, addr, len;
3177
3178{
3179 struct en_softc *sc;
3180 u_int32_t reg;
3181
3182 if (unit < 0 || unit > en_cd.cd_ndevs ||
3183 (sc = (struct en_softc *) en_cd.cd_devs[unit]) == NULL) {
3184 printf("invalid unit number: %d\n", unit);
3185 return(0);
3186 }
3187 addr = addr & ~3;
3188 if (addr < MID_RAMOFF || addr + len*4 > MID_MAXOFF || len <= 0) {
3189 printf("invalid addr/len number: %d, %d\n", addr, len);
3190 return(0);
3191 }
3192 printf("dumping %d words starting at offset 0x%x\n", len, addr);
3193 while (len--) {
3194 reg = EN_READ(sc, addr);
3195 printf("mem[0x%x] = 0x%x\n", addr, reg);
3196 addr += 4;
3197 }
3198 return(0);
3199}
3200#endif
3201
3202
3203#endif /* NEN > 0 || !defined(__FreeBSD__) */
175
176/*
177 * autoconfig attachments
178 */
179
180struct cfdriver en_cd = {
181 0, "en", DV_IFNET,
182};
183
184/*
185 * local structures
186 */
187
188/*
189 * params to en_txlaunch() function
190 */
191
192struct en_launch {
193 u_int32_t tbd1; /* TBD 1 */
194 u_int32_t tbd2; /* TBD 2 */
195 u_int32_t pdu1; /* PDU 1 (aal5) */
196 int nodma; /* don't use DMA */
197 int need; /* total space we need (pad out if less data) */
198 int mlen; /* length of mbuf (for dtq) */
199 struct mbuf *t; /* data */
200 u_int32_t aal; /* aal code */
201 u_int32_t atm_vci; /* vci */
202 u_int8_t atm_flags; /* flags */
203};
204
205
206/*
207 * dma table (index by # of words)
208 *
209 * plan A: use WMAYBE
210 * plan B: avoid WMAYBE
211 */
212
213struct en_dmatab {
214 u_int8_t bcode; /* code */
215 u_int8_t divshift; /* byte divisor */
216};
217
218static struct en_dmatab en_dma_planA[] = {
219 { 0, 0 }, /* 0 */ { MIDDMA_WORD, 2 }, /* 1 */
220 { MIDDMA_2WORD, 3}, /* 2 */ { MIDDMA_4WMAYBE, 2}, /* 3 */
221 { MIDDMA_4WORD, 4}, /* 4 */ { MIDDMA_8WMAYBE, 2}, /* 5 */
222 { MIDDMA_8WMAYBE, 2}, /* 6 */ { MIDDMA_8WMAYBE, 2}, /* 7 */
223 { MIDDMA_8WORD, 5}, /* 8 */ { MIDDMA_16WMAYBE, 2}, /* 9 */
224 { MIDDMA_16WMAYBE,2}, /* 10 */ { MIDDMA_16WMAYBE, 2}, /* 11 */
225 { MIDDMA_16WMAYBE,2}, /* 12 */ { MIDDMA_16WMAYBE, 2}, /* 13 */
226 { MIDDMA_16WMAYBE,2}, /* 14 */ { MIDDMA_16WMAYBE, 2}, /* 15 */
227 { MIDDMA_16WORD, 6}, /* 16 */
228};
229
230static struct en_dmatab en_dma_planB[] = {
231 { 0, 0 }, /* 0 */ { MIDDMA_WORD, 2}, /* 1 */
232 { MIDDMA_2WORD, 3}, /* 2 */ { MIDDMA_WORD, 2}, /* 3 */
233 { MIDDMA_4WORD, 4}, /* 4 */ { MIDDMA_WORD, 2}, /* 5 */
234 { MIDDMA_2WORD, 3}, /* 6 */ { MIDDMA_WORD, 2}, /* 7 */
235 { MIDDMA_8WORD, 5}, /* 8 */ { MIDDMA_WORD, 2}, /* 9 */
236 { MIDDMA_2WORD, 3}, /* 10 */ { MIDDMA_WORD, 2}, /* 11 */
237 { MIDDMA_4WORD, 4}, /* 12 */ { MIDDMA_WORD, 2}, /* 13 */
238 { MIDDMA_2WORD, 3}, /* 14 */ { MIDDMA_WORD, 2}, /* 15 */
239 { MIDDMA_16WORD, 6}, /* 16 */
240};
241
242static struct en_dmatab *en_dmaplan = en_dma_planA;
243
244/*
245 * prototypes
246 */
247
248STATIC int en_b2sz __P((int));
249#ifdef EN_DDBHOOK
250int en_dump __P((int,int));
251int en_dumpmem __P((int,int,int));
252#endif
253STATIC void en_dmaprobe __P((struct en_softc *));
254STATIC int en_dmaprobe_doit __P((struct en_softc *, u_int8_t *,
255 u_int8_t *, int));
256STATIC int en_dqneed __P((struct en_softc *, caddr_t, u_int, u_int));
257STATIC void en_init __P((struct en_softc *));
258STATIC int en_ioctl __P((struct ifnet *, EN_IOCTL_CMDT, caddr_t));
259STATIC int en_k2sz __P((int));
260STATIC void en_loadvc __P((struct en_softc *, int));
261STATIC int en_mfix __P((struct en_softc *, struct mbuf **, struct mbuf *));
262STATIC struct mbuf *en_mget __P((struct en_softc *, u_int, u_int *));
263STATIC u_int32_t en_read __P((struct en_softc *, u_int32_t));
264STATIC int en_rxctl __P((struct en_softc *, struct atm_pseudoioctl *, int));
265STATIC void en_txdma __P((struct en_softc *, int));
266STATIC void en_txlaunch __P((struct en_softc *, int, struct en_launch *));
267STATIC void en_service __P((struct en_softc *));
268STATIC void en_start __P((struct ifnet *));
269STATIC int en_sz2b __P((int));
270STATIC void en_write __P((struct en_softc *, u_int32_t, u_int32_t));
271
272/*
273 * macros/inline
274 */
275
276/*
277 * raw read/write macros
278 */
279
280#define EN_READDAT(SC,R) en_read(SC,R)
281#define EN_WRITEDAT(SC,R,V) en_write(SC,R,V)
282
283/*
284 * cooked read/write macros
285 */
286
287#define EN_READ(SC,R) ntohl(en_read(SC,R))
288#define EN_WRITE(SC,R,V) en_write(SC,R, htonl(V))
289
290#define EN_WRAPADD(START,STOP,CUR,VAL) { \
291 (CUR) = (CUR) + (VAL); \
292 if ((CUR) >= (STOP)) \
293 (CUR) = (START) + ((CUR) - (STOP)); \
294 }
295
296#define WORD_IDX(START, X) (((X) - (START)) / sizeof(u_int32_t))
297
298/* we store sc->dtq and sc->drq data in the following format... */
299#define EN_DQ_MK(SLOT,LEN) (((SLOT) << 20)|(LEN)|(0x80000))
300 /* the 0x80000 ensures we != 0 */
301#define EN_DQ_SLOT(X) ((X) >> 20)
302#define EN_DQ_LEN(X) ((X) & 0x3ffff)
303
304/* format of DTQ/DRQ word 1 differs between ENI and ADP */
305#if defined(MIDWAY_ENIONLY)
306
307#define MID_MK_TXQ(SC,CNT,CHAN,END,BCODE) \
308 EN_WRITE((SC), (SC)->dtq_us, \
309 MID_MK_TXQ_ENI((CNT), (CHAN), (END), (BCODE)));
310
311#define MID_MK_RXQ(SC,CNT,VCI,END,BCODE) \
312 EN_WRITE((SC), (SC)->drq_us, \
313 MID_MK_RXQ_ENI((CNT), (VCI), (END), (BCODE)));
314
315#elif defined(MIDWAY_ADPONLY)
316
317#define MID_MK_TXQ(SC,CNT,CHAN,END,JK) \
318 EN_WRITE((SC), (SC)->dtq_us, \
319 MID_MK_TXQ_ADP((CNT), (CHAN), (END), (JK)));
320
321#define MID_MK_RXQ(SC,CNT,VCI,END,JK) \
322 EN_WRITE((SC), (SC)->drq_us, \
323 MID_MK_RXQ_ADP((CNT), (VCI), (END), (JK)));
324
325#else
326
327#define MID_MK_TXQ(SC,CNT,CHAN,END,JK_OR_BCODE) { \
328 if ((SC)->is_adaptec) \
329 EN_WRITE((SC), (SC)->dtq_us, \
330 MID_MK_TXQ_ADP((CNT), (CHAN), (END), (JK_OR_BCODE))); \
331 else \
332 EN_WRITE((SC), (SC)->dtq_us, \
333 MID_MK_TXQ_ENI((CNT), (CHAN), (END), (JK_OR_BCODE))); \
334 }
335
336#define MID_MK_RXQ(SC,CNT,VCI,END,JK_OR_BCODE) { \
337 if ((SC)->is_adaptec) \
338 EN_WRITE((SC), (SC)->drq_us, \
339 MID_MK_RXQ_ADP((CNT), (VCI), (END), (JK_OR_BCODE))); \
340 else \
341 EN_WRITE((SC), (SC)->drq_us, \
342 MID_MK_RXQ_ENI((CNT), (VCI), (END), (JK_OR_BCODE))); \
343 }
344
345#endif
346
347/* add an item to the DTQ */
348#define EN_DTQADD(SC,CNT,CHAN,JK_OR_BCODE,ADDR,LEN,END) { \
349 if (END) \
350 (SC)->dtq[MID_DTQ_A2REG((SC)->dtq_us)] = EN_DQ_MK(CHAN,LEN); \
351 MID_MK_TXQ(SC,CNT,CHAN,END,JK_OR_BCODE); \
352 (SC)->dtq_us += 4; \
353 EN_WRITE((SC), (SC)->dtq_us, (ADDR)); \
354 EN_WRAPADD(MID_DTQOFF, MID_DTQEND, (SC)->dtq_us, 4); \
355 (SC)->dtq_free--; \
356 if (END) \
357 EN_WRITE((SC), MID_DMA_WRTX, MID_DTQ_A2REG((SC)->dtq_us)); \
358}
359
360/* DRQ add macro */
361#define EN_DRQADD(SC,CNT,VCI,JK_OR_BCODE,ADDR,LEN,SLOT,END) { \
362 if (END) \
363 (SC)->drq[MID_DRQ_A2REG((SC)->drq_us)] = EN_DQ_MK(SLOT,LEN); \
364 MID_MK_RXQ(SC,CNT,VCI,END,JK_OR_BCODE); \
365 (SC)->drq_us += 4; \
366 EN_WRITE((SC), (SC)->drq_us, (ADDR)); \
367 EN_WRAPADD(MID_DRQOFF, MID_DRQEND, (SC)->drq_us, 4); \
368 (SC)->drq_free--; \
369 if (END) \
370 EN_WRITE((SC), MID_DMA_WRRX, MID_DRQ_A2REG((SC)->drq_us)); \
371}
372
373/*
374 * the driver code
375 *
376 * the code is arranged in a specific way:
377 * [1] short/inline functions
378 * [2] autoconfig stuff
379 * [3] ioctl stuff
380 * [4] reset -> init -> trasmit -> intr -> receive functions
381 *
382 */
383
384/***********************************************************************/
385
386/*
387 * en_read: read a word from the card. this is the only function
388 * that reads from the card.
389 */
390
391STATIC INLINE u_int32_t en_read(sc, r)
392
393struct en_softc *sc;
394u_int32_t r;
395
396{
397
398#ifdef EN_DEBUG_RANGE
399 if (r > MID_MAXOFF || (r % 4)) {
400 printf("en_read out of range, r=0x%x\n", r);
401 panic("en_read");
402 }
403#endif
404
405 return(bus_space_read_4(sc->en_memt, sc->en_base, r));
406}
407
408/*
409 * en_write: write a word to the card. this is the only function that
410 * writes to the card.
411 */
412
413STATIC INLINE void en_write(sc, r, v)
414
415struct en_softc *sc;
416u_int32_t r, v;
417
418{
419#ifdef EN_DEBUG_RANGE
420 if (r > MID_MAXOFF || (r % 4)) {
421 printf("en_write out of range, r=0x%x\n", r);
422 panic("en_write");
423 }
424#endif
425
426 bus_space_write_4(sc->en_memt, sc->en_base, r, v);
427}
428
429/*
430 * en_k2sz: convert KBytes to a size parameter (a log2)
431 */
432
433STATIC INLINE int en_k2sz(k)
434
435int k;
436
437{
438 switch(k) {
439 case 1: return(0);
440 case 2: return(1);
441 case 4: return(2);
442 case 8: return(3);
443 case 16: return(4);
444 case 32: return(5);
445 case 64: return(6);
446 case 128: return(7);
447 default: panic("en_k2sz");
448 }
449 return(0);
450}
451#define en_log2(X) en_k2sz(X)
452
453
454/*
455 * en_b2sz: convert a DMA burst code to its byte size
456 */
457
458STATIC INLINE int en_b2sz(b)
459
460int b;
461
462{
463 switch (b) {
464 case MIDDMA_WORD: return(1*4);
465 case MIDDMA_2WMAYBE:
466 case MIDDMA_2WORD: return(2*4);
467 case MIDDMA_4WMAYBE:
468 case MIDDMA_4WORD: return(4*4);
469 case MIDDMA_8WMAYBE:
470 case MIDDMA_8WORD: return(8*4);
471 case MIDDMA_16WMAYBE:
472 case MIDDMA_16WORD: return(16*4);
473 default: panic("en_b2sz");
474 }
475 return(0);
476}
477
478
479/*
480 * en_sz2b: convert a burst size (bytes) to DMA burst code
481 */
482
483STATIC INLINE int en_sz2b(sz)
484
485int sz;
486
487{
488 switch (sz) {
489 case 1*4: return(MIDDMA_WORD);
490 case 2*4: return(MIDDMA_2WORD);
491 case 4*4: return(MIDDMA_4WORD);
492 case 8*4: return(MIDDMA_8WORD);
493 case 16*4: return(MIDDMA_16WORD);
494 default: panic("en_sz2b");
495 }
496 return(0);
497}
498
499
500/*
501 * en_dqneed: calculate number of DTQ/DRQ's needed for a buffer
502 */
503
504STATIC INLINE int en_dqneed(sc, data, len, tx)
505
506struct en_softc *sc;
507caddr_t data;
508u_int len, tx;
509
510{
511 int result, needalign, sz;
512
513#if !defined(MIDWAY_ENIONLY)
514#if !defined(MIDWAY_ADPONLY)
515 if (sc->is_adaptec)
516#endif /* !MIDWAY_ADPONLY */
517 return(1); /* adaptec can DMA anything in one go */
518#endif
519
520#if !defined(MIDWAY_ADPONLY)
521 result = 0;
522 if (len < EN_MINDMA) {
523 if (!tx) /* XXX: conservative */
524 return(1); /* will copy/DMA_JK */
525 }
526
527 if (tx) { /* byte burst? */
528 needalign = (((unsigned long) data) % sizeof(u_int32_t));
529 if (needalign) {
530 result++;
531 sz = min(len, sizeof(u_int32_t) - needalign);
532 len -= sz;
533 data += sz;
534 }
535 }
536
537 if (sc->alburst && len) {
538 needalign = (((unsigned long) data) & sc->bestburstmask);
539 if (needalign) {
540 result++; /* alburst */
541 sz = min(len, sc->bestburstlen - needalign);
542 len -= sz;
543 }
544 }
545
546 if (len >= sc->bestburstlen) {
547 sz = len / sc->bestburstlen;
548 sz = sz * sc->bestburstlen;
549 len -= sz;
550 result++; /* best shot */
551 }
552
553 if (len) {
554 result++; /* clean up */
555 if (tx && (len % sizeof(u_int32_t)) != 0)
556 result++; /* byte cleanup */
557 }
558
559 return(result);
560#endif /* !MIDWAY_ADPONLY */
561}
562
563
564/*
565 * en_mget: get an mbuf chain that can hold totlen bytes and return it
566 * (for recv) [based on am7990_get from if_le and ieget from if_ie]
567 * after this call the sum of all the m_len's in the chain will be totlen.
568 */
569
570STATIC INLINE struct mbuf *en_mget(sc, totlen, drqneed)
571
572struct en_softc *sc;
573u_int totlen, *drqneed;
574
575{
576 struct mbuf *m;
577 struct mbuf *top, **mp;
578 *drqneed = 0;
579
580 MGETHDR(m, M_DONTWAIT, MT_DATA);
581 if (m == NULL)
582 return(NULL);
583 m->m_pkthdr.rcvif = &sc->enif;
584 m->m_pkthdr.len = totlen;
585 m->m_len = MHLEN;
586 top = NULL;
587 mp = &top;
588
589 /* if (top != NULL) then we've already got 1 mbuf on the chain */
590 while (totlen > 0) {
591 if (top) {
592 MGET(m, M_DONTWAIT, MT_DATA);
593 if (!m) {
594 m_freem(top);
595 return(NULL); /* out of mbufs */
596 }
597 m->m_len = MLEN;
598 }
599 if (top && totlen >= MINCLSIZE) {
600 MCLGET(m, M_DONTWAIT);
601 if (m->m_flags & M_EXT)
602 m->m_len = MCLBYTES;
603 }
604 m->m_len = min(totlen, m->m_len);
605 totlen -= m->m_len;
606 *mp = m;
607 mp = &m->m_next;
608
609 *drqneed += en_dqneed(sc, m->m_data, m->m_len, 0);
610
611 }
612 return(top);
613}
614
615/***********************************************************************/
616
617/*
618 * autoconfig stuff
619 */
620
621void en_attach(sc)
622
623struct en_softc *sc;
624
625{
626 struct ifnet *ifp = &sc->enif;
627 int sz;
628 u_int32_t reg, lcv, check, ptr, sav, midvloc;
629
630 /*
631 * probe card to determine memory size. the stupid ENI card always
632 * reports to PCI that it needs 4MB of space (2MB regs and 2MB RAM).
633 * if it has less than 2MB RAM the addresses wrap in the RAM address space.
634 * (i.e. on a 512KB card addresses 0x3ffffc, 0x37fffc, and 0x2ffffc
635 * are aliases for 0x27fffc [note that RAM starts at offset 0x200000]).
636 */
637
638 if (sc->en_busreset)
639 sc->en_busreset(sc);
640 EN_WRITE(sc, MID_RESID, 0x0); /* reset card before touching RAM */
641 for (lcv = MID_PROBEOFF; lcv <= MID_MAXOFF ; lcv += MID_PROBSIZE) {
642 EN_WRITE(sc, lcv, lcv); /* data[address] = address */
643 for (check = MID_PROBEOFF ; check < lcv ; check += MID_PROBSIZE) {
644 reg = EN_READ(sc, check);
645 if (reg != check) { /* found an alias! */
646 goto done_probe; /* and quit */
647 }
648 }
649 }
650done_probe:
651 lcv -= MID_PROBSIZE; /* take one step back */
652 sc->en_obmemsz = (lcv + 4) - MID_RAMOFF;
653
654 /*
655 * determine the largest DMA burst supported
656 */
657
658 en_dmaprobe(sc);
659
660 /*
661 * "hello world"
662 */
663
664 if (sc->en_busreset)
665 sc->en_busreset(sc);
666 EN_WRITE(sc, MID_RESID, 0x0); /* reset */
667 for (lcv = MID_RAMOFF ; lcv < MID_RAMOFF + sc->en_obmemsz ; lcv += 4)
668 EN_WRITE(sc, lcv, 0); /* zero memory */
669
670 reg = EN_READ(sc, MID_RESID);
671
672 printf("%s: ATM midway v%d, board IDs %d.%d, %s%s%s, %ldKB on-board RAM\n",
673 sc->sc_dev.dv_xname, MID_VER(reg), MID_MID(reg), MID_DID(reg),
674 (MID_IS_SABRE(reg)) ? "sabre controller, " : "",
675 (MID_IS_SUNI(reg)) ? "SUNI" : "Utopia",
676 (!MID_IS_SUNI(reg) && MID_IS_UPIPE(reg)) ? " (pipelined)" : "",
677 sc->en_obmemsz / 1024);
678
679 if (sc->is_adaptec) {
680 if (sc->bestburstlen == 64 && sc->alburst == 0)
681 printf("%s: passed 64 byte DMA test\n", sc->sc_dev.dv_xname);
682 else
683 printf("%s: FAILED DMA TEST: burst=%d, alburst=%d\n",
684 sc->sc_dev.dv_xname, sc->bestburstlen, sc->alburst);
685 } else {
686 printf("%s: maximum DMA burst length = %d bytes%s\n", sc->sc_dev.dv_xname,
687 sc->bestburstlen, (sc->alburst) ? " (must align)" : "");
688 }
689
690#if 0 /* WMAYBE doesn't work, don't complain about it */
691 /* check if en_dmaprobe disabled wmaybe */
692 if (en_dmaplan == en_dma_planB)
693 printf("%s: note: WMAYBE DMA has been disabled\n", sc->sc_dev.dv_xname);
694#endif
695
696 /*
697 * link into network subsystem and prepare card
698 */
699
700#if defined(__NetBSD__) || defined(__OpenBSD__)
701 bcopy(sc->sc_dev.dv_xname, sc->enif.if_xname, IFNAMSIZ);
702#endif
703#if !defined(MISSING_IF_SOFTC)
704 sc->enif.if_softc = sc;
705#endif
706 ifp->if_flags = IFF_SIMPLEX|IFF_NOTRAILERS;
707 ifp->if_ioctl = en_ioctl;
708 ifp->if_output = atm_output;
709 ifp->if_start = en_start;
710
711 /*
712 * init softc
713 */
714
715 for (lcv = 0 ; lcv < MID_N_VC ; lcv++) {
716 sc->rxvc2slot[lcv] = RX_NONE;
717 sc->txspeed[lcv] = 0; /* full */
718 sc->txvc2slot[lcv] = 0; /* full speed == slot 0 */
719 }
720
721 sz = sc->en_obmemsz - (MID_BUFOFF - MID_RAMOFF);
722 ptr = sav = MID_BUFOFF;
723 ptr = roundup(ptr, EN_TXSZ * 1024); /* align */
724 sz = sz - (ptr - sav);
725 if (EN_TXSZ*1024 * EN_NTX > sz) {
726 printf("%s: EN_NTX/EN_TXSZ too big\n", sc->sc_dev.dv_xname);
727 return;
728 }
729 for (lcv = 0 ; lcv < EN_NTX ; lcv++) {
730 sc->txslot[lcv].mbsize = 0;
731 sc->txslot[lcv].start = ptr;
732 ptr += (EN_TXSZ * 1024);
733 sz -= (EN_TXSZ * 1024);
734 sc->txslot[lcv].stop = ptr;
735 sc->txslot[lcv].nref = 0;
736 bzero(&sc->txslot[lcv].indma, sizeof(sc->txslot[lcv].indma));
737 bzero(&sc->txslot[lcv].q, sizeof(sc->txslot[lcv].q));
738#ifdef EN_DEBUG
739 printf("%s: tx%d: start 0x%x, stop 0x%x\n", sc->sc_dev.dv_xname, lcv,
740 sc->txslot[lcv].start, sc->txslot[lcv].stop);
741#endif
742 }
743
744 sav = ptr;
745 ptr = roundup(ptr, EN_RXSZ * 1024); /* align */
746 sz = sz - (ptr - sav);
747 sc->en_nrx = sz / (EN_RXSZ * 1024);
748 if (sc->en_nrx <= 0) {
749 printf("%s: EN_NTX/EN_TXSZ/EN_RXSZ too big\n", sc->sc_dev.dv_xname);
750 return;
751 }
752#if 1
753 /* leave one entry in the ringbuf unused to avoid wraparound */
754 if (sc->en_nrx >= MID_N_VC)
755 sc->en_nrx = MID_N_VC - 1;
756#endif
757 for (lcv = 0 ; lcv < sc->en_nrx ; lcv++) {
758 sc->rxslot[lcv].rxhand = NULL;
759 sc->rxslot[lcv].oth_flags = ENOTHER_FREE;
760 bzero(&sc->rxslot[lcv].indma, sizeof(sc->rxslot[lcv].indma));
761 bzero(&sc->rxslot[lcv].q, sizeof(sc->rxslot[lcv].q));
762 midvloc = sc->rxslot[lcv].start = ptr;
763 ptr += (EN_RXSZ * 1024);
764 sz -= (EN_RXSZ * 1024);
765 sc->rxslot[lcv].stop = ptr;
766 midvloc = midvloc - MID_RAMOFF;
767 midvloc = (midvloc & ~((EN_RXSZ*1024) - 1)) >> 2; /* mask, cvt to words */
768 midvloc = midvloc >> MIDV_LOCTOPSHFT; /* we only want the top 11 bits */
769 midvloc = (midvloc & MIDV_LOCMASK) << MIDV_LOCSHIFT;
770 sc->rxslot[lcv].mode = midvloc |
771 (en_k2sz(EN_RXSZ) << MIDV_SZSHIFT) | MIDV_TRASH;
772
773#ifdef EN_DEBUG
774 printf("%s: rx%d: start 0x%x, stop 0x%x, mode 0x%x\n", sc->sc_dev.dv_xname,
775 lcv, sc->rxslot[lcv].start, sc->rxslot[lcv].stop, sc->rxslot[lcv].mode);
776#endif
777 }
778
779#ifdef EN_STAT
780 sc->vtrash = sc->otrash = sc->mfix = sc->txmbovr = sc->dmaovr = 0;
781 sc->txoutspace = sc->txdtqout = sc->launch = sc->lheader = sc->ltail = 0;
782 sc->hwpull = sc->swadd = sc->rxqnotus = sc->rxqus = sc->rxoutboth = 0;
783 sc->rxdrqout = sc->ttrash = sc->rxmbufout = sc->mfixfail = 0;
784 sc->headbyte = sc->tailbyte = sc->tailflush = 0;
785#endif
786 sc->need_drqs = sc->need_dtqs = 0;
787
788 printf("%s: %d %dKB receive buffers, %d %dKB transmit buffers allocated\n",
789 sc->sc_dev.dv_xname, sc->en_nrx, EN_RXSZ, EN_NTX, EN_TXSZ);
790
791 /*
792 * final commit
793 */
794
795 if_attach(ifp);
796 atm_ifattach(ifp);
797
798}
799
800
801/*
802 * en_dmaprobe: helper function for en_attach.
803 *
804 * see how the card handles DMA by running a few DMA tests. we need
805 * to figure out the largest number of bytes we can DMA in one burst
806 * ("bestburstlen"), and if the starting address for a burst needs to
807 * be aligned on any sort of boundary or not ("alburst").
808 *
809 * typical findings:
810 * sparc1: bestburstlen=4, alburst=0 (ick, broken DMA!)
811 * sparc2: bestburstlen=64, alburst=1
812 * p166: bestburstlen=64, alburst=0
813 */
814
815STATIC void en_dmaprobe(sc)
816
817struct en_softc *sc;
818
819{
820 u_int32_t srcbuf[64], dstbuf[64];
821 u_int8_t *sp, *dp;
822 int bestalgn, bestnotalgn, lcv, try, fail;
823
824 sc->alburst = 0;
825
826 sp = (u_int8_t *) srcbuf;
827 while ((((unsigned long) sp) % MIDDMA_MAXBURST) != 0)
828 sp += 4;
829 dp = (u_int8_t *) dstbuf;
830 while ((((unsigned long) dp) % MIDDMA_MAXBURST) != 0)
831 dp += 4;
832
833 bestalgn = bestnotalgn = en_dmaprobe_doit(sc, sp, dp, 0);
834
835 for (lcv = 4 ; lcv < MIDDMA_MAXBURST ; lcv += 4) {
836 try = en_dmaprobe_doit(sc, sp+lcv, dp+lcv, 0);
837 if (try < bestnotalgn)
838 bestnotalgn = try;
839 }
840
841 if (bestalgn != bestnotalgn) /* need bursts aligned */
842 sc->alburst = 1;
843
844 sc->bestburstlen = bestalgn;
845 sc->bestburstshift = en_log2(bestalgn);
846 sc->bestburstmask = sc->bestburstlen - 1; /* must be power of 2 */
847 sc->bestburstcode = en_sz2b(bestalgn);
848
849 if (sc->bestburstlen <= 2*sizeof(u_int32_t))
850 return; /* won't be using WMAYBE */
851
852 /*
853 * adaptec does not have (or need) wmaybe. do not bother testing
854 * for it.
855 */
856 if (sc->is_adaptec) {
857 /* XXX, actually don't need a DMA plan: adaptec is smarter than that */
858 en_dmaplan = en_dma_planB;
859 return;
860 }
861
862 /*
863 * test that WMAYBE dma works like we think it should
864 * (i.e. no alignment restrictions on host address other than alburst)
865 */
866
867 try = sc->bestburstlen - 4;
868 fail = 0;
869 fail += en_dmaprobe_doit(sc, sp, dp, try);
870 for (lcv = 4 ; lcv < sc->bestburstlen ; lcv += 4) {
871 fail += en_dmaprobe_doit(sc, sp+lcv, dp+lcv, try);
872 if (sc->alburst)
873 try -= 4;
874 }
875 if (EN_NOWMAYBE || fail) {
876 if (fail)
877 printf("%s: WARNING: WMAYBE DMA test failed %d time(s)\n",
878 sc->sc_dev.dv_xname, fail);
879 en_dmaplan = en_dma_planB; /* fall back to plan B */
880 }
881
882}
883
884
885/*
886 * en_dmaprobe_doit: do actual testing
887 */
888
889int
890en_dmaprobe_doit(sc, sp, dp, wmtry)
891
892struct en_softc *sc;
893u_int8_t *sp, *dp;
894int wmtry;
895
896{
897 int lcv, retval = 4, cnt, count;
898 u_int32_t reg, bcode, midvloc;
899
900 /*
901 * set up a 1k buffer at MID_BUFOFF
902 */
903
904 if (sc->en_busreset)
905 sc->en_busreset(sc);
906 EN_WRITE(sc, MID_RESID, 0x0); /* reset card before touching RAM */
907
908 midvloc = ((MID_BUFOFF - MID_RAMOFF) / sizeof(u_int32_t)) >> MIDV_LOCTOPSHFT;
909 EN_WRITE(sc, MIDX_PLACE(0), MIDX_MKPLACE(en_k2sz(1), midvloc));
910 EN_WRITE(sc, MID_VC(0), (midvloc << MIDV_LOCSHIFT)
911 | (en_k2sz(1) << MIDV_SZSHIFT) | MIDV_TRASH);
912 EN_WRITE(sc, MID_DST_RP(0), 0);
913 EN_WRITE(sc, MID_WP_ST_CNT(0), 0);
914
915 for (lcv = 0 ; lcv < 68 ; lcv++) /* set up sample data */
916 sp[lcv] = lcv+1;
917 EN_WRITE(sc, MID_MAST_CSR, MID_MCSR_ENDMA); /* enable DMA (only) */
918
919 sc->drq_chip = MID_DRQ_REG2A(EN_READ(sc, MID_DMA_RDRX));
920 sc->dtq_chip = MID_DTQ_REG2A(EN_READ(sc, MID_DMA_RDTX));
921
922 /*
923 * try it now . . . DMA it out, then DMA it back in and compare
924 *
925 * note: in order to get the dma stuff to reverse directions it wants
926 * the "end" flag set! since we are not dma'ing valid data we may
927 * get an ident mismatch interrupt (which we will ignore).
928 *
929 * note: we've got two different tests rolled up in the same loop
930 * if (wmtry)
931 * then we are doing a wmaybe test and wmtry is a byte count
932 * else we are doing a burst test
933 */
934
935 for (lcv = 8 ; lcv <= MIDDMA_MAXBURST ; lcv = lcv * 2) {
936
937 /* zero SRAM and dest buffer */
938 for (cnt = 0 ; cnt < 1024; cnt += 4)
939 EN_WRITE(sc, MID_BUFOFF+cnt, 0); /* zero memory */
940 for (cnt = 0 ; cnt < 68 ; cnt++)
941 dp[cnt] = 0;
942
943 if (wmtry) {
944 count = (sc->bestburstlen - sizeof(u_int32_t)) / sizeof(u_int32_t);
945 bcode = en_dmaplan[count].bcode;
946 count = wmtry >> en_dmaplan[count].divshift;
947 } else {
948 bcode = en_sz2b(lcv);
949 count = 1;
950 }
951 if (sc->is_adaptec)
952 EN_WRITE(sc, sc->dtq_chip, MID_MK_TXQ_ADP(lcv, 0, MID_DMA_END, 0));
953 else
954 EN_WRITE(sc, sc->dtq_chip, MID_MK_TXQ_ENI(count, 0, MID_DMA_END, bcode));
955 EN_WRITE(sc, sc->dtq_chip+4, vtophys(sp));
956 EN_WRITE(sc, MID_DMA_WRTX, MID_DTQ_A2REG(sc->dtq_chip+8));
957 cnt = 1000;
958 while (EN_READ(sc, MID_DMA_RDTX) == MID_DTQ_A2REG(sc->dtq_chip)) {
959 DELAY(1);
960 cnt--;
961 if (cnt == 0) {
962 printf("%s: unexpected timeout in tx DMA test\n", sc->sc_dev.dv_xname);
963 return(retval); /* timeout, give up */
964 }
965 }
966 EN_WRAPADD(MID_DTQOFF, MID_DTQEND, sc->dtq_chip, 8);
967 reg = EN_READ(sc, MID_INTACK);
968 if ((reg & MID_INT_DMA_TX) != MID_INT_DMA_TX) {
969 printf("%s: unexpected status in tx DMA test: 0x%x\n",
970 sc->sc_dev.dv_xname, reg);
971 return(retval);
972 }
973 EN_WRITE(sc, MID_MAST_CSR, MID_MCSR_ENDMA); /* re-enable DMA (only) */
974
975 /* "return to sender..." address is known ... */
976
977 if (sc->is_adaptec)
978 EN_WRITE(sc, sc->drq_chip, MID_MK_RXQ_ADP(lcv, 0, MID_DMA_END, 0));
979 else
980 EN_WRITE(sc, sc->drq_chip, MID_MK_RXQ_ENI(count, 0, MID_DMA_END, bcode));
981 EN_WRITE(sc, sc->drq_chip+4, vtophys(dp));
982 EN_WRITE(sc, MID_DMA_WRRX, MID_DRQ_A2REG(sc->drq_chip+8));
983 cnt = 1000;
984 while (EN_READ(sc, MID_DMA_RDRX) == MID_DRQ_A2REG(sc->drq_chip)) {
985 DELAY(1);
986 cnt--;
987 if (cnt == 0) {
988 printf("%s: unexpected timeout in rx DMA test\n", sc->sc_dev.dv_xname);
989 return(retval); /* timeout, give up */
990 }
991 }
992 EN_WRAPADD(MID_DRQOFF, MID_DRQEND, sc->drq_chip, 8);
993 reg = EN_READ(sc, MID_INTACK);
994 if ((reg & MID_INT_DMA_RX) != MID_INT_DMA_RX) {
995 printf("%s: unexpected status in rx DMA test: 0x%x\n",
996 sc->sc_dev.dv_xname, reg);
997 return(retval);
998 }
999 EN_WRITE(sc, MID_MAST_CSR, MID_MCSR_ENDMA); /* re-enable DMA (only) */
1000
1001 if (wmtry) {
1002 return(bcmp(sp, dp, wmtry)); /* wmtry always exits here, no looping */
1003 }
1004
1005 if (bcmp(sp, dp, lcv))
1006 return(retval); /* failed, use last value */
1007
1008 retval = lcv;
1009
1010 }
1011 return(retval); /* studly 64 byte DMA present! oh baby!! */
1012}
1013
1014/***********************************************************************/
1015
1016/*
1017 * en_ioctl: handle ioctl requests
1018 *
1019 * NOTE: if you add an ioctl to set txspeed, you should choose a new
1020 * TX channel/slot. Choose the one with the lowest sc->txslot[slot].nref
1021 * value, subtract one from sc->txslot[0].nref, add one to the
1022 * sc->txslot[slot].nref, set sc->txvc2slot[vci] = slot, and then set
1023 * txspeed[vci].
1024 */
1025
1026STATIC int en_ioctl(ifp, cmd, data)
1027
1028struct ifnet *ifp;
1029EN_IOCTL_CMDT cmd;
1030caddr_t data;
1031
1032{
1033#ifdef MISSING_IF_SOFTC
1034 struct en_softc *sc = (struct en_softc *) en_cd.cd_devs[ifp->if_unit];
1035#else
1036 struct en_softc *sc = (struct en_softc *) ifp->if_softc;
1037#endif
1038 struct ifaddr *ifa = (struct ifaddr *) data;
1039 struct ifreq *ifr = (struct ifreq *) data;
1040 struct atm_pseudoioctl *api = (struct atm_pseudoioctl *)data;
1041#ifdef NATM
1042 struct atm_rawioctl *ario = (struct atm_rawioctl *)data;
1043 int slot;
1044#endif
1045 int s, error = 0;
1046
1047 s = splnet();
1048
1049 switch (cmd) {
1050 case SIOCATMENA: /* enable circuit for recv */
1051 error = en_rxctl(sc, api, 1);
1052 break;
1053
1054 case SIOCATMDIS: /* disable circuit for recv */
1055 error = en_rxctl(sc, api, 0);
1056 break;
1057
1058#ifdef NATM
1059 case SIOCXRAWATM:
1060 if ((slot = sc->rxvc2slot[ario->npcb->npcb_vci]) == RX_NONE) {
1061 error = EINVAL;
1062 break;
1063 }
1064 if (ario->rawvalue > EN_RXSZ*1024)
1065 ario->rawvalue = EN_RXSZ*1024;
1066 if (ario->rawvalue) {
1067 sc->rxslot[slot].oth_flags |= ENOTHER_RAW;
1068 sc->rxslot[slot].raw_threshold = ario->rawvalue;
1069 } else {
1070 sc->rxslot[slot].oth_flags &= (~ENOTHER_RAW);
1071 sc->rxslot[slot].raw_threshold = 0;
1072 }
1073#ifdef EN_DEBUG
1074 printf("%s: rxvci%d: turn %s raw (boodi) mode\n",
1075 sc->sc_dev.dv_xname, ario->npcb->npcb_vci,
1076 (ario->rawvalue) ? "on" : "off");
1077#endif
1078 break;
1079#endif
1080 case SIOCSIFADDR:
1081 ifp->if_flags |= IFF_UP;
1082#ifdef INET
1083 if (ifa->ifa_addr->sa_family == AF_INET) {
1084 en_reset(sc);
1085 en_init(sc);
1086 ifa->ifa_rtrequest = atm_rtrequest; /* ??? */
1087 break;
1088 }
1089#endif /* INET */
1090 /* what to do if not INET? */
1091 en_reset(sc);
1092 en_init(sc);
1093 break;
1094
1095 case SIOCGIFADDR:
1096 error = EINVAL;
1097 break;
1098
1099 case SIOCSIFFLAGS:
1100 error = EINVAL;
1101 break;
1102
1103#if defined(SIOCSIFMTU) /* ??? copied from if_de */
1104#if !defined(ifr_mtu)
1105#define ifr_mtu ifr_metric
1106#endif
1107 case SIOCSIFMTU:
1108 /*
1109 * Set the interface MTU.
1110 */
1111#ifdef notsure
1112 if (ifr->ifr_mtu > ATMMTU) {
1113 error = EINVAL;
1114 break;
1115 }
1116#endif
1117 ifp->if_mtu = ifr->ifr_mtu;
1118 /* XXXCDC: do we really need to reset on MTU size change? */
1119 en_reset(sc);
1120 en_init(sc);
1121 break;
1122#endif /* SIOCSIFMTU */
1123
1124 default:
1125 error = EINVAL;
1126 break;
1127 }
1128 splx(s);
1129 return error;
1130}
1131
1132
1133/*
1134 * en_rxctl: turn on and off VCs for recv.
1135 */
1136
1137STATIC int en_rxctl(sc, pi, on)
1138
1139struct en_softc *sc;
1140struct atm_pseudoioctl *pi;
1141int on;
1142
1143{
1144 u_int s, vci, flags, slot;
1145 u_int32_t oldmode, newmode;
1146
1147 vci = ATM_PH_VCI(&pi->aph);
1148 flags = ATM_PH_FLAGS(&pi->aph);
1149
1150#ifdef EN_DEBUG
1151 printf("%s: %s vpi=%d, vci=%d, flags=%d\n", sc->sc_dev.dv_xname,
1152 (on) ? "enable" : "disable", ATM_PH_VPI(&pi->aph), vci, flags);
1153#endif
1154
1155 if (ATM_PH_VPI(&pi->aph) || vci >= MID_N_VC)
1156 return(EINVAL);
1157
1158 /*
1159 * turn on VCI!
1160 */
1161
1162 if (on) {
1163 if (sc->rxvc2slot[vci] != RX_NONE)
1164 return(EINVAL);
1165 for (slot = 0 ; slot < sc->en_nrx ; slot++)
1166 if (sc->rxslot[slot].oth_flags & ENOTHER_FREE)
1167 break;
1168 if (slot == sc->en_nrx)
1169 return(ENOSPC);
1170 sc->rxvc2slot[vci] = slot;
1171 sc->rxslot[slot].rxhand = NULL;
1172 oldmode = sc->rxslot[slot].mode;
1173 newmode = (flags & ATM_PH_AAL5) ? MIDV_AAL5 : MIDV_NOAAL;
1174 sc->rxslot[slot].mode = MIDV_SETMODE(oldmode, newmode);
1175 sc->rxslot[slot].atm_vci = vci;
1176 sc->rxslot[slot].atm_flags = flags;
1177 sc->rxslot[slot].oth_flags = 0;
1178 sc->rxslot[slot].rxhand = pi->rxhand;
1179 if (sc->rxslot[slot].indma.ifq_head || sc->rxslot[slot].q.ifq_head)
1180 panic("en_rxctl: left over mbufs on enable");
1181 sc->txspeed[vci] = 0; /* full speed to start */
1182 sc->txvc2slot[vci] = 0; /* init value */
1183 sc->txslot[0].nref++; /* bump reference count */
1184 en_loadvc(sc, vci); /* does debug printf for us */
1185 return(0);
1186 }
1187
1188 /*
1189 * turn off VCI
1190 */
1191
1192 if (sc->rxvc2slot[vci] == RX_NONE)
1193 return(EINVAL);
1194 slot = sc->rxvc2slot[vci];
1195 if ((sc->rxslot[slot].oth_flags & (ENOTHER_FREE|ENOTHER_DRAIN)) != 0)
1196 return(EINVAL);
1197 s = splimp(); /* block out enintr() */
1198 oldmode = EN_READ(sc, MID_VC(vci));
1199 newmode = MIDV_SETMODE(oldmode, MIDV_TRASH) & ~MIDV_INSERVICE;
1200 EN_WRITE(sc, MID_VC(vci), (newmode | (oldmode & MIDV_INSERVICE)));
1201 /* halt in tracks, be careful to preserve inserivce bit */
1202 DELAY(27);
1203 sc->rxslot[slot].rxhand = NULL;
1204 sc->rxslot[slot].mode = newmode;
1205
1206 sc->txslot[sc->txvc2slot[vci]].nref--;
1207 sc->txspeed[vci] = 0;
1208 sc->txvc2slot[vci] = 0;
1209
1210 /* if stuff is still going on we are going to have to drain it out */
1211 if (sc->rxslot[slot].indma.ifq_head ||
1212 sc->rxslot[slot].q.ifq_head ||
1213 (sc->rxslot[slot].oth_flags & ENOTHER_SWSL) != 0) {
1214 sc->rxslot[slot].oth_flags |= ENOTHER_DRAIN;
1215 } else {
1216 sc->rxslot[slot].oth_flags = ENOTHER_FREE;
1217 sc->rxslot[slot].atm_vci = RX_NONE;
1218 sc->rxvc2slot[vci] = RX_NONE;
1219 }
1220 splx(s); /* enable enintr() */
1221#ifdef EN_DEBUG
1222 printf("%s: rx%d: VCI %d is now %s\n", sc->sc_dev.dv_xname, slot, vci,
1223 (sc->rxslot[slot].oth_flags & ENOTHER_DRAIN) ? "draining" : "free");
1224#endif
1225 return(0);
1226}
1227
1228/***********************************************************************/
1229
1230/*
1231 * en_reset: reset the board, throw away work in progress.
1232 * must en_init to recover.
1233 */
1234
1235void en_reset(sc)
1236
1237struct en_softc *sc;
1238
1239{
1240 struct mbuf *m;
1241 int lcv, slot;
1242
1243#ifdef EN_DEBUG
1244 printf("%s: reset\n", sc->sc_dev.dv_xname);
1245#endif
1246
1247 if (sc->en_busreset)
1248 sc->en_busreset(sc);
1249 EN_WRITE(sc, MID_RESID, 0x0); /* reset hardware */
1250
1251 /*
1252 * recv: dump any mbufs we are dma'ing into, if DRAINing, then a reset
1253 * will free us!
1254 */
1255
1256 for (lcv = 0 ; lcv < MID_N_VC ; lcv++) {
1257 if (sc->rxvc2slot[lcv] == RX_NONE)
1258 continue;
1259 slot = sc->rxvc2slot[lcv];
1260 while (1) {
1261 IF_DEQUEUE(&sc->rxslot[slot].indma, m);
1262 if (m == NULL)
1263 break; /* >>> exit 'while(1)' here <<< */
1264 m_freem(m);
1265 }
1266 while (1) {
1267 IF_DEQUEUE(&sc->rxslot[slot].q, m);
1268 if (m == NULL)
1269 break; /* >>> exit 'while(1)' here <<< */
1270 m_freem(m);
1271 }
1272 sc->rxslot[slot].oth_flags &= ~ENOTHER_SWSL;
1273 if (sc->rxslot[slot].oth_flags & ENOTHER_DRAIN) {
1274 sc->rxslot[slot].oth_flags = ENOTHER_FREE;
1275 sc->rxvc2slot[lcv] = RX_NONE;
1276#ifdef EN_DEBUG
1277 printf("%s: rx%d: VCI %d is now free\n", sc->sc_dev.dv_xname, slot, lcv);
1278#endif
1279 }
1280 }
1281
1282 /*
1283 * xmit: dump everything
1284 */
1285
1286 for (lcv = 0 ; lcv < EN_NTX ; lcv++) {
1287 while (1) {
1288 IF_DEQUEUE(&sc->txslot[lcv].indma, m);
1289 if (m == NULL)
1290 break; /* >>> exit 'while(1)' here <<< */
1291 m_freem(m);
1292 }
1293 while (1) {
1294 IF_DEQUEUE(&sc->txslot[lcv].q, m);
1295 if (m == NULL)
1296 break; /* >>> exit 'while(1)' here <<< */
1297 m_freem(m);
1298 }
1299 sc->txslot[lcv].mbsize = 0;
1300 }
1301
1302 return;
1303}
1304
1305
1306/*
1307 * en_init: init board and sync the card with the data in the softc.
1308 */
1309
1310STATIC void en_init(sc)
1311
1312struct en_softc *sc;
1313
1314{
1315 int vc, slot;
1316 u_int32_t loc;
1317
1318 if ((sc->enif.if_flags & IFF_UP) == 0) {
1319#ifdef EN_DEBUG
1320 printf("%s: going down\n", sc->sc_dev.dv_xname);
1321#endif
1322 en_reset(sc); /* to be safe */
1323 sc->enif.if_flags &= ~IFF_RUNNING; /* disable */
1324 return;
1325 }
1326
1327#ifdef EN_DEBUG
1328 printf("%s: going up\n", sc->sc_dev.dv_xname);
1329#endif
1330 sc->enif.if_flags |= IFF_RUNNING; /* enable */
1331
1332 if (sc->en_busreset)
1333 sc->en_busreset(sc);
1334 EN_WRITE(sc, MID_RESID, 0x0); /* reset */
1335
1336 /*
1337 * init obmem data structures: vc tab, dma q's, slist.
1338 */
1339
1340 for (vc = 0 ; vc < MID_N_VC ; vc++)
1341 en_loadvc(sc, vc);
1342
1343 bzero(&sc->drq, sizeof(sc->drq));
1344#if 1
1345 /* leave one entry in the ringbuf unused to avoid wraparound */
1346 sc->drq_free = MID_DRQ_N - 1;
1347#else
1348 sc->drq_free = MID_DRQ_N;
1349#endif
1350 sc->drq_chip = MID_DRQ_REG2A(EN_READ(sc, MID_DMA_RDRX));
1351 EN_WRITE(sc, MID_DMA_WRRX, MID_DRQ_A2REG(sc->drq_chip));
1352 /* ensure zero queue */
1353 sc->drq_us = sc->drq_chip;
1354
1355 bzero(&sc->dtq, sizeof(sc->dtq));
1356#if 1
1357 /* leave one entry in the ringbuf unused to avoid wraparound */
1358 sc->dtq_free = MID_DTQ_N - 1;
1359#else
1360 sc->dtq_free = MID_DTQ_N;
1361#endif
1362 sc->dtq_chip = MID_DTQ_REG2A(EN_READ(sc, MID_DMA_RDTX));
1363 EN_WRITE(sc, MID_DMA_WRTX, MID_DRQ_A2REG(sc->dtq_chip));
1364 /* ensure zero queue */
1365 sc->dtq_us = sc->dtq_chip;
1366
1367 sc->hwslistp = MID_SL_REG2A(EN_READ(sc, MID_SERV_WRITE));
1368 sc->swsl_size = sc->swsl_head = sc->swsl_tail = 0;
1369
1370#ifdef EN_DEBUG
1371 printf("%s: drq free/chip: %d/0x%x, dtq free/chip: %d/0x%x, hwslist: 0x%x\n",
1372 sc->sc_dev.dv_xname, sc->drq_free, sc->drq_chip,
1373 sc->dtq_free, sc->dtq_chip, sc->hwslistp);
1374#endif
1375
1376 for (slot = 0 ; slot < EN_NTX ; slot++) {
1377 sc->txslot[slot].bfree = EN_TXSZ * 1024;
1378 EN_WRITE(sc, MIDX_READPTR(slot), 0);
1379 EN_WRITE(sc, MIDX_DESCSTART(slot), 0);
1380 loc = sc->txslot[slot].cur = sc->txslot[slot].start;
1381 loc = loc - MID_RAMOFF;
1382 loc = (loc & ~((EN_TXSZ*1024) - 1)) >> 2; /* mask, cvt to words */
1383 loc = loc >> MIDV_LOCTOPSHFT; /* top 11 bits */
1384 EN_WRITE(sc, MIDX_PLACE(slot), MIDX_MKPLACE(en_k2sz(EN_TXSZ), loc));
1385#ifdef EN_DEBUG
1386 printf("%s: tx%d: place 0x%x\n", sc->sc_dev.dv_xname, slot,
1387 EN_READ(sc, MIDX_PLACE(slot)));
1388#endif
1389 }
1390
1391 /*
1392 * enable!
1393 */
1394
1395 EN_WRITE(sc, MID_INTENA, MID_INT_TX|MID_INT_DMA_OVR|MID_INT_IDENT|
1396 MID_INT_LERR|MID_INT_DMA_ERR|MID_INT_DMA_RX|MID_INT_DMA_TX|
1397 MID_INT_SERVICE| /* >>> MID_INT_SUNI| XXXCDC<<< */ MID_INT_STATS);
1398 EN_WRITE(sc, MID_MAST_CSR, MID_SETIPL(sc->ipl)|MID_MCSR_ENDMA|
1399 MID_MCSR_ENTX|MID_MCSR_ENRX);
1400
1401}
1402
1403
1404/*
1405 * en_loadvc: load a vc tab entry from a slot
1406 */
1407
1408STATIC void en_loadvc(sc, vc)
1409
1410struct en_softc *sc;
1411int vc;
1412
1413{
1414 int slot;
1415 u_int32_t reg = EN_READ(sc, MID_VC(vc));
1416
1417 reg = MIDV_SETMODE(reg, MIDV_TRASH);
1418 EN_WRITE(sc, MID_VC(vc), reg);
1419 DELAY(27);
1420
1421 if ((slot = sc->rxvc2slot[vc]) == RX_NONE)
1422 return;
1423
1424 /* no need to set CRC */
1425 EN_WRITE(sc, MID_DST_RP(vc), 0); /* read pointer = 0, desc. start = 0 */
1426 EN_WRITE(sc, MID_WP_ST_CNT(vc), 0); /* write pointer = 0 */
1427 EN_WRITE(sc, MID_VC(vc), sc->rxslot[slot].mode); /* set mode, size, loc */
1428 sc->rxslot[slot].cur = sc->rxslot[slot].start;
1429
1430#ifdef EN_DEBUG
1431 printf("%s: rx%d: assigned to VCI %d\n", sc->sc_dev.dv_xname, slot, vc);
1432#endif
1433}
1434
1435
1436/*
1437 * en_start: start transmitting the next packet that needs to go out
1438 * if there is one. note that atm_output() has already splimp()'d us.
1439 */
1440
1441STATIC void en_start(ifp)
1442
1443struct ifnet *ifp;
1444
1445{
1446#ifdef MISSING_IF_SOFTC
1447 struct en_softc *sc = (struct en_softc *) en_cd.cd_devs[ifp->if_unit];
1448#else
1449 struct en_softc *sc = (struct en_softc *) ifp->if_softc;
1450#endif
1451 struct ifqueue *ifq = &ifp->if_snd; /* if INPUT QUEUE */
1452 struct mbuf *m, *lastm, *prev;
1453 struct atm_pseudohdr *ap, *new_ap;
1454 int txchan, mlen, got, need, toadd, cellcnt, first;
1455 u_int32_t atm_vpi, atm_vci, atm_flags, *dat, aal;
1456 u_int8_t *cp;
1457
1458 if ((ifp->if_flags & IFF_RUNNING) == 0)
1459 return;
1460
1461 /*
1462 * remove everything from interface queue since we handle all queueing
1463 * locally ...
1464 */
1465
1466 while (1) {
1467
1468 IF_DEQUEUE(ifq, m);
1469 if (m == NULL)
1470 return; /* EMPTY: >>> exit here <<< */
1471
1472 /*
1473 * calculate size of packet (in bytes)
1474 * also, if we are not doing transmit DMA we eliminate all stupid
1475 * (non-word) alignments here using en_mfix(). calls to en_mfix()
1476 * seem to be due to tcp retransmits for the most part.
1477 *
1478 * after this loop mlen total length of mbuf chain (including atm_ph),
1479 * and lastm is a pointer to the last mbuf on the chain.
1480 */
1481
1482 lastm = m;
1483 mlen = 0;
1484 prev = NULL;
1485 while (1) {
1486#ifdef EN_FIXMBUF
1487 /* if eni, always fix misaligned mbuf */
1488 if (!sc->is_adaptec || EN_NOTXDMA || !en_dma) {
1489#else
1490 if (EN_NOTXDMA || !en_dma) { /* no DMA? */
1491#endif
1492 if ( (mtod(lastm, unsigned long) % sizeof(u_int32_t)) != 0 ||
1493 ((lastm->m_len % sizeof(u_int32_t)) != 0 && lastm->m_next)) {
1494 first = (lastm == m);
1495 if (en_mfix(sc, &lastm, prev) == 0) { /* failed? */
1496 m_freem(m);
1497 m = NULL;
1498 break;
1499 }
1500 if (first)
1501 m = lastm; /* update */
1502 }
1503 prev = lastm;
1504 }
1505 mlen += lastm->m_len;
1506 if (lastm->m_next == NULL)
1507 break;
1508 lastm = lastm->m_next;
1509 }
1510
1511 if (m == NULL) /* happens only if mfix fails */
1512 continue;
1513
1514 ap = mtod(m, struct atm_pseudohdr *);
1515
1516 atm_vpi = ATM_PH_VPI(ap);
1517 atm_vci = ATM_PH_VCI(ap);
1518 atm_flags = ATM_PH_FLAGS(ap) & ~(EN_OBHDR|EN_OBTRL);
1519 aal = ((atm_flags & ATM_PH_AAL5) != 0)
1520 ? MID_TBD_AAL5 : MID_TBD_NOAAL5;
1521
1522 /*
1523 * check that vpi/vci is one we can use
1524 */
1525
1526 if (atm_vpi || atm_vci > MID_N_VC) {
1527 printf("%s: output vpi=%d, vci=%d out of card range, dropping...\n",
1528 sc->sc_dev.dv_xname, atm_vpi, atm_vci);
1529 m_freem(m);
1530 continue;
1531 }
1532
1533 /*
1534 * computing how much padding we need on the end of the mbuf, then
1535 * see if we can put the TBD at the front of the mbuf where the
1536 * link header goes (well behaved protocols will reserve room for us).
1537 * last, check if room for PDU tail.
1538 *
1539 * got = number of bytes of data we have
1540 * cellcnt = number of cells in this mbuf
1541 * need = number of bytes of data + padding we need (excludes TBD)
1542 * toadd = number of bytes of data we need to add to end of mbuf,
1543 * [including AAL5 PDU, if AAL5]
1544 */
1545
1546 got = mlen - sizeof(struct atm_pseudohdr *);
1547 toadd = (aal == MID_TBD_AAL5) ? MID_PDU_SIZE : 0; /* PDU */
1548 cellcnt = (got + toadd + (MID_ATMDATASZ - 1)) / MID_ATMDATASZ;
1549 need = cellcnt * MID_ATMDATASZ;
1550 toadd = need - got; /* recompute, including zero padding */
1551
1552#ifdef EN_DEBUG
1553 printf("%s: txvci%d: mlen=%d, got=%d, need=%d, toadd=%d, cell#=%d\n",
1554 sc->sc_dev.dv_xname, atm_vci, mlen, got, need, toadd, cellcnt);
1555 printf(" leading_space=%d, trailing_space=%d\n",
1556 M_LEADINGSPACE(m), M_TRAILINGSPACE(lastm));
1557#endif
1558
1559#ifdef EN_MBUF_OPT
1560
1561 /*
1562 * note: external storage (M_EXT) can be shared between mbufs
1563 * to avoid copying (see m_copym()). this means that the same
1564 * data buffer could be shared by several mbufs, and thus it isn't
1565 * a good idea to try and write TBDs or PDUs to M_EXT data areas.
1566 */
1567
1568 if (M_LEADINGSPACE(m) >= MID_TBD_SIZE && (m->m_flags & M_EXT) == 0) {
1569 m->m_data -= MID_TBD_SIZE;
1570 m->m_len += MID_TBD_SIZE;
1571 mlen += MID_TBD_SIZE;
1572 new_ap = mtod(m, struct atm_pseudohdr *);
1573 *new_ap = *ap; /* move it back */
1574 ap = new_ap;
1575 dat = ((u_int32_t *) ap) + 1;
1576 /* make sure the TBD is in proper byte order */
1577 *dat++ = htonl(MID_TBD_MK1(aal, sc->txspeed[atm_vci], cellcnt));
1578 *dat = htonl(MID_TBD_MK2(atm_vci, 0, 0));
1579 atm_flags |= EN_OBHDR;
1580 }
1581
1582 if (toadd && (lastm->m_flags & M_EXT) == 0 &&
1583 M_TRAILINGSPACE(lastm) >= toadd) {
1584 cp = mtod(lastm, u_int8_t *) + lastm->m_len;
1585 lastm->m_len += toadd;
1586 mlen += toadd;
1587 if (aal == MID_TBD_AAL5) {
1588 bzero(cp, toadd - MID_PDU_SIZE);
1589 dat = (u_int32_t *)(cp + toadd - MID_PDU_SIZE);
1590 /* make sure the PDU is in proper byte order */
1591 *dat = htonl(MID_PDU_MK1(0, 0, got));
1592 } else {
1593 bzero(cp, toadd);
1594 }
1595 atm_flags |= EN_OBTRL;
1596 }
1597 ATM_PH_FLAGS(ap) = atm_flags; /* update EN_OBHDR/EN_OBTRL bits */
1598#endif /* EN_MBUF_OPT */
1599
1600 /*
1601 * get assigned channel (will be zero unless txspeed[atm_vci] is set)
1602 */
1603
1604 txchan = sc->txvc2slot[atm_vci];
1605
1606 if (sc->txslot[txchan].mbsize > EN_TXHIWAT) {
1607 EN_COUNT(sc->txmbovr);
1608 m_freem(m);
1609#ifdef EN_DEBUG
1610 printf("%s: tx%d: buffer space shortage\n", sc->sc_dev.dv_xname,
1611 txchan);
1612#endif
1613 continue;
1614 }
1615
1616 sc->txslot[txchan].mbsize += mlen;
1617
1618#ifdef EN_DEBUG
1619 printf("%s: tx%d: VPI=%d, VCI=%d, FLAGS=0x%x, speed=0x%x\n",
1620 sc->sc_dev.dv_xname, txchan, atm_vpi, atm_vci, atm_flags,
1621 sc->txspeed[atm_vci]);
1622 printf(" adjusted mlen=%d, mbsize=%d\n", mlen,
1623 sc->txslot[txchan].mbsize);
1624#endif
1625
1626 IF_ENQUEUE(&sc->txslot[txchan].q, m);
1627 en_txdma(sc, txchan);
1628
1629 }
1630 /*NOTREACHED*/
1631}
1632
1633
1634/*
1635 * en_mfix: fix a stupid mbuf
1636 */
1637STATIC int en_makeexclusive(struct en_softc *, struct mbuf **, struct mbuf *);
1638
1639STATIC int en_makeexclusive(sc, mm, prev)
1640 struct en_softc *sc;
1641 struct mbuf **mm, *prev;
1642{
1643 struct mbuf *m, *new;
1644
1645 m = *mm;
1646
1647 if (m->m_flags & M_EXT) {
1648 if (m->m_ext.ext_free) {
1649 /* external buffer isn't an ordinary mbuf cluster! */
1650 printf("%s: mfix: special buffer! can't make a copy!\n",
1651 sc->sc_dev.dv_xname);
1652 return (0);
1653 }
1654
1655 if (mclrefcnt[mtocl(m->m_ext.ext_buf)] > 1) {
1656 /* make a real copy of the M_EXT mbuf since it is shared */
1657 MGET(new, M_DONTWAIT, MT_DATA);
1658 if (!new) {
1659 EN_COUNT(sc->mfixfail);
1660 return(0);
1661 }
1662 if (m->m_flags & M_PKTHDR)
1663 M_COPY_PKTHDR(new, m);
1664 MCLGET(new, M_DONTWAIT);
1665 if ((new->m_flags & M_EXT) == 0) {
1666 m_free(new);
1667 EN_COUNT(sc->mfixfail);
1668 return(0);
1669 }
1670 bcopy(m->m_data, new->m_data, m->m_len);
1671 new->m_len = m->m_len;
1672 new->m_next = m->m_next;
1673 if (prev)
1674 prev->m_next = new;
1675 m_free(m);
1676 *mm = new;
1677 }
1678 else {
1679 /* the buffer is not shared, align the data offset using
1680 this buffer. */
1681 u_char *d = mtod(m, u_char *);
1682 int off = ((u_long)d) % sizeof(u_int32_t);
1683
1684 if (off > 0) {
1685 bcopy(d, d - off, m->m_len);
1686 m->m_data = (caddr_t)d - off;
1687 }
1688 }
1689 }
1690 return (1);
1691}
1692
1693STATIC int en_mfix(sc, mm, prev)
1694
1695struct en_softc *sc;
1696struct mbuf **mm, *prev;
1697
1698{
1699 struct mbuf *m;
1700 u_char *d, *cp;
1701 int off;
1702 struct mbuf *nxt;
1703
1704 m = *mm;
1705
1706 EN_COUNT(sc->mfix); /* count # of calls */
1707#ifdef EN_DEBUG
1708 printf("%s: mfix mbuf m_data=0x%x, m_len=%d\n", sc->sc_dev.dv_xname,
1709 m->m_data, m->m_len);
1710#endif
1711
1712 d = mtod(m, u_char *);
1713 off = ((unsigned long) d) % sizeof(u_int32_t);
1714
1715 if (off) {
1716 if ((m->m_flags & M_EXT) == 0) {
1717 bcopy(d, d - off, m->m_len); /* ALIGN! (with costly data copy...) */
1718 d -= off;
1719 m->m_data = (caddr_t)d;
1720 } else {
1721 /* can't write to an M_EXT mbuf since it may be shared */
1722 if (en_makeexclusive(sc, &m, prev) == 0)
1723 return (0);
1724 *mm = m; /* note: 'd' now invalid */
1725 }
1726 }
1727
1728 off = m->m_len % sizeof(u_int32_t);
1729 if (off == 0)
1730 return(1);
1731
1732 if (m->m_flags & M_EXT) {
1733 /* can't write to an M_EXT mbuf since it may be shared */
1734 if (en_makeexclusive(sc, &m, prev) == 0)
1735 return (0);
1736 *mm = m; /* note: 'd' now invalid */
1737 }
1738
1739 d = mtod(m, u_char *) + m->m_len;
1740 off = sizeof(u_int32_t) - off;
1741
1742 nxt = m->m_next;
1743 while (off--) {
1744 if (nxt != NULL && nxt->m_len == 0) {
1745 /* remove an empty mbuf. this avoids odd byte padding to an empty
1746 last mbuf. */
1747 m->m_next = nxt = m_free(nxt);
1748 }
1749 if (nxt == NULL) { /* out of data, zero fill */
1750 *d++ = 0;
1751 continue; /* next "off" */
1752 }
1753 cp = mtod(nxt, u_char *);
1754 *d++ = *cp++;
1755 m->m_len++;
1756 nxt->m_len--;
1757 nxt->m_data = (caddr_t)cp;
1758 }
1759 if (nxt != NULL && nxt->m_len == 0)
1760 m->m_next = m_free(nxt);
1761 return(1);
1762}
1763
1764
1765/*
1766 * en_txdma: start trasmit DMA, if possible
1767 */
1768
1769STATIC void en_txdma(sc, chan)
1770
1771struct en_softc *sc;
1772int chan;
1773
1774{
1775 struct mbuf *tmp;
1776 struct atm_pseudohdr *ap;
1777 struct en_launch launch;
1778 int datalen = 0, dtqneed, len, ncells;
1779 u_int8_t *cp;
1780
1781#ifdef EN_DEBUG
1782 printf("%s: tx%d: starting...\n", sc->sc_dev.dv_xname, chan);
1783#endif
1784
1785 /*
1786 * note: now that txlaunch handles non-word aligned/sized requests
1787 * the only time you can safely set launch.nodma is if you've en_mfix()'d
1788 * the mbuf chain. this happens only if EN_NOTXDMA || !en_dma.
1789 */
1790
1791 launch.nodma = (EN_NOTXDMA || !en_dma);
1792
1793again:
1794
1795 /*
1796 * get an mbuf waiting for DMA
1797 */
1798
1799 launch.t = sc->txslot[chan].q.ifq_head; /* peek at head of queue */
1800
1801 if (launch.t == NULL) {
1802#ifdef EN_DEBUG
1803 printf("%s: tx%d: ...done!\n", sc->sc_dev.dv_xname, chan);
1804#endif
1805 return; /* >>> exit here if no data waiting for DMA <<< */
1806 }
1807
1808 /*
1809 * get flags, vci
1810 *
1811 * note: launch.need = # bytes we need to get on the card
1812 * dtqneed = # of DTQs we need for this packet
1813 * launch.mlen = # of bytes in in mbuf chain (<= launch.need)
1814 */
1815
1816 ap = mtod(launch.t, struct atm_pseudohdr *);
1817 launch.atm_vci = ATM_PH_VCI(ap);
1818 launch.atm_flags = ATM_PH_FLAGS(ap);
1819 launch.aal = ((launch.atm_flags & ATM_PH_AAL5) != 0) ?
1820 MID_TBD_AAL5 : MID_TBD_NOAAL5;
1821
1822 /*
1823 * XXX: have to recompute the length again, even though we already did
1824 * it in en_start(). might as well compute dtqneed here as well, so
1825 * this isn't that bad.
1826 */
1827
1828 if ((launch.atm_flags & EN_OBHDR) == 0) {
1829 dtqneed = 1; /* header still needs to be added */
1830 launch.need = MID_TBD_SIZE; /* not includeded with mbuf */
1831 } else {
1832 dtqneed = 0; /* header on-board, dma with mbuf */
1833 launch.need = 0;
1834 }
1835
1836 launch.mlen = 0;
1837 for (tmp = launch.t ; tmp != NULL ; tmp = tmp->m_next) {
1838 len = tmp->m_len;
1839 launch.mlen += len;
1840 cp = mtod(tmp, u_int8_t *);
1841 if (tmp == launch.t) {
1842 len -= sizeof(struct atm_pseudohdr); /* don't count this! */
1843 cp += sizeof(struct atm_pseudohdr);
1844 }
1845 launch.need += len;
1846 if (len == 0)
1847 continue; /* atm_pseudohdr alone in first mbuf */
1848
1849 dtqneed += en_dqneed(sc, (caddr_t) cp, len, 1);
1850 }
1851
1852 if ((launch.need % sizeof(u_int32_t)) != 0)
1853 dtqneed++; /* need DTQ to FLUSH internal buffer */
1854
1855 if ((launch.atm_flags & EN_OBTRL) == 0) {
1856 if (launch.aal == MID_TBD_AAL5) {
1857 datalen = launch.need - MID_TBD_SIZE;
1858 launch.need += MID_PDU_SIZE; /* AAL5: need PDU tail */
1859 }
1860 dtqneed++; /* need to work on the end a bit */
1861 }
1862
1863 /*
1864 * finish calculation of launch.need (need to figure out how much padding
1865 * we will need). launch.need includes MID_TBD_SIZE, but we need to
1866 * remove that to so we can round off properly. we have to add
1867 * MID_TBD_SIZE back in after calculating ncells.
1868 */
1869
1870 launch.need = roundup(launch.need - MID_TBD_SIZE, MID_ATMDATASZ);
1871 ncells = launch.need / MID_ATMDATASZ;
1872 launch.need += MID_TBD_SIZE;
1873
1874 if (launch.need > EN_TXSZ * 1024) {
1875 printf("%s: tx%d: packet larger than xmit buffer (%d > %d)\n",
1876 sc->sc_dev.dv_xname, chan, launch.need, EN_TXSZ * 1024);
1877 goto dequeue_drop;
1878 }
1879
1880 if (launch.need > sc->txslot[chan].bfree) {
1881 EN_COUNT(sc->txoutspace);
1882#ifdef EN_DEBUG
1883 printf("%s: tx%d: out of transmit space\n", sc->sc_dev.dv_xname, chan);
1884#endif
1885 return; /* >>> exit here if out of obmem buffer space <<< */
1886 }
1887
1888 /*
1889 * ensure we have enough dtqs to go, if not, wait for more.
1890 */
1891
1892 if (launch.nodma) {
1893 dtqneed = 1;
1894 }
1895 if (dtqneed > sc->dtq_free) {
1896 sc->need_dtqs = 1;
1897 EN_COUNT(sc->txdtqout);
1898#ifdef EN_DEBUG
1899 printf("%s: tx%d: out of transmit DTQs\n", sc->sc_dev.dv_xname, chan);
1900#endif
1901 return; /* >>> exit here if out of dtqs <<< */
1902 }
1903
1904 /*
1905 * it is a go, commit! dequeue mbuf start working on the xfer.
1906 */
1907
1908 IF_DEQUEUE(&sc->txslot[chan].q, tmp);
1909#ifdef EN_DIAG
1910 if (launch.t != tmp)
1911 panic("en dequeue");
1912#endif /* EN_DIAG */
1913
1914 /*
1915 * launch!
1916 */
1917
1918 EN_COUNT(sc->launch);
1919 sc->enif.if_opackets++;
1920 if ((launch.atm_flags & EN_OBHDR) == 0) {
1921 EN_COUNT(sc->lheader);
1922 /* store tbd1/tbd2 in host byte order */
1923 launch.tbd1 = MID_TBD_MK1(launch.aal, sc->txspeed[launch.atm_vci], ncells);
1924 launch.tbd2 = MID_TBD_MK2(launch.atm_vci, 0, 0);
1925 }
1926 if ((launch.atm_flags & EN_OBTRL) == 0 && launch.aal == MID_TBD_AAL5) {
1927 EN_COUNT(sc->ltail);
1928 launch.pdu1 = MID_PDU_MK1(0, 0, datalen); /* host byte order */
1929 }
1930
1931 en_txlaunch(sc, chan, &launch);
1932
1933 /*
1934 * do some housekeeping and get the next packet
1935 */
1936
1937 sc->txslot[chan].bfree -= launch.need;
1938 IF_ENQUEUE(&sc->txslot[chan].indma, launch.t);
1939 goto again;
1940
1941 /*
1942 * END of txdma loop!
1943 */
1944
1945 /*
1946 * error handles
1947 */
1948
1949dequeue_drop:
1950 IF_DEQUEUE(&sc->txslot[chan].q, tmp);
1951 if (launch.t != tmp)
1952 panic("en dequeue drop");
1953 m_freem(launch.t);
1954 sc->txslot[chan].mbsize -= launch.mlen;
1955 goto again;
1956}
1957
1958
1959/*
1960 * en_txlaunch: launch an mbuf into the dma pool!
1961 */
1962
1963STATIC void en_txlaunch(sc, chan, l)
1964
1965struct en_softc *sc;
1966int chan;
1967struct en_launch *l;
1968
1969{
1970 struct mbuf *tmp;
1971 u_int32_t cur = sc->txslot[chan].cur,
1972 start = sc->txslot[chan].start,
1973 stop = sc->txslot[chan].stop,
1974 dma, *data, *datastop, count, bcode;
1975 int pad, addtail, need, len, needalign, cnt, end, mx;
1976
1977
1978 /*
1979 * vars:
1980 * need = # bytes card still needs (decr. to zero)
1981 * len = # of bytes left in current mbuf
1982 * cur = our current pointer
1983 * dma = last place we programmed into the DMA
1984 * data = pointer into data area of mbuf that needs to go next
1985 * cnt = # of bytes to transfer in this DTQ
1986 * bcode/count = DMA burst code, and chip's version of cnt
1987 *
1988 * a single buffer can require up to 5 DTQs depending on its size
1989 * and alignment requirements. the 5 possible requests are:
1990 * [1] 1, 2, or 3 byte DMA to align src data pointer to word boundary
1991 * [2] alburst DMA to align src data pointer to bestburstlen
1992 * [3] 1 or more bestburstlen DMAs
1993 * [4] clean up burst (to last word boundary)
1994 * [5] 1, 2, or 3 byte final clean up DMA
1995 */
1996
1997 need = l->need;
1998 dma = cur;
1999 addtail = (l->atm_flags & EN_OBTRL) == 0; /* add a tail? */
2000
2001#ifdef EN_DIAG
2002 if ((need - MID_TBD_SIZE) % MID_ATMDATASZ)
2003 printf("%s: tx%d: bogus trasmit needs (%d)\n", sc->sc_dev.dv_xname, chan,
2004 need);
2005#endif
2006#ifdef EN_DEBUG
2007 printf("%s: tx%d: launch mbuf %p! cur=0x%x[%d], need=%d, addtail=%d\n",
2008 sc->sc_dev.dv_xname, chan, l->t, cur, (cur-start)/4, need, addtail);
2009 count = EN_READ(sc, MIDX_PLACE(chan));
2010 printf(" HW: base_address=0x%x, size=%d, read=%d, descstart=%d\n",
2011 MIDX_BASE(count), MIDX_SZ(count), EN_READ(sc, MIDX_READPTR(chan)),
2012 EN_READ(sc, MIDX_DESCSTART(chan)));
2013#endif
2014
2015 /*
2016 * do we need to insert the TBD by hand?
2017 * note that tbd1/tbd2/pdu1 are in host byte order.
2018 */
2019
2020 if ((l->atm_flags & EN_OBHDR) == 0) {
2021#ifdef EN_DEBUG
2022 printf("%s: tx%d: insert header 0x%x 0x%x\n", sc->sc_dev.dv_xname,
2023 chan, l->tbd1, l->tbd2);
2024#endif
2025 EN_WRITE(sc, cur, l->tbd1);
2026 EN_WRAPADD(start, stop, cur, 4);
2027 EN_WRITE(sc, cur, l->tbd2);
2028 EN_WRAPADD(start, stop, cur, 4);
2029 need -= 8;
2030 }
2031
2032 /*
2033 * now do the mbufs...
2034 */
2035
2036 for (tmp = l->t ; tmp != NULL ; tmp = tmp->m_next) {
2037
2038 /* get pointer to data and length */
2039 data = mtod(tmp, u_int32_t *);
2040 len = tmp->m_len;
2041 if (tmp == l->t) {
2042 data += sizeof(struct atm_pseudohdr)/sizeof(u_int32_t);
2043 len -= sizeof(struct atm_pseudohdr);
2044 }
2045
2046 /* now, determine if we should copy it */
2047 if (l->nodma || (len < EN_MINDMA &&
2048 (len % 4) == 0 && ((unsigned long) data % 4) == 0 && (cur % 4) == 0)) {
2049
2050 /*
2051 * roundup len: the only time this will change the value of len
2052 * is when l->nodma is true, tmp is the last mbuf, and there is
2053 * a non-word number of bytes to transmit. in this case it is
2054 * safe to round up because we've en_mfix'd the mbuf (so the first
2055 * byte is word aligned there must be enough free bytes at the end
2056 * to round off to the next word boundary)...
2057 */
2058 len = roundup(len, sizeof(u_int32_t));
2059 datastop = data + (len / sizeof(u_int32_t));
2060 /* copy loop: preserve byte order!!! use WRITEDAT */
2061 while (data != datastop) {
2062 EN_WRITEDAT(sc, cur, *data);
2063 data++;
2064 EN_WRAPADD(start, stop, cur, 4);
2065 }
2066 need -= len;
2067#ifdef EN_DEBUG
2068 printf("%s: tx%d: copied %d bytes (%d left, cur now 0x%x)\n",
2069 sc->sc_dev.dv_xname, chan, len, need, cur);
2070#endif
2071 continue; /* continue on to next mbuf */
2072 }
2073
2074 /* going to do DMA, first make sure the dtq is in sync. */
2075 if (dma != cur) {
2076 EN_DTQADD(sc, WORD_IDX(start,cur), chan, MIDDMA_JK, 0, 0, 0);
2077#ifdef EN_DEBUG
2078 printf("%s: tx%d: dtq_sync: advance pointer to %d\n",
2079 sc->sc_dev.dv_xname, chan, cur);
2080#endif
2081 }
2082
2083 /*
2084 * if this is the last buffer, and it looks like we are going to need to
2085 * flush the internal buffer, can we extend the length of this mbuf to
2086 * avoid the FLUSH?
2087 */
2088
2089 if (tmp->m_next == NULL) {
2090 cnt = (need - len) % sizeof(u_int32_t);
2091 if (cnt && M_TRAILINGSPACE(tmp) >= cnt)
2092 len += cnt; /* pad for FLUSH */
2093 }
2094
2095#if !defined(MIDWAY_ENIONLY)
2096
2097 /*
2098 * the adaptec DMA engine is smart and handles everything for us.
2099 */
2100
2101 if (sc->is_adaptec) {
2102 /* need to DMA "len" bytes out to card */
2103 need -= len;
2104 EN_WRAPADD(start, stop, cur, len);
2105#ifdef EN_DEBUG
2106 printf("%s: tx%d: adp_dma %d bytes (%d left, cur now 0x%x)\n",
2107 sc->sc_dev.dv_xname, chan, len, need, cur);
2108#endif
2109 end = (need == 0) ? MID_DMA_END : 0;
2110 EN_DTQADD(sc, len, chan, 0, vtophys(data), l->mlen, end);
2111 if (end)
2112 goto done;
2113 dma = cur; /* update dma pointer */
2114 continue;
2115 }
2116#endif /* !MIDWAY_ENIONLY */
2117
2118#if !defined(MIDWAY_ADPONLY)
2119
2120 /*
2121 * the ENI DMA engine is not so smart and need more help from us
2122 */
2123
2124 /* do we need to do a DMA op to align to word boundary? */
2125 needalign = (unsigned long) data % sizeof(u_int32_t);
2126 if (needalign) {
2127 EN_COUNT(sc->headbyte);
2128 cnt = sizeof(u_int32_t) - needalign;
2129 if (cnt == 2 && len >= cnt) {
2130 count = 1;
2131 bcode = MIDDMA_2BYTE;
2132 } else {
2133 cnt = min(cnt, len); /* prevent overflow */
2134 count = cnt;
2135 bcode = MIDDMA_BYTE;
2136 }
2137 need -= cnt;
2138 EN_WRAPADD(start, stop, cur, cnt);
2139#ifdef EN_DEBUG
2140 printf("%s: tx%d: small al_dma %d bytes (%d left, cur now 0x%x)\n",
2141 sc->sc_dev.dv_xname, chan, cnt, need, cur);
2142#endif
2143 len -= cnt;
2144 end = (need == 0) ? MID_DMA_END : 0;
2145 EN_DTQADD(sc, count, chan, bcode, vtophys(data), l->mlen, end);
2146 if (end)
2147 goto done;
2148 data = (u_int32_t *) ((u_char *)data + cnt);
2149 }
2150
2151 /* do we need to do a DMA op to align? */
2152 if (sc->alburst &&
2153 (needalign = (((unsigned long) data) & sc->bestburstmask)) != 0
2154 && len >= sizeof(u_int32_t)) {
2155 cnt = sc->bestburstlen - needalign;
2156 mx = len & ~(sizeof(u_int32_t)-1); /* don't go past end */
2157 if (cnt > mx) {
2158 cnt = mx;
2159 count = cnt / sizeof(u_int32_t);
2160 bcode = MIDDMA_WORD;
2161 } else {
2162 count = cnt / sizeof(u_int32_t);
2163 bcode = en_dmaplan[count].bcode;
2164 count = cnt >> en_dmaplan[count].divshift;
2165 }
2166 need -= cnt;
2167 EN_WRAPADD(start, stop, cur, cnt);
2168#ifdef EN_DEBUG
2169 printf("%s: tx%d: al_dma %d bytes (%d left, cur now 0x%x)\n",
2170 sc->sc_dev.dv_xname, chan, cnt, need, cur);
2171#endif
2172 len -= cnt;
2173 end = (need == 0) ? MID_DMA_END : 0;
2174 EN_DTQADD(sc, count, chan, bcode, vtophys(data), l->mlen, end);
2175 if (end)
2176 goto done;
2177 data = (u_int32_t *) ((u_char *)data + cnt);
2178 }
2179
2180 /* do we need to do a max-sized burst? */
2181 if (len >= sc->bestburstlen) {
2182 count = len >> sc->bestburstshift;
2183 cnt = count << sc->bestburstshift;
2184 bcode = sc->bestburstcode;
2185 need -= cnt;
2186 EN_WRAPADD(start, stop, cur, cnt);
2187#ifdef EN_DEBUG
2188 printf("%s: tx%d: best_dma %d bytes (%d left, cur now 0x%x)\n",
2189 sc->sc_dev.dv_xname, chan, cnt, need, cur);
2190#endif
2191 len -= cnt;
2192 end = (need == 0) ? MID_DMA_END : 0;
2193 EN_DTQADD(sc, count, chan, bcode, vtophys(data), l->mlen, end);
2194 if (end)
2195 goto done;
2196 data = (u_int32_t *) ((u_char *)data + cnt);
2197 }
2198
2199 /* do we need to do a cleanup burst? */
2200 cnt = len & ~(sizeof(u_int32_t)-1);
2201 if (cnt) {
2202 count = cnt / sizeof(u_int32_t);
2203 bcode = en_dmaplan[count].bcode;
2204 count = cnt >> en_dmaplan[count].divshift;
2205 need -= cnt;
2206 EN_WRAPADD(start, stop, cur, cnt);
2207#ifdef EN_DEBUG
2208 printf("%s: tx%d: cleanup_dma %d bytes (%d left, cur now 0x%x)\n",
2209 sc->sc_dev.dv_xname, chan, cnt, need, cur);
2210#endif
2211 len -= cnt;
2212 end = (need == 0) ? MID_DMA_END : 0;
2213 EN_DTQADD(sc, count, chan, bcode, vtophys(data), l->mlen, end);
2214 if (end)
2215 goto done;
2216 data = (u_int32_t *) ((u_char *)data + cnt);
2217 }
2218
2219 /* any word fragments left? */
2220 if (len) {
2221 EN_COUNT(sc->tailbyte);
2222 if (len == 2) {
2223 count = 1;
2224 bcode = MIDDMA_2BYTE; /* use 2byte mode */
2225 } else {
2226 count = len;
2227 bcode = MIDDMA_BYTE; /* use 1 byte mode */
2228 }
2229 need -= len;
2230 EN_WRAPADD(start, stop, cur, len);
2231#ifdef EN_DEBUG
2232 printf("%s: tx%d: byte cleanup_dma %d bytes (%d left, cur now 0x%x)\n",
2233 sc->sc_dev.dv_xname, chan, len, need, cur);
2234#endif
2235 end = (need == 0) ? MID_DMA_END : 0;
2236 EN_DTQADD(sc, count, chan, bcode, vtophys(data), l->mlen, end);
2237 if (end)
2238 goto done;
2239 }
2240
2241 dma = cur; /* update dma pointer */
2242#endif /* !MIDWAY_ADPONLY */
2243
2244 } /* next mbuf, please */
2245
2246 /*
2247 * all mbuf data has been copied out to the obmem (or set up to be DMAd).
2248 * if the trailer or padding needs to be put in, do it now.
2249 *
2250 * NOTE: experimental results reveal the following fact:
2251 * if you DMA "X" bytes to the card, where X is not a multiple of 4,
2252 * then the card will internally buffer the last (X % 4) bytes (in
2253 * hopes of getting (4 - (X % 4)) more bytes to make a complete word).
2254 * it is imporant to make sure we don't leave any important data in
2255 * this internal buffer because it is discarded on the last (end) DTQ.
2256 * one way to do this is to DMA in (4 - (X % 4)) more bytes to flush
2257 * the darn thing out.
2258 */
2259
2260 if (addtail) {
2261
2262 pad = need % sizeof(u_int32_t);
2263 if (pad) {
2264 /*
2265 * FLUSH internal data buffer. pad out with random data from the front
2266 * of the mbuf chain...
2267 */
2268 bcode = (sc->is_adaptec) ? 0 : MIDDMA_BYTE;
2269 EN_COUNT(sc->tailflush);
2270 EN_WRAPADD(start, stop, cur, pad);
2271 EN_DTQADD(sc, pad, chan, bcode, vtophys(l->t->m_data), 0, 0);
2272 need -= pad;
2273#ifdef EN_DEBUG
2274 printf("%s: tx%d: pad/FLUSH dma %d bytes (%d left, cur now 0x%x)\n",
2275 sc->sc_dev.dv_xname, chan, pad, need, cur);
2276#endif
2277 }
2278
2279 /* copy data */
2280 pad = need / sizeof(u_int32_t); /* round *down* */
2281 if (l->aal == MID_TBD_AAL5)
2282 pad -= 2;
2283#ifdef EN_DEBUG
2284 printf("%s: tx%d: padding %d bytes (cur now 0x%x)\n",
2285 sc->sc_dev.dv_xname, chan, pad * sizeof(u_int32_t), cur);
2286#endif
2287 while (pad--) {
2288 EN_WRITEDAT(sc, cur, 0); /* no byte order issues with zero */
2289 EN_WRAPADD(start, stop, cur, 4);
2290 }
2291 if (l->aal == MID_TBD_AAL5) {
2292 EN_WRITE(sc, cur, l->pdu1); /* in host byte order */
2293 EN_WRAPADD(start, stop, cur, 8);
2294 }
2295 }
2296
2297 if (addtail || dma != cur) {
2298 /* write final descritor */
2299 EN_DTQADD(sc, WORD_IDX(start,cur), chan, MIDDMA_JK, 0,
2300 l->mlen, MID_DMA_END);
2301 /* dma = cur; */ /* not necessary since we are done */
2302 }
2303
2304done:
2305 /* update current pointer */
2306 sc->txslot[chan].cur = cur;
2307#ifdef EN_DEBUG
2308 printf("%s: tx%d: DONE! cur now = 0x%x\n",
2309 sc->sc_dev.dv_xname, chan, cur);
2310#endif
2311
2312 return;
2313}
2314
2315
2316/*
2317 * interrupt handler
2318 */
2319
2320EN_INTR_TYPE en_intr(arg)
2321
2322void *arg;
2323
2324{
2325 struct en_softc *sc = (struct en_softc *) arg;
2326 struct mbuf *m;
2327 struct atm_pseudohdr ah;
2328 u_int32_t reg, kick, val, mask, chip, vci, slot, dtq, drq;
2329 int lcv, idx, need_softserv = 0;
2330
2331 reg = EN_READ(sc, MID_INTACK);
2332
2333 if ((reg & MID_INT_ANY) == 0)
2334 EN_INTR_RET(0); /* not us */
2335
2336#ifdef EN_DEBUG
2337 printf("%s: interrupt=0x%b\n", sc->sc_dev.dv_xname, reg, MID_INTBITS);
2338#endif
2339
2340 /*
2341 * unexpected errors that need a reset
2342 */
2343
2344 if ((reg & (MID_INT_IDENT|MID_INT_LERR|MID_INT_DMA_ERR|MID_INT_SUNI)) != 0) {
2345 printf("%s: unexpected interrupt=0x%b, resetting card\n",
2346 sc->sc_dev.dv_xname, reg, MID_INTBITS);
2347#ifdef EN_DEBUG
2348#ifdef DDB
2349 Debugger();
2350#endif /* DDB */
2351 sc->enif.if_flags &= ~IFF_RUNNING; /* FREEZE! */
2352#else
2353 en_reset(sc);
2354 en_init(sc);
2355#endif
2356 EN_INTR_RET(1); /* for us */
2357 }
2358
2359 /*******************
2360 * xmit interrupts *
2361 ******************/
2362
2363 kick = 0; /* bitmask of channels to kick */
2364 if (reg & MID_INT_TX) { /* TX done! */
2365
2366 /*
2367 * check for tx complete, if detected then this means that some space
2368 * has come free on the card. we must account for it and arrange to
2369 * kick the channel to life (in case it is stalled waiting on the card).
2370 */
2371 for (mask = 1, lcv = 0 ; lcv < EN_NTX ; lcv++, mask = mask * 2) {
2372 if (reg & MID_TXCHAN(lcv)) {
2373 kick = kick | mask; /* want to kick later */
2374 val = EN_READ(sc, MIDX_READPTR(lcv)); /* current read pointer */
2375 val = (val * sizeof(u_int32_t)) + sc->txslot[lcv].start;
2376 /* convert to offset */
2377 if (val > sc->txslot[lcv].cur)
2378 sc->txslot[lcv].bfree = val - sc->txslot[lcv].cur;
2379 else
2380 sc->txslot[lcv].bfree = (val + (EN_TXSZ*1024)) - sc->txslot[lcv].cur;
2381#ifdef EN_DEBUG
2382 printf("%s: tx%d: trasmit done. %d bytes now free in buffer\n",
2383 sc->sc_dev.dv_xname, lcv, sc->txslot[lcv].bfree);
2384#endif
2385 }
2386 }
2387 }
2388
2389 if (reg & MID_INT_DMA_TX) { /* TX DMA done! */
2390
2391 /*
2392 * check for TX DMA complete, if detected then this means that some DTQs
2393 * are now free. it also means some indma mbufs can be freed.
2394 * if we needed DTQs, kick all channels.
2395 */
2396 val = EN_READ(sc, MID_DMA_RDTX); /* chip's current location */
2397 idx = MID_DTQ_A2REG(sc->dtq_chip);/* where we last saw chip */
2398 if (sc->need_dtqs) {
2399 kick = MID_NTX_CH - 1; /* assume power of 2, kick all! */
2400 sc->need_dtqs = 0; /* recalculated in "kick" loop below */
2401#ifdef EN_DEBUG
2402 printf("%s: cleared need DTQ condition\n", sc->sc_dev.dv_xname);
2403#endif
2404 }
2405 while (idx != val) {
2406 sc->dtq_free++;
2407 if ((dtq = sc->dtq[idx]) != 0) {
2408 sc->dtq[idx] = 0; /* don't forget to zero it out when done */
2409 slot = EN_DQ_SLOT(dtq);
2410 IF_DEQUEUE(&sc->txslot[slot].indma, m);
2411 if (!m) panic("enintr: dtqsync");
2412 sc->txslot[slot].mbsize -= EN_DQ_LEN(dtq);
2413#ifdef EN_DEBUG
2414 printf("%s: tx%d: free %d dma bytes, mbsize now %d\n",
2415 sc->sc_dev.dv_xname, slot, EN_DQ_LEN(dtq),
2416 sc->txslot[slot].mbsize);
2417#endif
2418 m_freem(m);
2419 }
2420 EN_WRAPADD(0, MID_DTQ_N, idx, 1);
2421 }
2422 sc->dtq_chip = MID_DTQ_REG2A(val); /* sync softc */
2423 }
2424
2425
2426 /*
2427 * kick xmit channels as needed
2428 */
2429
2430 if (kick) {
2431#ifdef EN_DEBUG
2432 printf("%s: tx kick mask = 0x%x\n", sc->sc_dev.dv_xname, kick);
2433#endif
2434 for (mask = 1, lcv = 0 ; lcv < EN_NTX ; lcv++, mask = mask * 2) {
2435 if ((kick & mask) && sc->txslot[lcv].q.ifq_head) {
2436 en_txdma(sc, lcv); /* kick it! */
2437 }
2438 } /* for each slot */
2439 } /* if kick */
2440
2441
2442 /*******************
2443 * recv interrupts *
2444 ******************/
2445
2446 /*
2447 * check for RX DMA complete, and pass the data "upstairs"
2448 */
2449
2450 if (reg & MID_INT_DMA_RX) {
2451 val = EN_READ(sc, MID_DMA_RDRX); /* chip's current location */
2452 idx = MID_DRQ_A2REG(sc->drq_chip);/* where we last saw chip */
2453 while (idx != val) {
2454 sc->drq_free++;
2455 if ((drq = sc->drq[idx]) != 0) {
2456 sc->drq[idx] = 0; /* don't forget to zero it out when done */
2457 slot = EN_DQ_SLOT(drq);
2458 if (EN_DQ_LEN(drq) == 0) { /* "JK" trash DMA? */
2459 m = NULL;
2460 } else {
2461 IF_DEQUEUE(&sc->rxslot[slot].indma, m);
2462 if (!m) {
2463 printf("%s: lost mbuf in slot %d!\n", sc->sc_dev.dv_xname, slot);
2464 panic("enintr: drqsync");
2465 }
2466 }
2467 /* do something with this mbuf */
2468 if (sc->rxslot[slot].oth_flags & ENOTHER_DRAIN) { /* drain? */
2469 if (m)
2470 m_freem(m);
2471 vci = sc->rxslot[slot].atm_vci;
2472 if (sc->rxslot[slot].indma.ifq_head == NULL &&
2473 sc->rxslot[slot].q.ifq_head == NULL &&
2474 (EN_READ(sc, MID_VC(vci)) & MIDV_INSERVICE) == 0 &&
2475 (sc->rxslot[slot].oth_flags & ENOTHER_SWSL) == 0) {
2476 sc->rxslot[slot].oth_flags = ENOTHER_FREE; /* done drain */
2477 sc->rxslot[slot].atm_vci = RX_NONE;
2478 sc->rxvc2slot[vci] = RX_NONE;
2479#ifdef EN_DEBUG
2480 printf("%s: rx%d: VCI %d now free\n", sc->sc_dev.dv_xname,
2481 slot, vci);
2482#endif
2483 }
2484 } else if (m != NULL) {
2485 ATM_PH_FLAGS(&ah) = sc->rxslot[slot].atm_flags;
2486 ATM_PH_VPI(&ah) = 0;
2487 ATM_PH_SETVCI(&ah, sc->rxslot[slot].atm_vci);
2488#ifdef EN_DEBUG
2489 printf("%s: rx%d: rxvci%d: atm_input, mbuf %p, len %d, hand %p\n",
2490 sc->sc_dev.dv_xname, slot, sc->rxslot[slot].atm_vci, m,
2491 EN_DQ_LEN(drq), sc->rxslot[slot].rxhand);
2492#endif
2493 sc->enif.if_ipackets++;
2494
2495 atm_input(&sc->enif, &ah, m, sc->rxslot[slot].rxhand);
2496 }
2497
2498 }
2499 EN_WRAPADD(0, MID_DRQ_N, idx, 1);
2500 }
2501 sc->drq_chip = MID_DRQ_REG2A(val); /* sync softc */
2502
2503 if (sc->need_drqs) { /* true if we had a DRQ shortage */
2504 need_softserv = 1;
2505 sc->need_drqs = 0;
2506#ifdef EN_DEBUG
2507 printf("%s: cleared need DRQ condition\n", sc->sc_dev.dv_xname);
2508#endif
2509 }
2510 }
2511
2512 /*
2513 * handle service interrupts
2514 */
2515
2516 if (reg & MID_INT_SERVICE) {
2517 chip = MID_SL_REG2A(EN_READ(sc, MID_SERV_WRITE));
2518
2519 while (sc->hwslistp != chip) {
2520
2521 /* fetch and remove it from hardware service list */
2522 vci = EN_READ(sc, sc->hwslistp);
2523 EN_WRAPADD(MID_SLOFF, MID_SLEND, sc->hwslistp, 4);/* advance hw ptr */
2524 slot = sc->rxvc2slot[vci];
2525 if (slot == RX_NONE) {
2526#ifdef EN_DEBUG
2527 printf("%s: unexpected rx interrupt on VCI %d\n",
2528 sc->sc_dev.dv_xname, vci);
2529#endif
2530 EN_WRITE(sc, MID_VC(vci), MIDV_TRASH); /* rx off, damn it! */
2531 continue; /* next */
2532 }
2533 EN_WRITE(sc, MID_VC(vci), sc->rxslot[slot].mode); /* remove from hwsl */
2534 EN_COUNT(sc->hwpull);
2535
2536#ifdef EN_DEBUG
2537 printf("%s: pulled VCI %d off hwslist\n", sc->sc_dev.dv_xname, vci);
2538#endif
2539
2540 /* add it to the software service list (if needed) */
2541 if ((sc->rxslot[slot].oth_flags & ENOTHER_SWSL) == 0) {
2542 EN_COUNT(sc->swadd);
2543 need_softserv = 1;
2544 sc->rxslot[slot].oth_flags |= ENOTHER_SWSL;
2545 sc->swslist[sc->swsl_tail] = slot;
2546 EN_WRAPADD(0, MID_SL_N, sc->swsl_tail, 1);
2547 sc->swsl_size++;
2548#ifdef EN_DEBUG
2549 printf("%s: added VCI %d to swslist\n", sc->sc_dev.dv_xname, vci);
2550#endif
2551 }
2552 }
2553 }
2554
2555 /*
2556 * now service (function too big to include here)
2557 */
2558
2559 if (need_softserv)
2560 en_service(sc);
2561
2562 /*
2563 * keep our stats
2564 */
2565
2566 if (reg & MID_INT_DMA_OVR) {
2567 EN_COUNT(sc->dmaovr);
2568#ifdef EN_DEBUG
2569 printf("%s: MID_INT_DMA_OVR\n", sc->sc_dev.dv_xname);
2570#endif
2571 }
2572 reg = EN_READ(sc, MID_STAT);
2573#ifdef EN_STAT
2574 sc->otrash += MID_OTRASH(reg);
2575 sc->vtrash += MID_VTRASH(reg);
2576#endif
2577
2578 EN_INTR_RET(1); /* for us */
2579}
2580
2581
2582/*
2583 * en_service: handle a service interrupt
2584 *
2585 * Q: why do we need a software service list?
2586 *
2587 * A: if we remove a VCI from the hardware list and we find that we are
2588 * out of DRQs we must defer processing until some DRQs become free.
2589 * so we must remember to look at this RX VCI/slot later, but we can't
2590 * put it back on the hardware service list (since that isn't allowed).
2591 * so we instead save it on the software service list. it would be nice
2592 * if we could peek at the VCI on top of the hwservice list without removing
2593 * it, however this leads to a race condition: if we peek at it and
2594 * decide we are done with it new data could come in before we have a
2595 * chance to remove it from the hwslist. by the time we get it out of
2596 * the list the interrupt for the new data will be lost. oops!
2597 *
2598 */
2599
2600STATIC void en_service(sc)
2601
2602struct en_softc *sc;
2603
2604{
2605 struct mbuf *m, *tmp;
2606 u_int32_t cur, dstart, rbd, pdu, *sav, dma, bcode, count, *data, *datastop;
2607 u_int32_t start, stop, cnt, needalign;
2608 int slot, raw, aal5, llc, vci, fill, mlen, tlen, drqneed, need, needfill, end;
2609
2610 aal5 = 0; /* Silence gcc */
2611next_vci:
2612 if (sc->swsl_size == 0) {
2613#ifdef EN_DEBUG
2614 printf("%s: en_service done\n", sc->sc_dev.dv_xname);
2615#endif
2616 return; /* >>> exit here if swsl now empty <<< */
2617 }
2618
2619 /*
2620 * get slot/vci to service
2621 */
2622
2623 slot = sc->swslist[sc->swsl_head];
2624 vci = sc->rxslot[slot].atm_vci;
2625#ifdef EN_DIAG
2626 if (sc->rxvc2slot[vci] != slot) panic("en_service rx slot/vci sync");
2627#endif
2628
2629 /*
2630 * determine our mode and if we've got any work to do
2631 */
2632
2633 raw = sc->rxslot[slot].oth_flags & ENOTHER_RAW;
2634 start= sc->rxslot[slot].start;
2635 stop= sc->rxslot[slot].stop;
2636 cur = sc->rxslot[slot].cur;
2637
2638#ifdef EN_DEBUG
2639 printf("%s: rx%d: service vci=%d raw=%d start/stop/cur=0x%x 0x%x 0x%x\n",
2640 sc->sc_dev.dv_xname, slot, vci, raw, start, stop, cur);
2641#endif
2642
2643same_vci:
2644 dstart = MIDV_DSTART(EN_READ(sc, MID_DST_RP(vci)));
2645 dstart = (dstart * sizeof(u_int32_t)) + start;
2646
2647 /* check to see if there is any data at all */
2648 if (dstart == cur) {
2649defer: /* defer processing */
2650 EN_WRAPADD(0, MID_SL_N, sc->swsl_head, 1);
2651 sc->rxslot[slot].oth_flags &= ~ENOTHER_SWSL;
2652 sc->swsl_size--;
2653 /* >>> remove from swslist <<< */
2654#ifdef EN_DEBUG
2655 printf("%s: rx%d: remove vci %d from swslist\n",
2656 sc->sc_dev.dv_xname, slot, vci);
2657#endif
2658 goto next_vci;
2659 }
2660
2661 /*
2662 * figure out how many bytes we need
2663 * [mlen = # bytes to go in mbufs, fill = # bytes to dump (MIDDMA_JK)]
2664 */
2665
2666 if (raw) {
2667
2668 /* raw mode (aka boodi mode) */
2669 fill = 0;
2670 if (dstart > cur)
2671 mlen = dstart - cur;
2672 else
2673 mlen = (dstart + (EN_RXSZ*1024)) - cur;
2674
2675 if (mlen < sc->rxslot[slot].raw_threshold)
2676 goto defer; /* too little data to deal with */
2677
2678 } else {
2679
2680 /* normal mode */
2681 aal5 = (sc->rxslot[slot].atm_flags & ATM_PH_AAL5);
2682 llc = (aal5 && (sc->rxslot[slot].atm_flags & ATM_PH_LLCSNAP)) ? 1 : 0;
2683 rbd = EN_READ(sc, cur);
2684 if (MID_RBD_ID(rbd) != MID_RBD_STDID)
2685 panic("en_service: id mismatch\n");
2686
2687 if (rbd & MID_RBD_T) {
2688 mlen = 0; /* we've got trash */
2689 fill = MID_RBD_SIZE;
2690 EN_COUNT(sc->ttrash);
2691 } else if (!aal5) {
2692 mlen = MID_RBD_SIZE + MID_CHDR_SIZE + MID_ATMDATASZ; /* 1 cell (ick!) */
2693 fill = 0;
2694 } else {
2695 tlen = (MID_RBD_CNT(rbd) * MID_ATMDATASZ) + MID_RBD_SIZE;
2696 pdu = cur + tlen - MID_PDU_SIZE;
2697 if (pdu >= stop)
2698 pdu -= (EN_RXSZ*1024);
2699 pdu = EN_READ(sc, pdu); /* get PDU in correct byte order */
2700 fill = tlen - MID_RBD_SIZE - MID_PDU_LEN(pdu);
2701 if (fill < 0 || (rbd & MID_RBD_CRCERR) != 0) {
2702 printf("%s: invalid AAL5 PDU length or CRC detected, dropping frame\n",
2703 sc->sc_dev.dv_xname);
2704 printf("%s: got %d cells (%d bytes), AAL5 len is %d bytes (pdu=0x%x) CRCERR=%d\n",
2705 sc->sc_dev.dv_xname, MID_RBD_CNT(rbd), tlen - MID_RBD_SIZE,
2706 MID_PDU_LEN(pdu), pdu, (rbd & MID_RBD_CRCERR)?1:0);
2707 fill = tlen;
2708 }
2709 mlen = tlen - fill;
2710 }
2711
2712 }
2713
2714 /*
2715 * now allocate mbufs for mlen bytes of data, if out of mbufs, trash all
2716 *
2717 * notes:
2718 * 1. it is possible that we've already allocated an mbuf for this pkt
2719 * but ran out of DRQs, in which case we saved the allocated mbuf on
2720 * "q".
2721 * 2. if we save an mbuf in "q" we store the "cur" (pointer) in the front
2722 * of the mbuf as an identity (that we can check later), and we also
2723 * store drqneed (so we don't have to recompute it).
2724 * 3. after this block of code, if m is still NULL then we ran out of mbufs
2725 */
2726
2727 m = sc->rxslot[slot].q.ifq_head;
2728 drqneed = 1;
2729 if (m) {
2730 sav = mtod(m, u_int32_t *);
2731 if (sav[0] != cur) {
2732#ifdef EN_DEBUG
2733 printf("%s: rx%d: q'ed mbuf %p not ours\n",
2734 sc->sc_dev.dv_xname, slot, m);
2735#endif
2736 m = NULL; /* wasn't ours */
2737 EN_COUNT(sc->rxqnotus);
2738 } else {
2739 EN_COUNT(sc->rxqus);
2740 IF_DEQUEUE(&sc->rxslot[slot].q, m);
2741 drqneed = sav[1];
2742#ifdef EN_DEBUG
2743 printf("%s: rx%d: recovered q'ed mbuf %p (drqneed=%d)\n",
2744 sc->sc_dev.dv_xname, slot, m, drqneed);
2745#endif
2746 }
2747 }
2748
2749 if (mlen != 0 && m == NULL) {
2750 m = en_mget(sc, mlen, &drqneed); /* allocate! */
2751 if (m == NULL) {
2752 fill += mlen;
2753 mlen = 0;
2754 EN_COUNT(sc->rxmbufout);
2755#ifdef EN_DEBUG
2756 printf("%s: rx%d: out of mbufs\n", sc->sc_dev.dv_xname, slot);
2757#endif
2758 }
2759#ifdef EN_DEBUG
2760 printf("%s: rx%d: allocate mbuf %p, mlen=%d, drqneed=%d\n",
2761 sc->sc_dev.dv_xname, slot, m, mlen, drqneed);
2762#endif
2763 }
2764
2765#ifdef EN_DEBUG
2766 printf("%s: rx%d: VCI %d, mbuf_chain %p, mlen %d, fill %d\n",
2767 sc->sc_dev.dv_xname, slot, vci, m, mlen, fill);
2768#endif
2769
2770 /*
2771 * now check to see if we've got the DRQs needed. if we are out of
2772 * DRQs we must quit (saving our mbuf, if we've got one).
2773 */
2774
2775 needfill = (fill) ? 1 : 0;
2776 if (drqneed + needfill > sc->drq_free) {
2777 sc->need_drqs = 1; /* flag condition */
2778 if (m == NULL) {
2779 EN_COUNT(sc->rxoutboth);
2780#ifdef EN_DEBUG
2781 printf("%s: rx%d: out of DRQs *and* mbufs!\n", sc->sc_dev.dv_xname, slot);
2782#endif
2783 return; /* >>> exit here if out of both mbufs and DRQs <<< */
2784 }
2785 sav = mtod(m, u_int32_t *);
2786 sav[0] = cur;
2787 sav[1] = drqneed;
2788 IF_ENQUEUE(&sc->rxslot[slot].q, m);
2789 EN_COUNT(sc->rxdrqout);
2790#ifdef EN_DEBUG
2791 printf("%s: rx%d: out of DRQs\n", sc->sc_dev.dv_xname, slot);
2792#endif
2793 return; /* >>> exit here if out of DRQs <<< */
2794 }
2795
2796 /*
2797 * at this point all resources have been allocated and we are commited
2798 * to servicing this slot.
2799 *
2800 * dma = last location we told chip about
2801 * cur = current location
2802 * mlen = space in the mbuf we want
2803 * need = bytes to xfer in (decrs to zero)
2804 * fill = how much fill we need
2805 * tlen = how much data to transfer to this mbuf
2806 * cnt/bcode/count = <same as xmit>
2807 *
2808 * 'needfill' not used after this point
2809 */
2810
2811 dma = cur; /* dma = last location we told chip about */
2812 need = roundup(mlen, sizeof(u_int32_t));
2813 fill = fill - (need - mlen); /* note: may invalidate 'needfill' */
2814
2815 for (tmp = m ; tmp != NULL && need > 0 ; tmp = tmp->m_next) {
2816 tlen = roundup(tmp->m_len, sizeof(u_int32_t)); /* m_len set by en_mget */
2817 data = mtod(tmp, u_int32_t *);
2818
2819#ifdef EN_DEBUG
2820 printf("%s: rx%d: load mbuf %p, m_len=%d, m_data=%p, tlen=%d\n",
2821 sc->sc_dev.dv_xname, slot, tmp, tmp->m_len, tmp->m_data, tlen);
2822#endif
2823
2824 /* copy data */
2825 if (EN_NORXDMA || !en_dma || tlen < EN_MINDMA) {
2826 datastop = (u_int32_t *)((u_char *) data + tlen);
2827 /* copy loop: preserve byte order!!! use READDAT */
2828 while (data != datastop) {
2829 *data = EN_READDAT(sc, cur);
2830 data++;
2831 EN_WRAPADD(start, stop, cur, 4);
2832 }
2833 need -= tlen;
2834#ifdef EN_DEBUG
2835 printf("%s: rx%d: vci%d: copied %d bytes (%d left)\n",
2836 sc->sc_dev.dv_xname, slot, vci, tlen, need);
2837#endif
2838 continue;
2839 }
2840
2841 /* DMA data (check to see if we need to sync DRQ first) */
2842 if (dma != cur) {
2843 EN_DRQADD(sc, WORD_IDX(start,cur), vci, MIDDMA_JK, 0, 0, 0, 0);
2844#ifdef EN_DEBUG
2845 printf("%s: rx%d: vci%d: drq_sync: advance pointer to %d\n",
2846 sc->sc_dev.dv_xname, slot, vci, cur);
2847#endif
2848 }
2849
2850#if !defined(MIDWAY_ENIONLY)
2851
2852 /*
2853 * the adaptec DMA engine is smart and handles everything for us.
2854 */
2855
2856 if (sc->is_adaptec) {
2857 need -= tlen;
2858 EN_WRAPADD(start, stop, cur, tlen);
2859#ifdef EN_DEBUG
2860 printf("%s: rx%d: vci%d: adp_dma %d bytes (%d left)\n",
2861 sc->sc_dev.dv_xname, slot, vci, tlen, need);
2862#endif
2863 end = (need == 0 && !fill) ? MID_DMA_END : 0;
2864 EN_DRQADD(sc, tlen, vci, 0, vtophys(data), mlen, slot, end);
2865 if (end)
2866 goto done;
2867 dma = cur; /* update dma pointer */
2868 continue;
2869 }
2870#endif /* !MIDWAY_ENIONLY */
2871
2872
2873#if !defined(MIDWAY_ADPONLY)
2874
2875 /*
2876 * the ENI DMA engine is not so smart and need more help from us
2877 */
2878
2879 /* do we need to do a DMA op to align? */
2880 if (sc->alburst &&
2881 (needalign = (((unsigned long) data) & sc->bestburstmask)) != 0) {
2882 cnt = sc->bestburstlen - needalign;
2883 if (cnt > tlen) {
2884 cnt = tlen;
2885 count = cnt / sizeof(u_int32_t);
2886 bcode = MIDDMA_WORD;
2887 } else {
2888 count = cnt / sizeof(u_int32_t);
2889 bcode = en_dmaplan[count].bcode;
2890 count = cnt >> en_dmaplan[count].divshift;
2891 }
2892 need -= cnt;
2893 EN_WRAPADD(start, stop, cur, cnt);
2894#ifdef EN_DEBUG
2895 printf("%s: rx%d: vci%d: al_dma %d bytes (%d left)\n",
2896 sc->sc_dev.dv_xname, slot, vci, cnt, need);
2897#endif
2898 tlen -= cnt;
2899 end = (need == 0 && !fill) ? MID_DMA_END : 0;
2900 EN_DRQADD(sc, count, vci, bcode, vtophys(data), mlen, slot, end);
2901 if (end)
2902 goto done;
2903 data = (u_int32_t *)((u_char *) data + cnt);
2904 }
2905
2906 /* do we need a max-sized burst? */
2907 if (tlen >= sc->bestburstlen) {
2908 count = tlen >> sc->bestburstshift;
2909 cnt = count << sc->bestburstshift;
2910 bcode = sc->bestburstcode;
2911 need -= cnt;
2912 EN_WRAPADD(start, stop, cur, cnt);
2913#ifdef EN_DEBUG
2914 printf("%s: rx%d: vci%d: best_dma %d bytes (%d left)\n",
2915 sc->sc_dev.dv_xname, slot, vci, cnt, need);
2916#endif
2917 tlen -= cnt;
2918 end = (need == 0 && !fill) ? MID_DMA_END : 0;
2919 EN_DRQADD(sc, count, vci, bcode, vtophys(data), mlen, slot, end);
2920 if (end)
2921 goto done;
2922 data = (u_int32_t *)((u_char *) data + cnt);
2923 }
2924
2925 /* do we need to do a cleanup burst? */
2926 if (tlen) {
2927 count = tlen / sizeof(u_int32_t);
2928 bcode = en_dmaplan[count].bcode;
2929 count = tlen >> en_dmaplan[count].divshift;
2930 need -= tlen;
2931 EN_WRAPADD(start, stop, cur, tlen);
2932#ifdef EN_DEBUG
2933 printf("%s: rx%d: vci%d: cleanup_dma %d bytes (%d left)\n",
2934 sc->sc_dev.dv_xname, slot, vci, tlen, need);
2935#endif
2936 end = (need == 0 && !fill) ? MID_DMA_END : 0;
2937 EN_DRQADD(sc, count, vci, bcode, vtophys(data), mlen, slot, end);
2938 if (end)
2939 goto done;
2940 }
2941
2942 dma = cur; /* update dma pointer */
2943
2944#endif /* !MIDWAY_ADPONLY */
2945
2946 }
2947
2948 /* skip the end */
2949 if (fill || dma != cur) {
2950#ifdef EN_DEBUG
2951 if (fill)
2952 printf("%s: rx%d: vci%d: skipping %d bytes of fill\n",
2953 sc->sc_dev.dv_xname, slot, vci, fill);
2954 else
2955 printf("%s: rx%d: vci%d: syncing chip from 0x%x to 0x%x [cur]\n",
2956 sc->sc_dev.dv_xname, slot, vci, dma, cur);
2957#endif
2958 EN_WRAPADD(start, stop, cur, fill);
2959 EN_DRQADD(sc, WORD_IDX(start,cur), vci, MIDDMA_JK, 0, mlen,
2960 slot, MID_DMA_END);
2961 /* dma = cur; */ /* not necessary since we are done */
2962 }
2963
2964 /*
2965 * done, remove stuff we don't want to pass up:
2966 * raw mode (boodi mode): pass everything up for later processing
2967 * aal5: remove RBD
2968 * aal0: remove RBD + cell header
2969 */
2970
2971done:
2972 if (m) {
2973 if (!raw) {
2974 cnt = MID_RBD_SIZE;
2975 if (!aal5) cnt += MID_CHDR_SIZE;
2976 m->m_len -= cnt; /* chop! */
2977 m->m_pkthdr.len -= cnt;
2978 m->m_data += cnt;
2979 }
2980 IF_ENQUEUE(&sc->rxslot[slot].indma, m);
2981 }
2982 sc->rxslot[slot].cur = cur; /* update master copy of 'cur' */
2983
2984#ifdef EN_DEBUG
2985 printf("%s: rx%d: vci%d: DONE! cur now =0x%x\n",
2986 sc->sc_dev.dv_xname, slot, vci, cur);
2987#endif
2988
2989 goto same_vci; /* get next packet in this slot */
2990}
2991
2992
2993#ifdef EN_DDBHOOK
2994/*
2995 * functions we can call from ddb
2996 */
2997
2998/*
2999 * en_dump: dump the state
3000 */
3001
3002#define END_SWSL 0x00000040 /* swsl state */
3003#define END_DRQ 0x00000020 /* drq state */
3004#define END_DTQ 0x00000010 /* dtq state */
3005#define END_RX 0x00000008 /* rx state */
3006#define END_TX 0x00000004 /* tx state */
3007#define END_MREGS 0x00000002 /* registers */
3008#define END_STATS 0x00000001 /* dump stats */
3009
3010#define END_BITS "\20\7SWSL\6DRQ\5DTQ\4RX\3TX\2MREGS\1STATS"
3011
3012int en_dump(unit, level)
3013
3014int unit, level;
3015
3016{
3017 struct en_softc *sc;
3018 int lcv, cnt, slot;
3019 u_int32_t ptr, reg;
3020
3021 for (lcv = 0 ; lcv < en_cd.cd_ndevs ; lcv++) {
3022 sc = (struct en_softc *) en_cd.cd_devs[lcv];
3023 if (sc == NULL) continue;
3024 if (unit != -1 && unit != lcv)
3025 continue;
3026
3027 printf("dumping device %s at level 0x%b\n", sc->sc_dev.dv_xname, level,
3028 END_BITS);
3029
3030 if (sc->dtq_us == 0) {
3031 printf("<hasn't been en_init'd yet>\n");
3032 continue;
3033 }
3034
3035 if (level & END_STATS) {
3036 printf(" en_stats:\n");
3037 printf(" %d mfix (%d failed); %d/%d head/tail byte DMAs, %d flushes\n",
3038 sc->mfix, sc->mfixfail, sc->headbyte, sc->tailbyte, sc->tailflush);
3039 printf(" %d rx dma overflow interrupts\n", sc->dmaovr);
3040 printf(" %d times we ran out of TX space and stalled\n",
3041 sc->txoutspace);
3042 printf(" %d times we ran out of DTQs\n", sc->txdtqout);
3043 printf(" %d times we launched a packet\n", sc->launch);
3044 printf(" %d times we launched without on-board header\n", sc->lheader);
3045 printf(" %d times we launched without on-board tail\n", sc->ltail);
3046 printf(" %d times we pulled the hw service list\n", sc->hwpull);
3047 printf(" %d times we pushed a vci on the sw service list\n",
3048 sc->swadd);
3049 printf(" %d times RX pulled an mbuf from Q that wasn't ours\n",
3050 sc->rxqnotus);
3051 printf(" %d times RX pulled a good mbuf from Q\n", sc->rxqus);
3052 printf(" %d times we ran out of mbufs *and* DRQs\n", sc->rxoutboth);
3053 printf(" %d times we ran out of DRQs\n", sc->rxdrqout);
3054
3055 printf(" %d trasmit packets dropped due to mbsize\n", sc->txmbovr);
3056 printf(" %d cells trashed due to turned off rxvc\n", sc->vtrash);
3057 printf(" %d cells trashed due to totally full buffer\n", sc->otrash);
3058 printf(" %d cells trashed due almost full buffer\n", sc->ttrash);
3059 printf(" %d rx mbuf allocation failures\n", sc->rxmbufout);
3060#ifdef NATM
3061 printf(" %d drops at natmintrq\n", natmintrq.ifq_drops);
3062#ifdef NATM_STAT
3063 printf(" natmintr so_rcv: ok/drop cnt: %d/%d, ok/drop bytes: %d/%d\n",
3064 natm_sookcnt, natm_sodropcnt, natm_sookbytes, natm_sodropbytes);
3065#endif
3066#endif
3067 }
3068
3069 if (level & END_MREGS) {
3070 printf("mregs:\n");
3071 printf("resid = 0x%x\n", EN_READ(sc, MID_RESID));
3072 printf("interrupt status = 0x%b\n",
3073 EN_READ(sc, MID_INTSTAT), MID_INTBITS);
3074 printf("interrupt enable = 0x%b\n",
3075 EN_READ(sc, MID_INTENA), MID_INTBITS);
3076 printf("mcsr = 0x%b\n", EN_READ(sc, MID_MAST_CSR), MID_MCSRBITS);
3077 printf("serv_write = [chip=%d] [us=%d]\n", EN_READ(sc, MID_SERV_WRITE),
3078 MID_SL_A2REG(sc->hwslistp));
3079 printf("dma addr = 0x%x\n", EN_READ(sc, MID_DMA_ADDR));
3080 printf("DRQ: chip[rd=0x%x,wr=0x%x], sc[chip=0x%x,us=0x%x]\n",
3081 MID_DRQ_REG2A(EN_READ(sc, MID_DMA_RDRX)),
3082 MID_DRQ_REG2A(EN_READ(sc, MID_DMA_WRRX)), sc->drq_chip, sc->drq_us);
3083 printf("DTQ: chip[rd=0x%x,wr=0x%x], sc[chip=0x%x,us=0x%x]\n",
3084 MID_DTQ_REG2A(EN_READ(sc, MID_DMA_RDTX)),
3085 MID_DTQ_REG2A(EN_READ(sc, MID_DMA_WRTX)), sc->dtq_chip, sc->dtq_us);
3086
3087 printf(" unusal txspeeds: ");
3088 for (cnt = 0 ; cnt < MID_N_VC ; cnt++)
3089 if (sc->txspeed[cnt])
3090 printf(" vci%d=0x%x", cnt, sc->txspeed[cnt]);
3091 printf("\n");
3092
3093 printf(" rxvc slot mappings: ");
3094 for (cnt = 0 ; cnt < MID_N_VC ; cnt++)
3095 if (sc->rxvc2slot[cnt] != RX_NONE)
3096 printf(" %d->%d", cnt, sc->rxvc2slot[cnt]);
3097 printf("\n");
3098
3099 }
3100
3101 if (level & END_TX) {
3102 printf("tx:\n");
3103 for (slot = 0 ; slot < EN_NTX; slot++) {
3104 printf("tx%d: start/stop/cur=0x%x/0x%x/0x%x [%d] ", slot,
3105 sc->txslot[slot].start, sc->txslot[slot].stop, sc->txslot[slot].cur,
3106 (sc->txslot[slot].cur - sc->txslot[slot].start)/4);
3107 printf("mbsize=%d, bfree=%d\n", sc->txslot[slot].mbsize,
3108 sc->txslot[slot].bfree);
3109 printf("txhw: base_address=0x%x, size=%d, read=%d, descstart=%d\n",
3110 MIDX_BASE(EN_READ(sc, MIDX_PLACE(slot))),
3111 MIDX_SZ(EN_READ(sc, MIDX_PLACE(slot))),
3112 EN_READ(sc, MIDX_READPTR(slot)), EN_READ(sc, MIDX_DESCSTART(slot)));
3113 }
3114 }
3115
3116 if (level & END_RX) {
3117 printf(" recv slots:\n");
3118 for (slot = 0 ; slot < sc->en_nrx; slot++) {
3119 printf("rx%d: vci=%d: start/stop/cur=0x%x/0x%x/0x%x ", slot,
3120 sc->rxslot[slot].atm_vci, sc->rxslot[slot].start,
3121 sc->rxslot[slot].stop, sc->rxslot[slot].cur);
3122 printf("mode=0x%x, atm_flags=0x%x, oth_flags=0x%x\n",
3123 sc->rxslot[slot].mode, sc->rxslot[slot].atm_flags,
3124 sc->rxslot[slot].oth_flags);
3125 printf("RXHW: mode=0x%x, DST_RP=0x%x, WP_ST_CNT=0x%x\n",
3126 EN_READ(sc, MID_VC(sc->rxslot[slot].atm_vci)),
3127 EN_READ(sc, MID_DST_RP(sc->rxslot[slot].atm_vci)),
3128 EN_READ(sc, MID_WP_ST_CNT(sc->rxslot[slot].atm_vci)));
3129 }
3130 }
3131
3132 if (level & END_DTQ) {
3133 printf(" dtq [need_dtqs=%d,dtq_free=%d]:\n",
3134 sc->need_dtqs, sc->dtq_free);
3135 ptr = sc->dtq_chip;
3136 while (ptr != sc->dtq_us) {
3137 reg = EN_READ(sc, ptr);
3138 printf("\t0x%x=[cnt=%d, chan=%d, end=%d, type=%d @ 0x%x]\n",
3139 sc->dtq[MID_DTQ_A2REG(ptr)], MID_DMA_CNT(reg), MID_DMA_TXCHAN(reg),
3140 (reg & MID_DMA_END) != 0, MID_DMA_TYPE(reg), EN_READ(sc, ptr+4));
3141 EN_WRAPADD(MID_DTQOFF, MID_DTQEND, ptr, 8);
3142 }
3143 }
3144
3145 if (level & END_DRQ) {
3146 printf(" drq [need_drqs=%d,drq_free=%d]:\n",
3147 sc->need_drqs, sc->drq_free);
3148 ptr = sc->drq_chip;
3149 while (ptr != sc->drq_us) {
3150 reg = EN_READ(sc, ptr);
3151 printf("\t0x%x=[cnt=%d, chan=%d, end=%d, type=%d @ 0x%x]\n",
3152 sc->drq[MID_DRQ_A2REG(ptr)], MID_DMA_CNT(reg), MID_DMA_RXVCI(reg),
3153 (reg & MID_DMA_END) != 0, MID_DMA_TYPE(reg), EN_READ(sc, ptr+4));
3154 EN_WRAPADD(MID_DRQOFF, MID_DRQEND, ptr, 8);
3155 }
3156 }
3157
3158 if (level & END_SWSL) {
3159 printf(" swslist [size=%d]: ", sc->swsl_size);
3160 for (cnt = sc->swsl_head ; cnt != sc->swsl_tail ;
3161 cnt = (cnt + 1) % MID_SL_N)
3162 printf("0x%x ", sc->swslist[cnt]);
3163 printf("\n");
3164 }
3165
3166 }
3167 return(0);
3168}
3169
3170/*
3171 * en_dumpmem: dump the memory
3172 */
3173
3174int en_dumpmem(unit, addr, len)
3175
3176int unit, addr, len;
3177
3178{
3179 struct en_softc *sc;
3180 u_int32_t reg;
3181
3182 if (unit < 0 || unit > en_cd.cd_ndevs ||
3183 (sc = (struct en_softc *) en_cd.cd_devs[unit]) == NULL) {
3184 printf("invalid unit number: %d\n", unit);
3185 return(0);
3186 }
3187 addr = addr & ~3;
3188 if (addr < MID_RAMOFF || addr + len*4 > MID_MAXOFF || len <= 0) {
3189 printf("invalid addr/len number: %d, %d\n", addr, len);
3190 return(0);
3191 }
3192 printf("dumping %d words starting at offset 0x%x\n", len, addr);
3193 while (len--) {
3194 reg = EN_READ(sc, addr);
3195 printf("mem[0x%x] = 0x%x\n", addr, reg);
3196 addr += 4;
3197 }
3198 return(0);
3199}
3200#endif
3201
3202
3203#endif /* NEN > 0 || !defined(__FreeBSD__) */