Deleted Added
full compact
1/*-
2 * Copyright (c) 2006-2009 Broadcom Corporation
3 * David Christensen <davidch@broadcom.com>. All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 *
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution.
14 * 3. Neither the name of Broadcom Corporation nor the name of its contributors
15 * may be used to endorse or promote products derived from this software
16 * without specific prior written consent.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS'
19 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS
22 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
23 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
24 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
25 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
26 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
27 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
28 * THE POSSIBILITY OF SUCH DAMAGE.
29 */
30
31#include <sys/cdefs.h>
32__FBSDID("$FreeBSD: head/sys/dev/bce/if_bce.c 196969 2009-09-08 13:16:55Z phk $");
32__FBSDID("$FreeBSD: head/sys/dev/bce/if_bce.c 196970 2009-09-08 13:19:05Z phk $");
33
34/*
35 * The following controllers are supported by this driver:
36 * BCM5706C A2, A3
37 * BCM5706S A2, A3
38 * BCM5708C B1, B2
39 * BCM5708S B1, B2
40 * BCM5709C A1, C0
41 * BCM5716C C0
42 *
43 * The following controllers are not supported by this driver:
44 * BCM5706C A0, A1 (pre-production)
45 * BCM5706S A0, A1 (pre-production)
46 * BCM5708C A0, B0 (pre-production)
47 * BCM5708S A0, B0 (pre-production)
48 * BCM5709C A0 B0, B1, B2 (pre-production)
49 * BCM5709S A0, A1, B0, B1, B2, C0 (pre-production)
50 */
51
52#include "opt_bce.h"
53
54#include <dev/bce/if_bcereg.h>
55#include <dev/bce/if_bcefw.h>
56
57/****************************************************************************/
58/* BCE Debug Options */
59/****************************************************************************/
60#ifdef BCE_DEBUG
61 u32 bce_debug = BCE_WARN;
62
63 /* 0 = Never */
64 /* 1 = 1 in 2,147,483,648 */
65 /* 256 = 1 in 8,388,608 */
66 /* 2048 = 1 in 1,048,576 */
67 /* 65536 = 1 in 32,768 */
68 /* 1048576 = 1 in 2,048 */
69 /* 268435456 = 1 in 8 */
70 /* 536870912 = 1 in 4 */
71 /* 1073741824 = 1 in 2 */
72
73 /* Controls how often the l2_fhdr frame error check will fail. */
74 int l2fhdr_error_sim_control = 0;
75
76 /* Controls how often the unexpected attention check will fail. */
77 int unexpected_attention_sim_control = 0;
78
79 /* Controls how often to simulate an mbuf allocation failure. */
80 int mbuf_alloc_failed_sim_control = 0;
81
82 /* Controls how often to simulate a DMA mapping failure. */
83 int dma_map_addr_failed_sim_control = 0;
84
85 /* Controls how often to simulate a bootcode failure. */
86 int bootcode_running_failure_sim_control = 0;
87#endif
88
89/****************************************************************************/
90/* BCE Build Time Options */
91/****************************************************************************/
92/* #define BCE_NVRAM_WRITE_SUPPORT 1 */
93
94
95/****************************************************************************/
96/* PCI Device ID Table */
97/* */
98/* Used by bce_probe() to identify the devices supported by this driver. */
99/****************************************************************************/
100#define BCE_DEVDESC_MAX 64
101
102static struct bce_type bce_devs[] = {
103 /* BCM5706C Controllers and OEM boards. */
104 { BRCM_VENDORID, BRCM_DEVICEID_BCM5706, HP_VENDORID, 0x3101,
105 "HP NC370T Multifunction Gigabit Server Adapter" },
106 { BRCM_VENDORID, BRCM_DEVICEID_BCM5706, HP_VENDORID, 0x3106,
107 "HP NC370i Multifunction Gigabit Server Adapter" },
108 { BRCM_VENDORID, BRCM_DEVICEID_BCM5706, HP_VENDORID, 0x3070,
109 "HP NC380T PCIe DP Multifunc Gig Server Adapter" },
110 { BRCM_VENDORID, BRCM_DEVICEID_BCM5706, HP_VENDORID, 0x1709,
111 "HP NC371i Multifunction Gigabit Server Adapter" },
112 { BRCM_VENDORID, BRCM_DEVICEID_BCM5706, PCI_ANY_ID, PCI_ANY_ID,
113 "Broadcom NetXtreme II BCM5706 1000Base-T" },
114
115 /* BCM5706S controllers and OEM boards. */
116 { BRCM_VENDORID, BRCM_DEVICEID_BCM5706S, HP_VENDORID, 0x3102,
117 "HP NC370F Multifunction Gigabit Server Adapter" },
118 { BRCM_VENDORID, BRCM_DEVICEID_BCM5706S, PCI_ANY_ID, PCI_ANY_ID,
119 "Broadcom NetXtreme II BCM5706 1000Base-SX" },
120
121 /* BCM5708C controllers and OEM boards. */
122 { BRCM_VENDORID, BRCM_DEVICEID_BCM5708, HP_VENDORID, 0x7037,
123 "HP NC373T PCIe Multifunction Gig Server Adapter" },
124 { BRCM_VENDORID, BRCM_DEVICEID_BCM5708, HP_VENDORID, 0x7038,
125 "HP NC373i Multifunction Gigabit Server Adapter" },
126 { BRCM_VENDORID, BRCM_DEVICEID_BCM5708, HP_VENDORID, 0x7045,
127 "HP NC374m PCIe Multifunction Adapter" },
128 { BRCM_VENDORID, BRCM_DEVICEID_BCM5708, PCI_ANY_ID, PCI_ANY_ID,
129 "Broadcom NetXtreme II BCM5708 1000Base-T" },
130
131 /* BCM5708S controllers and OEM boards. */
132 { BRCM_VENDORID, BRCM_DEVICEID_BCM5708S, HP_VENDORID, 0x1706,
133 "HP NC373m Multifunction Gigabit Server Adapter" },
134 { BRCM_VENDORID, BRCM_DEVICEID_BCM5708S, HP_VENDORID, 0x703b,
135 "HP NC373i Multifunction Gigabit Server Adapter" },
136 { BRCM_VENDORID, BRCM_DEVICEID_BCM5708S, HP_VENDORID, 0x703d,
137 "HP NC373F PCIe Multifunc Giga Server Adapter" },
138 { BRCM_VENDORID, BRCM_DEVICEID_BCM5708S, PCI_ANY_ID, PCI_ANY_ID,
139 "Broadcom NetXtreme II BCM5708 1000Base-SX" },
140
141 /* BCM5709C controllers and OEM boards. */
142 { BRCM_VENDORID, BRCM_DEVICEID_BCM5709, HP_VENDORID, 0x7055,
143 "HP NC382i DP Multifunction Gigabit Server Adapter" },
144 { BRCM_VENDORID, BRCM_DEVICEID_BCM5709, HP_VENDORID, 0x7059,
145 "HP NC382T PCIe DP Multifunction Gigabit Server Adapter" },
146 { BRCM_VENDORID, BRCM_DEVICEID_BCM5709, PCI_ANY_ID, PCI_ANY_ID,
147 "Broadcom NetXtreme II BCM5709 1000Base-T" },
148
149 /* BCM5709S controllers and OEM boards. */
150 { BRCM_VENDORID, BRCM_DEVICEID_BCM5709S, HP_VENDORID, 0x171d,
151 "HP NC382m DP 1GbE Multifunction BL-c Adapter" },
152 { BRCM_VENDORID, BRCM_DEVICEID_BCM5709S, HP_VENDORID, 0x7056,
153 "HP NC382i DP Multifunction Gigabit Server Adapter" },
154 { BRCM_VENDORID, BRCM_DEVICEID_BCM5709S, PCI_ANY_ID, PCI_ANY_ID,
155 "Broadcom NetXtreme II BCM5709 1000Base-SX" },
156
157 /* BCM5716 controllers and OEM boards. */
158 { BRCM_VENDORID, BRCM_DEVICEID_BCM5716, PCI_ANY_ID, PCI_ANY_ID,
159 "Broadcom NetXtreme II BCM5716 1000Base-T" },
160
161 { 0, 0, 0, 0, NULL }
162};
163
164
165/****************************************************************************/
166/* Supported Flash NVRAM device data. */
167/****************************************************************************/
168static struct flash_spec flash_table[] =
169{
170#define BUFFERED_FLAGS (BCE_NV_BUFFERED | BCE_NV_TRANSLATE)
171#define NONBUFFERED_FLAGS (BCE_NV_WREN)
172
173 /* Slow EEPROM */
174 {0x00000000, 0x40830380, 0x009f0081, 0xa184a053, 0xaf000400,
175 BUFFERED_FLAGS, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
176 SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
177 "EEPROM - slow"},
178 /* Expansion entry 0001 */
179 {0x08000002, 0x4b808201, 0x00050081, 0x03840253, 0xaf020406,
180 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
181 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
182 "Entry 0001"},
183 /* Saifun SA25F010 (non-buffered flash) */
184 /* strap, cfg1, & write1 need updates */
185 {0x04000001, 0x47808201, 0x00050081, 0x03840253, 0xaf020406,
186 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
187 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*2,
188 "Non-buffered flash (128kB)"},
189 /* Saifun SA25F020 (non-buffered flash) */
190 /* strap, cfg1, & write1 need updates */
191 {0x0c000003, 0x4f808201, 0x00050081, 0x03840253, 0xaf020406,
192 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
193 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*4,
194 "Non-buffered flash (256kB)"},
195 /* Expansion entry 0100 */
196 {0x11000000, 0x53808201, 0x00050081, 0x03840253, 0xaf020406,
197 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
198 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
199 "Entry 0100"},
200 /* Entry 0101: ST M45PE10 (non-buffered flash, TetonII B0) */
201 {0x19000002, 0x5b808201, 0x000500db, 0x03840253, 0xaf020406,
202 NONBUFFERED_FLAGS, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
203 ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*2,
204 "Entry 0101: ST M45PE10 (128kB non-bufferred)"},
205 /* Entry 0110: ST M45PE20 (non-buffered flash)*/
206 {0x15000001, 0x57808201, 0x000500db, 0x03840253, 0xaf020406,
207 NONBUFFERED_FLAGS, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
208 ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*4,
209 "Entry 0110: ST M45PE20 (256kB non-bufferred)"},
210 /* Saifun SA25F005 (non-buffered flash) */
211 /* strap, cfg1, & write1 need updates */
212 {0x1d000003, 0x5f808201, 0x00050081, 0x03840253, 0xaf020406,
213 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
214 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE,
215 "Non-buffered flash (64kB)"},
216 /* Fast EEPROM */
217 {0x22000000, 0x62808380, 0x009f0081, 0xa184a053, 0xaf000400,
218 BUFFERED_FLAGS, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
219 SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
220 "EEPROM - fast"},
221 /* Expansion entry 1001 */
222 {0x2a000002, 0x6b808201, 0x00050081, 0x03840253, 0xaf020406,
223 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
224 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
225 "Entry 1001"},
226 /* Expansion entry 1010 */
227 {0x26000001, 0x67808201, 0x00050081, 0x03840253, 0xaf020406,
228 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
229 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
230 "Entry 1010"},
231 /* ATMEL AT45DB011B (buffered flash) */
232 {0x2e000003, 0x6e808273, 0x00570081, 0x68848353, 0xaf000400,
233 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
234 BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE,
235 "Buffered flash (128kB)"},
236 /* Expansion entry 1100 */
237 {0x33000000, 0x73808201, 0x00050081, 0x03840253, 0xaf020406,
238 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
239 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
240 "Entry 1100"},
241 /* Expansion entry 1101 */
242 {0x3b000002, 0x7b808201, 0x00050081, 0x03840253, 0xaf020406,
243 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
244 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
245 "Entry 1101"},
246 /* Ateml Expansion entry 1110 */
247 {0x37000001, 0x76808273, 0x00570081, 0x68848353, 0xaf000400,
248 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
249 BUFFERED_FLASH_BYTE_ADDR_MASK, 0,
250 "Entry 1110 (Atmel)"},
251 /* ATMEL AT45DB021B (buffered flash) */
252 {0x3f000003, 0x7e808273, 0x00570081, 0x68848353, 0xaf000400,
253 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
254 BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE*2,
255 "Buffered flash (256kB)"},
256};
257
258/*
259 * The BCM5709 controllers transparently handle the
260 * differences between Atmel 264 byte pages and all
261 * flash devices which use 256 byte pages, so no
262 * logical-to-physical mapping is required in the
263 * driver.
264 */
265static struct flash_spec flash_5709 = {
266 .flags = BCE_NV_BUFFERED,
267 .page_bits = BCM5709_FLASH_PAGE_BITS,
268 .page_size = BCM5709_FLASH_PAGE_SIZE,
269 .addr_mask = BCM5709_FLASH_BYTE_ADDR_MASK,
270 .total_size = BUFFERED_FLASH_TOTAL_SIZE * 2,
271 .name = "5709/5716 buffered flash (256kB)",
272};
273
274
275/****************************************************************************/
276/* FreeBSD device entry points. */
277/****************************************************************************/
278static int bce_probe (device_t);
279static int bce_attach (device_t);
280static int bce_detach (device_t);
281static int bce_shutdown (device_t);
282
283
284/****************************************************************************/
285/* BCE Debug Data Structure Dump Routines */
286/****************************************************************************/
287#ifdef BCE_DEBUG
288static u32 bce_reg_rd (struct bce_softc *, u32);
289static void bce_reg_wr (struct bce_softc *, u32, u32);
290static void bce_reg_wr16 (struct bce_softc *, u32, u16);
291static u32 bce_ctx_rd (struct bce_softc *, u32, u32);
292static void bce_dump_enet (struct bce_softc *, struct mbuf *);
293static void bce_dump_mbuf (struct bce_softc *, struct mbuf *);
294static void bce_dump_tx_mbuf_chain (struct bce_softc *, u16, int);
295static void bce_dump_rx_mbuf_chain (struct bce_softc *, u16, int);
296#ifdef ZERO_COPY_SOCKETS
297static void bce_dump_pg_mbuf_chain (struct bce_softc *, u16, int);
298#endif
299static void bce_dump_txbd (struct bce_softc *, int, struct tx_bd *);
300static void bce_dump_rxbd (struct bce_softc *, int, struct rx_bd *);
301#ifdef ZERO_COPY_SOCKETS
302static void bce_dump_pgbd (struct bce_softc *, int, struct rx_bd *);
303#endif
304static void bce_dump_l2fhdr (struct bce_softc *, int, struct l2_fhdr *);
305static void bce_dump_ctx (struct bce_softc *, u16);
306static void bce_dump_ftqs (struct bce_softc *);
307static void bce_dump_tx_chain (struct bce_softc *, u16, int);
308static void bce_dump_rx_chain (struct bce_softc *, u16, int);
309#ifdef ZERO_COPY_SOCKETS
310static void bce_dump_pg_chain (struct bce_softc *, u16, int);
311#endif
312static void bce_dump_status_block (struct bce_softc *);
313static void bce_dump_stats_block (struct bce_softc *);
314static void bce_dump_driver_state (struct bce_softc *);
315static void bce_dump_hw_state (struct bce_softc *);
316static void bce_dump_mq_regs (struct bce_softc *);
317static void bce_dump_bc_state (struct bce_softc *);
318static void bce_dump_txp_state (struct bce_softc *, int);
319static void bce_dump_rxp_state (struct bce_softc *, int);
320static void bce_dump_tpat_state (struct bce_softc *, int);
321static void bce_dump_cp_state (struct bce_softc *, int);
322static void bce_dump_com_state (struct bce_softc *, int);
323static void bce_breakpoint (struct bce_softc *);
324#endif
325
326
327/****************************************************************************/
328/* BCE Register/Memory Access Routines */
329/****************************************************************************/
330static u32 bce_reg_rd_ind (struct bce_softc *, u32);
331static void bce_reg_wr_ind (struct bce_softc *, u32, u32);
332static void bce_shmem_wr (struct bce_softc *, u32, u32);
333static u32 bce_shmem_rd (struct bce_softc *, u32);
334static void bce_ctx_wr (struct bce_softc *, u32, u32, u32);
335static int bce_miibus_read_reg (device_t, int, int);
336static int bce_miibus_write_reg (device_t, int, int, int);
337static void bce_miibus_statchg (device_t);
338
339
340/****************************************************************************/
341/* BCE NVRAM Access Routines */
342/****************************************************************************/
343static int bce_acquire_nvram_lock (struct bce_softc *);
344static int bce_release_nvram_lock (struct bce_softc *);
345static void bce_enable_nvram_access (struct bce_softc *);
346static void bce_disable_nvram_access(struct bce_softc *);
347static int bce_nvram_read_dword (struct bce_softc *, u32, u8 *, u32);
348static int bce_init_nvram (struct bce_softc *);
349static int bce_nvram_read (struct bce_softc *, u32, u8 *, int);
350static int bce_nvram_test (struct bce_softc *);
351#ifdef BCE_NVRAM_WRITE_SUPPORT
352static int bce_enable_nvram_write (struct bce_softc *);
353static void bce_disable_nvram_write (struct bce_softc *);
354static int bce_nvram_erase_page (struct bce_softc *, u32);
355static int bce_nvram_write_dword (struct bce_softc *, u32, u8 *, u32);
356static int bce_nvram_write (struct bce_softc *, u32, u8 *, int);
357#endif
358
359/****************************************************************************/
360/* */
361/****************************************************************************/
362static void bce_get_media (struct bce_softc *);
363static void bce_dma_map_addr (void *, bus_dma_segment_t *, int, int);
364static int bce_dma_alloc (device_t);
365static void bce_dma_free (struct bce_softc *);
366static void bce_release_resources (struct bce_softc *);
367
368/****************************************************************************/
369/* BCE Firmware Synchronization and Load */
370/****************************************************************************/
371static int bce_fw_sync (struct bce_softc *, u32);
372static void bce_load_rv2p_fw (struct bce_softc *, u32 *, u32, u32);
373static void bce_load_cpu_fw (struct bce_softc *, struct cpu_reg *, struct fw_info *);
374static void bce_init_rxp_cpu (struct bce_softc *);
375static void bce_init_txp_cpu (struct bce_softc *);
376static void bce_init_tpat_cpu (struct bce_softc *);
377static void bce_init_cp_cpu (struct bce_softc *);
378static void bce_init_com_cpu (struct bce_softc *);
379static void bce_init_cpus (struct bce_softc *);
380
381static void bce_print_adapter_info (struct bce_softc *);
382static void bce_probe_pci_caps (device_t, struct bce_softc *);
383static void bce_stop (struct bce_softc *);
384static int bce_reset (struct bce_softc *, u32);
385static int bce_chipinit (struct bce_softc *);
386static int bce_blockinit (struct bce_softc *);
387
388static int bce_init_tx_chain (struct bce_softc *);
389static void bce_free_tx_chain (struct bce_softc *);
390
391static int bce_get_rx_buf (struct bce_softc *, struct mbuf *, u16 *, u16 *, u32 *);
392static int bce_init_rx_chain (struct bce_softc *);
393static void bce_fill_rx_chain (struct bce_softc *);
394static void bce_free_rx_chain (struct bce_softc *);
395
396#ifdef ZERO_COPY_SOCKETS
397static int bce_get_pg_buf (struct bce_softc *, struct mbuf *, u16 *, u16 *);
398static int bce_init_pg_chain (struct bce_softc *);
399static void bce_fill_pg_chain (struct bce_softc *);
400static void bce_free_pg_chain (struct bce_softc *);
401#endif
402
403static int bce_tx_encap (struct bce_softc *, struct mbuf **);
404static void bce_start_locked (struct ifnet *);
405static void bce_start (struct ifnet *);
406static int bce_ioctl (struct ifnet *, u_long, caddr_t);
407static void bce_watchdog (struct bce_softc *);
408static int bce_ifmedia_upd (struct ifnet *);
409static void bce_ifmedia_upd_locked (struct ifnet *);
410static void bce_ifmedia_sts (struct ifnet *, struct ifmediareq *);
411static void bce_init_locked (struct bce_softc *);
412static void bce_init (void *);
413static void bce_mgmt_init_locked (struct bce_softc *sc);
414
415static void bce_init_ctx (struct bce_softc *);
416static void bce_get_mac_addr (struct bce_softc *);
417static void bce_set_mac_addr (struct bce_softc *);
418static void bce_phy_intr (struct bce_softc *);
419static inline u16 bce_get_hw_rx_cons(struct bce_softc *);
420static void bce_rx_intr (struct bce_softc *);
421static void bce_tx_intr (struct bce_softc *);
422static void bce_disable_intr (struct bce_softc *);
423static void bce_enable_intr (struct bce_softc *, int);
424
425static void bce_intr (void *);
426static void bce_set_rx_mode (struct bce_softc *);
427static void bce_stats_update (struct bce_softc *);
428static void bce_tick (void *);
429static void bce_pulse (void *);
430static void bce_add_sysctls (struct bce_softc *);
431
432
433/****************************************************************************/
434/* FreeBSD device dispatch table. */
435/****************************************************************************/
436static device_method_t bce_methods[] = {
437 /* Device interface (device_if.h) */
438 DEVMETHOD(device_probe, bce_probe),
439 DEVMETHOD(device_attach, bce_attach),
440 DEVMETHOD(device_detach, bce_detach),
441 DEVMETHOD(device_shutdown, bce_shutdown),
442/* Supported by device interface but not used here. */
443/* DEVMETHOD(device_identify, bce_identify), */
444/* DEVMETHOD(device_suspend, bce_suspend), */
445/* DEVMETHOD(device_resume, bce_resume), */
446/* DEVMETHOD(device_quiesce, bce_quiesce), */
447
448 /* Bus interface (bus_if.h) */
449 DEVMETHOD(bus_print_child, bus_generic_print_child),
450 DEVMETHOD(bus_driver_added, bus_generic_driver_added),
451
452 /* MII interface (miibus_if.h) */
453 DEVMETHOD(miibus_readreg, bce_miibus_read_reg),
454 DEVMETHOD(miibus_writereg, bce_miibus_write_reg),
455 DEVMETHOD(miibus_statchg, bce_miibus_statchg),
456/* Supported by MII interface but not used here. */
457/* DEVMETHOD(miibus_linkchg, bce_miibus_linkchg), */
458/* DEVMETHOD(miibus_mediainit, bce_miibus_mediainit), */
459
460 { 0, 0 }
461};
462
463static driver_t bce_driver = {
464 "bce",
465 bce_methods,
466 sizeof(struct bce_softc)
467};
468
469static devclass_t bce_devclass;
470
471MODULE_DEPEND(bce, pci, 1, 1, 1);
472MODULE_DEPEND(bce, ether, 1, 1, 1);
473MODULE_DEPEND(bce, miibus, 1, 1, 1);
474
475DRIVER_MODULE(bce, pci, bce_driver, bce_devclass, 0, 0);
476DRIVER_MODULE(miibus, bce, miibus_driver, miibus_devclass, 0, 0);
477
478
479/****************************************************************************/
480/* Tunable device values */
481/****************************************************************************/
482SYSCTL_NODE(_hw, OID_AUTO, bce, CTLFLAG_RD, 0, "bce driver parameters");
483
484/* Allowable values are TRUE or FALSE */
485static int bce_tso_enable = TRUE;
486TUNABLE_INT("hw.bce.tso_enable", &bce_tso_enable);
487SYSCTL_UINT(_hw_bce, OID_AUTO, tso_enable, CTLFLAG_RDTUN, &bce_tso_enable, 0,
488"TSO Enable/Disable");
489
490/* Allowable values are 0 (IRQ), 1 (MSI/IRQ), and 2 (MSI-X/MSI/IRQ) */
491/* ToDo: Add MSI-X support. */
492static int bce_msi_enable = 1;
493TUNABLE_INT("hw.bce.msi_enable", &bce_msi_enable);
494SYSCTL_UINT(_hw_bce, OID_AUTO, msi_enable, CTLFLAG_RDTUN, &bce_msi_enable, 0,
495"MSI-X|MSI|INTx selector");
496
497/* ToDo: Add tunable to enable/disable strict MTU handling. */
498/* Currently allows "loose" RX MTU checking (i.e. sets the */
499/* H/W RX MTU to the size of the largest receive buffer, or */
500/* 2048 bytes). This will cause a UNH failure but is more */
501/* desireable from a functional perspective. */
502
503
504/****************************************************************************/
505/* Device probe function. */
506/* */
507/* Compares the device to the driver's list of supported devices and */
508/* reports back to the OS whether this is the right driver for the device. */
509/* */
510/* Returns: */
511/* BUS_PROBE_DEFAULT on success, positive value on failure. */
512/****************************************************************************/
513static int
514bce_probe(device_t dev)
515{
516 struct bce_type *t;
517 struct bce_softc *sc;
518 char *descbuf;
519 u16 vid = 0, did = 0, svid = 0, sdid = 0;
520
521 t = bce_devs;
522
523 sc = device_get_softc(dev);
524 bzero(sc, sizeof(struct bce_softc));
525 sc->bce_unit = device_get_unit(dev);
526 sc->bce_dev = dev;
527
528 /* Get the data for the device to be probed. */
529 vid = pci_get_vendor(dev);
530 did = pci_get_device(dev);
531 svid = pci_get_subvendor(dev);
532 sdid = pci_get_subdevice(dev);
533
534 DBPRINT(sc, BCE_EXTREME_LOAD,
535 "%s(); VID = 0x%04X, DID = 0x%04X, SVID = 0x%04X, "
536 "SDID = 0x%04X\n", __FUNCTION__, vid, did, svid, sdid);
537
538 /* Look through the list of known devices for a match. */
539 while(t->bce_name != NULL) {
540
541 if ((vid == t->bce_vid) && (did == t->bce_did) &&
542 ((svid == t->bce_svid) || (t->bce_svid == PCI_ANY_ID)) &&
543 ((sdid == t->bce_sdid) || (t->bce_sdid == PCI_ANY_ID))) {
544
545 descbuf = malloc(BCE_DEVDESC_MAX, M_TEMP, M_NOWAIT);
546
547 if (descbuf == NULL)
548 return(ENOMEM);
549
550 /* Print out the device identity. */
551 snprintf(descbuf, BCE_DEVDESC_MAX, "%s (%c%d)",
552 t->bce_name,
553 (((pci_read_config(dev, PCIR_REVID, 4) & 0xf0) >> 4) + 'A'),
554 (pci_read_config(dev, PCIR_REVID, 4) & 0xf));
555
556 device_set_desc_copy(dev, descbuf);
557 free(descbuf, M_TEMP);
558 return(BUS_PROBE_DEFAULT);
559 }
560 t++;
561 }
562
563 return(ENXIO);
564}
565
566
567/****************************************************************************/
568/* PCI Capabilities Probe Function. */
569/* */
570/* Walks the PCI capabiites list for the device to find what features are */
571/* supported. */
572/* */
573/* Returns: */
574/* None. */
575/****************************************************************************/
576static void
577bce_print_adapter_info(struct bce_softc *sc)
578{
579 int i = 0;
580
581 DBENTER(BCE_VERBOSE_LOAD);
582
583 BCE_PRINTF("ASIC (0x%08X); ", sc->bce_chipid);
584 printf("Rev (%c%d); ", ((BCE_CHIP_ID(sc) & 0xf000) >> 12) + 'A',
585 ((BCE_CHIP_ID(sc) & 0x0ff0) >> 4));
586
587 /* Bus info. */
588 if (sc->bce_flags & BCE_PCIE_FLAG) {
589 printf("Bus (PCIe x%d, ", sc->link_width);
590 switch (sc->link_speed) {
591 case 1: printf("2.5Gbps); "); break;
592 case 2: printf("5Gbps); "); break;
593 default: printf("Unknown link speed); ");
594 }
595 } else {
596 printf("Bus (PCI%s, %s, %dMHz); ",
597 ((sc->bce_flags & BCE_PCIX_FLAG) ? "-X" : ""),
598 ((sc->bce_flags & BCE_PCI_32BIT_FLAG) ? "32-bit" : "64-bit"),
599 sc->bus_speed_mhz);
600 }
601
602 /* Firmware version and device features. */
603 printf("B/C (%s); Flags (", sc->bce_bc_ver);
604
605#ifdef ZERO_COPY_SOCKETS
606 printf("SPLT ");
607 i++;
608#endif
609 if (sc->bce_flags & BCE_USING_MSI_FLAG) {
610 if (i > 0) printf("|");
611 printf("MSI"); i++;
611 printf("MSI"); i++;
612 }
613
614 if (sc->bce_flags & BCE_USING_MSIX_FLAG) {
615 if (i > 0) printf("|");
616 printf("MSI-X "); i++;
616 printf("MSI-X "); i++;
617 }
618
619 if (sc->bce_phy_flags & BCE_PHY_2_5G_CAPABLE_FLAG) {
620 if (i > 0) printf("|");
621 printf("2.5G"); i++;
621 printf("2.5G"); i++;
622 }
623
624 if (sc->bce_flags & BCE_MFW_ENABLE_FLAG) {
625 if (i > 0) printf("|");
626 printf("MFW); MFW (%s)\n", sc->bce_mfw_ver);
627 } else {
628 printf(")\n");
629 }
630
631 DBEXIT(BCE_VERBOSE_LOAD);
631 DBEXIT(BCE_VERBOSE_LOAD);
632}
633
634
635/****************************************************************************/
636/* PCI Capabilities Probe Function. */
637/* */
638/* Walks the PCI capabiites list for the device to find what features are */
639/* supported. */
640/* */
641/* Returns: */
642/* None. */
643/****************************************************************************/
644static void
645bce_probe_pci_caps(device_t dev, struct bce_softc *sc)
646{
647 u32 reg;
648
649 DBENTER(BCE_VERBOSE_LOAD);
650
651 /* Check if PCI-X capability is enabled. */
652 if (pci_find_extcap(dev, PCIY_PCIX, &reg) == 0) {
653 if (reg != 0)
654 sc->bce_cap_flags |= BCE_PCIX_CAPABLE_FLAG;
655 }
656
657 /* Check if PCIe capability is enabled. */
658 if (pci_find_extcap(dev, PCIY_EXPRESS, &reg) == 0) {
659 if (reg != 0) {
660 u16 link_status = pci_read_config(dev, reg + 0x12, 2);
661 DBPRINT(sc, BCE_INFO_LOAD, "PCIe link_status = 0x%08X\n",
662 link_status);
663 sc->link_speed = link_status & 0xf;
664 sc->link_width = (link_status >> 4) & 0x3f;
665 sc->bce_cap_flags |= BCE_PCIE_CAPABLE_FLAG;
666 sc->bce_flags |= BCE_PCIE_FLAG;
667 }
668 }
669
670 /* Check if MSI capability is enabled. */
671 if (pci_find_extcap(dev, PCIY_MSI, &reg) == 0) {
672 if (reg != 0)
673 sc->bce_cap_flags |= BCE_MSI_CAPABLE_FLAG;
674 }
675
676 /* Check if MSI-X capability is enabled. */
677 if (pci_find_extcap(dev, PCIY_MSIX, &reg) == 0) {
678 if (reg != 0)
679 sc->bce_cap_flags |= BCE_MSIX_CAPABLE_FLAG;
680 }
681
682 DBEXIT(BCE_VERBOSE_LOAD);
683}
684
685
686/****************************************************************************/
687/* Device attach function. */
688/* */
689/* Allocates device resources, performs secondary chip identification, */
690/* resets and initializes the hardware, and initializes driver instance */
691/* variables. */
692/* */
693/* Returns: */
694/* 0 on success, positive value on failure. */
695/****************************************************************************/
696static int
697bce_attach(device_t dev)
698{
699 struct bce_softc *sc;
700 struct ifnet *ifp;
701 u32 val;
702 int error, rid, rc = 0;
703
704 sc = device_get_softc(dev);
705 sc->bce_dev = dev;
706
707 DBENTER(BCE_VERBOSE_LOAD | BCE_VERBOSE_RESET);
708
709 sc->bce_unit = device_get_unit(dev);
710
711 /* Set initial device and PHY flags */
712 sc->bce_flags = 0;
713 sc->bce_phy_flags = 0;
714
715 pci_enable_busmaster(dev);
716
717 /* Allocate PCI memory resources. */
718 rid = PCIR_BAR(0);
719 sc->bce_res_mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
720 &rid, RF_ACTIVE);
721
722 if (sc->bce_res_mem == NULL) {
723 BCE_PRINTF("%s(%d): PCI memory allocation failed\n",
724 __FILE__, __LINE__);
725 rc = ENXIO;
726 goto bce_attach_fail;
727 }
728
729 /* Get various resource handles. */
730 sc->bce_btag = rman_get_bustag(sc->bce_res_mem);
731 sc->bce_bhandle = rman_get_bushandle(sc->bce_res_mem);
732 sc->bce_vhandle = (vm_offset_t) rman_get_virtual(sc->bce_res_mem);
733
734 bce_probe_pci_caps(dev, sc);
735
736 rid = 1;
737#if 0
738 /* Try allocating MSI-X interrupts. */
739 if ((sc->bce_cap_flags & BCE_MSIX_CAPABLE_FLAG) &&
740 (bce_msi_enable >= 2) &&
741 ((sc->bce_res_irq = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
742 &rid, RF_ACTIVE)) != NULL)) {
743
744 msi_needed = sc->bce_msi_count = 1;
745
746 if (((error = pci_alloc_msix(dev, &sc->bce_msi_count)) != 0) ||
747 (sc->bce_msi_count != msi_needed)) {
748 BCE_PRINTF("%s(%d): MSI-X allocation failed! Requested = %d,"
749 "Received = %d, error = %d\n", __FILE__, __LINE__,
750 msi_needed, sc->bce_msi_count, error);
751 sc->bce_msi_count = 0;
752 pci_release_msi(dev);
753 bus_release_resource(dev, SYS_RES_MEMORY, rid,
754 sc->bce_res_irq);
755 sc->bce_res_irq = NULL;
756 } else {
757 DBPRINT(sc, BCE_INFO_LOAD, "%s(): Using MSI-X interrupt.\n",
758 __FUNCTION__);
759 sc->bce_flags |= BCE_USING_MSIX_FLAG;
760 sc->bce_intr = bce_intr;
761 }
762 }
763#endif
764
765 /* Try allocating a MSI interrupt. */
766 if ((sc->bce_cap_flags & BCE_MSI_CAPABLE_FLAG) &&
767 (bce_msi_enable >= 1) && (sc->bce_msi_count == 0)) {
768 sc->bce_msi_count = 1;
769 if ((error = pci_alloc_msi(dev, &sc->bce_msi_count)) != 0) {
770 BCE_PRINTF("%s(%d): MSI allocation failed! error = %d\n",
771 __FILE__, __LINE__, error);
772 sc->bce_msi_count = 0;
773 pci_release_msi(dev);
774 } else {
775 DBPRINT(sc, BCE_INFO_LOAD, "%s(): Using MSI interrupt.\n",
776 __FUNCTION__);
777 sc->bce_flags |= BCE_USING_MSI_FLAG;
778 if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) ||
779 (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716))
780 sc->bce_flags |= BCE_ONE_SHOT_MSI_FLAG;
781 sc->bce_irq_rid = 1;
782 sc->bce_intr = bce_intr;
783 }
784 }
785
786 /* Try allocating a legacy interrupt. */
787 if (sc->bce_msi_count == 0) {
788 DBPRINT(sc, BCE_INFO_LOAD, "%s(): Using INTx interrupt.\n",
789 __FUNCTION__);
790 rid = 0;
791 sc->bce_intr = bce_intr;
792 }
793
794 sc->bce_res_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ,
795 &rid, RF_SHAREABLE | RF_ACTIVE);
796
797 sc->bce_irq_rid = rid;
798
799 /* Report any IRQ allocation errors. */
800 if (sc->bce_res_irq == NULL) {
801 BCE_PRINTF("%s(%d): PCI map interrupt failed!\n",
802 __FILE__, __LINE__);
803 rc = ENXIO;
804 goto bce_attach_fail;
805 }
806
807 /* Initialize mutex for the current device instance. */
808 BCE_LOCK_INIT(sc, device_get_nameunit(dev));
809
810 /*
811 * Configure byte swap and enable indirect register access.
812 * Rely on CPU to do target byte swapping on big endian systems.
813 * Access to registers outside of PCI configurtion space are not
814 * valid until this is done.
815 */
816 pci_write_config(dev, BCE_PCICFG_MISC_CONFIG,
817 BCE_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
818 BCE_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP, 4);
819
820 /* Save ASIC revsion info. */
821 sc->bce_chipid = REG_RD(sc, BCE_MISC_ID);
822
823 /* Weed out any non-production controller revisions. */
824 switch(BCE_CHIP_ID(sc)) {
825 case BCE_CHIP_ID_5706_A0:
826 case BCE_CHIP_ID_5706_A1:
827 case BCE_CHIP_ID_5708_A0:
828 case BCE_CHIP_ID_5708_B0:
829 case BCE_CHIP_ID_5709_A0:
830 case BCE_CHIP_ID_5709_B0:
831 case BCE_CHIP_ID_5709_B1:
832 case BCE_CHIP_ID_5709_B2:
833 BCE_PRINTF("%s(%d): Unsupported controller revision (%c%d)!\n",
834 __FILE__, __LINE__,
835 (((pci_read_config(dev, PCIR_REVID, 4) & 0xf0) >> 4) + 'A'),
836 (pci_read_config(dev, PCIR_REVID, 4) & 0xf));
837 rc = ENODEV;
838 goto bce_attach_fail;
839 }
840
841 /*
842 * The embedded PCIe to PCI-X bridge (EPB)
843 * in the 5708 cannot address memory above
844 * 40 bits (E7_5708CB1_23043 & E6_5708SB1_23043).
845 */
846 if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5708)
847 sc->max_bus_addr = BCE_BUS_SPACE_MAXADDR;
848 else
849 sc->max_bus_addr = BUS_SPACE_MAXADDR;
850
851 /*
852 * Find the base address for shared memory access.
853 * Newer versions of bootcode use a signature and offset
854 * while older versions use a fixed address.
855 */
856 val = REG_RD_IND(sc, BCE_SHM_HDR_SIGNATURE);
857 if ((val & BCE_SHM_HDR_SIGNATURE_SIG_MASK) == BCE_SHM_HDR_SIGNATURE_SIG)
858 /* Multi-port devices use different offsets in shared memory. */
859 sc->bce_shmem_base = REG_RD_IND(sc, BCE_SHM_HDR_ADDR_0 +
860 (pci_get_function(sc->bce_dev) << 2));
861 else
862 sc->bce_shmem_base = HOST_VIEW_SHMEM_BASE;
863
864 DBPRINT(sc, BCE_VERBOSE_FIRMWARE, "%s(): bce_shmem_base = 0x%08X\n",
865 __FUNCTION__, sc->bce_shmem_base);
866
867 /* Fetch the bootcode revision. */
868 val = bce_shmem_rd(sc, BCE_DEV_INFO_BC_REV);
869 for (int i = 0, j = 0; i < 3; i++) {
870 u8 num;
871
872 num = (u8) (val >> (24 - (i * 8)));
873 for (int k = 100, skip0 = 1; k >= 1; num %= k, k /= 10) {
874 if (num >= k || !skip0 || k == 1) {
875 sc->bce_bc_ver[j++] = (num / k) + '0';
876 skip0 = 0;
877 }
878 }
879 if (i != 2)
880 sc->bce_bc_ver[j++] = '.';
881 }
882
883 /* Check if any management firwmare is running. */
884 val = bce_shmem_rd(sc, BCE_PORT_FEATURE);
885 if (val & BCE_PORT_FEATURE_ASF_ENABLED) {
886 sc->bce_flags |= BCE_MFW_ENABLE_FLAG;
887
888 /* Allow time for firmware to enter the running state. */
889 for (int i = 0; i < 30; i++) {
890 val = bce_shmem_rd(sc, BCE_BC_STATE_CONDITION);
891 if (val & BCE_CONDITION_MFW_RUN_MASK)
892 break;
893 DELAY(10000);
894 }
895 }
896
897 /* Check the current bootcode state. */
898 val = bce_shmem_rd(sc, BCE_BC_STATE_CONDITION);
899 val &= BCE_CONDITION_MFW_RUN_MASK;
900 if (val != BCE_CONDITION_MFW_RUN_UNKNOWN &&
901 val != BCE_CONDITION_MFW_RUN_NONE) {
902 u32 addr = bce_shmem_rd(sc, BCE_MFW_VER_PTR);
903 int i = 0;
904
905 for (int j = 0; j < 3; j++) {
906 val = bce_reg_rd_ind(sc, addr + j * 4);
907 val = bswap32(val);
908 memcpy(&sc->bce_mfw_ver[i], &val, 4);
909 i += 4;
910 }
911 }
912
913 /* Get PCI bus information (speed and type). */
914 val = REG_RD(sc, BCE_PCICFG_MISC_STATUS);
915 if (val & BCE_PCICFG_MISC_STATUS_PCIX_DET) {
916 u32 clkreg;
917
918 sc->bce_flags |= BCE_PCIX_FLAG;
919
920 clkreg = REG_RD(sc, BCE_PCICFG_PCI_CLOCK_CONTROL_BITS);
921
922 clkreg &= BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET;
923 switch (clkreg) {
924 case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_133MHZ:
925 sc->bus_speed_mhz = 133;
926 break;
927
928 case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_95MHZ:
929 sc->bus_speed_mhz = 100;
930 break;
931
932 case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_66MHZ:
933 case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_80MHZ:
934 sc->bus_speed_mhz = 66;
935 break;
936
937 case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_48MHZ:
938 case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_55MHZ:
939 sc->bus_speed_mhz = 50;
940 break;
941
942 case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_LOW:
943 case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_32MHZ:
944 case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_38MHZ:
945 sc->bus_speed_mhz = 33;
946 break;
947 }
948 } else {
949 if (val & BCE_PCICFG_MISC_STATUS_M66EN)
950 sc->bus_speed_mhz = 66;
951 else
952 sc->bus_speed_mhz = 33;
953 }
954
955 if (val & BCE_PCICFG_MISC_STATUS_32BIT_DET)
956 sc->bce_flags |= BCE_PCI_32BIT_FLAG;
957
958 /* Reset the controller and announce to bootcode that driver is present. */
959 if (bce_reset(sc, BCE_DRV_MSG_CODE_RESET)) {
960 BCE_PRINTF("%s(%d): Controller reset failed!\n",
961 __FILE__, __LINE__);
962 rc = ENXIO;
963 goto bce_attach_fail;
964 }
965
966 /* Initialize the controller. */
967 if (bce_chipinit(sc)) {
968 BCE_PRINTF("%s(%d): Controller initialization failed!\n",
969 __FILE__, __LINE__);
970 rc = ENXIO;
971 goto bce_attach_fail;
972 }
973
974 /* Perform NVRAM test. */
975 if (bce_nvram_test(sc)) {
976 BCE_PRINTF("%s(%d): NVRAM test failed!\n",
977 __FILE__, __LINE__);
978 rc = ENXIO;
979 goto bce_attach_fail;
980 }
981
982 /* Fetch the permanent Ethernet MAC address. */
983 bce_get_mac_addr(sc);
984
985 /*
986 * Trip points control how many BDs
987 * should be ready before generating an
988 * interrupt while ticks control how long
989 * a BD can sit in the chain before
990 * generating an interrupt. Set the default
991 * values for the RX and TX chains.
992 */
993
994#ifdef BCE_DEBUG
995 /* Force more frequent interrupts. */
996 sc->bce_tx_quick_cons_trip_int = 1;
997 sc->bce_tx_quick_cons_trip = 1;
998 sc->bce_tx_ticks_int = 0;
999 sc->bce_tx_ticks = 0;
1000
1001 sc->bce_rx_quick_cons_trip_int = 1;
1002 sc->bce_rx_quick_cons_trip = 1;
1003 sc->bce_rx_ticks_int = 0;
1004 sc->bce_rx_ticks = 0;
1005#else
1006 /* Improve throughput at the expense of increased latency. */
1007 sc->bce_tx_quick_cons_trip_int = 20;
1008 sc->bce_tx_quick_cons_trip = 20;
1009 sc->bce_tx_ticks_int = 80;
1010 sc->bce_tx_ticks = 80;
1011
1012 sc->bce_rx_quick_cons_trip_int = 6;
1013 sc->bce_rx_quick_cons_trip = 6;
1014 sc->bce_rx_ticks_int = 18;
1015 sc->bce_rx_ticks = 18;
1016#endif
1017
1018 /* Update statistics once every second. */
1019 sc->bce_stats_ticks = 1000000 & 0xffff00;
1020
1021 /* Find the media type for the adapter. */
1022 bce_get_media(sc);
1023
1024 /* Store data needed by PHY driver for backplane applications */
1025 sc->bce_shared_hw_cfg = bce_shmem_rd(sc, BCE_SHARED_HW_CFG_CONFIG);
1026 sc->bce_port_hw_cfg = bce_shmem_rd(sc, BCE_PORT_HW_CFG_CONFIG);
1027
1028 /* Allocate DMA memory resources. */
1029 if (bce_dma_alloc(dev)) {
1030 BCE_PRINTF("%s(%d): DMA resource allocation failed!\n",
1031 __FILE__, __LINE__);
1032 rc = ENXIO;
1033 goto bce_attach_fail;
1034 }
1035
1036 /* Allocate an ifnet structure. */
1037 ifp = sc->bce_ifp = if_alloc(IFT_ETHER);
1038 if (ifp == NULL) {
1039 BCE_PRINTF("%s(%d): Interface allocation failed!\n",
1040 __FILE__, __LINE__);
1041 rc = ENXIO;
1042 goto bce_attach_fail;
1043 }
1044
1045 /* Initialize the ifnet interface. */
1046 ifp->if_softc = sc;
1047 if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1048 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1049 ifp->if_ioctl = bce_ioctl;
1050 ifp->if_start = bce_start;
1051 ifp->if_init = bce_init;
1052 ifp->if_mtu = ETHERMTU;
1053
1054 if (bce_tso_enable) {
1055 ifp->if_hwassist = BCE_IF_HWASSIST | CSUM_TSO;
1056 ifp->if_capabilities = BCE_IF_CAPABILITIES | IFCAP_TSO4;
1057 } else {
1058 ifp->if_hwassist = BCE_IF_HWASSIST;
1059 ifp->if_capabilities = BCE_IF_CAPABILITIES;
1060 }
1061
1062 ifp->if_capenable = ifp->if_capabilities;
1063
1064 /*
1065 * Assume standard mbuf sizes for buffer allocation.
1066 * This may change later if the MTU size is set to
1067 * something other than 1500.
1068 */
1069#ifdef ZERO_COPY_SOCKETS
1070 sc->rx_bd_mbuf_alloc_size = MHLEN;
1071 /* Make sure offset is 16 byte aligned for hardware. */
1072 sc->rx_bd_mbuf_align_pad = roundup2((MSIZE - MHLEN), 16) -
1073 (MSIZE - MHLEN);
1074 sc->rx_bd_mbuf_data_len = sc->rx_bd_mbuf_alloc_size -
1075 sc->rx_bd_mbuf_align_pad;
1076 sc->pg_bd_mbuf_alloc_size = MCLBYTES;
1077#else
1078 sc->rx_bd_mbuf_alloc_size = MCLBYTES;
1079 sc->rx_bd_mbuf_align_pad = roundup2(MCLBYTES, 16) - MCLBYTES;
1080 sc->rx_bd_mbuf_data_len = sc->rx_bd_mbuf_alloc_size -
1081 sc->rx_bd_mbuf_align_pad;
1082#endif
1083
1084 ifp->if_snd.ifq_drv_maxlen = USABLE_TX_BD;
1085 IFQ_SET_MAXLEN(&ifp->if_snd, ifp->if_snd.ifq_drv_maxlen);
1086 IFQ_SET_READY(&ifp->if_snd);
1087
1088 if (sc->bce_phy_flags & BCE_PHY_2_5G_CAPABLE_FLAG)
1089 ifp->if_baudrate = IF_Mbps(2500ULL);
1090 else
1091 ifp->if_baudrate = IF_Mbps(1000);
1092
1093 /* Check for an MII child bus by probing the PHY. */
1094 if (mii_phy_probe(dev, &sc->bce_miibus, bce_ifmedia_upd,
1095 bce_ifmedia_sts)) {
1096 BCE_PRINTF("%s(%d): No PHY found on child MII bus!\n",
1097 __FILE__, __LINE__);
1098 rc = ENXIO;
1099 goto bce_attach_fail;
1100 }
1101
1102 /* Attach to the Ethernet interface list. */
1103 ether_ifattach(ifp, sc->eaddr);
1104
1105#if __FreeBSD_version < 500000
1106 callout_init(&sc->bce_tick_callout);
1107 callout_init(&sc->bce_pulse_callout);
1108#else
1109 callout_init_mtx(&sc->bce_tick_callout, &sc->bce_mtx, 0);
1110 callout_init_mtx(&sc->bce_pulse_callout, &sc->bce_mtx, 0);
1111#endif
1112
1113 /* Hookup IRQ last. */
1114 rc = bus_setup_intr(dev, sc->bce_res_irq, INTR_TYPE_NET | INTR_MPSAFE,
1115 NULL, bce_intr, sc, &sc->bce_intrhand);
1116
1117 if (rc) {
1118 BCE_PRINTF("%s(%d): Failed to setup IRQ!\n",
1119 __FILE__, __LINE__);
1120 bce_detach(dev);
1121 goto bce_attach_exit;
1122 }
1123
1124 /*
1125 * At this point we've acquired all the resources
1126 * we need to run so there's no turning back, we're
1127 * cleared for launch.
1128 */
1129
1130 /* Print some important debugging info. */
1131 DBRUNMSG(BCE_INFO, bce_dump_driver_state(sc));
1132
1133 /* Add the supported sysctls to the kernel. */
1134 bce_add_sysctls(sc);
1135
1136 BCE_LOCK(sc);
1137
1138 /*
1139 * The chip reset earlier notified the bootcode that
1140 * a driver is present. We now need to start our pulse
1141 * routine so that the bootcode is reminded that we're
1142 * still running.
1143 */
1144 bce_pulse(sc);
1145
1146 bce_mgmt_init_locked(sc);
1147 BCE_UNLOCK(sc);
1148
1149 /* Finally, print some useful adapter info */
1150 bce_print_adapter_info(sc);
1151 DBPRINT(sc, BCE_FATAL, "%s(): sc = %p\n",
1152 __FUNCTION__, sc);
1153
1154 goto bce_attach_exit;
1155
1156bce_attach_fail:
1157 bce_release_resources(sc);
1158
1159bce_attach_exit:
1160
1161 DBEXIT(BCE_VERBOSE_LOAD | BCE_VERBOSE_RESET);
1162
1163 return(rc);
1164}
1165
1166
1167/****************************************************************************/
1168/* Device detach function. */
1169/* */
1170/* Stops the controller, resets the controller, and releases resources. */
1171/* */
1172/* Returns: */
1173/* 0 on success, positive value on failure. */
1174/****************************************************************************/
1175static int
1176bce_detach(device_t dev)
1177{
1178 struct bce_softc *sc = device_get_softc(dev);
1179 struct ifnet *ifp;
1180 u32 msg;
1181
1182 DBENTER(BCE_VERBOSE_UNLOAD | BCE_VERBOSE_RESET);
1183
1184 ifp = sc->bce_ifp;
1185
1186 /* Stop and reset the controller. */
1187 BCE_LOCK(sc);
1188
1189 /* Stop the pulse so the bootcode can go to driver absent state. */
1190 callout_stop(&sc->bce_pulse_callout);
1191
1192 bce_stop(sc);
1193 if (sc->bce_flags & BCE_NO_WOL_FLAG)
1194 msg = BCE_DRV_MSG_CODE_UNLOAD_LNK_DN;
1195 else
1196 msg = BCE_DRV_MSG_CODE_UNLOAD;
1197 bce_reset(sc, msg);
1198
1199 BCE_UNLOCK(sc);
1200
1201 ether_ifdetach(ifp);
1202
1203 /* If we have a child device on the MII bus remove it too. */
1204 bus_generic_detach(dev);
1205 device_delete_child(dev, sc->bce_miibus);
1206
1207 /* Release all remaining resources. */
1208 bce_release_resources(sc);
1209
1210 DBEXIT(BCE_VERBOSE_UNLOAD | BCE_VERBOSE_RESET);
1211
1212 return(0);
1213}
1214
1215
1216/****************************************************************************/
1217/* Device shutdown function. */
1218/* */
1219/* Stops and resets the controller. */
1220/* */
1221/* Returns: */
1222/* 0 on success, positive value on failure. */
1223/****************************************************************************/
1224static int
1225bce_shutdown(device_t dev)
1226{
1227 struct bce_softc *sc = device_get_softc(dev);
1228 u32 msg;
1229
1230 DBENTER(BCE_VERBOSE);
1231
1232 BCE_LOCK(sc);
1233 bce_stop(sc);
1234 if (sc->bce_flags & BCE_NO_WOL_FLAG)
1235 msg = BCE_DRV_MSG_CODE_UNLOAD_LNK_DN;
1236 else
1237 msg = BCE_DRV_MSG_CODE_UNLOAD;
1238 bce_reset(sc, msg);
1239 BCE_UNLOCK(sc);
1240
1241 DBEXIT(BCE_VERBOSE);
1242
1243 return (0);
1244}
1245
1246
1247#ifdef BCE_DEBUG
1248/****************************************************************************/
1249/* Register read. */
1250/* */
1251/* Returns: */
1252/* The value of the register. */
1253/****************************************************************************/
1254static u32
1255bce_reg_rd(struct bce_softc *sc, u32 offset)
1256{
1257 u32 val = bus_space_read_4(sc->bce_btag, sc->bce_bhandle, offset);
1258 DBPRINT(sc, BCE_INSANE_REG, "%s(); offset = 0x%08X, val = 0x%08X\n",
1259 __FUNCTION__, offset, val);
1260 return val;
1261}
1262
1263
1264/****************************************************************************/
1265/* Register write (16 bit). */
1266/* */
1267/* Returns: */
1268/* Nothing. */
1269/****************************************************************************/
1270static void
1271bce_reg_wr16(struct bce_softc *sc, u32 offset, u16 val)
1272{
1273 DBPRINT(sc, BCE_INSANE_REG, "%s(); offset = 0x%08X, val = 0x%04X\n",
1274 __FUNCTION__, offset, val);
1275 bus_space_write_2(sc->bce_btag, sc->bce_bhandle, offset, val);
1276}
1277
1278
1279/****************************************************************************/
1280/* Register write. */
1281/* */
1282/* Returns: */
1283/* Nothing. */
1284/****************************************************************************/
1285static void
1286bce_reg_wr(struct bce_softc *sc, u32 offset, u32 val)
1287{
1288 DBPRINT(sc, BCE_INSANE_REG, "%s(); offset = 0x%08X, val = 0x%08X\n",
1289 __FUNCTION__, offset, val);
1290 bus_space_write_4(sc->bce_btag, sc->bce_bhandle, offset, val);
1291}
1292#endif
1293
1294/****************************************************************************/
1295/* Indirect register read. */
1296/* */
1297/* Reads NetXtreme II registers using an index/data register pair in PCI */
1298/* configuration space. Using this mechanism avoids issues with posted */
1299/* reads but is much slower than memory-mapped I/O. */
1300/* */
1301/* Returns: */
1302/* The value of the register. */
1303/****************************************************************************/
1304static u32
1305bce_reg_rd_ind(struct bce_softc *sc, u32 offset)
1306{
1307 device_t dev;
1308 dev = sc->bce_dev;
1309
1310 pci_write_config(dev, BCE_PCICFG_REG_WINDOW_ADDRESS, offset, 4);
1311#ifdef BCE_DEBUG
1312 {
1313 u32 val;
1314 val = pci_read_config(dev, BCE_PCICFG_REG_WINDOW, 4);
1315 DBPRINT(sc, BCE_INSANE_REG, "%s(); offset = 0x%08X, val = 0x%08X\n",
1316 __FUNCTION__, offset, val);
1317 return val;
1318 }
1319#else
1320 return pci_read_config(dev, BCE_PCICFG_REG_WINDOW, 4);
1321#endif
1322}
1323
1324
1325/****************************************************************************/
1326/* Indirect register write. */
1327/* */
1328/* Writes NetXtreme II registers using an index/data register pair in PCI */
1329/* configuration space. Using this mechanism avoids issues with posted */
1330/* writes but is muchh slower than memory-mapped I/O. */
1331/* */
1332/* Returns: */
1333/* Nothing. */
1334/****************************************************************************/
1335static void
1336bce_reg_wr_ind(struct bce_softc *sc, u32 offset, u32 val)
1337{
1338 device_t dev;
1339 dev = sc->bce_dev;
1340
1341 DBPRINT(sc, BCE_INSANE_REG, "%s(); offset = 0x%08X, val = 0x%08X\n",
1342 __FUNCTION__, offset, val);
1343
1344 pci_write_config(dev, BCE_PCICFG_REG_WINDOW_ADDRESS, offset, 4);
1345 pci_write_config(dev, BCE_PCICFG_REG_WINDOW, val, 4);
1346}
1347
1348
1349/****************************************************************************/
1350/* Shared memory write. */
1351/* */
1352/* Writes NetXtreme II shared memory region. */
1353/* */
1354/* Returns: */
1355/* Nothing. */
1356/****************************************************************************/
1357static void
1358bce_shmem_wr(struct bce_softc *sc, u32 offset, u32 val)
1359{
1360 bce_reg_wr_ind(sc, sc->bce_shmem_base + offset, val);
1361}
1362
1363
1364/****************************************************************************/
1365/* Shared memory read. */
1366/* */
1367/* Reads NetXtreme II shared memory region. */
1368/* */
1369/* Returns: */
1370/* The 32 bit value read. */
1371/****************************************************************************/
1372static u32
1373bce_shmem_rd(struct bce_softc *sc, u32 offset)
1374{
1375 return (bce_reg_rd_ind(sc, sc->bce_shmem_base + offset));
1376}
1377
1378
1379#ifdef BCE_DEBUG
1380/****************************************************************************/
1381/* Context memory read. */
1382/* */
1383/* The NetXtreme II controller uses context memory to track connection */
1384/* information for L2 and higher network protocols. */
1385/* */
1386/* Returns: */
1387/* The requested 32 bit value of context memory. */
1388/****************************************************************************/
1389static u32
1390bce_ctx_rd(struct bce_softc *sc, u32 cid_addr, u32 ctx_offset)
1391{
1392 u32 idx, offset, retry_cnt = 5, val;
1393
1394 DBRUNIF((cid_addr > MAX_CID_ADDR || ctx_offset & 0x3 || cid_addr & CTX_MASK),
1395 BCE_PRINTF("%s(): Invalid CID address: 0x%08X.\n",
1396 __FUNCTION__, cid_addr));
1397
1398 offset = ctx_offset + cid_addr;
1399
1400 if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) ||
1401 (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716)) {
1402
1403 REG_WR(sc, BCE_CTX_CTX_CTRL, (offset | BCE_CTX_CTX_CTRL_READ_REQ));
1404
1405 for (idx = 0; idx < retry_cnt; idx++) {
1406 val = REG_RD(sc, BCE_CTX_CTX_CTRL);
1407 if ((val & BCE_CTX_CTX_CTRL_READ_REQ) == 0)
1408 break;
1409 DELAY(5);
1410 }
1411
1412 if (val & BCE_CTX_CTX_CTRL_READ_REQ)
1413 BCE_PRINTF("%s(%d); Unable to read CTX memory: "
1414 "cid_addr = 0x%08X, offset = 0x%08X!\n",
1415 __FILE__, __LINE__, cid_addr, ctx_offset);
1416
1417 val = REG_RD(sc, BCE_CTX_CTX_DATA);
1418 } else {
1419 REG_WR(sc, BCE_CTX_DATA_ADR, offset);
1420 val = REG_RD(sc, BCE_CTX_DATA);
1421 }
1422
1423 DBPRINT(sc, BCE_EXTREME_CTX, "%s(); cid_addr = 0x%08X, offset = 0x%08X, "
1424 "val = 0x%08X\n", __FUNCTION__, cid_addr, ctx_offset, val);
1425
1426 return(val);
1427}
1428#endif
1429
1430
1431/****************************************************************************/
1432/* Context memory write. */
1433/* */
1434/* The NetXtreme II controller uses context memory to track connection */
1435/* information for L2 and higher network protocols. */
1436/* */
1437/* Returns: */
1438/* Nothing. */
1439/****************************************************************************/
1440static void
1441bce_ctx_wr(struct bce_softc *sc, u32 cid_addr, u32 ctx_offset, u32 ctx_val)
1442{
1443 u32 idx, offset = ctx_offset + cid_addr;
1444 u32 val, retry_cnt = 5;
1445
1446 DBPRINT(sc, BCE_EXTREME_CTX, "%s(); cid_addr = 0x%08X, offset = 0x%08X, "
1447 "val = 0x%08X\n", __FUNCTION__, cid_addr, ctx_offset, ctx_val);
1448
1449 DBRUNIF((cid_addr > MAX_CID_ADDR || ctx_offset & 0x3 || cid_addr & CTX_MASK),
1450 BCE_PRINTF("%s(): Invalid CID address: 0x%08X.\n",
1451 __FUNCTION__, cid_addr));
1452
1453 if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) ||
1454 (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716)) {
1455
1456 REG_WR(sc, BCE_CTX_CTX_DATA, ctx_val);
1457 REG_WR(sc, BCE_CTX_CTX_CTRL, (offset | BCE_CTX_CTX_CTRL_WRITE_REQ));
1458
1459 for (idx = 0; idx < retry_cnt; idx++) {
1460 val = REG_RD(sc, BCE_CTX_CTX_CTRL);
1461 if ((val & BCE_CTX_CTX_CTRL_WRITE_REQ) == 0)
1462 break;
1463 DELAY(5);
1464 }
1465
1466 if (val & BCE_CTX_CTX_CTRL_WRITE_REQ)
1467 BCE_PRINTF("%s(%d); Unable to write CTX memory: "
1468 "cid_addr = 0x%08X, offset = 0x%08X!\n",
1469 __FILE__, __LINE__, cid_addr, ctx_offset);
1470
1471 } else {
1472 REG_WR(sc, BCE_CTX_DATA_ADR, offset);
1473 REG_WR(sc, BCE_CTX_DATA, ctx_val);
1474 }
1475}
1476
1477
1478/****************************************************************************/
1479/* PHY register read. */
1480/* */
1481/* Implements register reads on the MII bus. */
1482/* */
1483/* Returns: */
1484/* The value of the register. */
1485/****************************************************************************/
1486static int
1487bce_miibus_read_reg(device_t dev, int phy, int reg)
1488{
1489 struct bce_softc *sc;
1490 u32 val;
1491 int i;
1492
1493 sc = device_get_softc(dev);
1494
1495 /* Make sure we are accessing the correct PHY address. */
1496 if (phy != sc->bce_phy_addr) {
1497 DBPRINT(sc, BCE_INSANE_PHY, "Invalid PHY address %d for PHY read!\n", phy);
1498 return(0);
1499 }
1500
1501 if (sc->bce_phy_flags & BCE_PHY_INT_MODE_AUTO_POLLING_FLAG) {
1502 val = REG_RD(sc, BCE_EMAC_MDIO_MODE);
1503 val &= ~BCE_EMAC_MDIO_MODE_AUTO_POLL;
1504
1505 REG_WR(sc, BCE_EMAC_MDIO_MODE, val);
1506 REG_RD(sc, BCE_EMAC_MDIO_MODE);
1507
1508 DELAY(40);
1509 }
1510
1511
1512 val = BCE_MIPHY(phy) | BCE_MIREG(reg) |
1513 BCE_EMAC_MDIO_COMM_COMMAND_READ | BCE_EMAC_MDIO_COMM_DISEXT |
1514 BCE_EMAC_MDIO_COMM_START_BUSY;
1515 REG_WR(sc, BCE_EMAC_MDIO_COMM, val);
1516
1517 for (i = 0; i < BCE_PHY_TIMEOUT; i++) {
1518 DELAY(10);
1519
1520 val = REG_RD(sc, BCE_EMAC_MDIO_COMM);
1521 if (!(val & BCE_EMAC_MDIO_COMM_START_BUSY)) {
1522 DELAY(5);
1523
1524 val = REG_RD(sc, BCE_EMAC_MDIO_COMM);
1525 val &= BCE_EMAC_MDIO_COMM_DATA;
1526
1527 break;
1528 }
1529 }
1530
1531 if (val & BCE_EMAC_MDIO_COMM_START_BUSY) {
1532 BCE_PRINTF("%s(%d): Error: PHY read timeout! phy = %d, reg = 0x%04X\n",
1533 __FILE__, __LINE__, phy, reg);
1534 val = 0x0;
1535 } else {
1536 val = REG_RD(sc, BCE_EMAC_MDIO_COMM);
1537 }
1538
1539
1540 if (sc->bce_phy_flags & BCE_PHY_INT_MODE_AUTO_POLLING_FLAG) {
1541 val = REG_RD(sc, BCE_EMAC_MDIO_MODE);
1542 val |= BCE_EMAC_MDIO_MODE_AUTO_POLL;
1543
1544 REG_WR(sc, BCE_EMAC_MDIO_MODE, val);
1545 REG_RD(sc, BCE_EMAC_MDIO_MODE);
1546
1547 DELAY(40);
1548 }
1549
1550 DB_PRINT_PHY_REG(reg, val);
1551 return (val & 0xffff);
1552
1553}
1554
1555
1556/****************************************************************************/
1557/* PHY register write. */
1558/* */
1559/* Implements register writes on the MII bus. */
1560/* */
1561/* Returns: */
1562/* The value of the register. */
1563/****************************************************************************/
1564static int
1565bce_miibus_write_reg(device_t dev, int phy, int reg, int val)
1566{
1567 struct bce_softc *sc;
1568 u32 val1;
1569 int i;
1570
1571 sc = device_get_softc(dev);
1572
1573 /* Make sure we are accessing the correct PHY address. */
1574 if (phy != sc->bce_phy_addr) {
1575 DBPRINT(sc, BCE_INSANE_PHY, "Invalid PHY address %d for PHY write!\n", phy);
1576 return(0);
1577 }
1578
1579 DB_PRINT_PHY_REG(reg, val);
1580
1581 if (sc->bce_phy_flags & BCE_PHY_INT_MODE_AUTO_POLLING_FLAG) {
1582 val1 = REG_RD(sc, BCE_EMAC_MDIO_MODE);
1583 val1 &= ~BCE_EMAC_MDIO_MODE_AUTO_POLL;
1584
1585 REG_WR(sc, BCE_EMAC_MDIO_MODE, val1);
1586 REG_RD(sc, BCE_EMAC_MDIO_MODE);
1587
1588 DELAY(40);
1589 }
1590
1591 val1 = BCE_MIPHY(phy) | BCE_MIREG(reg) | val |
1592 BCE_EMAC_MDIO_COMM_COMMAND_WRITE |
1593 BCE_EMAC_MDIO_COMM_START_BUSY | BCE_EMAC_MDIO_COMM_DISEXT;
1594 REG_WR(sc, BCE_EMAC_MDIO_COMM, val1);
1595
1596 for (i = 0; i < BCE_PHY_TIMEOUT; i++) {
1597 DELAY(10);
1598
1599 val1 = REG_RD(sc, BCE_EMAC_MDIO_COMM);
1600 if (!(val1 & BCE_EMAC_MDIO_COMM_START_BUSY)) {
1601 DELAY(5);
1602 break;
1603 }
1604 }
1605
1606 if (val1 & BCE_EMAC_MDIO_COMM_START_BUSY)
1607 BCE_PRINTF("%s(%d): PHY write timeout!\n",
1608 __FILE__, __LINE__);
1609
1610 if (sc->bce_phy_flags & BCE_PHY_INT_MODE_AUTO_POLLING_FLAG) {
1611 val1 = REG_RD(sc, BCE_EMAC_MDIO_MODE);
1612 val1 |= BCE_EMAC_MDIO_MODE_AUTO_POLL;
1613
1614 REG_WR(sc, BCE_EMAC_MDIO_MODE, val1);
1615 REG_RD(sc, BCE_EMAC_MDIO_MODE);
1616
1617 DELAY(40);
1618 }
1619
1620 return 0;
1621}
1622
1623
1624/****************************************************************************/
1625/* MII bus status change. */
1626/* */
1627/* Called by the MII bus driver when the PHY establishes link to set the */
1628/* MAC interface registers. */
1629/* */
1630/* Returns: */
1631/* Nothing. */
1632/****************************************************************************/
1633static void
1634bce_miibus_statchg(device_t dev)
1635{
1636 struct bce_softc *sc;
1637 struct mii_data *mii;
1638 int val;
1639
1640 sc = device_get_softc(dev);
1641
1642 DBENTER(BCE_VERBOSE_PHY);
1643
1644 mii = device_get_softc(sc->bce_miibus);
1645
1646 val = REG_RD(sc, BCE_EMAC_MODE);
1647 val &= ~(BCE_EMAC_MODE_PORT | BCE_EMAC_MODE_HALF_DUPLEX |
1648 BCE_EMAC_MODE_MAC_LOOP | BCE_EMAC_MODE_FORCE_LINK |
1649 BCE_EMAC_MODE_25G);
1650
1651 /* Set MII or GMII interface based on the speed negotiated by the PHY. */
1652 switch (IFM_SUBTYPE(mii->mii_media_active)) {
1653 case IFM_10_T:
1654 if (BCE_CHIP_NUM(sc) != BCE_CHIP_NUM_5706) {
1655 DBPRINT(sc, BCE_INFO, "Enabling 10Mb interface.\n");
1656 val |= BCE_EMAC_MODE_PORT_MII_10;
1657 break;
1658 }
1659 /* fall-through */
1660 case IFM_100_TX:
1661 DBPRINT(sc, BCE_INFO, "Enabling MII interface.\n");
1662 val |= BCE_EMAC_MODE_PORT_MII;
1663 break;
1664 case IFM_2500_SX:
1665 DBPRINT(sc, BCE_INFO, "Enabling 2.5G MAC mode.\n");
1666 val |= BCE_EMAC_MODE_25G;
1667 /* fall-through */
1668 case IFM_1000_T:
1669 case IFM_1000_SX:
1670 DBPRINT(sc, BCE_INFO, "Enabling GMII interface.\n");
1671 val |= BCE_EMAC_MODE_PORT_GMII;
1672 break;
1673 default:
1674 DBPRINT(sc, BCE_INFO, "Unknown speed, enabling default GMII "
1675 "interface.\n");
1676 val |= BCE_EMAC_MODE_PORT_GMII;
1677 }
1678
1679 /* Set half or full duplex based on the duplicity negotiated by the PHY. */
1680 if ((mii->mii_media_active & IFM_GMASK) == IFM_HDX) {
1681 DBPRINT(sc, BCE_INFO, "Setting Half-Duplex interface.\n");
1682 val |= BCE_EMAC_MODE_HALF_DUPLEX;
1683 } else
1684 DBPRINT(sc, BCE_INFO, "Setting Full-Duplex interface.\n");
1685
1686 REG_WR(sc, BCE_EMAC_MODE, val);
1687
1688#if 0
1689 /* ToDo: Enable flow control support in brgphy and bge. */
1690 /* FLAG0 is set if RX is enabled and FLAG1 if TX is enabled */
1691 if (mii->mii_media_active & IFM_FLAG0)
1692 BCE_SETBIT(sc, BCE_EMAC_RX_MODE, BCE_EMAC_RX_MODE_FLOW_EN);
1693 if (mii->mii_media_active & IFM_FLAG1)
1694 BCE_SETBIT(sc, BCE_EMAC_RX_MODE, BCE_EMAC_TX_MODE_FLOW_EN);
1695#endif
1696
1697 DBEXIT(BCE_VERBOSE_PHY);
1698}
1699
1700
1701/****************************************************************************/
1702/* Acquire NVRAM lock. */
1703/* */
1704/* Before the NVRAM can be accessed the caller must acquire an NVRAM lock. */
1705/* Locks 0 and 2 are reserved, lock 1 is used by firmware and lock 2 is */
1706/* for use by the driver. */
1707/* */
1708/* Returns: */
1709/* 0 on success, positive value on failure. */
1710/****************************************************************************/
1711static int
1712bce_acquire_nvram_lock(struct bce_softc *sc)
1713{
1714 u32 val;
1715 int j, rc = 0;
1716
1717 DBENTER(BCE_VERBOSE_NVRAM);
1718
1719 /* Request access to the flash interface. */
1720 REG_WR(sc, BCE_NVM_SW_ARB, BCE_NVM_SW_ARB_ARB_REQ_SET2);
1721 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
1722 val = REG_RD(sc, BCE_NVM_SW_ARB);
1723 if (val & BCE_NVM_SW_ARB_ARB_ARB2)
1724 break;
1725
1726 DELAY(5);
1727 }
1728
1729 if (j >= NVRAM_TIMEOUT_COUNT) {
1730 DBPRINT(sc, BCE_WARN, "Timeout acquiring NVRAM lock!\n");
1731 rc = EBUSY;
1732 }
1733
1734 DBEXIT(BCE_VERBOSE_NVRAM);
1735 return (rc);
1736}
1737
1738
1739/****************************************************************************/
1740/* Release NVRAM lock. */
1741/* */
1742/* When the caller is finished accessing NVRAM the lock must be released. */
1743/* Locks 0 and 2 are reserved, lock 1 is used by firmware and lock 2 is */
1744/* for use by the driver. */
1745/* */
1746/* Returns: */
1747/* 0 on success, positive value on failure. */
1748/****************************************************************************/
1749static int
1750bce_release_nvram_lock(struct bce_softc *sc)
1751{
1752 u32 val;
1753 int j, rc = 0;
1754
1755 DBENTER(BCE_VERBOSE_NVRAM);
1756
1757 /*
1758 * Relinquish nvram interface.
1759 */
1760 REG_WR(sc, BCE_NVM_SW_ARB, BCE_NVM_SW_ARB_ARB_REQ_CLR2);
1761
1762 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
1763 val = REG_RD(sc, BCE_NVM_SW_ARB);
1764 if (!(val & BCE_NVM_SW_ARB_ARB_ARB2))
1765 break;
1766
1767 DELAY(5);
1768 }
1769
1770 if (j >= NVRAM_TIMEOUT_COUNT) {
1771 DBPRINT(sc, BCE_WARN, "Timeout releasing NVRAM lock!\n");
1772 rc = EBUSY;
1773 }
1774
1775 DBEXIT(BCE_VERBOSE_NVRAM);
1776 return (rc);
1777}
1778
1779
1780#ifdef BCE_NVRAM_WRITE_SUPPORT
1781/****************************************************************************/
1782/* Enable NVRAM write access. */
1783/* */
1784/* Before writing to NVRAM the caller must enable NVRAM writes. */
1785/* */
1786/* Returns: */
1787/* 0 on success, positive value on failure. */
1788/****************************************************************************/
1789static int
1790bce_enable_nvram_write(struct bce_softc *sc)
1791{
1792 u32 val;
1793 int rc = 0;
1794
1795 DBENTER(BCE_VERBOSE_NVRAM);
1796
1797 val = REG_RD(sc, BCE_MISC_CFG);
1798 REG_WR(sc, BCE_MISC_CFG, val | BCE_MISC_CFG_NVM_WR_EN_PCI);
1799
1800 if (!(sc->bce_flash_info->flags & BCE_NV_BUFFERED)) {
1801 int j;
1802
1803 REG_WR(sc, BCE_NVM_COMMAND, BCE_NVM_COMMAND_DONE);
1804 REG_WR(sc, BCE_NVM_COMMAND, BCE_NVM_COMMAND_WREN | BCE_NVM_COMMAND_DOIT);
1805
1806 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
1807 DELAY(5);
1808
1809 val = REG_RD(sc, BCE_NVM_COMMAND);
1810 if (val & BCE_NVM_COMMAND_DONE)
1811 break;
1812 }
1813
1814 if (j >= NVRAM_TIMEOUT_COUNT) {
1815 DBPRINT(sc, BCE_WARN, "Timeout writing NVRAM!\n");
1816 rc = EBUSY;
1817 }
1818 }
1819
1820 DBENTER(BCE_VERBOSE_NVRAM);
1821 return (rc);
1822}
1823
1824
1825/****************************************************************************/
1826/* Disable NVRAM write access. */
1827/* */
1828/* When the caller is finished writing to NVRAM write access must be */
1829/* disabled. */
1830/* */
1831/* Returns: */
1832/* Nothing. */
1833/****************************************************************************/
1834static void
1835bce_disable_nvram_write(struct bce_softc *sc)
1836{
1837 u32 val;
1838
1839 DBENTER(BCE_VERBOSE_NVRAM);
1840
1841 val = REG_RD(sc, BCE_MISC_CFG);
1842 REG_WR(sc, BCE_MISC_CFG, val & ~BCE_MISC_CFG_NVM_WR_EN);
1843
1844 DBEXIT(BCE_VERBOSE_NVRAM);
1845
1846}
1847#endif
1848
1849
1850/****************************************************************************/
1851/* Enable NVRAM access. */
1852/* */
1853/* Before accessing NVRAM for read or write operations the caller must */
1854/* enabled NVRAM access. */
1855/* */
1856/* Returns: */
1857/* Nothing. */
1858/****************************************************************************/
1859static void
1860bce_enable_nvram_access(struct bce_softc *sc)
1861{
1862 u32 val;
1863
1864 DBENTER(BCE_VERBOSE_NVRAM);
1865
1866 val = REG_RD(sc, BCE_NVM_ACCESS_ENABLE);
1867 /* Enable both bits, even on read. */
1868 REG_WR(sc, BCE_NVM_ACCESS_ENABLE,
1869 val | BCE_NVM_ACCESS_ENABLE_EN | BCE_NVM_ACCESS_ENABLE_WR_EN);
1870
1871 DBEXIT(BCE_VERBOSE_NVRAM);
1872}
1873
1874
1875/****************************************************************************/
1876/* Disable NVRAM access. */
1877/* */
1878/* When the caller is finished accessing NVRAM access must be disabled. */
1879/* */
1880/* Returns: */
1881/* Nothing. */
1882/****************************************************************************/
1883static void
1884bce_disable_nvram_access(struct bce_softc *sc)
1885{
1886 u32 val;
1887
1888 DBENTER(BCE_VERBOSE_NVRAM);
1889
1890 val = REG_RD(sc, BCE_NVM_ACCESS_ENABLE);
1891
1892 /* Disable both bits, even after read. */
1893 REG_WR(sc, BCE_NVM_ACCESS_ENABLE,
1894 val & ~(BCE_NVM_ACCESS_ENABLE_EN |
1895 BCE_NVM_ACCESS_ENABLE_WR_EN));
1896
1897 DBEXIT(BCE_VERBOSE_NVRAM);
1898}
1899
1900
1901#ifdef BCE_NVRAM_WRITE_SUPPORT
1902/****************************************************************************/
1903/* Erase NVRAM page before writing. */
1904/* */
1905/* Non-buffered flash parts require that a page be erased before it is */
1906/* written. */
1907/* */
1908/* Returns: */
1909/* 0 on success, positive value on failure. */
1910/****************************************************************************/
1911static int
1912bce_nvram_erase_page(struct bce_softc *sc, u32 offset)
1913{
1914 u32 cmd;
1915 int j, rc = 0;
1916
1917 DBENTER(BCE_VERBOSE_NVRAM);
1918
1919 /* Buffered flash doesn't require an erase. */
1920 if (sc->bce_flash_info->flags & BCE_NV_BUFFERED)
1921 goto bce_nvram_erase_page_exit;
1922
1923 /* Build an erase command. */
1924 cmd = BCE_NVM_COMMAND_ERASE | BCE_NVM_COMMAND_WR |
1925 BCE_NVM_COMMAND_DOIT;
1926
1927 /*
1928 * Clear the DONE bit separately, set the NVRAM adress to erase,
1929 * and issue the erase command.
1930 */
1931 REG_WR(sc, BCE_NVM_COMMAND, BCE_NVM_COMMAND_DONE);
1932 REG_WR(sc, BCE_NVM_ADDR, offset & BCE_NVM_ADDR_NVM_ADDR_VALUE);
1933 REG_WR(sc, BCE_NVM_COMMAND, cmd);
1934
1935 /* Wait for completion. */
1936 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
1937 u32 val;
1938
1939 DELAY(5);
1940
1941 val = REG_RD(sc, BCE_NVM_COMMAND);
1942 if (val & BCE_NVM_COMMAND_DONE)
1943 break;
1944 }
1945
1946 if (j >= NVRAM_TIMEOUT_COUNT) {
1947 DBPRINT(sc, BCE_WARN, "Timeout erasing NVRAM.\n");
1948 rc = EBUSY;
1949 }
1950
1951bce_nvram_erase_page_exit:
1952 DBEXIT(BCE_VERBOSE_NVRAM);
1953 return (rc);
1954}
1955#endif /* BCE_NVRAM_WRITE_SUPPORT */
1956
1957
1958/****************************************************************************/
1959/* Read a dword (32 bits) from NVRAM. */
1960/* */
1961/* Read a 32 bit word from NVRAM. The caller is assumed to have already */
1962/* obtained the NVRAM lock and enabled the controller for NVRAM access. */
1963/* */
1964/* Returns: */
1965/* 0 on success and the 32 bit value read, positive value on failure. */
1966/****************************************************************************/
1967static int
1968bce_nvram_read_dword(struct bce_softc *sc, u32 offset, u8 *ret_val,
1969 u32 cmd_flags)
1970{
1971 u32 cmd;
1972 int i, rc = 0;
1973
1974 DBENTER(BCE_EXTREME_NVRAM);
1975
1976 /* Build the command word. */
1977 cmd = BCE_NVM_COMMAND_DOIT | cmd_flags;
1978
1979 /* Calculate the offset for buffered flash if translation is used. */
1980 if (sc->bce_flash_info->flags & BCE_NV_TRANSLATE) {
1981 offset = ((offset / sc->bce_flash_info->page_size) <<
1982 sc->bce_flash_info->page_bits) +
1983 (offset % sc->bce_flash_info->page_size);
1984 }
1985
1986 /*
1987 * Clear the DONE bit separately, set the address to read,
1988 * and issue the read.
1989 */
1990 REG_WR(sc, BCE_NVM_COMMAND, BCE_NVM_COMMAND_DONE);
1991 REG_WR(sc, BCE_NVM_ADDR, offset & BCE_NVM_ADDR_NVM_ADDR_VALUE);
1992 REG_WR(sc, BCE_NVM_COMMAND, cmd);
1993
1994 /* Wait for completion. */
1995 for (i = 0; i < NVRAM_TIMEOUT_COUNT; i++) {
1996 u32 val;
1997
1998 DELAY(5);
1999
2000 val = REG_RD(sc, BCE_NVM_COMMAND);
2001 if (val & BCE_NVM_COMMAND_DONE) {
2002 val = REG_RD(sc, BCE_NVM_READ);
2003
2004 val = bce_be32toh(val);
2005 memcpy(ret_val, &val, 4);
2006 break;
2007 }
2008 }
2009
2010 /* Check for errors. */
2011 if (i >= NVRAM_TIMEOUT_COUNT) {
2012 BCE_PRINTF("%s(%d): Timeout error reading NVRAM at offset 0x%08X!\n",
2013 __FILE__, __LINE__, offset);
2014 rc = EBUSY;
2015 }
2016
2017 DBEXIT(BCE_EXTREME_NVRAM);
2018 return(rc);
2019}
2020
2021
2022#ifdef BCE_NVRAM_WRITE_SUPPORT
2023/****************************************************************************/
2024/* Write a dword (32 bits) to NVRAM. */
2025/* */
2026/* Write a 32 bit word to NVRAM. The caller is assumed to have already */
2027/* obtained the NVRAM lock, enabled the controller for NVRAM access, and */
2028/* enabled NVRAM write access. */
2029/* */
2030/* Returns: */
2031/* 0 on success, positive value on failure. */
2032/****************************************************************************/
2033static int
2034bce_nvram_write_dword(struct bce_softc *sc, u32 offset, u8 *val,
2035 u32 cmd_flags)
2036{
2037 u32 cmd, val32;
2038 int j, rc = 0;
2039
2040 DBENTER(BCE_VERBOSE_NVRAM);
2041
2042 /* Build the command word. */
2043 cmd = BCE_NVM_COMMAND_DOIT | BCE_NVM_COMMAND_WR | cmd_flags;
2044
2045 /* Calculate the offset for buffered flash if translation is used. */
2046 if (sc->bce_flash_info->flags & BCE_NV_TRANSLATE) {
2047 offset = ((offset / sc->bce_flash_info->page_size) <<
2048 sc->bce_flash_info->page_bits) +
2049 (offset % sc->bce_flash_info->page_size);
2050 }
2051
2052 /*
2053 * Clear the DONE bit separately, convert NVRAM data to big-endian,
2054 * set the NVRAM address to write, and issue the write command
2055 */
2056 REG_WR(sc, BCE_NVM_COMMAND, BCE_NVM_COMMAND_DONE);
2057 memcpy(&val32, val, 4);
2058 val32 = htobe32(val32);
2059 REG_WR(sc, BCE_NVM_WRITE, val32);
2060 REG_WR(sc, BCE_NVM_ADDR, offset & BCE_NVM_ADDR_NVM_ADDR_VALUE);
2061 REG_WR(sc, BCE_NVM_COMMAND, cmd);
2062
2063 /* Wait for completion. */
2064 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
2065 DELAY(5);
2066
2067 if (REG_RD(sc, BCE_NVM_COMMAND) & BCE_NVM_COMMAND_DONE)
2068 break;
2069 }
2070 if (j >= NVRAM_TIMEOUT_COUNT) {
2071 BCE_PRINTF("%s(%d): Timeout error writing NVRAM at offset 0x%08X\n",
2072 __FILE__, __LINE__, offset);
2073 rc = EBUSY;
2074 }
2075
2076 DBEXIT(BCE_VERBOSE_NVRAM);
2077 return (rc);
2078}
2079#endif /* BCE_NVRAM_WRITE_SUPPORT */
2080
2081
2082/****************************************************************************/
2083/* Initialize NVRAM access. */
2084/* */
2085/* Identify the NVRAM device in use and prepare the NVRAM interface to */
2086/* access that device. */
2087/* */
2088/* Returns: */
2089/* 0 on success, positive value on failure. */
2090/****************************************************************************/
2091static int
2092bce_init_nvram(struct bce_softc *sc)
2093{
2094 u32 val;
2095 int j, entry_count, rc = 0;
2096 struct flash_spec *flash;
2097
2098 DBENTER(BCE_VERBOSE_NVRAM);
2099
2100 if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) ||
2101 (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716)) {
2102 sc->bce_flash_info = &flash_5709;
2103 goto bce_init_nvram_get_flash_size;
2104 }
2105
2106 /* Determine the selected interface. */
2107 val = REG_RD(sc, BCE_NVM_CFG1);
2108
2109 entry_count = sizeof(flash_table) / sizeof(struct flash_spec);
2110
2111 /*
2112 * Flash reconfiguration is required to support additional
2113 * NVRAM devices not directly supported in hardware.
2114 * Check if the flash interface was reconfigured
2115 * by the bootcode.
2116 */
2117
2118 if (val & 0x40000000) {
2119 /* Flash interface reconfigured by bootcode. */
2120
2121 DBPRINT(sc,BCE_INFO_LOAD,
2122 "bce_init_nvram(): Flash WAS reconfigured.\n");
2123
2124 for (j = 0, flash = &flash_table[0]; j < entry_count;
2125 j++, flash++) {
2126 if ((val & FLASH_BACKUP_STRAP_MASK) ==
2127 (flash->config1 & FLASH_BACKUP_STRAP_MASK)) {
2128 sc->bce_flash_info = flash;
2129 break;
2130 }
2131 }
2132 } else {
2133 /* Flash interface not yet reconfigured. */
2134 u32 mask;
2135
2136 DBPRINT(sc, BCE_INFO_LOAD, "%s(): Flash was NOT reconfigured.\n",
2137 __FUNCTION__);
2138
2139 if (val & (1 << 23))
2140 mask = FLASH_BACKUP_STRAP_MASK;
2141 else
2142 mask = FLASH_STRAP_MASK;
2143
2144 /* Look for the matching NVRAM device configuration data. */
2145 for (j = 0, flash = &flash_table[0]; j < entry_count; j++, flash++) {
2146
2147 /* Check if the device matches any of the known devices. */
2148 if ((val & mask) == (flash->strapping & mask)) {
2149 /* Found a device match. */
2150 sc->bce_flash_info = flash;
2151
2152 /* Request access to the flash interface. */
2153 if ((rc = bce_acquire_nvram_lock(sc)) != 0)
2154 return rc;
2155
2156 /* Reconfigure the flash interface. */
2157 bce_enable_nvram_access(sc);
2158 REG_WR(sc, BCE_NVM_CFG1, flash->config1);
2159 REG_WR(sc, BCE_NVM_CFG2, flash->config2);
2160 REG_WR(sc, BCE_NVM_CFG3, flash->config3);
2161 REG_WR(sc, BCE_NVM_WRITE1, flash->write1);
2162 bce_disable_nvram_access(sc);
2163 bce_release_nvram_lock(sc);
2164
2165 break;
2166 }
2167 }
2168 }
2169
2170 /* Check if a matching device was found. */
2171 if (j == entry_count) {
2172 sc->bce_flash_info = NULL;
2173 BCE_PRINTF("%s(%d): Unknown Flash NVRAM found!\n",
2174 __FILE__, __LINE__);
2175 rc = ENODEV;
2176 }
2177
2178bce_init_nvram_get_flash_size:
2179 /* Write the flash config data to the shared memory interface. */
2180 val = bce_shmem_rd(sc, BCE_SHARED_HW_CFG_CONFIG2);
2181 val &= BCE_SHARED_HW_CFG2_NVM_SIZE_MASK;
2182 if (val)
2183 sc->bce_flash_size = val;
2184 else
2185 sc->bce_flash_size = sc->bce_flash_info->total_size;
2186
2187 DBPRINT(sc, BCE_INFO_LOAD, "%s(): Found %s, size = 0x%08X\n",
2188 __FUNCTION__, sc->bce_flash_info->name,
2189 sc->bce_flash_info->total_size);
2190
2191 DBEXIT(BCE_VERBOSE_NVRAM);
2192 return rc;
2193}
2194
2195
2196/****************************************************************************/
2197/* Read an arbitrary range of data from NVRAM. */
2198/* */
2199/* Prepares the NVRAM interface for access and reads the requested data */
2200/* into the supplied buffer. */
2201/* */
2202/* Returns: */
2203/* 0 on success and the data read, positive value on failure. */
2204/****************************************************************************/
2205static int
2206bce_nvram_read(struct bce_softc *sc, u32 offset, u8 *ret_buf,
2207 int buf_size)
2208{
2209 int rc = 0;
2210 u32 cmd_flags, offset32, len32, extra;
2211
2212 DBENTER(BCE_VERBOSE_NVRAM);
2213
2214 if (buf_size == 0)
2215 goto bce_nvram_read_exit;
2216
2217 /* Request access to the flash interface. */
2218 if ((rc = bce_acquire_nvram_lock(sc)) != 0)
2219 goto bce_nvram_read_exit;
2220
2221 /* Enable access to flash interface */
2222 bce_enable_nvram_access(sc);
2223
2224 len32 = buf_size;
2225 offset32 = offset;
2226 extra = 0;
2227
2228 cmd_flags = 0;
2229
2230 if (offset32 & 3) {
2231 u8 buf[4];
2232 u32 pre_len;
2233
2234 offset32 &= ~3;
2235 pre_len = 4 - (offset & 3);
2236
2237 if (pre_len >= len32) {
2238 pre_len = len32;
2239 cmd_flags = BCE_NVM_COMMAND_FIRST | BCE_NVM_COMMAND_LAST;
2240 }
2241 else {
2242 cmd_flags = BCE_NVM_COMMAND_FIRST;
2243 }
2244
2245 rc = bce_nvram_read_dword(sc, offset32, buf, cmd_flags);
2246
2247 if (rc)
2248 return rc;
2249
2250 memcpy(ret_buf, buf + (offset & 3), pre_len);
2251
2252 offset32 += 4;
2253 ret_buf += pre_len;
2254 len32 -= pre_len;
2255 }
2256
2257 if (len32 & 3) {
2258 extra = 4 - (len32 & 3);
2259 len32 = (len32 + 4) & ~3;
2260 }
2261
2262 if (len32 == 4) {
2263 u8 buf[4];
2264
2265 if (cmd_flags)
2266 cmd_flags = BCE_NVM_COMMAND_LAST;
2267 else
2268 cmd_flags = BCE_NVM_COMMAND_FIRST |
2269 BCE_NVM_COMMAND_LAST;
2270
2271 rc = bce_nvram_read_dword(sc, offset32, buf, cmd_flags);
2272
2273 memcpy(ret_buf, buf, 4 - extra);
2274 }
2275 else if (len32 > 0) {
2276 u8 buf[4];
2277
2278 /* Read the first word. */
2279 if (cmd_flags)
2280 cmd_flags = 0;
2281 else
2282 cmd_flags = BCE_NVM_COMMAND_FIRST;
2283
2284 rc = bce_nvram_read_dword(sc, offset32, ret_buf, cmd_flags);
2285
2286 /* Advance to the next dword. */
2287 offset32 += 4;
2288 ret_buf += 4;
2289 len32 -= 4;
2290
2291 while (len32 > 4 && rc == 0) {
2292 rc = bce_nvram_read_dword(sc, offset32, ret_buf, 0);
2293
2294 /* Advance to the next dword. */
2295 offset32 += 4;
2296 ret_buf += 4;
2297 len32 -= 4;
2298 }
2299
2300 if (rc)
2301 goto bce_nvram_read_locked_exit;
2302
2303 cmd_flags = BCE_NVM_COMMAND_LAST;
2304 rc = bce_nvram_read_dword(sc, offset32, buf, cmd_flags);
2305
2306 memcpy(ret_buf, buf, 4 - extra);
2307 }
2308
2309bce_nvram_read_locked_exit:
2310 /* Disable access to flash interface and release the lock. */
2311 bce_disable_nvram_access(sc);
2312 bce_release_nvram_lock(sc);
2313
2314bce_nvram_read_exit:
2315 DBEXIT(BCE_VERBOSE_NVRAM);
2316 return rc;
2317}
2318
2319
2320#ifdef BCE_NVRAM_WRITE_SUPPORT
2321/****************************************************************************/
2322/* Write an arbitrary range of data from NVRAM. */
2323/* */
2324/* Prepares the NVRAM interface for write access and writes the requested */
2325/* data from the supplied buffer. The caller is responsible for */
2326/* calculating any appropriate CRCs. */
2327/* */
2328/* Returns: */
2329/* 0 on success, positive value on failure. */
2330/****************************************************************************/
2331static int
2332bce_nvram_write(struct bce_softc *sc, u32 offset, u8 *data_buf,
2333 int buf_size)
2334{
2335 u32 written, offset32, len32;
2336 u8 *buf, start[4], end[4];
2337 int rc = 0;
2338 int align_start, align_end;
2339
2340 DBENTER(BCE_VERBOSE_NVRAM);
2341
2342 buf = data_buf;
2343 offset32 = offset;
2344 len32 = buf_size;
2345 align_start = align_end = 0;
2346
2347 if ((align_start = (offset32 & 3))) {
2348 offset32 &= ~3;
2349 len32 += align_start;
2350 if ((rc = bce_nvram_read(sc, offset32, start, 4)))
2351 goto bce_nvram_write_exit;
2352 }
2353
2354 if (len32 & 3) {
2355 if ((len32 > 4) || !align_start) {
2356 align_end = 4 - (len32 & 3);
2357 len32 += align_end;
2358 if ((rc = bce_nvram_read(sc, offset32 + len32 - 4,
2359 end, 4))) {
2360 goto bce_nvram_write_exit;
2361 }
2362 }
2363 }
2364
2365 if (align_start || align_end) {
2366 buf = malloc(len32, M_DEVBUF, M_NOWAIT);
2367 if (buf == 0) {
2368 rc = ENOMEM;
2369 goto bce_nvram_write_exit;
2370 }
2371
2372 if (align_start) {
2373 memcpy(buf, start, 4);
2374 }
2375
2376 if (align_end) {
2377 memcpy(buf + len32 - 4, end, 4);
2378 }
2379 memcpy(buf + align_start, data_buf, buf_size);
2380 }
2381
2382 written = 0;
2383 while ((written < len32) && (rc == 0)) {
2384 u32 page_start, page_end, data_start, data_end;
2385 u32 addr, cmd_flags;
2386 int i;
2387 u8 flash_buffer[264];
2388
2389 /* Find the page_start addr */
2390 page_start = offset32 + written;
2391 page_start -= (page_start % sc->bce_flash_info->page_size);
2392 /* Find the page_end addr */
2393 page_end = page_start + sc->bce_flash_info->page_size;
2394 /* Find the data_start addr */
2395 data_start = (written == 0) ? offset32 : page_start;
2396 /* Find the data_end addr */
2397 data_end = (page_end > offset32 + len32) ?
2398 (offset32 + len32) : page_end;
2399
2400 /* Request access to the flash interface. */
2401 if ((rc = bce_acquire_nvram_lock(sc)) != 0)
2402 goto bce_nvram_write_exit;
2403
2404 /* Enable access to flash interface */
2405 bce_enable_nvram_access(sc);
2406
2407 cmd_flags = BCE_NVM_COMMAND_FIRST;
2408 if (!(sc->bce_flash_info->flags & BCE_NV_BUFFERED)) {
2409 int j;
2410
2411 /* Read the whole page into the buffer
2412 * (non-buffer flash only) */
2413 for (j = 0; j < sc->bce_flash_info->page_size; j += 4) {
2414 if (j == (sc->bce_flash_info->page_size - 4)) {
2415 cmd_flags |= BCE_NVM_COMMAND_LAST;
2416 }
2417 rc = bce_nvram_read_dword(sc,
2418 page_start + j,
2419 &flash_buffer[j],
2420 cmd_flags);
2421
2422 if (rc)
2423 goto bce_nvram_write_locked_exit;
2424
2425 cmd_flags = 0;
2426 }
2427 }
2428
2429 /* Enable writes to flash interface (unlock write-protect) */
2430 if ((rc = bce_enable_nvram_write(sc)) != 0)
2431 goto bce_nvram_write_locked_exit;
2432
2433 /* Erase the page */
2434 if ((rc = bce_nvram_erase_page(sc, page_start)) != 0)
2435 goto bce_nvram_write_locked_exit;
2436
2437 /* Re-enable the write again for the actual write */
2438 bce_enable_nvram_write(sc);
2439
2440 /* Loop to write back the buffer data from page_start to
2441 * data_start */
2442 i = 0;
2443 if (!(sc->bce_flash_info->flags & BCE_NV_BUFFERED)) {
2444 for (addr = page_start; addr < data_start;
2445 addr += 4, i += 4) {
2446
2447 rc = bce_nvram_write_dword(sc, addr,
2448 &flash_buffer[i], cmd_flags);
2449
2450 if (rc != 0)
2451 goto bce_nvram_write_locked_exit;
2452
2453 cmd_flags = 0;
2454 }
2455 }
2456
2457 /* Loop to write the new data from data_start to data_end */
2458 for (addr = data_start; addr < data_end; addr += 4, i++) {
2459 if ((addr == page_end - 4) ||
2460 ((sc->bce_flash_info->flags & BCE_NV_BUFFERED) &&
2461 (addr == data_end - 4))) {
2462
2463 cmd_flags |= BCE_NVM_COMMAND_LAST;
2464 }
2465 rc = bce_nvram_write_dword(sc, addr, buf,
2466 cmd_flags);
2467
2468 if (rc != 0)
2469 goto bce_nvram_write_locked_exit;
2470
2471 cmd_flags = 0;
2472 buf += 4;
2473 }
2474
2475 /* Loop to write back the buffer data from data_end
2476 * to page_end */
2477 if (!(sc->bce_flash_info->flags & BCE_NV_BUFFERED)) {
2478 for (addr = data_end; addr < page_end;
2479 addr += 4, i += 4) {
2480
2481 if (addr == page_end-4) {
2482 cmd_flags = BCE_NVM_COMMAND_LAST;
2483 }
2484 rc = bce_nvram_write_dword(sc, addr,
2485 &flash_buffer[i], cmd_flags);
2486
2487 if (rc != 0)
2488 goto bce_nvram_write_locked_exit;
2489
2490 cmd_flags = 0;
2491 }
2492 }
2493
2494 /* Disable writes to flash interface (lock write-protect) */
2495 bce_disable_nvram_write(sc);
2496
2497 /* Disable access to flash interface */
2498 bce_disable_nvram_access(sc);
2499 bce_release_nvram_lock(sc);
2500
2501 /* Increment written */
2502 written += data_end - data_start;
2503 }
2504
2505 goto bce_nvram_write_exit;
2506
2507bce_nvram_write_locked_exit:
2508 bce_disable_nvram_write(sc);
2509 bce_disable_nvram_access(sc);
2510 bce_release_nvram_lock(sc);
2511
2512bce_nvram_write_exit:
2513 if (align_start || align_end)
2514 free(buf, M_DEVBUF);
2515
2516 DBEXIT(BCE_VERBOSE_NVRAM);
2517 return (rc);
2518}
2519#endif /* BCE_NVRAM_WRITE_SUPPORT */
2520
2521
2522/****************************************************************************/
2523/* Verifies that NVRAM is accessible and contains valid data. */
2524/* */
2525/* Reads the configuration data from NVRAM and verifies that the CRC is */
2526/* correct. */
2527/* */
2528/* Returns: */
2529/* 0 on success, positive value on failure. */
2530/****************************************************************************/
2531static int
2532bce_nvram_test(struct bce_softc *sc)
2533{
2534 u32 buf[BCE_NVRAM_SIZE / 4];
2535 u8 *data = (u8 *) buf;
2536 int rc = 0;
2537 u32 magic, csum;
2538
2539 DBENTER(BCE_VERBOSE_NVRAM | BCE_VERBOSE_LOAD | BCE_VERBOSE_RESET);
2540
2541 /*
2542 * Check that the device NVRAM is valid by reading
2543 * the magic value at offset 0.
2544 */
2545 if ((rc = bce_nvram_read(sc, 0, data, 4)) != 0) {
2546 BCE_PRINTF("%s(%d): Unable to read NVRAM!\n", __FILE__, __LINE__);
2547 goto bce_nvram_test_exit;
2548 }
2549
2550 /*
2551 * Verify that offset 0 of the NVRAM contains
2552 * a valid magic number.
2553 */
2554 magic = bce_be32toh(buf[0]);
2555 if (magic != BCE_NVRAM_MAGIC) {
2556 rc = ENODEV;
2557 BCE_PRINTF("%s(%d): Invalid NVRAM magic value! Expected: 0x%08X, "
2558 "Found: 0x%08X\n",
2559 __FILE__, __LINE__, BCE_NVRAM_MAGIC, magic);
2560 goto bce_nvram_test_exit;
2561 }
2562
2563 /*
2564 * Verify that the device NVRAM includes valid
2565 * configuration data.
2566 */
2567 if ((rc = bce_nvram_read(sc, 0x100, data, BCE_NVRAM_SIZE)) != 0) {
2568 BCE_PRINTF("%s(%d): Unable to read Manufacturing Information from "
2569 "NVRAM!\n", __FILE__, __LINE__);
2570 goto bce_nvram_test_exit;
2571 }
2572
2573 csum = ether_crc32_le(data, 0x100);
2574 if (csum != BCE_CRC32_RESIDUAL) {
2575 rc = ENODEV;
2576 BCE_PRINTF("%s(%d): Invalid Manufacturing Information NVRAM CRC! "
2577 "Expected: 0x%08X, Found: 0x%08X\n",
2578 __FILE__, __LINE__, BCE_CRC32_RESIDUAL, csum);
2579 goto bce_nvram_test_exit;
2580 }
2581
2582 csum = ether_crc32_le(data + 0x100, 0x100);
2583 if (csum != BCE_CRC32_RESIDUAL) {
2584 rc = ENODEV;
2585 BCE_PRINTF("%s(%d): Invalid Feature Configuration Information "
2586 "NVRAM CRC! Expected: 0x%08X, Found: 08%08X\n",
2587 __FILE__, __LINE__, BCE_CRC32_RESIDUAL, csum);
2588 }
2589
2590bce_nvram_test_exit:
2591 DBEXIT(BCE_VERBOSE_NVRAM | BCE_VERBOSE_LOAD | BCE_VERBOSE_RESET);
2592 return rc;
2593}
2594
2595
2596/****************************************************************************/
2597/* Identifies the current media type of the controller and sets the PHY */
2598/* address. */
2599/* */
2600/* Returns: */
2601/* Nothing. */
2602/****************************************************************************/
2603static void
2604bce_get_media(struct bce_softc *sc)
2605{
2606 u32 val;
2607
2608 DBENTER(BCE_VERBOSE);
2609
2610 /* Assume PHY address for copper controllers. */
2611 sc->bce_phy_addr = 1;
2612
2613 if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
2614 u32 val = REG_RD(sc, BCE_MISC_DUAL_MEDIA_CTRL);
2615 u32 bond_id = val & BCE_MISC_DUAL_MEDIA_CTRL_BOND_ID;
2616 u32 strap;
2617
2618 /*
2619 * The BCM5709S is software configurable
2620 * for Copper or SerDes operation.
2621 */
2622 if (bond_id == BCE_MISC_DUAL_MEDIA_CTRL_BOND_ID_C) {
2623 DBPRINT(sc, BCE_INFO_LOAD, "5709 bonded for copper.\n");
2624 goto bce_get_media_exit;
2625 } else if (bond_id == BCE_MISC_DUAL_MEDIA_CTRL_BOND_ID_S) {
2626 DBPRINT(sc, BCE_INFO_LOAD, "5709 bonded for dual media.\n");
2627 sc->bce_phy_flags |= BCE_PHY_SERDES_FLAG;
2628 goto bce_get_media_exit;
2629 }
2630
2631 if (val & BCE_MISC_DUAL_MEDIA_CTRL_STRAP_OVERRIDE)
2632 strap = (val & BCE_MISC_DUAL_MEDIA_CTRL_PHY_CTRL) >> 21;
2633 else
2634 strap = (val & BCE_MISC_DUAL_MEDIA_CTRL_PHY_CTRL_STRAP) >> 8;
2635
2636 if (pci_get_function(sc->bce_dev) == 0) {
2637 switch (strap) {
2638 case 0x4:
2639 case 0x5:
2640 case 0x6:
2641 DBPRINT(sc, BCE_INFO_LOAD,
2642 "BCM5709 s/w configured for SerDes.\n");
2643 sc->bce_phy_flags |= BCE_PHY_SERDES_FLAG;
2644 default:
2645 DBPRINT(sc, BCE_INFO_LOAD,
2646 "BCM5709 s/w configured for Copper.\n");
2647 }
2648 } else {
2649 switch (strap) {
2650 case 0x1:
2651 case 0x2:
2652 case 0x4:
2653 DBPRINT(sc, BCE_INFO_LOAD,
2654 "BCM5709 s/w configured for SerDes.\n");
2655 sc->bce_phy_flags |= BCE_PHY_SERDES_FLAG;
2656 default:
2657 DBPRINT(sc, BCE_INFO_LOAD,
2658 "BCM5709 s/w configured for Copper.\n");
2659 }
2660 }
2661
2662 } else if (BCE_CHIP_BOND_ID(sc) & BCE_CHIP_BOND_ID_SERDES_BIT)
2663 sc->bce_phy_flags |= BCE_PHY_SERDES_FLAG;
2664
2665 if (sc->bce_phy_flags & BCE_PHY_SERDES_FLAG) {
2666 sc->bce_flags |= BCE_NO_WOL_FLAG;
2667 if (BCE_CHIP_NUM(sc) != BCE_CHIP_NUM_5706) {
2668 sc->bce_phy_addr = 2;
2669 val = bce_shmem_rd(sc, BCE_SHARED_HW_CFG_CONFIG);
2670 if (val & BCE_SHARED_HW_CFG_PHY_2_5G) {
2671 sc->bce_phy_flags |= BCE_PHY_2_5G_CAPABLE_FLAG;
2672 DBPRINT(sc, BCE_INFO_LOAD, "Found 2.5Gb capable adapter\n");
2673 }
2674 }
2675 } else if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5706) ||
2676 (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5708))
2677 sc->bce_phy_flags |= BCE_PHY_CRC_FIX_FLAG;
2678
2679bce_get_media_exit:
2680 DBPRINT(sc, (BCE_INFO_LOAD | BCE_INFO_PHY),
2681 "Using PHY address %d.\n", sc->bce_phy_addr);
2682
2683 DBEXIT(BCE_VERBOSE);
2684}
2685
2686
2687/****************************************************************************/
2688/* Free any DMA memory owned by the driver. */
2689/* */
2690/* Scans through each data structre that requires DMA memory and frees */
2691/* the memory if allocated. */
2692/* */
2693/* Returns: */
2694/* Nothing. */
2695/****************************************************************************/
2696static void
2697bce_dma_free(struct bce_softc *sc)
2698{
2699 int i;
2700
2701 DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_UNLOAD | BCE_VERBOSE_CTX);
2702
2703 /* Free, unmap, and destroy the status block. */
2704 if (sc->status_block != NULL) {
2705 bus_dmamem_free(
2706 sc->status_tag,
2707 sc->status_block,
2708 sc->status_map);
2709 sc->status_block = NULL;
2710 }
2711
2712 if (sc->status_map != NULL) {
2713 bus_dmamap_unload(
2714 sc->status_tag,
2715 sc->status_map);
2716 bus_dmamap_destroy(sc->status_tag,
2717 sc->status_map);
2718 sc->status_map = NULL;
2719 }
2720
2721 if (sc->status_tag != NULL) {
2722 bus_dma_tag_destroy(sc->status_tag);
2723 sc->status_tag = NULL;
2724 }
2725
2726
2727 /* Free, unmap, and destroy the statistics block. */
2728 if (sc->stats_block != NULL) {
2729 bus_dmamem_free(
2730 sc->stats_tag,
2731 sc->stats_block,
2732 sc->stats_map);
2733 sc->stats_block = NULL;
2734 }
2735
2736 if (sc->stats_map != NULL) {
2737 bus_dmamap_unload(
2738 sc->stats_tag,
2739 sc->stats_map);
2740 bus_dmamap_destroy(sc->stats_tag,
2741 sc->stats_map);
2742 sc->stats_map = NULL;
2743 }
2744
2745 if (sc->stats_tag != NULL) {
2746 bus_dma_tag_destroy(sc->stats_tag);
2747 sc->stats_tag = NULL;
2748 }
2749
2750
2751 /* Free, unmap and destroy all context memory pages. */
2752 if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) ||
2753 (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716)) {
2754 for (i = 0; i < sc->ctx_pages; i++ ) {
2755 if (sc->ctx_block[i] != NULL) {
2756 bus_dmamem_free(
2757 sc->ctx_tag,
2758 sc->ctx_block[i],
2759 sc->ctx_map[i]);
2760 sc->ctx_block[i] = NULL;
2761 }
2762
2763 if (sc->ctx_map[i] != NULL) {
2764 bus_dmamap_unload(
2765 sc->ctx_tag,
2766 sc->ctx_map[i]);
2767 bus_dmamap_destroy(
2768 sc->ctx_tag,
2769 sc->ctx_map[i]);
2770 sc->ctx_map[i] = NULL;
2771 }
2772 }
2773
2774 /* Destroy the context memory tag. */
2775 if (sc->ctx_tag != NULL) {
2776 bus_dma_tag_destroy(sc->ctx_tag);
2777 sc->ctx_tag = NULL;
2778 }
2779 }
2780
2781
2782 /* Free, unmap and destroy all TX buffer descriptor chain pages. */
2783 for (i = 0; i < TX_PAGES; i++ ) {
2784 if (sc->tx_bd_chain[i] != NULL) {
2785 bus_dmamem_free(
2786 sc->tx_bd_chain_tag,
2787 sc->tx_bd_chain[i],
2788 sc->tx_bd_chain_map[i]);
2789 sc->tx_bd_chain[i] = NULL;
2790 }
2791
2792 if (sc->tx_bd_chain_map[i] != NULL) {
2793 bus_dmamap_unload(
2794 sc->tx_bd_chain_tag,
2795 sc->tx_bd_chain_map[i]);
2796 bus_dmamap_destroy(
2797 sc->tx_bd_chain_tag,
2798 sc->tx_bd_chain_map[i]);
2799 sc->tx_bd_chain_map[i] = NULL;
2800 }
2801 }
2802
2803 /* Destroy the TX buffer descriptor tag. */
2804 if (sc->tx_bd_chain_tag != NULL) {
2805 bus_dma_tag_destroy(sc->tx_bd_chain_tag);
2806 sc->tx_bd_chain_tag = NULL;
2807 }
2808
2809
2810 /* Free, unmap and destroy all RX buffer descriptor chain pages. */
2811 for (i = 0; i < RX_PAGES; i++ ) {
2812 if (sc->rx_bd_chain[i] != NULL) {
2813 bus_dmamem_free(
2814 sc->rx_bd_chain_tag,
2815 sc->rx_bd_chain[i],
2816 sc->rx_bd_chain_map[i]);
2817 sc->rx_bd_chain[i] = NULL;
2818 }
2819
2820 if (sc->rx_bd_chain_map[i] != NULL) {
2821 bus_dmamap_unload(
2822 sc->rx_bd_chain_tag,
2823 sc->rx_bd_chain_map[i]);
2824 bus_dmamap_destroy(
2825 sc->rx_bd_chain_tag,
2826 sc->rx_bd_chain_map[i]);
2827 sc->rx_bd_chain_map[i] = NULL;
2828 }
2829 }
2830
2831 /* Destroy the RX buffer descriptor tag. */
2832 if (sc->rx_bd_chain_tag != NULL) {
2833 bus_dma_tag_destroy(sc->rx_bd_chain_tag);
2834 sc->rx_bd_chain_tag = NULL;
2835 }
2836
2837
2838#ifdef ZERO_COPY_SOCKETS
2839 /* Free, unmap and destroy all page buffer descriptor chain pages. */
2840 for (i = 0; i < PG_PAGES; i++ ) {
2841 if (sc->pg_bd_chain[i] != NULL) {
2842 bus_dmamem_free(
2843 sc->pg_bd_chain_tag,
2844 sc->pg_bd_chain[i],
2845 sc->pg_bd_chain_map[i]);
2846 sc->pg_bd_chain[i] = NULL;
2847 }
2848
2849 if (sc->pg_bd_chain_map[i] != NULL) {
2850 bus_dmamap_unload(
2851 sc->pg_bd_chain_tag,
2852 sc->pg_bd_chain_map[i]);
2853 bus_dmamap_destroy(
2854 sc->pg_bd_chain_tag,
2855 sc->pg_bd_chain_map[i]);
2856 sc->pg_bd_chain_map[i] = NULL;
2857 }
2858 }
2859
2860 /* Destroy the page buffer descriptor tag. */
2861 if (sc->pg_bd_chain_tag != NULL) {
2862 bus_dma_tag_destroy(sc->pg_bd_chain_tag);
2863 sc->pg_bd_chain_tag = NULL;
2864 }
2865#endif
2866
2867
2868 /* Unload and destroy the TX mbuf maps. */
2869 for (i = 0; i < TOTAL_TX_BD; i++) {
2870 if (sc->tx_mbuf_map[i] != NULL) {
2871 bus_dmamap_unload(sc->tx_mbuf_tag,
2872 sc->tx_mbuf_map[i]);
2873 bus_dmamap_destroy(sc->tx_mbuf_tag,
2874 sc->tx_mbuf_map[i]);
2875 sc->tx_mbuf_map[i] = NULL;
2876 }
2877 }
2878
2879 /* Destroy the TX mbuf tag. */
2880 if (sc->tx_mbuf_tag != NULL) {
2881 bus_dma_tag_destroy(sc->tx_mbuf_tag);
2882 sc->tx_mbuf_tag = NULL;
2883 }
2884
2885 /* Unload and destroy the RX mbuf maps. */
2886 for (i = 0; i < TOTAL_RX_BD; i++) {
2887 if (sc->rx_mbuf_map[i] != NULL) {
2888 bus_dmamap_unload(sc->rx_mbuf_tag,
2889 sc->rx_mbuf_map[i]);
2890 bus_dmamap_destroy(sc->rx_mbuf_tag,
2891 sc->rx_mbuf_map[i]);
2892 sc->rx_mbuf_map[i] = NULL;
2893 }
2894 }
2895
2896 /* Destroy the RX mbuf tag. */
2897 if (sc->rx_mbuf_tag != NULL) {
2898 bus_dma_tag_destroy(sc->rx_mbuf_tag);
2899 sc->rx_mbuf_tag = NULL;
2900 }
2901
2902#ifdef ZERO_COPY_SOCKETS
2903 /* Unload and destroy the page mbuf maps. */
2904 for (i = 0; i < TOTAL_PG_BD; i++) {
2905 if (sc->pg_mbuf_map[i] != NULL) {
2906 bus_dmamap_unload(sc->pg_mbuf_tag,
2907 sc->pg_mbuf_map[i]);
2908 bus_dmamap_destroy(sc->pg_mbuf_tag,
2909 sc->pg_mbuf_map[i]);
2910 sc->pg_mbuf_map[i] = NULL;
2911 }
2912 }
2913
2914 /* Destroy the page mbuf tag. */
2915 if (sc->pg_mbuf_tag != NULL) {
2916 bus_dma_tag_destroy(sc->pg_mbuf_tag);
2917 sc->pg_mbuf_tag = NULL;
2918 }
2919#endif
2920
2921 /* Destroy the parent tag */
2922 if (sc->parent_tag != NULL) {
2923 bus_dma_tag_destroy(sc->parent_tag);
2924 sc->parent_tag = NULL;
2925 }
2926
2927 DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_UNLOAD | BCE_VERBOSE_CTX);
2928}
2929
2930
2931/****************************************************************************/
2932/* Get DMA memory from the OS. */
2933/* */
2934/* Validates that the OS has provided DMA buffers in response to a */
2935/* bus_dmamap_load() call and saves the physical address of those buffers. */
2936/* When the callback is used the OS will return 0 for the mapping function */
2937/* (bus_dmamap_load()) so we use the value of map_arg->maxsegs to pass any */
2938/* failures back to the caller. */
2939/* */
2940/* Returns: */
2941/* Nothing. */
2942/****************************************************************************/
2943static void
2944bce_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
2945{
2946 bus_addr_t *busaddr = arg;
2947
2948 /* Simulate a mapping failure. */
2949 DBRUNIF(DB_RANDOMTRUE(dma_map_addr_failed_sim_control),
2950 error = ENOMEM);
2951
2952 /* Check for an error and signal the caller that an error occurred. */
2953 if (error) {
2954 *busaddr = 0;
2955 } else {
2956 *busaddr = segs->ds_addr;
2957 }
2958
2959 return;
2960}
2961
2962
2963/****************************************************************************/
2964/* Allocate any DMA memory needed by the driver. */
2965/* */
2966/* Allocates DMA memory needed for the various global structures needed by */
2967/* hardware. */
2968/* */
2969/* Memory alignment requirements: */
2970/* +-----------------+----------+----------+----------+----------+ */
2971/* | | 5706 | 5708 | 5709 | 5716 | */
2972/* +-----------------+----------+----------+----------+----------+ */
2973/* |Status Block | 8 bytes | 8 bytes | 16 bytes | 16 bytes | */
2974/* |Statistics Block | 8 bytes | 8 bytes | 16 bytes | 16 bytes | */
2975/* |RX Buffers | 16 bytes | 16 bytes | 16 bytes | 16 bytes | */
2976/* |PG Buffers | none | none | none | none | */
2977/* |TX Buffers | none | none | none | none | */
2978/* |Chain Pages(1) | 4KiB | 4KiB | 4KiB | 4KiB | */
2979/* +-----------------+----------+----------+----------+----------+ */
2980/* */
2981/* (1) Must align with CPU page size (BCM_PAGE_SZIE). */
2982/* */
2983/* Returns: */
2984/* 0 for success, positive value for failure. */
2985/****************************************************************************/
2986static int
2987bce_dma_alloc(device_t dev)
2988{
2989 struct bce_softc *sc;
2990 int i, error, rc = 0;
2991 bus_size_t max_size, max_seg_size;
2992 int max_segments;
2993
2994 sc = device_get_softc(dev);
2995
2996 DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_CTX);
2997
2998 /*
2999 * Allocate the parent bus DMA tag appropriate for PCI.
3000 */
3001 if (bus_dma_tag_create(NULL,
3002 1,
3003 BCE_DMA_BOUNDARY,
3004 sc->max_bus_addr,
3005 BUS_SPACE_MAXADDR,
3006 NULL, NULL,
3007 MAXBSIZE,
3008 BUS_SPACE_UNRESTRICTED,
3009 BUS_SPACE_MAXSIZE_32BIT,
3010 0,
3011 NULL, NULL,
3012 &sc->parent_tag)) {
3013 BCE_PRINTF("%s(%d): Could not allocate parent DMA tag!\n",
3014 __FILE__, __LINE__);
3015 rc = ENOMEM;
3016 goto bce_dma_alloc_exit;
3017 }
3018
3019 /*
3020 * Create a DMA tag for the status block, allocate and clear the
3021 * memory, map the memory into DMA space, and fetch the physical
3022 * address of the block.
3023 */
3024 if (bus_dma_tag_create(sc->parent_tag,
3025 BCE_DMA_ALIGN,
3026 BCE_DMA_BOUNDARY,
3027 sc->max_bus_addr,
3028 BUS_SPACE_MAXADDR,
3029 NULL, NULL,
3030 BCE_STATUS_BLK_SZ,
3031 1,
3032 BCE_STATUS_BLK_SZ,
3033 0,
3034 NULL, NULL,
3035 &sc->status_tag)) {
3036 BCE_PRINTF("%s(%d): Could not allocate status block DMA tag!\n",
3037 __FILE__, __LINE__);
3038 rc = ENOMEM;
3039 goto bce_dma_alloc_exit;
3040 }
3041
3042 if(bus_dmamem_alloc(sc->status_tag,
3043 (void **)&sc->status_block,
3044 BUS_DMA_NOWAIT,
3045 &sc->status_map)) {
3046 BCE_PRINTF("%s(%d): Could not allocate status block DMA memory!\n",
3047 __FILE__, __LINE__);
3048 rc = ENOMEM;
3049 goto bce_dma_alloc_exit;
3050 }
3051
3052 bzero((char *)sc->status_block, BCE_STATUS_BLK_SZ);
3053
3054 error = bus_dmamap_load(sc->status_tag,
3055 sc->status_map,
3056 sc->status_block,
3057 BCE_STATUS_BLK_SZ,
3058 bce_dma_map_addr,
3059 &sc->status_block_paddr,
3060 BUS_DMA_NOWAIT);
3061
3062 if (error) {
3063 BCE_PRINTF("%s(%d): Could not map status block DMA memory!\n",
3064 __FILE__, __LINE__);
3065 rc = ENOMEM;
3066 goto bce_dma_alloc_exit;
3067 }
3068
3069 DBPRINT(sc, BCE_INFO, "%s(): status_block_paddr = 0x%jX\n",
3070 __FUNCTION__, (uintmax_t) sc->status_block_paddr);
3071
3072 /*
3073 * Create a DMA tag for the statistics block, allocate and clear the
3074 * memory, map the memory into DMA space, and fetch the physical
3075 * address of the block.
3076 */
3077 if (bus_dma_tag_create(sc->parent_tag,
3078 BCE_DMA_ALIGN,
3079 BCE_DMA_BOUNDARY,
3080 sc->max_bus_addr,
3081 BUS_SPACE_MAXADDR,
3082 NULL, NULL,
3083 BCE_STATS_BLK_SZ,
3084 1,
3085 BCE_STATS_BLK_SZ,
3086 0,
3087 NULL, NULL,
3088 &sc->stats_tag)) {
3089 BCE_PRINTF("%s(%d): Could not allocate statistics block DMA tag!\n",
3090 __FILE__, __LINE__);
3091 rc = ENOMEM;
3092 goto bce_dma_alloc_exit;
3093 }
3094
3095 if (bus_dmamem_alloc(sc->stats_tag,
3096 (void **)&sc->stats_block,
3097 BUS_DMA_NOWAIT,
3098 &sc->stats_map)) {
3099 BCE_PRINTF("%s(%d): Could not allocate statistics block DMA memory!\n",
3100 __FILE__, __LINE__);
3101 rc = ENOMEM;
3102 goto bce_dma_alloc_exit;
3103 }
3104
3105 bzero((char *)sc->stats_block, BCE_STATS_BLK_SZ);
3106
3107 error = bus_dmamap_load(sc->stats_tag,
3108 sc->stats_map,
3109 sc->stats_block,
3110 BCE_STATS_BLK_SZ,
3111 bce_dma_map_addr,
3112 &sc->stats_block_paddr,
3113 BUS_DMA_NOWAIT);
3114
3115 if(error) {
3116 BCE_PRINTF("%s(%d): Could not map statistics block DMA memory!\n",
3117 __FILE__, __LINE__);
3118 rc = ENOMEM;
3119 goto bce_dma_alloc_exit;
3120 }
3121
3122 DBPRINT(sc, BCE_INFO, "%s(): stats_block_paddr = 0x%jX\n",
3123 __FUNCTION__, (uintmax_t) sc->stats_block_paddr);
3124
3125 /* BCM5709 uses host memory as cache for context memory. */
3126 if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) ||
3127 (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716)) {
3128 sc->ctx_pages = 0x2000 / BCM_PAGE_SIZE;
3129 if (sc->ctx_pages == 0)
3130 sc->ctx_pages = 1;
3131
3132 DBRUNIF((sc->ctx_pages > 512),
3133 BCE_PRINTF("%s(%d): Too many CTX pages! %d > 512\n",
3134 __FILE__, __LINE__, sc->ctx_pages));
3135
3136 /*
3137 * Create a DMA tag for the context pages,
3138 * allocate and clear the memory, map the
3139 * memory into DMA space, and fetch the
3140 * physical address of the block.
3141 */
3142 if(bus_dma_tag_create(sc->parent_tag,
3143 BCM_PAGE_SIZE,
3144 BCE_DMA_BOUNDARY,
3145 sc->max_bus_addr,
3146 BUS_SPACE_MAXADDR,
3147 NULL, NULL,
3148 BCM_PAGE_SIZE,
3149 1,
3150 BCM_PAGE_SIZE,
3151 0,
3152 NULL, NULL,
3153 &sc->ctx_tag)) {
3154 BCE_PRINTF("%s(%d): Could not allocate CTX DMA tag!\n",
3155 __FILE__, __LINE__);
3156 rc = ENOMEM;
3157 goto bce_dma_alloc_exit;
3158 }
3159
3160 for (i = 0; i < sc->ctx_pages; i++) {
3161
3162 if(bus_dmamem_alloc(sc->ctx_tag,
3163 (void **)&sc->ctx_block[i],
3164 BUS_DMA_NOWAIT,
3165 &sc->ctx_map[i])) {
3166 BCE_PRINTF("%s(%d): Could not allocate CTX "
3167 "DMA memory!\n", __FILE__, __LINE__);
3168 rc = ENOMEM;
3169 goto bce_dma_alloc_exit;
3170 }
3171
3172 bzero((char *)sc->ctx_block[i], BCM_PAGE_SIZE);
3173
3174 error = bus_dmamap_load(sc->ctx_tag,
3175 sc->ctx_map[i],
3176 sc->ctx_block[i],
3177 BCM_PAGE_SIZE,
3178 bce_dma_map_addr,
3179 &sc->ctx_paddr[i],
3180 BUS_DMA_NOWAIT);
3181
3182 if (error) {
3183 BCE_PRINTF("%s(%d): Could not map CTX DMA memory!\n",
3184 __FILE__, __LINE__);
3185 rc = ENOMEM;
3186 goto bce_dma_alloc_exit;
3187 }
3188
3189 DBPRINT(sc, BCE_INFO, "%s(): ctx_paddr[%d] = 0x%jX\n",
3190 __FUNCTION__, i, (uintmax_t) sc->ctx_paddr[i]);
3191 }
3192 }
3193
3194 /*
3195 * Create a DMA tag for the TX buffer descriptor chain,
3196 * allocate and clear the memory, and fetch the
3197 * physical address of the block.
3198 */
3199 if(bus_dma_tag_create(sc->parent_tag,
3200 BCM_PAGE_SIZE,
3201 BCE_DMA_BOUNDARY,
3202 sc->max_bus_addr,
3203 BUS_SPACE_MAXADDR,
3204 NULL, NULL,
3205 BCE_TX_CHAIN_PAGE_SZ,
3206 1,
3207 BCE_TX_CHAIN_PAGE_SZ,
3208 0,
3209 NULL, NULL,
3210 &sc->tx_bd_chain_tag)) {
3211 BCE_PRINTF("%s(%d): Could not allocate TX descriptor chain DMA tag!\n",
3212 __FILE__, __LINE__);
3213 rc = ENOMEM;
3214 goto bce_dma_alloc_exit;
3215 }
3216
3217 for (i = 0; i < TX_PAGES; i++) {
3218
3219 if(bus_dmamem_alloc(sc->tx_bd_chain_tag,
3220 (void **)&sc->tx_bd_chain[i],
3221 BUS_DMA_NOWAIT,
3222 &sc->tx_bd_chain_map[i])) {
3223 BCE_PRINTF("%s(%d): Could not allocate TX descriptor "
3224 "chain DMA memory!\n", __FILE__, __LINE__);
3225 rc = ENOMEM;
3226 goto bce_dma_alloc_exit;
3227 }
3228
3229 error = bus_dmamap_load(sc->tx_bd_chain_tag,
3230 sc->tx_bd_chain_map[i],
3231 sc->tx_bd_chain[i],
3232 BCE_TX_CHAIN_PAGE_SZ,
3233 bce_dma_map_addr,
3234 &sc->tx_bd_chain_paddr[i],
3235 BUS_DMA_NOWAIT);
3236
3237 if (error) {
3238 BCE_PRINTF("%s(%d): Could not map TX descriptor chain DMA memory!\n",
3239 __FILE__, __LINE__);
3240 rc = ENOMEM;
3241 goto bce_dma_alloc_exit;
3242 }
3243
3244 DBPRINT(sc, BCE_INFO, "%s(): tx_bd_chain_paddr[%d] = 0x%jX\n",
3245 __FUNCTION__, i, (uintmax_t) sc->tx_bd_chain_paddr[i]);
3246 }
3247
3248 /* Check the required size before mapping to conserve resources. */
3249 if (bce_tso_enable) {
3250 max_size = BCE_TSO_MAX_SIZE;
3251 max_segments = BCE_MAX_SEGMENTS;
3252 max_seg_size = BCE_TSO_MAX_SEG_SIZE;
3253 } else {
3254 max_size = MCLBYTES * BCE_MAX_SEGMENTS;
3255 max_segments = BCE_MAX_SEGMENTS;
3256 max_seg_size = MCLBYTES;
3257 }
3258
3259 /* Create a DMA tag for TX mbufs. */
3260 if (bus_dma_tag_create(sc->parent_tag,
3261 1,
3262 BCE_DMA_BOUNDARY,
3263 sc->max_bus_addr,
3264 BUS_SPACE_MAXADDR,
3265 NULL, NULL,
3266 max_size,
3267 max_segments,
3268 max_seg_size,
3269 0,
3270 NULL, NULL,
3271 &sc->tx_mbuf_tag)) {
3272 BCE_PRINTF("%s(%d): Could not allocate TX mbuf DMA tag!\n",
3273 __FILE__, __LINE__);
3274 rc = ENOMEM;
3275 goto bce_dma_alloc_exit;
3276 }
3277
3278 /* Create DMA maps for the TX mbufs clusters. */
3279 for (i = 0; i < TOTAL_TX_BD; i++) {
3280 if (bus_dmamap_create(sc->tx_mbuf_tag, BUS_DMA_NOWAIT,
3281 &sc->tx_mbuf_map[i])) {
3282 BCE_PRINTF("%s(%d): Unable to create TX mbuf DMA map!\n",
3283 __FILE__, __LINE__);
3284 rc = ENOMEM;
3285 goto bce_dma_alloc_exit;
3286 }
3287 }
3288
3289 /*
3290 * Create a DMA tag for the RX buffer descriptor chain,
3291 * allocate and clear the memory, and fetch the physical
3292 * address of the blocks.
3293 */
3294 if (bus_dma_tag_create(sc->parent_tag,
3295 BCM_PAGE_SIZE,
3296 BCE_DMA_BOUNDARY,
3297 BUS_SPACE_MAXADDR,
3298 sc->max_bus_addr,
3299 NULL, NULL,
3300 BCE_RX_CHAIN_PAGE_SZ,
3301 1,
3302 BCE_RX_CHAIN_PAGE_SZ,
3303 0,
3304 NULL, NULL,
3305 &sc->rx_bd_chain_tag)) {
3306 BCE_PRINTF("%s(%d): Could not allocate RX descriptor chain DMA tag!\n",
3307 __FILE__, __LINE__);
3308 rc = ENOMEM;
3309 goto bce_dma_alloc_exit;
3310 }
3311
3312 for (i = 0; i < RX_PAGES; i++) {
3313
3314 if (bus_dmamem_alloc(sc->rx_bd_chain_tag,
3315 (void **)&sc->rx_bd_chain[i],
3316 BUS_DMA_NOWAIT,
3317 &sc->rx_bd_chain_map[i])) {
3318 BCE_PRINTF("%s(%d): Could not allocate RX descriptor chain "
3319 "DMA memory!\n", __FILE__, __LINE__);
3320 rc = ENOMEM;
3321 goto bce_dma_alloc_exit;
3322 }
3323
3324 bzero((char *)sc->rx_bd_chain[i], BCE_RX_CHAIN_PAGE_SZ);
3325
3326 error = bus_dmamap_load(sc->rx_bd_chain_tag,
3327 sc->rx_bd_chain_map[i],
3328 sc->rx_bd_chain[i],
3329 BCE_RX_CHAIN_PAGE_SZ,
3330 bce_dma_map_addr,
3331 &sc->rx_bd_chain_paddr[i],
3332 BUS_DMA_NOWAIT);
3333
3334 if (error) {
3335 BCE_PRINTF("%s(%d): Could not map RX descriptor chain DMA memory!\n",
3336 __FILE__, __LINE__);
3337 rc = ENOMEM;
3338 goto bce_dma_alloc_exit;
3339 }
3340
3341 DBPRINT(sc, BCE_INFO, "%s(): rx_bd_chain_paddr[%d] = 0x%jX\n",
3342 __FUNCTION__, i, (uintmax_t) sc->rx_bd_chain_paddr[i]);
3343 }
3344
3345 /*
3346 * Create a DMA tag for RX mbufs.
3347 */
3348#ifdef ZERO_COPY_SOCKETS
3349 max_size = max_seg_size = ((sc->rx_bd_mbuf_alloc_size < MCLBYTES) ?
3350 MCLBYTES : sc->rx_bd_mbuf_alloc_size);
3351#else
3352 max_size = max_seg_size = MJUM9BYTES;
3353#endif
3354 max_segments = 1;
3355
3356 DBPRINT(sc, BCE_INFO, "%s(): Creating rx_mbuf_tag (max size = 0x%jX "
3357 "max segments = %d, max segment size = 0x%jX)\n", __FUNCTION__,
3358 (uintmax_t) max_size, max_segments, (uintmax_t) max_seg_size);
3359
3360 if (bus_dma_tag_create(sc->parent_tag,
3361 1,
3362 BCE_DMA_BOUNDARY,
3363 sc->max_bus_addr,
3364 BUS_SPACE_MAXADDR,
3365 NULL, NULL,
3366 max_size,
3367 max_segments,
3368 max_seg_size,
3369 0,
3370 NULL, NULL,
3371 &sc->rx_mbuf_tag)) {
3372 BCE_PRINTF("%s(%d): Could not allocate RX mbuf DMA tag!\n",
3373 __FILE__, __LINE__);
3374 rc = ENOMEM;
3375 goto bce_dma_alloc_exit;
3376 }
3377
3378 /* Create DMA maps for the RX mbuf clusters. */
3379 for (i = 0; i < TOTAL_RX_BD; i++) {
3380 if (bus_dmamap_create(sc->rx_mbuf_tag, BUS_DMA_NOWAIT,
3381 &sc->rx_mbuf_map[i])) {
3382 BCE_PRINTF("%s(%d): Unable to create RX mbuf DMA map!\n",
3383 __FILE__, __LINE__);
3384 rc = ENOMEM;
3385 goto bce_dma_alloc_exit;
3386 }
3387 }
3388
3389#ifdef ZERO_COPY_SOCKETS
3390 /*
3391 * Create a DMA tag for the page buffer descriptor chain,
3392 * allocate and clear the memory, and fetch the physical
3393 * address of the blocks.
3394 */
3395 if (bus_dma_tag_create(sc->parent_tag,
3396 BCM_PAGE_SIZE,
3397 BCE_DMA_BOUNDARY,
3398 BUS_SPACE_MAXADDR,
3399 sc->max_bus_addr,
3400 NULL, NULL,
3401 BCE_PG_CHAIN_PAGE_SZ,
3402 1,
3403 BCE_PG_CHAIN_PAGE_SZ,
3404 0,
3405 NULL, NULL,
3406 &sc->pg_bd_chain_tag)) {
3407 BCE_PRINTF("%s(%d): Could not allocate page descriptor chain DMA tag!\n",
3408 __FILE__, __LINE__);
3409 rc = ENOMEM;
3410 goto bce_dma_alloc_exit;
3411 }
3412
3413 for (i = 0; i < PG_PAGES; i++) {
3414
3415 if (bus_dmamem_alloc(sc->pg_bd_chain_tag,
3416 (void **)&sc->pg_bd_chain[i],
3417 BUS_DMA_NOWAIT,
3418 &sc->pg_bd_chain_map[i])) {
3419 BCE_PRINTF("%s(%d): Could not allocate page descriptor chain "
3420 "DMA memory!\n", __FILE__, __LINE__);
3421 rc = ENOMEM;
3422 goto bce_dma_alloc_exit;
3423 }
3424
3425 bzero((char *)sc->pg_bd_chain[i], BCE_PG_CHAIN_PAGE_SZ);
3426
3427 error = bus_dmamap_load(sc->pg_bd_chain_tag,
3428 sc->pg_bd_chain_map[i],
3429 sc->pg_bd_chain[i],
3430 BCE_PG_CHAIN_PAGE_SZ,
3431 bce_dma_map_addr,
3432 &sc->pg_bd_chain_paddr[i],
3433 BUS_DMA_NOWAIT);
3434
3435 if (error) {
3436 BCE_PRINTF("%s(%d): Could not map page descriptor chain DMA memory!\n",
3437 __FILE__, __LINE__);
3438 rc = ENOMEM;
3439 goto bce_dma_alloc_exit;
3440 }
3441
3442 DBPRINT(sc, BCE_INFO, "%s(): pg_bd_chain_paddr[%d] = 0x%jX\n",
3443 __FUNCTION__, i, (uintmax_t) sc->pg_bd_chain_paddr[i]);
3444 }
3445
3446 /*
3447 * Create a DMA tag for page mbufs.
3448 */
3449 max_size = max_seg_size = ((sc->pg_bd_mbuf_alloc_size < MCLBYTES) ?
3450 MCLBYTES : sc->pg_bd_mbuf_alloc_size);
3451
3452 if (bus_dma_tag_create(sc->parent_tag,
3453 1,
3454 BCE_DMA_BOUNDARY,
3455 sc->max_bus_addr,
3456 BUS_SPACE_MAXADDR,
3457 NULL, NULL,
3458 max_size,
3459 1,
3460 max_seg_size,
3461 0,
3462 NULL, NULL,
3463 &sc->pg_mbuf_tag)) {
3464 BCE_PRINTF("%s(%d): Could not allocate page mbuf DMA tag!\n",
3465 __FILE__, __LINE__);
3466 rc = ENOMEM;
3467 goto bce_dma_alloc_exit;
3468 }
3469
3470 /* Create DMA maps for the page mbuf clusters. */
3471 for (i = 0; i < TOTAL_PG_BD; i++) {
3472 if (bus_dmamap_create(sc->pg_mbuf_tag, BUS_DMA_NOWAIT,
3473 &sc->pg_mbuf_map[i])) {
3474 BCE_PRINTF("%s(%d): Unable to create page mbuf DMA map!\n",
3475 __FILE__, __LINE__);
3476 rc = ENOMEM;
3477 goto bce_dma_alloc_exit;
3478 }
3479 }
3480#endif
3481
3482bce_dma_alloc_exit:
3483 DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_CTX);
3484 return(rc);
3485}
3486
3487
3488/****************************************************************************/
3489/* Release all resources used by the driver. */
3490/* */
3491/* Releases all resources acquired by the driver including interrupts, */
3492/* interrupt handler, interfaces, mutexes, and DMA memory. */
3493/* */
3494/* Returns: */
3495/* Nothing. */
3496/****************************************************************************/
3497static void
3498bce_release_resources(struct bce_softc *sc)
3499{
3500 device_t dev;
3501
3502 DBENTER(BCE_VERBOSE_RESET);
3503
3504 dev = sc->bce_dev;
3505
3506 bce_dma_free(sc);
3507
3508 if (sc->bce_intrhand != NULL) {
3509 DBPRINT(sc, BCE_INFO_RESET, "Removing interrupt handler.\n");
3510 bus_teardown_intr(dev, sc->bce_res_irq, sc->bce_intrhand);
3511 }
3512
3513 if (sc->bce_res_irq != NULL) {
3514 DBPRINT(sc, BCE_INFO_RESET, "Releasing IRQ.\n");
3515 bus_release_resource(dev, SYS_RES_IRQ, sc->bce_irq_rid,
3516 sc->bce_res_irq);
3517 }
3518
3519 if (sc->bce_flags & (BCE_USING_MSI_FLAG | BCE_USING_MSIX_FLAG)) {
3520 DBPRINT(sc, BCE_INFO_RESET, "Releasing MSI/MSI-X vector.\n");
3521 pci_release_msi(dev);
3522 }
3523
3524 if (sc->bce_res_mem != NULL) {
3525 DBPRINT(sc, BCE_INFO_RESET, "Releasing PCI memory.\n");
3526 bus_release_resource(dev, SYS_RES_MEMORY, PCIR_BAR(0), sc->bce_res_mem);
3527 }
3528
3529 if (sc->bce_ifp != NULL) {
3530 DBPRINT(sc, BCE_INFO_RESET, "Releasing IF.\n");
3531 if_free(sc->bce_ifp);
3532 }
3533
3534 if (mtx_initialized(&sc->bce_mtx))
3535 BCE_LOCK_DESTROY(sc);
3536
3537 DBEXIT(BCE_VERBOSE_RESET);
3538}
3539
3540
3541/****************************************************************************/
3542/* Firmware synchronization. */
3543/* */
3544/* Before performing certain events such as a chip reset, synchronize with */
3545/* the firmware first. */
3546/* */
3547/* Returns: */
3548/* 0 for success, positive value for failure. */
3549/****************************************************************************/
3550static int
3551bce_fw_sync(struct bce_softc *sc, u32 msg_data)
3552{
3553 int i, rc = 0;
3554 u32 val;
3555
3556 DBENTER(BCE_VERBOSE_RESET);
3557
3558 /* Don't waste any time if we've timed out before. */
3559 if (sc->bce_fw_timed_out) {
3560 rc = EBUSY;
3561 goto bce_fw_sync_exit;
3562 }
3563
3564 /* Increment the message sequence number. */
3565 sc->bce_fw_wr_seq++;
3566 msg_data |= sc->bce_fw_wr_seq;
3567
3568 DBPRINT(sc, BCE_VERBOSE_FIRMWARE, "bce_fw_sync(): msg_data = 0x%08X\n",
3569 msg_data);
3570
3571 /* Send the message to the bootcode driver mailbox. */
3572 bce_shmem_wr(sc, BCE_DRV_MB, msg_data);
3573
3574 /* Wait for the bootcode to acknowledge the message. */
3575 for (i = 0; i < FW_ACK_TIME_OUT_MS; i++) {
3576 /* Check for a response in the bootcode firmware mailbox. */
3577 val = bce_shmem_rd(sc, BCE_FW_MB);
3578 if ((val & BCE_FW_MSG_ACK) == (msg_data & BCE_DRV_MSG_SEQ))
3579 break;
3580 DELAY(1000);
3581 }
3582
3583 /* If we've timed out, tell the bootcode that we've stopped waiting. */
3584 if (((val & BCE_FW_MSG_ACK) != (msg_data & BCE_DRV_MSG_SEQ)) &&
3585 ((msg_data & BCE_DRV_MSG_DATA) != BCE_DRV_MSG_DATA_WAIT0)) {
3586
3587 BCE_PRINTF("%s(%d): Firmware synchronization timeout! "
3588 "msg_data = 0x%08X\n",
3589 __FILE__, __LINE__, msg_data);
3590
3591 msg_data &= ~BCE_DRV_MSG_CODE;
3592 msg_data |= BCE_DRV_MSG_CODE_FW_TIMEOUT;
3593
3594 bce_shmem_wr(sc, BCE_DRV_MB, msg_data);
3595
3596 sc->bce_fw_timed_out = 1;
3597 rc = EBUSY;
3598 }
3599
3600bce_fw_sync_exit:
3601 DBEXIT(BCE_VERBOSE_RESET);
3602 return (rc);
3603}
3604
3605
3606/****************************************************************************/
3607/* Load Receive Virtual 2 Physical (RV2P) processor firmware. */
3608/* */
3609/* Returns: */
3610/* Nothing. */
3611/****************************************************************************/
3612static void
3613bce_load_rv2p_fw(struct bce_softc *sc, u32 *rv2p_code,
3614 u32 rv2p_code_len, u32 rv2p_proc)
3615{
3616 int i;
3617 u32 val;
3618
3619 DBENTER(BCE_VERBOSE_RESET);
3620
3621 /* Set the page size used by RV2P. */
3622 if (rv2p_proc == RV2P_PROC2) {
3623 BCE_RV2P_PROC2_CHG_MAX_BD_PAGE(USABLE_RX_BD_PER_PAGE);
3624 }
3625
3626 for (i = 0; i < rv2p_code_len; i += 8) {
3627 REG_WR(sc, BCE_RV2P_INSTR_HIGH, *rv2p_code);
3628 rv2p_code++;
3629 REG_WR(sc, BCE_RV2P_INSTR_LOW, *rv2p_code);
3630 rv2p_code++;
3631
3632 if (rv2p_proc == RV2P_PROC1) {
3633 val = (i / 8) | BCE_RV2P_PROC1_ADDR_CMD_RDWR;
3634 REG_WR(sc, BCE_RV2P_PROC1_ADDR_CMD, val);
3635 }
3636 else {
3637 val = (i / 8) | BCE_RV2P_PROC2_ADDR_CMD_RDWR;
3638 REG_WR(sc, BCE_RV2P_PROC2_ADDR_CMD, val);
3639 }
3640 }
3641
3642 /* Reset the processor, un-stall is done later. */
3643 if (rv2p_proc == RV2P_PROC1) {
3644 REG_WR(sc, BCE_RV2P_COMMAND, BCE_RV2P_COMMAND_PROC1_RESET);
3645 }
3646 else {
3647 REG_WR(sc, BCE_RV2P_COMMAND, BCE_RV2P_COMMAND_PROC2_RESET);
3648 }
3649
3650 DBEXIT(BCE_VERBOSE_RESET);
3651}
3652
3653
3654/****************************************************************************/
3655/* Load RISC processor firmware. */
3656/* */
3657/* Loads firmware from the file if_bcefw.h into the scratchpad memory */
3658/* associated with a particular processor. */
3659/* */
3660/* Returns: */
3661/* Nothing. */
3662/****************************************************************************/
3663static void
3664bce_load_cpu_fw(struct bce_softc *sc, struct cpu_reg *cpu_reg,
3665 struct fw_info *fw)
3666{
3667 u32 offset;
3668 u32 val;
3669
3670 DBENTER(BCE_VERBOSE_RESET);
3671
3672 /* Halt the CPU. */
3673 val = REG_RD_IND(sc, cpu_reg->mode);
3674 val |= cpu_reg->mode_value_halt;
3675 REG_WR_IND(sc, cpu_reg->mode, val);
3676 REG_WR_IND(sc, cpu_reg->state, cpu_reg->state_value_clear);
3677
3678 /* Load the Text area. */
3679 offset = cpu_reg->spad_base + (fw->text_addr - cpu_reg->mips_view_base);
3680 if (fw->text) {
3681 int j;
3682
3683 for (j = 0; j < (fw->text_len / 4); j++, offset += 4) {
3684 REG_WR_IND(sc, offset, fw->text[j]);
3685 }
3686 }
3687
3688 /* Load the Data area. */
3689 offset = cpu_reg->spad_base + (fw->data_addr - cpu_reg->mips_view_base);
3690 if (fw->data) {
3691 int j;
3692
3693 for (j = 0; j < (fw->data_len / 4); j++, offset += 4) {
3694 REG_WR_IND(sc, offset, fw->data[j]);
3695 }
3696 }
3697
3698 /* Load the SBSS area. */
3699 offset = cpu_reg->spad_base + (fw->sbss_addr - cpu_reg->mips_view_base);
3700 if (fw->sbss) {
3701 int j;
3702
3703 for (j = 0; j < (fw->sbss_len / 4); j++, offset += 4) {
3704 REG_WR_IND(sc, offset, fw->sbss[j]);
3705 }
3706 }
3707
3708 /* Load the BSS area. */
3709 offset = cpu_reg->spad_base + (fw->bss_addr - cpu_reg->mips_view_base);
3710 if (fw->bss) {
3711 int j;
3712
3713 for (j = 0; j < (fw->bss_len/4); j++, offset += 4) {
3714 REG_WR_IND(sc, offset, fw->bss[j]);
3715 }
3716 }
3717
3718 /* Load the Read-Only area. */
3719 offset = cpu_reg->spad_base +
3720 (fw->rodata_addr - cpu_reg->mips_view_base);
3721 if (fw->rodata) {
3722 int j;
3723
3724 for (j = 0; j < (fw->rodata_len / 4); j++, offset += 4) {
3725 REG_WR_IND(sc, offset, fw->rodata[j]);
3726 }
3727 }
3728
3729 /* Clear the pre-fetch instruction. */
3730 REG_WR_IND(sc, cpu_reg->inst, 0);
3731 REG_WR_IND(sc, cpu_reg->pc, fw->start_addr);
3732
3733 /* Start the CPU. */
3734 val = REG_RD_IND(sc, cpu_reg->mode);
3735 val &= ~cpu_reg->mode_value_halt;
3736 REG_WR_IND(sc, cpu_reg->state, cpu_reg->state_value_clear);
3737 REG_WR_IND(sc, cpu_reg->mode, val);
3738
3739 DBEXIT(BCE_VERBOSE_RESET);
3740}
3741
3742
3743/****************************************************************************/
3744/* Initialize the RX CPU. */
3745/* */
3746/* Returns: */
3747/* Nothing. */
3748/****************************************************************************/
3749static void
3750bce_init_rxp_cpu(struct bce_softc *sc)
3751{
3752 struct cpu_reg cpu_reg;
3753 struct fw_info fw;
3754
3755 DBENTER(BCE_VERBOSE_RESET);
3756
3757 cpu_reg.mode = BCE_RXP_CPU_MODE;
3758 cpu_reg.mode_value_halt = BCE_RXP_CPU_MODE_SOFT_HALT;
3759 cpu_reg.mode_value_sstep = BCE_RXP_CPU_MODE_STEP_ENA;
3760 cpu_reg.state = BCE_RXP_CPU_STATE;
3761 cpu_reg.state_value_clear = 0xffffff;
3762 cpu_reg.gpr0 = BCE_RXP_CPU_REG_FILE;
3763 cpu_reg.evmask = BCE_RXP_CPU_EVENT_MASK;
3764 cpu_reg.pc = BCE_RXP_CPU_PROGRAM_COUNTER;
3765 cpu_reg.inst = BCE_RXP_CPU_INSTRUCTION;
3766 cpu_reg.bp = BCE_RXP_CPU_HW_BREAKPOINT;
3767 cpu_reg.spad_base = BCE_RXP_SCRATCH;
3768 cpu_reg.mips_view_base = 0x8000000;
3769
3770 if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) ||
3771 (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716)) {
3772 fw.ver_major = bce_RXP_b09FwReleaseMajor;
3773 fw.ver_minor = bce_RXP_b09FwReleaseMinor;
3774 fw.ver_fix = bce_RXP_b09FwReleaseFix;
3775 fw.start_addr = bce_RXP_b09FwStartAddr;
3776
3777 fw.text_addr = bce_RXP_b09FwTextAddr;
3778 fw.text_len = bce_RXP_b09FwTextLen;
3779 fw.text_index = 0;
3780 fw.text = bce_RXP_b09FwText;
3781
3782 fw.data_addr = bce_RXP_b09FwDataAddr;
3783 fw.data_len = bce_RXP_b09FwDataLen;
3784 fw.data_index = 0;
3785 fw.data = bce_RXP_b09FwData;
3786
3787 fw.sbss_addr = bce_RXP_b09FwSbssAddr;
3788 fw.sbss_len = bce_RXP_b09FwSbssLen;
3789 fw.sbss_index = 0;
3790 fw.sbss = bce_RXP_b09FwSbss;
3791
3792 fw.bss_addr = bce_RXP_b09FwBssAddr;
3793 fw.bss_len = bce_RXP_b09FwBssLen;
3794 fw.bss_index = 0;
3795 fw.bss = bce_RXP_b09FwBss;
3796
3797 fw.rodata_addr = bce_RXP_b09FwRodataAddr;
3798 fw.rodata_len = bce_RXP_b09FwRodataLen;
3799 fw.rodata_index = 0;
3800 fw.rodata = bce_RXP_b09FwRodata;
3801 } else {
3802 fw.ver_major = bce_RXP_b06FwReleaseMajor;
3803 fw.ver_minor = bce_RXP_b06FwReleaseMinor;
3804 fw.ver_fix = bce_RXP_b06FwReleaseFix;
3805 fw.start_addr = bce_RXP_b06FwStartAddr;
3806
3807 fw.text_addr = bce_RXP_b06FwTextAddr;
3808 fw.text_len = bce_RXP_b06FwTextLen;
3809 fw.text_index = 0;
3810 fw.text = bce_RXP_b06FwText;
3811
3812 fw.data_addr = bce_RXP_b06FwDataAddr;
3813 fw.data_len = bce_RXP_b06FwDataLen;
3814 fw.data_index = 0;
3815 fw.data = bce_RXP_b06FwData;
3816
3817 fw.sbss_addr = bce_RXP_b06FwSbssAddr;
3818 fw.sbss_len = bce_RXP_b06FwSbssLen;
3819 fw.sbss_index = 0;
3820 fw.sbss = bce_RXP_b06FwSbss;
3821
3822 fw.bss_addr = bce_RXP_b06FwBssAddr;
3823 fw.bss_len = bce_RXP_b06FwBssLen;
3824 fw.bss_index = 0;
3825 fw.bss = bce_RXP_b06FwBss;
3826
3827 fw.rodata_addr = bce_RXP_b06FwRodataAddr;
3828 fw.rodata_len = bce_RXP_b06FwRodataLen;
3829 fw.rodata_index = 0;
3830 fw.rodata = bce_RXP_b06FwRodata;
3831 }
3832
3833 DBPRINT(sc, BCE_INFO_RESET, "Loading RX firmware.\n");
3834 bce_load_cpu_fw(sc, &cpu_reg, &fw);
3835
3836 DBEXIT(BCE_VERBOSE_RESET);
3837}
3838
3839
3840/****************************************************************************/
3841/* Initialize the TX CPU. */
3842/* */
3843/* Returns: */
3844/* Nothing. */
3845/****************************************************************************/
3846static void
3847bce_init_txp_cpu(struct bce_softc *sc)
3848{
3849 struct cpu_reg cpu_reg;
3850 struct fw_info fw;
3851
3852 DBENTER(BCE_VERBOSE_RESET);
3853
3854 cpu_reg.mode = BCE_TXP_CPU_MODE;
3855 cpu_reg.mode_value_halt = BCE_TXP_CPU_MODE_SOFT_HALT;
3856 cpu_reg.mode_value_sstep = BCE_TXP_CPU_MODE_STEP_ENA;
3857 cpu_reg.state = BCE_TXP_CPU_STATE;
3858 cpu_reg.state_value_clear = 0xffffff;
3859 cpu_reg.gpr0 = BCE_TXP_CPU_REG_FILE;
3860 cpu_reg.evmask = BCE_TXP_CPU_EVENT_MASK;
3861 cpu_reg.pc = BCE_TXP_CPU_PROGRAM_COUNTER;
3862 cpu_reg.inst = BCE_TXP_CPU_INSTRUCTION;
3863 cpu_reg.bp = BCE_TXP_CPU_HW_BREAKPOINT;
3864 cpu_reg.spad_base = BCE_TXP_SCRATCH;
3865 cpu_reg.mips_view_base = 0x8000000;
3866
3867 if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) ||
3868 (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716)) {
3869 fw.ver_major = bce_TXP_b09FwReleaseMajor;
3870 fw.ver_minor = bce_TXP_b09FwReleaseMinor;
3871 fw.ver_fix = bce_TXP_b09FwReleaseFix;
3872 fw.start_addr = bce_TXP_b09FwStartAddr;
3873
3874 fw.text_addr = bce_TXP_b09FwTextAddr;
3875 fw.text_len = bce_TXP_b09FwTextLen;
3876 fw.text_index = 0;
3877 fw.text = bce_TXP_b09FwText;
3878
3879 fw.data_addr = bce_TXP_b09FwDataAddr;
3880 fw.data_len = bce_TXP_b09FwDataLen;
3881 fw.data_index = 0;
3882 fw.data = bce_TXP_b09FwData;
3883
3884 fw.sbss_addr = bce_TXP_b09FwSbssAddr;
3885 fw.sbss_len = bce_TXP_b09FwSbssLen;
3886 fw.sbss_index = 0;
3887 fw.sbss = bce_TXP_b09FwSbss;
3888
3889 fw.bss_addr = bce_TXP_b09FwBssAddr;
3890 fw.bss_len = bce_TXP_b09FwBssLen;
3891 fw.bss_index = 0;
3892 fw.bss = bce_TXP_b09FwBss;
3893
3894 fw.rodata_addr = bce_TXP_b09FwRodataAddr;
3895 fw.rodata_len = bce_TXP_b09FwRodataLen;
3896 fw.rodata_index = 0;
3897 fw.rodata = bce_TXP_b09FwRodata;
3898 } else {
3899 fw.ver_major = bce_TXP_b06FwReleaseMajor;
3900 fw.ver_minor = bce_TXP_b06FwReleaseMinor;
3901 fw.ver_fix = bce_TXP_b06FwReleaseFix;
3902 fw.start_addr = bce_TXP_b06FwStartAddr;
3903
3904 fw.text_addr = bce_TXP_b06FwTextAddr;
3905 fw.text_len = bce_TXP_b06FwTextLen;
3906 fw.text_index = 0;
3907 fw.text = bce_TXP_b06FwText;
3908
3909 fw.data_addr = bce_TXP_b06FwDataAddr;
3910 fw.data_len = bce_TXP_b06FwDataLen;
3911 fw.data_index = 0;
3912 fw.data = bce_TXP_b06FwData;
3913
3914 fw.sbss_addr = bce_TXP_b06FwSbssAddr;
3915 fw.sbss_len = bce_TXP_b06FwSbssLen;
3916 fw.sbss_index = 0;
3917 fw.sbss = bce_TXP_b06FwSbss;
3918
3919 fw.bss_addr = bce_TXP_b06FwBssAddr;
3920 fw.bss_len = bce_TXP_b06FwBssLen;
3921 fw.bss_index = 0;
3922 fw.bss = bce_TXP_b06FwBss;
3923
3924 fw.rodata_addr = bce_TXP_b06FwRodataAddr;
3925 fw.rodata_len = bce_TXP_b06FwRodataLen;
3926 fw.rodata_index = 0;
3927 fw.rodata = bce_TXP_b06FwRodata;
3928 }
3929
3930 DBPRINT(sc, BCE_INFO_RESET, "Loading TX firmware.\n");
3931 bce_load_cpu_fw(sc, &cpu_reg, &fw);
3932
3933 DBEXIT(BCE_VERBOSE_RESET);
3934}
3935
3936
3937/****************************************************************************/
3938/* Initialize the TPAT CPU. */
3939/* */
3940/* Returns: */
3941/* Nothing. */
3942/****************************************************************************/
3943static void
3944bce_init_tpat_cpu(struct bce_softc *sc)
3945{
3946 struct cpu_reg cpu_reg;
3947 struct fw_info fw;
3948
3949 DBENTER(BCE_VERBOSE_RESET);
3950
3951 cpu_reg.mode = BCE_TPAT_CPU_MODE;
3952 cpu_reg.mode_value_halt = BCE_TPAT_CPU_MODE_SOFT_HALT;
3953 cpu_reg.mode_value_sstep = BCE_TPAT_CPU_MODE_STEP_ENA;
3954 cpu_reg.state = BCE_TPAT_CPU_STATE;
3955 cpu_reg.state_value_clear = 0xffffff;
3956 cpu_reg.gpr0 = BCE_TPAT_CPU_REG_FILE;
3957 cpu_reg.evmask = BCE_TPAT_CPU_EVENT_MASK;
3958 cpu_reg.pc = BCE_TPAT_CPU_PROGRAM_COUNTER;
3959 cpu_reg.inst = BCE_TPAT_CPU_INSTRUCTION;
3960 cpu_reg.bp = BCE_TPAT_CPU_HW_BREAKPOINT;
3961 cpu_reg.spad_base = BCE_TPAT_SCRATCH;
3962 cpu_reg.mips_view_base = 0x8000000;
3963
3964 if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) ||
3965 (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716)) {
3966 fw.ver_major = bce_TPAT_b09FwReleaseMajor;
3967 fw.ver_minor = bce_TPAT_b09FwReleaseMinor;
3968 fw.ver_fix = bce_TPAT_b09FwReleaseFix;
3969 fw.start_addr = bce_TPAT_b09FwStartAddr;
3970
3971 fw.text_addr = bce_TPAT_b09FwTextAddr;
3972 fw.text_len = bce_TPAT_b09FwTextLen;
3973 fw.text_index = 0;
3974 fw.text = bce_TPAT_b09FwText;
3975
3976 fw.data_addr = bce_TPAT_b09FwDataAddr;
3977 fw.data_len = bce_TPAT_b09FwDataLen;
3978 fw.data_index = 0;
3979 fw.data = bce_TPAT_b09FwData;
3980
3981 fw.sbss_addr = bce_TPAT_b09FwSbssAddr;
3982 fw.sbss_len = bce_TPAT_b09FwSbssLen;
3983 fw.sbss_index = 0;
3984 fw.sbss = bce_TPAT_b09FwSbss;
3985
3986 fw.bss_addr = bce_TPAT_b09FwBssAddr;
3987 fw.bss_len = bce_TPAT_b09FwBssLen;
3988 fw.bss_index = 0;
3989 fw.bss = bce_TPAT_b09FwBss;
3990
3991 fw.rodata_addr = bce_TPAT_b09FwRodataAddr;
3992 fw.rodata_len = bce_TPAT_b09FwRodataLen;
3993 fw.rodata_index = 0;
3994 fw.rodata = bce_TPAT_b09FwRodata;
3995 } else {
3996 fw.ver_major = bce_TPAT_b06FwReleaseMajor;
3997 fw.ver_minor = bce_TPAT_b06FwReleaseMinor;
3998 fw.ver_fix = bce_TPAT_b06FwReleaseFix;
3999 fw.start_addr = bce_TPAT_b06FwStartAddr;
4000
4001 fw.text_addr = bce_TPAT_b06FwTextAddr;
4002 fw.text_len = bce_TPAT_b06FwTextLen;
4003 fw.text_index = 0;
4004 fw.text = bce_TPAT_b06FwText;
4005
4006 fw.data_addr = bce_TPAT_b06FwDataAddr;
4007 fw.data_len = bce_TPAT_b06FwDataLen;
4008 fw.data_index = 0;
4009 fw.data = bce_TPAT_b06FwData;
4010
4011 fw.sbss_addr = bce_TPAT_b06FwSbssAddr;
4012 fw.sbss_len = bce_TPAT_b06FwSbssLen;
4013 fw.sbss_index = 0;
4014 fw.sbss = bce_TPAT_b06FwSbss;
4015
4016 fw.bss_addr = bce_TPAT_b06FwBssAddr;
4017 fw.bss_len = bce_TPAT_b06FwBssLen;
4018 fw.bss_index = 0;
4019 fw.bss = bce_TPAT_b06FwBss;
4020
4021 fw.rodata_addr = bce_TPAT_b06FwRodataAddr;
4022 fw.rodata_len = bce_TPAT_b06FwRodataLen;
4023 fw.rodata_index = 0;
4024 fw.rodata = bce_TPAT_b06FwRodata;
4025 }
4026
4027 DBPRINT(sc, BCE_INFO_RESET, "Loading TPAT firmware.\n");
4028 bce_load_cpu_fw(sc, &cpu_reg, &fw);
4029
4030 DBEXIT(BCE_VERBOSE_RESET);
4031}
4032
4033
4034/****************************************************************************/
4035/* Initialize the CP CPU. */
4036/* */
4037/* Returns: */
4038/* Nothing. */
4039/****************************************************************************/
4040static void
4041bce_init_cp_cpu(struct bce_softc *sc)
4042{
4043 struct cpu_reg cpu_reg;
4044 struct fw_info fw;
4045
4046 DBENTER(BCE_VERBOSE_RESET);
4047
4048 cpu_reg.mode = BCE_CP_CPU_MODE;
4049 cpu_reg.mode_value_halt = BCE_CP_CPU_MODE_SOFT_HALT;
4050 cpu_reg.mode_value_sstep = BCE_CP_CPU_MODE_STEP_ENA;
4051 cpu_reg.state = BCE_CP_CPU_STATE;
4052 cpu_reg.state_value_clear = 0xffffff;
4053 cpu_reg.gpr0 = BCE_CP_CPU_REG_FILE;
4054 cpu_reg.evmask = BCE_CP_CPU_EVENT_MASK;
4055 cpu_reg.pc = BCE_CP_CPU_PROGRAM_COUNTER;
4056 cpu_reg.inst = BCE_CP_CPU_INSTRUCTION;
4057 cpu_reg.bp = BCE_CP_CPU_HW_BREAKPOINT;
4058 cpu_reg.spad_base = BCE_CP_SCRATCH;
4059 cpu_reg.mips_view_base = 0x8000000;
4060
4061 if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) ||
4062 (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716)) {
4063 fw.ver_major = bce_CP_b09FwReleaseMajor;
4064 fw.ver_minor = bce_CP_b09FwReleaseMinor;
4065 fw.ver_fix = bce_CP_b09FwReleaseFix;
4066 fw.start_addr = bce_CP_b09FwStartAddr;
4067
4068 fw.text_addr = bce_CP_b09FwTextAddr;
4069 fw.text_len = bce_CP_b09FwTextLen;
4070 fw.text_index = 0;
4071 fw.text = bce_CP_b09FwText;
4072
4073 fw.data_addr = bce_CP_b09FwDataAddr;
4074 fw.data_len = bce_CP_b09FwDataLen;
4075 fw.data_index = 0;
4076 fw.data = bce_CP_b09FwData;
4077
4078 fw.sbss_addr = bce_CP_b09FwSbssAddr;
4079 fw.sbss_len = bce_CP_b09FwSbssLen;
4080 fw.sbss_index = 0;
4081 fw.sbss = bce_CP_b09FwSbss;
4082
4083 fw.bss_addr = bce_CP_b09FwBssAddr;
4084 fw.bss_len = bce_CP_b09FwBssLen;
4085 fw.bss_index = 0;
4086 fw.bss = bce_CP_b09FwBss;
4087
4088 fw.rodata_addr = bce_CP_b09FwRodataAddr;
4089 fw.rodata_len = bce_CP_b09FwRodataLen;
4090 fw.rodata_index = 0;
4091 fw.rodata = bce_CP_b09FwRodata;
4092 } else {
4093 fw.ver_major = bce_CP_b06FwReleaseMajor;
4094 fw.ver_minor = bce_CP_b06FwReleaseMinor;
4095 fw.ver_fix = bce_CP_b06FwReleaseFix;
4096 fw.start_addr = bce_CP_b06FwStartAddr;
4097
4098 fw.text_addr = bce_CP_b06FwTextAddr;
4099 fw.text_len = bce_CP_b06FwTextLen;
4100 fw.text_index = 0;
4101 fw.text = bce_CP_b06FwText;
4102
4103 fw.data_addr = bce_CP_b06FwDataAddr;
4104 fw.data_len = bce_CP_b06FwDataLen;
4105 fw.data_index = 0;
4106 fw.data = bce_CP_b06FwData;
4107
4108 fw.sbss_addr = bce_CP_b06FwSbssAddr;
4109 fw.sbss_len = bce_CP_b06FwSbssLen;
4110 fw.sbss_index = 0;
4111 fw.sbss = bce_CP_b06FwSbss;
4112
4113 fw.bss_addr = bce_CP_b06FwBssAddr;
4114 fw.bss_len = bce_CP_b06FwBssLen;
4115 fw.bss_index = 0;
4116 fw.bss = bce_CP_b06FwBss;
4117
4118 fw.rodata_addr = bce_CP_b06FwRodataAddr;
4119 fw.rodata_len = bce_CP_b06FwRodataLen;
4120 fw.rodata_index = 0;
4121 fw.rodata = bce_CP_b06FwRodata;
4122 }
4123
4124 DBPRINT(sc, BCE_INFO_RESET, "Loading CP firmware.\n");
4125 bce_load_cpu_fw(sc, &cpu_reg, &fw);
4126
4127 DBEXIT(BCE_VERBOSE_RESET);
4128}
4129
4130
4131/****************************************************************************/
4132/* Initialize the COM CPU. */
4133/* */
4134/* Returns: */
4135/* Nothing. */
4136/****************************************************************************/
4137static void
4138bce_init_com_cpu(struct bce_softc *sc)
4139{
4140 struct cpu_reg cpu_reg;
4141 struct fw_info fw;
4142
4143 DBENTER(BCE_VERBOSE_RESET);
4144
4145 cpu_reg.mode = BCE_COM_CPU_MODE;
4146 cpu_reg.mode_value_halt = BCE_COM_CPU_MODE_SOFT_HALT;
4147 cpu_reg.mode_value_sstep = BCE_COM_CPU_MODE_STEP_ENA;
4148 cpu_reg.state = BCE_COM_CPU_STATE;
4149 cpu_reg.state_value_clear = 0xffffff;
4150 cpu_reg.gpr0 = BCE_COM_CPU_REG_FILE;
4151 cpu_reg.evmask = BCE_COM_CPU_EVENT_MASK;
4152 cpu_reg.pc = BCE_COM_CPU_PROGRAM_COUNTER;
4153 cpu_reg.inst = BCE_COM_CPU_INSTRUCTION;
4154 cpu_reg.bp = BCE_COM_CPU_HW_BREAKPOINT;
4155 cpu_reg.spad_base = BCE_COM_SCRATCH;
4156 cpu_reg.mips_view_base = 0x8000000;
4157
4158 if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) ||
4159 (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716)) {
4160 fw.ver_major = bce_COM_b09FwReleaseMajor;
4161 fw.ver_minor = bce_COM_b09FwReleaseMinor;
4162 fw.ver_fix = bce_COM_b09FwReleaseFix;
4163 fw.start_addr = bce_COM_b09FwStartAddr;
4164
4165 fw.text_addr = bce_COM_b09FwTextAddr;
4166 fw.text_len = bce_COM_b09FwTextLen;
4167 fw.text_index = 0;
4168 fw.text = bce_COM_b09FwText;
4169
4170 fw.data_addr = bce_COM_b09FwDataAddr;
4171 fw.data_len = bce_COM_b09FwDataLen;
4172 fw.data_index = 0;
4173 fw.data = bce_COM_b09FwData;
4174
4175 fw.sbss_addr = bce_COM_b09FwSbssAddr;
4176 fw.sbss_len = bce_COM_b09FwSbssLen;
4177 fw.sbss_index = 0;
4178 fw.sbss = bce_COM_b09FwSbss;
4179
4180 fw.bss_addr = bce_COM_b09FwBssAddr;
4181 fw.bss_len = bce_COM_b09FwBssLen;
4182 fw.bss_index = 0;
4183 fw.bss = bce_COM_b09FwBss;
4184
4185 fw.rodata_addr = bce_COM_b09FwRodataAddr;
4186 fw.rodata_len = bce_COM_b09FwRodataLen;
4187 fw.rodata_index = 0;
4188 fw.rodata = bce_COM_b09FwRodata;
4189 } else {
4190 fw.ver_major = bce_COM_b06FwReleaseMajor;
4191 fw.ver_minor = bce_COM_b06FwReleaseMinor;
4192 fw.ver_fix = bce_COM_b06FwReleaseFix;
4193 fw.start_addr = bce_COM_b06FwStartAddr;
4194
4195 fw.text_addr = bce_COM_b06FwTextAddr;
4196 fw.text_len = bce_COM_b06FwTextLen;
4197 fw.text_index = 0;
4198 fw.text = bce_COM_b06FwText;
4199
4200 fw.data_addr = bce_COM_b06FwDataAddr;
4201 fw.data_len = bce_COM_b06FwDataLen;
4202 fw.data_index = 0;
4203 fw.data = bce_COM_b06FwData;
4204
4205 fw.sbss_addr = bce_COM_b06FwSbssAddr;
4206 fw.sbss_len = bce_COM_b06FwSbssLen;
4207 fw.sbss_index = 0;
4208 fw.sbss = bce_COM_b06FwSbss;
4209
4210 fw.bss_addr = bce_COM_b06FwBssAddr;
4211 fw.bss_len = bce_COM_b06FwBssLen;
4212 fw.bss_index = 0;
4213 fw.bss = bce_COM_b06FwBss;
4214
4215 fw.rodata_addr = bce_COM_b06FwRodataAddr;
4216 fw.rodata_len = bce_COM_b06FwRodataLen;
4217 fw.rodata_index = 0;
4218 fw.rodata = bce_COM_b06FwRodata;
4219 }
4220
4221 DBPRINT(sc, BCE_INFO_RESET, "Loading COM firmware.\n");
4222 bce_load_cpu_fw(sc, &cpu_reg, &fw);
4223
4224 DBEXIT(BCE_VERBOSE_RESET);
4225}
4226
4227
4228/****************************************************************************/
4229/* Initialize the RV2P, RX, TX, TPAT, COM, and CP CPUs. */
4230/* */
4231/* Loads the firmware for each CPU and starts the CPU. */
4232/* */
4233/* Returns: */
4234/* Nothing. */
4235/****************************************************************************/
4236static void
4237bce_init_cpus(struct bce_softc *sc)
4238{
4239 DBENTER(BCE_VERBOSE_RESET);
4240
4241 if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) ||
4242 (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716)) {
4243
4244 if ((BCE_CHIP_REV(sc) == BCE_CHIP_REV_Ax)) {
4245 bce_load_rv2p_fw(sc, bce_xi90_rv2p_proc1,
4246 sizeof(bce_xi90_rv2p_proc1), RV2P_PROC1);
4247 bce_load_rv2p_fw(sc, bce_xi90_rv2p_proc2,
4248 sizeof(bce_xi90_rv2p_proc2), RV2P_PROC2);
4249 } else {
4250 bce_load_rv2p_fw(sc, bce_xi_rv2p_proc1,
4251 sizeof(bce_xi_rv2p_proc1), RV2P_PROC1);
4252 bce_load_rv2p_fw(sc, bce_xi_rv2p_proc2,
4253 sizeof(bce_xi_rv2p_proc2), RV2P_PROC2);
4254 }
4255
4256 } else {
4257 bce_load_rv2p_fw(sc, bce_rv2p_proc1,
4258 sizeof(bce_rv2p_proc1), RV2P_PROC1);
4259 bce_load_rv2p_fw(sc, bce_rv2p_proc2,
4260 sizeof(bce_rv2p_proc2), RV2P_PROC2);
4261 }
4262
4263 bce_init_rxp_cpu(sc);
4264 bce_init_txp_cpu(sc);
4265 bce_init_tpat_cpu(sc);
4266 bce_init_com_cpu(sc);
4267 bce_init_cp_cpu(sc);
4268
4269 DBEXIT(BCE_VERBOSE_RESET);
4270}
4271
4272
4273/****************************************************************************/
4274/* Initialize context memory. */
4275/* */
4276/* Clears the memory associated with each Context ID (CID). */
4277/* */
4278/* Returns: */
4279/* Nothing. */
4280/****************************************************************************/
4281static void
4282bce_init_ctx(struct bce_softc *sc)
4283{
4284
4285 DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_CTX);
4286
4287 if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) ||
4288 (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716)) {
4289 int i, retry_cnt = CTX_INIT_RETRY_COUNT;
4290 u32 val;
4291
4292 DBPRINT(sc, BCE_INFO_CTX, "Initializing 5709 context.\n");
4293
4294 /*
4295 * BCM5709 context memory may be cached
4296 * in host memory so prepare the host memory
4297 * for access.
4298 */
4299 val = BCE_CTX_COMMAND_ENABLED | BCE_CTX_COMMAND_MEM_INIT | (1 << 12);
4300 val |= (BCM_PAGE_BITS - 8) << 16;
4301 REG_WR(sc, BCE_CTX_COMMAND, val);
4302
4303 /* Wait for mem init command to complete. */
4304 for (i = 0; i < retry_cnt; i++) {
4305 val = REG_RD(sc, BCE_CTX_COMMAND);
4306 if (!(val & BCE_CTX_COMMAND_MEM_INIT))
4307 break;
4308 DELAY(2);
4309 }
4310
4311 /* ToDo: Consider returning an error here. */
4312 DBRUNIF((val & BCE_CTX_COMMAND_MEM_INIT),
4313 BCE_PRINTF("%s(): Context memory initialization failed!\n",
4314 __FUNCTION__));
4315
4316 for (i = 0; i < sc->ctx_pages; i++) {
4317 int j;
4318
4319 /* Set the physical address of the context memory cache. */
4320 REG_WR(sc, BCE_CTX_HOST_PAGE_TBL_DATA0,
4321 BCE_ADDR_LO(sc->ctx_paddr[i] & 0xfffffff0) |
4322 BCE_CTX_HOST_PAGE_TBL_DATA0_VALID);
4323 REG_WR(sc, BCE_CTX_HOST_PAGE_TBL_DATA1,
4324 BCE_ADDR_HI(sc->ctx_paddr[i]));
4325 REG_WR(sc, BCE_CTX_HOST_PAGE_TBL_CTRL, i |
4326 BCE_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ);
4327
4328 /* Verify that the context memory write was successful. */
4329 for (j = 0; j < retry_cnt; j++) {
4330 val = REG_RD(sc, BCE_CTX_HOST_PAGE_TBL_CTRL);
4331 if ((val & BCE_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ) == 0)
4332 break;
4333 DELAY(5);
4334 }
4335
4336 /* ToDo: Consider returning an error here. */
4337 DBRUNIF((val & BCE_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ),
4338 BCE_PRINTF("%s(): Failed to initialize context page %d!\n",
4339 __FUNCTION__, i));
4340 }
4341 } else {
4342 u32 vcid_addr, offset;
4343
4344 DBPRINT(sc, BCE_INFO, "Initializing 5706/5708 context.\n");
4345
4346 /*
4347 * For the 5706/5708, context memory is local to
4348 * the controller, so initialize the controller
4349 * context memory.
4350 */
4351
4352 vcid_addr = GET_CID_ADDR(96);
4353 while (vcid_addr) {
4354
4355 vcid_addr -= PHY_CTX_SIZE;
4356
4357 REG_WR(sc, BCE_CTX_VIRT_ADDR, 0);
4358 REG_WR(sc, BCE_CTX_PAGE_TBL, vcid_addr);
4359
4360 for(offset = 0; offset < PHY_CTX_SIZE; offset += 4) {
4361 CTX_WR(sc, 0x00, offset, 0);
4362 }
4363
4364 REG_WR(sc, BCE_CTX_VIRT_ADDR, vcid_addr);
4365 REG_WR(sc, BCE_CTX_PAGE_TBL, vcid_addr);
4366 }
4367
4368 }
4369 DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_CTX);
4370}
4371
4372
4373/****************************************************************************/
4374/* Fetch the permanent MAC address of the controller. */
4375/* */
4376/* Returns: */
4377/* Nothing. */
4378/****************************************************************************/
4379static void
4380bce_get_mac_addr(struct bce_softc *sc)
4381{
4382 u32 mac_lo = 0, mac_hi = 0;
4383
4384 DBENTER(BCE_VERBOSE_RESET);
4385 /*
4386 * The NetXtreme II bootcode populates various NIC
4387 * power-on and runtime configuration items in a
4388 * shared memory area. The factory configured MAC
4389 * address is available from both NVRAM and the
4390 * shared memory area so we'll read the value from
4391 * shared memory for speed.
4392 */
4393
4394 mac_hi = bce_shmem_rd(sc, BCE_PORT_HW_CFG_MAC_UPPER);
4395 mac_lo = bce_shmem_rd(sc, BCE_PORT_HW_CFG_MAC_LOWER);
4396
4397 if ((mac_lo == 0) && (mac_hi == 0)) {
4398 BCE_PRINTF("%s(%d): Invalid Ethernet address!\n",
4399 __FILE__, __LINE__);
4400 } else {
4401 sc->eaddr[0] = (u_char)(mac_hi >> 8);
4402 sc->eaddr[1] = (u_char)(mac_hi >> 0);
4403 sc->eaddr[2] = (u_char)(mac_lo >> 24);
4404 sc->eaddr[3] = (u_char)(mac_lo >> 16);
4405 sc->eaddr[4] = (u_char)(mac_lo >> 8);
4406 sc->eaddr[5] = (u_char)(mac_lo >> 0);
4407 }
4408
4409 DBPRINT(sc, BCE_INFO_MISC, "Permanent Ethernet address = %6D\n", sc->eaddr, ":");
4410 DBEXIT(BCE_VERBOSE_RESET);
4411}
4412
4413
4414/****************************************************************************/
4415/* Program the MAC address. */
4416/* */
4417/* Returns: */
4418/* Nothing. */
4419/****************************************************************************/
4420static void
4421bce_set_mac_addr(struct bce_softc *sc)
4422{
4423 u32 val;
4424 u8 *mac_addr = sc->eaddr;
4425
4426 /* ToDo: Add support for setting multiple MAC addresses. */
4427
4428 DBENTER(BCE_VERBOSE_RESET);
4429 DBPRINT(sc, BCE_INFO_MISC, "Setting Ethernet address = %6D\n", sc->eaddr, ":");
4430
4431 val = (mac_addr[0] << 8) | mac_addr[1];
4432
4433 REG_WR(sc, BCE_EMAC_MAC_MATCH0, val);
4434
4435 val = (mac_addr[2] << 24) | (mac_addr[3] << 16) |
4436 (mac_addr[4] << 8) | mac_addr[5];
4437
4438 REG_WR(sc, BCE_EMAC_MAC_MATCH1, val);
4439
4440 DBEXIT(BCE_VERBOSE_RESET);
4441}
4442
4443
4444/****************************************************************************/
4445/* Stop the controller. */
4446/* */
4447/* Returns: */
4448/* Nothing. */
4449/****************************************************************************/
4450static void
4451bce_stop(struct bce_softc *sc)
4452{
4453 struct ifnet *ifp;
4454 struct ifmedia_entry *ifm;
4455 struct mii_data *mii = NULL;
4456 int mtmp, itmp;
4457
4458 DBENTER(BCE_VERBOSE_RESET);
4459
4460 BCE_LOCK_ASSERT(sc);
4461
4462 ifp = sc->bce_ifp;
4463
4464 mii = device_get_softc(sc->bce_miibus);
4465
4466 callout_stop(&sc->bce_tick_callout);
4467
4468 /* Disable the transmit/receive blocks. */
4469 REG_WR(sc, BCE_MISC_ENABLE_CLR_BITS, BCE_MISC_ENABLE_CLR_DEFAULT);
4470 REG_RD(sc, BCE_MISC_ENABLE_CLR_BITS);
4471 DELAY(20);
4472
4473 bce_disable_intr(sc);
4474
4475 /* Free RX buffers. */
4476#ifdef ZERO_COPY_SOCKETS
4477 bce_free_pg_chain(sc);
4478#endif
4479 bce_free_rx_chain(sc);
4480
4481 /* Free TX buffers. */
4482 bce_free_tx_chain(sc);
4483
4484 /*
4485 * Isolate/power down the PHY, but leave the media selection
4486 * unchanged so that things will be put back to normal when
4487 * we bring the interface back up.
4488 */
4489
4490 itmp = ifp->if_flags;
4491 ifp->if_flags |= IFF_UP;
4492
4493 /* If we are called from bce_detach(), mii is already NULL. */
4494 if (mii != NULL) {
4495 ifm = mii->mii_media.ifm_cur;
4496 mtmp = ifm->ifm_media;
4497 ifm->ifm_media = IFM_ETHER | IFM_NONE;
4498 mii_mediachg(mii);
4499 ifm->ifm_media = mtmp;
4500 }
4501
4502 ifp->if_flags = itmp;
4503 sc->watchdog_timer = 0;
4504
4505 sc->bce_link = 0;
4506
4507 ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
4508
4509 DBEXIT(BCE_VERBOSE_RESET);
4510}
4511
4512
4513static int
4514bce_reset(struct bce_softc *sc, u32 reset_code)
4515{
4516 u32 val;
4517 int i, rc = 0;
4518
4519 DBENTER(BCE_VERBOSE_RESET);
4520
4521 DBPRINT(sc, BCE_VERBOSE_RESET, "%s(): reset_code = 0x%08X\n",
4522 __FUNCTION__, reset_code);
4523
4524 /* Wait for pending PCI transactions to complete. */
4525 REG_WR(sc, BCE_MISC_ENABLE_CLR_BITS,
4526 BCE_MISC_ENABLE_CLR_BITS_TX_DMA_ENABLE |
4527 BCE_MISC_ENABLE_CLR_BITS_DMA_ENGINE_ENABLE |
4528 BCE_MISC_ENABLE_CLR_BITS_RX_DMA_ENABLE |
4529 BCE_MISC_ENABLE_CLR_BITS_HOST_COALESCE_ENABLE);
4530 val = REG_RD(sc, BCE_MISC_ENABLE_CLR_BITS);
4531 DELAY(5);
4532
4533 /* Disable DMA */
4534 if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) ||
4535 (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716)) {
4536 val = REG_RD(sc, BCE_MISC_NEW_CORE_CTL);
4537 val &= ~BCE_MISC_NEW_CORE_CTL_DMA_ENABLE;
4538 REG_WR(sc, BCE_MISC_NEW_CORE_CTL, val);
4539 }
4540
4541 /* Assume bootcode is running. */
4542 sc->bce_fw_timed_out = 0;
4543
4544 /* Give the firmware a chance to prepare for the reset. */
4545 rc = bce_fw_sync(sc, BCE_DRV_MSG_DATA_WAIT0 | reset_code);
4546 if (rc)
4547 goto bce_reset_exit;
4548
4549 /* Set a firmware reminder that this is a soft reset. */
4550 bce_shmem_wr(sc, BCE_DRV_RESET_SIGNATURE, BCE_DRV_RESET_SIGNATURE_MAGIC);
4551
4552 /* Dummy read to force the chip to complete all current transactions. */
4553 val = REG_RD(sc, BCE_MISC_ID);
4554
4555 /* Chip reset. */
4556 if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) ||
4557 (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716)) {
4558 REG_WR(sc, BCE_MISC_COMMAND, BCE_MISC_COMMAND_SW_RESET);
4559 REG_RD(sc, BCE_MISC_COMMAND);
4560 DELAY(5);
4561
4562 val = BCE_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
4563 BCE_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP;
4564
4565 pci_write_config(sc->bce_dev, BCE_PCICFG_MISC_CONFIG, val, 4);
4566 } else {
4567 val = BCE_PCICFG_MISC_CONFIG_CORE_RST_REQ |
4568 BCE_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
4569 BCE_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP;
4570 REG_WR(sc, BCE_PCICFG_MISC_CONFIG, val);
4571
4572 /* Allow up to 30us for reset to complete. */
4573 for (i = 0; i < 10; i++) {
4574 val = REG_RD(sc, BCE_PCICFG_MISC_CONFIG);
4575 if ((val & (BCE_PCICFG_MISC_CONFIG_CORE_RST_REQ |
4576 BCE_PCICFG_MISC_CONFIG_CORE_RST_BSY)) == 0) {
4577 break;
4578 }
4579 DELAY(10);
4580 }
4581
4582 /* Check that reset completed successfully. */
4583 if (val & (BCE_PCICFG_MISC_CONFIG_CORE_RST_REQ |
4584 BCE_PCICFG_MISC_CONFIG_CORE_RST_BSY)) {
4585 BCE_PRINTF("%s(%d): Reset failed!\n",
4586 __FILE__, __LINE__);
4587 rc = EBUSY;
4588 goto bce_reset_exit;
4589 }
4590 }
4591
4592 /* Make sure byte swapping is properly configured. */
4593 val = REG_RD(sc, BCE_PCI_SWAP_DIAG0);
4594 if (val != 0x01020304) {
4595 BCE_PRINTF("%s(%d): Byte swap is incorrect!\n",
4596 __FILE__, __LINE__);
4597 rc = ENODEV;
4598 goto bce_reset_exit;
4599 }
4600
4601 /* Just completed a reset, assume that firmware is running again. */
4602 sc->bce_fw_timed_out = 0;
4603
4604 /* Wait for the firmware to finish its initialization. */
4605 rc = bce_fw_sync(sc, BCE_DRV_MSG_DATA_WAIT1 | reset_code);
4606 if (rc)
4607 BCE_PRINTF("%s(%d): Firmware did not complete initialization!\n",
4608 __FILE__, __LINE__);
4609
4610bce_reset_exit:
4611 DBEXIT(BCE_VERBOSE_RESET);
4612 return (rc);
4613}
4614
4615
4616static int
4617bce_chipinit(struct bce_softc *sc)
4618{
4619 u32 val;
4620 int rc = 0;
4621
4622 DBENTER(BCE_VERBOSE_RESET);
4623
4624 bce_disable_intr(sc);
4625
4626 /*
4627 * Initialize DMA byte/word swapping, configure the number of DMA
4628 * channels and PCI clock compensation delay.
4629 */
4630 val = BCE_DMA_CONFIG_DATA_BYTE_SWAP |
4631 BCE_DMA_CONFIG_DATA_WORD_SWAP |
4632#if BYTE_ORDER == BIG_ENDIAN
4633 BCE_DMA_CONFIG_CNTL_BYTE_SWAP |
4634#endif
4635 BCE_DMA_CONFIG_CNTL_WORD_SWAP |
4636 DMA_READ_CHANS << 12 |
4637 DMA_WRITE_CHANS << 16;
4638
4639 val |= (0x2 << 20) | BCE_DMA_CONFIG_CNTL_PCI_COMP_DLY;
4640
4641 if ((sc->bce_flags & BCE_PCIX_FLAG) && (sc->bus_speed_mhz == 133))
4642 val |= BCE_DMA_CONFIG_PCI_FAST_CLK_CMP;
4643
4644 /*
4645 * This setting resolves a problem observed on certain Intel PCI
4646 * chipsets that cannot handle multiple outstanding DMA operations.
4647 * See errata E9_5706A1_65.
4648 */
4649 if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5706) &&
4650 (BCE_CHIP_ID(sc) != BCE_CHIP_ID_5706_A0) &&
4651 !(sc->bce_flags & BCE_PCIX_FLAG))
4652 val |= BCE_DMA_CONFIG_CNTL_PING_PONG_DMA;
4653
4654 REG_WR(sc, BCE_DMA_CONFIG, val);
4655
4656 /* Enable the RX_V2P and Context state machines before access. */
4657 REG_WR(sc, BCE_MISC_ENABLE_SET_BITS,
4658 BCE_MISC_ENABLE_SET_BITS_HOST_COALESCE_ENABLE |
4659 BCE_MISC_ENABLE_STATUS_BITS_RX_V2P_ENABLE |
4660 BCE_MISC_ENABLE_STATUS_BITS_CONTEXT_ENABLE);
4661
4662 /* Initialize context mapping and zero out the quick contexts. */
4663 bce_init_ctx(sc);
4664
4665 /* Initialize the on-boards CPUs */
4666 bce_init_cpus(sc);
4667
4668 /* Prepare NVRAM for access. */
4669 if (bce_init_nvram(sc)) {
4670 rc = ENODEV;
4671 goto bce_chipinit_exit;
4672 }
4673
4674 /* Set the kernel bypass block size */
4675 val = REG_RD(sc, BCE_MQ_CONFIG);
4676 val &= ~BCE_MQ_CONFIG_KNL_BYP_BLK_SIZE;
4677 val |= BCE_MQ_CONFIG_KNL_BYP_BLK_SIZE_256;
4678
4679 /* Enable bins used on the 5709. */
4680 if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) ||
4681 (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716)) {
4682 val |= BCE_MQ_CONFIG_BIN_MQ_MODE;
4683 if (BCE_CHIP_ID(sc) == BCE_CHIP_ID_5709_A1)
4684 val |= BCE_MQ_CONFIG_HALT_DIS;
4685 }
4686
4687 REG_WR(sc, BCE_MQ_CONFIG, val);
4688
4689 val = 0x10000 + (MAX_CID_CNT * MB_KERNEL_CTX_SIZE);
4690 REG_WR(sc, BCE_MQ_KNL_BYP_WIND_START, val);
4691 REG_WR(sc, BCE_MQ_KNL_WIND_END, val);
4692
4693 /* Set the page size and clear the RV2P processor stall bits. */
4694 val = (BCM_PAGE_BITS - 8) << 24;
4695 REG_WR(sc, BCE_RV2P_CONFIG, val);
4696
4697 /* Configure page size. */
4698 val = REG_RD(sc, BCE_TBDR_CONFIG);
4699 val &= ~BCE_TBDR_CONFIG_PAGE_SIZE;
4700 val |= (BCM_PAGE_BITS - 8) << 24 | 0x40;
4701 REG_WR(sc, BCE_TBDR_CONFIG, val);
4702
4703 /* Set the perfect match control register to default. */
4704 REG_WR_IND(sc, BCE_RXP_PM_CTRL, 0);
4705
4706bce_chipinit_exit:
4707 DBEXIT(BCE_VERBOSE_RESET);
4708
4709 return(rc);
4710}
4711
4712
4713/****************************************************************************/
4714/* Initialize the controller in preparation to send/receive traffic. */
4715/* */
4716/* Returns: */
4717/* 0 for success, positive value for failure. */
4718/****************************************************************************/
4719static int
4720bce_blockinit(struct bce_softc *sc)
4721{
4722 u32 reg, val;
4723 int rc = 0;
4724
4725 DBENTER(BCE_VERBOSE_RESET);
4726
4727 /* Load the hardware default MAC address. */
4728 bce_set_mac_addr(sc);
4729
4730 /* Set the Ethernet backoff seed value */
4731 val = sc->eaddr[0] + (sc->eaddr[1] << 8) +
4732 (sc->eaddr[2] << 16) + (sc->eaddr[3] ) +
4733 (sc->eaddr[4] << 8) + (sc->eaddr[5] << 16);
4734 REG_WR(sc, BCE_EMAC_BACKOFF_SEED, val);
4735
4736 sc->last_status_idx = 0;
4737 sc->rx_mode = BCE_EMAC_RX_MODE_SORT_MODE;
4738
4739 /* Set up link change interrupt generation. */
4740 REG_WR(sc, BCE_EMAC_ATTENTION_ENA, BCE_EMAC_ATTENTION_ENA_LINK);
4741
4742 /* Program the physical address of the status block. */
4743 REG_WR(sc, BCE_HC_STATUS_ADDR_L,
4744 BCE_ADDR_LO(sc->status_block_paddr));
4745 REG_WR(sc, BCE_HC_STATUS_ADDR_H,
4746 BCE_ADDR_HI(sc->status_block_paddr));
4747
4748 /* Program the physical address of the statistics block. */
4749 REG_WR(sc, BCE_HC_STATISTICS_ADDR_L,
4750 BCE_ADDR_LO(sc->stats_block_paddr));
4751 REG_WR(sc, BCE_HC_STATISTICS_ADDR_H,
4752 BCE_ADDR_HI(sc->stats_block_paddr));
4753
4754 /* Program various host coalescing parameters. */
4755 REG_WR(sc, BCE_HC_TX_QUICK_CONS_TRIP,
4756 (sc->bce_tx_quick_cons_trip_int << 16) | sc->bce_tx_quick_cons_trip);
4757 REG_WR(sc, BCE_HC_RX_QUICK_CONS_TRIP,
4758 (sc->bce_rx_quick_cons_trip_int << 16) | sc->bce_rx_quick_cons_trip);
4759 REG_WR(sc, BCE_HC_COMP_PROD_TRIP,
4760 (sc->bce_comp_prod_trip_int << 16) | sc->bce_comp_prod_trip);
4761 REG_WR(sc, BCE_HC_TX_TICKS,
4762 (sc->bce_tx_ticks_int << 16) | sc->bce_tx_ticks);
4763 REG_WR(sc, BCE_HC_RX_TICKS,
4764 (sc->bce_rx_ticks_int << 16) | sc->bce_rx_ticks);
4765 REG_WR(sc, BCE_HC_COM_TICKS,
4766 (sc->bce_com_ticks_int << 16) | sc->bce_com_ticks);
4767 REG_WR(sc, BCE_HC_CMD_TICKS,
4768 (sc->bce_cmd_ticks_int << 16) | sc->bce_cmd_ticks);
4769 REG_WR(sc, BCE_HC_STATS_TICKS,
4770 (sc->bce_stats_ticks & 0xffff00));
4771 REG_WR(sc, BCE_HC_STAT_COLLECT_TICKS, 0xbb8); /* 3ms */
4772
4773 /* Configure the Host Coalescing block. */
4774 val = BCE_HC_CONFIG_RX_TMR_MODE | BCE_HC_CONFIG_TX_TMR_MODE |
4775 BCE_HC_CONFIG_COLLECT_STATS;
4776
4777#if 0
4778 /* ToDo: Add MSI-X support. */
4779 if (sc->bce_flags & BCE_USING_MSIX_FLAG) {
4780 u32 base = ((BCE_TX_VEC - 1) * BCE_HC_SB_CONFIG_SIZE) +
4781 BCE_HC_SB_CONFIG_1;
4782
4783 REG_WR(sc, BCE_HC_MSIX_BIT_VECTOR, BCE_HC_MSIX_BIT_VECTOR_VAL);
4784
4785 REG_WR(sc, base, BCE_HC_SB_CONFIG_1_TX_TMR_MODE |
4786 BCE_HC_SB_CONFIG_1_ONE_SHOT);
4787
4788 REG_WR(sc, base + BCE_HC_TX_QUICK_CONS_TRIP_OFF,
4789 (sc->tx_quick_cons_trip_int << 16) |
4790 sc->tx_quick_cons_trip);
4791
4792 REG_WR(sc, base + BCE_HC_TX_TICKS_OFF,
4793 (sc->tx_ticks_int << 16) | sc->tx_ticks);
4794
4795 val |= BCE_HC_CONFIG_SB_ADDR_INC_128B;
4796 }
4797
4798 /*
4799 * Tell the HC block to automatically set the
4800 * INT_MASK bit after an MSI/MSI-X interrupt
4801 * is generated so the driver doesn't have to.
4802 */
4803 if (sc->bce_flags & BCE_ONE_SHOT_MSI_FLAG)
4804 val |= BCE_HC_CONFIG_ONE_SHOT;
4805
4806 /* Set the MSI-X status blocks to 128 byte boundaries. */
4807 if (sc->bce_flags & BCE_USING_MSIX_FLAG)
4808 val |= BCE_HC_CONFIG_SB_ADDR_INC_128B;
4809#endif
4810
4811 REG_WR(sc, BCE_HC_CONFIG, val);
4812
4813 /* Clear the internal statistics counters. */
4814 REG_WR(sc, BCE_HC_COMMAND, BCE_HC_COMMAND_CLR_STAT_NOW);
4815
4816 /* Verify that bootcode is running. */
4817 reg = bce_shmem_rd(sc, BCE_DEV_INFO_SIGNATURE);
4818
4819 DBRUNIF(DB_RANDOMTRUE(bootcode_running_failure_sim_control),
4820 BCE_PRINTF("%s(%d): Simulating bootcode failure.\n",
4821 __FILE__, __LINE__);
4822 reg = 0);
4823
4824 if ((reg & BCE_DEV_INFO_SIGNATURE_MAGIC_MASK) !=
4825 BCE_DEV_INFO_SIGNATURE_MAGIC) {
4826 BCE_PRINTF("%s(%d): Bootcode not running! Found: 0x%08X, "
4827 "Expected: 08%08X\n", __FILE__, __LINE__,
4828 (reg & BCE_DEV_INFO_SIGNATURE_MAGIC_MASK),
4829 BCE_DEV_INFO_SIGNATURE_MAGIC);
4830 rc = ENODEV;
4831 goto bce_blockinit_exit;
4832 }
4833
4834 /* Enable DMA */
4835 if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) ||
4836 (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716)) {
4837 val = REG_RD(sc, BCE_MISC_NEW_CORE_CTL);
4838 val |= BCE_MISC_NEW_CORE_CTL_DMA_ENABLE;
4839 REG_WR(sc, BCE_MISC_NEW_CORE_CTL, val);
4840 }
4841
4842 /* Allow bootcode to apply any additional fixes before enabling MAC. */
4843 rc = bce_fw_sync(sc, BCE_DRV_MSG_DATA_WAIT2 | BCE_DRV_MSG_CODE_RESET);
4844
4845 /* Enable link state change interrupt generation. */
4846 REG_WR(sc, BCE_HC_ATTN_BITS_ENABLE, STATUS_ATTN_BITS_LINK_STATE);
4847
4848 /* Enable all remaining blocks in the MAC. */
4849 if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) ||
4850 (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716))
4851 REG_WR(sc, BCE_MISC_ENABLE_SET_BITS, BCE_MISC_ENABLE_DEFAULT_XI);
4852 else
4853 REG_WR(sc, BCE_MISC_ENABLE_SET_BITS, BCE_MISC_ENABLE_DEFAULT);
4854
4855 REG_RD(sc, BCE_MISC_ENABLE_SET_BITS);
4856 DELAY(20);
4857
4858 /* Save the current host coalescing block settings. */
4859 sc->hc_command = REG_RD(sc, BCE_HC_COMMAND);
4860
4861bce_blockinit_exit:
4862 DBEXIT(BCE_VERBOSE_RESET);
4863
4864 return (rc);
4865}
4866
4867
4868/****************************************************************************/
4869/* Encapsulate an mbuf into the rx_bd chain. */
4870/* */
4871/* Returns: */
4872/* 0 for success, positive value for failure. */
4873/****************************************************************************/
4874static int
4875bce_get_rx_buf(struct bce_softc *sc, struct mbuf *m, u16 *prod,
4876 u16 *chain_prod, u32 *prod_bseq)
4877{
4878 bus_dmamap_t map;
4879 bus_dma_segment_t segs[BCE_MAX_SEGMENTS];
4880 struct mbuf *m_new = NULL;
4881 struct rx_bd *rxbd;
4882 int nsegs, error, rc = 0;
4883#ifdef BCE_DEBUG
4884 u16 debug_chain_prod = *chain_prod;
4885#endif
4886
4887 DBENTER(BCE_EXTREME_RESET | BCE_EXTREME_RECV | BCE_EXTREME_LOAD);
4888
4889 /* Make sure the inputs are valid. */
4890 DBRUNIF((*chain_prod > MAX_RX_BD),
4891 BCE_PRINTF("%s(%d): RX producer out of range: 0x%04X > 0x%04X\n",
4892 __FILE__, __LINE__, *chain_prod, (u16) MAX_RX_BD));
4893
4894 DBPRINT(sc, BCE_EXTREME_RECV, "%s(enter): prod = 0x%04X, chain_prod = 0x%04X, "
4895 "prod_bseq = 0x%08X\n", __FUNCTION__, *prod, *chain_prod, *prod_bseq);
4896
4897 /* Update some debug statistic counters */
4898 DBRUNIF((sc->free_rx_bd < sc->rx_low_watermark),
4899 sc->rx_low_watermark = sc->free_rx_bd);
4900 DBRUNIF((sc->free_rx_bd == sc->max_rx_bd), sc->rx_empty_count++);
4901
4902 /* Check whether this is a new mbuf allocation. */
4903 if (m == NULL) {
4904
4905 /* Simulate an mbuf allocation failure. */
4906 DBRUNIF(DB_RANDOMTRUE(mbuf_alloc_failed_sim_control),
4907 sc->mbuf_alloc_failed_count++;
4908 sc->mbuf_alloc_failed_sim_count++;
4909 rc = ENOBUFS;
4910 goto bce_get_rx_buf_exit);
4911
4912 /* This is a new mbuf allocation. */
4913#ifdef ZERO_COPY_SOCKETS
4914 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
4915#else
4916 if (sc->rx_bd_mbuf_alloc_size <= MCLBYTES)
4917 m_new = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
4918 else
4919 m_new = m_getjcl(M_DONTWAIT, MT_DATA, M_PKTHDR, sc->rx_bd_mbuf_alloc_size);
4920#endif
4921
4922 if (m_new == NULL) {
4923 sc->mbuf_alloc_failed_count++;
4924 rc = ENOBUFS;
4925 goto bce_get_rx_buf_exit;
4926 }
4927
4928 DBRUN(sc->debug_rx_mbuf_alloc++);
4929 } else {
4930 /* Reuse an existing mbuf. */
4931 m_new = m;
4932 }
4933
4934 /* Make sure we have a valid packet header. */
4935 M_ASSERTPKTHDR(m_new);
4936
4937 /* Initialize the mbuf size and pad if necessary for alignment. */
4938 m_new->m_pkthdr.len = m_new->m_len = sc->rx_bd_mbuf_alloc_size;
4939 m_adj(m_new, sc->rx_bd_mbuf_align_pad);
4940
4941 /* ToDo: Consider calling m_fragment() to test error handling. */
4942
4943 /* Map the mbuf cluster into device memory. */
4944 map = sc->rx_mbuf_map[*chain_prod];
4945 error = bus_dmamap_load_mbuf_sg(sc->rx_mbuf_tag, map, m_new,
4946 segs, &nsegs, BUS_DMA_NOWAIT);
4947
4948 /* Handle any mapping errors. */
4949 if (error) {
4950 BCE_PRINTF("%s(%d): Error mapping mbuf into RX chain (%d)!\n",
4951 __FILE__, __LINE__, error);
4952
4953 sc->dma_map_addr_rx_failed_count++;
4954 m_freem(m_new);
4955
4956 DBRUN(sc->debug_rx_mbuf_alloc--);
4957
4958 rc = ENOBUFS;
4959 goto bce_get_rx_buf_exit;
4960 }
4961
4962 /* All mbufs must map to a single segment. */
4963 KASSERT(nsegs == 1, ("%s(): Too many segments returned (%d)!",
4964 __FUNCTION__, nsegs));
4965
4966 /* ToDo: Do we need bus_dmamap_sync(,,BUS_DMASYNC_PREREAD) here? */
4967
4968 /* Setup the rx_bd for the segment. */
4969 rxbd = &sc->rx_bd_chain[RX_PAGE(*chain_prod)][RX_IDX(*chain_prod)];
4970
4971 rxbd->rx_bd_haddr_lo = htole32(BCE_ADDR_LO(segs[0].ds_addr));
4972 rxbd->rx_bd_haddr_hi = htole32(BCE_ADDR_HI(segs[0].ds_addr));
4973 rxbd->rx_bd_len = htole32(segs[0].ds_len);
4974 rxbd->rx_bd_flags = htole32(RX_BD_FLAGS_START | RX_BD_FLAGS_END);
4975 *prod_bseq += segs[0].ds_len;
4976
4977 /* Save the mbuf and update our counter. */
4978 sc->rx_mbuf_ptr[*chain_prod] = m_new;
4979 sc->free_rx_bd -= nsegs;
4980
4981 DBRUNMSG(BCE_INSANE_RECV, bce_dump_rx_mbuf_chain(sc, debug_chain_prod,
4982 nsegs));
4983
4984 DBPRINT(sc, BCE_EXTREME_RECV, "%s(exit): prod = 0x%04X, chain_prod = 0x%04X, "
4985 "prod_bseq = 0x%08X\n", __FUNCTION__, *prod, *chain_prod, *prod_bseq);
4986
4987bce_get_rx_buf_exit:
4988 DBEXIT(BCE_EXTREME_RESET | BCE_EXTREME_RECV | BCE_EXTREME_LOAD);
4989
4990 return(rc);
4991}
4992
4993
4994#ifdef ZERO_COPY_SOCKETS
4995/****************************************************************************/
4996/* Encapsulate an mbuf cluster into the page chain. */
4997/* */
4998/* Returns: */
4999/* 0 for success, positive value for failure. */
5000/****************************************************************************/
5001static int
5002bce_get_pg_buf(struct bce_softc *sc, struct mbuf *m, u16 *prod,
5003 u16 *prod_idx)
5004{
5005 bus_dmamap_t map;
5006 bus_addr_t busaddr;
5007 struct mbuf *m_new = NULL;
5008 struct rx_bd *pgbd;
5009 int error, rc = 0;
5010#ifdef BCE_DEBUG
5011 u16 debug_prod_idx = *prod_idx;
5012#endif
5013
5014 DBENTER(BCE_EXTREME_RESET | BCE_EXTREME_RECV | BCE_EXTREME_LOAD);
5015
5016 /* Make sure the inputs are valid. */
5017 DBRUNIF((*prod_idx > MAX_PG_BD),
5018 BCE_PRINTF("%s(%d): page producer out of range: 0x%04X > 0x%04X\n",
5019 __FILE__, __LINE__, *prod_idx, (u16) MAX_PG_BD));
5020
5021 DBPRINT(sc, BCE_EXTREME_RECV, "%s(enter): prod = 0x%04X, "
5022 "chain_prod = 0x%04X\n", __FUNCTION__, *prod, *prod_idx);
5023
5024 /* Update counters if we've hit a new low or run out of pages. */
5025 DBRUNIF((sc->free_pg_bd < sc->pg_low_watermark),
5026 sc->pg_low_watermark = sc->free_pg_bd);
5027 DBRUNIF((sc->free_pg_bd == sc->max_pg_bd), sc->pg_empty_count++);
5028
5029 /* Check whether this is a new mbuf allocation. */
5030 if (m == NULL) {
5031
5032 /* Simulate an mbuf allocation failure. */
5033 DBRUNIF(DB_RANDOMTRUE(mbuf_alloc_failed_sim_control),
5034 sc->mbuf_alloc_failed_count++;
5035 sc->mbuf_alloc_failed_sim_count++;
5036 rc = ENOBUFS;
5037 goto bce_get_pg_buf_exit);
5038
5039 /* This is a new mbuf allocation. */
5040 m_new = m_getcl(M_DONTWAIT, MT_DATA, 0);
5041 if (m_new == NULL) {
5042 sc->mbuf_alloc_failed_count++;
5043 rc = ENOBUFS;
5044 goto bce_get_pg_buf_exit;
5045 }
5046
5047 DBRUN(sc->debug_pg_mbuf_alloc++);
5048 } else {
5049 /* Reuse an existing mbuf. */
5050 m_new = m;
5051 m_new->m_data = m_new->m_ext.ext_buf;
5052 }
5053
5054 m_new->m_len = sc->pg_bd_mbuf_alloc_size;
5055
5056 /* ToDo: Consider calling m_fragment() to test error handling. */
5057
5058 /* Map the mbuf cluster into device memory. */
5059 map = sc->pg_mbuf_map[*prod_idx];
5060 error = bus_dmamap_load(sc->pg_mbuf_tag, map, mtod(m_new, void *),
5061 sc->pg_bd_mbuf_alloc_size, bce_dma_map_addr, &busaddr, BUS_DMA_NOWAIT);
5062
5063 /* Handle any mapping errors. */
5064 if (error) {
5065 BCE_PRINTF("%s(%d): Error mapping mbuf into page chain!\n",
5066 __FILE__, __LINE__);
5067
5068 m_freem(m_new);
5069 DBRUN(sc->debug_pg_mbuf_alloc--);
5070
5071 rc = ENOBUFS;
5072 goto bce_get_pg_buf_exit;
5073 }
5074
5075 /* ToDo: Do we need bus_dmamap_sync(,,BUS_DMASYNC_PREREAD) here? */
5076
5077 /*
5078 * The page chain uses the same rx_bd data structure
5079 * as the receive chain but doesn't require a byte sequence (bseq).
5080 */
5081 pgbd = &sc->pg_bd_chain[PG_PAGE(*prod_idx)][PG_IDX(*prod_idx)];
5082
5083 pgbd->rx_bd_haddr_lo = htole32(BCE_ADDR_LO(busaddr));
5084 pgbd->rx_bd_haddr_hi = htole32(BCE_ADDR_HI(busaddr));
5085 pgbd->rx_bd_len = htole32(sc->pg_bd_mbuf_alloc_size);
5086 pgbd->rx_bd_flags = htole32(RX_BD_FLAGS_START | RX_BD_FLAGS_END);
5087
5088 /* Save the mbuf and update our counter. */
5089 sc->pg_mbuf_ptr[*prod_idx] = m_new;
5090 sc->free_pg_bd--;
5091
5092 DBRUNMSG(BCE_INSANE_RECV, bce_dump_pg_mbuf_chain(sc, debug_prod_idx,
5093 1));
5094
5095 DBPRINT(sc, BCE_EXTREME_RECV, "%s(exit): prod = 0x%04X, "
5096 "prod_idx = 0x%04X\n", __FUNCTION__, *prod, *prod_idx);
5097
5098bce_get_pg_buf_exit:
5099 DBEXIT(BCE_EXTREME_RESET | BCE_EXTREME_RECV | BCE_EXTREME_LOAD);
5100
5101 return(rc);
5102}
5103#endif /* ZERO_COPY_SOCKETS */
5104
5105/****************************************************************************/
5106/* Initialize the TX context memory. */
5107/* */
5108/* Returns: */
5109/* Nothing */
5110/****************************************************************************/
5111static void
5112bce_init_tx_context(struct bce_softc *sc)
5113{
5114 u32 val;
5115
5116 DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_SEND | BCE_VERBOSE_CTX);
5117
5118 /* Initialize the context ID for an L2 TX chain. */
5119 if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) ||
5120 (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716)) {
5121 /* Set the CID type to support an L2 connection. */
5122 val = BCE_L2CTX_TX_TYPE_TYPE_L2_XI | BCE_L2CTX_TX_TYPE_SIZE_L2_XI;
5123 CTX_WR(sc, GET_CID_ADDR(TX_CID), BCE_L2CTX_TX_TYPE_XI, val);
5124 val = BCE_L2CTX_TX_CMD_TYPE_TYPE_L2_XI | (8 << 16);
5125 CTX_WR(sc, GET_CID_ADDR(TX_CID), BCE_L2CTX_TX_CMD_TYPE_XI, val);
5126
5127 /* Point the hardware to the first page in the chain. */
5128 val = BCE_ADDR_HI(sc->tx_bd_chain_paddr[0]);
5129 CTX_WR(sc, GET_CID_ADDR(TX_CID), BCE_L2CTX_TX_TBDR_BHADDR_HI_XI, val);
5130 val = BCE_ADDR_LO(sc->tx_bd_chain_paddr[0]);
5131 CTX_WR(sc, GET_CID_ADDR(TX_CID), BCE_L2CTX_TX_TBDR_BHADDR_LO_XI, val);
5132 } else {
5133 /* Set the CID type to support an L2 connection. */
5134 val = BCE_L2CTX_TX_TYPE_TYPE_L2 | BCE_L2CTX_TX_TYPE_SIZE_L2;
5135 CTX_WR(sc, GET_CID_ADDR(TX_CID), BCE_L2CTX_TX_TYPE, val);
5136 val = BCE_L2CTX_TX_CMD_TYPE_TYPE_L2 | (8 << 16);
5137 CTX_WR(sc, GET_CID_ADDR(TX_CID), BCE_L2CTX_TX_CMD_TYPE, val);
5138
5139 /* Point the hardware to the first page in the chain. */
5140 val = BCE_ADDR_HI(sc->tx_bd_chain_paddr[0]);
5141 CTX_WR(sc, GET_CID_ADDR(TX_CID), BCE_L2CTX_TX_TBDR_BHADDR_HI, val);
5142 val = BCE_ADDR_LO(sc->tx_bd_chain_paddr[0]);
5143 CTX_WR(sc, GET_CID_ADDR(TX_CID), BCE_L2CTX_TX_TBDR_BHADDR_LO, val);
5144 }
5145
5146 DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_SEND | BCE_VERBOSE_CTX);
5147}
5148
5149
5150/****************************************************************************/
5151/* Allocate memory and initialize the TX data structures. */
5152/* */
5153/* Returns: */
5154/* 0 for success, positive value for failure. */
5155/****************************************************************************/
5156static int
5157bce_init_tx_chain(struct bce_softc *sc)
5158{
5159 struct tx_bd *txbd;
5160 int i, rc = 0;
5161
5162 DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_SEND | BCE_VERBOSE_LOAD);
5163
5164 /* Set the initial TX producer/consumer indices. */
5165 sc->tx_prod = 0;
5166 sc->tx_cons = 0;
5167 sc->tx_prod_bseq = 0;
5168 sc->used_tx_bd = 0;
5169 sc->max_tx_bd = USABLE_TX_BD;
5170 DBRUN(sc->tx_hi_watermark = USABLE_TX_BD);
5171 DBRUN(sc->tx_full_count = 0);
5172
5173 /*
5174 * The NetXtreme II supports a linked-list structre called
5175 * a Buffer Descriptor Chain (or BD chain). A BD chain
5176 * consists of a series of 1 or more chain pages, each of which
5177 * consists of a fixed number of BD entries.
5178 * The last BD entry on each page is a pointer to the next page
5179 * in the chain, and the last pointer in the BD chain
5180 * points back to the beginning of the chain.
5181 */
5182
5183 /* Set the TX next pointer chain entries. */
5184 for (i = 0; i < TX_PAGES; i++) {
5185 int j;
5186
5187 txbd = &sc->tx_bd_chain[i][USABLE_TX_BD_PER_PAGE];
5188
5189 /* Check if we've reached the last page. */
5190 if (i == (TX_PAGES - 1))
5191 j = 0;
5192 else
5193 j = i + 1;
5194
5195 txbd->tx_bd_haddr_hi = htole32(BCE_ADDR_HI(sc->tx_bd_chain_paddr[j]));
5196 txbd->tx_bd_haddr_lo = htole32(BCE_ADDR_LO(sc->tx_bd_chain_paddr[j]));
5197 }
5198
5199 bce_init_tx_context(sc);
5200
5201 DBRUNMSG(BCE_INSANE_SEND, bce_dump_tx_chain(sc, 0, TOTAL_TX_BD));
5202 DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_SEND | BCE_VERBOSE_LOAD);
5203
5204 return(rc);
5205}
5206
5207
5208/****************************************************************************/
5209/* Free memory and clear the TX data structures. */
5210/* */
5211/* Returns: */
5212/* Nothing. */
5213/****************************************************************************/
5214static void
5215bce_free_tx_chain(struct bce_softc *sc)
5216{
5217 int i;
5218
5219 DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_SEND | BCE_VERBOSE_UNLOAD);
5220
5221 /* Unmap, unload, and free any mbufs still in the TX mbuf chain. */
5222 for (i = 0; i < TOTAL_TX_BD; i++) {
5223 if (sc->tx_mbuf_ptr[i] != NULL) {
5224 if (sc->tx_mbuf_map[i] != NULL)
5225 bus_dmamap_sync(sc->tx_mbuf_tag, sc->tx_mbuf_map[i],
5226 BUS_DMASYNC_POSTWRITE);
5227 m_freem(sc->tx_mbuf_ptr[i]);
5228 sc->tx_mbuf_ptr[i] = NULL;
5229 DBRUN(sc->debug_tx_mbuf_alloc--);
5230 }
5231 }
5232
5233 /* Clear each TX chain page. */
5234 for (i = 0; i < TX_PAGES; i++)
5235 bzero((char *)sc->tx_bd_chain[i], BCE_TX_CHAIN_PAGE_SZ);
5236
5237 sc->used_tx_bd = 0;
5238
5239 /* Check if we lost any mbufs in the process. */
5240 DBRUNIF((sc->debug_tx_mbuf_alloc),
5241 BCE_PRINTF("%s(%d): Memory leak! Lost %d mbufs "
5242 "from tx chain!\n",
5243 __FILE__, __LINE__, sc->debug_tx_mbuf_alloc));
5244
5245 DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_SEND | BCE_VERBOSE_UNLOAD);
5246}
5247
5248
5249/****************************************************************************/
5250/* Initialize the RX context memory. */
5251/* */
5252/* Returns: */
5253/* Nothing */
5254/****************************************************************************/
5255static void
5256bce_init_rx_context(struct bce_softc *sc)
5257{
5258 u32 val;
5259
5260 DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_CTX);
5261
5262 /* Initialize the type, size, and BD cache levels for the RX context. */
5263 val = BCE_L2CTX_RX_CTX_TYPE_CTX_BD_CHN_TYPE_VALUE |
5264 BCE_L2CTX_RX_CTX_TYPE_SIZE_L2 |
5265 (0x02 << BCE_L2CTX_RX_BD_PRE_READ_SHIFT);
5266
5267 /*
5268 * Set the level for generating pause frames
5269 * when the number of available rx_bd's gets
5270 * too low (the low watermark) and the level
5271 * when pause frames can be stopped (the high
5272 * watermark).
5273 */
5274 if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) ||
5275 (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716)) {
5276 u32 lo_water, hi_water;
5277
5278 lo_water = BCE_L2CTX_RX_LO_WATER_MARK_DEFAULT;
5279 hi_water = USABLE_RX_BD / 4;
5280
5281 lo_water /= BCE_L2CTX_RX_LO_WATER_MARK_SCALE;
5282 hi_water /= BCE_L2CTX_RX_HI_WATER_MARK_SCALE;
5283
5284 if (hi_water > 0xf)
5285 hi_water = 0xf;
5286 else if (hi_water == 0)
5287 lo_water = 0;
5288 val |= (lo_water << BCE_L2CTX_RX_LO_WATER_MARK_SHIFT) |
5289 (hi_water << BCE_L2CTX_RX_HI_WATER_MARK_SHIFT);
5290 }
5291
5292 CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_RX_CTX_TYPE, val);
5293
5294 /* Setup the MQ BIN mapping for l2_ctx_host_bseq. */
5295 if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) ||
5296 (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716)) {
5297 val = REG_RD(sc, BCE_MQ_MAP_L2_5);
5298 REG_WR(sc, BCE_MQ_MAP_L2_5, val | BCE_MQ_MAP_L2_5_ARM);
5299 }
5300
5301 /* Point the hardware to the first page in the chain. */
5302 val = BCE_ADDR_HI(sc->rx_bd_chain_paddr[0]);
5303 CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_RX_NX_BDHADDR_HI, val);
5304 val = BCE_ADDR_LO(sc->rx_bd_chain_paddr[0]);
5305 CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_RX_NX_BDHADDR_LO, val);
5306
5307 DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_CTX);
5308}
5309
5310
5311/****************************************************************************/
5312/* Allocate memory and initialize the RX data structures. */
5313/* */
5314/* Returns: */
5315/* 0 for success, positive value for failure. */
5316/****************************************************************************/
5317static int
5318bce_init_rx_chain(struct bce_softc *sc)
5319{
5320 struct rx_bd *rxbd;
5321 int i, rc = 0;
5322
5323 DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_LOAD |
5324 BCE_VERBOSE_CTX);
5325
5326 /* Initialize the RX producer and consumer indices. */
5327 sc->rx_prod = 0;
5328 sc->rx_cons = 0;
5329 sc->rx_prod_bseq = 0;
5330 sc->free_rx_bd = USABLE_RX_BD;
5331 sc->max_rx_bd = USABLE_RX_BD;
5332 DBRUN(sc->rx_low_watermark = sc->max_rx_bd);
5333 DBRUN(sc->rx_empty_count = 0);
5334
5335 /* Initialize the RX next pointer chain entries. */
5336 for (i = 0; i < RX_PAGES; i++) {
5337 int j;
5338
5339 rxbd = &sc->rx_bd_chain[i][USABLE_RX_BD_PER_PAGE];
5340
5341 /* Check if we've reached the last page. */
5342 if (i == (RX_PAGES - 1))
5343 j = 0;
5344 else
5345 j = i + 1;
5346
5347 /* Setup the chain page pointers. */
5348 rxbd->rx_bd_haddr_hi = htole32(BCE_ADDR_HI(sc->rx_bd_chain_paddr[j]));
5349 rxbd->rx_bd_haddr_lo = htole32(BCE_ADDR_LO(sc->rx_bd_chain_paddr[j]));
5350 }
5351
5352 /* Fill up the RX chain. */
5353 bce_fill_rx_chain(sc);
5354
5355 for (i = 0; i < RX_PAGES; i++) {
5356 bus_dmamap_sync(sc->rx_bd_chain_tag, sc->rx_bd_chain_map[i],
5357 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
5358 }
5359
5360 bce_init_rx_context(sc);
5361
5362 DBRUNMSG(BCE_EXTREME_RECV, bce_dump_rx_chain(sc, 0, TOTAL_RX_BD));
5363 DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_LOAD |
5364 BCE_VERBOSE_CTX);
5365 /* ToDo: Are there possible failure modes here? */
5366 return(rc);
5367}
5368
5369
5370/****************************************************************************/
5371/* Add mbufs to the RX chain until its full or an mbuf allocation error */
5372/* occurs. */
5373/* */
5374/* Returns: */
5375/* Nothing */
5376/****************************************************************************/
5377static void
5378bce_fill_rx_chain(struct bce_softc *sc)
5379{
5380 u16 prod, prod_idx;
5381 u32 prod_bseq;
5382
5383 DBENTER(BCE_VERBOSE_RESET | BCE_EXTREME_RECV | BCE_VERBOSE_LOAD |
5384 BCE_VERBOSE_CTX);
5385
5386 /* Get the RX chain producer indices. */
5387 prod = sc->rx_prod;
5388 prod_bseq = sc->rx_prod_bseq;
5389
5390 /* Keep filling the RX chain until it's full. */
5391 while (sc->free_rx_bd > 0) {
5392 prod_idx = RX_CHAIN_IDX(prod);
5393 if (bce_get_rx_buf(sc, NULL, &prod, &prod_idx, &prod_bseq)) {
5394 /* Bail out if we can't add an mbuf to the chain. */
5395 break;
5396 }
5397 prod = NEXT_RX_BD(prod);
5398 }
5399
5400 /* Save the RX chain producer indices. */
5401 sc->rx_prod = prod;
5402 sc->rx_prod_bseq = prod_bseq;
5403
5404 DBRUNIF(((prod & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE),
5405 BCE_PRINTF("%s(): Invalid rx_prod value: 0x%04X\n",
5406 __FUNCTION__, sc->rx_prod));
5407
5408 /* Write the mailbox and tell the chip about the waiting rx_bd's. */
5409 REG_WR16(sc, MB_GET_CID_ADDR(RX_CID) + BCE_L2MQ_RX_HOST_BDIDX,
5410 sc->rx_prod);
5411 REG_WR(sc, MB_GET_CID_ADDR(RX_CID) + BCE_L2MQ_RX_HOST_BSEQ,
5412 sc->rx_prod_bseq);
5413
5414 DBEXIT(BCE_VERBOSE_RESET | BCE_EXTREME_RECV | BCE_VERBOSE_LOAD |
5415 BCE_VERBOSE_CTX);
5416}
5417
5418
5419/****************************************************************************/
5420/* Free memory and clear the RX data structures. */
5421/* */
5422/* Returns: */
5423/* Nothing. */
5424/****************************************************************************/
5425static void
5426bce_free_rx_chain(struct bce_softc *sc)
5427{
5428 int i;
5429
5430 DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_UNLOAD);
5431
5432 /* Free any mbufs still in the RX mbuf chain. */
5433 for (i = 0; i < TOTAL_RX_BD; i++) {
5434 if (sc->rx_mbuf_ptr[i] != NULL) {
5435 if (sc->rx_mbuf_map[i] != NULL)
5436 bus_dmamap_sync(sc->rx_mbuf_tag, sc->rx_mbuf_map[i],
5437 BUS_DMASYNC_POSTREAD);
5438 m_freem(sc->rx_mbuf_ptr[i]);
5439 sc->rx_mbuf_ptr[i] = NULL;
5440 DBRUN(sc->debug_rx_mbuf_alloc--);
5441 }
5442 }
5443
5444 /* Clear each RX chain page. */
5445 for (i = 0; i < RX_PAGES; i++)
5446 bzero((char *)sc->rx_bd_chain[i], BCE_RX_CHAIN_PAGE_SZ);
5447
5448 sc->free_rx_bd = sc->max_rx_bd;
5449
5450 /* Check if we lost any mbufs in the process. */
5451 DBRUNIF((sc->debug_rx_mbuf_alloc),
5452 BCE_PRINTF("%s(): Memory leak! Lost %d mbufs from rx chain!\n",
5453 __FUNCTION__, sc->debug_rx_mbuf_alloc));
5454
5455 DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_UNLOAD);
5456}
5457
5458
5459#ifdef ZERO_COPY_SOCKETS
5460/****************************************************************************/
5461/* Allocate memory and initialize the page data structures. */
5462/* Assumes that bce_init_rx_chain() has not already been called. */
5463/* */
5464/* Returns: */
5465/* 0 for success, positive value for failure. */
5466/****************************************************************************/
5467static int
5468bce_init_pg_chain(struct bce_softc *sc)
5469{
5470 struct rx_bd *pgbd;
5471 int i, rc = 0;
5472 u32 val;
5473
5474 DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_LOAD |
5475 BCE_VERBOSE_CTX);
5476
5477 /* Initialize the page producer and consumer indices. */
5478 sc->pg_prod = 0;
5479 sc->pg_cons = 0;
5480 sc->free_pg_bd = USABLE_PG_BD;
5481 sc->max_pg_bd = USABLE_PG_BD;
5482 DBRUN(sc->pg_low_watermark = sc->max_pg_bd);
5483 DBRUN(sc->pg_empty_count = 0);
5484
5485 /* Initialize the page next pointer chain entries. */
5486 for (i = 0; i < PG_PAGES; i++) {
5487 int j;
5488
5489 pgbd = &sc->pg_bd_chain[i][USABLE_PG_BD_PER_PAGE];
5490
5491 /* Check if we've reached the last page. */
5492 if (i == (PG_PAGES - 1))
5493 j = 0;
5494 else
5495 j = i + 1;
5496
5497 /* Setup the chain page pointers. */
5498 pgbd->rx_bd_haddr_hi = htole32(BCE_ADDR_HI(sc->pg_bd_chain_paddr[j]));
5499 pgbd->rx_bd_haddr_lo = htole32(BCE_ADDR_LO(sc->pg_bd_chain_paddr[j]));
5500 }
5501
5502 /* Setup the MQ BIN mapping for host_pg_bidx. */
5503 if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) ||
5504 (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716))
5505 REG_WR(sc, BCE_MQ_MAP_L2_3, BCE_MQ_MAP_L2_3_DEFAULT);
5506
5507 CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_RX_PG_BUF_SIZE, 0);
5508
5509 /* Configure the rx_bd and page chain mbuf cluster size. */
5510 val = (sc->rx_bd_mbuf_data_len << 16) | sc->pg_bd_mbuf_alloc_size;
5511 CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_RX_PG_BUF_SIZE, val);
5512
5513 /* Configure the context reserved for jumbo support. */
5514 CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_RX_RBDC_KEY,
5515 BCE_L2CTX_RX_RBDC_JUMBO_KEY);
5516
5517 /* Point the hardware to the first page in the page chain. */
5518 val = BCE_ADDR_HI(sc->pg_bd_chain_paddr[0]);
5519 CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_RX_NX_PG_BDHADDR_HI, val);
5520 val = BCE_ADDR_LO(sc->pg_bd_chain_paddr[0]);
5521 CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_RX_NX_PG_BDHADDR_LO, val);
5522
5523 /* Fill up the page chain. */
5524 bce_fill_pg_chain(sc);
5525
5526 for (i = 0; i < PG_PAGES; i++) {
5527 bus_dmamap_sync(sc->pg_bd_chain_tag, sc->pg_bd_chain_map[i],
5528 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
5529 }
5530
5531 DBRUNMSG(BCE_EXTREME_RECV, bce_dump_pg_chain(sc, 0, TOTAL_PG_BD));
5532 DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_LOAD |
5533 BCE_VERBOSE_CTX);
5534 return(rc);
5535}
5536
5537
5538/****************************************************************************/
5539/* Add mbufs to the page chain until its full or an mbuf allocation error */
5540/* occurs. */
5541/* */
5542/* Returns: */
5543/* Nothing */
5544/****************************************************************************/
5545static void
5546bce_fill_pg_chain(struct bce_softc *sc)
5547{
5548 u16 prod, prod_idx;
5549
5550 DBENTER(BCE_VERBOSE_RESET | BCE_EXTREME_RECV | BCE_VERBOSE_LOAD |
5551 BCE_VERBOSE_CTX);
5552
5553 /* Get the page chain prodcuer index. */
5554 prod = sc->pg_prod;
5555
5556 /* Keep filling the page chain until it's full. */
5557 while (sc->free_pg_bd > 0) {
5558 prod_idx = PG_CHAIN_IDX(prod);
5559 if (bce_get_pg_buf(sc, NULL, &prod, &prod_idx)) {
5560 /* Bail out if we can't add an mbuf to the chain. */
5561 break;
5562 }
5563 prod = NEXT_PG_BD(prod);
5564 }
5565
5566 /* Save the page chain producer index. */
5567 sc->pg_prod = prod;
5568
5569 DBRUNIF(((prod & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE),
5570 BCE_PRINTF("%s(): Invalid pg_prod value: 0x%04X\n",
5571 __FUNCTION__, sc->pg_prod));
5572
5573 /*
5574 * Write the mailbox and tell the chip about
5575 * the new rx_bd's in the page chain.
5576 */
5577 REG_WR16(sc, MB_GET_CID_ADDR(RX_CID) + BCE_L2MQ_RX_HOST_PG_BDIDX,
5578 sc->pg_prod);
5579
5580 DBEXIT(BCE_VERBOSE_RESET | BCE_EXTREME_RECV | BCE_VERBOSE_LOAD |
5581 BCE_VERBOSE_CTX);
5582}
5583
5584
5585/****************************************************************************/
5586/* Free memory and clear the RX data structures. */
5587/* */
5588/* Returns: */
5589/* Nothing. */
5590/****************************************************************************/
5591static void
5592bce_free_pg_chain(struct bce_softc *sc)
5593{
5594 int i;
5595
5596 DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_UNLOAD);
5597
5598 /* Free any mbufs still in the mbuf page chain. */
5599 for (i = 0; i < TOTAL_PG_BD; i++) {
5600 if (sc->pg_mbuf_ptr[i] != NULL) {
5601 if (sc->pg_mbuf_map[i] != NULL)
5602 bus_dmamap_sync(sc->pg_mbuf_tag, sc->pg_mbuf_map[i],
5603 BUS_DMASYNC_POSTREAD);
5604 m_freem(sc->pg_mbuf_ptr[i]);
5605 sc->pg_mbuf_ptr[i] = NULL;
5606 DBRUN(sc->debug_pg_mbuf_alloc--);
5607 }
5608 }
5609
5610 /* Clear each page chain pages. */
5611 for (i = 0; i < PG_PAGES; i++)
5612 bzero((char *)sc->pg_bd_chain[i], BCE_PG_CHAIN_PAGE_SZ);
5613
5614 sc->free_pg_bd = sc->max_pg_bd;
5615
5616 /* Check if we lost any mbufs in the process. */
5617 DBRUNIF((sc->debug_pg_mbuf_alloc),
5618 BCE_PRINTF("%s(): Memory leak! Lost %d mbufs from page chain!\n",
5619 __FUNCTION__, sc->debug_pg_mbuf_alloc));
5620
5621 DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_UNLOAD);
5622}
5623#endif /* ZERO_COPY_SOCKETS */
5624
5625
5626/****************************************************************************/
5627/* Set media options. */
5628/* */
5629/* Returns: */
5630/* 0 for success, positive value for failure. */
5631/****************************************************************************/
5632static int
5633bce_ifmedia_upd(struct ifnet *ifp)
5634{
5635 struct bce_softc *sc = ifp->if_softc;
5636
5637 DBENTER(BCE_VERBOSE);
5638
5639 BCE_LOCK(sc);
5640 bce_ifmedia_upd_locked(ifp);
5641 BCE_UNLOCK(sc);
5642
5643 DBEXIT(BCE_VERBOSE);
5644 return (0);
5645}
5646
5647
5648/****************************************************************************/
5649/* Set media options. */
5650/* */
5651/* Returns: */
5652/* Nothing. */
5653/****************************************************************************/
5654static void
5655bce_ifmedia_upd_locked(struct ifnet *ifp)
5656{
5657 struct bce_softc *sc = ifp->if_softc;
5658 struct mii_data *mii;
5659
5660 DBENTER(BCE_VERBOSE);
5661
5662 BCE_LOCK_ASSERT(sc);
5663
5664 mii = device_get_softc(sc->bce_miibus);
5665
5666 /* Make sure the MII bus has been enumerated. */
5667 if (mii) {
5668 sc->bce_link = 0;
5669 if (mii->mii_instance) {
5670 struct mii_softc *miisc;
5671
5672 LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
5673 mii_phy_reset(miisc);
5674 }
5675 mii_mediachg(mii);
5676 }
5677
5678 DBEXIT(BCE_VERBOSE);
5679}
5680
5681
5682/****************************************************************************/
5683/* Reports current media status. */
5684/* */
5685/* Returns: */
5686/* Nothing. */
5687/****************************************************************************/
5688static void
5689bce_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
5690{
5691 struct bce_softc *sc = ifp->if_softc;
5692 struct mii_data *mii;
5693
5694 DBENTER(BCE_VERBOSE);
5695
5696 BCE_LOCK(sc);
5697
5698 mii = device_get_softc(sc->bce_miibus);
5699
5700 mii_pollstat(mii);
5701 ifmr->ifm_active = mii->mii_media_active;
5702 ifmr->ifm_status = mii->mii_media_status;
5703
5704 BCE_UNLOCK(sc);
5705
5706 DBEXIT(BCE_VERBOSE);
5707}
5708
5709
5710/****************************************************************************/
5711/* Handles PHY generated interrupt events. */
5712/* */
5713/* Returns: */
5714/* Nothing. */
5715/****************************************************************************/
5716static void
5717bce_phy_intr(struct bce_softc *sc)
5718{
5719 u32 new_link_state, old_link_state;
5720
5721 DBENTER(BCE_VERBOSE_PHY | BCE_VERBOSE_INTR);
5722
5723 new_link_state = sc->status_block->status_attn_bits &
5724 STATUS_ATTN_BITS_LINK_STATE;
5725 old_link_state = sc->status_block->status_attn_bits_ack &
5726 STATUS_ATTN_BITS_LINK_STATE;
5727
5728 /* Handle any changes if the link state has changed. */
5729 if (new_link_state != old_link_state) {
5730
5731 /* Update the status_attn_bits_ack field in the status block. */
5732 if (new_link_state) {
5733 REG_WR(sc, BCE_PCICFG_STATUS_BIT_SET_CMD,
5734 STATUS_ATTN_BITS_LINK_STATE);
5735 DBPRINT(sc, BCE_INFO_PHY, "%s(): Link is now UP.\n",
5736 __FUNCTION__);
5737 }
5738 else {
5739 REG_WR(sc, BCE_PCICFG_STATUS_BIT_CLEAR_CMD,
5740 STATUS_ATTN_BITS_LINK_STATE);
5741 DBPRINT(sc, BCE_INFO_PHY, "%s(): Link is now DOWN.\n",
5742 __FUNCTION__);
5743 }
5744
5745 /*
5746 * Assume link is down and allow
5747 * tick routine to update the state
5748 * based on the actual media state.
5749 */
5750 sc->bce_link = 0;
5751 callout_stop(&sc->bce_tick_callout);
5752 bce_tick(sc);
5753 }
5754
5755 /* Acknowledge the link change interrupt. */
5756 REG_WR(sc, BCE_EMAC_STATUS, BCE_EMAC_STATUS_LINK_CHANGE);
5757
5758 DBEXIT(BCE_VERBOSE_PHY | BCE_VERBOSE_INTR);
5759}
5760
5761
5762/****************************************************************************/
5763/* Reads the receive consumer value from the status block (skipping over */
5764/* chain page pointer if necessary). */
5765/* */
5766/* Returns: */
5767/* hw_cons */
5768/****************************************************************************/
5769static inline u16
5770bce_get_hw_rx_cons(struct bce_softc *sc)
5771{
5772 u16 hw_cons;
5773
5774 rmb();
5775 hw_cons = sc->status_block->status_rx_quick_consumer_index0;
5776 if ((hw_cons & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE)
5777 hw_cons++;
5778
5779 return hw_cons;
5780}
5781
5782/****************************************************************************/
5783/* Handles received frame interrupt events. */
5784/* */
5785/* Returns: */
5786/* Nothing. */
5787/****************************************************************************/
5788static void
5789bce_rx_intr(struct bce_softc *sc)
5790{
5791 struct ifnet *ifp = sc->bce_ifp;
5792 struct l2_fhdr *l2fhdr;
5793 unsigned int pkt_len;
5794 u16 sw_rx_cons, sw_rx_cons_idx, hw_rx_cons;
5795 u32 status;
5796#ifdef ZERO_COPY_SOCKETS
5797 unsigned int rem_len;
5798 u16 sw_pg_cons, sw_pg_cons_idx;
5799#endif
5800
5801 DBENTER(BCE_VERBOSE_RECV | BCE_VERBOSE_INTR);
5802 DBRUN(sc->rx_interrupts++);
5803 DBPRINT(sc, BCE_EXTREME_RECV, "%s(enter): rx_prod = 0x%04X, "
5804 "rx_cons = 0x%04X, rx_prod_bseq = 0x%08X\n",
5805 __FUNCTION__, sc->rx_prod, sc->rx_cons, sc->rx_prod_bseq);
5806
5807 /* Prepare the RX chain pages to be accessed by the host CPU. */
5808 for (int i = 0; i < RX_PAGES; i++)
5809 bus_dmamap_sync(sc->rx_bd_chain_tag,
5810 sc->rx_bd_chain_map[i], BUS_DMASYNC_POSTREAD);
5811
5812#ifdef ZERO_COPY_SOCKETS
5813 /* Prepare the page chain pages to be accessed by the host CPU. */
5814 for (int i = 0; i < PG_PAGES; i++)
5815 bus_dmamap_sync(sc->pg_bd_chain_tag,
5816 sc->pg_bd_chain_map[i], BUS_DMASYNC_POSTREAD);
5817#endif
5818
5819 /* Get the hardware's view of the RX consumer index. */
5820 hw_rx_cons = sc->hw_rx_cons = bce_get_hw_rx_cons(sc);
5821
5822 /* Get working copies of the driver's view of the consumer indices. */
5823 sw_rx_cons = sc->rx_cons;
5824#ifdef ZERO_COPY_SOCKETS
5825 sw_pg_cons = sc->pg_cons;
5826#endif
5827
5828 /* Update some debug statistics counters */
5829 DBRUNIF((sc->free_rx_bd < sc->rx_low_watermark),
5830 sc->rx_low_watermark = sc->free_rx_bd);
5831 DBRUNIF((sc->free_rx_bd == sc->max_rx_bd), sc->rx_empty_count++);
5832
5833 /* Scan through the receive chain as long as there is work to do */
5834 /* ToDo: Consider setting a limit on the number of packets processed. */
5835 rmb();
5836 while (sw_rx_cons != hw_rx_cons) {
5837 struct mbuf *m0;
5838
5839 /* Convert the producer/consumer indices to an actual rx_bd index. */
5840 sw_rx_cons_idx = RX_CHAIN_IDX(sw_rx_cons);
5841
5842 /* Unmap the mbuf from DMA space. */
5843 bus_dmamap_sync(sc->rx_mbuf_tag, sc->rx_mbuf_map[sw_rx_cons_idx],
5844 BUS_DMASYNC_POSTREAD);
5845 bus_dmamap_unload(sc->rx_mbuf_tag,
5846 sc->rx_mbuf_map[sw_rx_cons_idx]);
5847
5848 /* Remove the mbuf from the RX chain. */
5849 m0 = sc->rx_mbuf_ptr[sw_rx_cons_idx];
5850 sc->rx_mbuf_ptr[sw_rx_cons_idx] = NULL;
5851 DBRUN(sc->debug_rx_mbuf_alloc--);
5852 sc->free_rx_bd++;
5853
5854 /*
5855 * Frames received on the NetXteme II are prepended with an
5856 * l2_fhdr structure which provides status information about
5857 * the received frame (including VLAN tags and checksum info).
5858 * The frames are also automatically adjusted to align the IP
5859 * header (i.e. two null bytes are inserted before the Ethernet
5860 * header). As a result the data DMA'd by the controller into
5861 * the mbuf is as follows:
5862 *
5863 * +---------+-----+---------------------+-----+
5864 * | l2_fhdr | pad | packet data | FCS |
5865 * +---------+-----+---------------------+-----+
5866 *
5867 * The l2_fhdr needs to be checked and skipped and the FCS needs
5868 * to be stripped before sending the packet up the stack.
5869 */
5870 l2fhdr = mtod(m0, struct l2_fhdr *);
5871
5872 /* Get the packet data + FCS length and the status. */
5873 pkt_len = l2fhdr->l2_fhdr_pkt_len;
5874 status = l2fhdr->l2_fhdr_status;
5875
5876 /*
5877 * Skip over the l2_fhdr and pad, resulting in the
5878 * following data in the mbuf:
5879 * +---------------------+-----+
5880 * | packet data | FCS |
5881 * +---------------------+-----+
5882 */
5883 m_adj(m0, sizeof(struct l2_fhdr) + ETHER_ALIGN);
5884
5885#ifdef ZERO_COPY_SOCKETS
5886 /*
5887 * Check whether the received frame fits in a single
5888 * mbuf or not (i.e. packet data + FCS <=
5889 * sc->rx_bd_mbuf_data_len bytes).
5890 */
5891 if (pkt_len > m0->m_len) {
5892 /*
5893 * The received frame is larger than a single mbuf.
5894 * If the frame was a TCP frame then only the TCP
5895 * header is placed in the mbuf, the remaining
5896 * payload (including FCS) is placed in the page
5897 * chain, the SPLIT flag is set, and the header
5898 * length is placed in the IP checksum field.
5899 * If the frame is not a TCP frame then the mbuf
5900 * is filled and the remaining bytes are placed
5901 * in the page chain.
5902 */
5903
5904 DBPRINT(sc, BCE_INFO_RECV, "%s(): Found a large packet.\n",
5905 __FUNCTION__);
5906
5907 /*
5908 * When the page chain is enabled and the TCP
5909 * header has been split from the TCP payload,
5910 * the ip_xsum structure will reflect the length
5911 * of the TCP header, not the IP checksum. Set
5912 * the packet length of the mbuf accordingly.
5913 */
5914 if (status & L2_FHDR_STATUS_SPLIT)
5915 m0->m_len = l2fhdr->l2_fhdr_ip_xsum;
5916
5917 rem_len = pkt_len - m0->m_len;
5918
5919 /* Pull mbufs off the page chain for the remaining data. */
5920 while (rem_len > 0) {
5921 struct mbuf *m_pg;
5922
5923 sw_pg_cons_idx = PG_CHAIN_IDX(sw_pg_cons);
5924
5925 /* Remove the mbuf from the page chain. */
5926 m_pg = sc->pg_mbuf_ptr[sw_pg_cons_idx];
5927 sc->pg_mbuf_ptr[sw_pg_cons_idx] = NULL;
5928 DBRUN(sc->debug_pg_mbuf_alloc--);
5929 sc->free_pg_bd++;
5930
5931 /* Unmap the page chain mbuf from DMA space. */
5932 bus_dmamap_sync(sc->pg_mbuf_tag,
5933 sc->pg_mbuf_map[sw_pg_cons_idx],
5934 BUS_DMASYNC_POSTREAD);
5935 bus_dmamap_unload(sc->pg_mbuf_tag,
5936 sc->pg_mbuf_map[sw_pg_cons_idx]);
5937
5938 /* Adjust the mbuf length. */
5939 if (rem_len < m_pg->m_len) {
5940 /* The mbuf chain is complete. */
5941 m_pg->m_len = rem_len;
5942 rem_len = 0;
5943 } else {
5944 /* More packet data is waiting. */
5945 rem_len -= m_pg->m_len;
5946 }
5947
5948 /* Concatenate the mbuf cluster to the mbuf. */
5949 m_cat(m0, m_pg);
5950
5951 sw_pg_cons = NEXT_PG_BD(sw_pg_cons);
5952 }
5953
5954 /* Set the total packet length. */
5955 m0->m_pkthdr.len = pkt_len;
5956
5957 } else {
5958 /*
5959 * The received packet is small and fits in a
5960 * single mbuf (i.e. the l2_fhdr + pad + packet +
5961 * FCS <= MHLEN). In other words, the packet is
5962 * 154 bytes or less in size.
5963 */
5964
5965 DBPRINT(sc, BCE_INFO_RECV, "%s(): Found a small packet.\n",
5966 __FUNCTION__);
5967
5968 /* Set the total packet length. */
5969 m0->m_pkthdr.len = m0->m_len = pkt_len;
5970 }
5971#else
5972 /* Set the total packet length. */
5973 m0->m_pkthdr.len = m0->m_len = pkt_len;
5974#endif
5975
5976 /* Remove the trailing Ethernet FCS. */
5977 m_adj(m0, -ETHER_CRC_LEN);
5978
5979 /* Check that the resulting mbuf chain is valid. */
5980 DBRUN(m_sanity(m0, FALSE));
5981 DBRUNIF(((m0->m_len < ETHER_HDR_LEN) |
5982 (m0->m_pkthdr.len > BCE_MAX_JUMBO_ETHER_MTU_VLAN)),
5983 BCE_PRINTF("Invalid Ethernet frame size!\n");
5984 m_print(m0, 128));
5985
5986 DBRUNIF(DB_RANDOMTRUE(l2fhdr_error_sim_control),
5987 BCE_PRINTF("Simulating l2_fhdr status error.\n");
5988 sc->l2fhdr_error_sim_count++;
5989 status = status | L2_FHDR_ERRORS_PHY_DECODE);
5990
5991 /* Check the received frame for errors. */
5992 if (status & (L2_FHDR_ERRORS_BAD_CRC |
5993 L2_FHDR_ERRORS_PHY_DECODE | L2_FHDR_ERRORS_ALIGNMENT |
5994 L2_FHDR_ERRORS_TOO_SHORT | L2_FHDR_ERRORS_GIANT_FRAME)) {
5995
5996 /* Log the error and release the mbuf. */
5997 ifp->if_ierrors++;
5998 sc->l2fhdr_error_count++;
5999
6000 m_freem(m0);
6001 m0 = NULL;
6002 goto bce_rx_int_next_rx;
6003 }
6004
6005 /* Send the packet to the appropriate interface. */
6006 m0->m_pkthdr.rcvif = ifp;
6007
6008 /* Assume no hardware checksum. */
6009 m0->m_pkthdr.csum_flags = 0;
6010
6011 /* Validate the checksum if offload enabled. */
6012 if (ifp->if_capenable & IFCAP_RXCSUM) {
6013
6014 /* Check for an IP datagram. */
6015 if (!(status & L2_FHDR_STATUS_SPLIT) &&
6016 (status & L2_FHDR_STATUS_IP_DATAGRAM)) {
6017 m0->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
6018
6019 /* Check if the IP checksum is valid. */
6020 if ((l2fhdr->l2_fhdr_ip_xsum ^ 0xffff) == 0)
6021 m0->m_pkthdr.csum_flags |= CSUM_IP_VALID;
6022 }
6023
6024 /* Check for a valid TCP/UDP frame. */
6025 if (status & (L2_FHDR_STATUS_TCP_SEGMENT |
6026 L2_FHDR_STATUS_UDP_DATAGRAM)) {
6027
6028 /* Check for a good TCP/UDP checksum. */
6029 if ((status & (L2_FHDR_ERRORS_TCP_XSUM |
6030 L2_FHDR_ERRORS_UDP_XSUM)) == 0) {
6031 m0->m_pkthdr.csum_data =
6032 l2fhdr->l2_fhdr_tcp_udp_xsum;
6033 m0->m_pkthdr.csum_flags |= (CSUM_DATA_VALID
6034 | CSUM_PSEUDO_HDR);
6035 }
6036 }
6037 }
6038
6039 /* Attach the VLAN tag. */
6040 if (status & L2_FHDR_STATUS_L2_VLAN_TAG) {
6041#if __FreeBSD_version < 700000
6042 VLAN_INPUT_TAG(ifp, m0, l2fhdr->l2_fhdr_vlan_tag, continue);
6043#else
6044 m0->m_pkthdr.ether_vtag = l2fhdr->l2_fhdr_vlan_tag;
6045 m0->m_flags |= M_VLANTAG;
6046#endif
6047 }
6048
6049 /* Increment received packet statistics. */
6050 ifp->if_ipackets++;
6051
6052bce_rx_int_next_rx:
6053 sw_rx_cons = NEXT_RX_BD(sw_rx_cons);
6054
6055 /* If we have a packet, pass it up the stack */
6056 if (m0) {
6057 /* Make sure we don't lose our place when we release the lock. */
6058 sc->rx_cons = sw_rx_cons;
6059#ifdef ZERO_COPY_SOCKETS
6060 sc->pg_cons = sw_pg_cons;
6061#endif
6062
6063 BCE_UNLOCK(sc);
6064 (*ifp->if_input)(ifp, m0);
6065 BCE_LOCK(sc);
6066
6067 /* Recover our place. */
6068 sw_rx_cons = sc->rx_cons;
6069#ifdef ZERO_COPY_SOCKETS
6070 sw_pg_cons = sc->pg_cons;
6071#endif
6072 }
6073
6074 /* Refresh hw_cons to see if there's new work */
6075 if (sw_rx_cons == hw_rx_cons)
6076 hw_rx_cons = sc->hw_rx_cons = bce_get_hw_rx_cons(sc);
6077 }
6078
6079 /* No new packets to process. Refill the RX and page chains and exit. */
6080#ifdef ZERO_COPY_SOCKETS
6081 sc->pg_cons = sw_pg_cons;
6082 bce_fill_pg_chain(sc);
6083#endif
6084
6085 sc->rx_cons = sw_rx_cons;
6086 bce_fill_rx_chain(sc);
6087
6088 /* Prepare the page chain pages to be accessed by the NIC. */
6089 for (int i = 0; i < RX_PAGES; i++)
6090 bus_dmamap_sync(sc->rx_bd_chain_tag,
6091 sc->rx_bd_chain_map[i], BUS_DMASYNC_PREWRITE);
6092
6093#ifdef ZERO_COPY_SOCKETS
6094 for (int i = 0; i < PG_PAGES; i++)
6095 bus_dmamap_sync(sc->pg_bd_chain_tag,
6096 sc->pg_bd_chain_map[i], BUS_DMASYNC_PREWRITE);
6097#endif
6098
6099 DBPRINT(sc, BCE_EXTREME_RECV, "%s(exit): rx_prod = 0x%04X, "
6100 "rx_cons = 0x%04X, rx_prod_bseq = 0x%08X\n",
6101 __FUNCTION__, sc->rx_prod, sc->rx_cons, sc->rx_prod_bseq);
6102 DBEXIT(BCE_VERBOSE_RECV | BCE_VERBOSE_INTR);
6103}
6104
6105
6106/****************************************************************************/
6107/* Reads the transmit consumer value from the status block (skipping over */
6108/* chain page pointer if necessary). */
6109/* */
6110/* Returns: */
6111/* hw_cons */
6112/****************************************************************************/
6113static inline u16
6114bce_get_hw_tx_cons(struct bce_softc *sc)
6115{
6116 u16 hw_cons;
6117
6118 mb();
6119 hw_cons = sc->status_block->status_tx_quick_consumer_index0;
6120 if ((hw_cons & USABLE_TX_BD_PER_PAGE) == USABLE_TX_BD_PER_PAGE)
6121 hw_cons++;
6122
6123 return hw_cons;
6124}
6125
6126
6127/****************************************************************************/
6128/* Handles transmit completion interrupt events. */
6129/* */
6130/* Returns: */
6131/* Nothing. */
6132/****************************************************************************/
6133static void
6134bce_tx_intr(struct bce_softc *sc)
6135{
6136 struct ifnet *ifp = sc->bce_ifp;
6137 u16 hw_tx_cons, sw_tx_cons, sw_tx_chain_cons;
6138
6139 DBENTER(BCE_VERBOSE_SEND | BCE_VERBOSE_INTR);
6140 DBRUN(sc->tx_interrupts++);
6141 DBPRINT(sc, BCE_EXTREME_SEND, "%s(enter): tx_prod = 0x%04X, "
6142 "tx_cons = 0x%04X, tx_prod_bseq = 0x%08X\n",
6143 __FUNCTION__, sc->tx_prod, sc->tx_cons, sc->tx_prod_bseq);
6144
6145 BCE_LOCK_ASSERT(sc);
6146
6147 /* Get the hardware's view of the TX consumer index. */
6148 hw_tx_cons = sc->hw_tx_cons = bce_get_hw_tx_cons(sc);
6149 sw_tx_cons = sc->tx_cons;
6150
6151 /* Prevent speculative reads from getting ahead of the status block. */
6152 bus_space_barrier(sc->bce_btag, sc->bce_bhandle, 0, 0,
6153 BUS_SPACE_BARRIER_READ);
6154
6155 /* Cycle through any completed TX chain page entries. */
6156 while (sw_tx_cons != hw_tx_cons) {
6157#ifdef BCE_DEBUG
6158 struct tx_bd *txbd = NULL;
6159#endif
6160 sw_tx_chain_cons = TX_CHAIN_IDX(sw_tx_cons);
6161
6162 DBPRINT(sc, BCE_INFO_SEND,
6163 "%s(): hw_tx_cons = 0x%04X, sw_tx_cons = 0x%04X, "
6164 "sw_tx_chain_cons = 0x%04X\n",
6165 __FUNCTION__, hw_tx_cons, sw_tx_cons, sw_tx_chain_cons);
6166
6167 DBRUNIF((sw_tx_chain_cons > MAX_TX_BD),
6168 BCE_PRINTF("%s(%d): TX chain consumer out of range! "
6169 " 0x%04X > 0x%04X\n", __FILE__, __LINE__, sw_tx_chain_cons,
6170 (int) MAX_TX_BD);
6171 bce_breakpoint(sc));
6172
6173 DBRUN(txbd = &sc->tx_bd_chain[TX_PAGE(sw_tx_chain_cons)]
6174 [TX_IDX(sw_tx_chain_cons)]);
6175
6176 DBRUNIF((txbd == NULL),
6177 BCE_PRINTF("%s(%d): Unexpected NULL tx_bd[0x%04X]!\n",
6178 __FILE__, __LINE__, sw_tx_chain_cons);
6179 bce_breakpoint(sc));
6180
6181 DBRUNMSG(BCE_INFO_SEND, BCE_PRINTF("%s(): ", __FUNCTION__);
6182 bce_dump_txbd(sc, sw_tx_chain_cons, txbd));
6183
6184 /*
6185 * Free the associated mbuf. Remember
6186 * that only the last tx_bd of a packet
6187 * has an mbuf pointer and DMA map.
6188 */
6189 if (sc->tx_mbuf_ptr[sw_tx_chain_cons] != NULL) {
6190
6191 /* Validate that this is the last tx_bd. */
6192 DBRUNIF((!(txbd->tx_bd_flags & TX_BD_FLAGS_END)),
6193 BCE_PRINTF("%s(%d): tx_bd END flag not set but "
6194 "txmbuf == NULL!\n", __FILE__, __LINE__);
6195 bce_breakpoint(sc));
6196
6197 DBRUNMSG(BCE_INFO_SEND,
6198 BCE_PRINTF("%s(): Unloading map/freeing mbuf "
6199 "from tx_bd[0x%04X]\n", __FUNCTION__, sw_tx_chain_cons));
6200
6201 /* Unmap the mbuf. */
6202 bus_dmamap_unload(sc->tx_mbuf_tag,
6203 sc->tx_mbuf_map[sw_tx_chain_cons]);
6204
6205 /* Free the mbuf. */
6206 m_freem(sc->tx_mbuf_ptr[sw_tx_chain_cons]);
6207 sc->tx_mbuf_ptr[sw_tx_chain_cons] = NULL;
6208 DBRUN(sc->debug_tx_mbuf_alloc--);
6209
6210 ifp->if_opackets++;
6211 }
6212
6213 sc->used_tx_bd--;
6214 sw_tx_cons = NEXT_TX_BD(sw_tx_cons);
6215
6216 /* Refresh hw_cons to see if there's new work. */
6217 hw_tx_cons = sc->hw_tx_cons = bce_get_hw_tx_cons(sc);
6218
6219 /* Prevent speculative reads from getting ahead of the status block. */
6220 bus_space_barrier(sc->bce_btag, sc->bce_bhandle, 0, 0,
6221 BUS_SPACE_BARRIER_READ);
6222 }
6223
6224 /* Clear the TX timeout timer. */
6225 sc->watchdog_timer = 0;
6226
6227 /* Clear the tx hardware queue full flag. */
6228 if (sc->used_tx_bd < sc->max_tx_bd) {
6229 DBRUNIF((ifp->if_drv_flags & IFF_DRV_OACTIVE),
6230 DBPRINT(sc, BCE_INFO_SEND,
6231 "%s(): Open TX chain! %d/%d (used/total)\n",
6232 __FUNCTION__, sc->used_tx_bd, sc->max_tx_bd));
6233 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
6234 }
6235
6236 sc->tx_cons = sw_tx_cons;
6237
6238 DBPRINT(sc, BCE_EXTREME_SEND, "%s(exit): tx_prod = 0x%04X, "
6239 "tx_cons = 0x%04X, tx_prod_bseq = 0x%08X\n",
6240 __FUNCTION__, sc->tx_prod, sc->tx_cons, sc->tx_prod_bseq);
6241 DBEXIT(BCE_VERBOSE_SEND | BCE_VERBOSE_INTR);
6242}
6243
6244
6245/****************************************************************************/
6246/* Disables interrupt generation. */
6247/* */
6248/* Returns: */
6249/* Nothing. */
6250/****************************************************************************/
6251static void
6252bce_disable_intr(struct bce_softc *sc)
6253{
6254 DBENTER(BCE_VERBOSE_INTR);
6255
6256 REG_WR(sc, BCE_PCICFG_INT_ACK_CMD, BCE_PCICFG_INT_ACK_CMD_MASK_INT);
6257 REG_RD(sc, BCE_PCICFG_INT_ACK_CMD);
6258
6259 DBEXIT(BCE_VERBOSE_INTR);
6260}
6261
6262
6263/****************************************************************************/
6264/* Enables interrupt generation. */
6265/* */
6266/* Returns: */
6267/* Nothing. */
6268/****************************************************************************/
6269static void
6270bce_enable_intr(struct bce_softc *sc, int coal_now)
6271{
6272 DBENTER(BCE_VERBOSE_INTR);
6273
6274 REG_WR(sc, BCE_PCICFG_INT_ACK_CMD,
6275 BCE_PCICFG_INT_ACK_CMD_INDEX_VALID |
6276 BCE_PCICFG_INT_ACK_CMD_MASK_INT | sc->last_status_idx);
6277
6278 REG_WR(sc, BCE_PCICFG_INT_ACK_CMD,
6279 BCE_PCICFG_INT_ACK_CMD_INDEX_VALID | sc->last_status_idx);
6280
6281 /* Force an immediate interrupt (whether there is new data or not). */
6282 if (coal_now)
6283 REG_WR(sc, BCE_HC_COMMAND, sc->hc_command | BCE_HC_COMMAND_COAL_NOW);
6284
6285 DBEXIT(BCE_VERBOSE_INTR);
6286}
6287
6288
6289/****************************************************************************/
6290/* Handles controller initialization. */
6291/* */
6292/* Returns: */
6293/* Nothing. */
6294/****************************************************************************/
6295static void
6296bce_init_locked(struct bce_softc *sc)
6297{
6298 struct ifnet *ifp;
6299 u32 ether_mtu = 0;
6300
6301 DBENTER(BCE_VERBOSE_RESET);
6302
6303 BCE_LOCK_ASSERT(sc);
6304
6305 ifp = sc->bce_ifp;
6306
6307 /* Check if the driver is still running and bail out if it is. */
6308 if (ifp->if_drv_flags & IFF_DRV_RUNNING)
6309 goto bce_init_locked_exit;
6310
6311 bce_stop(sc);
6312
6313 if (bce_reset(sc, BCE_DRV_MSG_CODE_RESET)) {
6314 BCE_PRINTF("%s(%d): Controller reset failed!\n",
6315 __FILE__, __LINE__);
6316 goto bce_init_locked_exit;
6317 }
6318
6319 if (bce_chipinit(sc)) {
6320 BCE_PRINTF("%s(%d): Controller initialization failed!\n",
6321 __FILE__, __LINE__);
6322 goto bce_init_locked_exit;
6323 }
6324
6325 if (bce_blockinit(sc)) {
6326 BCE_PRINTF("%s(%d): Block initialization failed!\n",
6327 __FILE__, __LINE__);
6328 goto bce_init_locked_exit;
6329 }
6330
6331 /* Load our MAC address. */
6332 bcopy(IF_LLADDR(sc->bce_ifp), sc->eaddr, ETHER_ADDR_LEN);
6333 bce_set_mac_addr(sc);
6334
6335 /*
6336 * Calculate and program the hardware Ethernet MTU
6337 * size. Be generous on the receive if we have room.
6338 */
6339#ifdef ZERO_COPY_SOCKETS
6340 if (ifp->if_mtu <= (sc->rx_bd_mbuf_data_len + sc->pg_bd_mbuf_alloc_size))
6341 ether_mtu = sc->rx_bd_mbuf_data_len + sc->pg_bd_mbuf_alloc_size;
6342#else
6343 if (ifp->if_mtu <= sc->rx_bd_mbuf_data_len)
6344 ether_mtu = sc->rx_bd_mbuf_data_len;
6345#endif
6346 else
6347 ether_mtu = ifp->if_mtu;
6348
6349 ether_mtu += ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN + ETHER_CRC_LEN;
6350
6351 DBPRINT(sc, BCE_INFO_MISC, "%s(): setting h/w mtu = %d\n", __FUNCTION__,
6352 ether_mtu);
6353
6354 /* Program the mtu, enabling jumbo frame support if necessary. */
6355 if (ether_mtu > (ETHER_MAX_LEN + ETHER_VLAN_ENCAP_LEN))
6356 REG_WR(sc, BCE_EMAC_RX_MTU_SIZE,
6357 min(ether_mtu, BCE_MAX_JUMBO_ETHER_MTU) |
6358 BCE_EMAC_RX_MTU_SIZE_JUMBO_ENA);
6359 else
6360 REG_WR(sc, BCE_EMAC_RX_MTU_SIZE, ether_mtu);
6361
6362 DBPRINT(sc, BCE_INFO_LOAD,
6363 "%s(): rx_bd_mbuf_alloc_size = %d, rx_bce_mbuf_data_len = %d, "
6364 "rx_bd_mbuf_align_pad = %d\n", __FUNCTION__,
6365 sc->rx_bd_mbuf_alloc_size, sc->rx_bd_mbuf_data_len,
6366 sc->rx_bd_mbuf_align_pad);
6367
6368 /* Program appropriate promiscuous/multicast filtering. */
6369 bce_set_rx_mode(sc);
6370
6371#ifdef ZERO_COPY_SOCKETS
6372 DBPRINT(sc, BCE_INFO_LOAD, "%s(): pg_bd_mbuf_alloc_size = %d\n",
6373 __FUNCTION__, sc->pg_bd_mbuf_alloc_size);
6374
6375 /* Init page buffer descriptor chain. */
6376 bce_init_pg_chain(sc);
6377#endif
6378
6379 /* Init RX buffer descriptor chain. */
6380 bce_init_rx_chain(sc);
6381
6382 /* Init TX buffer descriptor chain. */
6383 bce_init_tx_chain(sc);
6384
6385 /* Enable host interrupts. */
6386 bce_enable_intr(sc, 1);
6387
6388 bce_ifmedia_upd_locked(ifp);
6389
6390 ifp->if_drv_flags |= IFF_DRV_RUNNING;
6391 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
6392
6393 callout_reset(&sc->bce_tick_callout, hz, bce_tick, sc);
6394
6395bce_init_locked_exit:
6396 DBEXIT(BCE_VERBOSE_RESET);
6397}
6398
6399
6400/****************************************************************************/
6401/* Initialize the controller just enough so that any management firmware */
6402/* running on the device will continue to operate correctly. */
6403/* */
6404/* Returns: */
6405/* Nothing. */
6406/****************************************************************************/
6407static void
6408bce_mgmt_init_locked(struct bce_softc *sc)
6409{
6410 struct ifnet *ifp;
6411
6412 DBENTER(BCE_VERBOSE_RESET);
6413
6414 BCE_LOCK_ASSERT(sc);
6415
6416 /* Bail out if management firmware is not running. */
6417 if (!(sc->bce_flags & BCE_MFW_ENABLE_FLAG)) {
6418 DBPRINT(sc, BCE_VERBOSE_SPECIAL,
6419 "No management firmware running...\n");
6420 goto bce_mgmt_init_locked_exit;
6421 }
6422
6423 ifp = sc->bce_ifp;
6424
6425 /* Enable all critical blocks in the MAC. */
6426 REG_WR(sc, BCE_MISC_ENABLE_SET_BITS, BCE_MISC_ENABLE_DEFAULT);
6427 REG_RD(sc, BCE_MISC_ENABLE_SET_BITS);
6428 DELAY(20);
6429
6430 bce_ifmedia_upd_locked(ifp);
6431
6432bce_mgmt_init_locked_exit:
6433 DBEXIT(BCE_VERBOSE_RESET);
6434}
6435
6436
6437/****************************************************************************/
6438/* Handles controller initialization when called from an unlocked routine. */
6439/* */
6440/* Returns: */
6441/* Nothing. */
6442/****************************************************************************/
6443static void
6444bce_init(void *xsc)
6445{
6446 struct bce_softc *sc = xsc;
6447
6448 DBENTER(BCE_VERBOSE_RESET);
6449
6450 BCE_LOCK(sc);
6451 bce_init_locked(sc);
6452 BCE_UNLOCK(sc);
6453
6454 DBEXIT(BCE_VERBOSE_RESET);
6455}
6456
6457
6458/****************************************************************************/
6459/* Encapsultes an mbuf cluster into the tx_bd chain structure and makes the */
6460/* memory visible to the controller. */
6461/* */
6462/* Returns: */
6463/* 0 for success, positive value for failure. */
6464/* Modified: */
6465/* m_head: May be set to NULL if MBUF is excessively fragmented. */
6466/****************************************************************************/
6467static int
6468bce_tx_encap(struct bce_softc *sc, struct mbuf **m_head)
6469{
6470 bus_dma_segment_t segs[BCE_MAX_SEGMENTS];
6471 bus_dmamap_t map;
6472 struct tx_bd *txbd = NULL;
6473 struct mbuf *m0;
6474 struct ether_vlan_header *eh;
6475 struct ip *ip;
6476 struct tcphdr *th;
6477 u16 prod, chain_prod, etype, mss = 0, vlan_tag = 0, flags = 0;
6478 u32 prod_bseq;
6479 int hdr_len = 0, e_hlen = 0, ip_hlen = 0, tcp_hlen = 0, ip_len = 0;
6480
6481#ifdef BCE_DEBUG
6482 u16 debug_prod;
6483#endif
6484 int i, error, nsegs, rc = 0;
6485
6486 DBENTER(BCE_VERBOSE_SEND);
6487 DBPRINT(sc, BCE_INFO_SEND,
6488 "%s(enter): tx_prod = 0x%04X, tx_chain_prod = %04X, "
6489 "tx_prod_bseq = 0x%08X\n",
6490 __FUNCTION__, sc->tx_prod, (u16) TX_CHAIN_IDX(sc->tx_prod),
6491 sc->tx_prod_bseq);
6492
6493 /* Transfer any checksum offload flags to the bd. */
6494 m0 = *m_head;
6495 if (m0->m_pkthdr.csum_flags) {
6496 if (m0->m_pkthdr.csum_flags & CSUM_IP)
6497 flags |= TX_BD_FLAGS_IP_CKSUM;
6498 if (m0->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP))
6499 flags |= TX_BD_FLAGS_TCP_UDP_CKSUM;
6500 if (m0->m_pkthdr.csum_flags & CSUM_TSO) {
6501 /* For TSO the controller needs two pieces of info, */
6502 /* the MSS and the IP+TCP options length. */
6503 mss = htole16(m0->m_pkthdr.tso_segsz);
6504
6505 /* Map the header and find the Ethernet type & header length */
6506 eh = mtod(m0, struct ether_vlan_header *);
6507 if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) {
6508 etype = ntohs(eh->evl_proto);
6509 e_hlen = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
6510 } else {
6511 etype = ntohs(eh->evl_encap_proto);
6512 e_hlen = ETHER_HDR_LEN;
6513 }
6514
6515 /* Check for supported TSO Ethernet types (only IPv4 for now) */
6516 switch (etype) {
6517 case ETHERTYPE_IP:
6518 ip = (struct ip *)(m0->m_data + e_hlen);
6519
6520 /* TSO only supported for TCP protocol */
6521 if (ip->ip_p != IPPROTO_TCP) {
6522 BCE_PRINTF("%s(%d): TSO enabled for non-TCP frame!.\n",
6523 __FILE__, __LINE__);
6524 goto bce_tx_encap_skip_tso;
6525 }
6526
6527 /* Get IP header length in bytes (min 20) */
6528 ip_hlen = ip->ip_hl << 2;
6529
6530 /* Get the TCP header length in bytes (min 20) */
6531 th = (struct tcphdr *)((caddr_t)ip + ip_hlen);
6532 tcp_hlen = (th->th_off << 2);
6533
6534 /* IP header length and checksum will be calc'd by hardware */
6535 ip_len = ip->ip_len;
6536 ip->ip_len = 0;
6537 ip->ip_sum = 0;
6538 break;
6539 case ETHERTYPE_IPV6:
6540 BCE_PRINTF("%s(%d): TSO over IPv6 not supported!.\n",
6541 __FILE__, __LINE__);
6542 goto bce_tx_encap_skip_tso;
6543 default:
6544 BCE_PRINTF("%s(%d): TSO enabled for unsupported protocol!.\n",
6545 __FILE__, __LINE__);
6546 goto bce_tx_encap_skip_tso;
6547 }
6548
6549 hdr_len = e_hlen + ip_hlen + tcp_hlen;
6550
6551 DBPRINT(sc, BCE_EXTREME_SEND,
6552 "%s(): hdr_len = %d, e_hlen = %d, ip_hlen = %d, tcp_hlen = %d, ip_len = %d\n",
6553 __FUNCTION__, hdr_len, e_hlen, ip_hlen, tcp_hlen, ip_len);
6554
6555 /* Set the LSO flag in the TX BD */
6556 flags |= TX_BD_FLAGS_SW_LSO;
6557 /* Set the length of IP + TCP options (in 32 bit words) */
6558 flags |= (((ip_hlen + tcp_hlen - 40) >> 2) << 8);
6559
6560bce_tx_encap_skip_tso:
6561 DBRUN(sc->requested_tso_frames++);
6562 }
6563 }
6564
6565 /* Transfer any VLAN tags to the bd. */
6566 if (m0->m_flags & M_VLANTAG) {
6567 flags |= TX_BD_FLAGS_VLAN_TAG;
6568 vlan_tag = m0->m_pkthdr.ether_vtag;
6569 }
6570
6571 /* Map the mbuf into DMAable memory. */
6572 prod = sc->tx_prod;
6573 chain_prod = TX_CHAIN_IDX(prod);
6574 map = sc->tx_mbuf_map[chain_prod];
6575
6576 /* Map the mbuf into our DMA address space. */
6577 error = bus_dmamap_load_mbuf_sg(sc->tx_mbuf_tag, map, m0,
6578 segs, &nsegs, BUS_DMA_NOWAIT);
6579
6580 /* Check if the DMA mapping was successful */
6581 if (error == EFBIG) {
6582
6583 sc->fragmented_mbuf_count++;
6584
6585 /* Try to defrag the mbuf. */
6586 m0 = m_defrag(*m_head, M_DONTWAIT);
6587 if (m0 == NULL) {
6588 /* Defrag was unsuccessful */
6589 m_freem(*m_head);
6590 *m_head = NULL;
6591 sc->mbuf_alloc_failed_count++;
6592 rc = ENOBUFS;
6593 goto bce_tx_encap_exit;
6594 }
6595
6596 /* Defrag was successful, try mapping again */
6597 *m_head = m0;
6598 error = bus_dmamap_load_mbuf_sg(sc->tx_mbuf_tag, map, m0,
6599 segs, &nsegs, BUS_DMA_NOWAIT);
6600
6601 /* Still getting an error after a defrag. */
6602 if (error == ENOMEM) {
6603 /* Insufficient DMA buffers available. */
6604 sc->dma_map_addr_tx_failed_count++;
6605 rc = error;
6606 goto bce_tx_encap_exit;
6607 } else if (error != 0) {
6608 /* Still can't map the mbuf, release it and return an error. */
6609 BCE_PRINTF(
6610 "%s(%d): Unknown error mapping mbuf into TX chain!\n",
6611 __FILE__, __LINE__);
6612 m_freem(m0);
6613 *m_head = NULL;
6614 sc->dma_map_addr_tx_failed_count++;
6615 rc = ENOBUFS;
6616 goto bce_tx_encap_exit;
6617 }
6618 } else if (error == ENOMEM) {
6619 /* Insufficient DMA buffers available. */
6620 sc->dma_map_addr_tx_failed_count++;
6621 rc = error;
6622 goto bce_tx_encap_exit;
6623 } else if (error != 0) {
6624 m_freem(m0);
6625 *m_head = NULL;
6626 sc->dma_map_addr_tx_failed_count++;
6627 rc = error;
6628 goto bce_tx_encap_exit;
6629 }
6630
6631 /* Make sure there's room in the chain */
6632 if (nsegs > (sc->max_tx_bd - sc->used_tx_bd)) {
6633 bus_dmamap_unload(sc->tx_mbuf_tag, map);
6634 rc = ENOBUFS;
6635 goto bce_tx_encap_exit;
6636 }
6637
6638 /* prod points to an empty tx_bd at this point. */
6639 prod_bseq = sc->tx_prod_bseq;
6640
6641#ifdef BCE_DEBUG
6642 debug_prod = chain_prod;
6643#endif
6644
6645 DBPRINT(sc, BCE_INFO_SEND,
6646 "%s(start): prod = 0x%04X, chain_prod = 0x%04X, "
6647 "prod_bseq = 0x%08X\n",
6648 __FUNCTION__, prod, chain_prod, prod_bseq);
6649
6650 /*
6651 * Cycle through each mbuf segment that makes up
6652 * the outgoing frame, gathering the mapping info
6653 * for that segment and creating a tx_bd for
6654 * the mbuf.
6655 */
6656 for (i = 0; i < nsegs ; i++) {
6657
6658 chain_prod = TX_CHAIN_IDX(prod);
6659 txbd= &sc->tx_bd_chain[TX_PAGE(chain_prod)][TX_IDX(chain_prod)];
6660
6661 txbd->tx_bd_haddr_lo = htole32(BCE_ADDR_LO(segs[i].ds_addr));
6662 txbd->tx_bd_haddr_hi = htole32(BCE_ADDR_HI(segs[i].ds_addr));
6663 txbd->tx_bd_mss_nbytes = htole32(mss << 16) | htole16(segs[i].ds_len);
6664 txbd->tx_bd_vlan_tag = htole16(vlan_tag);
6665 txbd->tx_bd_flags = htole16(flags);
6666 prod_bseq += segs[i].ds_len;
6667 if (i == 0)
6668 txbd->tx_bd_flags |= htole16(TX_BD_FLAGS_START);
6669 prod = NEXT_TX_BD(prod);
6670 }
6671
6672 /* Set the END flag on the last TX buffer descriptor. */
6673 txbd->tx_bd_flags |= htole16(TX_BD_FLAGS_END);
6674
6675 DBRUNMSG(BCE_EXTREME_SEND, bce_dump_tx_chain(sc, debug_prod, nsegs));
6676
6677 DBPRINT(sc, BCE_INFO_SEND,
6678 "%s( end ): prod = 0x%04X, chain_prod = 0x%04X, "
6679 "prod_bseq = 0x%08X\n",
6680 __FUNCTION__, prod, chain_prod, prod_bseq);
6681
6682 /*
6683 * Ensure that the mbuf pointer for this transmission
6684 * is placed at the array index of the last
6685 * descriptor in this chain. This is done
6686 * because a single map is used for all
6687 * segments of the mbuf and we don't want to
6688 * unload the map before all of the segments
6689 * have been freed.
6690 */
6691 sc->tx_mbuf_ptr[chain_prod] = m0;
6692 sc->used_tx_bd += nsegs;
6693
6694 /* Update some debug statistic counters */
6695 DBRUNIF((sc->used_tx_bd > sc->tx_hi_watermark),
6696 sc->tx_hi_watermark = sc->used_tx_bd);
6697 DBRUNIF((sc->used_tx_bd == sc->max_tx_bd), sc->tx_full_count++);
6698 DBRUNIF(sc->debug_tx_mbuf_alloc++);
6699
6700 DBRUNMSG(BCE_EXTREME_SEND, bce_dump_tx_mbuf_chain(sc, chain_prod, 1));
6701
6702 /* prod points to the next free tx_bd at this point. */
6703 sc->tx_prod = prod;
6704 sc->tx_prod_bseq = prod_bseq;
6705
6706 DBPRINT(sc, BCE_INFO_SEND,
6707 "%s(exit): prod = 0x%04X, chain_prod = %04X, "
6708 "prod_bseq = 0x%08X\n",
6709 __FUNCTION__, sc->tx_prod, (u16) TX_CHAIN_IDX(sc->tx_prod),
6710 sc->tx_prod_bseq);
6711
6712bce_tx_encap_exit:
6713 DBEXIT(BCE_VERBOSE_SEND);
6714 return(rc);
6715}
6716
6717
6718/****************************************************************************/
6719/* Main transmit routine when called from another routine with a lock. */
6720/* */
6721/* Returns: */
6722/* Nothing. */
6723/****************************************************************************/
6724static void
6725bce_start_locked(struct ifnet *ifp)
6726{
6727 struct bce_softc *sc = ifp->if_softc;
6728 struct mbuf *m_head = NULL;
6729 int count = 0;
6730 u16 tx_prod, tx_chain_prod;
6731
6732 DBENTER(BCE_VERBOSE_SEND | BCE_VERBOSE_CTX);
6733
6734 BCE_LOCK_ASSERT(sc);
6735
6736 /* prod points to the next free tx_bd. */
6737 tx_prod = sc->tx_prod;
6738 tx_chain_prod = TX_CHAIN_IDX(tx_prod);
6739
6740 DBPRINT(sc, BCE_INFO_SEND,
6741 "%s(enter): tx_prod = 0x%04X, tx_chain_prod = 0x%04X, "
6742 "tx_prod_bseq = 0x%08X\n",
6743 __FUNCTION__, tx_prod, tx_chain_prod, sc->tx_prod_bseq);
6744
6745 /* If there's no link or the transmit queue is empty then just exit. */
6746 if (!sc->bce_link) {
6747 DBPRINT(sc, BCE_INFO_SEND, "%s(): No link.\n",
6748 __FUNCTION__);
6749 goto bce_start_locked_exit;
6750 }
6751
6752 if (IFQ_DRV_IS_EMPTY(&ifp->if_snd)) {
6753 DBPRINT(sc, BCE_INFO_SEND, "%s(): Transmit queue empty.\n",
6754 __FUNCTION__);
6755 goto bce_start_locked_exit;
6756 }
6757
6758 /*
6759 * Keep adding entries while there is space in the ring.
6760 */
6761 while (sc->used_tx_bd < sc->max_tx_bd) {
6762
6763 /* Check for any frames to send. */
6764 IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
6765
6766 /* Stop when the transmit queue is empty. */
6767 if (m_head == NULL)
6768 break;
6769
6770 /*
6771 * Pack the data into the transmit ring. If we
6772 * don't have room, place the mbuf back at the
6773 * head of the queue and set the OACTIVE flag
6774 * to wait for the NIC to drain the chain.
6775 */
6776 if (bce_tx_encap(sc, &m_head)) {
6777 /* No room, put the frame back on the transmit queue. */
6778 if (m_head != NULL)
6779 IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
6780 ifp->if_drv_flags |= IFF_DRV_OACTIVE;
6781 DBPRINT(sc, BCE_INFO_SEND,
6782 "TX chain is closed for business! Total tx_bd used = %d\n",
6783 sc->used_tx_bd);
6784 break;
6785 }
6786
6787 count++;
6788
6789 /* Send a copy of the frame to any BPF listeners. */
6790 ETHER_BPF_MTAP(ifp, m_head);
6791 }
6792
6793 /* Exit if no packets were dequeued. */
6794 if (count == 0) {
6795 DBPRINT(sc, BCE_VERBOSE_SEND, "%s(): No packets were dequeued\n",
6796 __FUNCTION__);
6797 goto bce_start_locked_exit;
6798 }
6799
6800 DBPRINT(sc, BCE_VERBOSE_SEND, "%s(): Inserted %d frames into send queue.\n",
6801 __FUNCTION__, count);
6802
6803 REG_WR(sc, BCE_MQ_COMMAND, REG_RD(sc, BCE_MQ_COMMAND) | BCE_MQ_COMMAND_NO_MAP_ERROR);
6804
6805 /* Write the mailbox and tell the chip about the waiting tx_bd's. */
6806 DBPRINT(sc, BCE_VERBOSE_SEND, "%s(): MB_GET_CID_ADDR(TX_CID) = 0x%08X; "
6807 "BCE_L2MQ_TX_HOST_BIDX = 0x%08X, sc->tx_prod = 0x%04X\n",
6808 __FUNCTION__,
6809 MB_GET_CID_ADDR(TX_CID), BCE_L2MQ_TX_HOST_BIDX, sc->tx_prod);
6810 REG_WR16(sc, MB_GET_CID_ADDR(TX_CID) + BCE_L2MQ_TX_HOST_BIDX, sc->tx_prod);
6811 DBPRINT(sc, BCE_VERBOSE_SEND, "%s(): MB_GET_CID_ADDR(TX_CID) = 0x%08X; "
6812 "BCE_L2MQ_TX_HOST_BSEQ = 0x%08X, sc->tx_prod_bseq = 0x%04X\n",
6813 __FUNCTION__,
6814 MB_GET_CID_ADDR(TX_CID), BCE_L2MQ_TX_HOST_BSEQ, sc->tx_prod_bseq);
6815 REG_WR(sc, MB_GET_CID_ADDR(TX_CID) + BCE_L2MQ_TX_HOST_BSEQ, sc->tx_prod_bseq);
6816
6817 /* Set the tx timeout. */
6818 sc->watchdog_timer = BCE_TX_TIMEOUT;
6819
6820 DBRUNMSG(BCE_VERBOSE_SEND, bce_dump_ctx(sc, TX_CID));
6821 DBRUNMSG(BCE_VERBOSE_SEND, bce_dump_mq_regs(sc));
6822
6823bce_start_locked_exit:
6824 DBEXIT(BCE_VERBOSE_SEND | BCE_VERBOSE_CTX);
6825 return;
6826}
6827
6828
6829/****************************************************************************/
6830/* Main transmit routine when called from another routine without a lock. */
6831/* */
6832/* Returns: */
6833/* Nothing. */
6834/****************************************************************************/
6835static void
6836bce_start(struct ifnet *ifp)
6837{
6838 struct bce_softc *sc = ifp->if_softc;
6839
6840 DBENTER(BCE_VERBOSE_SEND);
6841
6842 BCE_LOCK(sc);
6843 bce_start_locked(ifp);
6844 BCE_UNLOCK(sc);
6845
6846 DBEXIT(BCE_VERBOSE_SEND);
6847}
6848
6849
6850/****************************************************************************/
6851/* Handles any IOCTL calls from the operating system. */
6852/* */
6853/* Returns: */
6854/* 0 for success, positive value for failure. */
6855/****************************************************************************/
6856static int
6857bce_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
6858{
6859 struct bce_softc *sc = ifp->if_softc;
6860 struct ifreq *ifr = (struct ifreq *) data;
6861 struct mii_data *mii;
6862 int mask, error = 0;
6863
6864 DBENTER(BCE_VERBOSE_MISC);
6865
6866 switch(command) {
6867
6868 /* Set the interface MTU. */
6869 case SIOCSIFMTU:
6870 /* Check that the MTU setting is supported. */
6871 if ((ifr->ifr_mtu < BCE_MIN_MTU) ||
6872 (ifr->ifr_mtu > BCE_MAX_JUMBO_MTU)) {
6873 error = EINVAL;
6874 break;
6875 }
6876
6877 DBPRINT(sc, BCE_INFO_MISC,
6878 "SIOCSIFMTU: Changing MTU from %d to %d\n",
6879 (int) ifp->if_mtu, (int) ifr->ifr_mtu);
6880
6881 BCE_LOCK(sc);
6882 ifp->if_mtu = ifr->ifr_mtu;
6883 ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
6884#ifdef ZERO_COPY_SOCKETS
6885 /* No buffer allocation size changes are necessary. */
6886#else
6887 /* Recalculate our buffer allocation sizes. */
6888 if ((ifp->if_mtu + ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN + ETHER_CRC_LEN) > MCLBYTES) {
6889 sc->rx_bd_mbuf_alloc_size = MJUM9BYTES;
6890 sc->rx_bd_mbuf_align_pad = roundup2(MJUM9BYTES, 16) - MJUM9BYTES;
6891 sc->rx_bd_mbuf_data_len = sc->rx_bd_mbuf_alloc_size -
6892 sc->rx_bd_mbuf_align_pad;
6893 } else {
6894 sc->rx_bd_mbuf_alloc_size = MCLBYTES;
6895 sc->rx_bd_mbuf_align_pad = roundup2(MCLBYTES, 16) - MCLBYTES;
6896 sc->rx_bd_mbuf_data_len = sc->rx_bd_mbuf_alloc_size -
6897 sc->rx_bd_mbuf_align_pad;
6898 }
6899#endif
6900
6901 bce_init_locked(sc);
6902 BCE_UNLOCK(sc);
6903 break;
6904
6905 /* Set interface flags. */
6906 case SIOCSIFFLAGS:
6907 DBPRINT(sc, BCE_VERBOSE_SPECIAL, "Received SIOCSIFFLAGS\n");
6908
6909 BCE_LOCK(sc);
6910
6911 /* Check if the interface is up. */
6912 if (ifp->if_flags & IFF_UP) {
6913 if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
6914 /* Change promiscuous/multicast flags as necessary. */
6915 bce_set_rx_mode(sc);
6916 } else {
6917 /* Start the HW */
6918 bce_init_locked(sc);
6919 }
6920 } else {
6921 /* The interface is down, check if driver is running. */
6922 if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
6923 bce_stop(sc);
6924
6925 /* If MFW is running, restart the controller a bit. */
6926 if (sc->bce_flags & BCE_MFW_ENABLE_FLAG) {
6927 bce_reset(sc, BCE_DRV_MSG_CODE_RESET);
6928 bce_chipinit(sc);
6929 bce_mgmt_init_locked(sc);
6930 }
6931 }
6932 }
6933
6934 BCE_UNLOCK(sc);
6935 error = 0;
6936
6937 break;
6938
6939 /* Add/Delete multicast address */
6940 case SIOCADDMULTI:
6941 case SIOCDELMULTI:
6942 DBPRINT(sc, BCE_VERBOSE_MISC, "Received SIOCADDMULTI/SIOCDELMULTI\n");
6943
6944 BCE_LOCK(sc);
6945 if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
6946 bce_set_rx_mode(sc);
6947 error = 0;
6948 }
6949 BCE_UNLOCK(sc);
6950
6951 break;
6952
6953 /* Set/Get Interface media */
6954 case SIOCSIFMEDIA:
6955 case SIOCGIFMEDIA:
6956 DBPRINT(sc, BCE_VERBOSE_MISC, "Received SIOCSIFMEDIA/SIOCGIFMEDIA\n");
6957
6958 mii = device_get_softc(sc->bce_miibus);
6959 error = ifmedia_ioctl(ifp, ifr,
6960 &mii->mii_media, command);
6961 break;
6962
6963 /* Set interface capability */
6964 case SIOCSIFCAP:
6965 mask = ifr->ifr_reqcap ^ ifp->if_capenable;
6966 DBPRINT(sc, BCE_INFO_MISC, "Received SIOCSIFCAP = 0x%08X\n", (u32) mask);
6967
6968 /* Toggle the TX checksum capabilites enable flag. */
6969 if (mask & IFCAP_TXCSUM) {
6970 ifp->if_capenable ^= IFCAP_TXCSUM;
6971 if (IFCAP_TXCSUM & ifp->if_capenable)
6972 ifp->if_hwassist = BCE_IF_HWASSIST;
6973 else
6974 ifp->if_hwassist = 0;
6975 }
6976
6977 /* Toggle the RX checksum capabilities enable flag. */
6978 if (mask & IFCAP_RXCSUM) {
6979 ifp->if_capenable ^= IFCAP_RXCSUM;
6980 if (IFCAP_RXCSUM & ifp->if_capenable)
6981 ifp->if_hwassist = BCE_IF_HWASSIST;
6982 else
6983 ifp->if_hwassist = 0;
6984 }
6985
6986 /* Toggle the TSO capabilities enable flag. */
6987 if (bce_tso_enable && (mask & IFCAP_TSO4)) {
6988 ifp->if_capenable ^= IFCAP_TSO4;
6989 if (IFCAP_RXCSUM & ifp->if_capenable)
6990 ifp->if_hwassist = BCE_IF_HWASSIST;
6991 else
6992 ifp->if_hwassist = 0;
6993 }
6994
6995 /* Toggle VLAN_MTU capabilities enable flag. */
6996 if (mask & IFCAP_VLAN_MTU) {
6997 BCE_PRINTF("%s(%d): Changing VLAN_MTU not supported.\n",
6998 __FILE__, __LINE__);
6999 }
7000
7001 /* Toggle VLANHWTAG capabilities enabled flag. */
7002 if (mask & IFCAP_VLAN_HWTAGGING) {
7003 if (sc->bce_flags & BCE_MFW_ENABLE_FLAG)
7004 BCE_PRINTF("%s(%d): Cannot change VLAN_HWTAGGING while "
7005 "management firmware (ASF/IPMI/UMP) is running!\n",
7006 __FILE__, __LINE__);
7007 else
7008 BCE_PRINTF("%s(%d): Changing VLAN_HWTAGGING not supported!\n",
7009 __FILE__, __LINE__);
7010 }
7011
7012 break;
7013 default:
7014 /* We don't know how to handle the IOCTL, pass it on. */
7015 error = ether_ioctl(ifp, command, data);
7016 break;
7017 }
7018
7019 DBEXIT(BCE_VERBOSE_MISC);
7020 return(error);
7021}
7022
7023
7024/****************************************************************************/
7025/* Transmit timeout handler. */
7026/* */
7027/* Returns: */
7028/* Nothing. */
7029/****************************************************************************/
7030static void
7031bce_watchdog(struct bce_softc *sc)
7032{
7033 DBENTER(BCE_EXTREME_SEND);
7034
7035 BCE_LOCK_ASSERT(sc);
7036
7037 /* If the watchdog timer hasn't expired then just exit. */
7038 if (sc->watchdog_timer == 0 || --sc->watchdog_timer)
7039 goto bce_watchdog_exit;
7040
7041 /* If pause frames are active then don't reset the hardware. */
7042 /* ToDo: Should we reset the timer here? */
7043 if (REG_RD(sc, BCE_EMAC_TX_STATUS) & BCE_EMAC_TX_STATUS_XOFFED)
7044 goto bce_watchdog_exit;
7045
7046 BCE_PRINTF("%s(%d): Watchdog timeout occurred, resetting!\n",
7047 __FILE__, __LINE__);
7048
7049 DBRUNMSG(BCE_INFO,
7050 bce_dump_driver_state(sc);
7051 bce_dump_status_block(sc);
7052 bce_dump_stats_block(sc);
7053 bce_dump_ftqs(sc);
7054 bce_dump_txp_state(sc, 0);
7055 bce_dump_rxp_state(sc, 0);
7056 bce_dump_tpat_state(sc, 0);
7057 bce_dump_cp_state(sc, 0);
7058 bce_dump_com_state(sc, 0));
7059
7060 DBRUN(bce_breakpoint(sc));
7061
7062 sc->bce_ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
7063
7064 bce_init_locked(sc);
7065 sc->bce_ifp->if_oerrors++;
7066
7067bce_watchdog_exit:
7068 DBEXIT(BCE_EXTREME_SEND);
7069}
7070
7071
7072/*
7073 * Interrupt handler.
7074 */
7075/****************************************************************************/
7076/* Main interrupt entry point. Verifies that the controller generated the */
7077/* interrupt and then calls a separate routine for handle the various */
7078/* interrupt causes (PHY, TX, RX). */
7079/* */
7080/* Returns: */
7081/* 0 for success, positive value for failure. */
7082/****************************************************************************/
7083static void
7084bce_intr(void *xsc)
7085{
7086 struct bce_softc *sc;
7087 struct ifnet *ifp;
7088 u32 status_attn_bits;
7089 u16 hw_rx_cons, hw_tx_cons;
7090
7091 sc = xsc;
7092 ifp = sc->bce_ifp;
7093
7094 DBENTER(BCE_VERBOSE_SEND | BCE_VERBOSE_RECV | BCE_VERBOSE_INTR);
7095 DBRUNMSG(BCE_VERBOSE_INTR, bce_dump_status_block(sc));
7096
7097 BCE_LOCK(sc);
7098
7099 DBRUN(sc->interrupts_generated++);
7100
7101 /* Synchnorize before we read from interface's status block */
7102 bus_dmamap_sync(sc->status_tag, sc->status_map,
7103 BUS_DMASYNC_POSTREAD);
7104
7105 /*
7106 * If the hardware status block index
7107 * matches the last value read by the
7108 * driver and we haven't asserted our
7109 * interrupt then there's nothing to do.
7110 */
7111 if ((sc->status_block->status_idx == sc->last_status_idx) &&
7112 (REG_RD(sc, BCE_PCICFG_MISC_STATUS) & BCE_PCICFG_MISC_STATUS_INTA_VALUE)) {
7113 DBPRINT(sc, BCE_VERBOSE_INTR, "%s(): Spurious interrupt.\n",
7114 __FUNCTION__);
7115 goto bce_intr_exit;
7116 }
7117
7118 /* Ack the interrupt and stop others from occuring. */
7119 REG_WR(sc, BCE_PCICFG_INT_ACK_CMD,
7120 BCE_PCICFG_INT_ACK_CMD_USE_INT_HC_PARAM |
7121 BCE_PCICFG_INT_ACK_CMD_MASK_INT);
7122
7123 /* Check if the hardware has finished any work. */
7124 hw_rx_cons = bce_get_hw_rx_cons(sc);
7125 hw_tx_cons = bce_get_hw_tx_cons(sc);
7126
7127 /* Keep processing data as long as there is work to do. */
7128 for (;;) {
7129
7130 status_attn_bits = sc->status_block->status_attn_bits;
7131
7132 DBRUNIF(DB_RANDOMTRUE(unexpected_attention_sim_control),
7133 BCE_PRINTF("Simulating unexpected status attention bit set.");
7134 sc->unexpected_attention_sim_count++;
7135 status_attn_bits = status_attn_bits | STATUS_ATTN_BITS_PARITY_ERROR);
7136
7137 /* Was it a link change interrupt? */
7138 if ((status_attn_bits & STATUS_ATTN_BITS_LINK_STATE) !=
7139 (sc->status_block->status_attn_bits_ack & STATUS_ATTN_BITS_LINK_STATE)) {
7140 bce_phy_intr(sc);
7141
7142 /* Clear any transient status updates during link state change. */
7143 REG_WR(sc, BCE_HC_COMMAND,
7144 sc->hc_command | BCE_HC_COMMAND_COAL_NOW_WO_INT);
7145 REG_RD(sc, BCE_HC_COMMAND);
7146 }
7147
7148 /* If any other attention is asserted then the chip is toast. */
7149 if (((status_attn_bits & ~STATUS_ATTN_BITS_LINK_STATE) !=
7150 (sc->status_block->status_attn_bits_ack &
7151 ~STATUS_ATTN_BITS_LINK_STATE))) {
7152
7153 sc->unexpected_attention_count++;
7154
7155 BCE_PRINTF("%s(%d): Fatal attention detected: 0x%08X\n",
7156 __FILE__, __LINE__, sc->status_block->status_attn_bits);
7157
7158 DBRUNMSG(BCE_FATAL,
7159 if (unexpected_attention_sim_control == 0)
7160 bce_breakpoint(sc));
7161
7162 bce_init_locked(sc);
7163 goto bce_intr_exit;
7164 }
7165
7166 /* Check for any completed RX frames. */
7167 if (hw_rx_cons != sc->hw_rx_cons)
7168 bce_rx_intr(sc);
7169
7170 /* Check for any completed TX frames. */
7171 if (hw_tx_cons != sc->hw_tx_cons)
7172 bce_tx_intr(sc);
7173
7174 /* Save the status block index value for use during the next interrupt. */
7175 sc->last_status_idx = sc->status_block->status_idx;
7176
7177 /* Prevent speculative reads from getting ahead of the status block. */
7178 bus_space_barrier(sc->bce_btag, sc->bce_bhandle, 0, 0,
7179 BUS_SPACE_BARRIER_READ);
7180
7181 /* If there's no work left then exit the interrupt service routine. */
7182 hw_rx_cons = bce_get_hw_rx_cons(sc);
7183 hw_tx_cons = bce_get_hw_tx_cons(sc);
7184
7185 if ((hw_rx_cons == sc->hw_rx_cons) && (hw_tx_cons == sc->hw_tx_cons))
7186 break;
7187
7188 }
7189
7190 bus_dmamap_sync(sc->status_tag, sc->status_map,
7191 BUS_DMASYNC_PREREAD);
7192
7193 /* Re-enable interrupts. */
7194 bce_enable_intr(sc, 0);
7195
7196 /* Handle any frames that arrived while handling the interrupt. */
7197 if (ifp->if_drv_flags & IFF_DRV_RUNNING && !IFQ_DRV_IS_EMPTY(&ifp->if_snd))
7198 bce_start_locked(ifp);
7199
7200bce_intr_exit:
7201 BCE_UNLOCK(sc);
7202
7203 DBEXIT(BCE_VERBOSE_SEND | BCE_VERBOSE_RECV | BCE_VERBOSE_INTR);
7204}
7205
7206
7207/****************************************************************************/
7208/* Programs the various packet receive modes (broadcast and multicast). */
7209/* */
7210/* Returns: */
7211/* Nothing. */
7212/****************************************************************************/
7213static void
7214bce_set_rx_mode(struct bce_softc *sc)
7215{
7216 struct ifnet *ifp;
7217 struct ifmultiaddr *ifma;
7218 u32 hashes[NUM_MC_HASH_REGISTERS] = { 0, 0, 0, 0, 0, 0, 0, 0 };
7219 u32 rx_mode, sort_mode;
7220 int h, i;
7221
7222 DBENTER(BCE_VERBOSE_MISC);
7223
7224 BCE_LOCK_ASSERT(sc);
7225
7226 ifp = sc->bce_ifp;
7227
7228 /* Initialize receive mode default settings. */
7229 rx_mode = sc->rx_mode & ~(BCE_EMAC_RX_MODE_PROMISCUOUS |
7230 BCE_EMAC_RX_MODE_KEEP_VLAN_TAG);
7231 sort_mode = 1 | BCE_RPM_SORT_USER0_BC_EN;
7232
7233 /*
7234 * ASF/IPMI/UMP firmware requires that VLAN tag stripping
7235 * be enbled.
7236 */
7237 if (!(BCE_IF_CAPABILITIES & IFCAP_VLAN_HWTAGGING) &&
7238 (!(sc->bce_flags & BCE_MFW_ENABLE_FLAG)))
7239 rx_mode |= BCE_EMAC_RX_MODE_KEEP_VLAN_TAG;
7240
7241 /*
7242 * Check for promiscuous, all multicast, or selected
7243 * multicast address filtering.
7244 */
7245 if (ifp->if_flags & IFF_PROMISC) {
7246 DBPRINT(sc, BCE_INFO_MISC, "Enabling promiscuous mode.\n");
7247
7248 /* Enable promiscuous mode. */
7249 rx_mode |= BCE_EMAC_RX_MODE_PROMISCUOUS;
7250 sort_mode |= BCE_RPM_SORT_USER0_PROM_EN;
7251 } else if (ifp->if_flags & IFF_ALLMULTI) {
7252 DBPRINT(sc, BCE_INFO_MISC, "Enabling all multicast mode.\n");
7253
7254 /* Enable all multicast addresses. */
7255 for (i = 0; i < NUM_MC_HASH_REGISTERS; i++) {
7256 REG_WR(sc, BCE_EMAC_MULTICAST_HASH0 + (i * 4), 0xffffffff);
7257 }
7258 sort_mode |= BCE_RPM_SORT_USER0_MC_EN;
7259 } else {
7260 /* Accept one or more multicast(s). */
7261 DBPRINT(sc, BCE_INFO_MISC, "Enabling selective multicast mode.\n");
7262
7263 if_maddr_rlock(ifp);
7264 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
7265 if (ifma->ifma_addr->sa_family != AF_LINK)
7266 continue;
7267 h = ether_crc32_le(LLADDR((struct sockaddr_dl *)
7268 ifma->ifma_addr), ETHER_ADDR_LEN) & 0xFF;
7269 hashes[(h & 0xE0) >> 5] |= 1 << (h & 0x1F);
7270 }
7271 if_maddr_runlock(ifp);
7272
7273 for (i = 0; i < NUM_MC_HASH_REGISTERS; i++)
7274 REG_WR(sc, BCE_EMAC_MULTICAST_HASH0 + (i * 4), hashes[i]);
7275
7276 sort_mode |= BCE_RPM_SORT_USER0_MC_HSH_EN;
7277 }
7278
7279 /* Only make changes if the recive mode has actually changed. */
7280 if (rx_mode != sc->rx_mode) {
7281 DBPRINT(sc, BCE_VERBOSE_MISC, "Enabling new receive mode: 0x%08X\n",
7282 rx_mode);
7283
7284 sc->rx_mode = rx_mode;
7285 REG_WR(sc, BCE_EMAC_RX_MODE, rx_mode);
7286 }
7287
7288 /* Disable and clear the exisitng sort before enabling a new sort. */
7289 REG_WR(sc, BCE_RPM_SORT_USER0, 0x0);
7290 REG_WR(sc, BCE_RPM_SORT_USER0, sort_mode);
7291 REG_WR(sc, BCE_RPM_SORT_USER0, sort_mode | BCE_RPM_SORT_USER0_ENA);
7292
7293 DBEXIT(BCE_VERBOSE_MISC);
7294}
7295
7296
7297/****************************************************************************/
7298/* Called periodically to updates statistics from the controllers */
7299/* statistics block. */
7300/* */
7301/* Returns: */
7302/* Nothing. */
7303/****************************************************************************/
7304static void
7305bce_stats_update(struct bce_softc *sc)
7306{
7307 struct ifnet *ifp;
7308 struct statistics_block *stats;
7309
7310 DBENTER(BCE_EXTREME_MISC);
7311
7312 ifp = sc->bce_ifp;
7313
7314 stats = (struct statistics_block *) sc->stats_block;
7315
7316 /*
7317 * Certain controllers don't report
7318 * carrier sense errors correctly.
7319 * See errata E11_5708CA0_1165.
7320 */
7321 if (!(BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5706) &&
7322 !(BCE_CHIP_ID(sc) == BCE_CHIP_ID_5708_A0))
7323 ifp->if_oerrors += (u_long) stats->stat_Dot3StatsCarrierSenseErrors;
7324
7325 /*
7326 * Update the sysctl statistics from the
7327 * hardware statistics.
7328 */
7329 sc->stat_IfHCInOctets =
7330 ((u64) stats->stat_IfHCInOctets_hi << 32) +
7331 (u64) stats->stat_IfHCInOctets_lo;
7332
7333 sc->stat_IfHCInBadOctets =
7334 ((u64) stats->stat_IfHCInBadOctets_hi << 32) +
7335 (u64) stats->stat_IfHCInBadOctets_lo;
7336
7337 sc->stat_IfHCOutOctets =
7338 ((u64) stats->stat_IfHCOutOctets_hi << 32) +
7339 (u64) stats->stat_IfHCOutOctets_lo;
7340
7341 sc->stat_IfHCOutBadOctets =
7342 ((u64) stats->stat_IfHCOutBadOctets_hi << 32) +
7343 (u64) stats->stat_IfHCOutBadOctets_lo;
7344
7345 sc->stat_IfHCInUcastPkts =
7346 ((u64) stats->stat_IfHCInUcastPkts_hi << 32) +
7347 (u64) stats->stat_IfHCInUcastPkts_lo;
7348
7349 sc->stat_IfHCInMulticastPkts =
7350 ((u64) stats->stat_IfHCInMulticastPkts_hi << 32) +
7351 (u64) stats->stat_IfHCInMulticastPkts_lo;
7352
7353 sc->stat_IfHCInBroadcastPkts =
7354 ((u64) stats->stat_IfHCInBroadcastPkts_hi << 32) +
7355 (u64) stats->stat_IfHCInBroadcastPkts_lo;
7356
7357 sc->stat_IfHCOutUcastPkts =
7358 ((u64) stats->stat_IfHCOutUcastPkts_hi << 32) +
7359 (u64) stats->stat_IfHCOutUcastPkts_lo;
7360
7361 sc->stat_IfHCOutMulticastPkts =
7362 ((u64) stats->stat_IfHCOutMulticastPkts_hi << 32) +
7363 (u64) stats->stat_IfHCOutMulticastPkts_lo;
7364
7365 sc->stat_IfHCOutBroadcastPkts =
7366 ((u64) stats->stat_IfHCOutBroadcastPkts_hi << 32) +
7367 (u64) stats->stat_IfHCOutBroadcastPkts_lo;
7368
7369 sc->stat_emac_tx_stat_dot3statsinternalmactransmiterrors =
7370 stats->stat_emac_tx_stat_dot3statsinternalmactransmiterrors;
7371
7372 sc->stat_Dot3StatsCarrierSenseErrors =
7373 stats->stat_Dot3StatsCarrierSenseErrors;
7374
7375 sc->stat_Dot3StatsFCSErrors =
7376 stats->stat_Dot3StatsFCSErrors;
7377
7378 sc->stat_Dot3StatsAlignmentErrors =
7379 stats->stat_Dot3StatsAlignmentErrors;
7380
7381 sc->stat_Dot3StatsSingleCollisionFrames =
7382 stats->stat_Dot3StatsSingleCollisionFrames;
7383
7384 sc->stat_Dot3StatsMultipleCollisionFrames =
7385 stats->stat_Dot3StatsMultipleCollisionFrames;
7386
7387 sc->stat_Dot3StatsDeferredTransmissions =
7388 stats->stat_Dot3StatsDeferredTransmissions;
7389
7390 sc->stat_Dot3StatsExcessiveCollisions =
7391 stats->stat_Dot3StatsExcessiveCollisions;
7392
7393 sc->stat_Dot3StatsLateCollisions =
7394 stats->stat_Dot3StatsLateCollisions;
7395
7396 sc->stat_EtherStatsCollisions =
7397 stats->stat_EtherStatsCollisions;
7398
7399 sc->stat_EtherStatsFragments =
7400 stats->stat_EtherStatsFragments;
7401
7402 sc->stat_EtherStatsJabbers =
7403 stats->stat_EtherStatsJabbers;
7404
7405 sc->stat_EtherStatsUndersizePkts =
7406 stats->stat_EtherStatsUndersizePkts;
7407
7408 sc->stat_EtherStatsOversizePkts =
7409 stats->stat_EtherStatsOversizePkts;
7410
7411 sc->stat_EtherStatsPktsRx64Octets =
7412 stats->stat_EtherStatsPktsRx64Octets;
7413
7414 sc->stat_EtherStatsPktsRx65Octetsto127Octets =
7415 stats->stat_EtherStatsPktsRx65Octetsto127Octets;
7416
7417 sc->stat_EtherStatsPktsRx128Octetsto255Octets =
7418 stats->stat_EtherStatsPktsRx128Octetsto255Octets;
7419
7420 sc->stat_EtherStatsPktsRx256Octetsto511Octets =
7421 stats->stat_EtherStatsPktsRx256Octetsto511Octets;
7422
7423 sc->stat_EtherStatsPktsRx512Octetsto1023Octets =
7424 stats->stat_EtherStatsPktsRx512Octetsto1023Octets;
7425
7426 sc->stat_EtherStatsPktsRx1024Octetsto1522Octets =
7427 stats->stat_EtherStatsPktsRx1024Octetsto1522Octets;
7428
7429 sc->stat_EtherStatsPktsRx1523Octetsto9022Octets =
7430 stats->stat_EtherStatsPktsRx1523Octetsto9022Octets;
7431
7432 sc->stat_EtherStatsPktsTx64Octets =
7433 stats->stat_EtherStatsPktsTx64Octets;
7434
7435 sc->stat_EtherStatsPktsTx65Octetsto127Octets =
7436 stats->stat_EtherStatsPktsTx65Octetsto127Octets;
7437
7438 sc->stat_EtherStatsPktsTx128Octetsto255Octets =
7439 stats->stat_EtherStatsPktsTx128Octetsto255Octets;
7440
7441 sc->stat_EtherStatsPktsTx256Octetsto511Octets =
7442 stats->stat_EtherStatsPktsTx256Octetsto511Octets;
7443
7444 sc->stat_EtherStatsPktsTx512Octetsto1023Octets =
7445 stats->stat_EtherStatsPktsTx512Octetsto1023Octets;
7446
7447 sc->stat_EtherStatsPktsTx1024Octetsto1522Octets =
7448 stats->stat_EtherStatsPktsTx1024Octetsto1522Octets;
7449
7450 sc->stat_EtherStatsPktsTx1523Octetsto9022Octets =
7451 stats->stat_EtherStatsPktsTx1523Octetsto9022Octets;
7452
7453 sc->stat_XonPauseFramesReceived =
7454 stats->stat_XonPauseFramesReceived;
7455
7456 sc->stat_XoffPauseFramesReceived =
7457 stats->stat_XoffPauseFramesReceived;
7458
7459 sc->stat_OutXonSent =
7460 stats->stat_OutXonSent;
7461
7462 sc->stat_OutXoffSent =
7463 stats->stat_OutXoffSent;
7464
7465 sc->stat_FlowControlDone =
7466 stats->stat_FlowControlDone;
7467
7468 sc->stat_MacControlFramesReceived =
7469 stats->stat_MacControlFramesReceived;
7470
7471 sc->stat_XoffStateEntered =
7472 stats->stat_XoffStateEntered;
7473
7474 sc->stat_IfInFramesL2FilterDiscards =
7475 stats->stat_IfInFramesL2FilterDiscards;
7476
7477 sc->stat_IfInRuleCheckerDiscards =
7478 stats->stat_IfInRuleCheckerDiscards;
7479
7480 sc->stat_IfInFTQDiscards =
7481 stats->stat_IfInFTQDiscards;
7482
7483 sc->stat_IfInMBUFDiscards =
7484 stats->stat_IfInMBUFDiscards;
7485
7486 sc->stat_IfInRuleCheckerP4Hit =
7487 stats->stat_IfInRuleCheckerP4Hit;
7488
7489 sc->stat_CatchupInRuleCheckerDiscards =
7490 stats->stat_CatchupInRuleCheckerDiscards;
7491
7492 sc->stat_CatchupInFTQDiscards =
7493 stats->stat_CatchupInFTQDiscards;
7494
7495 sc->stat_CatchupInMBUFDiscards =
7496 stats->stat_CatchupInMBUFDiscards;
7497
7498 sc->stat_CatchupInRuleCheckerP4Hit =
7499 stats->stat_CatchupInRuleCheckerP4Hit;
7500
7501 sc->com_no_buffers = REG_RD_IND(sc, 0x120084);
7502
7503 /*
7504 * Update the interface statistics from the
7505 * hardware statistics.
7506 */
7507 ifp->if_collisions =
7508 (u_long) sc->stat_EtherStatsCollisions;
7509
7510 /* ToDo: This method loses soft errors. */
7511 ifp->if_ierrors =
7512 (u_long) sc->stat_EtherStatsUndersizePkts +
7513 (u_long) sc->stat_EtherStatsOversizePkts +
7514 (u_long) sc->stat_IfInMBUFDiscards +
7515 (u_long) sc->stat_Dot3StatsAlignmentErrors +
7516 (u_long) sc->stat_Dot3StatsFCSErrors +
7517 (u_long) sc->stat_IfInRuleCheckerDiscards +
7518 (u_long) sc->stat_IfInFTQDiscards +
7519 (u_long) sc->com_no_buffers;
7520
7521 /* ToDo: This method loses soft errors. */
7522 ifp->if_oerrors =
7523 (u_long) sc->stat_emac_tx_stat_dot3statsinternalmactransmiterrors +
7524 (u_long) sc->stat_Dot3StatsExcessiveCollisions +
7525 (u_long) sc->stat_Dot3StatsLateCollisions;
7526
7527 /* ToDo: Add additional statistics. */
7528
7529 DBEXIT(BCE_EXTREME_MISC);
7530}
7531
7532
7533/****************************************************************************/
7534/* Periodic function to notify the bootcode that the driver is still */
7535/* present. */
7536/* */
7537/* Returns: */
7538/* Nothing. */
7539/****************************************************************************/
7540static void
7541bce_pulse(void *xsc)
7542{
7543 struct bce_softc *sc = xsc;
7544 u32 msg;
7545
7546 DBENTER(BCE_EXTREME_MISC);
7547
7548 BCE_LOCK_ASSERT(sc);
7549
7550 /* Tell the firmware that the driver is still running. */
7551 msg = (u32) ++sc->bce_fw_drv_pulse_wr_seq;
7552 bce_shmem_wr(sc, BCE_DRV_PULSE_MB, msg);
7553
7554 /* Schedule the next pulse. */
7555 callout_reset(&sc->bce_pulse_callout, hz, bce_pulse, sc);
7556
7557 DBEXIT(BCE_EXTREME_MISC);
7558}
7559
7560
7561/****************************************************************************/
7562/* Periodic function to perform maintenance tasks. */
7563/* */
7564/* Returns: */
7565/* Nothing. */
7566/****************************************************************************/
7567static void
7568bce_tick(void *xsc)
7569{
7570 struct bce_softc *sc = xsc;
7571 struct mii_data *mii;
7572 struct ifnet *ifp;
7573
7574 ifp = sc->bce_ifp;
7575
7576 DBENTER(BCE_EXTREME_MISC);
7577
7578 BCE_LOCK_ASSERT(sc);
7579
7580 /* Schedule the next tick. */
7581 callout_reset(&sc->bce_tick_callout, hz, bce_tick, sc);
7582
7583 /* Update the statistics from the hardware statistics block. */
7584 bce_stats_update(sc);
7585
7586 /* Top off the receive and page chains. */
7587#ifdef ZERO_COPY_SOCKETS
7588 bce_fill_pg_chain(sc);
7589#endif
7590 bce_fill_rx_chain(sc);
7591
7592 /* Check that chip hasn't hung. */
7593 bce_watchdog(sc);
7594
7595 /* If link is up already up then we're done. */
7596 if (sc->bce_link)
7597 goto bce_tick_exit;
7598
7599 /* Link is down. Check what the PHY's doing. */
7600 mii = device_get_softc(sc->bce_miibus);
7601 mii_tick(mii);
7602
7603 /* Check if the link has come up. */
7604 if ((mii->mii_media_status & IFM_ACTIVE) &&
7605 (IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)) {
7606 DBPRINT(sc, BCE_VERBOSE_MISC, "%s(): Link up!\n", __FUNCTION__);
7607 sc->bce_link++;
7608 if ((IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T ||
7609 IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX) &&
7610 bootverbose)
7611 BCE_PRINTF("Gigabit link up!\n");
7612 /* Now that link is up, handle any outstanding TX traffic. */
7613 if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)) {
7614 DBPRINT(sc, BCE_VERBOSE_MISC, "%s(): Found pending TX traffic.\n",
7615 __FUNCTION__);
7616 bce_start_locked(ifp);
7617 }
7618 }
7619
7620bce_tick_exit:
7621 DBEXIT(BCE_EXTREME_MISC);
7622 return;
7623}
7624
7625
7626#ifdef BCE_DEBUG
7627/****************************************************************************/
7628/* Allows the driver state to be dumped through the sysctl interface. */
7629/* */
7630/* Returns: */
7631/* 0 for success, positive value for failure. */
7632/****************************************************************************/
7633static int
7634bce_sysctl_driver_state(SYSCTL_HANDLER_ARGS)
7635{
7636 int error;
7637 int result;
7638 struct bce_softc *sc;
7639
7640 result = -1;
7641 error = sysctl_handle_int(oidp, &result, 0, req);
7642
7643 if (error || !req->newptr)
7644 return (error);
7645
7646 if (result == 1) {
7647 sc = (struct bce_softc *)arg1;
7648 bce_dump_driver_state(sc);
7649 }
7650
7651 return error;
7652}
7653
7654
7655/****************************************************************************/
7656/* Allows the hardware state to be dumped through the sysctl interface. */
7657/* */
7658/* Returns: */
7659/* 0 for success, positive value for failure. */
7660/****************************************************************************/
7661static int
7662bce_sysctl_hw_state(SYSCTL_HANDLER_ARGS)
7663{
7664 int error;
7665 int result;
7666 struct bce_softc *sc;
7667
7668 result = -1;
7669 error = sysctl_handle_int(oidp, &result, 0, req);
7670
7671 if (error || !req->newptr)
7672 return (error);
7673
7674 if (result == 1) {
7675 sc = (struct bce_softc *)arg1;
7676 bce_dump_hw_state(sc);
7677 }
7678
7679 return error;
7680}
7681
7682
7683/****************************************************************************/
7684/* Allows the bootcode state to be dumped through the sysctl interface. */
7685/* */
7686/* Returns: */
7687/* 0 for success, positive value for failure. */
7688/****************************************************************************/
7689static int
7690bce_sysctl_bc_state(SYSCTL_HANDLER_ARGS)
7691{
7692 int error;
7693 int result;
7694 struct bce_softc *sc;
7695
7696 result = -1;
7697 error = sysctl_handle_int(oidp, &result, 0, req);
7698
7699 if (error || !req->newptr)
7700 return (error);
7701
7702 if (result == 1) {
7703 sc = (struct bce_softc *)arg1;
7704 bce_dump_bc_state(sc);
7705 }
7706
7707 return error;
7708}
7709
7710
7711/****************************************************************************/
7712/* Provides a sysctl interface to allow dumping the RX chain. */
7713/* */
7714/* Returns: */
7715/* 0 for success, positive value for failure. */
7716/****************************************************************************/
7717static int
7718bce_sysctl_dump_rx_chain(SYSCTL_HANDLER_ARGS)
7719{
7720 int error;
7721 int result;
7722 struct bce_softc *sc;
7723
7724 result = -1;
7725 error = sysctl_handle_int(oidp, &result, 0, req);
7726
7727 if (error || !req->newptr)
7728 return (error);
7729
7730 if (result == 1) {
7731 sc = (struct bce_softc *)arg1;
7732 bce_dump_rx_chain(sc, 0, TOTAL_RX_BD);
7733 }
7734
7735 return error;
7736}
7737
7738
7739/****************************************************************************/
7740/* Provides a sysctl interface to allow dumping the TX chain. */
7741/* */
7742/* Returns: */
7743/* 0 for success, positive value for failure. */
7744/****************************************************************************/
7745static int
7746bce_sysctl_dump_tx_chain(SYSCTL_HANDLER_ARGS)
7747{
7748 int error;
7749 int result;
7750 struct bce_softc *sc;
7751
7752 result = -1;
7753 error = sysctl_handle_int(oidp, &result, 0, req);
7754
7755 if (error || !req->newptr)
7756 return (error);
7757
7758 if (result == 1) {
7759 sc = (struct bce_softc *)arg1;
7760 bce_dump_tx_chain(sc, 0, USABLE_TX_BD);
7761 }
7762
7763 return error;
7764}
7765
7766
7767#ifdef ZERO_COPY_SOCKETS
7768/****************************************************************************/
7769/* Provides a sysctl interface to allow dumping the page chain. */
7770/* */
7771/* Returns: */
7772/* 0 for success, positive value for failure. */
7773/****************************************************************************/
7774static int
7775bce_sysctl_dump_pg_chain(SYSCTL_HANDLER_ARGS)
7776{
7777 int error;
7778 int result;
7779 struct bce_softc *sc;
7780
7781 result = -1;
7782 error = sysctl_handle_int(oidp, &result, 0, req);
7783
7784 if (error || !req->newptr)
7785 return (error);
7786
7787 if (result == 1) {
7788 sc = (struct bce_softc *)arg1;
7789 bce_dump_pg_chain(sc, 0, TOTAL_PG_BD);
7790 }
7791
7792 return error;
7793}
7794#endif
7795
7796/****************************************************************************/
7797/* Provides a sysctl interface to allow reading arbitrary NVRAM offsets in */
7798/* the device. DO NOT ENABLE ON PRODUCTION SYSTEMS! */
7799/* */
7800/* Returns: */
7801/* 0 for success, positive value for failure. */
7802/****************************************************************************/
7803static int
7804bce_sysctl_nvram_read(SYSCTL_HANDLER_ARGS)
7805{
7806 struct bce_softc *sc = (struct bce_softc *)arg1;
7807 int error;
7808 u32 result;
7809 u32 val[1];
7810 u8 *data = (u8 *) val;
7811
7812 result = -1;
7813 error = sysctl_handle_int(oidp, &result, 0, req);
7814 if (error || (req->newptr == NULL))
7815 return (error);
7816
7817 bce_nvram_read(sc, result, data, 4);
7818 BCE_PRINTF("offset 0x%08X = 0x%08X\n", result, bce_be32toh(val[0]));
7819
7820 return (error);
7821}
7822
7823
7824/****************************************************************************/
7825/* Provides a sysctl interface to allow reading arbitrary registers in the */
7826/* device. DO NOT ENABLE ON PRODUCTION SYSTEMS! */
7827/* */
7828/* Returns: */
7829/* 0 for success, positive value for failure. */
7830/****************************************************************************/
7831static int
7832bce_sysctl_reg_read(SYSCTL_HANDLER_ARGS)
7833{
7834 struct bce_softc *sc = (struct bce_softc *)arg1;
7835 int error;
7836 u32 val, result;
7837
7838 result = -1;
7839 error = sysctl_handle_int(oidp, &result, 0, req);
7840 if (error || (req->newptr == NULL))
7841 return (error);
7842
7843 /* Make sure the register is accessible. */
7844 if (result < 0x8000) {
7845 val = REG_RD(sc, result);
7846 BCE_PRINTF("reg 0x%08X = 0x%08X\n", result, val);
7847 } else if (result < 0x0280000) {
7848 val = REG_RD_IND(sc, result);
7849 BCE_PRINTF("reg 0x%08X = 0x%08X\n", result, val);
7850 }
7851
7852 return (error);
7853}
7854
7855
7856/****************************************************************************/
7857/* Provides a sysctl interface to allow reading arbitrary PHY registers in */
7858/* the device. DO NOT ENABLE ON PRODUCTION SYSTEMS! */
7859/* */
7860/* Returns: */
7861/* 0 for success, positive value for failure. */
7862/****************************************************************************/
7863static int
7864bce_sysctl_phy_read(SYSCTL_HANDLER_ARGS)
7865{
7866 struct bce_softc *sc;
7867 device_t dev;
7868 int error, result;
7869 u16 val;
7870
7871 result = -1;
7872 error = sysctl_handle_int(oidp, &result, 0, req);
7873 if (error || (req->newptr == NULL))
7874 return (error);
7875
7876 /* Make sure the register is accessible. */
7877 if (result < 0x20) {
7878 sc = (struct bce_softc *)arg1;
7879 dev = sc->bce_dev;
7880 val = bce_miibus_read_reg(dev, sc->bce_phy_addr, result);
7881 BCE_PRINTF("phy 0x%02X = 0x%04X\n", result, val);
7882 }
7883 return (error);
7884}
7885
7886
7887/****************************************************************************/
7888/* Provides a sysctl interface to allow reading a CID. */
7889/* */
7890/* Returns: */
7891/* 0 for success, positive value for failure. */
7892/****************************************************************************/
7893static int
7894bce_sysctl_dump_ctx(SYSCTL_HANDLER_ARGS)
7895{
7896 struct bce_softc *sc;
7897 int error;
7898 u16 result;
7899
7900 result = -1;
7901 error = sysctl_handle_int(oidp, &result, 0, req);
7902 if (error || (req->newptr == NULL))
7903 return (error);
7904
7905 /* Make sure the register is accessible. */
7906 if (result <= TX_CID) {
7907 sc = (struct bce_softc *)arg1;
7908 bce_dump_ctx(sc, result);
7909 }
7910
7911 return (error);
7912}
7913
7914
7915 /****************************************************************************/
7916/* Provides a sysctl interface to forcing the driver to dump state and */
7917/* enter the debugger. DO NOT ENABLE ON PRODUCTION SYSTEMS! */
7918/* */
7919/* Returns: */
7920/* 0 for success, positive value for failure. */
7921/****************************************************************************/
7922static int
7923bce_sysctl_breakpoint(SYSCTL_HANDLER_ARGS)
7924{
7925 int error;
7926 int result;
7927 struct bce_softc *sc;
7928
7929 result = -1;
7930 error = sysctl_handle_int(oidp, &result, 0, req);
7931
7932 if (error || !req->newptr)
7933 return (error);
7934
7935 if (result == 1) {
7936 sc = (struct bce_softc *)arg1;
7937 bce_breakpoint(sc);
7938 }
7939
7940 return error;
7941}
7942#endif
7943
7944
7945/****************************************************************************/
7946/* Adds any sysctl parameters for tuning or debugging purposes. */
7947/* */
7948/* Returns: */
7949/* 0 for success, positive value for failure. */
7950/****************************************************************************/
7951static void
7952bce_add_sysctls(struct bce_softc *sc)
7953{
7954 struct sysctl_ctx_list *ctx;
7955 struct sysctl_oid_list *children;
7956
7957 DBENTER(BCE_VERBOSE_MISC);
7958
7959 ctx = device_get_sysctl_ctx(sc->bce_dev);
7960 children = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->bce_dev));
7961
7962#ifdef BCE_DEBUG
7963 SYSCTL_ADD_INT(ctx, children, OID_AUTO,
7964 "l2fhdr_error_sim_control",
7965 CTLFLAG_RW, &l2fhdr_error_sim_control,
7966 0, "Debug control to force l2fhdr errors");
7967
7968 SYSCTL_ADD_INT(ctx, children, OID_AUTO,
7969 "l2fhdr_error_sim_count",
7970 CTLFLAG_RD, &sc->l2fhdr_error_sim_count,
7971 0, "Number of simulated l2_fhdr errors");
7972#endif
7973
7974 SYSCTL_ADD_INT(ctx, children, OID_AUTO,
7975 "l2fhdr_error_count",
7976 CTLFLAG_RD, &sc->l2fhdr_error_count,
7977 0, "Number of l2_fhdr errors");
7978
7979#ifdef BCE_DEBUG
7980 SYSCTL_ADD_INT(ctx, children, OID_AUTO,
7981 "mbuf_alloc_failed_sim_control",
7982 CTLFLAG_RW, &mbuf_alloc_failed_sim_control,
7983 0, "Debug control to force mbuf allocation failures");
7984
7985 SYSCTL_ADD_INT(ctx, children, OID_AUTO,
7986 "mbuf_alloc_failed_sim_count",
7987 CTLFLAG_RD, &sc->mbuf_alloc_failed_sim_count,
7988 0, "Number of simulated mbuf cluster allocation failures");
7989#endif
7990
7991 SYSCTL_ADD_INT(ctx, children, OID_AUTO,
7992 "mbuf_alloc_failed_count",
7993 CTLFLAG_RD, &sc->mbuf_alloc_failed_count,
7994 0, "Number of mbuf allocation failures");
7995
7996 SYSCTL_ADD_INT(ctx, children, OID_AUTO,
7997 "fragmented_mbuf_count",
7998 CTLFLAG_RD, &sc->fragmented_mbuf_count,
7999 0, "Number of fragmented mbufs");
8000
8001#ifdef BCE_DEBUG
8002 SYSCTL_ADD_INT(ctx, children, OID_AUTO,
8003 "dma_map_addr_failed_sim_control",
8004 CTLFLAG_RW, &dma_map_addr_failed_sim_control,
8005 0, "Debug control to force DMA mapping failures");
8006
8007 /* ToDo: Figure out how to update this value in bce_dma_map_addr(). */
8008 SYSCTL_ADD_INT(ctx, children, OID_AUTO,
8009 "dma_map_addr_failed_sim_count",
8010 CTLFLAG_RD, &sc->dma_map_addr_failed_sim_count,
8011 0, "Number of simulated DMA mapping failures");
8012
8013#endif
8014
8015 SYSCTL_ADD_INT(ctx, children, OID_AUTO,
8016 "dma_map_addr_rx_failed_count",
8017 CTLFLAG_RD, &sc->dma_map_addr_rx_failed_count,
8018 0, "Number of RX DMA mapping failures");
8019
8020 SYSCTL_ADD_INT(ctx, children, OID_AUTO,
8021 "dma_map_addr_tx_failed_count",
8022 CTLFLAG_RD, &sc->dma_map_addr_tx_failed_count,
8023 0, "Number of TX DMA mapping failures");
8024
8025#ifdef BCE_DEBUG
8026 SYSCTL_ADD_INT(ctx, children, OID_AUTO,
8027 "unexpected_attention_sim_control",
8028 CTLFLAG_RW, &unexpected_attention_sim_control,
8029 0, "Debug control to simulate unexpected attentions");
8030
8031 SYSCTL_ADD_INT(ctx, children, OID_AUTO,
8032 "unexpected_attention_sim_count",
8033 CTLFLAG_RW, &sc->unexpected_attention_sim_count,
8034 0, "Number of simulated unexpected attentions");
8035#endif
8036
8037 SYSCTL_ADD_INT(ctx, children, OID_AUTO,
8038 "unexpected_attention_count",
8039 CTLFLAG_RW, &sc->unexpected_attention_count,
8040 0, "Number of unexpected attentions");
8041
8042#ifdef BCE_DEBUG
8043 SYSCTL_ADD_INT(ctx, children, OID_AUTO,
8044 "debug_bootcode_running_failure",
8045 CTLFLAG_RW, &bootcode_running_failure_sim_control,
8046 0, "Debug control to force bootcode running failures");
8047
8048 SYSCTL_ADD_INT(ctx, children, OID_AUTO,
8049 "rx_low_watermark",
8050 CTLFLAG_RD, &sc->rx_low_watermark,
8051 0, "Lowest level of free rx_bd's");
8052
8053 SYSCTL_ADD_INT(ctx, children, OID_AUTO,
8054 "rx_empty_count",
8055 CTLFLAG_RD, &sc->rx_empty_count,
8056 0, "Number of times the RX chain was empty");
8057
8058 SYSCTL_ADD_INT(ctx, children, OID_AUTO,
8059 "tx_hi_watermark",
8060 CTLFLAG_RD, &sc->tx_hi_watermark,
8061 0, "Highest level of used tx_bd's");
8062
8063 SYSCTL_ADD_INT(ctx, children, OID_AUTO,
8064 "tx_full_count",
8065 CTLFLAG_RD, &sc->tx_full_count,
8066 0, "Number of times the TX chain was full");
8067
8068 SYSCTL_ADD_INT(ctx, children, OID_AUTO,
8069 "requested_tso_frames",
8070 CTLFLAG_RD, &sc->requested_tso_frames,
8071 0, "Number of TSO frames received");
8072
8073 SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8074 "rx_interrupts",
8075 CTLFLAG_RD, &sc->rx_interrupts,
8076 0, "Number of RX interrupts");
8077
8078 SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8079 "tx_interrupts",
8080 CTLFLAG_RD, &sc->tx_interrupts,
8081 0, "Number of TX interrupts");
8082
8083 SYSCTL_ADD_ULONG(ctx, children, OID_AUTO,
8084 "rx_intr_time",
8085 CTLFLAG_RD, &sc->rx_intr_time,
8086 "RX interrupt time");
8087
8088 SYSCTL_ADD_ULONG(ctx, children, OID_AUTO,
8089 "tx_intr_time",
8090 CTLFLAG_RD, &sc->tx_intr_time,
8091 "TX interrupt time");
8092#endif
8093
8094 SYSCTL_ADD_ULONG(ctx, children, OID_AUTO,
8095 "stat_IfHcInOctets",
8096 CTLFLAG_RD, &sc->stat_IfHCInOctets,
8097 "Bytes received");
8098
8099 SYSCTL_ADD_ULONG(ctx, children, OID_AUTO,
8100 "stat_IfHCInBadOctets",
8101 CTLFLAG_RD, &sc->stat_IfHCInBadOctets,
8102 "Bad bytes received");
8103
8104 SYSCTL_ADD_ULONG(ctx, children, OID_AUTO,
8105 "stat_IfHCOutOctets",
8106 CTLFLAG_RD, &sc->stat_IfHCOutOctets,
8107 "Bytes sent");
8108
8109 SYSCTL_ADD_ULONG(ctx, children, OID_AUTO,
8110 "stat_IfHCOutBadOctets",
8111 CTLFLAG_RD, &sc->stat_IfHCOutBadOctets,
8112 "Bad bytes sent");
8113
8114 SYSCTL_ADD_ULONG(ctx, children, OID_AUTO,
8115 "stat_IfHCInUcastPkts",
8116 CTLFLAG_RD, &sc->stat_IfHCInUcastPkts,
8117 "Unicast packets received");
8118
8119 SYSCTL_ADD_ULONG(ctx, children, OID_AUTO,
8120 "stat_IfHCInMulticastPkts",
8121 CTLFLAG_RD, &sc->stat_IfHCInMulticastPkts,
8122 "Multicast packets received");
8123
8124 SYSCTL_ADD_ULONG(ctx, children, OID_AUTO,
8125 "stat_IfHCInBroadcastPkts",
8126 CTLFLAG_RD, &sc->stat_IfHCInBroadcastPkts,
8127 "Broadcast packets received");
8128
8129 SYSCTL_ADD_ULONG(ctx, children, OID_AUTO,
8130 "stat_IfHCOutUcastPkts",
8131 CTLFLAG_RD, &sc->stat_IfHCOutUcastPkts,
8132 "Unicast packets sent");
8133
8134 SYSCTL_ADD_ULONG(ctx, children, OID_AUTO,
8135 "stat_IfHCOutMulticastPkts",
8136 CTLFLAG_RD, &sc->stat_IfHCOutMulticastPkts,
8137 "Multicast packets sent");
8138
8139 SYSCTL_ADD_ULONG(ctx, children, OID_AUTO,
8140 "stat_IfHCOutBroadcastPkts",
8141 CTLFLAG_RD, &sc->stat_IfHCOutBroadcastPkts,
8142 "Broadcast packets sent");
8143
8144 SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8145 "stat_emac_tx_stat_dot3statsinternalmactransmiterrors",
8146 CTLFLAG_RD, &sc->stat_emac_tx_stat_dot3statsinternalmactransmiterrors,
8147 0, "Internal MAC transmit errors");
8148
8149 SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8150 "stat_Dot3StatsCarrierSenseErrors",
8151 CTLFLAG_RD, &sc->stat_Dot3StatsCarrierSenseErrors,
8152 0, "Carrier sense errors");
8153
8154 SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8155 "stat_Dot3StatsFCSErrors",
8156 CTLFLAG_RD, &sc->stat_Dot3StatsFCSErrors,
8157 0, "Frame check sequence errors");
8158
8159 SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8160 "stat_Dot3StatsAlignmentErrors",
8161 CTLFLAG_RD, &sc->stat_Dot3StatsAlignmentErrors,
8162 0, "Alignment errors");
8163
8164 SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8165 "stat_Dot3StatsSingleCollisionFrames",
8166 CTLFLAG_RD, &sc->stat_Dot3StatsSingleCollisionFrames,
8167 0, "Single Collision Frames");
8168
8169 SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8170 "stat_Dot3StatsMultipleCollisionFrames",
8171 CTLFLAG_RD, &sc->stat_Dot3StatsMultipleCollisionFrames,
8172 0, "Multiple Collision Frames");
8173
8174 SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8175 "stat_Dot3StatsDeferredTransmissions",
8176 CTLFLAG_RD, &sc->stat_Dot3StatsDeferredTransmissions,
8177 0, "Deferred Transmissions");
8178
8179 SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8180 "stat_Dot3StatsExcessiveCollisions",
8181 CTLFLAG_RD, &sc->stat_Dot3StatsExcessiveCollisions,
8182 0, "Excessive Collisions");
8183
8184 SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8185 "stat_Dot3StatsLateCollisions",
8186 CTLFLAG_RD, &sc->stat_Dot3StatsLateCollisions,
8187 0, "Late Collisions");
8188
8189 SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8190 "stat_EtherStatsCollisions",
8191 CTLFLAG_RD, &sc->stat_EtherStatsCollisions,
8192 0, "Collisions");
8193
8194 SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8195 "stat_EtherStatsFragments",
8196 CTLFLAG_RD, &sc->stat_EtherStatsFragments,
8197 0, "Fragments");
8198
8199 SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8200 "stat_EtherStatsJabbers",
8201 CTLFLAG_RD, &sc->stat_EtherStatsJabbers,
8202 0, "Jabbers");
8203
8204 SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8205 "stat_EtherStatsUndersizePkts",
8206 CTLFLAG_RD, &sc->stat_EtherStatsUndersizePkts,
8207 0, "Undersize packets");
8208
8209 SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8210 "stat_EtherStatsOversizePkts",
8211 CTLFLAG_RD, &sc->stat_EtherStatsOversizePkts,
8212 0, "stat_EtherStatsOversizePkts");
8213
8214 SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8215 "stat_EtherStatsPktsRx64Octets",
8216 CTLFLAG_RD, &sc->stat_EtherStatsPktsRx64Octets,
8217 0, "Bytes received in 64 byte packets");
8218
8219 SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8220 "stat_EtherStatsPktsRx65Octetsto127Octets",
8221 CTLFLAG_RD, &sc->stat_EtherStatsPktsRx65Octetsto127Octets,
8222 0, "Bytes received in 65 to 127 byte packets");
8223
8224 SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8225 "stat_EtherStatsPktsRx128Octetsto255Octets",
8226 CTLFLAG_RD, &sc->stat_EtherStatsPktsRx128Octetsto255Octets,
8227 0, "Bytes received in 128 to 255 byte packets");
8228
8229 SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8230 "stat_EtherStatsPktsRx256Octetsto511Octets",
8231 CTLFLAG_RD, &sc->stat_EtherStatsPktsRx256Octetsto511Octets,
8232 0, "Bytes received in 256 to 511 byte packets");
8233
8234 SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8235 "stat_EtherStatsPktsRx512Octetsto1023Octets",
8236 CTLFLAG_RD, &sc->stat_EtherStatsPktsRx512Octetsto1023Octets,
8237 0, "Bytes received in 512 to 1023 byte packets");
8238
8239 SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8240 "stat_EtherStatsPktsRx1024Octetsto1522Octets",
8241 CTLFLAG_RD, &sc->stat_EtherStatsPktsRx1024Octetsto1522Octets,
8242 0, "Bytes received in 1024 t0 1522 byte packets");
8243
8244 SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8245 "stat_EtherStatsPktsRx1523Octetsto9022Octets",
8246 CTLFLAG_RD, &sc->stat_EtherStatsPktsRx1523Octetsto9022Octets,
8247 0, "Bytes received in 1523 to 9022 byte packets");
8248
8249 SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8250 "stat_EtherStatsPktsTx64Octets",
8251 CTLFLAG_RD, &sc->stat_EtherStatsPktsTx64Octets,
8252 0, "Bytes sent in 64 byte packets");
8253
8254 SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8255 "stat_EtherStatsPktsTx65Octetsto127Octets",
8256 CTLFLAG_RD, &sc->stat_EtherStatsPktsTx65Octetsto127Octets,
8257 0, "Bytes sent in 65 to 127 byte packets");
8258
8259 SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8260 "stat_EtherStatsPktsTx128Octetsto255Octets",
8261 CTLFLAG_RD, &sc->stat_EtherStatsPktsTx128Octetsto255Octets,
8262 0, "Bytes sent in 128 to 255 byte packets");
8263
8264 SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8265 "stat_EtherStatsPktsTx256Octetsto511Octets",
8266 CTLFLAG_RD, &sc->stat_EtherStatsPktsTx256Octetsto511Octets,
8267 0, "Bytes sent in 256 to 511 byte packets");
8268
8269 SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8270 "stat_EtherStatsPktsTx512Octetsto1023Octets",
8271 CTLFLAG_RD, &sc->stat_EtherStatsPktsTx512Octetsto1023Octets,
8272 0, "Bytes sent in 512 to 1023 byte packets");
8273
8274 SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8275 "stat_EtherStatsPktsTx1024Octetsto1522Octets",
8276 CTLFLAG_RD, &sc->stat_EtherStatsPktsTx1024Octetsto1522Octets,
8277 0, "Bytes sent in 1024 to 1522 byte packets");
8278
8279 SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8280 "stat_EtherStatsPktsTx1523Octetsto9022Octets",
8281 CTLFLAG_RD, &sc->stat_EtherStatsPktsTx1523Octetsto9022Octets,
8282 0, "Bytes sent in 1523 to 9022 byte packets");
8283
8284 SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8285 "stat_XonPauseFramesReceived",
8286 CTLFLAG_RD, &sc->stat_XonPauseFramesReceived,
8287 0, "XON pause frames receved");
8288
8289 SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8290 "stat_XoffPauseFramesReceived",
8291 CTLFLAG_RD, &sc->stat_XoffPauseFramesReceived,
8292 0, "XOFF pause frames received");
8293
8294 SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8295 "stat_OutXonSent",
8296 CTLFLAG_RD, &sc->stat_OutXonSent,
8297 0, "XON pause frames sent");
8298
8299 SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8300 "stat_OutXoffSent",
8301 CTLFLAG_RD, &sc->stat_OutXoffSent,
8302 0, "XOFF pause frames sent");
8303
8304 SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8305 "stat_FlowControlDone",
8306 CTLFLAG_RD, &sc->stat_FlowControlDone,
8307 0, "Flow control done");
8308
8309 SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8310 "stat_MacControlFramesReceived",
8311 CTLFLAG_RD, &sc->stat_MacControlFramesReceived,
8312 0, "MAC control frames received");
8313
8314 SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8315 "stat_XoffStateEntered",
8316 CTLFLAG_RD, &sc->stat_XoffStateEntered,
8317 0, "XOFF state entered");
8318
8319 SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8320 "stat_IfInFramesL2FilterDiscards",
8321 CTLFLAG_RD, &sc->stat_IfInFramesL2FilterDiscards,
8322 0, "Received L2 packets discarded");
8323
8324 SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8325 "stat_IfInRuleCheckerDiscards",
8326 CTLFLAG_RD, &sc->stat_IfInRuleCheckerDiscards,
8327 0, "Received packets discarded by rule");
8328
8329 SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8330 "stat_IfInFTQDiscards",
8331 CTLFLAG_RD, &sc->stat_IfInFTQDiscards,
8332 0, "Received packet FTQ discards");
8333
8334 SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8335 "stat_IfInMBUFDiscards",
8336 CTLFLAG_RD, &sc->stat_IfInMBUFDiscards,
8337 0, "Received packets discarded due to lack of controller buffer memory");
8338
8339 SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8340 "stat_IfInRuleCheckerP4Hit",
8341 CTLFLAG_RD, &sc->stat_IfInRuleCheckerP4Hit,
8342 0, "Received packets rule checker hits");
8343
8344 SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8345 "stat_CatchupInRuleCheckerDiscards",
8346 CTLFLAG_RD, &sc->stat_CatchupInRuleCheckerDiscards,
8347 0, "Received packets discarded in Catchup path");
8348
8349 SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8350 "stat_CatchupInFTQDiscards",
8351 CTLFLAG_RD, &sc->stat_CatchupInFTQDiscards,
8352 0, "Received packets discarded in FTQ in Catchup path");
8353
8354 SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8355 "stat_CatchupInMBUFDiscards",
8356 CTLFLAG_RD, &sc->stat_CatchupInMBUFDiscards,
8357 0, "Received packets discarded in controller buffer memory in Catchup path");
8358
8359 SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8360 "stat_CatchupInRuleCheckerP4Hit",
8361 CTLFLAG_RD, &sc->stat_CatchupInRuleCheckerP4Hit,
8362 0, "Received packets rule checker hits in Catchup path");
8363
8364 SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8365 "com_no_buffers",
8366 CTLFLAG_RD, &sc->com_no_buffers,
8367 0, "Valid packets received but no RX buffers available");
8368
8369#ifdef BCE_DEBUG
8370 SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
8371 "driver_state", CTLTYPE_INT | CTLFLAG_RW,
8372 (void *)sc, 0,
8373 bce_sysctl_driver_state, "I", "Drive state information");
8374
8375 SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
8376 "hw_state", CTLTYPE_INT | CTLFLAG_RW,
8377 (void *)sc, 0,
8378 bce_sysctl_hw_state, "I", "Hardware state information");
8379
8380 SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
8381 "bc_state", CTLTYPE_INT | CTLFLAG_RW,
8382 (void *)sc, 0,
8383 bce_sysctl_bc_state, "I", "Bootcode state information");
8384
8385 SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
8386 "dump_rx_chain", CTLTYPE_INT | CTLFLAG_RW,
8387 (void *)sc, 0,
8388 bce_sysctl_dump_rx_chain, "I", "Dump rx_bd chain");
8389
8390 SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
8391 "dump_tx_chain", CTLTYPE_INT | CTLFLAG_RW,
8392 (void *)sc, 0,
8393 bce_sysctl_dump_tx_chain, "I", "Dump tx_bd chain");
8394
8395#ifdef ZERO_COPY_SOCKETS
8396 SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
8397 "dump_pg_chain", CTLTYPE_INT | CTLFLAG_RW,
8398 (void *)sc, 0,
8399 bce_sysctl_dump_pg_chain, "I", "Dump page chain");
8400#endif
8401 SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
8402 "dump_ctx", CTLTYPE_INT | CTLFLAG_RW,
8403 (void *)sc, 0,
8404 bce_sysctl_dump_ctx, "I", "Dump context memory");
8405
8406 SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
8407 "breakpoint", CTLTYPE_INT | CTLFLAG_RW,
8408 (void *)sc, 0,
8409 bce_sysctl_breakpoint, "I", "Driver breakpoint");
8410
8411 SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
8412 "reg_read", CTLTYPE_INT | CTLFLAG_RW,
8413 (void *)sc, 0,
8414 bce_sysctl_reg_read, "I", "Register read");
8415
8416 SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
8417 "nvram_read", CTLTYPE_INT | CTLFLAG_RW,
8418 (void *)sc, 0,
8419 bce_sysctl_nvram_read, "I", "NVRAM read");
8420
8421 SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
8422 "phy_read", CTLTYPE_INT | CTLFLAG_RW,
8423 (void *)sc, 0,
8424 bce_sysctl_phy_read, "I", "PHY register read");
8425
8426#endif
8427
8428 DBEXIT(BCE_VERBOSE_MISC);
8429}
8430
8431
8432/****************************************************************************/
8433/* BCE Debug Routines */
8434/****************************************************************************/
8435#ifdef BCE_DEBUG
8436
8437/****************************************************************************/
8438/* Freezes the controller to allow for a cohesive state dump. */
8439/* */
8440/* Returns: */
8441/* Nothing. */
8442/****************************************************************************/
8443static void
8444bce_freeze_controller(struct bce_softc *sc)
8445{
8446 u32 val;
8447 val = REG_RD(sc, BCE_MISC_COMMAND);
8448 val |= BCE_MISC_COMMAND_DISABLE_ALL;
8449 REG_WR(sc, BCE_MISC_COMMAND, val);
8450}
8451
8452
8453/****************************************************************************/
8454/* Unfreezes the controller after a freeze operation. This may not always */
8455/* work and the controller will require a reset! */
8456/* */
8457/* Returns: */
8458/* Nothing. */
8459/****************************************************************************/
8460static void
8461bce_unfreeze_controller(struct bce_softc *sc)
8462{
8463 u32 val;
8464 val = REG_RD(sc, BCE_MISC_COMMAND);
8465 val |= BCE_MISC_COMMAND_ENABLE_ALL;
8466 REG_WR(sc, BCE_MISC_COMMAND, val);
8467}
8468
8469
8470/****************************************************************************/
8471/* Prints out Ethernet frame information from an mbuf. */
8472/* */
8473/* Partially decode an Ethernet frame to look at some important headers. */
8474/* */
8475/* Returns: */
8476/* Nothing. */
8477/****************************************************************************/
8478static void
8479bce_dump_enet(struct bce_softc *sc, struct mbuf *m)
8480{
8481 struct ether_vlan_header *eh;
8482 u16 etype;
8483 int ehlen;
8484 struct ip *ip;
8485 struct tcphdr *th;
8486 struct udphdr *uh;
8487 struct arphdr *ah;
8488
8489 BCE_PRINTF(
8490 "-----------------------------"
8491 " Frame Decode "
8492 "-----------------------------\n");
8493
8494 eh = mtod(m, struct ether_vlan_header *);
8495
8496 /* Handle VLAN encapsulation if present. */
8497 if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) {
8498 etype = ntohs(eh->evl_proto);
8499 ehlen = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
8500 } else {
8501 etype = ntohs(eh->evl_encap_proto);
8502 ehlen = ETHER_HDR_LEN;
8503 }
8504
8505 /* ToDo: Add VLAN output. */
8506 BCE_PRINTF("enet: dest = %6D, src = %6D, type = 0x%04X, hlen = %d\n",
8507 eh->evl_dhost, ":", eh->evl_shost, ":", etype, ehlen);
8508
8509 switch (etype) {
8510 case ETHERTYPE_IP:
8511 ip = (struct ip *)(m->m_data + ehlen);
8512 BCE_PRINTF("--ip: dest = 0x%08X , src = 0x%08X, len = %d bytes, "
8513 "protocol = 0x%02X, xsum = 0x%04X\n",
8514 ntohl(ip->ip_dst.s_addr), ntohl(ip->ip_src.s_addr),
8515 ntohs(ip->ip_len), ip->ip_p, ntohs(ip->ip_sum));
8516
8517 switch (ip->ip_p) {
8518 case IPPROTO_TCP:
8519 th = (struct tcphdr *)((caddr_t)ip + (ip->ip_hl << 2));
8520 BCE_PRINTF("-tcp: dest = %d, src = %d, hlen = %d bytes, "
8521 "flags = 0x%b, csum = 0x%04X\n",
8522 ntohs(th->th_dport), ntohs(th->th_sport), (th->th_off << 2),
8523 th->th_flags, "\20\10CWR\07ECE\06URG\05ACK\04PSH\03RST\02SYN\01FIN",
8524 ntohs(th->th_sum));
8525 break;
8526 case IPPROTO_UDP:
8527 uh = (struct udphdr *)((caddr_t)ip + (ip->ip_hl << 2));
8528 BCE_PRINTF("-udp: dest = %d, src = %d, len = %d bytes, "
8529 "csum = 0x%04X\n", ntohs(uh->uh_dport), ntohs(uh->uh_sport),
8530 ntohs(uh->uh_ulen), ntohs(uh->uh_sum));
8531 break;
8532 case IPPROTO_ICMP:
8533 BCE_PRINTF("icmp:\n");
8534 break;
8535 default:
8536 BCE_PRINTF("----: Other IP protocol.\n");
8537 }
8538 break;
8539 case ETHERTYPE_IPV6:
8540 BCE_PRINTF("ipv6: No decode supported.\n");
8541 break;
8542 case ETHERTYPE_ARP:
8543 BCE_PRINTF("-arp: ");
8544 ah = (struct arphdr *) (m->m_data + ehlen);
8545 switch (ntohs(ah->ar_op)) {
8546 case ARPOP_REVREQUEST:
8547 printf("reverse ARP request\n");
8548 break;
8549 case ARPOP_REVREPLY:
8550 printf("reverse ARP reply\n");
8551 break;
8552 case ARPOP_REQUEST:
8553 printf("ARP request\n");
8554 break;
8555 case ARPOP_REPLY:
8556 printf("ARP reply\n");
8557 break;
8558 default:
8559 printf("other ARP operation\n");
8560 }
8561 break;
8562 default:
8563 BCE_PRINTF("----: Other protocol.\n");
8564 }
8565
8566 BCE_PRINTF(
8567 "-----------------------------"
8568 "--------------"
8569 "-----------------------------\n");
8570}
8571
8572
8573/****************************************************************************/
8574/* Prints out information about an mbuf. */
8575/* */
8576/* Returns: */
8577/* Nothing. */
8578/****************************************************************************/
8579static __attribute__ ((noinline)) void
8580bce_dump_mbuf(struct bce_softc *sc, struct mbuf *m)
8581{
8582 struct mbuf *mp = m;
8583
8584 if (m == NULL) {
8585 BCE_PRINTF("mbuf: null pointer\n");
8586 return;
8587 }
8588
8589 while (mp) {
8590 BCE_PRINTF("mbuf: %p, m_len = %d, m_flags = 0x%b, m_data = %p\n",
8591 mp, mp->m_len, mp->m_flags,
8592 "\20\1M_EXT\2M_PKTHDR\3M_EOR\4M_RDONLY",
8593 mp->m_data);
8594
8595 if (mp->m_flags & M_PKTHDR) {
8596 BCE_PRINTF("- m_pkthdr: len = %d, flags = 0x%b, csum_flags = %b\n",
8597 mp->m_pkthdr.len, mp->m_flags,
8598 "\20\12M_BCAST\13M_MCAST\14M_FRAG\15M_FIRSTFRAG"
8599 "\16M_LASTFRAG\21M_VLANTAG\22M_PROMISC\23M_NOFREE",
8600 mp->m_pkthdr.csum_flags,
8601 "\20\1CSUM_IP\2CSUM_TCP\3CSUM_UDP\4CSUM_IP_FRAGS"
8602 "\5CSUM_FRAGMENT\6CSUM_TSO\11CSUM_IP_CHECKED"
8603 "\12CSUM_IP_VALID\13CSUM_DATA_VALID\14CSUM_PSEUDO_HDR");
8604 }
8605
8606 if (mp->m_flags & M_EXT) {
8607 BCE_PRINTF("- m_ext: %p, ext_size = %d, type = ",
8608 mp->m_ext.ext_buf, mp->m_ext.ext_size);
8609 switch (mp->m_ext.ext_type) {
8610 case EXT_CLUSTER: printf("EXT_CLUSTER\n"); break;
8611 case EXT_SFBUF: printf("EXT_SFBUF\n"); break;
8612 case EXT_JUMBO9: printf("EXT_JUMBO9\n"); break;
8613 case EXT_JUMBO16: printf("EXT_JUMBO16\n"); break;
8614 case EXT_PACKET: printf("EXT_PACKET\n"); break;
8615 case EXT_MBUF: printf("EXT_MBUF\n"); break;
8616 case EXT_NET_DRV: printf("EXT_NET_DRV\n"); break;
8617 case EXT_MOD_TYPE: printf("EXT_MDD_TYPE\n"); break;
8618 case EXT_DISPOSABLE: printf("EXT_DISPOSABLE\n"); break;
8619 case EXT_EXTREF: printf("EXT_EXTREF\n"); break;
8620 default: printf("UNKNOWN\n");
8621 }
8622 }
8623
8624 mp = mp->m_next;
8625 }
8626}
8627
8628
8629/****************************************************************************/
8630/* Prints out the mbufs in the TX mbuf chain. */
8631/* */
8632/* Returns: */
8633/* Nothing. */
8634/****************************************************************************/
8635static __attribute__ ((noinline)) void
8636bce_dump_tx_mbuf_chain(struct bce_softc *sc, u16 chain_prod, int count)
8637{
8638 struct mbuf *m;
8639
8640 BCE_PRINTF(
8641 "----------------------------"
8642 " tx mbuf data "
8643 "----------------------------\n");
8644
8645 for (int i = 0; i < count; i++) {
8646 m = sc->tx_mbuf_ptr[chain_prod];
8647 BCE_PRINTF("txmbuf[0x%04X]\n", chain_prod);
8648 bce_dump_mbuf(sc, m);
8649 chain_prod = TX_CHAIN_IDX(NEXT_TX_BD(chain_prod));
8650 }
8651
8652 BCE_PRINTF(
8653 "----------------------------"
8654 "----------------"
8655 "----------------------------\n");
8656}
8657
8658
8659/****************************************************************************/
8660/* Prints out the mbufs in the RX mbuf chain. */
8661/* */
8662/* Returns: */
8663/* Nothing. */
8664/****************************************************************************/
8665static __attribute__ ((noinline)) void
8666bce_dump_rx_mbuf_chain(struct bce_softc *sc, u16 chain_prod, int count)
8667{
8668 struct mbuf *m;
8669
8670 BCE_PRINTF(
8671 "----------------------------"
8672 " rx mbuf data "
8673 "----------------------------\n");
8674
8675 for (int i = 0; i < count; i++) {
8676 m = sc->rx_mbuf_ptr[chain_prod];
8677 BCE_PRINTF("rxmbuf[0x%04X]\n", chain_prod);
8678 bce_dump_mbuf(sc, m);
8679 chain_prod = RX_CHAIN_IDX(NEXT_RX_BD(chain_prod));
8680 }
8681
8682
8683 BCE_PRINTF(
8684 "----------------------------"
8685 "----------------"
8686 "----------------------------\n");
8687}
8688
8689
8690#ifdef ZERO_COPY_SOCKETS
8691/****************************************************************************/
8692/* Prints out the mbufs in the mbuf page chain. */
8693/* */
8694/* Returns: */
8695/* Nothing. */
8696/****************************************************************************/
8697static __attribute__ ((noinline)) void
8698bce_dump_pg_mbuf_chain(struct bce_softc *sc, u16 chain_prod, int count)
8699{
8700 struct mbuf *m;
8701
8702 BCE_PRINTF(
8703 "----------------------------"
8704 " pg mbuf data "
8705 "----------------------------\n");
8706
8707 for (int i = 0; i < count; i++) {
8708 m = sc->pg_mbuf_ptr[chain_prod];
8709 BCE_PRINTF("pgmbuf[0x%04X]\n", chain_prod);
8710 bce_dump_mbuf(sc, m);
8711 chain_prod = PG_CHAIN_IDX(NEXT_PG_BD(chain_prod));
8712 }
8713
8714
8715 BCE_PRINTF(
8716 "----------------------------"
8717 "----------------"
8718 "----------------------------\n");
8719}
8720#endif
8721
8722
8723/****************************************************************************/
8724/* Prints out a tx_bd structure. */
8725/* */
8726/* Returns: */
8727/* Nothing. */
8728/****************************************************************************/
8729static __attribute__ ((noinline)) void
8730bce_dump_txbd(struct bce_softc *sc, int idx, struct tx_bd *txbd)
8731{
8732 if (idx > MAX_TX_BD)
8733 /* Index out of range. */
8734 BCE_PRINTF("tx_bd[0x%04X]: Invalid tx_bd index!\n", idx);
8735 else if ((idx & USABLE_TX_BD_PER_PAGE) == USABLE_TX_BD_PER_PAGE)
8736 /* TX Chain page pointer. */
8737 BCE_PRINTF("tx_bd[0x%04X]: haddr = 0x%08X:%08X, chain page pointer\n",
8738 idx, txbd->tx_bd_haddr_hi, txbd->tx_bd_haddr_lo);
8739 else {
8740 /* Normal tx_bd entry. */
8741 BCE_PRINTF("tx_bd[0x%04X]: haddr = 0x%08X:%08X, nbytes = 0x%08X, "
8742 "vlan tag= 0x%04X, flags = 0x%04X (", idx,
8743 txbd->tx_bd_haddr_hi, txbd->tx_bd_haddr_lo,
8744 txbd->tx_bd_mss_nbytes, txbd->tx_bd_vlan_tag,
8745 txbd->tx_bd_flags);
8746
8747 if (txbd->tx_bd_flags & TX_BD_FLAGS_CONN_FAULT)
8748 printf(" CONN_FAULT");
8749
8750 if (txbd->tx_bd_flags & TX_BD_FLAGS_TCP_UDP_CKSUM)
8751 printf(" TCP_UDP_CKSUM");
8752
8753 if (txbd->tx_bd_flags & TX_BD_FLAGS_IP_CKSUM)
8754 printf(" IP_CKSUM");
8755
8756 if (txbd->tx_bd_flags & TX_BD_FLAGS_VLAN_TAG)
8757 printf(" VLAN");
8758
8759 if (txbd->tx_bd_flags & TX_BD_FLAGS_COAL_NOW)
8760 printf(" COAL_NOW");
8761
8762 if (txbd->tx_bd_flags & TX_BD_FLAGS_DONT_GEN_CRC)
8763 printf(" DONT_GEN_CRC");
8764
8765 if (txbd->tx_bd_flags & TX_BD_FLAGS_START)
8766 printf(" START");
8767
8768 if (txbd->tx_bd_flags & TX_BD_FLAGS_END)
8769 printf(" END");
8770
8771 if (txbd->tx_bd_flags & TX_BD_FLAGS_SW_LSO)
8772 printf(" LSO");
8773
8774 if (txbd->tx_bd_flags & TX_BD_FLAGS_SW_OPTION_WORD)
8775 printf(" OPTION_WORD");
8776
8777 if (txbd->tx_bd_flags & TX_BD_FLAGS_SW_FLAGS)
8778 printf(" FLAGS");
8779
8780 if (txbd->tx_bd_flags & TX_BD_FLAGS_SW_SNAP)
8781 printf(" SNAP");
8782
8783 printf(" )\n");
8784 }
8785
8786}
8787
8788
8789/****************************************************************************/
8790/* Prints out a rx_bd structure. */
8791/* */
8792/* Returns: */
8793/* Nothing. */
8794/****************************************************************************/
8795static __attribute__ ((noinline)) void
8796bce_dump_rxbd(struct bce_softc *sc, int idx, struct rx_bd *rxbd)
8797{
8798 if (idx > MAX_RX_BD)
8799 /* Index out of range. */
8800 BCE_PRINTF("rx_bd[0x%04X]: Invalid rx_bd index!\n", idx);
8801 else if ((idx & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE)
8802 /* RX Chain page pointer. */
8803 BCE_PRINTF("rx_bd[0x%04X]: haddr = 0x%08X:%08X, chain page pointer\n",
8804 idx, rxbd->rx_bd_haddr_hi, rxbd->rx_bd_haddr_lo);
8805 else
8806 /* Normal rx_bd entry. */
8807 BCE_PRINTF("rx_bd[0x%04X]: haddr = 0x%08X:%08X, nbytes = 0x%08X, "
8808 "flags = 0x%08X\n", idx,
8809 rxbd->rx_bd_haddr_hi, rxbd->rx_bd_haddr_lo,
8810 rxbd->rx_bd_len, rxbd->rx_bd_flags);
8811}
8812
8813
8814#ifdef ZERO_COPY_SOCKETS
8815/****************************************************************************/
8816/* Prints out a rx_bd structure in the page chain. */
8817/* */
8818/* Returns: */
8819/* Nothing. */
8820/****************************************************************************/
8821static __attribute__ ((noinline)) void
8822bce_dump_pgbd(struct bce_softc *sc, int idx, struct rx_bd *pgbd)
8823{
8824 if (idx > MAX_PG_BD)
8825 /* Index out of range. */
8826 BCE_PRINTF("pg_bd[0x%04X]: Invalid pg_bd index!\n", idx);
8827 else if ((idx & USABLE_PG_BD_PER_PAGE) == USABLE_PG_BD_PER_PAGE)
8828 /* Page Chain page pointer. */
8829 BCE_PRINTF("px_bd[0x%04X]: haddr = 0x%08X:%08X, chain page pointer\n",
8830 idx, pgbd->rx_bd_haddr_hi, pgbd->rx_bd_haddr_lo);
8831 else
8832 /* Normal rx_bd entry. */
8833 BCE_PRINTF("pg_bd[0x%04X]: haddr = 0x%08X:%08X, nbytes = 0x%08X, "
8834 "flags = 0x%08X\n", idx,
8835 pgbd->rx_bd_haddr_hi, pgbd->rx_bd_haddr_lo,
8836 pgbd->rx_bd_len, pgbd->rx_bd_flags);
8837}
8838#endif
8839
8840
8841/****************************************************************************/
8842/* Prints out a l2_fhdr structure. */
8843/* */
8844/* Returns: */
8845/* Nothing. */
8846/****************************************************************************/
8847static __attribute__ ((noinline)) void
8848bce_dump_l2fhdr(struct bce_softc *sc, int idx, struct l2_fhdr *l2fhdr)
8849{
8850 BCE_PRINTF("l2_fhdr[0x%04X]: status = 0x%b, "
8851 "pkt_len = %d, vlan = 0x%04x, ip_xsum/hdr_len = 0x%04X, "
8852 "tcp_udp_xsum = 0x%04X\n", idx,
8853 l2fhdr->l2_fhdr_status, BCE_L2FHDR_PRINTFB,
8854 l2fhdr->l2_fhdr_pkt_len, l2fhdr->l2_fhdr_vlan_tag,
8855 l2fhdr->l2_fhdr_ip_xsum, l2fhdr->l2_fhdr_tcp_udp_xsum);
8856}
8857
8858
8859/****************************************************************************/
8860/* Prints out context memory info. (Only useful for CID 0 to 16.) */
8861/* */
8862/* Returns: */
8863/* Nothing. */
8864/****************************************************************************/
8865static __attribute__ ((noinline)) void
8866bce_dump_ctx(struct bce_softc *sc, u16 cid)
8867{
8868 if (cid <= TX_CID) {
8869 BCE_PRINTF(
8870 "----------------------------"
8871 " CTX Data "
8872 "----------------------------\n");
8873
8874 BCE_PRINTF(" 0x%04X - (CID) Context ID\n", cid);
8875
8876 if (cid == RX_CID) {
8877 BCE_PRINTF(" 0x%08X - (L2CTX_RX_HOST_BDIDX) host rx "
8878 "producer index\n",
8879 CTX_RD(sc, GET_CID_ADDR(cid), BCE_L2CTX_RX_HOST_BDIDX));
8880 BCE_PRINTF(" 0x%08X - (L2CTX_RX_HOST_BSEQ) host byte sequence\n",
8881 CTX_RD(sc, GET_CID_ADDR(cid), BCE_L2CTX_RX_HOST_BSEQ));
8882 BCE_PRINTF(" 0x%08X - (L2CTX_RX_NX_BSEQ) h/w byte sequence\n",
8883 CTX_RD(sc, GET_CID_ADDR(cid), BCE_L2CTX_RX_NX_BSEQ));
8884 BCE_PRINTF(" 0x%08X - (L2CTX_RX_NX_BDHADDR_HI) h/w buffer "
8885 "descriptor address\n",
8886 CTX_RD(sc, GET_CID_ADDR(cid), BCE_L2CTX_RX_NX_BDHADDR_HI));
8887 BCE_PRINTF(" 0x%08X - (L2CTX_RX_NX_BDHADDR_LO) h/w buffer "
8888 "descriptor address\n",
8889 CTX_RD(sc, GET_CID_ADDR(cid), BCE_L2CTX_RX_NX_BDHADDR_LO));
8890 BCE_PRINTF(" 0x%08X - (L2CTX_RX_NX_BDIDX) h/w rx consumer index\n",
8891 CTX_RD(sc, GET_CID_ADDR(cid), BCE_L2CTX_RX_NX_BDIDX));
8892 BCE_PRINTF(" 0x%08X - (L2CTX_RX_HOST_PG_BDIDX) host page "
8893 "producer index\n",
8894 CTX_RD(sc, GET_CID_ADDR(cid), BCE_L2CTX_RX_HOST_PG_BDIDX));
8895 BCE_PRINTF(" 0x%08X - (L2CTX_RX_PG_BUF_SIZE) host rx_bd/page "
8896 "buffer size\n",
8897 CTX_RD(sc, GET_CID_ADDR(cid), BCE_L2CTX_RX_PG_BUF_SIZE));
8898 BCE_PRINTF(" 0x%08X - (L2CTX_RX_NX_PG_BDHADDR_HI) h/w page "
8899 "chain address\n",
8900 CTX_RD(sc, GET_CID_ADDR(cid), BCE_L2CTX_RX_NX_PG_BDHADDR_HI));
8901 BCE_PRINTF(" 0x%08X - (L2CTX_RX_NX_PG_BDHADDR_LO) h/w page "
8902 "chain address\n",
8903 CTX_RD(sc, GET_CID_ADDR(cid), BCE_L2CTX_RX_NX_PG_BDHADDR_LO));
8904 BCE_PRINTF(" 0x%08X - (L2CTX_RX_NX_PG_BDIDX) h/w page "
8905 "consumer index\n",
8906 CTX_RD(sc, GET_CID_ADDR(cid), BCE_L2CTX_RX_NX_PG_BDIDX));
8907 } else if (cid == TX_CID) {
8908 if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) ||
8909 (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716)) {
8910 BCE_PRINTF(" 0x%08X - (L2CTX_TX_TYPE_XI) ctx type\n",
8911 CTX_RD(sc, GET_CID_ADDR(cid), BCE_L2CTX_TX_TYPE_XI));
8912 BCE_PRINTF(" 0x%08X - (L2CTX_CMD_TX_TYPE_XI) ctx cmd\n",
8913 CTX_RD(sc, GET_CID_ADDR(cid), BCE_L2CTX_TX_CMD_TYPE_XI));
8914 BCE_PRINTF(" 0x%08X - (L2CTX_TX_TBDR_BDHADDR_HI_XI) h/w buffer "
8915 "descriptor address\n", CTX_RD(sc,
8916 GET_CID_ADDR(cid), BCE_L2CTX_TX_TBDR_BHADDR_HI_XI));
8917 BCE_PRINTF(" 0x%08X - (L2CTX_TX_TBDR_BHADDR_LO_XI) h/w buffer "
8918 "descriptor address\n", CTX_RD(sc,
8919 GET_CID_ADDR(cid), BCE_L2CTX_TX_TBDR_BHADDR_LO_XI));
8920 BCE_PRINTF(" 0x%08X - (L2CTX_TX_HOST_BIDX_XI) host producer "
8921 "index\n", CTX_RD(sc, GET_CID_ADDR(cid),
8922 BCE_L2CTX_TX_HOST_BIDX_XI));
8923 BCE_PRINTF(" 0x%08X - (L2CTX_TX_HOST_BSEQ_XI) host byte "
8924 "sequence\n", CTX_RD(sc, GET_CID_ADDR(cid),
8925 BCE_L2CTX_TX_HOST_BSEQ_XI));
8926 } else {
8927 BCE_PRINTF(" 0x%08X - (L2CTX_TX_TYPE) ctx type\n",
8928 CTX_RD(sc, GET_CID_ADDR(cid), BCE_L2CTX_TX_TYPE));
8929 BCE_PRINTF(" 0x%08X - (L2CTX_TX_CMD_TYPE) ctx cmd\n",
8930 CTX_RD(sc, GET_CID_ADDR(cid), BCE_L2CTX_TX_CMD_TYPE));
8931 BCE_PRINTF(" 0x%08X - (L2CTX_TX_TBDR_BDHADDR_HI) h/w buffer "
8932 "descriptor address\n", CTX_RD(sc, GET_CID_ADDR(cid),
8933 BCE_L2CTX_TX_TBDR_BHADDR_HI));
8934 BCE_PRINTF(" 0x%08X - (L2CTX_TX_TBDR_BHADDR_LO) h/w buffer "
8935 "descriptor address\n", CTX_RD(sc, GET_CID_ADDR(cid),
8936 BCE_L2CTX_TX_TBDR_BHADDR_LO));
8937 BCE_PRINTF(" 0x%08X - (L2CTX_TX_HOST_BIDX) host producer "
8938 "index\n", CTX_RD(sc, GET_CID_ADDR(cid),
8939 BCE_L2CTX_TX_HOST_BIDX));
8940 BCE_PRINTF(" 0x%08X - (L2CTX_TX_HOST_BSEQ) host byte "
8941 "sequence\n", CTX_RD(sc, GET_CID_ADDR(cid),
8942 BCE_L2CTX_TX_HOST_BSEQ));
8943 }
8944 } else
8945 BCE_PRINTF(" Unknown CID\n");
8946
8947 BCE_PRINTF(
8948 "----------------------------"
8949 " Raw CTX "
8950 "----------------------------\n");
8951
8952 for (int i = 0x0; i < 0x300; i += 0x10) {
8953 BCE_PRINTF("0x%04X: 0x%08X 0x%08X 0x%08X 0x%08X\n", i,
8954 CTX_RD(sc, GET_CID_ADDR(cid), i),
8955 CTX_RD(sc, GET_CID_ADDR(cid), i + 0x4),
8956 CTX_RD(sc, GET_CID_ADDR(cid), i + 0x8),
8957 CTX_RD(sc, GET_CID_ADDR(cid), i + 0xc));
8958 }
8959
8960
8961 BCE_PRINTF(
8962 "----------------------------"
8963 "----------------"
8964 "----------------------------\n");
8965 }
8966}
8967
8968
8969/****************************************************************************/
8970/* Prints out the FTQ data. */
8971/* */
8972/* Returns: */
8973/* Nothing. */
8974/****************************************************************************/
8975static __attribute__ ((noinline)) void
8976bce_dump_ftqs(struct bce_softc *sc)
8977{
8978 u32 cmd, ctl, cur_depth, max_depth, valid_cnt, val;
8979
8980 BCE_PRINTF(
8981 "----------------------------"
8982 " FTQ Data "
8983 "----------------------------\n");
8984
8985 BCE_PRINTF(" FTQ Command Control Depth_Now Max_Depth Valid_Cnt \n");
8986 BCE_PRINTF(" ------- ---------- ---------- ---------- ---------- ----------\n");
8987
8988 /* Setup the generic statistic counters for the FTQ valid count. */
8989 val = (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_RV2PPQ_VALID_CNT << 24) |
8990 (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_RXPCQ_VALID_CNT << 16) |
8991 (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_RXPQ_VALID_CNT << 8) |
8992 (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_RLUPQ_VALID_CNT);
8993 REG_WR(sc, BCE_HC_STAT_GEN_SEL_0, val);
8994
8995 val = (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_TSCHQ_VALID_CNT << 24) |
8996 (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_RDMAQ_VALID_CNT << 16) |
8997 (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_RV2PTQ_VALID_CNT << 8) |
8998 (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_RV2PMQ_VALID_CNT);
8999 REG_WR(sc, BCE_HC_STAT_GEN_SEL_1, val);
9000
9001 val = (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_TPATQ_VALID_CNT << 24) |
9002 (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_TDMAQ_VALID_CNT << 16) |
9003 (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_TXPQ_VALID_CNT << 8) |
9004 (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_TBDRQ_VALID_CNT);
9005 REG_WR(sc, BCE_HC_STAT_GEN_SEL_2, val);
9006
9007 val = (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_COMQ_VALID_CNT << 24) |
9008 (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_COMTQ_VALID_CNT << 16) |
9009 (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_COMXQ_VALID_CNT << 8) |
9010 (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_TASQ_VALID_CNT);
9011 REG_WR(sc, BCE_HC_STAT_GEN_SEL_3, val);
9012
9013 /* Input queue to the Receive Lookup state machine */
9014 cmd = REG_RD(sc, BCE_RLUP_FTQ_CMD);
9015 ctl = REG_RD(sc, BCE_RLUP_FTQ_CTL);
9016 cur_depth = (ctl & BCE_RLUP_FTQ_CTL_CUR_DEPTH) >> 22;
9017 max_depth = (ctl & BCE_RLUP_FTQ_CTL_MAX_DEPTH) >> 12;
9018 valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT0);
9019 BCE_PRINTF(" RLUP 0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
9020 cmd, ctl, cur_depth, max_depth, valid_cnt);
9021
9022 /* Input queue to the Receive Processor */
9023 cmd = REG_RD_IND(sc, BCE_RXP_FTQ_CMD);
9024 ctl = REG_RD_IND(sc, BCE_RXP_FTQ_CTL);
9025 cur_depth = (ctl & BCE_RXP_FTQ_CTL_CUR_DEPTH) >> 22;
9026 max_depth = (ctl & BCE_RXP_FTQ_CTL_MAX_DEPTH) >> 12;
9027 valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT1);
9028 BCE_PRINTF(" RXP 0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
9029 cmd, ctl, cur_depth, max_depth, valid_cnt);
9030
9031 /* Input queue to the Recevie Processor */
9032 cmd = REG_RD_IND(sc, BCE_RXP_CFTQ_CMD);
9033 ctl = REG_RD_IND(sc, BCE_RXP_CFTQ_CTL);
9034 cur_depth = (ctl & BCE_RXP_CFTQ_CTL_CUR_DEPTH) >> 22;
9035 max_depth = (ctl & BCE_RXP_CFTQ_CTL_MAX_DEPTH) >> 12;
9036 valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT2);
9037 BCE_PRINTF(" RXPC 0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
9038 cmd, ctl, cur_depth, max_depth, valid_cnt);
9039
9040 /* Input queue to the Receive Virtual to Physical state machine */
9041 cmd = REG_RD(sc, BCE_RV2P_PFTQ_CMD);
9042 ctl = REG_RD(sc, BCE_RV2P_PFTQ_CTL);
9043 cur_depth = (ctl & BCE_RV2P_PFTQ_CTL_CUR_DEPTH) >> 22;
9044 max_depth = (ctl & BCE_RV2P_PFTQ_CTL_MAX_DEPTH) >> 12;
9045 valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT3);
9046 BCE_PRINTF(" RV2PP 0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
9047 cmd, ctl, cur_depth, max_depth, valid_cnt);
9048
9049 /* Input queue to the Recevie Virtual to Physical state machine */
9050 cmd = REG_RD(sc, BCE_RV2P_MFTQ_CMD);
9051 ctl = REG_RD(sc, BCE_RV2P_MFTQ_CTL);
9052 cur_depth = (ctl & BCE_RV2P_MFTQ_CTL_CUR_DEPTH) >> 22;
9053 max_depth = (ctl & BCE_RV2P_MFTQ_CTL_MAX_DEPTH) >> 12;
9054 valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT4);
9055 BCE_PRINTF(" RV2PM 0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
9056 cmd, ctl, cur_depth, max_depth, valid_cnt);
9057
9058 /* Input queue to the Receive Virtual to Physical state machine */
9059 cmd = REG_RD(sc, BCE_RV2P_TFTQ_CMD);
9060 ctl = REG_RD(sc, BCE_RV2P_TFTQ_CTL);
9061 cur_depth = (ctl & BCE_RV2P_TFTQ_CTL_CUR_DEPTH) >> 22;
9062 max_depth = (ctl & BCE_RV2P_TFTQ_CTL_MAX_DEPTH) >> 12;
9063 valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT5);
9064 BCE_PRINTF(" RV2PT 0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
9065 cmd, ctl, cur_depth, max_depth, valid_cnt);
9066
9067 /* Input queue to the Receive DMA state machine */
9068 cmd = REG_RD(sc, BCE_RDMA_FTQ_CMD);
9069 ctl = REG_RD(sc, BCE_RDMA_FTQ_CTL);
9070 cur_depth = (ctl & BCE_RDMA_FTQ_CTL_CUR_DEPTH) >> 22;
9071 max_depth = (ctl & BCE_RDMA_FTQ_CTL_MAX_DEPTH) >> 12;
9072 valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT6);
9073 BCE_PRINTF(" RDMA 0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
9074 cmd, ctl, cur_depth, max_depth, valid_cnt);
9075
9076 /* Input queue to the Transmit Scheduler state machine */
9077 cmd = REG_RD(sc, BCE_TSCH_FTQ_CMD);
9078 ctl = REG_RD(sc, BCE_TSCH_FTQ_CTL);
9079 cur_depth = (ctl & BCE_TSCH_FTQ_CTL_CUR_DEPTH) >> 22;
9080 max_depth = (ctl & BCE_TSCH_FTQ_CTL_MAX_DEPTH) >> 12;
9081 valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT7);
9082 BCE_PRINTF(" TSCH 0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
9083 cmd, ctl, cur_depth, max_depth, valid_cnt);
9084
9085 /* Input queue to the Transmit Buffer Descriptor state machine */
9086 cmd = REG_RD(sc, BCE_TBDR_FTQ_CMD);
9087 ctl = REG_RD(sc, BCE_TBDR_FTQ_CTL);
9088 cur_depth = (ctl & BCE_TBDR_FTQ_CTL_CUR_DEPTH) >> 22;
9089 max_depth = (ctl & BCE_TBDR_FTQ_CTL_MAX_DEPTH) >> 12;
9090 valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT8);
9091 BCE_PRINTF(" TBDR 0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
9092 cmd, ctl, cur_depth, max_depth, valid_cnt);
9093
9094 /* Input queue to the Transmit Processor */
9095 cmd = REG_RD_IND(sc, BCE_TXP_FTQ_CMD);
9096 ctl = REG_RD_IND(sc, BCE_TXP_FTQ_CTL);
9097 cur_depth = (ctl & BCE_TXP_FTQ_CTL_CUR_DEPTH) >> 22;
9098 max_depth = (ctl & BCE_TXP_FTQ_CTL_MAX_DEPTH) >> 12;
9099 valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT9);
9100 BCE_PRINTF(" TXP 0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
9101 cmd, ctl, cur_depth, max_depth, valid_cnt);
9102
9103 /* Input queue to the Transmit DMA state machine */
9104 cmd = REG_RD(sc, BCE_TDMA_FTQ_CMD);
9105 ctl = REG_RD(sc, BCE_TDMA_FTQ_CTL);
9106 cur_depth = (ctl & BCE_TDMA_FTQ_CTL_CUR_DEPTH) >> 22;
9107 max_depth = (ctl & BCE_TDMA_FTQ_CTL_MAX_DEPTH) >> 12;
9108 valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT10);
9109 BCE_PRINTF(" TDMA 0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
9110 cmd, ctl, cur_depth, max_depth, valid_cnt);
9111
9112 /* Input queue to the Transmit Patch-Up Processor */
9113 cmd = REG_RD_IND(sc, BCE_TPAT_FTQ_CMD);
9114 ctl = REG_RD_IND(sc, BCE_TPAT_FTQ_CTL);
9115 cur_depth = (ctl & BCE_TPAT_FTQ_CTL_CUR_DEPTH) >> 22;
9116 max_depth = (ctl & BCE_TPAT_FTQ_CTL_MAX_DEPTH) >> 12;
9117 valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT11);
9118 BCE_PRINTF(" TPAT 0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
9119 cmd, ctl, cur_depth, max_depth, valid_cnt);
9120
9121 /* Input queue to the Transmit Assembler state machine */
9122 cmd = REG_RD_IND(sc, BCE_TAS_FTQ_CMD);
9123 ctl = REG_RD_IND(sc, BCE_TAS_FTQ_CTL);
9124 cur_depth = (ctl & BCE_TAS_FTQ_CTL_CUR_DEPTH) >> 22;
9125 max_depth = (ctl & BCE_TAS_FTQ_CTL_MAX_DEPTH) >> 12;
9126 valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT12);
9127 BCE_PRINTF(" TAS 0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
9128 cmd, ctl, cur_depth, max_depth, valid_cnt);
9129
9130 /* Input queue to the Completion Processor */
9131 cmd = REG_RD_IND(sc, BCE_COM_COMXQ_FTQ_CMD);
9132 ctl = REG_RD_IND(sc, BCE_COM_COMXQ_FTQ_CTL);
9133 cur_depth = (ctl & BCE_COM_COMXQ_FTQ_CTL_CUR_DEPTH) >> 22;
9134 max_depth = (ctl & BCE_COM_COMXQ_FTQ_CTL_MAX_DEPTH) >> 12;
9135 valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT13);
9136 BCE_PRINTF(" COMX 0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
9137 cmd, ctl, cur_depth, max_depth, valid_cnt);
9138
9139 /* Input queue to the Completion Processor */
9140 cmd = REG_RD_IND(sc, BCE_COM_COMTQ_FTQ_CMD);
9141 ctl = REG_RD_IND(sc, BCE_COM_COMTQ_FTQ_CTL);
9142 cur_depth = (ctl & BCE_COM_COMTQ_FTQ_CTL_CUR_DEPTH) >> 22;
9143 max_depth = (ctl & BCE_COM_COMTQ_FTQ_CTL_MAX_DEPTH) >> 12;
9144 valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT14);
9145 BCE_PRINTF(" COMT 0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
9146 cmd, ctl, cur_depth, max_depth, valid_cnt);
9147
9148 /* Input queue to the Completion Processor */
9149 cmd = REG_RD_IND(sc, BCE_COM_COMQ_FTQ_CMD);
9150 ctl = REG_RD_IND(sc, BCE_COM_COMQ_FTQ_CTL);
9151 cur_depth = (ctl & BCE_COM_COMQ_FTQ_CTL_CUR_DEPTH) >> 22;
9152 max_depth = (ctl & BCE_COM_COMQ_FTQ_CTL_MAX_DEPTH) >> 12;
9153 valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT15);
9154 BCE_PRINTF(" COMX 0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
9155 cmd, ctl, cur_depth, max_depth, valid_cnt);
9156
9157 /* Setup the generic statistic counters for the FTQ valid count. */
9158 val = (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_CSQ_VALID_CNT << 16) |
9159 (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_CPQ_VALID_CNT << 8) |
9160 (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_MGMQ_VALID_CNT);
9161
9162 if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) ||
9163 (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716))
9164 val = val | (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_RV2PCSQ_VALID_CNT_XI << 24);
9165 REG_WR(sc, BCE_HC_STAT_GEN_SEL_0, val);
9166
9167 /* Input queue to the Management Control Processor */
9168 cmd = REG_RD_IND(sc, BCE_MCP_MCPQ_FTQ_CMD);
9169 ctl = REG_RD_IND(sc, BCE_MCP_MCPQ_FTQ_CTL);
9170 cur_depth = (ctl & BCE_MCP_MCPQ_FTQ_CTL_CUR_DEPTH) >> 22;
9171 max_depth = (ctl & BCE_MCP_MCPQ_FTQ_CTL_MAX_DEPTH) >> 12;
9172 valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT0);
9173 BCE_PRINTF(" MCP 0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
9174 cmd, ctl, cur_depth, max_depth, valid_cnt);
9175
9176 /* Input queue to the Command Processor */
9177 cmd = REG_RD_IND(sc, BCE_CP_CPQ_FTQ_CMD);
9178 ctl = REG_RD_IND(sc, BCE_CP_CPQ_FTQ_CTL);
9179 cur_depth = (ctl & BCE_CP_CPQ_FTQ_CTL_CUR_DEPTH) >> 22;
9180 max_depth = (ctl & BCE_CP_CPQ_FTQ_CTL_MAX_DEPTH) >> 12;
9181 valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT1);
9182 BCE_PRINTF(" CP 0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
9183 cmd, ctl, cur_depth, max_depth, valid_cnt);
9184
9185 /* Input queue to the Completion Scheduler state machine */
9186 cmd = REG_RD(sc, BCE_CSCH_CH_FTQ_CMD);
9187 ctl = REG_RD(sc, BCE_CSCH_CH_FTQ_CTL);
9188 cur_depth = (ctl & BCE_CSCH_CH_FTQ_CTL_CUR_DEPTH) >> 22;
9189 max_depth = (ctl & BCE_CSCH_CH_FTQ_CTL_MAX_DEPTH) >> 12;
9190 valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT2);
9191 BCE_PRINTF(" CS 0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
9192 cmd, ctl, cur_depth, max_depth, valid_cnt);
9193
9194 if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) ||
9195 (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716)) {
9196 /* Input queue to the Receive Virtual to Physical Command Scheduler */
9197 cmd = REG_RD(sc, BCE_RV2PCSR_FTQ_CMD);
9198 ctl = REG_RD(sc, BCE_RV2PCSR_FTQ_CTL);
9199 cur_depth = (ctl & 0xFFC00000) >> 22;
9200 max_depth = (ctl & 0x003FF000) >> 12;
9201 valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT3);
9202 BCE_PRINTF(" RV2PCSR 0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
9203 cmd, ctl, cur_depth, max_depth, valid_cnt);
9204 }
9205
9206 BCE_PRINTF(
9207 "----------------------------"
9208 "----------------"
9209 "----------------------------\n");
9210}
9211
9212
9213/****************************************************************************/
9214/* Prints out the TX chain. */
9215/* */
9216/* Returns: */
9217/* Nothing. */
9218/****************************************************************************/
9219static __attribute__ ((noinline)) void
9220bce_dump_tx_chain(struct bce_softc *sc, u16 tx_prod, int count)
9221{
9222 struct tx_bd *txbd;
9223
9224 /* First some info about the tx_bd chain structure. */
9225 BCE_PRINTF(
9226 "----------------------------"
9227 " tx_bd chain "
9228 "----------------------------\n");
9229
9230 BCE_PRINTF("page size = 0x%08X, tx chain pages = 0x%08X\n",
9231 (u32) BCM_PAGE_SIZE, (u32) TX_PAGES);
9232
9233 BCE_PRINTF("tx_bd per page = 0x%08X, usable tx_bd per page = 0x%08X\n",
9234 (u32) TOTAL_TX_BD_PER_PAGE, (u32) USABLE_TX_BD_PER_PAGE);
9235
9236 BCE_PRINTF("total tx_bd = 0x%08X\n", (u32) TOTAL_TX_BD);
9237
9238 BCE_PRINTF(
9239 "----------------------------"
9240 " tx_bd data "
9241 "----------------------------\n");
9242
9243 /* Now print out the tx_bd's themselves. */
9244 for (int i = 0; i < count; i++) {
9245 txbd = &sc->tx_bd_chain[TX_PAGE(tx_prod)][TX_IDX(tx_prod)];
9246 bce_dump_txbd(sc, tx_prod, txbd);
9247 tx_prod = NEXT_TX_BD(tx_prod);
9248 }
9249
9250 BCE_PRINTF(
9251 "----------------------------"
9252 "----------------"
9253 "----------------------------\n");
9254}
9255
9256
9257/****************************************************************************/
9258/* Prints out the RX chain. */
9259/* */
9260/* Returns: */
9261/* Nothing. */
9262/****************************************************************************/
9263static __attribute__ ((noinline)) void
9264bce_dump_rx_chain(struct bce_softc *sc, u16 rx_prod, int count)
9265{
9266 struct rx_bd *rxbd;
9267
9268 /* First some info about the rx_bd chain structure. */
9269 BCE_PRINTF(
9270 "----------------------------"
9271 " rx_bd chain "
9272 "----------------------------\n");
9273
9274 BCE_PRINTF("page size = 0x%08X, rx chain pages = 0x%08X\n",
9275 (u32) BCM_PAGE_SIZE, (u32) RX_PAGES);
9276
9277 BCE_PRINTF("rx_bd per page = 0x%08X, usable rx_bd per page = 0x%08X\n",
9278 (u32) TOTAL_RX_BD_PER_PAGE, (u32) USABLE_RX_BD_PER_PAGE);
9279
9280 BCE_PRINTF("total rx_bd = 0x%08X\n", (u32) TOTAL_RX_BD);
9281
9282 BCE_PRINTF(
9283 "----------------------------"
9284 " rx_bd data "
9285 "----------------------------\n");
9286
9287 /* Now print out the rx_bd's themselves. */
9288 for (int i = 0; i < count; i++) {
9289 rxbd = &sc->rx_bd_chain[RX_PAGE(rx_prod)][RX_IDX(rx_prod)];
9290 bce_dump_rxbd(sc, rx_prod, rxbd);
9291 rx_prod = RX_CHAIN_IDX(rx_prod + 1);
9292 }
9293
9294 BCE_PRINTF(
9295 "----------------------------"
9296 "----------------"
9297 "----------------------------\n");
9298}
9299
9300
9301#ifdef ZERO_COPY_SOCKETS
9302/****************************************************************************/
9303/* Prints out the page chain. */
9304/* */
9305/* Returns: */
9306/* Nothing. */
9307/****************************************************************************/
9308static __attribute__ ((noinline)) void
9309bce_dump_pg_chain(struct bce_softc *sc, u16 pg_prod, int count)
9310{
9311 struct rx_bd *pgbd;
9312
9313 /* First some info about the page chain structure. */
9314 BCE_PRINTF(
9315 "----------------------------"
9316 " page chain "
9317 "----------------------------\n");
9318
9319 BCE_PRINTF("page size = 0x%08X, pg chain pages = 0x%08X\n",
9320 (u32) BCM_PAGE_SIZE, (u32) PG_PAGES);
9321
9322 BCE_PRINTF("rx_bd per page = 0x%08X, usable rx_bd per page = 0x%08X\n",
9323 (u32) TOTAL_PG_BD_PER_PAGE, (u32) USABLE_PG_BD_PER_PAGE);
9324
9325 BCE_PRINTF("total rx_bd = 0x%08X, max_pg_bd = 0x%08X\n",
9326 (u32) TOTAL_PG_BD, (u32) MAX_PG_BD);
9327
9328 BCE_PRINTF(
9329 "----------------------------"
9330 " page data "
9331 "----------------------------\n");
9332
9333 /* Now print out the rx_bd's themselves. */
9334 for (int i = 0; i < count; i++) {
9335 pgbd = &sc->pg_bd_chain[PG_PAGE(pg_prod)][PG_IDX(pg_prod)];
9336 bce_dump_pgbd(sc, pg_prod, pgbd);
9337 pg_prod = PG_CHAIN_IDX(pg_prod + 1);
9338 }
9339
9340 BCE_PRINTF(
9341 "----------------------------"
9342 "----------------"
9343 "----------------------------\n");
9344}
9345#endif
9346
9347
9348/****************************************************************************/
9349/* Prints out the status block from host memory. */
9350/* */
9351/* Returns: */
9352/* Nothing. */
9353/****************************************************************************/
9354static __attribute__ ((noinline)) void
9355bce_dump_status_block(struct bce_softc *sc)
9356{
9357 struct status_block *sblk;
9358
9359 sblk = sc->status_block;
9360
9361 BCE_PRINTF(
9362 "----------------------------"
9363 " Status Block "
9364 "----------------------------\n");
9365
9366 BCE_PRINTF(" 0x%08X - attn_bits\n",
9367 sblk->status_attn_bits);
9368
9369 BCE_PRINTF(" 0x%08X - attn_bits_ack\n",
9370 sblk->status_attn_bits_ack);
9371
9372 BCE_PRINTF("0x%04X(0x%04X) - rx_cons0\n",
9373 sblk->status_rx_quick_consumer_index0,
9374 (u16) RX_CHAIN_IDX(sblk->status_rx_quick_consumer_index0));
9375
9376 BCE_PRINTF("0x%04X(0x%04X) - tx_cons0\n",
9377 sblk->status_tx_quick_consumer_index0,
9378 (u16) TX_CHAIN_IDX(sblk->status_tx_quick_consumer_index0));
9379
9380 BCE_PRINTF(" 0x%04X - status_idx\n", sblk->status_idx);
9381
9382 /* Theses indices are not used for normal L2 drivers. */
9383 if (sblk->status_rx_quick_consumer_index1)
9384 BCE_PRINTF("0x%04X(0x%04X) - rx_cons1\n",
9385 sblk->status_rx_quick_consumer_index1,
9386 (u16) RX_CHAIN_IDX(sblk->status_rx_quick_consumer_index1));
9387
9388 if (sblk->status_tx_quick_consumer_index1)
9389 BCE_PRINTF("0x%04X(0x%04X) - tx_cons1\n",
9390 sblk->status_tx_quick_consumer_index1,
9391 (u16) TX_CHAIN_IDX(sblk->status_tx_quick_consumer_index1));
9392
9393 if (sblk->status_rx_quick_consumer_index2)
9394 BCE_PRINTF("0x%04X(0x%04X)- rx_cons2\n",
9395 sblk->status_rx_quick_consumer_index2,
9396 (u16) RX_CHAIN_IDX(sblk->status_rx_quick_consumer_index2));
9397
9398 if (sblk->status_tx_quick_consumer_index2)
9399 BCE_PRINTF("0x%04X(0x%04X) - tx_cons2\n",
9400 sblk->status_tx_quick_consumer_index2,
9401 (u16) TX_CHAIN_IDX(sblk->status_tx_quick_consumer_index2));
9402
9403 if (sblk->status_rx_quick_consumer_index3)
9404 BCE_PRINTF("0x%04X(0x%04X) - rx_cons3\n",
9405 sblk->status_rx_quick_consumer_index3,
9406 (u16) RX_CHAIN_IDX(sblk->status_rx_quick_consumer_index3));
9407
9408 if (sblk->status_tx_quick_consumer_index3)
9409 BCE_PRINTF("0x%04X(0x%04X) - tx_cons3\n",
9410 sblk->status_tx_quick_consumer_index3,
9411 (u16) TX_CHAIN_IDX(sblk->status_tx_quick_consumer_index3));
9412
9413 if (sblk->status_rx_quick_consumer_index4 ||
9414 sblk->status_rx_quick_consumer_index5)
9415 BCE_PRINTF("rx_cons4 = 0x%08X, rx_cons5 = 0x%08X\n",
9416 sblk->status_rx_quick_consumer_index4,
9417 sblk->status_rx_quick_consumer_index5);
9418
9419 if (sblk->status_rx_quick_consumer_index6 ||
9420 sblk->status_rx_quick_consumer_index7)
9421 BCE_PRINTF("rx_cons6 = 0x%08X, rx_cons7 = 0x%08X\n",
9422 sblk->status_rx_quick_consumer_index6,
9423 sblk->status_rx_quick_consumer_index7);
9424
9425 if (sblk->status_rx_quick_consumer_index8 ||
9426 sblk->status_rx_quick_consumer_index9)
9427 BCE_PRINTF("rx_cons8 = 0x%08X, rx_cons9 = 0x%08X\n",
9428 sblk->status_rx_quick_consumer_index8,
9429 sblk->status_rx_quick_consumer_index9);
9430
9431 if (sblk->status_rx_quick_consumer_index10 ||
9432 sblk->status_rx_quick_consumer_index11)
9433 BCE_PRINTF("rx_cons10 = 0x%08X, rx_cons11 = 0x%08X\n",
9434 sblk->status_rx_quick_consumer_index10,
9435 sblk->status_rx_quick_consumer_index11);
9436
9437 if (sblk->status_rx_quick_consumer_index12 ||
9438 sblk->status_rx_quick_consumer_index13)
9439 BCE_PRINTF("rx_cons12 = 0x%08X, rx_cons13 = 0x%08X\n",
9440 sblk->status_rx_quick_consumer_index12,
9441 sblk->status_rx_quick_consumer_index13);
9442
9443 if (sblk->status_rx_quick_consumer_index14 ||
9444 sblk->status_rx_quick_consumer_index15)
9445 BCE_PRINTF("rx_cons14 = 0x%08X, rx_cons15 = 0x%08X\n",
9446 sblk->status_rx_quick_consumer_index14,
9447 sblk->status_rx_quick_consumer_index15);
9448
9449 if (sblk->status_completion_producer_index ||
9450 sblk->status_cmd_consumer_index)
9451 BCE_PRINTF("com_prod = 0x%08X, cmd_cons = 0x%08X\n",
9452 sblk->status_completion_producer_index,
9453 sblk->status_cmd_consumer_index);
9454
9455 BCE_PRINTF(
9456 "----------------------------"
9457 "----------------"
9458 "----------------------------\n");
9459}
9460
9461
9462/****************************************************************************/
9463/* Prints out the statistics block from host memory. */
9464/* */
9465/* Returns: */
9466/* Nothing. */
9467/****************************************************************************/
9468static __attribute__ ((noinline)) void
9469bce_dump_stats_block(struct bce_softc *sc)
9470{
9471 struct statistics_block *sblk;
9472
9473 sblk = sc->stats_block;
9474
9475 BCE_PRINTF(
9476 "---------------"
9477 " Stats Block (All Stats Not Shown Are 0) "
9478 "---------------\n");
9479
9480 if (sblk->stat_IfHCInOctets_hi
9481 || sblk->stat_IfHCInOctets_lo)
9482 BCE_PRINTF("0x%08X:%08X : "
9483 "IfHcInOctets\n",
9484 sblk->stat_IfHCInOctets_hi,
9485 sblk->stat_IfHCInOctets_lo);
9486
9487 if (sblk->stat_IfHCInBadOctets_hi
9488 || sblk->stat_IfHCInBadOctets_lo)
9489 BCE_PRINTF("0x%08X:%08X : "
9490 "IfHcInBadOctets\n",
9491 sblk->stat_IfHCInBadOctets_hi,
9492 sblk->stat_IfHCInBadOctets_lo);
9493
9494 if (sblk->stat_IfHCOutOctets_hi
9495 || sblk->stat_IfHCOutOctets_lo)
9496 BCE_PRINTF("0x%08X:%08X : "
9497 "IfHcOutOctets\n",
9498 sblk->stat_IfHCOutOctets_hi,
9499 sblk->stat_IfHCOutOctets_lo);
9500
9501 if (sblk->stat_IfHCOutBadOctets_hi
9502 || sblk->stat_IfHCOutBadOctets_lo)
9503 BCE_PRINTF("0x%08X:%08X : "
9504 "IfHcOutBadOctets\n",
9505 sblk->stat_IfHCOutBadOctets_hi,
9506 sblk->stat_IfHCOutBadOctets_lo);
9507
9508 if (sblk->stat_IfHCInUcastPkts_hi
9509 || sblk->stat_IfHCInUcastPkts_lo)
9510 BCE_PRINTF("0x%08X:%08X : "
9511 "IfHcInUcastPkts\n",
9512 sblk->stat_IfHCInUcastPkts_hi,
9513 sblk->stat_IfHCInUcastPkts_lo);
9514
9515 if (sblk->stat_IfHCInBroadcastPkts_hi
9516 || sblk->stat_IfHCInBroadcastPkts_lo)
9517 BCE_PRINTF("0x%08X:%08X : "
9518 "IfHcInBroadcastPkts\n",
9519 sblk->stat_IfHCInBroadcastPkts_hi,
9520 sblk->stat_IfHCInBroadcastPkts_lo);
9521
9522 if (sblk->stat_IfHCInMulticastPkts_hi
9523 || sblk->stat_IfHCInMulticastPkts_lo)
9524 BCE_PRINTF("0x%08X:%08X : "
9525 "IfHcInMulticastPkts\n",
9526 sblk->stat_IfHCInMulticastPkts_hi,
9527 sblk->stat_IfHCInMulticastPkts_lo);
9528
9529 if (sblk->stat_IfHCOutUcastPkts_hi
9530 || sblk->stat_IfHCOutUcastPkts_lo)
9531 BCE_PRINTF("0x%08X:%08X : "
9532 "IfHcOutUcastPkts\n",
9533 sblk->stat_IfHCOutUcastPkts_hi,
9534 sblk->stat_IfHCOutUcastPkts_lo);
9535
9536 if (sblk->stat_IfHCOutBroadcastPkts_hi
9537 || sblk->stat_IfHCOutBroadcastPkts_lo)
9538 BCE_PRINTF("0x%08X:%08X : "
9539 "IfHcOutBroadcastPkts\n",
9540 sblk->stat_IfHCOutBroadcastPkts_hi,
9541 sblk->stat_IfHCOutBroadcastPkts_lo);
9542
9543 if (sblk->stat_IfHCOutMulticastPkts_hi
9544 || sblk->stat_IfHCOutMulticastPkts_lo)
9545 BCE_PRINTF("0x%08X:%08X : "
9546 "IfHcOutMulticastPkts\n",
9547 sblk->stat_IfHCOutMulticastPkts_hi,
9548 sblk->stat_IfHCOutMulticastPkts_lo);
9549
9550 if (sblk->stat_emac_tx_stat_dot3statsinternalmactransmiterrors)
9551 BCE_PRINTF(" 0x%08X : "
9552 "emac_tx_stat_dot3statsinternalmactransmiterrors\n",
9553 sblk->stat_emac_tx_stat_dot3statsinternalmactransmiterrors);
9554
9555 if (sblk->stat_Dot3StatsCarrierSenseErrors)
9556 BCE_PRINTF(" 0x%08X : Dot3StatsCarrierSenseErrors\n",
9557 sblk->stat_Dot3StatsCarrierSenseErrors);
9558
9559 if (sblk->stat_Dot3StatsFCSErrors)
9560 BCE_PRINTF(" 0x%08X : Dot3StatsFCSErrors\n",
9561 sblk->stat_Dot3StatsFCSErrors);
9562
9563 if (sblk->stat_Dot3StatsAlignmentErrors)
9564 BCE_PRINTF(" 0x%08X : Dot3StatsAlignmentErrors\n",
9565 sblk->stat_Dot3StatsAlignmentErrors);
9566
9567 if (sblk->stat_Dot3StatsSingleCollisionFrames)
9568 BCE_PRINTF(" 0x%08X : Dot3StatsSingleCollisionFrames\n",
9569 sblk->stat_Dot3StatsSingleCollisionFrames);
9570
9571 if (sblk->stat_Dot3StatsMultipleCollisionFrames)
9572 BCE_PRINTF(" 0x%08X : Dot3StatsMultipleCollisionFrames\n",
9573 sblk->stat_Dot3StatsMultipleCollisionFrames);
9574
9575 if (sblk->stat_Dot3StatsDeferredTransmissions)
9576 BCE_PRINTF(" 0x%08X : Dot3StatsDeferredTransmissions\n",
9577 sblk->stat_Dot3StatsDeferredTransmissions);
9578
9579 if (sblk->stat_Dot3StatsExcessiveCollisions)
9580 BCE_PRINTF(" 0x%08X : Dot3StatsExcessiveCollisions\n",
9581 sblk->stat_Dot3StatsExcessiveCollisions);
9582
9583 if (sblk->stat_Dot3StatsLateCollisions)
9584 BCE_PRINTF(" 0x%08X : Dot3StatsLateCollisions\n",
9585 sblk->stat_Dot3StatsLateCollisions);
9586
9587 if (sblk->stat_EtherStatsCollisions)
9588 BCE_PRINTF(" 0x%08X : EtherStatsCollisions\n",
9589 sblk->stat_EtherStatsCollisions);
9590
9591 if (sblk->stat_EtherStatsFragments)
9592 BCE_PRINTF(" 0x%08X : EtherStatsFragments\n",
9593 sblk->stat_EtherStatsFragments);
9594
9595 if (sblk->stat_EtherStatsJabbers)
9596 BCE_PRINTF(" 0x%08X : EtherStatsJabbers\n",
9597 sblk->stat_EtherStatsJabbers);
9598
9599 if (sblk->stat_EtherStatsUndersizePkts)
9600 BCE_PRINTF(" 0x%08X : EtherStatsUndersizePkts\n",
9601 sblk->stat_EtherStatsUndersizePkts);
9602
9603 if (sblk->stat_EtherStatsOversizePkts)
9604 BCE_PRINTF(" 0x%08X : EtherStatsOverrsizePkts\n",
9605 sblk->stat_EtherStatsOversizePkts);
9606
9607 if (sblk->stat_EtherStatsPktsRx64Octets)
9608 BCE_PRINTF(" 0x%08X : EtherStatsPktsRx64Octets\n",
9609 sblk->stat_EtherStatsPktsRx64Octets);
9610
9611 if (sblk->stat_EtherStatsPktsRx65Octetsto127Octets)
9612 BCE_PRINTF(" 0x%08X : EtherStatsPktsRx65Octetsto127Octets\n",
9613 sblk->stat_EtherStatsPktsRx65Octetsto127Octets);
9614
9615 if (sblk->stat_EtherStatsPktsRx128Octetsto255Octets)
9616 BCE_PRINTF(" 0x%08X : EtherStatsPktsRx128Octetsto255Octets\n",
9617 sblk->stat_EtherStatsPktsRx128Octetsto255Octets);
9618
9619 if (sblk->stat_EtherStatsPktsRx256Octetsto511Octets)
9620 BCE_PRINTF(" 0x%08X : EtherStatsPktsRx256Octetsto511Octets\n",
9621 sblk->stat_EtherStatsPktsRx256Octetsto511Octets);
9622
9623 if (sblk->stat_EtherStatsPktsRx512Octetsto1023Octets)
9624 BCE_PRINTF(" 0x%08X : EtherStatsPktsRx512Octetsto1023Octets\n",
9625 sblk->stat_EtherStatsPktsRx512Octetsto1023Octets);
9626
9627 if (sblk->stat_EtherStatsPktsRx1024Octetsto1522Octets)
9628 BCE_PRINTF(" 0x%08X : EtherStatsPktsRx1024Octetsto1522Octets\n",
9629 sblk->stat_EtherStatsPktsRx1024Octetsto1522Octets);
9630
9631 if (sblk->stat_EtherStatsPktsRx1523Octetsto9022Octets)
9632 BCE_PRINTF(" 0x%08X : EtherStatsPktsRx1523Octetsto9022Octets\n",
9633 sblk->stat_EtherStatsPktsRx1523Octetsto9022Octets);
9634
9635 if (sblk->stat_EtherStatsPktsTx64Octets)
9636 BCE_PRINTF(" 0x%08X : EtherStatsPktsTx64Octets\n",
9637 sblk->stat_EtherStatsPktsTx64Octets);
9638
9639 if (sblk->stat_EtherStatsPktsTx65Octetsto127Octets)
9640 BCE_PRINTF(" 0x%08X : EtherStatsPktsTx65Octetsto127Octets\n",
9641 sblk->stat_EtherStatsPktsTx65Octetsto127Octets);
9642
9643 if (sblk->stat_EtherStatsPktsTx128Octetsto255Octets)
9644 BCE_PRINTF(" 0x%08X : EtherStatsPktsTx128Octetsto255Octets\n",
9645 sblk->stat_EtherStatsPktsTx128Octetsto255Octets);
9646
9647 if (sblk->stat_EtherStatsPktsTx256Octetsto511Octets)
9648 BCE_PRINTF(" 0x%08X : EtherStatsPktsTx256Octetsto511Octets\n",
9649 sblk->stat_EtherStatsPktsTx256Octetsto511Octets);
9650
9651 if (sblk->stat_EtherStatsPktsTx512Octetsto1023Octets)
9652 BCE_PRINTF(" 0x%08X : EtherStatsPktsTx512Octetsto1023Octets\n",
9653 sblk->stat_EtherStatsPktsTx512Octetsto1023Octets);
9654
9655 if (sblk->stat_EtherStatsPktsTx1024Octetsto1522Octets)
9656 BCE_PRINTF(" 0x%08X : EtherStatsPktsTx1024Octetsto1522Octets\n",
9657 sblk->stat_EtherStatsPktsTx1024Octetsto1522Octets);
9658
9659 if (sblk->stat_EtherStatsPktsTx1523Octetsto9022Octets)
9660 BCE_PRINTF(" 0x%08X : EtherStatsPktsTx1523Octetsto9022Octets\n",
9661 sblk->stat_EtherStatsPktsTx1523Octetsto9022Octets);
9662
9663 if (sblk->stat_XonPauseFramesReceived)
9664 BCE_PRINTF(" 0x%08X : XonPauseFramesReceived\n",
9665 sblk->stat_XonPauseFramesReceived);
9666
9667 if (sblk->stat_XoffPauseFramesReceived)
9668 BCE_PRINTF(" 0x%08X : XoffPauseFramesReceived\n",
9669 sblk->stat_XoffPauseFramesReceived);
9670
9671 if (sblk->stat_OutXonSent)
9672 BCE_PRINTF(" 0x%08X : OutXonSent\n",
9673 sblk->stat_OutXonSent);
9674
9675 if (sblk->stat_OutXoffSent)
9676 BCE_PRINTF(" 0x%08X : OutXoffSent\n",
9677 sblk->stat_OutXoffSent);
9678
9679 if (sblk->stat_FlowControlDone)
9680 BCE_PRINTF(" 0x%08X : FlowControlDone\n",
9681 sblk->stat_FlowControlDone);
9682
9683 if (sblk->stat_MacControlFramesReceived)
9684 BCE_PRINTF(" 0x%08X : MacControlFramesReceived\n",
9685 sblk->stat_MacControlFramesReceived);
9686
9687 if (sblk->stat_XoffStateEntered)
9688 BCE_PRINTF(" 0x%08X : XoffStateEntered\n",
9689 sblk->stat_XoffStateEntered);
9690
9691 if (sblk->stat_IfInFramesL2FilterDiscards)
9692 BCE_PRINTF(" 0x%08X : IfInFramesL2FilterDiscards\n",
9693 sblk->stat_IfInFramesL2FilterDiscards);
9694
9695 if (sblk->stat_IfInRuleCheckerDiscards)
9696 BCE_PRINTF(" 0x%08X : IfInRuleCheckerDiscards\n",
9697 sblk->stat_IfInRuleCheckerDiscards);
9698
9699 if (sblk->stat_IfInFTQDiscards)
9700 BCE_PRINTF(" 0x%08X : IfInFTQDiscards\n",
9701 sblk->stat_IfInFTQDiscards);
9702
9703 if (sblk->stat_IfInMBUFDiscards)
9704 BCE_PRINTF(" 0x%08X : IfInMBUFDiscards\n",
9705 sblk->stat_IfInMBUFDiscards);
9706
9707 if (sblk->stat_IfInRuleCheckerP4Hit)
9708 BCE_PRINTF(" 0x%08X : IfInRuleCheckerP4Hit\n",
9709 sblk->stat_IfInRuleCheckerP4Hit);
9710
9711 if (sblk->stat_CatchupInRuleCheckerDiscards)
9712 BCE_PRINTF(" 0x%08X : CatchupInRuleCheckerDiscards\n",
9713 sblk->stat_CatchupInRuleCheckerDiscards);
9714
9715 if (sblk->stat_CatchupInFTQDiscards)
9716 BCE_PRINTF(" 0x%08X : CatchupInFTQDiscards\n",
9717 sblk->stat_CatchupInFTQDiscards);
9718
9719 if (sblk->stat_CatchupInMBUFDiscards)
9720 BCE_PRINTF(" 0x%08X : CatchupInMBUFDiscards\n",
9721 sblk->stat_CatchupInMBUFDiscards);
9722
9723 if (sblk->stat_CatchupInRuleCheckerP4Hit)
9724 BCE_PRINTF(" 0x%08X : CatchupInRuleCheckerP4Hit\n",
9725 sblk->stat_CatchupInRuleCheckerP4Hit);
9726
9727 BCE_PRINTF(
9728 "----------------------------"
9729 "----------------"
9730 "----------------------------\n");
9731}
9732
9733
9734/****************************************************************************/
9735/* Prints out a summary of the driver state. */
9736/* */
9737/* Returns: */
9738/* Nothing. */
9739/****************************************************************************/
9740static __attribute__ ((noinline)) void
9741bce_dump_driver_state(struct bce_softc *sc)
9742{
9743 u32 val_hi, val_lo;
9744
9745 BCE_PRINTF(
9746 "-----------------------------"
9747 " Driver State "
9748 "-----------------------------\n");
9749
9750 val_hi = BCE_ADDR_HI(sc);
9751 val_lo = BCE_ADDR_LO(sc);
9752 BCE_PRINTF("0x%08X:%08X - (sc) driver softc structure virtual address\n",
9753 val_hi, val_lo);
9754
9755 val_hi = BCE_ADDR_HI(sc->bce_vhandle);
9756 val_lo = BCE_ADDR_LO(sc->bce_vhandle);
9757 BCE_PRINTF("0x%08X:%08X - (sc->bce_vhandle) PCI BAR virtual address\n",
9758 val_hi, val_lo);
9759
9760 val_hi = BCE_ADDR_HI(sc->status_block);
9761 val_lo = BCE_ADDR_LO(sc->status_block);
9762 BCE_PRINTF("0x%08X:%08X - (sc->status_block) status block virtual address\n",
9763 val_hi, val_lo);
9764
9765 val_hi = BCE_ADDR_HI(sc->stats_block);
9766 val_lo = BCE_ADDR_LO(sc->stats_block);
9767 BCE_PRINTF("0x%08X:%08X - (sc->stats_block) statistics block virtual address\n",
9768 val_hi, val_lo);
9769
9770 val_hi = BCE_ADDR_HI(sc->tx_bd_chain);
9771 val_lo = BCE_ADDR_LO(sc->tx_bd_chain);
9772 BCE_PRINTF(
9773 "0x%08X:%08X - (sc->tx_bd_chain) tx_bd chain virtual adddress\n",
9774 val_hi, val_lo);
9775
9776 val_hi = BCE_ADDR_HI(sc->rx_bd_chain);
9777 val_lo = BCE_ADDR_LO(sc->rx_bd_chain);
9778 BCE_PRINTF(
9779 "0x%08X:%08X - (sc->rx_bd_chain) rx_bd chain virtual address\n",
9780 val_hi, val_lo);
9781
9782#ifdef ZERO_COPY_SOCKETS
9783 val_hi = BCE_ADDR_HI(sc->pg_bd_chain);
9784 val_lo = BCE_ADDR_LO(sc->pg_bd_chain);
9785 BCE_PRINTF(
9786 "0x%08X:%08X - (sc->pg_bd_chain) page chain virtual address\n",
9787 val_hi, val_lo);
9788#endif
9789
9790 val_hi = BCE_ADDR_HI(sc->tx_mbuf_ptr);
9791 val_lo = BCE_ADDR_LO(sc->tx_mbuf_ptr);
9792 BCE_PRINTF(
9793 "0x%08X:%08X - (sc->tx_mbuf_ptr) tx mbuf chain virtual address\n",
9794 val_hi, val_lo);
9795
9796 val_hi = BCE_ADDR_HI(sc->rx_mbuf_ptr);
9797 val_lo = BCE_ADDR_LO(sc->rx_mbuf_ptr);
9798 BCE_PRINTF(
9799 "0x%08X:%08X - (sc->rx_mbuf_ptr) rx mbuf chain virtual address\n",
9800 val_hi, val_lo);
9801
9802#ifdef ZERO_COPY_SOCKETS
9803 val_hi = BCE_ADDR_HI(sc->pg_mbuf_ptr);
9804 val_lo = BCE_ADDR_LO(sc->pg_mbuf_ptr);
9805 BCE_PRINTF(
9806 "0x%08X:%08X - (sc->pg_mbuf_ptr) page mbuf chain virtual address\n",
9807 val_hi, val_lo);
9808#endif
9809
9810 BCE_PRINTF(" 0x%08X - (sc->interrupts_generated) h/w intrs\n",
9811 sc->interrupts_generated);
9812
9813 BCE_PRINTF(" 0x%08X - (sc->rx_interrupts) rx interrupts handled\n",
9814 sc->rx_interrupts);
9815
9816 BCE_PRINTF(" 0x%08X - (sc->tx_interrupts) tx interrupts handled\n",
9817 sc->tx_interrupts);
9818
9819 BCE_PRINTF(" 0x%08X - (sc->last_status_idx) status block index\n",
9820 sc->last_status_idx);
9821
9822 BCE_PRINTF(" 0x%04X(0x%04X) - (sc->tx_prod) tx producer index\n",
9823 sc->tx_prod, (u16) TX_CHAIN_IDX(sc->tx_prod));
9824
9825 BCE_PRINTF(" 0x%04X(0x%04X) - (sc->tx_cons) tx consumer index\n",
9826 sc->tx_cons, (u16) TX_CHAIN_IDX(sc->tx_cons));
9827
9828 BCE_PRINTF(" 0x%08X - (sc->tx_prod_bseq) tx producer bseq index\n",
9829 sc->tx_prod_bseq);
9830
9831 BCE_PRINTF(" 0x%08X - (sc->debug_tx_mbuf_alloc) tx mbufs allocated\n",
9832 sc->debug_tx_mbuf_alloc);
9833
9834 BCE_PRINTF(" 0x%08X - (sc->used_tx_bd) used tx_bd's\n",
9835 sc->used_tx_bd);
9836
9837 BCE_PRINTF("0x%08X/%08X - (sc->tx_hi_watermark) tx hi watermark\n",
9838 sc->tx_hi_watermark, sc->max_tx_bd);
9839
9840 BCE_PRINTF(" 0x%04X(0x%04X) - (sc->rx_prod) rx producer index\n",
9841 sc->rx_prod, (u16) RX_CHAIN_IDX(sc->rx_prod));
9842
9843 BCE_PRINTF(" 0x%04X(0x%04X) - (sc->rx_cons) rx consumer index\n",
9844 sc->rx_cons, (u16) RX_CHAIN_IDX(sc->rx_cons));
9845
9846 BCE_PRINTF(" 0x%08X - (sc->rx_prod_bseq) rx producer bseq index\n",
9847 sc->rx_prod_bseq);
9848
9849 BCE_PRINTF(" 0x%08X - (sc->debug_rx_mbuf_alloc) rx mbufs allocated\n",
9850 sc->debug_rx_mbuf_alloc);
9851
9852 BCE_PRINTF(" 0x%08X - (sc->free_rx_bd) free rx_bd's\n",
9853 sc->free_rx_bd);
9854
9855#ifdef ZERO_COPY_SOCKETS
9856 BCE_PRINTF(" 0x%04X(0x%04X) - (sc->pg_prod) page producer index\n",
9857 sc->pg_prod, (u16) PG_CHAIN_IDX(sc->pg_prod));
9858
9859 BCE_PRINTF(" 0x%04X(0x%04X) - (sc->pg_cons) page consumer index\n",
9860 sc->pg_cons, (u16) PG_CHAIN_IDX(sc->pg_cons));
9861
9862 BCE_PRINTF(" 0x%08X - (sc->debug_pg_mbuf_alloc) page mbufs allocated\n",
9863 sc->debug_pg_mbuf_alloc);
9864
9865 BCE_PRINTF(" 0x%08X - (sc->free_pg_bd) free page rx_bd's\n",
9866 sc->free_pg_bd);
9867
9868 BCE_PRINTF("0x%08X/%08X - (sc->pg_low_watermark) page low watermark\n",
9869 sc->pg_low_watermark, sc->max_pg_bd);
9870#endif
9871
9872 BCE_PRINTF(" 0x%08X - (sc->mbuf_alloc_failed_count) "
9873 "mbuf alloc failures\n",
9874 sc->mbuf_alloc_failed_count);
9875
9876 BCE_PRINTF(" 0x%08X - (sc->bce_flags) bce mac flags\n",
9877 sc->bce_flags);
9878
9879 BCE_PRINTF(" 0x%08X - (sc->bce_phy_flags) bce phy flags\n",
9880 sc->bce_phy_flags);
9881
9882 BCE_PRINTF(
9883 "----------------------------"
9884 "----------------"
9885 "----------------------------\n");
9886}
9887
9888
9889/****************************************************************************/
9890/* Prints out the hardware state through a summary of important register, */
9891/* followed by a complete register dump. */
9892/* */
9893/* Returns: */
9894/* Nothing. */
9895/****************************************************************************/
9896static __attribute__ ((noinline)) void
9897bce_dump_hw_state(struct bce_softc *sc)
9898{
9899 u32 val;
9900
9901 BCE_PRINTF(
9902 "----------------------------"
9903 " Hardware State "
9904 "----------------------------\n");
9905
9906 BCE_PRINTF("%s - bootcode version\n", sc->bce_bc_ver);
9907
9908 val = REG_RD(sc, BCE_MISC_ENABLE_STATUS_BITS);
9909 BCE_PRINTF("0x%08X - (0x%06X) misc_enable_status_bits\n",
9910 val, BCE_MISC_ENABLE_STATUS_BITS);
9911
9912 val = REG_RD(sc, BCE_DMA_STATUS);
9913 BCE_PRINTF("0x%08X - (0x%06X) dma_status\n", val, BCE_DMA_STATUS);
9914
9915 val = REG_RD(sc, BCE_CTX_STATUS);
9916 BCE_PRINTF("0x%08X - (0x%06X) ctx_status\n", val, BCE_CTX_STATUS);
9917
9918 val = REG_RD(sc, BCE_EMAC_STATUS);
9919 BCE_PRINTF("0x%08X - (0x%06X) emac_status\n", val, BCE_EMAC_STATUS);
9920
9921 val = REG_RD(sc, BCE_RPM_STATUS);
9922 BCE_PRINTF("0x%08X - (0x%06X) rpm_status\n", val, BCE_RPM_STATUS);
9923
9924 val = REG_RD(sc, 0x2004);
9925 BCE_PRINTF("0x%08X - (0x%06X) rlup_status\n", val, 0x2004);
9926
9927 val = REG_RD(sc, BCE_RV2P_STATUS);
9928 BCE_PRINTF("0x%08X - (0x%06X) rv2p_status\n", val, BCE_RV2P_STATUS);
9929
9930 val = REG_RD(sc, 0x2c04);
9931 BCE_PRINTF("0x%08X - (0x%06X) rdma_status\n", val, 0x2c04);
9932
9933 val = REG_RD(sc, BCE_TBDR_STATUS);
9934 BCE_PRINTF("0x%08X - (0x%06X) tbdr_status\n", val, BCE_TBDR_STATUS);
9935
9936 val = REG_RD(sc, BCE_TDMA_STATUS);
9937 BCE_PRINTF("0x%08X - (0x%06X) tdma_status\n", val, BCE_TDMA_STATUS);
9938
9939 val = REG_RD(sc, BCE_HC_STATUS);
9940 BCE_PRINTF("0x%08X - (0x%06X) hc_status\n", val, BCE_HC_STATUS);
9941
9942 val = REG_RD_IND(sc, BCE_TXP_CPU_STATE);
9943 BCE_PRINTF("0x%08X - (0x%06X) txp_cpu_state\n", val, BCE_TXP_CPU_STATE);
9944
9945 val = REG_RD_IND(sc, BCE_TPAT_CPU_STATE);
9946 BCE_PRINTF("0x%08X - (0x%06X) tpat_cpu_state\n", val, BCE_TPAT_CPU_STATE);
9947
9948 val = REG_RD_IND(sc, BCE_RXP_CPU_STATE);
9949 BCE_PRINTF("0x%08X - (0x%06X) rxp_cpu_state\n", val, BCE_RXP_CPU_STATE);
9950
9951 val = REG_RD_IND(sc, BCE_COM_CPU_STATE);
9952 BCE_PRINTF("0x%08X - (0x%06X) com_cpu_state\n", val, BCE_COM_CPU_STATE);
9953
9954 val = REG_RD_IND(sc, BCE_MCP_CPU_STATE);
9955 BCE_PRINTF("0x%08X - (0x%06X) mcp_cpu_state\n", val, BCE_MCP_CPU_STATE);
9956
9957 val = REG_RD_IND(sc, BCE_CP_CPU_STATE);
9958 BCE_PRINTF("0x%08X - (0x%06X) cp_cpu_state\n", val, BCE_CP_CPU_STATE);
9959
9960 BCE_PRINTF(
9961 "----------------------------"
9962 "----------------"
9963 "----------------------------\n");
9964
9965 BCE_PRINTF(
9966 "----------------------------"
9967 " Register Dump "
9968 "----------------------------\n");
9969
9970 for (int i = 0x400; i < 0x8000; i += 0x10) {
9971 BCE_PRINTF("0x%04X: 0x%08X 0x%08X 0x%08X 0x%08X\n",
9972 i, REG_RD(sc, i), REG_RD(sc, i + 0x4),
9973 REG_RD(sc, i + 0x8), REG_RD(sc, i + 0xC));
9974 }
9975
9976 BCE_PRINTF(
9977 "----------------------------"
9978 "----------------"
9979 "----------------------------\n");
9980}
9981
9982
9983/****************************************************************************/
9984/* Prints out the mailbox queue registers. */
9985/* */
9986/* Returns: */
9987/* Nothing. */
9988/****************************************************************************/
9989static __attribute__ ((noinline)) void
9990bce_dump_mq_regs(struct bce_softc *sc)
9991{
9992 BCE_PRINTF(
9993 "----------------------------"
9994 " MQ Regs "
9995 "----------------------------\n");
9996
9997 BCE_PRINTF(
9998 "----------------------------"
9999 "----------------"
10000 "----------------------------\n");
10001
10002 for (int i = 0x3c00; i < 0x4000; i += 0x10) {
10003 BCE_PRINTF("0x%04X: 0x%08X 0x%08X 0x%08X 0x%08X\n",
10004 i, REG_RD(sc, i), REG_RD(sc, i + 0x4),
10005 REG_RD(sc, i + 0x8), REG_RD(sc, i + 0xC));
10006 }
10007
10008 BCE_PRINTF(
10009 "----------------------------"
10010 "----------------"
10011 "----------------------------\n");
10012}
10013
10014
10015/****************************************************************************/
10016/* Prints out the bootcode state. */
10017/* */
10018/* Returns: */
10019/* Nothing. */
10020/****************************************************************************/
10021static __attribute__ ((noinline)) void
10022bce_dump_bc_state(struct bce_softc *sc)
10023{
10024 u32 val;
10025
10026 BCE_PRINTF(
10027 "----------------------------"
10028 " Bootcode State "
10029 "----------------------------\n");
10030
10031 BCE_PRINTF("%s - bootcode version\n", sc->bce_bc_ver);
10032
10033 val = bce_shmem_rd(sc, BCE_BC_RESET_TYPE);
10034 BCE_PRINTF("0x%08X - (0x%06X) reset_type\n",
10035 val, BCE_BC_RESET_TYPE);
10036
10037 val = bce_shmem_rd(sc, BCE_BC_STATE);
10038 BCE_PRINTF("0x%08X - (0x%06X) state\n",
10039 val, BCE_BC_STATE);
10040
10041 val = bce_shmem_rd(sc, BCE_BC_CONDITION);
10042 BCE_PRINTF("0x%08X - (0x%06X) condition\n",
10043 val, BCE_BC_CONDITION);
10044
10045 val = bce_shmem_rd(sc, BCE_BC_STATE_DEBUG_CMD);
10046 BCE_PRINTF("0x%08X - (0x%06X) debug_cmd\n",
10047 val, BCE_BC_STATE_DEBUG_CMD);
10048
10049 BCE_PRINTF(
10050 "----------------------------"
10051 "----------------"
10052 "----------------------------\n");
10053}
10054
10055
10056/****************************************************************************/
10057/* Prints out the TXP processor state. */
10058/* */
10059/* Returns: */
10060/* Nothing. */
10061/****************************************************************************/
10062static __attribute__ ((noinline)) void
10063bce_dump_txp_state(struct bce_softc *sc, int regs)
10064{
10065 u32 val;
10066 u32 fw_version[3];
10067
10068 BCE_PRINTF(
10069 "----------------------------"
10070 " TXP State "
10071 "----------------------------\n");
10072
10073 for (int i = 0; i < 3; i++)
10074 fw_version[i] = htonl(REG_RD_IND(sc,
10075 (BCE_TXP_SCRATCH + 0x10 + i * 4)));
10076 BCE_PRINTF("Firmware version - %s\n", (char *) fw_version);
10077
10078 val = REG_RD_IND(sc, BCE_TXP_CPU_MODE);
10079 BCE_PRINTF("0x%08X - (0x%06X) txp_cpu_mode\n", val, BCE_TXP_CPU_MODE);
10080
10081 val = REG_RD_IND(sc, BCE_TXP_CPU_STATE);
10082 BCE_PRINTF("0x%08X - (0x%06X) txp_cpu_state\n", val, BCE_TXP_CPU_STATE);
10083
10084 val = REG_RD_IND(sc, BCE_TXP_CPU_EVENT_MASK);
10085 BCE_PRINTF("0x%08X - (0x%06X) txp_cpu_event_mask\n", val,
10086 BCE_TXP_CPU_EVENT_MASK);
10087
10088 if (regs) {
10089 BCE_PRINTF(
10090 "----------------------------"
10091 " Register Dump "
10092 "----------------------------\n");
10093
10094 for (int i = BCE_TXP_CPU_MODE; i < 0x68000; i += 0x10) {
10095 /* Skip the big blank spaces */
10096 if (i < 0x454000 && i > 0x5ffff)
10097 BCE_PRINTF("0x%04X: 0x%08X 0x%08X 0x%08X 0x%08X\n",
10098 i, REG_RD_IND(sc, i), REG_RD_IND(sc, i + 0x4),
10099 REG_RD_IND(sc, i + 0x8), REG_RD_IND(sc, i + 0xC));
10100 }
10101 }
10102
10103 BCE_PRINTF(
10104 "----------------------------"
10105 "----------------"
10106 "----------------------------\n");
10107}
10108
10109
10110/****************************************************************************/
10111/* Prints out the RXP processor state. */
10112/* */
10113/* Returns: */
10114/* Nothing. */
10115/****************************************************************************/
10116static __attribute__ ((noinline)) void
10117bce_dump_rxp_state(struct bce_softc *sc, int regs)
10118{
10119 u32 val;
10120 u32 fw_version[3];
10121
10122 BCE_PRINTF(
10123 "----------------------------"
10124 " RXP State "
10125 "----------------------------\n");
10126
10127 for (int i = 0; i < 3; i++)
10128 fw_version[i] = htonl(REG_RD_IND(sc,
10129 (BCE_RXP_SCRATCH + 0x10 + i * 4)));
10130 BCE_PRINTF("Firmware version - %s\n", (char *) fw_version);
10131
10132 val = REG_RD_IND(sc, BCE_RXP_CPU_MODE);
10133 BCE_PRINTF("0x%08X - (0x%06X) rxp_cpu_mode\n", val, BCE_RXP_CPU_MODE);
10134
10135 val = REG_RD_IND(sc, BCE_RXP_CPU_STATE);
10136 BCE_PRINTF("0x%08X - (0x%06X) rxp_cpu_state\n", val, BCE_RXP_CPU_STATE);
10137
10138 val = REG_RD_IND(sc, BCE_RXP_CPU_EVENT_MASK);
10139 BCE_PRINTF("0x%08X - (0x%06X) rxp_cpu_event_mask\n", val,
10140 BCE_RXP_CPU_EVENT_MASK);
10141
10142 if (regs) {
10143 BCE_PRINTF(
10144 "----------------------------"
10145 " Register Dump "
10146 "----------------------------\n");
10147
10148 for (int i = BCE_RXP_CPU_MODE; i < 0xe8fff; i += 0x10) {
10149 /* Skip the big blank sapces */
10150 if (i < 0xc5400 && i > 0xdffff)
10151 BCE_PRINTF("0x%04X: 0x%08X 0x%08X 0x%08X 0x%08X\n",
10152 i, REG_RD_IND(sc, i), REG_RD_IND(sc, i + 0x4),
10153 REG_RD_IND(sc, i + 0x8), REG_RD_IND(sc, i + 0xC));
10154 }
10155 }
10156
10157 BCE_PRINTF(
10158 "----------------------------"
10159 "----------------"
10160 "----------------------------\n");
10161}
10162
10163
10164/****************************************************************************/
10165/* Prints out the TPAT processor state. */
10166/* */
10167/* Returns: */
10168/* Nothing. */
10169/****************************************************************************/
10170static __attribute__ ((noinline)) void
10171bce_dump_tpat_state(struct bce_softc *sc, int regs)
10172{
10173 u32 val;
10174 u32 fw_version[3];
10175
10176 BCE_PRINTF(
10177 "----------------------------"
10178 " TPAT State "
10179 "----------------------------\n");
10180
10181 for (int i = 0; i < 3; i++)
10182 fw_version[i] = htonl(REG_RD_IND(sc,
10183 (BCE_TPAT_SCRATCH + 0x410 + i * 4)));
10184 BCE_PRINTF("Firmware version - %s\n", (char *) fw_version);
10185
10186 val = REG_RD_IND(sc, BCE_TPAT_CPU_MODE);
10187 BCE_PRINTF("0x%08X - (0x%06X) tpat_cpu_mode\n", val, BCE_TPAT_CPU_MODE);
10188
10189 val = REG_RD_IND(sc, BCE_TPAT_CPU_STATE);
10190 BCE_PRINTF("0x%08X - (0x%06X) tpat_cpu_state\n", val, BCE_TPAT_CPU_STATE);
10191
10192 val = REG_RD_IND(sc, BCE_TPAT_CPU_EVENT_MASK);
10193 BCE_PRINTF("0x%08X - (0x%06X) tpat_cpu_event_mask\n", val,
10194 BCE_TPAT_CPU_EVENT_MASK);
10195
10196 if (regs) {
10197 BCE_PRINTF(
10198 "----------------------------"
10199 " Register Dump "
10200 "----------------------------\n");
10201
10202 for (int i = BCE_TPAT_CPU_MODE; i < 0xa3fff; i += 0x10) {
10203 /* Skip the big blank spaces */
10204 if (i < 0x854000 && i > 0x9ffff)
10205 BCE_PRINTF("0x%04X: 0x%08X 0x%08X 0x%08X 0x%08X\n",
10206 i, REG_RD_IND(sc, i), REG_RD_IND(sc, i + 0x4),
10207 REG_RD_IND(sc, i + 0x8), REG_RD_IND(sc, i + 0xC));
10208 }
10209 }
10210
10211 BCE_PRINTF(
10212 "----------------------------"
10213 "----------------"
10214 "----------------------------\n");
10215}
10216
10217
10218/****************************************************************************/
10219/* Prints out the Command Procesor (CP) state. */
10220/* */
10221/* Returns: */
10222/* Nothing. */
10223/****************************************************************************/
10224static __attribute__ ((noinline)) void
10225bce_dump_cp_state(struct bce_softc *sc, int regs)
10226{
10227 u32 val;
10228 u32 fw_version[3];
10229
10230 BCE_PRINTF(
10231 "----------------------------"
10232 " CP State "
10233 "----------------------------\n");
10234
10235 for (int i = 0; i < 3; i++)
10236 fw_version[i] = htonl(REG_RD_IND(sc,
10237 (BCE_CP_SCRATCH + 0x10 + i * 4)));
10238 BCE_PRINTF("Firmware version - %s\n", (char *) fw_version);
10239
10240 val = REG_RD_IND(sc, BCE_CP_CPU_MODE);
10241 BCE_PRINTF("0x%08X - (0x%06X) cp_cpu_mode\n", val, BCE_CP_CPU_MODE);
10242
10243 val = REG_RD_IND(sc, BCE_CP_CPU_STATE);
10244 BCE_PRINTF("0x%08X - (0x%06X) cp_cpu_state\n", val, BCE_CP_CPU_STATE);
10245
10246 val = REG_RD_IND(sc, BCE_CP_CPU_EVENT_MASK);
10247 BCE_PRINTF("0x%08X - (0x%06X) cp_cpu_event_mask\n", val,
10248 BCE_CP_CPU_EVENT_MASK);
10249
10250 if (regs) {
10251 BCE_PRINTF(
10252 "----------------------------"
10253 " Register Dump "
10254 "----------------------------\n");
10255
10256 for (int i = BCE_CP_CPU_MODE; i < 0x1aa000; i += 0x10) {
10257 /* Skip the big blank spaces */
10258 if (i < 0x185400 && i > 0x19ffff)
10259 BCE_PRINTF("0x%04X: 0x%08X 0x%08X 0x%08X 0x%08X\n",
10260 i, REG_RD_IND(sc, i), REG_RD_IND(sc, i + 0x4),
10261 REG_RD_IND(sc, i + 0x8), REG_RD_IND(sc, i + 0xC));
10262 }
10263 }
10264
10265 BCE_PRINTF(
10266 "----------------------------"
10267 "----------------"
10268 "----------------------------\n");
10269}
10270
10271
10272/****************************************************************************/
10273/* Prints out the Completion Procesor (COM) state. */
10274/* */
10275/* Returns: */
10276/* Nothing. */
10277/****************************************************************************/
10278static __attribute__ ((noinline)) void
10279bce_dump_com_state(struct bce_softc *sc, int regs)
10280{
10281 u32 val;
10282 u32 fw_version[3];
10283
10284 BCE_PRINTF(
10285 "----------------------------"
10286 " COM State "
10287 "----------------------------\n");
10288
10289 for (int i = 0; i < 3; i++)
10290 fw_version[i] = htonl(REG_RD_IND(sc,
10291 (BCE_COM_SCRATCH + 0x10 + i * 4)));
10292 BCE_PRINTF("Firmware version - %s\n", (char *) fw_version);
10293
10294 val = REG_RD_IND(sc, BCE_COM_CPU_MODE);
10295 BCE_PRINTF("0x%08X - (0x%06X) com_cpu_mode\n", val, BCE_COM_CPU_MODE);
10296
10297 val = REG_RD_IND(sc, BCE_COM_CPU_STATE);
10298 BCE_PRINTF("0x%08X - (0x%06X) com_cpu_state\n", val, BCE_COM_CPU_STATE);
10299
10300 val = REG_RD_IND(sc, BCE_COM_CPU_EVENT_MASK);
10301 BCE_PRINTF("0x%08X - (0x%06X) com_cpu_event_mask\n", val,
10302 BCE_COM_CPU_EVENT_MASK);
10303
10304 if (regs) {
10305 BCE_PRINTF(
10306 "----------------------------"
10307 " Register Dump "
10308 "----------------------------\n");
10309
10310 for (int i = BCE_COM_CPU_MODE; i < 0x1053e8; i += 0x10) {
10311 BCE_PRINTF("0x%04X: 0x%08X 0x%08X 0x%08X 0x%08X\n",
10312 i, REG_RD_IND(sc, i), REG_RD_IND(sc, i + 0x4),
10313 REG_RD_IND(sc, i + 0x8), REG_RD_IND(sc, i + 0xC));
10314 }
10315 }
10316
10317 BCE_PRINTF(
10318 "----------------------------"
10319 "----------------"
10320 "----------------------------\n");
10321}
10322
10323
10324/****************************************************************************/
10325/* Prints out the driver state and then enters the debugger. */
10326/* */
10327/* Returns: */
10328/* Nothing. */
10329/****************************************************************************/
10330static void
10331bce_breakpoint(struct bce_softc *sc)
10332{
10333
10334 /*
10335 * Unreachable code to silence compiler warnings
10336 * about unused functions.
10337 */
10338 if (0) {
10339 bce_freeze_controller(sc);
10340 bce_unfreeze_controller(sc);
10341 bce_dump_enet(sc, NULL);
10342 bce_dump_txbd(sc, 0, NULL);
10343 bce_dump_rxbd(sc, 0, NULL);
10344 bce_dump_tx_mbuf_chain(sc, 0, USABLE_TX_BD);
10345 bce_dump_rx_mbuf_chain(sc, 0, USABLE_RX_BD);
10346 bce_dump_l2fhdr(sc, 0, NULL);
10347 bce_dump_ctx(sc, RX_CID);
10348 bce_dump_ftqs(sc);
10349 bce_dump_tx_chain(sc, 0, USABLE_TX_BD);
10350 bce_dump_rx_chain(sc, 0, USABLE_RX_BD);
10351 bce_dump_status_block(sc);
10352 bce_dump_stats_block(sc);
10353 bce_dump_driver_state(sc);
10354 bce_dump_hw_state(sc);
10355 bce_dump_bc_state(sc);
10356 bce_dump_txp_state(sc, 0);
10357 bce_dump_rxp_state(sc, 0);
10358 bce_dump_tpat_state(sc, 0);
10359 bce_dump_cp_state(sc, 0);
10360 bce_dump_com_state(sc, 0);
10361#ifdef ZERO_COPY_SOCKETS
10362 bce_dump_pgbd(sc, 0, NULL);
10363 bce_dump_pg_mbuf_chain(sc, 0, USABLE_PG_BD);
10364 bce_dump_pg_chain(sc, 0, USABLE_PG_BD);
10365#endif
10366 }
10367
10368 bce_dump_status_block(sc);
10369 bce_dump_driver_state(sc);
10370
10371 /* Call the debugger. */
10372 breakpoint();
10373
10374 return;
10375}
10376#endif
10377