Deleted Added
sdiff udiff text old ( 188783 ) new ( 188968 )
full compact
1/*-
2 * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer,
10 * without modification.
11 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
12 * similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
13 * redistribution must be conditioned upon including a substantially
14 * similar Disclaimer requirement for further binary redistribution.
15 *
16 * NO WARRANTY
17 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
18 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
19 * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
20 * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
21 * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
22 * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
23 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
25 * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
26 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
27 * THE POSSIBILITY OF SUCH DAMAGES.
28 */
29
30#include <sys/cdefs.h>
31__FBSDID("$FreeBSD: head/sys/dev/ath/if_ath.c 188968 2009-02-23 23:41:12Z sam $");
32
33/*
34 * Driver for the Atheros Wireless LAN controller.
35 *
36 * This software is derived from work of Atsushi Onoe; his contribution
37 * is greatly appreciated.
38 */
39
40#include "opt_inet.h"
41#include "opt_ath.h"
42
43#include <sys/param.h>
44#include <sys/systm.h>
45#include <sys/sysctl.h>
46#include <sys/mbuf.h>
47#include <sys/malloc.h>
48#include <sys/lock.h>
49#include <sys/mutex.h>
50#include <sys/kernel.h>
51#include <sys/socket.h>
52#include <sys/sockio.h>
53#include <sys/errno.h>
54#include <sys/callout.h>
55#include <sys/bus.h>
56#include <sys/endian.h>
57#include <sys/kthread.h>
58#include <sys/taskqueue.h>
59#include <sys/priv.h>
60
61#include <machine/bus.h>
62
63#include <net/if.h>
64#include <net/if_dl.h>
65#include <net/if_media.h>
66#include <net/if_types.h>
67#include <net/if_arp.h>
68#include <net/ethernet.h>
69#include <net/if_llc.h>
70
71#include <net80211/ieee80211_var.h>
72#include <net80211/ieee80211_regdomain.h>
73#ifdef ATH_SUPPORT_TDMA
74#include <net80211/ieee80211_tdma.h>
75#endif
76
77#include <net/bpf.h>
78
79#ifdef INET
80#include <netinet/in.h>
81#include <netinet/if_ether.h>
82#endif
83
84#include <dev/ath/if_athvar.h>
85#include <dev/ath/ath_hal/ah_devid.h> /* XXX for softled */
86
87#ifdef ATH_TX99_DIAG
88#include <dev/ath/ath_tx99/ath_tx99.h>
89#endif
90
91/*
92 * We require a HAL w/ the changes for split tx/rx MIC.
93 */
94CTASSERT(HAL_ABI_VERSION > 0x06052200);
95
96/*
97 * ATH_BCBUF determines the number of vap's that can transmit
98 * beacons and also (currently) the number of vap's that can
99 * have unique mac addresses/bssid. When staggering beacons
100 * 4 is probably a good max as otherwise the beacons become
101 * very closely spaced and there is limited time for cab q traffic
102 * to go out. You can burst beacons instead but that is not good
103 * for stations in power save and at some point you really want
104 * another radio (and channel).
105 *
106 * The limit on the number of mac addresses is tied to our use of
107 * the U/L bit and tracking addresses in a byte; it would be
108 * worthwhile to allow more for applications like proxy sta.
109 */
110CTASSERT(ATH_BCBUF <= 8);
111
112/* unaligned little endian access */
113#define LE_READ_2(p) \
114 ((u_int16_t) \
115 ((((u_int8_t *)(p))[0] ) | (((u_int8_t *)(p))[1] << 8)))
116#define LE_READ_4(p) \
117 ((u_int32_t) \
118 ((((u_int8_t *)(p))[0] ) | (((u_int8_t *)(p))[1] << 8) | \
119 (((u_int8_t *)(p))[2] << 16) | (((u_int8_t *)(p))[3] << 24)))
120
121static struct ieee80211vap *ath_vap_create(struct ieee80211com *,
122 const char name[IFNAMSIZ], int unit, int opmode,
123 int flags, const uint8_t bssid[IEEE80211_ADDR_LEN],
124 const uint8_t mac[IEEE80211_ADDR_LEN]);
125static void ath_vap_delete(struct ieee80211vap *);
126static void ath_init(void *);
127static void ath_stop_locked(struct ifnet *);
128static void ath_stop(struct ifnet *);
129static void ath_start(struct ifnet *);
130static int ath_reset(struct ifnet *);
131static int ath_reset_vap(struct ieee80211vap *, u_long);
132static int ath_media_change(struct ifnet *);
133static void ath_watchdog(struct ifnet *);
134static int ath_ioctl(struct ifnet *, u_long, caddr_t);
135static void ath_fatal_proc(void *, int);
136static void ath_bmiss_vap(struct ieee80211vap *);
137static void ath_bmiss_proc(void *, int);
138static int ath_keyset(struct ath_softc *, const struct ieee80211_key *,
139 struct ieee80211_node *);
140static int ath_key_alloc(struct ieee80211vap *,
141 struct ieee80211_key *,
142 ieee80211_keyix *, ieee80211_keyix *);
143static int ath_key_delete(struct ieee80211vap *,
144 const struct ieee80211_key *);
145static int ath_key_set(struct ieee80211vap *, const struct ieee80211_key *,
146 const u_int8_t mac[IEEE80211_ADDR_LEN]);
147static void ath_key_update_begin(struct ieee80211vap *);
148static void ath_key_update_end(struct ieee80211vap *);
149static void ath_update_mcast(struct ifnet *);
150static void ath_update_promisc(struct ifnet *);
151static void ath_mode_init(struct ath_softc *);
152static void ath_setslottime(struct ath_softc *);
153static void ath_updateslot(struct ifnet *);
154static int ath_beaconq_setup(struct ath_hal *);
155static int ath_beacon_alloc(struct ath_softc *, struct ieee80211_node *);
156static void ath_beacon_update(struct ieee80211vap *, int item);
157static void ath_beacon_setup(struct ath_softc *, struct ath_buf *);
158static void ath_beacon_proc(void *, int);
159static struct ath_buf *ath_beacon_generate(struct ath_softc *,
160 struct ieee80211vap *);
161static void ath_bstuck_proc(void *, int);
162static void ath_beacon_return(struct ath_softc *, struct ath_buf *);
163static void ath_beacon_free(struct ath_softc *);
164static void ath_beacon_config(struct ath_softc *, struct ieee80211vap *);
165static void ath_descdma_cleanup(struct ath_softc *sc,
166 struct ath_descdma *, ath_bufhead *);
167static int ath_desc_alloc(struct ath_softc *);
168static void ath_desc_free(struct ath_softc *);
169static struct ieee80211_node *ath_node_alloc(struct ieee80211vap *,
170 const uint8_t [IEEE80211_ADDR_LEN]);
171static void ath_node_free(struct ieee80211_node *);
172static void ath_node_getsignal(const struct ieee80211_node *,
173 int8_t *, int8_t *);
174static int ath_rxbuf_init(struct ath_softc *, struct ath_buf *);
175static void ath_recv_mgmt(struct ieee80211_node *ni, struct mbuf *m,
176 int subtype, int rssi, int noise, u_int32_t rstamp);
177static void ath_setdefantenna(struct ath_softc *, u_int);
178static void ath_rx_proc(void *, int);
179static void ath_txq_init(struct ath_softc *sc, struct ath_txq *, int);
180static struct ath_txq *ath_txq_setup(struct ath_softc*, int qtype, int subtype);
181static int ath_tx_setup(struct ath_softc *, int, int);
182static int ath_wme_update(struct ieee80211com *);
183static void ath_tx_cleanupq(struct ath_softc *, struct ath_txq *);
184static void ath_tx_cleanup(struct ath_softc *);
185static void ath_freetx(struct mbuf *);
186static int ath_tx_start(struct ath_softc *, struct ieee80211_node *,
187 struct ath_buf *, struct mbuf *);
188static void ath_tx_proc_q0(void *, int);
189static void ath_tx_proc_q0123(void *, int);
190static void ath_tx_proc(void *, int);
191static void ath_tx_draintxq(struct ath_softc *, struct ath_txq *);
192static int ath_chan_set(struct ath_softc *, struct ieee80211_channel *);
193static void ath_draintxq(struct ath_softc *);
194static void ath_stoprecv(struct ath_softc *);
195static int ath_startrecv(struct ath_softc *);
196static void ath_chan_change(struct ath_softc *, struct ieee80211_channel *);
197static void ath_scan_start(struct ieee80211com *);
198static void ath_scan_end(struct ieee80211com *);
199static void ath_set_channel(struct ieee80211com *);
200static void ath_calibrate(void *);
201static int ath_newstate(struct ieee80211vap *, enum ieee80211_state, int);
202static void ath_setup_stationkey(struct ieee80211_node *);
203static void ath_newassoc(struct ieee80211_node *, int);
204static int ath_setregdomain(struct ieee80211com *,
205 struct ieee80211_regdomain *, int,
206 struct ieee80211_channel []);
207static void ath_getradiocaps(struct ieee80211com *, int, int *,
208 struct ieee80211_channel []);
209static int ath_getchannels(struct ath_softc *);
210static void ath_led_event(struct ath_softc *, int);
211
212static int ath_rate_setup(struct ath_softc *, u_int mode);
213static void ath_setcurmode(struct ath_softc *, enum ieee80211_phymode);
214
215static void ath_sysctlattach(struct ath_softc *);
216static int ath_raw_xmit(struct ieee80211_node *,
217 struct mbuf *, const struct ieee80211_bpf_params *);
218static void ath_bpfattach(struct ath_softc *);
219static void ath_announce(struct ath_softc *);
220
221#ifdef ATH_SUPPORT_TDMA
222static void ath_tdma_settimers(struct ath_softc *sc, u_int32_t nexttbtt,
223 u_int32_t bintval);
224static void ath_tdma_bintvalsetup(struct ath_softc *sc,
225 const struct ieee80211_tdma_state *tdma);
226static void ath_tdma_config(struct ath_softc *sc, struct ieee80211vap *vap);
227static void ath_tdma_update(struct ieee80211_node *ni,
228 const struct ieee80211_tdma_param *tdma);
229static void ath_tdma_beacon_send(struct ath_softc *sc,
230 struct ieee80211vap *vap);
231
232static __inline void
233ath_hal_setcca(struct ath_hal *ah, int ena)
234{
235 /*
236 * NB: fill me in; this is not provided by default because disabling
237 * CCA in most locales violates regulatory.
238 */
239}
240
241static __inline int
242ath_hal_getcca(struct ath_hal *ah)
243{
244 u_int32_t diag;
245 if (ath_hal_getcapability(ah, HAL_CAP_DIAG, 0, &diag) != HAL_OK)
246 return 1;
247 return ((diag & 0x500000) == 0);
248}
249
250#define TDMA_EP_MULTIPLIER (1<<10) /* pow2 to optimize out * and / */
251#define TDMA_LPF_LEN 6
252#define TDMA_DUMMY_MARKER 0x127
253#define TDMA_EP_MUL(x, mul) ((x) * (mul))
254#define TDMA_IN(x) (TDMA_EP_MUL((x), TDMA_EP_MULTIPLIER))
255#define TDMA_LPF(x, y, len) \
256 ((x != TDMA_DUMMY_MARKER) ? (((x) * ((len)-1) + (y)) / (len)) : (y))
257#define TDMA_SAMPLE(x, y) do { \
258 x = TDMA_LPF((x), TDMA_IN(y), TDMA_LPF_LEN); \
259} while (0)
260#define TDMA_EP_RND(x,mul) \
261 ((((x)%(mul)) >= ((mul)/2)) ? ((x) + ((mul) - 1)) / (mul) : (x)/(mul))
262#define TDMA_AVG(x) TDMA_EP_RND(x, TDMA_EP_MULTIPLIER)
263#endif /* ATH_SUPPORT_TDMA */
264
265SYSCTL_DECL(_hw_ath);
266
267/* XXX validate sysctl values */
268static int ath_longcalinterval = 30; /* long cals every 30 secs */
269SYSCTL_INT(_hw_ath, OID_AUTO, longcal, CTLFLAG_RW, &ath_longcalinterval,
270 0, "long chip calibration interval (secs)");
271static int ath_shortcalinterval = 100; /* short cals every 100 ms */
272SYSCTL_INT(_hw_ath, OID_AUTO, shortcal, CTLFLAG_RW, &ath_shortcalinterval,
273 0, "short chip calibration interval (msecs)");
274static int ath_resetcalinterval = 20*60; /* reset cal state 20 mins */
275SYSCTL_INT(_hw_ath, OID_AUTO, resetcal, CTLFLAG_RW, &ath_resetcalinterval,
276 0, "reset chip calibration results (secs)");
277
278static int ath_rxbuf = ATH_RXBUF; /* # rx buffers to allocate */
279SYSCTL_INT(_hw_ath, OID_AUTO, rxbuf, CTLFLAG_RW, &ath_rxbuf,
280 0, "rx buffers allocated");
281TUNABLE_INT("hw.ath.rxbuf", &ath_rxbuf);
282static int ath_txbuf = ATH_TXBUF; /* # tx buffers to allocate */
283SYSCTL_INT(_hw_ath, OID_AUTO, txbuf, CTLFLAG_RW, &ath_txbuf,
284 0, "tx buffers allocated");
285TUNABLE_INT("hw.ath.txbuf", &ath_txbuf);
286
287static int ath_bstuck_threshold = 4; /* max missed beacons */
288SYSCTL_INT(_hw_ath, OID_AUTO, bstuck, CTLFLAG_RW, &ath_bstuck_threshold,
289 0, "max missed beacon xmits before chip reset");
290
291#ifdef ATH_DEBUG
292enum {
293 ATH_DEBUG_XMIT = 0x00000001, /* basic xmit operation */
294 ATH_DEBUG_XMIT_DESC = 0x00000002, /* xmit descriptors */
295 ATH_DEBUG_RECV = 0x00000004, /* basic recv operation */
296 ATH_DEBUG_RECV_DESC = 0x00000008, /* recv descriptors */
297 ATH_DEBUG_RATE = 0x00000010, /* rate control */
298 ATH_DEBUG_RESET = 0x00000020, /* reset processing */
299 ATH_DEBUG_MODE = 0x00000040, /* mode init/setup */
300 ATH_DEBUG_BEACON = 0x00000080, /* beacon handling */
301 ATH_DEBUG_WATCHDOG = 0x00000100, /* watchdog timeout */
302 ATH_DEBUG_INTR = 0x00001000, /* ISR */
303 ATH_DEBUG_TX_PROC = 0x00002000, /* tx ISR proc */
304 ATH_DEBUG_RX_PROC = 0x00004000, /* rx ISR proc */
305 ATH_DEBUG_BEACON_PROC = 0x00008000, /* beacon ISR proc */
306 ATH_DEBUG_CALIBRATE = 0x00010000, /* periodic calibration */
307 ATH_DEBUG_KEYCACHE = 0x00020000, /* key cache management */
308 ATH_DEBUG_STATE = 0x00040000, /* 802.11 state transitions */
309 ATH_DEBUG_NODE = 0x00080000, /* node management */
310 ATH_DEBUG_LED = 0x00100000, /* led management */
311 ATH_DEBUG_FF = 0x00200000, /* fast frames */
312 ATH_DEBUG_DFS = 0x00400000, /* DFS processing */
313 ATH_DEBUG_TDMA = 0x00800000, /* TDMA processing */
314 ATH_DEBUG_TDMA_TIMER = 0x01000000, /* TDMA timer processing */
315 ATH_DEBUG_REGDOMAIN = 0x02000000, /* regulatory processing */
316 ATH_DEBUG_FATAL = 0x80000000, /* fatal errors */
317 ATH_DEBUG_ANY = 0xffffffff
318};
319static int ath_debug = 0;
320SYSCTL_INT(_hw_ath, OID_AUTO, debug, CTLFLAG_RW, &ath_debug,
321 0, "control debugging printfs");
322TUNABLE_INT("hw.ath.debug", &ath_debug);
323
324#define IFF_DUMPPKTS(sc, m) \
325 ((sc->sc_debug & (m)) || \
326 (sc->sc_ifp->if_flags & (IFF_DEBUG|IFF_LINK2)) == (IFF_DEBUG|IFF_LINK2))
327#define DPRINTF(sc, m, fmt, ...) do { \
328 if (sc->sc_debug & (m)) \
329 printf(fmt, __VA_ARGS__); \
330} while (0)
331#define KEYPRINTF(sc, ix, hk, mac) do { \
332 if (sc->sc_debug & ATH_DEBUG_KEYCACHE) \
333 ath_keyprint(sc, __func__, ix, hk, mac); \
334} while (0)
335static void ath_printrxbuf(struct ath_softc *, const struct ath_buf *bf,
336 u_int ix, int);
337static void ath_printtxbuf(struct ath_softc *, const struct ath_buf *bf,
338 u_int qnum, u_int ix, int done);
339#else
340#define IFF_DUMPPKTS(sc, m) \
341 ((sc->sc_ifp->if_flags & (IFF_DEBUG|IFF_LINK2)) == (IFF_DEBUG|IFF_LINK2))
342#define DPRINTF(sc, m, fmt, ...) do { \
343 (void) sc; \
344} while (0)
345#define KEYPRINTF(sc, k, ix, mac) do { \
346 (void) sc; \
347} while (0)
348#endif
349
350MALLOC_DEFINE(M_ATHDEV, "athdev", "ath driver dma buffers");
351
352int
353ath_attach(u_int16_t devid, struct ath_softc *sc)
354{
355 struct ifnet *ifp;
356 struct ieee80211com *ic;
357 struct ath_hal *ah = NULL;
358 HAL_STATUS status;
359 int error = 0, i;
360 u_int wmodes;
361
362 DPRINTF(sc, ATH_DEBUG_ANY, "%s: devid 0x%x\n", __func__, devid);
363
364 ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211);
365 if (ifp == NULL) {
366 device_printf(sc->sc_dev, "can not if_alloc()\n");
367 error = ENOSPC;
368 goto bad;
369 }
370 ic = ifp->if_l2com;
371
372 /* set these up early for if_printf use */
373 if_initname(ifp, device_get_name(sc->sc_dev),
374 device_get_unit(sc->sc_dev));
375
376 ah = ath_hal_attach(devid, sc, sc->sc_st, sc->sc_sh, &status);
377 if (ah == NULL) {
378 if_printf(ifp, "unable to attach hardware; HAL status %u\n",
379 status);
380 error = ENXIO;
381 goto bad;
382 }
383 if (ah->ah_abi != HAL_ABI_VERSION) {
384 if_printf(ifp, "HAL ABI mismatch detected "
385 "(HAL:0x%x != driver:0x%x)\n",
386 ah->ah_abi, HAL_ABI_VERSION);
387 error = ENXIO;
388 goto bad;
389 }
390 sc->sc_ah = ah;
391 sc->sc_invalid = 0; /* ready to go, enable interrupt handling */
392#ifdef ATH_DEBUG
393 sc->sc_debug = ath_debug;
394#endif
395
396 /*
397 * Check if the MAC has multi-rate retry support.
398 * We do this by trying to setup a fake extended
399 * descriptor. MAC's that don't have support will
400 * return false w/o doing anything. MAC's that do
401 * support it will return true w/o doing anything.
402 */
403 sc->sc_mrretry = ath_hal_setupxtxdesc(ah, NULL, 0,0, 0,0, 0,0);
404
405 /*
406 * Check if the device has hardware counters for PHY
407 * errors. If so we need to enable the MIB interrupt
408 * so we can act on stat triggers.
409 */
410 if (ath_hal_hwphycounters(ah))
411 sc->sc_needmib = 1;
412
413 /*
414 * Get the hardware key cache size.
415 */
416 sc->sc_keymax = ath_hal_keycachesize(ah);
417 if (sc->sc_keymax > ATH_KEYMAX) {
418 if_printf(ifp, "Warning, using only %u of %u key cache slots\n",
419 ATH_KEYMAX, sc->sc_keymax);
420 sc->sc_keymax = ATH_KEYMAX;
421 }
422 /*
423 * Reset the key cache since some parts do not
424 * reset the contents on initial power up.
425 */
426 for (i = 0; i < sc->sc_keymax; i++)
427 ath_hal_keyreset(ah, i);
428
429 /*
430 * Collect the default channel list.
431 */
432 error = ath_getchannels(sc);
433 if (error != 0)
434 goto bad;
435
436 /*
437 * Setup rate tables for all potential media types.
438 */
439 ath_rate_setup(sc, IEEE80211_MODE_11A);
440 ath_rate_setup(sc, IEEE80211_MODE_11B);
441 ath_rate_setup(sc, IEEE80211_MODE_11G);
442 ath_rate_setup(sc, IEEE80211_MODE_TURBO_A);
443 ath_rate_setup(sc, IEEE80211_MODE_TURBO_G);
444 ath_rate_setup(sc, IEEE80211_MODE_STURBO_A);
445 ath_rate_setup(sc, IEEE80211_MODE_11NA);
446 ath_rate_setup(sc, IEEE80211_MODE_11NG);
447 ath_rate_setup(sc, IEEE80211_MODE_HALF);
448 ath_rate_setup(sc, IEEE80211_MODE_QUARTER);
449
450 /* NB: setup here so ath_rate_update is happy */
451 ath_setcurmode(sc, IEEE80211_MODE_11A);
452
453 /*
454 * Allocate tx+rx descriptors and populate the lists.
455 */
456 error = ath_desc_alloc(sc);
457 if (error != 0) {
458 if_printf(ifp, "failed to allocate descriptors: %d\n", error);
459 goto bad;
460 }
461 callout_init(&sc->sc_cal_ch, CALLOUT_MPSAFE);
462
463 ATH_TXBUF_LOCK_INIT(sc);
464
465 sc->sc_tq = taskqueue_create("ath_taskq", M_NOWAIT,
466 taskqueue_thread_enqueue, &sc->sc_tq);
467 taskqueue_start_threads(&sc->sc_tq, 1, PI_NET,
468 "%s taskq", ifp->if_xname);
469
470 TASK_INIT(&sc->sc_rxtask, 0, ath_rx_proc, sc);
471 TASK_INIT(&sc->sc_bmisstask, 0, ath_bmiss_proc, sc);
472 TASK_INIT(&sc->sc_bstucktask,0, ath_bstuck_proc, sc);
473
474 /*
475 * Allocate hardware transmit queues: one queue for
476 * beacon frames and one data queue for each QoS
477 * priority. Note that the hal handles reseting
478 * these queues at the needed time.
479 *
480 * XXX PS-Poll
481 */
482 sc->sc_bhalq = ath_beaconq_setup(ah);
483 if (sc->sc_bhalq == (u_int) -1) {
484 if_printf(ifp, "unable to setup a beacon xmit queue!\n");
485 error = EIO;
486 goto bad2;
487 }
488 sc->sc_cabq = ath_txq_setup(sc, HAL_TX_QUEUE_CAB, 0);
489 if (sc->sc_cabq == NULL) {
490 if_printf(ifp, "unable to setup CAB xmit queue!\n");
491 error = EIO;
492 goto bad2;
493 }
494 /* NB: insure BK queue is the lowest priority h/w queue */
495 if (!ath_tx_setup(sc, WME_AC_BK, HAL_WME_AC_BK)) {
496 if_printf(ifp, "unable to setup xmit queue for %s traffic!\n",
497 ieee80211_wme_acnames[WME_AC_BK]);
498 error = EIO;
499 goto bad2;
500 }
501 if (!ath_tx_setup(sc, WME_AC_BE, HAL_WME_AC_BE) ||
502 !ath_tx_setup(sc, WME_AC_VI, HAL_WME_AC_VI) ||
503 !ath_tx_setup(sc, WME_AC_VO, HAL_WME_AC_VO)) {
504 /*
505 * Not enough hardware tx queues to properly do WME;
506 * just punt and assign them all to the same h/w queue.
507 * We could do a better job of this if, for example,
508 * we allocate queues when we switch from station to
509 * AP mode.
510 */
511 if (sc->sc_ac2q[WME_AC_VI] != NULL)
512 ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_VI]);
513 if (sc->sc_ac2q[WME_AC_BE] != NULL)
514 ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_BE]);
515 sc->sc_ac2q[WME_AC_BE] = sc->sc_ac2q[WME_AC_BK];
516 sc->sc_ac2q[WME_AC_VI] = sc->sc_ac2q[WME_AC_BK];
517 sc->sc_ac2q[WME_AC_VO] = sc->sc_ac2q[WME_AC_BK];
518 }
519
520 /*
521 * Special case certain configurations. Note the
522 * CAB queue is handled by these specially so don't
523 * include them when checking the txq setup mask.
524 */
525 switch (sc->sc_txqsetup &~ (1<<sc->sc_cabq->axq_qnum)) {
526 case 0x01:
527 TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0, sc);
528 break;
529 case 0x0f:
530 TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0123, sc);
531 break;
532 default:
533 TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc, sc);
534 break;
535 }
536
537 /*
538 * Setup rate control. Some rate control modules
539 * call back to change the anntena state so expose
540 * the necessary entry points.
541 * XXX maybe belongs in struct ath_ratectrl?
542 */
543 sc->sc_setdefantenna = ath_setdefantenna;
544 sc->sc_rc = ath_rate_attach(sc);
545 if (sc->sc_rc == NULL) {
546 error = EIO;
547 goto bad2;
548 }
549
550 sc->sc_blinking = 0;
551 sc->sc_ledstate = 1;
552 sc->sc_ledon = 0; /* low true */
553 sc->sc_ledidle = (2700*hz)/1000; /* 2.7sec */
554 callout_init(&sc->sc_ledtimer, CALLOUT_MPSAFE);
555 /*
556 * Auto-enable soft led processing for IBM cards and for
557 * 5211 minipci cards. Users can also manually enable/disable
558 * support with a sysctl.
559 */
560 sc->sc_softled = (devid == AR5212_DEVID_IBM || devid == AR5211_DEVID);
561 if (sc->sc_softled) {
562 ath_hal_gpioCfgOutput(ah, sc->sc_ledpin);
563 ath_hal_gpioset(ah, sc->sc_ledpin, !sc->sc_ledon);
564 }
565
566 ifp->if_softc = sc;
567 ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST;
568 ifp->if_start = ath_start;
569 ifp->if_watchdog = ath_watchdog;
570 ifp->if_ioctl = ath_ioctl;
571 ifp->if_init = ath_init;
572 IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN);
573 ifp->if_snd.ifq_drv_maxlen = IFQ_MAXLEN;
574 IFQ_SET_READY(&ifp->if_snd);
575
576 ic->ic_ifp = ifp;
577 /* XXX not right but it's not used anywhere important */
578 ic->ic_phytype = IEEE80211_T_OFDM;
579 ic->ic_opmode = IEEE80211_M_STA;
580 ic->ic_caps =
581 IEEE80211_C_STA /* station mode */
582 | IEEE80211_C_IBSS /* ibss, nee adhoc, mode */
583 | IEEE80211_C_HOSTAP /* hostap mode */
584 | IEEE80211_C_MONITOR /* monitor mode */
585 | IEEE80211_C_AHDEMO /* adhoc demo mode */
586 | IEEE80211_C_WDS /* 4-address traffic works */
587 | IEEE80211_C_SHPREAMBLE /* short preamble supported */
588 | IEEE80211_C_SHSLOT /* short slot time supported */
589 | IEEE80211_C_WPA /* capable of WPA1+WPA2 */
590 | IEEE80211_C_BGSCAN /* capable of bg scanning */
591 | IEEE80211_C_TXFRAG /* handle tx frags */
592 ;
593 /*
594 * Query the hal to figure out h/w crypto support.
595 */
596 if (ath_hal_ciphersupported(ah, HAL_CIPHER_WEP))
597 ic->ic_cryptocaps |= IEEE80211_CRYPTO_WEP;
598 if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_OCB))
599 ic->ic_cryptocaps |= IEEE80211_CRYPTO_AES_OCB;
600 if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_CCM))
601 ic->ic_cryptocaps |= IEEE80211_CRYPTO_AES_CCM;
602 if (ath_hal_ciphersupported(ah, HAL_CIPHER_CKIP))
603 ic->ic_cryptocaps |= IEEE80211_CRYPTO_CKIP;
604 if (ath_hal_ciphersupported(ah, HAL_CIPHER_TKIP)) {
605 ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIP;
606 /*
607 * Check if h/w does the MIC and/or whether the
608 * separate key cache entries are required to
609 * handle both tx+rx MIC keys.
610 */
611 if (ath_hal_ciphersupported(ah, HAL_CIPHER_MIC))
612 ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIPMIC;
613 /*
614 * If the h/w supports storing tx+rx MIC keys
615 * in one cache slot automatically enable use.
616 */
617 if (ath_hal_hastkipsplit(ah) ||
618 !ath_hal_settkipsplit(ah, AH_FALSE))
619 sc->sc_splitmic = 1;
620 /*
621 * If the h/w can do TKIP MIC together with WME then
622 * we use it; otherwise we force the MIC to be done
623 * in software by the net80211 layer.
624 */
625 if (ath_hal_haswmetkipmic(ah))
626 sc->sc_wmetkipmic = 1;
627 }
628 sc->sc_hasclrkey = ath_hal_ciphersupported(ah, HAL_CIPHER_CLR);
629 sc->sc_mcastkey = ath_hal_getmcastkeysearch(ah);
630 /*
631 * Mark key cache slots associated with global keys
632 * as in use. If we knew TKIP was not to be used we
633 * could leave the +32, +64, and +32+64 slots free.
634 */
635 for (i = 0; i < IEEE80211_WEP_NKID; i++) {
636 setbit(sc->sc_keymap, i);
637 setbit(sc->sc_keymap, i+64);
638 if (sc->sc_splitmic) {
639 setbit(sc->sc_keymap, i+32);
640 setbit(sc->sc_keymap, i+32+64);
641 }
642 }
643 /*
644 * TPC support can be done either with a global cap or
645 * per-packet support. The latter is not available on
646 * all parts. We're a bit pedantic here as all parts
647 * support a global cap.
648 */
649 if (ath_hal_hastpc(ah) || ath_hal_hastxpowlimit(ah))
650 ic->ic_caps |= IEEE80211_C_TXPMGT;
651
652 /*
653 * Mark WME capability only if we have sufficient
654 * hardware queues to do proper priority scheduling.
655 */
656 if (sc->sc_ac2q[WME_AC_BE] != sc->sc_ac2q[WME_AC_BK])
657 ic->ic_caps |= IEEE80211_C_WME;
658 /*
659 * Check for misc other capabilities.
660 */
661 if (ath_hal_hasbursting(ah))
662 ic->ic_caps |= IEEE80211_C_BURST;
663 sc->sc_hasbmask = ath_hal_hasbssidmask(ah);
664 sc->sc_hastsfadd = ath_hal_hastsfadjust(ah);
665 if (ath_hal_hasfastframes(ah))
666 ic->ic_caps |= IEEE80211_C_FF;
667 wmodes = ath_hal_getwirelessmodes(ah);
668 if (wmodes & (HAL_MODE_108G|HAL_MODE_TURBO))
669 ic->ic_caps |= IEEE80211_C_TURBOP;
670#ifdef ATH_SUPPORT_TDMA
671 if (ath_hal_macversion(ah) > 0x78) {
672 ic->ic_caps |= IEEE80211_C_TDMA; /* capable of TDMA */
673 ic->ic_tdma_update = ath_tdma_update;
674 }
675#endif
676 /*
677 * Indicate we need the 802.11 header padded to a
678 * 32-bit boundary for 4-address and QoS frames.
679 */
680 ic->ic_flags |= IEEE80211_F_DATAPAD;
681
682 /*
683 * Query the hal about antenna support.
684 */
685 sc->sc_defant = ath_hal_getdefantenna(ah);
686
687 /*
688 * Not all chips have the VEOL support we want to
689 * use with IBSS beacons; check here for it.
690 */
691 sc->sc_hasveol = ath_hal_hasveol(ah);
692
693 /* get mac address from hardware */
694 ath_hal_getmac(ah, ic->ic_myaddr);
695 if (sc->sc_hasbmask)
696 ath_hal_getbssidmask(ah, sc->sc_hwbssidmask);
697
698 /* NB: used to size node table key mapping array */
699 ic->ic_max_keyix = sc->sc_keymax;
700 /* call MI attach routine. */
701 ieee80211_ifattach(ic);
702 ic->ic_setregdomain = ath_setregdomain;
703 ic->ic_getradiocaps = ath_getradiocaps;
704 sc->sc_opmode = HAL_M_STA;
705
706 /* override default methods */
707 ic->ic_newassoc = ath_newassoc;
708 ic->ic_updateslot = ath_updateslot;
709 ic->ic_wme.wme_update = ath_wme_update;
710 ic->ic_vap_create = ath_vap_create;
711 ic->ic_vap_delete = ath_vap_delete;
712 ic->ic_raw_xmit = ath_raw_xmit;
713 ic->ic_update_mcast = ath_update_mcast;
714 ic->ic_update_promisc = ath_update_promisc;
715 ic->ic_node_alloc = ath_node_alloc;
716 sc->sc_node_free = ic->ic_node_free;
717 ic->ic_node_free = ath_node_free;
718 ic->ic_node_getsignal = ath_node_getsignal;
719 ic->ic_scan_start = ath_scan_start;
720 ic->ic_scan_end = ath_scan_end;
721 ic->ic_set_channel = ath_set_channel;
722
723 ath_bpfattach(sc);
724 /*
725 * Setup dynamic sysctl's now that country code and
726 * regdomain are available from the hal.
727 */
728 ath_sysctlattach(sc);
729
730 if (bootverbose)
731 ieee80211_announce(ic);
732 ath_announce(sc);
733 return 0;
734bad2:
735 ath_tx_cleanup(sc);
736 ath_desc_free(sc);
737bad:
738 if (ah)
739 ath_hal_detach(ah);
740 if (ifp != NULL)
741 if_free(ifp);
742 sc->sc_invalid = 1;
743 return error;
744}
745
746int
747ath_detach(struct ath_softc *sc)
748{
749 struct ifnet *ifp = sc->sc_ifp;
750
751 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
752 __func__, ifp->if_flags);
753
754 /*
755 * NB: the order of these is important:
756 * o stop the chip so no more interrupts will fire
757 * o call the 802.11 layer before detaching the hal to
758 * insure callbacks into the driver to delete global
759 * key cache entries can be handled
760 * o free the taskqueue which drains any pending tasks
761 * o reclaim the bpf tap now that we know nothing will use
762 * it (e.g. rx processing from the task q thread)
763 * o reclaim the tx queue data structures after calling
764 * the 802.11 layer as we'll get called back to reclaim
765 * node state and potentially want to use them
766 * o to cleanup the tx queues the hal is called, so detach
767 * it last
768 * Other than that, it's straightforward...
769 */
770 ath_stop(ifp);
771 ieee80211_ifdetach(ifp->if_l2com);
772 taskqueue_free(sc->sc_tq);
773 bpfdetach(ifp);
774#ifdef ATH_TX99_DIAG
775 if (sc->sc_tx99 != NULL)
776 sc->sc_tx99->detach(sc->sc_tx99);
777#endif
778 ath_rate_detach(sc->sc_rc);
779 ath_desc_free(sc);
780 ath_tx_cleanup(sc);
781 ath_hal_detach(sc->sc_ah); /* NB: sets chip in full sleep */
782 if_free(ifp);
783
784 return 0;
785}
786
787/*
788 * MAC address handling for multiple BSS on the same radio.
789 * The first vap uses the MAC address from the EEPROM. For
790 * subsequent vap's we set the U/L bit (bit 1) in the MAC
791 * address and use the next six bits as an index.
792 */
793static void
794assign_address(struct ath_softc *sc, uint8_t mac[IEEE80211_ADDR_LEN], int clone)
795{
796 int i;
797
798 if (clone && sc->sc_hasbmask) {
799 /* NB: we only do this if h/w supports multiple bssid */
800 for (i = 0; i < 8; i++)
801 if ((sc->sc_bssidmask & (1<<i)) == 0)
802 break;
803 if (i != 0)
804 mac[0] |= (i << 2)|0x2;
805 } else
806 i = 0;
807 sc->sc_bssidmask |= 1<<i;
808 sc->sc_hwbssidmask[0] &= ~mac[0];
809 if (i == 0)
810 sc->sc_nbssid0++;
811}
812
813static void
814reclaim_address(struct ath_softc *sc, const uint8_t mac[IEEE80211_ADDR_LEN])
815{
816 int i = mac[0] >> 2;
817 uint8_t mask;
818
819 if (i != 0 || --sc->sc_nbssid0 == 0) {
820 sc->sc_bssidmask &= ~(1<<i);
821 /* recalculate bssid mask from remaining addresses */
822 mask = 0xff;
823 for (i = 1; i < 8; i++)
824 if (sc->sc_bssidmask & (1<<i))
825 mask &= ~((i<<2)|0x2);
826 sc->sc_hwbssidmask[0] |= mask;
827 }
828}
829
830/*
831 * Assign a beacon xmit slot. We try to space out
832 * assignments so when beacons are staggered the
833 * traffic coming out of the cab q has maximal time
834 * to go out before the next beacon is scheduled.
835 */
836static int
837assign_bslot(struct ath_softc *sc)
838{
839 u_int slot, free;
840
841 free = 0;
842 for (slot = 0; slot < ATH_BCBUF; slot++)
843 if (sc->sc_bslot[slot] == NULL) {
844 if (sc->sc_bslot[(slot+1)%ATH_BCBUF] == NULL &&
845 sc->sc_bslot[(slot-1)%ATH_BCBUF] == NULL)
846 return slot;
847 free = slot;
848 /* NB: keep looking for a double slot */
849 }
850 return free;
851}
852
853static struct ieee80211vap *
854ath_vap_create(struct ieee80211com *ic,
855 const char name[IFNAMSIZ], int unit, int opmode, int flags,
856 const uint8_t bssid[IEEE80211_ADDR_LEN],
857 const uint8_t mac0[IEEE80211_ADDR_LEN])
858{
859 struct ath_softc *sc = ic->ic_ifp->if_softc;
860 struct ath_vap *avp;
861 struct ieee80211vap *vap;
862 uint8_t mac[IEEE80211_ADDR_LEN];
863 int ic_opmode, needbeacon, error;
864
865 avp = (struct ath_vap *) malloc(sizeof(struct ath_vap),
866 M_80211_VAP, M_WAITOK | M_ZERO);
867 needbeacon = 0;
868 IEEE80211_ADDR_COPY(mac, mac0);
869
870 ATH_LOCK(sc);
871 switch (opmode) {
872 case IEEE80211_M_STA:
873 if (sc->sc_nstavaps != 0) { /* XXX only 1 sta for now */
874 device_printf(sc->sc_dev, "only 1 sta vap supported\n");
875 goto bad;
876 }
877 if (sc->sc_nvaps) {
878 /*
879 * When there are multiple vaps we must fall
880 * back to s/w beacon miss handling.
881 */
882 flags |= IEEE80211_CLONE_NOBEACONS;
883 }
884 if (flags & IEEE80211_CLONE_NOBEACONS)
885 ic_opmode = IEEE80211_M_HOSTAP;
886 else
887 ic_opmode = opmode;
888 break;
889 case IEEE80211_M_IBSS:
890 if (sc->sc_nvaps != 0) { /* XXX only 1 for now */
891 device_printf(sc->sc_dev,
892 "only 1 ibss vap supported\n");
893 goto bad;
894 }
895 ic_opmode = opmode;
896 needbeacon = 1;
897 break;
898 case IEEE80211_M_AHDEMO:
899#ifdef ATH_SUPPORT_TDMA
900 if (flags & IEEE80211_CLONE_TDMA) {
901 needbeacon = 1;
902 flags |= IEEE80211_CLONE_NOBEACONS;
903 }
904 /* fall thru... */
905#endif
906 case IEEE80211_M_MONITOR:
907 if (sc->sc_nvaps != 0 && ic->ic_opmode != opmode) {
908 /* XXX not right for monitor mode */
909 ic_opmode = ic->ic_opmode;
910 } else
911 ic_opmode = opmode;
912 break;
913 case IEEE80211_M_HOSTAP:
914 needbeacon = 1;
915 /* fall thru... */
916 case IEEE80211_M_WDS:
917 if (sc->sc_nvaps && ic->ic_opmode == IEEE80211_M_STA) {
918 device_printf(sc->sc_dev,
919 "wds not supported in sta mode\n");
920 goto bad;
921 }
922 if (opmode == IEEE80211_M_WDS) {
923 /*
924 * Silently remove any request for a unique
925 * bssid; WDS vap's always share the local
926 * mac address.
927 */
928 flags &= ~IEEE80211_CLONE_BSSID;
929 }
930 ic_opmode = IEEE80211_M_HOSTAP;
931 break;
932 default:
933 device_printf(sc->sc_dev, "unknown opmode %d\n", opmode);
934 goto bad;
935 }
936 /*
937 * Check that a beacon buffer is available; the code below assumes it.
938 */
939 if (needbeacon & STAILQ_EMPTY(&sc->sc_bbuf)) {
940 device_printf(sc->sc_dev, "no beacon buffer available\n");
941 goto bad;
942 }
943
944 /* STA, AHDEMO? */
945 if (opmode == IEEE80211_M_HOSTAP) {
946 assign_address(sc, mac, flags & IEEE80211_CLONE_BSSID);
947 ath_hal_setbssidmask(sc->sc_ah, sc->sc_hwbssidmask);
948 }
949
950 vap = &avp->av_vap;
951 /* XXX can't hold mutex across if_alloc */
952 ATH_UNLOCK(sc);
953 error = ieee80211_vap_setup(ic, vap, name, unit, opmode, flags,
954 bssid, mac);
955 ATH_LOCK(sc);
956 if (error != 0) {
957 device_printf(sc->sc_dev, "%s: error %d creating vap\n",
958 __func__, error);
959 goto bad2;
960 }
961
962 /* h/w crypto support */
963 vap->iv_key_alloc = ath_key_alloc;
964 vap->iv_key_delete = ath_key_delete;
965 vap->iv_key_set = ath_key_set;
966 vap->iv_key_update_begin = ath_key_update_begin;
967 vap->iv_key_update_end = ath_key_update_end;
968
969 /* override various methods */
970 avp->av_recv_mgmt = vap->iv_recv_mgmt;
971 vap->iv_recv_mgmt = ath_recv_mgmt;
972 vap->iv_reset = ath_reset_vap;
973 vap->iv_update_beacon = ath_beacon_update;
974 avp->av_newstate = vap->iv_newstate;
975 vap->iv_newstate = ath_newstate;
976 avp->av_bmiss = vap->iv_bmiss;
977 vap->iv_bmiss = ath_bmiss_vap;
978
979 avp->av_bslot = -1;
980 if (needbeacon) {
981 /*
982 * Allocate beacon state and setup the q for buffered
983 * multicast frames. We know a beacon buffer is
984 * available because we checked above.
985 */
986 avp->av_bcbuf = STAILQ_FIRST(&sc->sc_bbuf);
987 STAILQ_REMOVE_HEAD(&sc->sc_bbuf, bf_list);
988 if (opmode != IEEE80211_M_IBSS || !sc->sc_hasveol) {
989 /*
990 * Assign the vap to a beacon xmit slot. As above
991 * this cannot fail to find a free one.
992 */
993 avp->av_bslot = assign_bslot(sc);
994 KASSERT(sc->sc_bslot[avp->av_bslot] == NULL,
995 ("beacon slot %u not empty", avp->av_bslot));
996 sc->sc_bslot[avp->av_bslot] = vap;
997 sc->sc_nbcnvaps++;
998 }
999 if (sc->sc_hastsfadd && sc->sc_nbcnvaps > 0) {
1000 /*
1001 * Multple vaps are to transmit beacons and we
1002 * have h/w support for TSF adjusting; enable
1003 * use of staggered beacons.
1004 */
1005 sc->sc_stagbeacons = 1;
1006 }
1007 ath_txq_init(sc, &avp->av_mcastq, ATH_TXQ_SWQ);
1008 }
1009
1010 ic->ic_opmode = ic_opmode;
1011 if (opmode != IEEE80211_M_WDS) {
1012 sc->sc_nvaps++;
1013 if (opmode == IEEE80211_M_STA)
1014 sc->sc_nstavaps++;
1015 }
1016 switch (ic_opmode) {
1017 case IEEE80211_M_IBSS:
1018 sc->sc_opmode = HAL_M_IBSS;
1019 break;
1020 case IEEE80211_M_STA:
1021 sc->sc_opmode = HAL_M_STA;
1022 break;
1023 case IEEE80211_M_AHDEMO:
1024#ifdef ATH_SUPPORT_TDMA
1025 if (vap->iv_caps & IEEE80211_C_TDMA) {
1026 sc->sc_tdma = 1;
1027 /* NB: disable tsf adjust */
1028 sc->sc_stagbeacons = 0;
1029 }
1030 /*
1031 * NB: adhoc demo mode is a pseudo mode; to the hal it's
1032 * just ap mode.
1033 */
1034 /* fall thru... */
1035#endif
1036 case IEEE80211_M_HOSTAP:
1037 sc->sc_opmode = HAL_M_HOSTAP;
1038 break;
1039 case IEEE80211_M_MONITOR:
1040 sc->sc_opmode = HAL_M_MONITOR;
1041 break;
1042 default:
1043 /* XXX should not happen */
1044 break;
1045 }
1046 if (sc->sc_hastsfadd) {
1047 /*
1048 * Configure whether or not TSF adjust should be done.
1049 */
1050 ath_hal_settsfadjust(sc->sc_ah, sc->sc_stagbeacons);
1051 }
1052 if (flags & IEEE80211_CLONE_NOBEACONS) {
1053 /*
1054 * Enable s/w beacon miss handling.
1055 */
1056 sc->sc_swbmiss = 1;
1057 }
1058 ATH_UNLOCK(sc);
1059
1060 /* complete setup */
1061 ieee80211_vap_attach(vap, ath_media_change, ieee80211_media_status);
1062 return vap;
1063bad2:
1064 reclaim_address(sc, mac);
1065 ath_hal_setbssidmask(sc->sc_ah, sc->sc_hwbssidmask);
1066bad:
1067 free(avp, M_80211_VAP);
1068 ATH_UNLOCK(sc);
1069 return NULL;
1070}
1071
1072static void
1073ath_vap_delete(struct ieee80211vap *vap)
1074{
1075 struct ieee80211com *ic = vap->iv_ic;
1076 struct ifnet *ifp = ic->ic_ifp;
1077 struct ath_softc *sc = ifp->if_softc;
1078 struct ath_hal *ah = sc->sc_ah;
1079 struct ath_vap *avp = ATH_VAP(vap);
1080
1081 if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
1082 /*
1083 * Quiesce the hardware while we remove the vap. In
1084 * particular we need to reclaim all references to
1085 * the vap state by any frames pending on the tx queues.
1086 */
1087 ath_hal_intrset(ah, 0); /* disable interrupts */
1088 ath_draintxq(sc); /* stop xmit side */
1089 ath_stoprecv(sc); /* stop recv side */
1090 }
1091
1092 ieee80211_vap_detach(vap);
1093 ATH_LOCK(sc);
1094 /*
1095 * Reclaim beacon state. Note this must be done before
1096 * the vap instance is reclaimed as we may have a reference
1097 * to it in the buffer for the beacon frame.
1098 */
1099 if (avp->av_bcbuf != NULL) {
1100 if (avp->av_bslot != -1) {
1101 sc->sc_bslot[avp->av_bslot] = NULL;
1102 sc->sc_nbcnvaps--;
1103 }
1104 ath_beacon_return(sc, avp->av_bcbuf);
1105 avp->av_bcbuf = NULL;
1106 if (sc->sc_nbcnvaps == 0) {
1107 sc->sc_stagbeacons = 0;
1108 if (sc->sc_hastsfadd)
1109 ath_hal_settsfadjust(sc->sc_ah, 0);
1110 }
1111 /*
1112 * Reclaim any pending mcast frames for the vap.
1113 */
1114 ath_tx_draintxq(sc, &avp->av_mcastq);
1115 ATH_TXQ_LOCK_DESTROY(&avp->av_mcastq);
1116 }
1117 /*
1118 * Update bookkeeping.
1119 */
1120 if (vap->iv_opmode == IEEE80211_M_STA) {
1121 sc->sc_nstavaps--;
1122 if (sc->sc_nstavaps == 0 && sc->sc_swbmiss)
1123 sc->sc_swbmiss = 0;
1124 } else if (vap->iv_opmode == IEEE80211_M_HOSTAP) {
1125 reclaim_address(sc, vap->iv_myaddr);
1126 ath_hal_setbssidmask(ah, sc->sc_hwbssidmask);
1127 }
1128 if (vap->iv_opmode != IEEE80211_M_WDS)
1129 sc->sc_nvaps--;
1130#ifdef ATH_SUPPORT_TDMA
1131 /* TDMA operation ceases when the last vap is destroyed */
1132 if (sc->sc_tdma && sc->sc_nvaps == 0) {
1133 sc->sc_tdma = 0;
1134 sc->sc_swbmiss = 0;
1135 }
1136#endif
1137 ATH_UNLOCK(sc);
1138 free(avp, M_80211_VAP);
1139
1140 if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
1141 /*
1142 * Restart rx+tx machines if still running (RUNNING will
1143 * be reset if we just destroyed the last vap).
1144 */
1145 if (ath_startrecv(sc) != 0)
1146 if_printf(ifp, "%s: unable to restart recv logic\n",
1147 __func__);
1148 if (sc->sc_beacons)
1149 ath_beacon_config(sc, NULL);
1150 ath_hal_intrset(ah, sc->sc_imask);
1151 }
1152}
1153
1154void
1155ath_suspend(struct ath_softc *sc)
1156{
1157 struct ifnet *ifp = sc->sc_ifp;
1158 struct ieee80211com *ic = ifp->if_l2com;
1159
1160 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
1161 __func__, ifp->if_flags);
1162
1163 sc->sc_resume_up = (ifp->if_flags & IFF_UP) != 0;
1164 if (ic->ic_opmode == IEEE80211_M_STA)
1165 ath_stop(ifp);
1166 else
1167 ieee80211_suspend_all(ic);
1168 /*
1169 * NB: don't worry about putting the chip in low power
1170 * mode; pci will power off our socket on suspend and
1171 * cardbus detaches the device.
1172 */
1173}
1174
1175/*
1176 * Reset the key cache since some parts do not reset the
1177 * contents on resume. First we clear all entries, then
1178 * re-load keys that the 802.11 layer assumes are setup
1179 * in h/w.
1180 */
1181static void
1182ath_reset_keycache(struct ath_softc *sc)
1183{
1184 struct ifnet *ifp = sc->sc_ifp;
1185 struct ieee80211com *ic = ifp->if_l2com;
1186 struct ath_hal *ah = sc->sc_ah;
1187 int i;
1188
1189 for (i = 0; i < sc->sc_keymax; i++)
1190 ath_hal_keyreset(ah, i);
1191 ieee80211_crypto_reload_keys(ic);
1192}
1193
1194void
1195ath_resume(struct ath_softc *sc)
1196{
1197 struct ifnet *ifp = sc->sc_ifp;
1198 struct ieee80211com *ic = ifp->if_l2com;
1199 struct ath_hal *ah = sc->sc_ah;
1200 HAL_STATUS status;
1201
1202 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
1203 __func__, ifp->if_flags);
1204
1205 /*
1206 * Must reset the chip before we reload the
1207 * keycache as we were powered down on suspend.
1208 */
1209 ath_hal_reset(ah, sc->sc_opmode,
1210 sc->sc_curchan != NULL ? sc->sc_curchan : ic->ic_curchan,
1211 AH_FALSE, &status);
1212 ath_reset_keycache(sc);
1213 if (sc->sc_resume_up) {
1214 if (ic->ic_opmode == IEEE80211_M_STA) {
1215 ath_init(sc);
1216 ieee80211_beacon_miss(ic);
1217 } else
1218 ieee80211_resume_all(ic);
1219 }
1220 if (sc->sc_softled) {
1221 ath_hal_gpioCfgOutput(ah, sc->sc_ledpin);
1222 ath_hal_gpioset(ah, sc->sc_ledpin, !sc->sc_ledon);
1223 }
1224}
1225
1226void
1227ath_shutdown(struct ath_softc *sc)
1228{
1229 struct ifnet *ifp = sc->sc_ifp;
1230
1231 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
1232 __func__, ifp->if_flags);
1233
1234 ath_stop(ifp);
1235 /* NB: no point powering down chip as we're about to reboot */
1236}
1237
1238/*
1239 * Interrupt handler. Most of the actual processing is deferred.
1240 */
1241void
1242ath_intr(void *arg)
1243{
1244 struct ath_softc *sc = arg;
1245 struct ifnet *ifp = sc->sc_ifp;
1246 struct ath_hal *ah = sc->sc_ah;
1247 HAL_INT status;
1248
1249 if (sc->sc_invalid) {
1250 /*
1251 * The hardware is not ready/present, don't touch anything.
1252 * Note this can happen early on if the IRQ is shared.
1253 */
1254 DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid; ignored\n", __func__);
1255 return;
1256 }
1257 if (!ath_hal_intrpend(ah)) /* shared irq, not for us */
1258 return;
1259 if ((ifp->if_flags & IFF_UP) == 0 ||
1260 (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
1261 HAL_INT status;
1262
1263 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n",
1264 __func__, ifp->if_flags);
1265 ath_hal_getisr(ah, &status); /* clear ISR */
1266 ath_hal_intrset(ah, 0); /* disable further intr's */
1267 return;
1268 }
1269 /*
1270 * Figure out the reason(s) for the interrupt. Note
1271 * that the hal returns a pseudo-ISR that may include
1272 * bits we haven't explicitly enabled so we mask the
1273 * value to insure we only process bits we requested.
1274 */
1275 ath_hal_getisr(ah, &status); /* NB: clears ISR too */
1276 DPRINTF(sc, ATH_DEBUG_INTR, "%s: status 0x%x\n", __func__, status);
1277 status &= sc->sc_imask; /* discard unasked for bits */
1278 if (status & HAL_INT_FATAL) {
1279 sc->sc_stats.ast_hardware++;
1280 ath_hal_intrset(ah, 0); /* disable intr's until reset */
1281 ath_fatal_proc(sc, 0);
1282 } else {
1283 if (status & HAL_INT_SWBA) {
1284 /*
1285 * Software beacon alert--time to send a beacon.
1286 * Handle beacon transmission directly; deferring
1287 * this is too slow to meet timing constraints
1288 * under load.
1289 */
1290#ifdef ATH_SUPPORT_TDMA
1291 if (sc->sc_tdma) {
1292 if (sc->sc_tdmaswba == 0) {
1293 struct ieee80211com *ic = ifp->if_l2com;
1294 struct ieee80211vap *vap =
1295 TAILQ_FIRST(&ic->ic_vaps);
1296 ath_tdma_beacon_send(sc, vap);
1297 sc->sc_tdmaswba =
1298 vap->iv_tdma->tdma_bintval;
1299 } else
1300 sc->sc_tdmaswba--;
1301 } else
1302#endif
1303 ath_beacon_proc(sc, 0);
1304 }
1305 if (status & HAL_INT_RXEOL) {
1306 /*
1307 * NB: the hardware should re-read the link when
1308 * RXE bit is written, but it doesn't work at
1309 * least on older hardware revs.
1310 */
1311 sc->sc_stats.ast_rxeol++;
1312 sc->sc_rxlink = NULL;
1313 }
1314 if (status & HAL_INT_TXURN) {
1315 sc->sc_stats.ast_txurn++;
1316 /* bump tx trigger level */
1317 ath_hal_updatetxtriglevel(ah, AH_TRUE);
1318 }
1319 if (status & HAL_INT_RX)
1320 taskqueue_enqueue(sc->sc_tq, &sc->sc_rxtask);
1321 if (status & HAL_INT_TX)
1322 taskqueue_enqueue(sc->sc_tq, &sc->sc_txtask);
1323 if (status & HAL_INT_BMISS) {
1324 sc->sc_stats.ast_bmiss++;
1325 taskqueue_enqueue(sc->sc_tq, &sc->sc_bmisstask);
1326 }
1327 if (status & HAL_INT_MIB) {
1328 sc->sc_stats.ast_mib++;
1329 /*
1330 * Disable interrupts until we service the MIB
1331 * interrupt; otherwise it will continue to fire.
1332 */
1333 ath_hal_intrset(ah, 0);
1334 /*
1335 * Let the hal handle the event. We assume it will
1336 * clear whatever condition caused the interrupt.
1337 */
1338 ath_hal_mibevent(ah, &sc->sc_halstats);
1339 ath_hal_intrset(ah, sc->sc_imask);
1340 }
1341 if (status & HAL_INT_RXORN) {
1342 /* NB: hal marks HAL_INT_FATAL when RXORN is fatal */
1343 sc->sc_stats.ast_rxorn++;
1344 }
1345 }
1346}
1347
1348static void
1349ath_fatal_proc(void *arg, int pending)
1350{
1351 struct ath_softc *sc = arg;
1352 struct ifnet *ifp = sc->sc_ifp;
1353 u_int32_t *state;
1354 u_int32_t len;
1355 void *sp;
1356
1357 if_printf(ifp, "hardware error; resetting\n");
1358 /*
1359 * Fatal errors are unrecoverable. Typically these
1360 * are caused by DMA errors. Collect h/w state from
1361 * the hal so we can diagnose what's going on.
1362 */
1363 if (ath_hal_getfatalstate(sc->sc_ah, &sp, &len)) {
1364 KASSERT(len >= 6*sizeof(u_int32_t), ("len %u bytes", len));
1365 state = sp;
1366 if_printf(ifp, "0x%08x 0x%08x 0x%08x, 0x%08x 0x%08x 0x%08x\n",
1367 state[0], state[1] , state[2], state[3],
1368 state[4], state[5]);
1369 }
1370 ath_reset(ifp);
1371}
1372
1373static void
1374ath_bmiss_vap(struct ieee80211vap *vap)
1375{
1376 /*
1377 * Workaround phantom bmiss interrupts by sanity-checking
1378 * the time of our last rx'd frame. If it is within the
1379 * beacon miss interval then ignore the interrupt. If it's
1380 * truly a bmiss we'll get another interrupt soon and that'll
1381 * be dispatched up for processing. Note this applies only
1382 * for h/w beacon miss events.
1383 */
1384 if ((vap->iv_flags_ext & IEEE80211_FEXT_SWBMISS) == 0) {
1385 struct ifnet *ifp = vap->iv_ic->ic_ifp;
1386 struct ath_softc *sc = ifp->if_softc;
1387 u_int64_t lastrx = sc->sc_lastrx;
1388 u_int64_t tsf = ath_hal_gettsf64(sc->sc_ah);
1389 u_int bmisstimeout =
1390 vap->iv_bmissthreshold * vap->iv_bss->ni_intval * 1024;
1391
1392 DPRINTF(sc, ATH_DEBUG_BEACON,
1393 "%s: tsf %llu lastrx %lld (%llu) bmiss %u\n",
1394 __func__, (unsigned long long) tsf,
1395 (unsigned long long)(tsf - lastrx),
1396 (unsigned long long) lastrx, bmisstimeout);
1397
1398 if (tsf - lastrx <= bmisstimeout) {
1399 sc->sc_stats.ast_bmiss_phantom++;
1400 return;
1401 }
1402 }
1403 ATH_VAP(vap)->av_bmiss(vap);
1404}
1405
1406static int
1407ath_hal_gethangstate(struct ath_hal *ah, uint32_t mask, uint32_t *hangs)
1408{
1409 uint32_t rsize;
1410 void *sp;
1411
1412 if (!ath_hal_getdiagstate(ah, 32, &mask, sizeof(&mask), &sp, &rsize))
1413 return 0;
1414 KASSERT(rsize == sizeof(uint32_t), ("resultsize %u", rsize));
1415 *hangs = *(uint32_t *)sp;
1416 return 1;
1417}
1418
1419static void
1420ath_bmiss_proc(void *arg, int pending)
1421{
1422 struct ath_softc *sc = arg;
1423 struct ifnet *ifp = sc->sc_ifp;
1424 uint32_t hangs;
1425
1426 DPRINTF(sc, ATH_DEBUG_ANY, "%s: pending %u\n", __func__, pending);
1427
1428 if (ath_hal_gethangstate(sc->sc_ah, 0xff, &hangs) && hangs != 0) {
1429 if_printf(ifp, "bb hang detected (0x%x), reseting\n", hangs);
1430 ath_reset(ifp);
1431 } else
1432 ieee80211_beacon_miss(ifp->if_l2com);
1433}
1434
1435/*
1436 * Handle TKIP MIC setup to deal hardware that doesn't do MIC
1437 * calcs together with WME. If necessary disable the crypto
1438 * hardware and mark the 802.11 state so keys will be setup
1439 * with the MIC work done in software.
1440 */
1441static void
1442ath_settkipmic(struct ath_softc *sc)
1443{
1444 struct ifnet *ifp = sc->sc_ifp;
1445 struct ieee80211com *ic = ifp->if_l2com;
1446
1447 if ((ic->ic_cryptocaps & IEEE80211_CRYPTO_TKIP) && !sc->sc_wmetkipmic) {
1448 if (ic->ic_flags & IEEE80211_F_WME) {
1449 ath_hal_settkipmic(sc->sc_ah, AH_FALSE);
1450 ic->ic_cryptocaps &= ~IEEE80211_CRYPTO_TKIPMIC;
1451 } else {
1452 ath_hal_settkipmic(sc->sc_ah, AH_TRUE);
1453 ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIPMIC;
1454 }
1455 }
1456}
1457
1458static void
1459ath_init(void *arg)
1460{
1461 struct ath_softc *sc = (struct ath_softc *) arg;
1462 struct ifnet *ifp = sc->sc_ifp;
1463 struct ieee80211com *ic = ifp->if_l2com;
1464 struct ath_hal *ah = sc->sc_ah;
1465 HAL_STATUS status;
1466
1467 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n",
1468 __func__, ifp->if_flags);
1469
1470 ATH_LOCK(sc);
1471 /*
1472 * Stop anything previously setup. This is safe
1473 * whether this is the first time through or not.
1474 */
1475 ath_stop_locked(ifp);
1476
1477 /*
1478 * The basic interface to setting the hardware in a good
1479 * state is ``reset''. On return the hardware is known to
1480 * be powered up and with interrupts disabled. This must
1481 * be followed by initialization of the appropriate bits
1482 * and then setup of the interrupt mask.
1483 */
1484 ath_settkipmic(sc);
1485 if (!ath_hal_reset(ah, sc->sc_opmode, ic->ic_curchan, AH_FALSE, &status)) {
1486 if_printf(ifp, "unable to reset hardware; hal status %u\n",
1487 status);
1488 ATH_UNLOCK(sc);
1489 return;
1490 }
1491 ath_chan_change(sc, ic->ic_curchan);
1492
1493 /*
1494 * Likewise this is set during reset so update
1495 * state cached in the driver.
1496 */
1497 sc->sc_diversity = ath_hal_getdiversity(ah);
1498 sc->sc_lastlongcal = 0;
1499 sc->sc_resetcal = 1;
1500 sc->sc_lastcalreset = 0;
1501
1502 /*
1503 * Setup the hardware after reset: the key cache
1504 * is filled as needed and the receive engine is
1505 * set going. Frame transmit is handled entirely
1506 * in the frame output path; there's nothing to do
1507 * here except setup the interrupt mask.
1508 */
1509 if (ath_startrecv(sc) != 0) {
1510 if_printf(ifp, "unable to start recv logic\n");
1511 ATH_UNLOCK(sc);
1512 return;
1513 }
1514
1515 /*
1516 * Enable interrupts.
1517 */
1518 sc->sc_imask = HAL_INT_RX | HAL_INT_TX
1519 | HAL_INT_RXEOL | HAL_INT_RXORN
1520 | HAL_INT_FATAL | HAL_INT_GLOBAL;
1521 /*
1522 * Enable MIB interrupts when there are hardware phy counters.
1523 * Note we only do this (at the moment) for station mode.
1524 */
1525 if (sc->sc_needmib && ic->ic_opmode == IEEE80211_M_STA)
1526 sc->sc_imask |= HAL_INT_MIB;
1527
1528 ifp->if_drv_flags |= IFF_DRV_RUNNING;
1529 ath_hal_intrset(ah, sc->sc_imask);
1530
1531 ATH_UNLOCK(sc);
1532
1533#ifdef ATH_TX99_DIAG
1534 if (sc->sc_tx99 != NULL)
1535 sc->sc_tx99->start(sc->sc_tx99);
1536 else
1537#endif
1538 ieee80211_start_all(ic); /* start all vap's */
1539}
1540
1541static void
1542ath_stop_locked(struct ifnet *ifp)
1543{
1544 struct ath_softc *sc = ifp->if_softc;
1545 struct ath_hal *ah = sc->sc_ah;
1546
1547 DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid %u if_flags 0x%x\n",
1548 __func__, sc->sc_invalid, ifp->if_flags);
1549
1550 ATH_LOCK_ASSERT(sc);
1551 if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
1552 /*
1553 * Shutdown the hardware and driver:
1554 * reset 802.11 state machine
1555 * turn off timers
1556 * disable interrupts
1557 * turn off the radio
1558 * clear transmit machinery
1559 * clear receive machinery
1560 * drain and release tx queues
1561 * reclaim beacon resources
1562 * power down hardware
1563 *
1564 * Note that some of this work is not possible if the
1565 * hardware is gone (invalid).
1566 */
1567#ifdef ATH_TX99_DIAG
1568 if (sc->sc_tx99 != NULL)
1569 sc->sc_tx99->stop(sc->sc_tx99);
1570#endif
1571 ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1572 ifp->if_timer = 0;
1573 if (!sc->sc_invalid) {
1574 if (sc->sc_softled) {
1575 callout_stop(&sc->sc_ledtimer);
1576 ath_hal_gpioset(ah, sc->sc_ledpin,
1577 !sc->sc_ledon);
1578 sc->sc_blinking = 0;
1579 }
1580 ath_hal_intrset(ah, 0);
1581 }
1582 ath_draintxq(sc);
1583 if (!sc->sc_invalid) {
1584 ath_stoprecv(sc);
1585 ath_hal_phydisable(ah);
1586 } else
1587 sc->sc_rxlink = NULL;
1588 ath_beacon_free(sc); /* XXX not needed */
1589 }
1590}
1591
1592static void
1593ath_stop(struct ifnet *ifp)
1594{
1595 struct ath_softc *sc = ifp->if_softc;
1596
1597 ATH_LOCK(sc);
1598 ath_stop_locked(ifp);
1599 ATH_UNLOCK(sc);
1600}
1601
1602/*
1603 * Reset the hardware w/o losing operational state. This is
1604 * basically a more efficient way of doing ath_stop, ath_init,
1605 * followed by state transitions to the current 802.11
1606 * operational state. Used to recover from various errors and
1607 * to reset or reload hardware state.
1608 */
1609static int
1610ath_reset(struct ifnet *ifp)
1611{
1612 struct ath_softc *sc = ifp->if_softc;
1613 struct ieee80211com *ic = ifp->if_l2com;
1614 struct ath_hal *ah = sc->sc_ah;
1615 HAL_STATUS status;
1616
1617 ath_hal_intrset(ah, 0); /* disable interrupts */
1618 ath_draintxq(sc); /* stop xmit side */
1619 ath_stoprecv(sc); /* stop recv side */
1620 ath_settkipmic(sc); /* configure TKIP MIC handling */
1621 /* NB: indicate channel change so we do a full reset */
1622 if (!ath_hal_reset(ah, sc->sc_opmode, ic->ic_curchan, AH_TRUE, &status))
1623 if_printf(ifp, "%s: unable to reset hardware; hal status %u\n",
1624 __func__, status);
1625 sc->sc_diversity = ath_hal_getdiversity(ah);
1626 if (ath_startrecv(sc) != 0) /* restart recv */
1627 if_printf(ifp, "%s: unable to start recv logic\n", __func__);
1628 /*
1629 * We may be doing a reset in response to an ioctl
1630 * that changes the channel so update any state that
1631 * might change as a result.
1632 */
1633 ath_chan_change(sc, ic->ic_curchan);
1634 if (sc->sc_beacons) {
1635#ifdef ATH_SUPPORT_TDMA
1636 if (sc->sc_tdma)
1637 ath_tdma_config(sc, NULL);
1638 else
1639#endif
1640 ath_beacon_config(sc, NULL); /* restart beacons */
1641 }
1642 ath_hal_intrset(ah, sc->sc_imask);
1643
1644 ath_start(ifp); /* restart xmit */
1645 return 0;
1646}
1647
1648static int
1649ath_reset_vap(struct ieee80211vap *vap, u_long cmd)
1650{
1651 struct ieee80211com *ic = vap->iv_ic;
1652 struct ifnet *ifp = ic->ic_ifp;
1653 struct ath_softc *sc = ifp->if_softc;
1654 struct ath_hal *ah = sc->sc_ah;
1655
1656 switch (cmd) {
1657 case IEEE80211_IOC_TXPOWER:
1658 /*
1659 * If per-packet TPC is enabled, then we have nothing
1660 * to do; otherwise we need to force the global limit.
1661 * All this can happen directly; no need to reset.
1662 */
1663 if (!ath_hal_gettpc(ah))
1664 ath_hal_settxpowlimit(ah, ic->ic_txpowlimit);
1665 return 0;
1666 }
1667 return ath_reset(ifp);
1668}
1669
1670static int
1671ath_ff_always(struct ath_txq *txq, struct ath_buf *bf)
1672{
1673 return 0;
1674}
1675
1676#if 0
1677static int
1678ath_ff_ageflushtestdone(struct ath_txq *txq, struct ath_buf *bf)
1679{
1680 return (txq->axq_curage - bf->bf_age) < ATH_FF_STAGEMAX;
1681}
1682#endif
1683
1684/*
1685 * Flush FF staging queue.
1686 */
1687static void
1688ath_ff_stageq_flush(struct ath_softc *sc, struct ath_txq *txq,
1689 int (*ath_ff_flushdonetest)(struct ath_txq *txq, struct ath_buf *bf))
1690{
1691 struct ath_buf *bf;
1692 struct ieee80211_node *ni;
1693 int pktlen, pri;
1694
1695 for (;;) {
1696 ATH_TXQ_LOCK(txq);
1697 /*
1698 * Go from the back (oldest) to front so we can
1699 * stop early based on the age of the entry.
1700 */
1701 bf = TAILQ_LAST(&txq->axq_stageq, axq_headtype);
1702 if (bf == NULL || ath_ff_flushdonetest(txq, bf)) {
1703 ATH_TXQ_UNLOCK(txq);
1704 break;
1705 }
1706
1707 ni = bf->bf_node;
1708 pri = M_WME_GETAC(bf->bf_m);
1709 KASSERT(ATH_NODE(ni)->an_ff_buf[pri],
1710 ("no bf on staging queue %p", bf));
1711 ATH_NODE(ni)->an_ff_buf[pri] = NULL;
1712 TAILQ_REMOVE(&txq->axq_stageq, bf, bf_stagelist);
1713
1714 ATH_TXQ_UNLOCK(txq);
1715
1716 DPRINTF(sc, ATH_DEBUG_FF, "%s: flush frame, age %u\n",
1717 __func__, bf->bf_age);
1718
1719 sc->sc_stats.ast_ff_flush++;
1720
1721 /* encap and xmit */
1722 bf->bf_m = ieee80211_encap(ni, bf->bf_m);
1723 if (bf->bf_m == NULL) {
1724 DPRINTF(sc, ATH_DEBUG_XMIT | ATH_DEBUG_FF,
1725 "%s: discard, encapsulation failure\n",
1726 __func__);
1727 sc->sc_stats.ast_tx_encap++;
1728 goto bad;
1729 }
1730 pktlen = bf->bf_m->m_pkthdr.len; /* NB: don't reference below */
1731 if (ath_tx_start(sc, ni, bf, bf->bf_m) == 0) {
1732#if 0 /*XXX*/
1733 ifp->if_opackets++;
1734#endif
1735 continue;
1736 }
1737 bad:
1738 if (ni != NULL)
1739 ieee80211_free_node(ni);
1740 bf->bf_node = NULL;
1741 if (bf->bf_m != NULL) {
1742 m_freem(bf->bf_m);
1743 bf->bf_m = NULL;
1744 }
1745
1746 ATH_TXBUF_LOCK(sc);
1747 STAILQ_INSERT_HEAD(&sc->sc_txbuf, bf, bf_list);
1748 ATH_TXBUF_UNLOCK(sc);
1749 }
1750}
1751
1752static __inline u_int32_t
1753ath_ff_approx_txtime(struct ath_softc *sc, struct ath_node *an, struct mbuf *m)
1754{
1755 struct ieee80211com *ic = sc->sc_ifp->if_l2com;
1756 u_int32_t framelen;
1757 struct ath_buf *bf;
1758
1759 /*
1760 * Approximate the frame length to be transmitted. A swag to add
1761 * the following maximal values to the skb payload:
1762 * - 32: 802.11 encap + CRC
1763 * - 24: encryption overhead (if wep bit)
1764 * - 4 + 6: fast-frame header and padding
1765 * - 16: 2 LLC FF tunnel headers
1766 * - 14: 1 802.3 FF tunnel header (skb already accounts for 2nd)
1767 */
1768 framelen = m->m_pkthdr.len + 32 + 4 + 6 + 16 + 14;
1769 if (ic->ic_flags & IEEE80211_F_PRIVACY)
1770 framelen += 24;
1771 bf = an->an_ff_buf[M_WME_GETAC(m)];
1772 if (bf != NULL)
1773 framelen += bf->bf_m->m_pkthdr.len;
1774 return ath_hal_computetxtime(sc->sc_ah, sc->sc_currates, framelen,
1775 sc->sc_lastdatarix, AH_FALSE);
1776}
1777
1778/*
1779 * Determine if a data frame may be aggregated via ff tunnelling.
1780 * Note the caller is responsible for checking if the destination
1781 * supports fast frames.
1782 *
1783 * NB: allowing EAPOL frames to be aggregated with other unicast traffic.
1784 * Do 802.1x EAPOL frames proceed in the clear? Then they couldn't
1785 * be aggregated with other types of frames when encryption is on?
1786 *
1787 * NB: assumes lock on an_ff_buf effectively held by txq lock mechanism.
1788 */
1789static __inline int
1790ath_ff_can_aggregate(struct ath_softc *sc,
1791 struct ath_node *an, struct mbuf *m, int *flushq)
1792{
1793 struct ieee80211com *ic = sc->sc_ifp->if_l2com;
1794 struct ath_txq *txq;
1795 u_int32_t txoplimit;
1796 u_int pri;
1797
1798 *flushq = 0;
1799
1800 /*
1801 * If there is no frame to combine with and the txq has
1802 * fewer frames than the minimum required; then do not
1803 * attempt to aggregate this frame.
1804 */
1805 pri = M_WME_GETAC(m);
1806 txq = sc->sc_ac2q[pri];
1807 if (an->an_ff_buf[pri] == NULL && txq->axq_depth < sc->sc_fftxqmin)
1808 return 0;
1809 /*
1810 * When not in station mode never aggregate a multicast
1811 * frame; this insures, for example, that a combined frame
1812 * does not require multiple encryption keys when using
1813 * 802.1x/WPA.
1814 */
1815 if (ic->ic_opmode != IEEE80211_M_STA &&
1816 ETHER_IS_MULTICAST(mtod(m, struct ether_header *)->ether_dhost))
1817 return 0;
1818 /*
1819 * Consult the max bursting interval to insure a combined
1820 * frame fits within the TxOp window.
1821 */
1822 txoplimit = IEEE80211_TXOP_TO_US(
1823 ic->ic_wme.wme_chanParams.cap_wmeParams[pri].wmep_txopLimit);
1824 if (txoplimit != 0 && ath_ff_approx_txtime(sc, an, m) > txoplimit) {
1825 DPRINTF(sc, ATH_DEBUG_XMIT | ATH_DEBUG_FF,
1826 "%s: FF TxOp violation\n", __func__);
1827 if (an->an_ff_buf[pri] != NULL)
1828 *flushq = 1;
1829 return 0;
1830 }
1831 return 1; /* try to aggregate */
1832}
1833
1834/*
1835 * Check if the supplied frame can be partnered with an existing
1836 * or pending frame. Return a reference to any frame that should be
1837 * sent on return; otherwise return NULL.
1838 */
1839static struct mbuf *
1840ath_ff_check(struct ath_softc *sc, struct ath_txq *txq,
1841 struct ath_buf *bf, struct mbuf *m, struct ieee80211_node *ni)
1842{
1843 struct ath_node *an = ATH_NODE(ni);
1844 struct ath_buf *bfstaged;
1845 int ff_flush, pri;
1846
1847 /*
1848 * Check if the supplied frame can be aggregated.
1849 *
1850 * NB: we use the txq lock to protect references to
1851 * an->an_ff_txbuf in ath_ff_can_aggregate().
1852 */
1853 ATH_TXQ_LOCK(txq);
1854 pri = M_WME_GETAC(m);
1855 if (ath_ff_can_aggregate(sc, an, m, &ff_flush)) {
1856 struct ath_buf *bfstaged = an->an_ff_buf[pri];
1857 if (bfstaged != NULL) {
1858 /*
1859 * A frame is available for partnering; remove
1860 * it, chain it to this one, and encapsulate.
1861 */
1862 an->an_ff_buf[pri] = NULL;
1863 TAILQ_REMOVE(&txq->axq_stageq, bfstaged, bf_stagelist);
1864 ATH_TXQ_UNLOCK(txq);
1865
1866 /*
1867 * Chain mbufs and add FF magic.
1868 */
1869 DPRINTF(sc, ATH_DEBUG_FF,
1870 "[%s] aggregate fast-frame, age %u\n",
1871 ether_sprintf(ni->ni_macaddr), txq->axq_curage);
1872 m->m_nextpkt = NULL;
1873 bfstaged->bf_m->m_nextpkt = m;
1874 m = bfstaged->bf_m;
1875 bfstaged->bf_m = NULL;
1876 m->m_flags |= M_FF;
1877 /*
1878 * Release the node reference held while
1879 * the packet sat on an_ff_buf[]
1880 */
1881 bfstaged->bf_node = NULL;
1882 ieee80211_free_node(ni);
1883
1884 /*
1885 * Return bfstaged to the free list.
1886 */
1887 ATH_TXBUF_LOCK(sc);
1888 STAILQ_INSERT_HEAD(&sc->sc_txbuf, bfstaged, bf_list);
1889 ATH_TXBUF_UNLOCK(sc);
1890
1891 return m; /* ready to go */
1892 } else {
1893 /*
1894 * No frame available, queue this frame to wait
1895 * for a partner. Note that we hold the buffer
1896 * and a reference to the node; we need the
1897 * buffer in particular so we're certain we
1898 * can flush the frame at a later time.
1899 */
1900 DPRINTF(sc, ATH_DEBUG_FF,
1901 "[%s] stage fast-frame, age %u\n",
1902 ether_sprintf(ni->ni_macaddr), txq->axq_curage);
1903
1904 bf->bf_m = m;
1905 bf->bf_node = ni; /* NB: held reference */
1906 bf->bf_age = txq->axq_curage;
1907 an->an_ff_buf[pri] = bf;
1908 TAILQ_INSERT_HEAD(&txq->axq_stageq, bf, bf_stagelist);
1909 ATH_TXQ_UNLOCK(txq);
1910
1911 return NULL; /* consumed */
1912 }
1913 }
1914 /*
1915 * Frame could not be aggregated, it needs to be returned
1916 * to the caller for immediate transmission. In addition
1917 * we check if we should first flush a frame from the
1918 * staging queue before sending this one.
1919 *
1920 * NB: ath_ff_can_aggregate only marks ff_flush if a frame
1921 * is present to flush.
1922 */
1923 if (ff_flush) {
1924 int pktlen;
1925
1926 bfstaged = an->an_ff_buf[pri];
1927 an->an_ff_buf[pri] = NULL;
1928 TAILQ_REMOVE(&txq->axq_stageq, bfstaged, bf_stagelist);
1929 ATH_TXQ_UNLOCK(txq);
1930
1931 DPRINTF(sc, ATH_DEBUG_FF, "[%s] flush staged frame\n",
1932 ether_sprintf(an->an_node.ni_macaddr));
1933
1934 /* encap and xmit */
1935 bfstaged->bf_m = ieee80211_encap(ni, bfstaged->bf_m);
1936 if (bfstaged->bf_m == NULL) {
1937 DPRINTF(sc, ATH_DEBUG_XMIT | ATH_DEBUG_FF,
1938 "%s: discard, encap failure\n", __func__);
1939 sc->sc_stats.ast_tx_encap++;
1940 goto ff_flushbad;
1941 }
1942 pktlen = bfstaged->bf_m->m_pkthdr.len;
1943 if (ath_tx_start(sc, ni, bfstaged, bfstaged->bf_m)) {
1944 DPRINTF(sc, ATH_DEBUG_XMIT,
1945 "%s: discard, xmit failure\n", __func__);
1946 ff_flushbad:
1947 /*
1948 * Unable to transmit frame that was on the staging
1949 * queue. Reclaim the node reference and other
1950 * resources.
1951 */
1952 if (ni != NULL)
1953 ieee80211_free_node(ni);
1954 bfstaged->bf_node = NULL;
1955 if (bfstaged->bf_m != NULL) {
1956 m_freem(bfstaged->bf_m);
1957 bfstaged->bf_m = NULL;
1958 }
1959
1960 ATH_TXBUF_LOCK(sc);
1961 STAILQ_INSERT_HEAD(&sc->sc_txbuf, bfstaged, bf_list);
1962 ATH_TXBUF_UNLOCK(sc);
1963 } else {
1964#if 0
1965 ifp->if_opackets++;
1966#endif
1967 }
1968 } else {
1969 if (an->an_ff_buf[pri] != NULL) {
1970 /*
1971 * XXX: out-of-order condition only occurs for AP
1972 * mode and multicast. There may be no valid way
1973 * to get this condition.
1974 */
1975 DPRINTF(sc, ATH_DEBUG_FF, "[%s] out-of-order frame\n",
1976 ether_sprintf(an->an_node.ni_macaddr));
1977 /* XXX stat */
1978 }
1979 ATH_TXQ_UNLOCK(txq);
1980 }
1981 return m;
1982}
1983
1984static struct ath_buf *
1985_ath_getbuf_locked(struct ath_softc *sc)
1986{
1987 struct ath_buf *bf;
1988
1989 ATH_TXBUF_LOCK_ASSERT(sc);
1990
1991 bf = STAILQ_FIRST(&sc->sc_txbuf);
1992 if (bf != NULL && (bf->bf_flags & ATH_BUF_BUSY) == 0)
1993 STAILQ_REMOVE_HEAD(&sc->sc_txbuf, bf_list);
1994 else
1995 bf = NULL;
1996 if (bf == NULL) {
1997 DPRINTF(sc, ATH_DEBUG_XMIT, "%s: %s\n", __func__,
1998 STAILQ_FIRST(&sc->sc_txbuf) == NULL ?
1999 "out of xmit buffers" : "xmit buffer busy");
2000 sc->sc_stats.ast_tx_nobuf++;
2001 }
2002 return bf;
2003}
2004
2005static struct ath_buf *
2006ath_getbuf(struct ath_softc *sc)
2007{
2008 struct ath_buf *bf;
2009
2010 ATH_TXBUF_LOCK(sc);
2011 bf = _ath_getbuf_locked(sc);
2012 if (bf == NULL) {
2013 struct ifnet *ifp = sc->sc_ifp;
2014
2015 DPRINTF(sc, ATH_DEBUG_XMIT, "%s: stop queue\n", __func__);
2016 sc->sc_stats.ast_tx_qstop++;
2017 ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2018 }
2019 ATH_TXBUF_UNLOCK(sc);
2020 return bf;
2021}
2022
2023/*
2024 * Cleanup driver resources when we run out of buffers
2025 * while processing fragments; return the tx buffers
2026 * allocated and drop node references.
2027 */
2028static void
2029ath_txfrag_cleanup(struct ath_softc *sc,
2030 ath_bufhead *frags, struct ieee80211_node *ni)
2031{
2032 struct ath_buf *bf, *next;
2033
2034 ATH_TXBUF_LOCK_ASSERT(sc);
2035
2036 STAILQ_FOREACH_SAFE(bf, frags, bf_list, next) {
2037 /* NB: bf assumed clean */
2038 STAILQ_REMOVE_HEAD(frags, bf_list);
2039 STAILQ_INSERT_HEAD(&sc->sc_txbuf, bf, bf_list);
2040 ieee80211_node_decref(ni);
2041 }
2042}
2043
2044/*
2045 * Setup xmit of a fragmented frame. Allocate a buffer
2046 * for each frag and bump the node reference count to
2047 * reflect the held reference to be setup by ath_tx_start.
2048 */
2049static int
2050ath_txfrag_setup(struct ath_softc *sc, ath_bufhead *frags,
2051 struct mbuf *m0, struct ieee80211_node *ni)
2052{
2053 struct mbuf *m;
2054 struct ath_buf *bf;
2055
2056 ATH_TXBUF_LOCK(sc);
2057 for (m = m0->m_nextpkt; m != NULL; m = m->m_nextpkt) {
2058 bf = _ath_getbuf_locked(sc);
2059 if (bf == NULL) { /* out of buffers, cleanup */
2060 ath_txfrag_cleanup(sc, frags, ni);
2061 break;
2062 }
2063 ieee80211_node_incref(ni);
2064 STAILQ_INSERT_TAIL(frags, bf, bf_list);
2065 }
2066 ATH_TXBUF_UNLOCK(sc);
2067
2068 return !STAILQ_EMPTY(frags);
2069}
2070
2071static void
2072ath_start(struct ifnet *ifp)
2073{
2074 struct ath_softc *sc = ifp->if_softc;
2075 struct ieee80211_node *ni;
2076 struct ath_buf *bf;
2077 struct mbuf *m, *next;
2078 struct ath_txq *txq;
2079 ath_bufhead frags;
2080 int pri;
2081
2082 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0 || sc->sc_invalid)
2083 return;
2084 for (;;) {
2085 /*
2086 * Grab a TX buffer and associated resources.
2087 */
2088 bf = ath_getbuf(sc);
2089 if (bf == NULL)
2090 break;
2091
2092 IFQ_DEQUEUE(&ifp->if_snd, m);
2093 if (m == NULL) {
2094 ATH_TXBUF_LOCK(sc);
2095 STAILQ_INSERT_HEAD(&sc->sc_txbuf, bf, bf_list);
2096 ATH_TXBUF_UNLOCK(sc);
2097 break;
2098 }
2099 STAILQ_INIT(&frags);
2100 ni = (struct ieee80211_node *) m->m_pkthdr.rcvif;
2101 pri = M_WME_GETAC(m);
2102 txq = sc->sc_ac2q[pri];
2103 if (IEEE80211_ATH_CAP(ni->ni_vap, ni, IEEE80211_NODE_FF)) {
2104 /*
2105 * Check queue length; if too deep drop this
2106 * frame (tail drop considered good).
2107 */
2108 if (txq->axq_depth >= sc->sc_fftxqmax) {
2109 DPRINTF(sc, ATH_DEBUG_FF,
2110 "[%s] tail drop on q %u depth %u\n",
2111 ether_sprintf(ni->ni_macaddr),
2112 txq->axq_qnum, txq->axq_depth);
2113 sc->sc_stats.ast_tx_qfull++;
2114 m_freem(m);
2115 goto reclaim;
2116 }
2117 m = ath_ff_check(sc, txq, bf, m, ni);
2118 if (m == NULL) {
2119 /* NB: ni ref & bf held on stageq */
2120 continue;
2121 }
2122 }
2123 ifp->if_opackets++;
2124 /*
2125 * Encapsulate the packet in prep for transmission.
2126 */
2127 m = ieee80211_encap(ni, m);
2128 if (m == NULL) {
2129 DPRINTF(sc, ATH_DEBUG_XMIT,
2130 "%s: encapsulation failure\n", __func__);
2131 sc->sc_stats.ast_tx_encap++;
2132 goto bad;
2133 }
2134 /*
2135 * Check for fragmentation. If this frame
2136 * has been broken up verify we have enough
2137 * buffers to send all the fragments so all
2138 * go out or none...
2139 */
2140 if ((m->m_flags & M_FRAG) &&
2141 !ath_txfrag_setup(sc, &frags, m, ni)) {
2142 DPRINTF(sc, ATH_DEBUG_XMIT,
2143 "%s: out of txfrag buffers\n", __func__);
2144 sc->sc_stats.ast_tx_nofrag++;
2145 ath_freetx(m);
2146 goto bad;
2147 }
2148 nextfrag:
2149 /*
2150 * Pass the frame to the h/w for transmission.
2151 * Fragmented frames have each frag chained together
2152 * with m_nextpkt. We know there are sufficient ath_buf's
2153 * to send all the frags because of work done by
2154 * ath_txfrag_setup. We leave m_nextpkt set while
2155 * calling ath_tx_start so it can use it to extend the
2156 * the tx duration to cover the subsequent frag and
2157 * so it can reclaim all the mbufs in case of an error;
2158 * ath_tx_start clears m_nextpkt once it commits to
2159 * handing the frame to the hardware.
2160 */
2161 next = m->m_nextpkt;
2162 if (ath_tx_start(sc, ni, bf, m)) {
2163 bad:
2164 ifp->if_oerrors++;
2165 reclaim:
2166 bf->bf_m = NULL;
2167 bf->bf_node = NULL;
2168 ATH_TXBUF_LOCK(sc);
2169 STAILQ_INSERT_HEAD(&sc->sc_txbuf, bf, bf_list);
2170 ath_txfrag_cleanup(sc, &frags, ni);
2171 ATH_TXBUF_UNLOCK(sc);
2172 if (ni != NULL)
2173 ieee80211_free_node(ni);
2174 continue;
2175 }
2176 if (next != NULL) {
2177 /*
2178 * Beware of state changing between frags.
2179 * XXX check sta power-save state?
2180 */
2181 if (ni->ni_vap->iv_state != IEEE80211_S_RUN) {
2182 DPRINTF(sc, ATH_DEBUG_XMIT,
2183 "%s: flush fragmented packet, state %s\n",
2184 __func__,
2185 ieee80211_state_name[ni->ni_vap->iv_state]);
2186 ath_freetx(next);
2187 goto reclaim;
2188 }
2189 m = next;
2190 bf = STAILQ_FIRST(&frags);
2191 KASSERT(bf != NULL, ("no buf for txfrag"));
2192 STAILQ_REMOVE_HEAD(&frags, bf_list);
2193 goto nextfrag;
2194 }
2195
2196 ifp->if_timer = 5;
2197#if 0
2198 /*
2199 * Flush stale frames from the fast-frame staging queue.
2200 */
2201 if (ic->ic_opmode != IEEE80211_M_STA)
2202 ath_ff_stageq_flush(sc, txq, ath_ff_ageflushtestdone);
2203#endif
2204 }
2205}
2206
2207static int
2208ath_media_change(struct ifnet *ifp)
2209{
2210 int error = ieee80211_media_change(ifp);
2211 /* NB: only the fixed rate can change and that doesn't need a reset */
2212 return (error == ENETRESET ? 0 : error);
2213}
2214
2215#ifdef ATH_DEBUG
2216static void
2217ath_keyprint(struct ath_softc *sc, const char *tag, u_int ix,
2218 const HAL_KEYVAL *hk, const u_int8_t mac[IEEE80211_ADDR_LEN])
2219{
2220 static const char *ciphers[] = {
2221 "WEP",
2222 "AES-OCB",
2223 "AES-CCM",
2224 "CKIP",
2225 "TKIP",
2226 "CLR",
2227 };
2228 int i, n;
2229
2230 printf("%s: [%02u] %-7s ", tag, ix, ciphers[hk->kv_type]);
2231 for (i = 0, n = hk->kv_len; i < n; i++)
2232 printf("%02x", hk->kv_val[i]);
2233 printf(" mac %s", ether_sprintf(mac));
2234 if (hk->kv_type == HAL_CIPHER_TKIP) {
2235 printf(" %s ", sc->sc_splitmic ? "mic" : "rxmic");
2236 for (i = 0; i < sizeof(hk->kv_mic); i++)
2237 printf("%02x", hk->kv_mic[i]);
2238 if (!sc->sc_splitmic) {
2239 printf(" txmic ");
2240 for (i = 0; i < sizeof(hk->kv_txmic); i++)
2241 printf("%02x", hk->kv_txmic[i]);
2242 }
2243 }
2244 printf("\n");
2245}
2246#endif
2247
2248/*
2249 * Set a TKIP key into the hardware. This handles the
2250 * potential distribution of key state to multiple key
2251 * cache slots for TKIP.
2252 */
2253static int
2254ath_keyset_tkip(struct ath_softc *sc, const struct ieee80211_key *k,
2255 HAL_KEYVAL *hk, const u_int8_t mac[IEEE80211_ADDR_LEN])
2256{
2257#define IEEE80211_KEY_XR (IEEE80211_KEY_XMIT | IEEE80211_KEY_RECV)
2258 static const u_int8_t zerobssid[IEEE80211_ADDR_LEN];
2259 struct ath_hal *ah = sc->sc_ah;
2260
2261 KASSERT(k->wk_cipher->ic_cipher == IEEE80211_CIPHER_TKIP,
2262 ("got a non-TKIP key, cipher %u", k->wk_cipher->ic_cipher));
2263 if ((k->wk_flags & IEEE80211_KEY_XR) == IEEE80211_KEY_XR) {
2264 if (sc->sc_splitmic) {
2265 /*
2266 * TX key goes at first index, RX key at the rx index.
2267 * The hal handles the MIC keys at index+64.
2268 */
2269 memcpy(hk->kv_mic, k->wk_txmic, sizeof(hk->kv_mic));
2270 KEYPRINTF(sc, k->wk_keyix, hk, zerobssid);
2271 if (!ath_hal_keyset(ah, k->wk_keyix, hk, zerobssid))
2272 return 0;
2273
2274 memcpy(hk->kv_mic, k->wk_rxmic, sizeof(hk->kv_mic));
2275 KEYPRINTF(sc, k->wk_keyix+32, hk, mac);
2276 /* XXX delete tx key on failure? */
2277 return ath_hal_keyset(ah, k->wk_keyix+32, hk, mac);
2278 } else {
2279 /*
2280 * Room for both TX+RX MIC keys in one key cache
2281 * slot, just set key at the first index; the hal
2282 * will handle the rest.
2283 */
2284 memcpy(hk->kv_mic, k->wk_rxmic, sizeof(hk->kv_mic));
2285 memcpy(hk->kv_txmic, k->wk_txmic, sizeof(hk->kv_txmic));
2286 KEYPRINTF(sc, k->wk_keyix, hk, mac);
2287 return ath_hal_keyset(ah, k->wk_keyix, hk, mac);
2288 }
2289 } else if (k->wk_flags & IEEE80211_KEY_XMIT) {
2290 if (sc->sc_splitmic) {
2291 /*
2292 * NB: must pass MIC key in expected location when
2293 * the keycache only holds one MIC key per entry.
2294 */
2295 memcpy(hk->kv_mic, k->wk_txmic, sizeof(hk->kv_txmic));
2296 } else
2297 memcpy(hk->kv_txmic, k->wk_txmic, sizeof(hk->kv_txmic));
2298 KEYPRINTF(sc, k->wk_keyix, hk, mac);
2299 return ath_hal_keyset(ah, k->wk_keyix, hk, mac);
2300 } else if (k->wk_flags & IEEE80211_KEY_RECV) {
2301 memcpy(hk->kv_mic, k->wk_rxmic, sizeof(hk->kv_mic));
2302 KEYPRINTF(sc, k->wk_keyix, hk, mac);
2303 return ath_hal_keyset(ah, k->wk_keyix, hk, mac);
2304 }
2305 return 0;
2306#undef IEEE80211_KEY_XR
2307}
2308
2309/*
2310 * Set a net80211 key into the hardware. This handles the
2311 * potential distribution of key state to multiple key
2312 * cache slots for TKIP with hardware MIC support.
2313 */
2314static int
2315ath_keyset(struct ath_softc *sc, const struct ieee80211_key *k,
2316 struct ieee80211_node *bss)
2317{
2318#define N(a) (sizeof(a)/sizeof(a[0]))
2319 static const u_int8_t ciphermap[] = {
2320 HAL_CIPHER_WEP, /* IEEE80211_CIPHER_WEP */
2321 HAL_CIPHER_TKIP, /* IEEE80211_CIPHER_TKIP */
2322 HAL_CIPHER_AES_OCB, /* IEEE80211_CIPHER_AES_OCB */
2323 HAL_CIPHER_AES_CCM, /* IEEE80211_CIPHER_AES_CCM */
2324 (u_int8_t) -1, /* 4 is not allocated */
2325 HAL_CIPHER_CKIP, /* IEEE80211_CIPHER_CKIP */
2326 HAL_CIPHER_CLR, /* IEEE80211_CIPHER_NONE */
2327 };
2328 struct ath_hal *ah = sc->sc_ah;
2329 const struct ieee80211_cipher *cip = k->wk_cipher;
2330 u_int8_t gmac[IEEE80211_ADDR_LEN];
2331 const u_int8_t *mac;
2332 HAL_KEYVAL hk;
2333
2334 memset(&hk, 0, sizeof(hk));
2335 /*
2336 * Software crypto uses a "clear key" so non-crypto
2337 * state kept in the key cache are maintained and
2338 * so that rx frames have an entry to match.
2339 */
2340 if ((k->wk_flags & IEEE80211_KEY_SWCRYPT) == 0) {
2341 KASSERT(cip->ic_cipher < N(ciphermap),
2342 ("invalid cipher type %u", cip->ic_cipher));
2343 hk.kv_type = ciphermap[cip->ic_cipher];
2344 hk.kv_len = k->wk_keylen;
2345 memcpy(hk.kv_val, k->wk_key, k->wk_keylen);
2346 } else
2347 hk.kv_type = HAL_CIPHER_CLR;
2348
2349 if ((k->wk_flags & IEEE80211_KEY_GROUP) && sc->sc_mcastkey) {
2350 /*
2351 * Group keys on hardware that supports multicast frame
2352 * key search use a mac that is the sender's address with
2353 * the high bit set instead of the app-specified address.
2354 */
2355 IEEE80211_ADDR_COPY(gmac, bss->ni_macaddr);
2356 gmac[0] |= 0x80;
2357 mac = gmac;
2358 } else
2359 mac = k->wk_macaddr;
2360
2361 if (hk.kv_type == HAL_CIPHER_TKIP &&
2362 (k->wk_flags & IEEE80211_KEY_SWMIC) == 0) {
2363 return ath_keyset_tkip(sc, k, &hk, mac);
2364 } else {
2365 KEYPRINTF(sc, k->wk_keyix, &hk, mac);
2366 return ath_hal_keyset(ah, k->wk_keyix, &hk, mac);
2367 }
2368#undef N
2369}
2370
2371/*
2372 * Allocate tx/rx key slots for TKIP. We allocate two slots for
2373 * each key, one for decrypt/encrypt and the other for the MIC.
2374 */
2375static u_int16_t
2376key_alloc_2pair(struct ath_softc *sc,
2377 ieee80211_keyix *txkeyix, ieee80211_keyix *rxkeyix)
2378{
2379#define N(a) (sizeof(a)/sizeof(a[0]))
2380 u_int i, keyix;
2381
2382 KASSERT(sc->sc_splitmic, ("key cache !split"));
2383 /* XXX could optimize */
2384 for (i = 0; i < N(sc->sc_keymap)/4; i++) {
2385 u_int8_t b = sc->sc_keymap[i];
2386 if (b != 0xff) {
2387 /*
2388 * One or more slots in this byte are free.
2389 */
2390 keyix = i*NBBY;
2391 while (b & 1) {
2392 again:
2393 keyix++;
2394 b >>= 1;
2395 }
2396 /* XXX IEEE80211_KEY_XMIT | IEEE80211_KEY_RECV */
2397 if (isset(sc->sc_keymap, keyix+32) ||
2398 isset(sc->sc_keymap, keyix+64) ||
2399 isset(sc->sc_keymap, keyix+32+64)) {
2400 /* full pair unavailable */
2401 /* XXX statistic */
2402 if (keyix == (i+1)*NBBY) {
2403 /* no slots were appropriate, advance */
2404 continue;
2405 }
2406 goto again;
2407 }
2408 setbit(sc->sc_keymap, keyix);
2409 setbit(sc->sc_keymap, keyix+64);
2410 setbit(sc->sc_keymap, keyix+32);
2411 setbit(sc->sc_keymap, keyix+32+64);
2412 DPRINTF(sc, ATH_DEBUG_KEYCACHE,
2413 "%s: key pair %u,%u %u,%u\n",
2414 __func__, keyix, keyix+64,
2415 keyix+32, keyix+32+64);
2416 *txkeyix = keyix;
2417 *rxkeyix = keyix+32;
2418 return 1;
2419 }
2420 }
2421 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: out of pair space\n", __func__);
2422 return 0;
2423#undef N
2424}
2425
2426/*
2427 * Allocate tx/rx key slots for TKIP. We allocate two slots for
2428 * each key, one for decrypt/encrypt and the other for the MIC.
2429 */
2430static u_int16_t
2431key_alloc_pair(struct ath_softc *sc,
2432 ieee80211_keyix *txkeyix, ieee80211_keyix *rxkeyix)
2433{
2434#define N(a) (sizeof(a)/sizeof(a[0]))
2435 u_int i, keyix;
2436
2437 KASSERT(!sc->sc_splitmic, ("key cache split"));
2438 /* XXX could optimize */
2439 for (i = 0; i < N(sc->sc_keymap)/4; i++) {
2440 u_int8_t b = sc->sc_keymap[i];
2441 if (b != 0xff) {
2442 /*
2443 * One or more slots in this byte are free.
2444 */
2445 keyix = i*NBBY;
2446 while (b & 1) {
2447 again:
2448 keyix++;
2449 b >>= 1;
2450 }
2451 if (isset(sc->sc_keymap, keyix+64)) {
2452 /* full pair unavailable */
2453 /* XXX statistic */
2454 if (keyix == (i+1)*NBBY) {
2455 /* no slots were appropriate, advance */
2456 continue;
2457 }
2458 goto again;
2459 }
2460 setbit(sc->sc_keymap, keyix);
2461 setbit(sc->sc_keymap, keyix+64);
2462 DPRINTF(sc, ATH_DEBUG_KEYCACHE,
2463 "%s: key pair %u,%u\n",
2464 __func__, keyix, keyix+64);
2465 *txkeyix = *rxkeyix = keyix;
2466 return 1;
2467 }
2468 }
2469 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: out of pair space\n", __func__);
2470 return 0;
2471#undef N
2472}
2473
2474/*
2475 * Allocate a single key cache slot.
2476 */
2477static int
2478key_alloc_single(struct ath_softc *sc,
2479 ieee80211_keyix *txkeyix, ieee80211_keyix *rxkeyix)
2480{
2481#define N(a) (sizeof(a)/sizeof(a[0]))
2482 u_int i, keyix;
2483
2484 /* XXX try i,i+32,i+64,i+32+64 to minimize key pair conflicts */
2485 for (i = 0; i < N(sc->sc_keymap); i++) {
2486 u_int8_t b = sc->sc_keymap[i];
2487 if (b != 0xff) {
2488 /*
2489 * One or more slots are free.
2490 */
2491 keyix = i*NBBY;
2492 while (b & 1)
2493 keyix++, b >>= 1;
2494 setbit(sc->sc_keymap, keyix);
2495 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: key %u\n",
2496 __func__, keyix);
2497 *txkeyix = *rxkeyix = keyix;
2498 return 1;
2499 }
2500 }
2501 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: out of space\n", __func__);
2502 return 0;
2503#undef N
2504}
2505
2506/*
2507 * Allocate one or more key cache slots for a uniacst key. The
2508 * key itself is needed only to identify the cipher. For hardware
2509 * TKIP with split cipher+MIC keys we allocate two key cache slot
2510 * pairs so that we can setup separate TX and RX MIC keys. Note
2511 * that the MIC key for a TKIP key at slot i is assumed by the
2512 * hardware to be at slot i+64. This limits TKIP keys to the first
2513 * 64 entries.
2514 */
2515static int
2516ath_key_alloc(struct ieee80211vap *vap, struct ieee80211_key *k,
2517 ieee80211_keyix *keyix, ieee80211_keyix *rxkeyix)
2518{
2519 struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc;
2520
2521 /*
2522 * Group key allocation must be handled specially for
2523 * parts that do not support multicast key cache search
2524 * functionality. For those parts the key id must match
2525 * the h/w key index so lookups find the right key. On
2526 * parts w/ the key search facility we install the sender's
2527 * mac address (with the high bit set) and let the hardware
2528 * find the key w/o using the key id. This is preferred as
2529 * it permits us to support multiple users for adhoc and/or
2530 * multi-station operation.
2531 */
2532 if (k->wk_keyix != IEEE80211_KEYIX_NONE || /* global key */
2533 ((k->wk_flags & IEEE80211_KEY_GROUP) && !sc->sc_mcastkey)) {
2534 if (!(&vap->iv_nw_keys[0] <= k &&
2535 k < &vap->iv_nw_keys[IEEE80211_WEP_NKID])) {
2536 /* should not happen */
2537 DPRINTF(sc, ATH_DEBUG_KEYCACHE,
2538 "%s: bogus group key\n", __func__);
2539 return 0;
2540 }
2541 /*
2542 * XXX we pre-allocate the global keys so
2543 * have no way to check if they've already been allocated.
2544 */
2545 *keyix = *rxkeyix = k - vap->iv_nw_keys;
2546 return 1;
2547 }
2548
2549 /*
2550 * We allocate two pair for TKIP when using the h/w to do
2551 * the MIC. For everything else, including software crypto,
2552 * we allocate a single entry. Note that s/w crypto requires
2553 * a pass-through slot on the 5211 and 5212. The 5210 does
2554 * not support pass-through cache entries and we map all
2555 * those requests to slot 0.
2556 */
2557 if (k->wk_flags & IEEE80211_KEY_SWCRYPT) {
2558 return key_alloc_single(sc, keyix, rxkeyix);
2559 } else if (k->wk_cipher->ic_cipher == IEEE80211_CIPHER_TKIP &&
2560 (k->wk_flags & IEEE80211_KEY_SWMIC) == 0) {
2561 if (sc->sc_splitmic)
2562 return key_alloc_2pair(sc, keyix, rxkeyix);
2563 else
2564 return key_alloc_pair(sc, keyix, rxkeyix);
2565 } else {
2566 return key_alloc_single(sc, keyix, rxkeyix);
2567 }
2568}
2569
2570/*
2571 * Delete an entry in the key cache allocated by ath_key_alloc.
2572 */
2573static int
2574ath_key_delete(struct ieee80211vap *vap, const struct ieee80211_key *k)
2575{
2576 struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc;
2577 struct ath_hal *ah = sc->sc_ah;
2578 const struct ieee80211_cipher *cip = k->wk_cipher;
2579 u_int keyix = k->wk_keyix;
2580
2581 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: delete key %u\n", __func__, keyix);
2582
2583 ath_hal_keyreset(ah, keyix);
2584 /*
2585 * Handle split tx/rx keying required for TKIP with h/w MIC.
2586 */
2587 if (cip->ic_cipher == IEEE80211_CIPHER_TKIP &&
2588 (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 && sc->sc_splitmic)
2589 ath_hal_keyreset(ah, keyix+32); /* RX key */
2590 if (keyix >= IEEE80211_WEP_NKID) {
2591 /*
2592 * Don't touch keymap entries for global keys so
2593 * they are never considered for dynamic allocation.
2594 */
2595 clrbit(sc->sc_keymap, keyix);
2596 if (cip->ic_cipher == IEEE80211_CIPHER_TKIP &&
2597 (k->wk_flags & IEEE80211_KEY_SWMIC) == 0) {
2598 clrbit(sc->sc_keymap, keyix+64); /* TX key MIC */
2599 if (sc->sc_splitmic) {
2600 /* +32 for RX key, +32+64 for RX key MIC */
2601 clrbit(sc->sc_keymap, keyix+32);
2602 clrbit(sc->sc_keymap, keyix+32+64);
2603 }
2604 }
2605 }
2606 return 1;
2607}
2608
2609/*
2610 * Set the key cache contents for the specified key. Key cache
2611 * slot(s) must already have been allocated by ath_key_alloc.
2612 */
2613static int
2614ath_key_set(struct ieee80211vap *vap, const struct ieee80211_key *k,
2615 const u_int8_t mac[IEEE80211_ADDR_LEN])
2616{
2617 struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc;
2618
2619 return ath_keyset(sc, k, vap->iv_bss);
2620}
2621
2622/*
2623 * Block/unblock tx+rx processing while a key change is done.
2624 * We assume the caller serializes key management operations
2625 * so we only need to worry about synchronization with other
2626 * uses that originate in the driver.
2627 */
2628static void
2629ath_key_update_begin(struct ieee80211vap *vap)
2630{
2631 struct ifnet *ifp = vap->iv_ic->ic_ifp;
2632 struct ath_softc *sc = ifp->if_softc;
2633
2634 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__);
2635 taskqueue_block(sc->sc_tq);
2636 IF_LOCK(&ifp->if_snd); /* NB: doesn't block mgmt frames */
2637}
2638
2639static void
2640ath_key_update_end(struct ieee80211vap *vap)
2641{
2642 struct ifnet *ifp = vap->iv_ic->ic_ifp;
2643 struct ath_softc *sc = ifp->if_softc;
2644
2645 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__);
2646 IF_UNLOCK(&ifp->if_snd);
2647 taskqueue_unblock(sc->sc_tq);
2648}
2649
2650/*
2651 * Calculate the receive filter according to the
2652 * operating mode and state:
2653 *
2654 * o always accept unicast, broadcast, and multicast traffic
2655 * o accept PHY error frames when hardware doesn't have MIB support
2656 * to count and we need them for ANI (sta mode only until recently)
2657 * and we are not scanning (ANI is disabled)
2658 * NB: older hal's add rx filter bits out of sight and we need to
2659 * blindly preserve them
2660 * o probe request frames are accepted only when operating in
2661 * hostap, adhoc, or monitor modes
2662 * o enable promiscuous mode
2663 * - when in monitor mode
2664 * - if interface marked PROMISC (assumes bridge setting is filtered)
2665 * o accept beacons:
2666 * - when operating in station mode for collecting rssi data when
2667 * the station is otherwise quiet, or
2668 * - when operating in adhoc mode so the 802.11 layer creates
2669 * node table entries for peers,
2670 * - when scanning
2671 * - when doing s/w beacon miss (e.g. for ap+sta)
2672 * - when operating in ap mode in 11g to detect overlapping bss that
2673 * require protection
2674 * o accept control frames:
2675 * - when in monitor mode
2676 * XXX BAR frames for 11n
2677 * XXX HT protection for 11n
2678 */
2679static u_int32_t
2680ath_calcrxfilter(struct ath_softc *sc)
2681{
2682 struct ifnet *ifp = sc->sc_ifp;
2683 struct ieee80211com *ic = ifp->if_l2com;
2684 u_int32_t rfilt;
2685
2686 rfilt = HAL_RX_FILTER_UCAST | HAL_RX_FILTER_BCAST | HAL_RX_FILTER_MCAST;
2687#if HAL_ABI_VERSION < 0x08011600
2688 rfilt |= (ath_hal_getrxfilter(sc->sc_ah) &
2689 (HAL_RX_FILTER_PHYRADAR | HAL_RX_FILTER_PHYERR));
2690#elif HAL_ABI_VERSION < 0x08060100
2691 if (ic->ic_opmode == IEEE80211_M_STA &&
2692 !sc->sc_needmib && !sc->sc_scanning)
2693 rfilt |= HAL_RX_FILTER_PHYERR;
2694#else
2695 if (!sc->sc_needmib && !sc->sc_scanning)
2696 rfilt |= HAL_RX_FILTER_PHYERR;
2697#endif
2698 if (ic->ic_opmode != IEEE80211_M_STA)
2699 rfilt |= HAL_RX_FILTER_PROBEREQ;
2700 if (ic->ic_opmode == IEEE80211_M_MONITOR || (ifp->if_flags & IFF_PROMISC))
2701 rfilt |= HAL_RX_FILTER_PROM;
2702 if (ic->ic_opmode == IEEE80211_M_STA ||
2703 ic->ic_opmode == IEEE80211_M_IBSS ||
2704 sc->sc_swbmiss || sc->sc_scanning)
2705 rfilt |= HAL_RX_FILTER_BEACON;
2706 /*
2707 * NB: We don't recalculate the rx filter when
2708 * ic_protmode changes; otherwise we could do
2709 * this only when ic_protmode != NONE.
2710 */
2711 if (ic->ic_opmode == IEEE80211_M_HOSTAP &&
2712 IEEE80211_IS_CHAN_ANYG(ic->ic_curchan))
2713 rfilt |= HAL_RX_FILTER_BEACON;
2714 if (ic->ic_opmode == IEEE80211_M_MONITOR)
2715 rfilt |= HAL_RX_FILTER_CONTROL;
2716 DPRINTF(sc, ATH_DEBUG_MODE, "%s: RX filter 0x%x, %s if_flags 0x%x\n",
2717 __func__, rfilt, ieee80211_opmode_name[ic->ic_opmode], ifp->if_flags);
2718 return rfilt;
2719}
2720
2721static void
2722ath_update_promisc(struct ifnet *ifp)
2723{
2724 struct ath_softc *sc = ifp->if_softc;
2725 u_int32_t rfilt;
2726
2727 /* configure rx filter */
2728 rfilt = ath_calcrxfilter(sc);
2729 ath_hal_setrxfilter(sc->sc_ah, rfilt);
2730
2731 DPRINTF(sc, ATH_DEBUG_MODE, "%s: RX filter 0x%x\n", __func__, rfilt);
2732}
2733
2734static void
2735ath_update_mcast(struct ifnet *ifp)
2736{
2737 struct ath_softc *sc = ifp->if_softc;
2738 u_int32_t mfilt[2];
2739
2740 /* calculate and install multicast filter */
2741 if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
2742 struct ifmultiaddr *ifma;
2743 /*
2744 * Merge multicast addresses to form the hardware filter.
2745 */
2746 mfilt[0] = mfilt[1] = 0;
2747 IF_ADDR_LOCK(ifp); /* XXX need some fiddling to remove? */
2748 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
2749 caddr_t dl;
2750 u_int32_t val;
2751 u_int8_t pos;
2752
2753 /* calculate XOR of eight 6bit values */
2754 dl = LLADDR((struct sockaddr_dl *) ifma->ifma_addr);
2755 val = LE_READ_4(dl + 0);
2756 pos = (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
2757 val = LE_READ_4(dl + 3);
2758 pos ^= (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
2759 pos &= 0x3f;
2760 mfilt[pos / 32] |= (1 << (pos % 32));
2761 }
2762 IF_ADDR_UNLOCK(ifp);
2763 } else
2764 mfilt[0] = mfilt[1] = ~0;
2765 ath_hal_setmcastfilter(sc->sc_ah, mfilt[0], mfilt[1]);
2766 DPRINTF(sc, ATH_DEBUG_MODE, "%s: MC filter %08x:%08x\n",
2767 __func__, mfilt[0], mfilt[1]);
2768}
2769
2770static void
2771ath_mode_init(struct ath_softc *sc)
2772{
2773 struct ifnet *ifp = sc->sc_ifp;
2774 struct ieee80211com *ic = ifp->if_l2com;
2775 struct ath_hal *ah = sc->sc_ah;
2776 u_int32_t rfilt;
2777
2778 /* configure rx filter */
2779 rfilt = ath_calcrxfilter(sc);
2780 ath_hal_setrxfilter(ah, rfilt);
2781
2782 /* configure operational mode */
2783 ath_hal_setopmode(ah);
2784
2785 /*
2786 * Handle any link-level address change. Note that we only
2787 * need to force ic_myaddr; any other addresses are handled
2788 * as a byproduct of the ifnet code marking the interface
2789 * down then up.
2790 *
2791 * XXX should get from lladdr instead of arpcom but that's more work
2792 */
2793 IEEE80211_ADDR_COPY(ic->ic_myaddr, IF_LLADDR(ifp));
2794 ath_hal_setmac(ah, ic->ic_myaddr);
2795
2796 /* calculate and install multicast filter */
2797 ath_update_mcast(ifp);
2798}
2799
2800/*
2801 * Set the slot time based on the current setting.
2802 */
2803static void
2804ath_setslottime(struct ath_softc *sc)
2805{
2806 struct ieee80211com *ic = sc->sc_ifp->if_l2com;
2807 struct ath_hal *ah = sc->sc_ah;
2808 u_int usec;
2809
2810 if (IEEE80211_IS_CHAN_HALF(ic->ic_curchan))
2811 usec = 13;
2812 else if (IEEE80211_IS_CHAN_QUARTER(ic->ic_curchan))
2813 usec = 21;
2814 else if (IEEE80211_IS_CHAN_ANYG(ic->ic_curchan)) {
2815 /* honor short/long slot time only in 11g */
2816 /* XXX shouldn't honor on pure g or turbo g channel */
2817 if (ic->ic_flags & IEEE80211_F_SHSLOT)
2818 usec = HAL_SLOT_TIME_9;
2819 else
2820 usec = HAL_SLOT_TIME_20;
2821 } else
2822 usec = HAL_SLOT_TIME_9;
2823
2824 DPRINTF(sc, ATH_DEBUG_RESET,
2825 "%s: chan %u MHz flags 0x%x %s slot, %u usec\n",
2826 __func__, ic->ic_curchan->ic_freq, ic->ic_curchan->ic_flags,
2827 ic->ic_flags & IEEE80211_F_SHSLOT ? "short" : "long", usec);
2828
2829 ath_hal_setslottime(ah, usec);
2830 sc->sc_updateslot = OK;
2831}
2832
2833/*
2834 * Callback from the 802.11 layer to update the
2835 * slot time based on the current setting.
2836 */
2837static void
2838ath_updateslot(struct ifnet *ifp)
2839{
2840 struct ath_softc *sc = ifp->if_softc;
2841 struct ieee80211com *ic = ifp->if_l2com;
2842
2843 /*
2844 * When not coordinating the BSS, change the hardware
2845 * immediately. For other operation we defer the change
2846 * until beacon updates have propagated to the stations.
2847 */
2848 if (ic->ic_opmode == IEEE80211_M_HOSTAP)
2849 sc->sc_updateslot = UPDATE;
2850 else
2851 ath_setslottime(sc);
2852}
2853
2854/*
2855 * Setup a h/w transmit queue for beacons.
2856 */
2857static int
2858ath_beaconq_setup(struct ath_hal *ah)
2859{
2860 HAL_TXQ_INFO qi;
2861
2862 memset(&qi, 0, sizeof(qi));
2863 qi.tqi_aifs = HAL_TXQ_USEDEFAULT;
2864 qi.tqi_cwmin = HAL_TXQ_USEDEFAULT;
2865 qi.tqi_cwmax = HAL_TXQ_USEDEFAULT;
2866 /* NB: for dynamic turbo, don't enable any other interrupts */
2867 qi.tqi_qflags = HAL_TXQ_TXDESCINT_ENABLE;
2868 return ath_hal_setuptxqueue(ah, HAL_TX_QUEUE_BEACON, &qi);
2869}
2870
2871/*
2872 * Setup the transmit queue parameters for the beacon queue.
2873 */
2874static int
2875ath_beaconq_config(struct ath_softc *sc)
2876{
2877#define ATH_EXPONENT_TO_VALUE(v) ((1<<(v))-1)
2878 struct ieee80211com *ic = sc->sc_ifp->if_l2com;
2879 struct ath_hal *ah = sc->sc_ah;
2880 HAL_TXQ_INFO qi;
2881
2882 ath_hal_gettxqueueprops(ah, sc->sc_bhalq, &qi);
2883 if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
2884 /*
2885 * Always burst out beacon and CAB traffic.
2886 */
2887 qi.tqi_aifs = ATH_BEACON_AIFS_DEFAULT;
2888 qi.tqi_cwmin = ATH_BEACON_CWMIN_DEFAULT;
2889 qi.tqi_cwmax = ATH_BEACON_CWMAX_DEFAULT;
2890 } else {
2891 struct wmeParams *wmep =
2892 &ic->ic_wme.wme_chanParams.cap_wmeParams[WME_AC_BE];
2893 /*
2894 * Adhoc mode; important thing is to use 2x cwmin.
2895 */
2896 qi.tqi_aifs = wmep->wmep_aifsn;
2897 qi.tqi_cwmin = 2*ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin);
2898 qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax);
2899 }
2900
2901 if (!ath_hal_settxqueueprops(ah, sc->sc_bhalq, &qi)) {
2902 device_printf(sc->sc_dev, "unable to update parameters for "
2903 "beacon hardware queue!\n");
2904 return 0;
2905 } else {
2906 ath_hal_resettxqueue(ah, sc->sc_bhalq); /* push to h/w */
2907 return 1;
2908 }
2909#undef ATH_EXPONENT_TO_VALUE
2910}
2911
2912/*
2913 * Allocate and setup an initial beacon frame.
2914 */
2915static int
2916ath_beacon_alloc(struct ath_softc *sc, struct ieee80211_node *ni)
2917{
2918 struct ieee80211vap *vap = ni->ni_vap;
2919 struct ath_vap *avp = ATH_VAP(vap);
2920 struct ath_buf *bf;
2921 struct mbuf *m;
2922 int error;
2923
2924 bf = avp->av_bcbuf;
2925 if (bf->bf_m != NULL) {
2926 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
2927 m_freem(bf->bf_m);
2928 bf->bf_m = NULL;
2929 }
2930 if (bf->bf_node != NULL) {
2931 ieee80211_free_node(bf->bf_node);
2932 bf->bf_node = NULL;
2933 }
2934
2935 /*
2936 * NB: the beacon data buffer must be 32-bit aligned;
2937 * we assume the mbuf routines will return us something
2938 * with this alignment (perhaps should assert).
2939 */
2940 m = ieee80211_beacon_alloc(ni, &avp->av_boff);
2941 if (m == NULL) {
2942 device_printf(sc->sc_dev, "%s: cannot get mbuf\n", __func__);
2943 sc->sc_stats.ast_be_nombuf++;
2944 return ENOMEM;
2945 }
2946 error = bus_dmamap_load_mbuf_sg(sc->sc_dmat, bf->bf_dmamap, m,
2947 bf->bf_segs, &bf->bf_nseg,
2948 BUS_DMA_NOWAIT);
2949 if (error != 0) {
2950 device_printf(sc->sc_dev,
2951 "%s: cannot map mbuf, bus_dmamap_load_mbuf_sg returns %d\n",
2952 __func__, error);
2953 m_freem(m);
2954 return error;
2955 }
2956
2957 /*
2958 * Calculate a TSF adjustment factor required for staggered
2959 * beacons. Note that we assume the format of the beacon
2960 * frame leaves the tstamp field immediately following the
2961 * header.
2962 */
2963 if (sc->sc_stagbeacons && avp->av_bslot > 0) {
2964 uint64_t tsfadjust;
2965 struct ieee80211_frame *wh;
2966
2967 /*
2968 * The beacon interval is in TU's; the TSF is in usecs.
2969 * We figure out how many TU's to add to align the timestamp
2970 * then convert to TSF units and handle byte swapping before
2971 * inserting it in the frame. The hardware will then add this
2972 * each time a beacon frame is sent. Note that we align vap's
2973 * 1..N and leave vap 0 untouched. This means vap 0 has a
2974 * timestamp in one beacon interval while the others get a
2975 * timstamp aligned to the next interval.
2976 */
2977 tsfadjust = ni->ni_intval *
2978 (ATH_BCBUF - avp->av_bslot) / ATH_BCBUF;
2979 tsfadjust = htole64(tsfadjust << 10); /* TU -> TSF */
2980
2981 DPRINTF(sc, ATH_DEBUG_BEACON,
2982 "%s: %s beacons bslot %d intval %u tsfadjust %llu\n",
2983 __func__, sc->sc_stagbeacons ? "stagger" : "burst",
2984 avp->av_bslot, ni->ni_intval,
2985 (long long unsigned) le64toh(tsfadjust));
2986
2987 wh = mtod(m, struct ieee80211_frame *);
2988 memcpy(&wh[1], &tsfadjust, sizeof(tsfadjust));
2989 }
2990 bf->bf_m = m;
2991 bf->bf_node = ieee80211_ref_node(ni);
2992
2993 return 0;
2994}
2995
2996/*
2997 * Setup the beacon frame for transmit.
2998 */
2999static void
3000ath_beacon_setup(struct ath_softc *sc, struct ath_buf *bf)
3001{
3002#define USE_SHPREAMBLE(_ic) \
3003 (((_ic)->ic_flags & (IEEE80211_F_SHPREAMBLE | IEEE80211_F_USEBARKER))\
3004 == IEEE80211_F_SHPREAMBLE)
3005 struct ieee80211_node *ni = bf->bf_node;
3006 struct ieee80211com *ic = ni->ni_ic;
3007 struct mbuf *m = bf->bf_m;
3008 struct ath_hal *ah = sc->sc_ah;
3009 struct ath_desc *ds;
3010 int flags, antenna;
3011 const HAL_RATE_TABLE *rt;
3012 u_int8_t rix, rate;
3013
3014 DPRINTF(sc, ATH_DEBUG_BEACON_PROC, "%s: m %p len %u\n",
3015 __func__, m, m->m_len);
3016
3017 /* setup descriptors */
3018 ds = bf->bf_desc;
3019
3020 flags = HAL_TXDESC_NOACK;
3021 if (ic->ic_opmode == IEEE80211_M_IBSS && sc->sc_hasveol) {
3022 ds->ds_link = bf->bf_daddr; /* self-linked */
3023 flags |= HAL_TXDESC_VEOL;
3024 /*
3025 * Let hardware handle antenna switching.
3026 */
3027 antenna = sc->sc_txantenna;
3028 } else {
3029 ds->ds_link = 0;
3030 /*
3031 * Switch antenna every 4 beacons.
3032 * XXX assumes two antenna
3033 */
3034 if (sc->sc_txantenna != 0)
3035 antenna = sc->sc_txantenna;
3036 else if (sc->sc_stagbeacons && sc->sc_nbcnvaps != 0)
3037 antenna = ((sc->sc_stats.ast_be_xmit / sc->sc_nbcnvaps) & 4 ? 2 : 1);
3038 else
3039 antenna = (sc->sc_stats.ast_be_xmit & 4 ? 2 : 1);
3040 }
3041
3042 KASSERT(bf->bf_nseg == 1,
3043 ("multi-segment beacon frame; nseg %u", bf->bf_nseg));
3044 ds->ds_data = bf->bf_segs[0].ds_addr;
3045 /*
3046 * Calculate rate code.
3047 * XXX everything at min xmit rate
3048 */
3049 rix = 0;
3050 rt = sc->sc_currates;
3051 rate = rt->info[rix].rateCode;
3052 if (USE_SHPREAMBLE(ic))
3053 rate |= rt->info[rix].shortPreamble;
3054 ath_hal_setuptxdesc(ah, ds
3055 , m->m_len + IEEE80211_CRC_LEN /* frame length */
3056 , sizeof(struct ieee80211_frame)/* header length */
3057 , HAL_PKT_TYPE_BEACON /* Atheros packet type */
3058 , ni->ni_txpower /* txpower XXX */
3059 , rate, 1 /* series 0 rate/tries */
3060 , HAL_TXKEYIX_INVALID /* no encryption */
3061 , antenna /* antenna mode */
3062 , flags /* no ack, veol for beacons */
3063 , 0 /* rts/cts rate */
3064 , 0 /* rts/cts duration */
3065 );
3066 /* NB: beacon's BufLen must be a multiple of 4 bytes */
3067 ath_hal_filltxdesc(ah, ds
3068 , roundup(m->m_len, 4) /* buffer length */
3069 , AH_TRUE /* first segment */
3070 , AH_TRUE /* last segment */
3071 , ds /* first descriptor */
3072 );
3073#if 0
3074 ath_desc_swap(ds);
3075#endif
3076#undef USE_SHPREAMBLE
3077}
3078
3079static void
3080ath_beacon_update(struct ieee80211vap *vap, int item)
3081{
3082 struct ieee80211_beacon_offsets *bo = &ATH_VAP(vap)->av_boff;
3083
3084 setbit(bo->bo_flags, item);
3085}
3086
3087/*
3088 * Append the contents of src to dst; both queues
3089 * are assumed to be locked.
3090 */
3091static void
3092ath_txqmove(struct ath_txq *dst, struct ath_txq *src)
3093{
3094 STAILQ_CONCAT(&dst->axq_q, &src->axq_q);
3095 dst->axq_link = src->axq_link;
3096 src->axq_link = NULL;
3097 dst->axq_depth += src->axq_depth;
3098 src->axq_depth = 0;
3099}
3100
3101/*
3102 * Transmit a beacon frame at SWBA. Dynamic updates to the
3103 * frame contents are done as needed and the slot time is
3104 * also adjusted based on current state.
3105 */
3106static void
3107ath_beacon_proc(void *arg, int pending)
3108{
3109 struct ath_softc *sc = arg;
3110 struct ath_hal *ah = sc->sc_ah;
3111 struct ieee80211vap *vap;
3112 struct ath_buf *bf;
3113 int slot, otherant;
3114 uint32_t bfaddr;
3115
3116 DPRINTF(sc, ATH_DEBUG_BEACON_PROC, "%s: pending %u\n",
3117 __func__, pending);
3118 /*
3119 * Check if the previous beacon has gone out. If
3120 * not don't try to post another, skip this period
3121 * and wait for the next. Missed beacons indicate
3122 * a problem and should not occur. If we miss too
3123 * many consecutive beacons reset the device.
3124 */
3125 if (ath_hal_numtxpending(ah, sc->sc_bhalq) != 0) {
3126 sc->sc_bmisscount++;
3127 DPRINTF(sc, ATH_DEBUG_BEACON,
3128 "%s: missed %u consecutive beacons\n",
3129 __func__, sc->sc_bmisscount);
3130 if (sc->sc_bmisscount >= ath_bstuck_threshold)
3131 taskqueue_enqueue(sc->sc_tq, &sc->sc_bstucktask);
3132 return;
3133 }
3134 if (sc->sc_bmisscount != 0) {
3135 DPRINTF(sc, ATH_DEBUG_BEACON,
3136 "%s: resume beacon xmit after %u misses\n",
3137 __func__, sc->sc_bmisscount);
3138 sc->sc_bmisscount = 0;
3139 }
3140
3141 if (sc->sc_stagbeacons) { /* staggered beacons */
3142 struct ieee80211com *ic = sc->sc_ifp->if_l2com;
3143 uint32_t tsftu;
3144
3145 tsftu = ath_hal_gettsf32(ah) >> 10;
3146 /* XXX lintval */
3147 slot = ((tsftu % ic->ic_lintval) * ATH_BCBUF) / ic->ic_lintval;
3148 vap = sc->sc_bslot[(slot+1) % ATH_BCBUF];
3149 bfaddr = 0;
3150 if (vap != NULL && vap->iv_state == IEEE80211_S_RUN) {
3151 bf = ath_beacon_generate(sc, vap);
3152 if (bf != NULL)
3153 bfaddr = bf->bf_daddr;
3154 }
3155 } else { /* burst'd beacons */
3156 uint32_t *bflink = &bfaddr;
3157
3158 for (slot = 0; slot < ATH_BCBUF; slot++) {
3159 vap = sc->sc_bslot[slot];
3160 if (vap != NULL && vap->iv_state == IEEE80211_S_RUN) {
3161 bf = ath_beacon_generate(sc, vap);
3162 if (bf != NULL) {
3163 *bflink = bf->bf_daddr;
3164 bflink = &bf->bf_desc->ds_link;
3165 }
3166 }
3167 }
3168 *bflink = 0; /* terminate list */
3169 }
3170
3171 /*
3172 * Handle slot time change when a non-ERP station joins/leaves
3173 * an 11g network. The 802.11 layer notifies us via callback,
3174 * we mark updateslot, then wait one beacon before effecting
3175 * the change. This gives associated stations at least one
3176 * beacon interval to note the state change.
3177 */
3178 /* XXX locking */
3179 if (sc->sc_updateslot == UPDATE) {
3180 sc->sc_updateslot = COMMIT; /* commit next beacon */
3181 sc->sc_slotupdate = slot;
3182 } else if (sc->sc_updateslot == COMMIT && sc->sc_slotupdate == slot)
3183 ath_setslottime(sc); /* commit change to h/w */
3184
3185 /*
3186 * Check recent per-antenna transmit statistics and flip
3187 * the default antenna if noticeably more frames went out
3188 * on the non-default antenna.
3189 * XXX assumes 2 anntenae
3190 */
3191 if (!sc->sc_diversity && (!sc->sc_stagbeacons || slot == 0)) {
3192 otherant = sc->sc_defant & 1 ? 2 : 1;
3193 if (sc->sc_ant_tx[otherant] > sc->sc_ant_tx[sc->sc_defant] + 2)
3194 ath_setdefantenna(sc, otherant);
3195 sc->sc_ant_tx[1] = sc->sc_ant_tx[2] = 0;
3196 }
3197
3198 if (bfaddr != 0) {
3199 /*
3200 * Stop any current dma and put the new frame on the queue.
3201 * This should never fail since we check above that no frames
3202 * are still pending on the queue.
3203 */
3204 if (!ath_hal_stoptxdma(ah, sc->sc_bhalq)) {
3205 DPRINTF(sc, ATH_DEBUG_ANY,
3206 "%s: beacon queue %u did not stop?\n",
3207 __func__, sc->sc_bhalq);
3208 }
3209 /* NB: cabq traffic should already be queued and primed */
3210 ath_hal_puttxbuf(ah, sc->sc_bhalq, bfaddr);
3211 ath_hal_txstart(ah, sc->sc_bhalq);
3212
3213 sc->sc_stats.ast_be_xmit++;
3214 }
3215}
3216
3217static struct ath_buf *
3218ath_beacon_generate(struct ath_softc *sc, struct ieee80211vap *vap)
3219{
3220 struct ath_vap *avp = ATH_VAP(vap);
3221 struct ath_txq *cabq = sc->sc_cabq;
3222 struct ath_buf *bf;
3223 struct mbuf *m;
3224 int nmcastq, error;
3225
3226 KASSERT(vap->iv_state == IEEE80211_S_RUN,
3227 ("not running, state %d", vap->iv_state));
3228 KASSERT(avp->av_bcbuf != NULL, ("no beacon buffer"));
3229
3230 /*
3231 * Update dynamic beacon contents. If this returns
3232 * non-zero then we need to remap the memory because
3233 * the beacon frame changed size (probably because
3234 * of the TIM bitmap).
3235 */
3236 bf = avp->av_bcbuf;
3237 m = bf->bf_m;
3238 nmcastq = avp->av_mcastq.axq_depth;
3239 if (ieee80211_beacon_update(bf->bf_node, &avp->av_boff, m, nmcastq)) {
3240 /* XXX too conservative? */
3241 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
3242 error = bus_dmamap_load_mbuf_sg(sc->sc_dmat, bf->bf_dmamap, m,
3243 bf->bf_segs, &bf->bf_nseg,
3244 BUS_DMA_NOWAIT);
3245 if (error != 0) {
3246 if_printf(vap->iv_ifp,
3247 "%s: bus_dmamap_load_mbuf_sg failed, error %u\n",
3248 __func__, error);
3249 return NULL;
3250 }
3251 }
3252 if ((avp->av_boff.bo_tim[4] & 1) && cabq->axq_depth) {
3253 DPRINTF(sc, ATH_DEBUG_BEACON,
3254 "%s: cabq did not drain, mcastq %u cabq %u\n",
3255 __func__, nmcastq, cabq->axq_depth);
3256 sc->sc_stats.ast_cabq_busy++;
3257 if (sc->sc_nvaps > 1 && sc->sc_stagbeacons) {
3258 /*
3259 * CABQ traffic from a previous vap is still pending.
3260 * We must drain the q before this beacon frame goes
3261 * out as otherwise this vap's stations will get cab
3262 * frames from a different vap.
3263 * XXX could be slow causing us to miss DBA
3264 */
3265 ath_tx_draintxq(sc, cabq);
3266 }
3267 }
3268 ath_beacon_setup(sc, bf);
3269 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_PREWRITE);
3270
3271 /*
3272 * Enable the CAB queue before the beacon queue to
3273 * insure cab frames are triggered by this beacon.
3274 */
3275 if (avp->av_boff.bo_tim[4] & 1) {
3276 struct ath_hal *ah = sc->sc_ah;
3277
3278 /* NB: only at DTIM */
3279 ATH_TXQ_LOCK(cabq);
3280 ATH_TXQ_LOCK(&avp->av_mcastq);
3281 if (nmcastq) {
3282 struct ath_buf *bfm;
3283
3284 /*
3285 * Move frames from the s/w mcast q to the h/w cab q.
3286 * XXX MORE_DATA bit
3287 */
3288 bfm = STAILQ_FIRST(&avp->av_mcastq.axq_q);
3289 if (cabq->axq_link != NULL) {
3290 *cabq->axq_link = bfm->bf_daddr;
3291 } else
3292 ath_hal_puttxbuf(ah, cabq->axq_qnum,
3293 bfm->bf_daddr);
3294 ath_txqmove(cabq, &avp->av_mcastq);
3295
3296 sc->sc_stats.ast_cabq_xmit += nmcastq;
3297 }
3298 /* NB: gated by beacon so safe to start here */
3299 ath_hal_txstart(ah, cabq->axq_qnum);
3300 ATH_TXQ_UNLOCK(cabq);
3301 ATH_TXQ_UNLOCK(&avp->av_mcastq);
3302 }
3303 return bf;
3304}
3305
3306static void
3307ath_beacon_start_adhoc(struct ath_softc *sc, struct ieee80211vap *vap)
3308{
3309 struct ath_vap *avp = ATH_VAP(vap);
3310 struct ath_hal *ah = sc->sc_ah;
3311 struct ath_buf *bf;
3312 struct mbuf *m;
3313 int error;
3314
3315 KASSERT(avp->av_bcbuf != NULL, ("no beacon buffer"));
3316
3317 /*
3318 * Update dynamic beacon contents. If this returns
3319 * non-zero then we need to remap the memory because
3320 * the beacon frame changed size (probably because
3321 * of the TIM bitmap).
3322 */
3323 bf = avp->av_bcbuf;
3324 m = bf->bf_m;
3325 if (ieee80211_beacon_update(bf->bf_node, &avp->av_boff, m, 0)) {
3326 /* XXX too conservative? */
3327 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
3328 error = bus_dmamap_load_mbuf_sg(sc->sc_dmat, bf->bf_dmamap, m,
3329 bf->bf_segs, &bf->bf_nseg,
3330 BUS_DMA_NOWAIT);
3331 if (error != 0) {
3332 if_printf(vap->iv_ifp,
3333 "%s: bus_dmamap_load_mbuf_sg failed, error %u\n",
3334 __func__, error);
3335 return;
3336 }
3337 }
3338 ath_beacon_setup(sc, bf);
3339 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_PREWRITE);
3340
3341 /* NB: caller is known to have already stopped tx dma */
3342 ath_hal_puttxbuf(ah, sc->sc_bhalq, bf->bf_daddr);
3343 ath_hal_txstart(ah, sc->sc_bhalq);
3344}
3345
3346/*
3347 * Reset the hardware after detecting beacons have stopped.
3348 */
3349static void
3350ath_bstuck_proc(void *arg, int pending)
3351{
3352 struct ath_softc *sc = arg;
3353 struct ifnet *ifp = sc->sc_ifp;
3354
3355 if_printf(ifp, "stuck beacon; resetting (bmiss count %u)\n",
3356 sc->sc_bmisscount);
3357 sc->sc_stats.ast_bstuck++;
3358 ath_reset(ifp);
3359}
3360
3361/*
3362 * Reclaim beacon resources and return buffer to the pool.
3363 */
3364static void
3365ath_beacon_return(struct ath_softc *sc, struct ath_buf *bf)
3366{
3367
3368 if (bf->bf_m != NULL) {
3369 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
3370 m_freem(bf->bf_m);
3371 bf->bf_m = NULL;
3372 }
3373 if (bf->bf_node != NULL) {
3374 ieee80211_free_node(bf->bf_node);
3375 bf->bf_node = NULL;
3376 }
3377 STAILQ_INSERT_TAIL(&sc->sc_bbuf, bf, bf_list);
3378}
3379
3380/*
3381 * Reclaim beacon resources.
3382 */
3383static void
3384ath_beacon_free(struct ath_softc *sc)
3385{
3386 struct ath_buf *bf;
3387
3388 STAILQ_FOREACH(bf, &sc->sc_bbuf, bf_list) {
3389 if (bf->bf_m != NULL) {
3390 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
3391 m_freem(bf->bf_m);
3392 bf->bf_m = NULL;
3393 }
3394 if (bf->bf_node != NULL) {
3395 ieee80211_free_node(bf->bf_node);
3396 bf->bf_node = NULL;
3397 }
3398 }
3399}
3400
3401/*
3402 * Configure the beacon and sleep timers.
3403 *
3404 * When operating as an AP this resets the TSF and sets
3405 * up the hardware to notify us when we need to issue beacons.
3406 *
3407 * When operating in station mode this sets up the beacon
3408 * timers according to the timestamp of the last received
3409 * beacon and the current TSF, configures PCF and DTIM
3410 * handling, programs the sleep registers so the hardware
3411 * will wakeup in time to receive beacons, and configures
3412 * the beacon miss handling so we'll receive a BMISS
3413 * interrupt when we stop seeing beacons from the AP
3414 * we've associated with.
3415 */
3416static void
3417ath_beacon_config(struct ath_softc *sc, struct ieee80211vap *vap)
3418{
3419#define TSF_TO_TU(_h,_l) \
3420 ((((u_int32_t)(_h)) << 22) | (((u_int32_t)(_l)) >> 10))
3421#define FUDGE 2
3422 struct ath_hal *ah = sc->sc_ah;
3423 struct ieee80211com *ic = sc->sc_ifp->if_l2com;
3424 struct ieee80211_node *ni;
3425 u_int32_t nexttbtt, intval, tsftu;
3426 u_int64_t tsf;
3427
3428 if (vap == NULL)
3429 vap = TAILQ_FIRST(&ic->ic_vaps); /* XXX */
3430 ni = vap->iv_bss;
3431
3432 /* extract tstamp from last beacon and convert to TU */
3433 nexttbtt = TSF_TO_TU(LE_READ_4(ni->ni_tstamp.data + 4),
3434 LE_READ_4(ni->ni_tstamp.data));
3435 if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
3436 /*
3437 * For multi-bss ap support beacons are either staggered
3438 * evenly over N slots or burst together. For the former
3439 * arrange for the SWBA to be delivered for each slot.
3440 * Slots that are not occupied will generate nothing.
3441 */
3442 /* NB: the beacon interval is kept internally in TU's */
3443 intval = ni->ni_intval & HAL_BEACON_PERIOD;
3444 if (sc->sc_stagbeacons)
3445 intval /= ATH_BCBUF;
3446 } else {
3447 /* NB: the beacon interval is kept internally in TU's */
3448 intval = ni->ni_intval & HAL_BEACON_PERIOD;
3449 }
3450 if (nexttbtt == 0) /* e.g. for ap mode */
3451 nexttbtt = intval;
3452 else if (intval) /* NB: can be 0 for monitor mode */
3453 nexttbtt = roundup(nexttbtt, intval);
3454 DPRINTF(sc, ATH_DEBUG_BEACON, "%s: nexttbtt %u intval %u (%u)\n",
3455 __func__, nexttbtt, intval, ni->ni_intval);
3456 if (ic->ic_opmode == IEEE80211_M_STA && !sc->sc_swbmiss) {
3457 HAL_BEACON_STATE bs;
3458 int dtimperiod, dtimcount;
3459 int cfpperiod, cfpcount;
3460
3461 /*
3462 * Setup dtim and cfp parameters according to
3463 * last beacon we received (which may be none).
3464 */
3465 dtimperiod = ni->ni_dtim_period;
3466 if (dtimperiod <= 0) /* NB: 0 if not known */
3467 dtimperiod = 1;
3468 dtimcount = ni->ni_dtim_count;
3469 if (dtimcount >= dtimperiod) /* NB: sanity check */
3470 dtimcount = 0; /* XXX? */
3471 cfpperiod = 1; /* NB: no PCF support yet */
3472 cfpcount = 0;
3473 /*
3474 * Pull nexttbtt forward to reflect the current
3475 * TSF and calculate dtim+cfp state for the result.
3476 */
3477 tsf = ath_hal_gettsf64(ah);
3478 tsftu = TSF_TO_TU(tsf>>32, tsf) + FUDGE;
3479 do {
3480 nexttbtt += intval;
3481 if (--dtimcount < 0) {
3482 dtimcount = dtimperiod - 1;
3483 if (--cfpcount < 0)
3484 cfpcount = cfpperiod - 1;
3485 }
3486 } while (nexttbtt < tsftu);
3487 memset(&bs, 0, sizeof(bs));
3488 bs.bs_intval = intval;
3489 bs.bs_nexttbtt = nexttbtt;
3490 bs.bs_dtimperiod = dtimperiod*intval;
3491 bs.bs_nextdtim = bs.bs_nexttbtt + dtimcount*intval;
3492 bs.bs_cfpperiod = cfpperiod*bs.bs_dtimperiod;
3493 bs.bs_cfpnext = bs.bs_nextdtim + cfpcount*bs.bs_dtimperiod;
3494 bs.bs_cfpmaxduration = 0;
3495#if 0
3496 /*
3497 * The 802.11 layer records the offset to the DTIM
3498 * bitmap while receiving beacons; use it here to
3499 * enable h/w detection of our AID being marked in
3500 * the bitmap vector (to indicate frames for us are
3501 * pending at the AP).
3502 * XXX do DTIM handling in s/w to WAR old h/w bugs
3503 * XXX enable based on h/w rev for newer chips
3504 */
3505 bs.bs_timoffset = ni->ni_timoff;
3506#endif
3507 /*
3508 * Calculate the number of consecutive beacons to miss
3509 * before taking a BMISS interrupt.
3510 * Note that we clamp the result to at most 10 beacons.
3511 */
3512 bs.bs_bmissthreshold = vap->iv_bmissthreshold;
3513 if (bs.bs_bmissthreshold > 10)
3514 bs.bs_bmissthreshold = 10;
3515 else if (bs.bs_bmissthreshold <= 0)
3516 bs.bs_bmissthreshold = 1;
3517
3518 /*
3519 * Calculate sleep duration. The configuration is
3520 * given in ms. We insure a multiple of the beacon
3521 * period is used. Also, if the sleep duration is
3522 * greater than the DTIM period then it makes senses
3523 * to make it a multiple of that.
3524 *
3525 * XXX fixed at 100ms
3526 */
3527 bs.bs_sleepduration =
3528 roundup(IEEE80211_MS_TO_TU(100), bs.bs_intval);
3529 if (bs.bs_sleepduration > bs.bs_dtimperiod)
3530 bs.bs_sleepduration = roundup(bs.bs_sleepduration, bs.bs_dtimperiod);
3531
3532 DPRINTF(sc, ATH_DEBUG_BEACON,
3533 "%s: tsf %ju tsf:tu %u intval %u nexttbtt %u dtim %u nextdtim %u bmiss %u sleep %u cfp:period %u maxdur %u next %u timoffset %u\n"
3534 , __func__
3535 , tsf, tsftu
3536 , bs.bs_intval
3537 , bs.bs_nexttbtt
3538 , bs.bs_dtimperiod
3539 , bs.bs_nextdtim
3540 , bs.bs_bmissthreshold
3541 , bs.bs_sleepduration
3542 , bs.bs_cfpperiod
3543 , bs.bs_cfpmaxduration
3544 , bs.bs_cfpnext
3545 , bs.bs_timoffset
3546 );
3547 ath_hal_intrset(ah, 0);
3548 ath_hal_beacontimers(ah, &bs);
3549 sc->sc_imask |= HAL_INT_BMISS;
3550 ath_hal_intrset(ah, sc->sc_imask);
3551 } else {
3552 ath_hal_intrset(ah, 0);
3553 if (nexttbtt == intval)
3554 intval |= HAL_BEACON_RESET_TSF;
3555 if (ic->ic_opmode == IEEE80211_M_IBSS) {
3556 /*
3557 * In IBSS mode enable the beacon timers but only
3558 * enable SWBA interrupts if we need to manually
3559 * prepare beacon frames. Otherwise we use a
3560 * self-linked tx descriptor and let the hardware
3561 * deal with things.
3562 */
3563 intval |= HAL_BEACON_ENA;
3564 if (!sc->sc_hasveol)
3565 sc->sc_imask |= HAL_INT_SWBA;
3566 if ((intval & HAL_BEACON_RESET_TSF) == 0) {
3567 /*
3568 * Pull nexttbtt forward to reflect
3569 * the current TSF.
3570 */
3571 tsf = ath_hal_gettsf64(ah);
3572 tsftu = TSF_TO_TU(tsf>>32, tsf) + FUDGE;
3573 do {
3574 nexttbtt += intval;
3575 } while (nexttbtt < tsftu);
3576 }
3577 ath_beaconq_config(sc);
3578 } else if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
3579 /*
3580 * In AP mode we enable the beacon timers and
3581 * SWBA interrupts to prepare beacon frames.
3582 */
3583 intval |= HAL_BEACON_ENA;
3584 sc->sc_imask |= HAL_INT_SWBA; /* beacon prepare */
3585 ath_beaconq_config(sc);
3586 }
3587 ath_hal_beaconinit(ah, nexttbtt, intval);
3588 sc->sc_bmisscount = 0;
3589 ath_hal_intrset(ah, sc->sc_imask);
3590 /*
3591 * When using a self-linked beacon descriptor in
3592 * ibss mode load it once here.
3593 */
3594 if (ic->ic_opmode == IEEE80211_M_IBSS && sc->sc_hasveol)
3595 ath_beacon_start_adhoc(sc, vap);
3596 }
3597 sc->sc_syncbeacon = 0;
3598#undef FUDGE
3599#undef TSF_TO_TU
3600}
3601
3602static void
3603ath_load_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
3604{
3605 bus_addr_t *paddr = (bus_addr_t*) arg;
3606 KASSERT(error == 0, ("error %u on bus_dma callback", error));
3607 *paddr = segs->ds_addr;
3608}
3609
3610static int
3611ath_descdma_setup(struct ath_softc *sc,
3612 struct ath_descdma *dd, ath_bufhead *head,
3613 const char *name, int nbuf, int ndesc)
3614{
3615#define DS2PHYS(_dd, _ds) \
3616 ((_dd)->dd_desc_paddr + ((caddr_t)(_ds) - (caddr_t)(_dd)->dd_desc))
3617 struct ifnet *ifp = sc->sc_ifp;
3618 struct ath_desc *ds;
3619 struct ath_buf *bf;
3620 int i, bsize, error;
3621
3622 DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA: %u buffers %u desc/buf\n",
3623 __func__, name, nbuf, ndesc);
3624
3625 dd->dd_name = name;
3626 dd->dd_desc_len = sizeof(struct ath_desc) * nbuf * ndesc;
3627
3628 /*
3629 * Setup DMA descriptor area.
3630 */
3631 error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), /* parent */
3632 PAGE_SIZE, 0, /* alignment, bounds */
3633 BUS_SPACE_MAXADDR_32BIT, /* lowaddr */
3634 BUS_SPACE_MAXADDR, /* highaddr */
3635 NULL, NULL, /* filter, filterarg */
3636 dd->dd_desc_len, /* maxsize */
3637 1, /* nsegments */
3638 dd->dd_desc_len, /* maxsegsize */
3639 BUS_DMA_ALLOCNOW, /* flags */
3640 NULL, /* lockfunc */
3641 NULL, /* lockarg */
3642 &dd->dd_dmat);
3643 if (error != 0) {
3644 if_printf(ifp, "cannot allocate %s DMA tag\n", dd->dd_name);
3645 return error;
3646 }
3647
3648 /* allocate descriptors */
3649 error = bus_dmamap_create(dd->dd_dmat, BUS_DMA_NOWAIT, &dd->dd_dmamap);
3650 if (error != 0) {
3651 if_printf(ifp, "unable to create dmamap for %s descriptors, "
3652 "error %u\n", dd->dd_name, error);
3653 goto fail0;
3654 }
3655
3656 error = bus_dmamem_alloc(dd->dd_dmat, (void**) &dd->dd_desc,
3657 BUS_DMA_NOWAIT | BUS_DMA_COHERENT,
3658 &dd->dd_dmamap);
3659 if (error != 0) {
3660 if_printf(ifp, "unable to alloc memory for %u %s descriptors, "
3661 "error %u\n", nbuf * ndesc, dd->dd_name, error);
3662 goto fail1;
3663 }
3664
3665 error = bus_dmamap_load(dd->dd_dmat, dd->dd_dmamap,
3666 dd->dd_desc, dd->dd_desc_len,
3667 ath_load_cb, &dd->dd_desc_paddr,
3668 BUS_DMA_NOWAIT);
3669 if (error != 0) {
3670 if_printf(ifp, "unable to map %s descriptors, error %u\n",
3671 dd->dd_name, error);
3672 goto fail2;
3673 }
3674
3675 ds = dd->dd_desc;
3676 DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA map: %p (%lu) -> %p (%lu)\n",
3677 __func__, dd->dd_name, ds, (u_long) dd->dd_desc_len,
3678 (caddr_t) dd->dd_desc_paddr, /*XXX*/ (u_long) dd->dd_desc_len);
3679
3680 /* allocate rx buffers */
3681 bsize = sizeof(struct ath_buf) * nbuf;
3682 bf = malloc(bsize, M_ATHDEV, M_NOWAIT | M_ZERO);
3683 if (bf == NULL) {
3684 if_printf(ifp, "malloc of %s buffers failed, size %u\n",
3685 dd->dd_name, bsize);
3686 goto fail3;
3687 }
3688 dd->dd_bufptr = bf;
3689
3690 STAILQ_INIT(head);
3691 for (i = 0; i < nbuf; i++, bf++, ds += ndesc) {
3692 bf->bf_desc = ds;
3693 bf->bf_daddr = DS2PHYS(dd, ds);
3694 error = bus_dmamap_create(sc->sc_dmat, BUS_DMA_NOWAIT,
3695 &bf->bf_dmamap);
3696 if (error != 0) {
3697 if_printf(ifp, "unable to create dmamap for %s "
3698 "buffer %u, error %u\n", dd->dd_name, i, error);
3699 ath_descdma_cleanup(sc, dd, head);
3700 return error;
3701 }
3702 STAILQ_INSERT_TAIL(head, bf, bf_list);
3703 }
3704 return 0;
3705fail3:
3706 bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap);
3707fail2:
3708 bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap);
3709fail1:
3710 bus_dmamap_destroy(dd->dd_dmat, dd->dd_dmamap);
3711fail0:
3712 bus_dma_tag_destroy(dd->dd_dmat);
3713 memset(dd, 0, sizeof(*dd));
3714 return error;
3715#undef DS2PHYS
3716}
3717
3718static void
3719ath_descdma_cleanup(struct ath_softc *sc,
3720 struct ath_descdma *dd, ath_bufhead *head)
3721{
3722 struct ath_buf *bf;
3723 struct ieee80211_node *ni;
3724
3725 bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap);
3726 bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap);
3727 bus_dmamap_destroy(dd->dd_dmat, dd->dd_dmamap);
3728 bus_dma_tag_destroy(dd->dd_dmat);
3729
3730 STAILQ_FOREACH(bf, head, bf_list) {
3731 if (bf->bf_m) {
3732 m_freem(bf->bf_m);
3733 bf->bf_m = NULL;
3734 }
3735 if (bf->bf_dmamap != NULL) {
3736 bus_dmamap_destroy(sc->sc_dmat, bf->bf_dmamap);
3737 bf->bf_dmamap = NULL;
3738 }
3739 ni = bf->bf_node;
3740 bf->bf_node = NULL;
3741 if (ni != NULL) {
3742 /*
3743 * Reclaim node reference.
3744 */
3745 ieee80211_free_node(ni);
3746 }
3747 }
3748
3749 STAILQ_INIT(head);
3750 free(dd->dd_bufptr, M_ATHDEV);
3751 memset(dd, 0, sizeof(*dd));
3752}
3753
3754static int
3755ath_desc_alloc(struct ath_softc *sc)
3756{
3757 int error;
3758
3759 error = ath_descdma_setup(sc, &sc->sc_rxdma, &sc->sc_rxbuf,
3760 "rx", ath_rxbuf, 1);
3761 if (error != 0)
3762 return error;
3763
3764 error = ath_descdma_setup(sc, &sc->sc_txdma, &sc->sc_txbuf,
3765 "tx", ath_txbuf, ATH_TXDESC);
3766 if (error != 0) {
3767 ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
3768 return error;
3769 }
3770
3771 error = ath_descdma_setup(sc, &sc->sc_bdma, &sc->sc_bbuf,
3772 "beacon", ATH_BCBUF, 1);
3773 if (error != 0) {
3774 ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
3775 ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
3776 return error;
3777 }
3778 return 0;
3779}
3780
3781static void
3782ath_desc_free(struct ath_softc *sc)
3783{
3784
3785 if (sc->sc_bdma.dd_desc_len != 0)
3786 ath_descdma_cleanup(sc, &sc->sc_bdma, &sc->sc_bbuf);
3787 if (sc->sc_txdma.dd_desc_len != 0)
3788 ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
3789 if (sc->sc_rxdma.dd_desc_len != 0)
3790 ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
3791}
3792
3793static struct ieee80211_node *
3794ath_node_alloc(struct ieee80211vap *vap, const uint8_t mac[IEEE80211_ADDR_LEN])
3795{
3796 struct ieee80211com *ic = vap->iv_ic;
3797 struct ath_softc *sc = ic->ic_ifp->if_softc;
3798 const size_t space = sizeof(struct ath_node) + sc->sc_rc->arc_space;
3799 struct ath_node *an;
3800
3801 an = malloc(space, M_80211_NODE, M_NOWAIT|M_ZERO);
3802 if (an == NULL) {
3803 /* XXX stat+msg */
3804 return NULL;
3805 }
3806 ath_rate_node_init(sc, an);
3807
3808 DPRINTF(sc, ATH_DEBUG_NODE, "%s: an %p\n", __func__, an);
3809 return &an->an_node;
3810}
3811
3812static void
3813ath_node_free(struct ieee80211_node *ni)
3814{
3815 struct ieee80211com *ic = ni->ni_ic;
3816 struct ath_softc *sc = ic->ic_ifp->if_softc;
3817
3818 DPRINTF(sc, ATH_DEBUG_NODE, "%s: ni %p\n", __func__, ni);
3819
3820 ath_rate_node_cleanup(sc, ATH_NODE(ni));
3821 sc->sc_node_free(ni);
3822}
3823
3824static void
3825ath_node_getsignal(const struct ieee80211_node *ni, int8_t *rssi, int8_t *noise)
3826{
3827 struct ieee80211com *ic = ni->ni_ic;
3828 struct ath_softc *sc = ic->ic_ifp->if_softc;
3829 struct ath_hal *ah = sc->sc_ah;
3830
3831 *rssi = ic->ic_node_getrssi(ni);
3832 if (ni->ni_chan != IEEE80211_CHAN_ANYC)
3833 *noise = ath_hal_getchannoise(ah, ni->ni_chan);
3834 else
3835 *noise = -95; /* nominally correct */
3836}
3837
3838static int
3839ath_rxbuf_init(struct ath_softc *sc, struct ath_buf *bf)
3840{
3841 struct ath_hal *ah = sc->sc_ah;
3842 int error;
3843 struct mbuf *m;
3844 struct ath_desc *ds;
3845
3846 m = bf->bf_m;
3847 if (m == NULL) {
3848 /*
3849 * NB: by assigning a page to the rx dma buffer we
3850 * implicitly satisfy the Atheros requirement that
3851 * this buffer be cache-line-aligned and sized to be
3852 * multiple of the cache line size. Not doing this
3853 * causes weird stuff to happen (for the 5210 at least).
3854 */
3855 m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
3856 if (m == NULL) {
3857 DPRINTF(sc, ATH_DEBUG_ANY,
3858 "%s: no mbuf/cluster\n", __func__);
3859 sc->sc_stats.ast_rx_nombuf++;
3860 return ENOMEM;
3861 }
3862 m->m_pkthdr.len = m->m_len = m->m_ext.ext_size;
3863
3864 error = bus_dmamap_load_mbuf_sg(sc->sc_dmat,
3865 bf->bf_dmamap, m,
3866 bf->bf_segs, &bf->bf_nseg,
3867 BUS_DMA_NOWAIT);
3868 if (error != 0) {
3869 DPRINTF(sc, ATH_DEBUG_ANY,
3870 "%s: bus_dmamap_load_mbuf_sg failed; error %d\n",
3871 __func__, error);
3872 sc->sc_stats.ast_rx_busdma++;
3873 m_freem(m);
3874 return error;
3875 }
3876 KASSERT(bf->bf_nseg == 1,
3877 ("multi-segment packet; nseg %u", bf->bf_nseg));
3878 bf->bf_m = m;
3879 }
3880 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_PREREAD);
3881
3882 /*
3883 * Setup descriptors. For receive we always terminate
3884 * the descriptor list with a self-linked entry so we'll
3885 * not get overrun under high load (as can happen with a
3886 * 5212 when ANI processing enables PHY error frames).
3887 *
3888 * To insure the last descriptor is self-linked we create
3889 * each descriptor as self-linked and add it to the end. As
3890 * each additional descriptor is added the previous self-linked
3891 * entry is ``fixed'' naturally. This should be safe even
3892 * if DMA is happening. When processing RX interrupts we
3893 * never remove/process the last, self-linked, entry on the
3894 * descriptor list. This insures the hardware always has
3895 * someplace to write a new frame.
3896 */
3897 ds = bf->bf_desc;
3898 ds->ds_link = bf->bf_daddr; /* link to self */
3899 ds->ds_data = bf->bf_segs[0].ds_addr;
3900 ath_hal_setuprxdesc(ah, ds
3901 , m->m_len /* buffer size */
3902 , 0
3903 );
3904
3905 if (sc->sc_rxlink != NULL)
3906 *sc->sc_rxlink = bf->bf_daddr;
3907 sc->sc_rxlink = &ds->ds_link;
3908 return 0;
3909}
3910
3911/*
3912 * Extend 15-bit time stamp from rx descriptor to
3913 * a full 64-bit TSF using the specified TSF.
3914 */
3915static __inline u_int64_t
3916ath_extend_tsf(u_int32_t rstamp, u_int64_t tsf)
3917{
3918 if ((tsf & 0x7fff) < rstamp)
3919 tsf -= 0x8000;
3920 return ((tsf &~ 0x7fff) | rstamp);
3921}
3922
3923/*
3924 * Intercept management frames to collect beacon rssi data
3925 * and to do ibss merges.
3926 */
3927static void
3928ath_recv_mgmt(struct ieee80211_node *ni, struct mbuf *m,
3929 int subtype, int rssi, int noise, u_int32_t rstamp)
3930{
3931 struct ieee80211vap *vap = ni->ni_vap;
3932 struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc;
3933
3934 /*
3935 * Call up first so subsequent work can use information
3936 * potentially stored in the node (e.g. for ibss merge).
3937 */
3938 ATH_VAP(vap)->av_recv_mgmt(ni, m, subtype, rssi, noise, rstamp);
3939 switch (subtype) {
3940 case IEEE80211_FC0_SUBTYPE_BEACON:
3941 /* update rssi statistics for use by the hal */
3942 ATH_RSSI_LPF(sc->sc_halstats.ns_avgbrssi, rssi);
3943 if (sc->sc_syncbeacon &&
3944 ni == vap->iv_bss && vap->iv_state == IEEE80211_S_RUN) {
3945 /*
3946 * Resync beacon timers using the tsf of the beacon
3947 * frame we just received.
3948 */
3949 ath_beacon_config(sc, vap);
3950 }
3951 /* fall thru... */
3952 case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
3953 if (vap->iv_opmode == IEEE80211_M_IBSS &&
3954 vap->iv_state == IEEE80211_S_RUN) {
3955 u_int64_t tsf = ath_extend_tsf(rstamp,
3956 ath_hal_gettsf64(sc->sc_ah));
3957 /*
3958 * Handle ibss merge as needed; check the tsf on the
3959 * frame before attempting the merge. The 802.11 spec
3960 * says the station should change it's bssid to match
3961 * the oldest station with the same ssid, where oldest
3962 * is determined by the tsf. Note that hardware
3963 * reconfiguration happens through callback to
3964 * ath_newstate as the state machine will go from
3965 * RUN -> RUN when this happens.
3966 */
3967 if (le64toh(ni->ni_tstamp.tsf) >= tsf) {
3968 DPRINTF(sc, ATH_DEBUG_STATE,
3969 "ibss merge, rstamp %u tsf %ju "
3970 "tstamp %ju\n", rstamp, (uintmax_t)tsf,
3971 (uintmax_t)ni->ni_tstamp.tsf);
3972 (void) ieee80211_ibss_merge(ni);
3973 }
3974 }
3975 break;
3976 }
3977}
3978
3979/*
3980 * Set the default antenna.
3981 */
3982static void
3983ath_setdefantenna(struct ath_softc *sc, u_int antenna)
3984{
3985 struct ath_hal *ah = sc->sc_ah;
3986
3987 /* XXX block beacon interrupts */
3988 ath_hal_setdefantenna(ah, antenna);
3989 if (sc->sc_defant != antenna)
3990 sc->sc_stats.ast_ant_defswitch++;
3991 sc->sc_defant = antenna;
3992 sc->sc_rxotherant = 0;
3993}
3994
3995static int
3996ath_rx_tap(struct ifnet *ifp, struct mbuf *m,
3997 const struct ath_rx_status *rs, u_int64_t tsf, int16_t nf)
3998{
3999#define CHAN_HT20 htole32(IEEE80211_CHAN_HT20)
4000#define CHAN_HT40U htole32(IEEE80211_CHAN_HT40U)
4001#define CHAN_HT40D htole32(IEEE80211_CHAN_HT40D)
4002#define CHAN_HT (CHAN_HT20|CHAN_HT40U|CHAN_HT40D)
4003 struct ath_softc *sc = ifp->if_softc;
4004 const HAL_RATE_TABLE *rt;
4005 uint8_t rix;
4006
4007 /*
4008 * Discard anything shorter than an ack or cts.
4009 */
4010 if (m->m_pkthdr.len < IEEE80211_ACK_LEN) {
4011 DPRINTF(sc, ATH_DEBUG_RECV, "%s: runt packet %d\n",
4012 __func__, m->m_pkthdr.len);
4013 sc->sc_stats.ast_rx_tooshort++;
4014 return 0;
4015 }
4016 rt = sc->sc_currates;
4017 KASSERT(rt != NULL, ("no rate table, mode %u", sc->sc_curmode));
4018 rix = rt->rateCodeToIndex[rs->rs_rate];
4019 sc->sc_rx_th.wr_rate = sc->sc_hwmap[rix].ieeerate;
4020 sc->sc_rx_th.wr_flags = sc->sc_hwmap[rix].rxflags;
4021#ifdef AH_SUPPORT_AR5416
4022 sc->sc_rx_th.wr_chan_flags &= ~CHAN_HT;
4023 if (sc->sc_rx_th.wr_rate & IEEE80211_RATE_MCS) { /* HT rate */
4024 struct ieee80211com *ic = ifp->if_l2com;
4025
4026 if ((rs->rs_flags & HAL_RX_2040) == 0)
4027 sc->sc_rx_th.wr_chan_flags |= CHAN_HT20;
4028 else if (IEEE80211_IS_CHAN_HT40U(ic->ic_curchan))
4029 sc->sc_rx_th.wr_chan_flags |= CHAN_HT40U;
4030 else
4031 sc->sc_rx_th.wr_chan_flags |= CHAN_HT40D;
4032 if ((rs->rs_flags & HAL_RX_GI) == 0)
4033 sc->sc_rx_th.wr_flags |= IEEE80211_RADIOTAP_F_SHORTGI;
4034 }
4035#endif
4036 sc->sc_rx_th.wr_tsf = htole64(ath_extend_tsf(rs->rs_tstamp, tsf));
4037 if (rs->rs_status & HAL_RXERR_CRC)
4038 sc->sc_rx_th.wr_flags |= IEEE80211_RADIOTAP_F_BADFCS;
4039 /* XXX propagate other error flags from descriptor */
4040 sc->sc_rx_th.wr_antsignal = rs->rs_rssi + nf;
4041 sc->sc_rx_th.wr_antnoise = nf;
4042 sc->sc_rx_th.wr_antenna = rs->rs_antenna;
4043
4044 bpf_mtap2(ifp->if_bpf, &sc->sc_rx_th, sc->sc_rx_th_len, m);
4045
4046 return 1;
4047#undef CHAN_HT
4048#undef CHAN_HT20
4049#undef CHAN_HT40U
4050#undef CHAN_HT40D
4051}
4052
4053static void
4054ath_handle_micerror(struct ieee80211com *ic,
4055 struct ieee80211_frame *wh, int keyix)
4056{
4057 struct ieee80211_node *ni;
4058
4059 /* XXX recheck MIC to deal w/ chips that lie */
4060 /* XXX discard MIC errors on !data frames */
4061 ni = ieee80211_find_rxnode(ic, (const struct ieee80211_frame_min *) wh);
4062 if (ni != NULL) {
4063 ieee80211_notify_michael_failure(ni->ni_vap, wh, keyix);
4064 ieee80211_free_node(ni);
4065 }
4066}
4067
4068static void
4069ath_rx_proc(void *arg, int npending)
4070{
4071#define PA2DESC(_sc, _pa) \
4072 ((struct ath_desc *)((caddr_t)(_sc)->sc_rxdma.dd_desc + \
4073 ((_pa) - (_sc)->sc_rxdma.dd_desc_paddr)))
4074 struct ath_softc *sc = arg;
4075 struct ath_buf *bf;
4076 struct ifnet *ifp = sc->sc_ifp;
4077 struct ieee80211com *ic = ifp->if_l2com;
4078 struct ath_hal *ah = sc->sc_ah;
4079 struct ath_desc *ds;
4080 struct ath_rx_status *rs;
4081 struct mbuf *m;
4082 struct ieee80211_node *ni;
4083 int len, type, ngood;
4084 u_int phyerr;
4085 HAL_STATUS status;
4086 int16_t nf;
4087 u_int64_t tsf;
4088
4089 DPRINTF(sc, ATH_DEBUG_RX_PROC, "%s: pending %u\n", __func__, npending);
4090 ngood = 0;
4091 nf = ath_hal_getchannoise(ah, sc->sc_curchan);
4092 sc->sc_stats.ast_rx_noise = nf;
4093 tsf = ath_hal_gettsf64(ah);
4094 do {
4095 bf = STAILQ_FIRST(&sc->sc_rxbuf);
4096 if (bf == NULL) { /* NB: shouldn't happen */
4097 if_printf(ifp, "%s: no buffer!\n", __func__);
4098 break;
4099 }
4100 m = bf->bf_m;
4101 if (m == NULL) { /* NB: shouldn't happen */
4102 /*
4103 * If mbuf allocation failed previously there
4104 * will be no mbuf; try again to re-populate it.
4105 */
4106 /* XXX make debug msg */
4107 if_printf(ifp, "%s: no mbuf!\n", __func__);
4108 STAILQ_REMOVE_HEAD(&sc->sc_rxbuf, bf_list);
4109 goto rx_next;
4110 }
4111 ds = bf->bf_desc;
4112 if (ds->ds_link == bf->bf_daddr) {
4113 /* NB: never process the self-linked entry at the end */
4114 break;
4115 }
4116 /* XXX sync descriptor memory */
4117 /*
4118 * Must provide the virtual address of the current
4119 * descriptor, the physical address, and the virtual
4120 * address of the next descriptor in the h/w chain.
4121 * This allows the HAL to look ahead to see if the
4122 * hardware is done with a descriptor by checking the
4123 * done bit in the following descriptor and the address
4124 * of the current descriptor the DMA engine is working
4125 * on. All this is necessary because of our use of
4126 * a self-linked list to avoid rx overruns.
4127 */
4128 rs = &bf->bf_status.ds_rxstat;
4129 status = ath_hal_rxprocdesc(ah, ds,
4130 bf->bf_daddr, PA2DESC(sc, ds->ds_link), rs);
4131#ifdef ATH_DEBUG
4132 if (sc->sc_debug & ATH_DEBUG_RECV_DESC)
4133 ath_printrxbuf(sc, bf, 0, status == HAL_OK);
4134#endif
4135 if (status == HAL_EINPROGRESS)
4136 break;
4137 STAILQ_REMOVE_HEAD(&sc->sc_rxbuf, bf_list);
4138 if (rs->rs_status != 0) {
4139 if (rs->rs_status & HAL_RXERR_CRC)
4140 sc->sc_stats.ast_rx_crcerr++;
4141 if (rs->rs_status & HAL_RXERR_FIFO)
4142 sc->sc_stats.ast_rx_fifoerr++;
4143 if (rs->rs_status & HAL_RXERR_PHY) {
4144 sc->sc_stats.ast_rx_phyerr++;
4145 phyerr = rs->rs_phyerr & 0x1f;
4146 sc->sc_stats.ast_rx_phy[phyerr]++;
4147 goto rx_error; /* NB: don't count in ierrors */
4148 }
4149 if (rs->rs_status & HAL_RXERR_DECRYPT) {
4150 /*
4151 * Decrypt error. If the error occurred
4152 * because there was no hardware key, then
4153 * let the frame through so the upper layers
4154 * can process it. This is necessary for 5210
4155 * parts which have no way to setup a ``clear''
4156 * key cache entry.
4157 *
4158 * XXX do key cache faulting
4159 */
4160 if (rs->rs_keyix == HAL_RXKEYIX_INVALID)
4161 goto rx_accept;
4162 sc->sc_stats.ast_rx_badcrypt++;
4163 }
4164 if (rs->rs_status & HAL_RXERR_MIC) {
4165 sc->sc_stats.ast_rx_badmic++;
4166 /*
4167 * Do minimal work required to hand off
4168 * the 802.11 header for notifcation.
4169 */
4170 /* XXX frag's and qos frames */
4171 len = rs->rs_datalen;
4172 if (len >= sizeof (struct ieee80211_frame)) {
4173 bus_dmamap_sync(sc->sc_dmat,
4174 bf->bf_dmamap,
4175 BUS_DMASYNC_POSTREAD);
4176 ath_handle_micerror(ic,
4177 mtod(m, struct ieee80211_frame *),
4178 sc->sc_splitmic ?
4179 rs->rs_keyix-32 : rs->rs_keyix);
4180 }
4181 }
4182 ifp->if_ierrors++;
4183rx_error:
4184 /*
4185 * Cleanup any pending partial frame.
4186 */
4187 if (sc->sc_rxpending != NULL) {
4188 m_freem(sc->sc_rxpending);
4189 sc->sc_rxpending = NULL;
4190 }
4191 /*
4192 * When a tap is present pass error frames
4193 * that have been requested. By default we
4194 * pass decrypt+mic errors but others may be
4195 * interesting (e.g. crc).
4196 */
4197 if (bpf_peers_present(ifp->if_bpf) &&
4198 (rs->rs_status & sc->sc_monpass)) {
4199 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap,
4200 BUS_DMASYNC_POSTREAD);
4201 /* NB: bpf needs the mbuf length setup */
4202 len = rs->rs_datalen;
4203 m->m_pkthdr.len = m->m_len = len;
4204 (void) ath_rx_tap(ifp, m, rs, tsf, nf);
4205 }
4206 /* XXX pass MIC errors up for s/w reclaculation */
4207 goto rx_next;
4208 }
4209rx_accept:
4210 /*
4211 * Sync and unmap the frame. At this point we're
4212 * committed to passing the mbuf somewhere so clear
4213 * bf_m; this means a new mbuf must be allocated
4214 * when the rx descriptor is setup again to receive
4215 * another frame.
4216 */
4217 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap,
4218 BUS_DMASYNC_POSTREAD);
4219 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
4220 bf->bf_m = NULL;
4221
4222 len = rs->rs_datalen;
4223 m->m_len = len;
4224
4225 if (rs->rs_more) {
4226 /*
4227 * Frame spans multiple descriptors; save
4228 * it for the next completed descriptor, it
4229 * will be used to construct a jumbogram.
4230 */
4231 if (sc->sc_rxpending != NULL) {
4232 /* NB: max frame size is currently 2 clusters */
4233 sc->sc_stats.ast_rx_toobig++;
4234 m_freem(sc->sc_rxpending);
4235 }
4236 m->m_pkthdr.rcvif = ifp;
4237 m->m_pkthdr.len = len;
4238 sc->sc_rxpending = m;
4239 goto rx_next;
4240 } else if (sc->sc_rxpending != NULL) {
4241 /*
4242 * This is the second part of a jumbogram,
4243 * chain it to the first mbuf, adjust the
4244 * frame length, and clear the rxpending state.
4245 */
4246 sc->sc_rxpending->m_next = m;
4247 sc->sc_rxpending->m_pkthdr.len += len;
4248 m = sc->sc_rxpending;
4249 sc->sc_rxpending = NULL;
4250 } else {
4251 /*
4252 * Normal single-descriptor receive; setup
4253 * the rcvif and packet length.
4254 */
4255 m->m_pkthdr.rcvif = ifp;
4256 m->m_pkthdr.len = len;
4257 }
4258
4259 ifp->if_ipackets++;
4260 sc->sc_stats.ast_ant_rx[rs->rs_antenna]++;
4261
4262 if (bpf_peers_present(ifp->if_bpf) &&
4263 !ath_rx_tap(ifp, m, rs, tsf, nf)) {
4264 m_freem(m); /* XXX reclaim */
4265 goto rx_next;
4266 }
4267
4268 /*
4269 * From this point on we assume the frame is at least
4270 * as large as ieee80211_frame_min; verify that.
4271 */
4272 if (len < IEEE80211_MIN_LEN) {
4273 DPRINTF(sc, ATH_DEBUG_RECV, "%s: short packet %d\n",
4274 __func__, len);
4275 sc->sc_stats.ast_rx_tooshort++;
4276 m_freem(m);
4277 goto rx_next;
4278 }
4279
4280 if (IFF_DUMPPKTS(sc, ATH_DEBUG_RECV)) {
4281 const HAL_RATE_TABLE *rt = sc->sc_currates;
4282 uint8_t rix = rt->rateCodeToIndex[rs->rs_rate];
4283
4284 ieee80211_dump_pkt(ic, mtod(m, caddr_t), len,
4285 sc->sc_hwmap[rix].ieeerate, rs->rs_rssi);
4286 }
4287
4288 m_adj(m, -IEEE80211_CRC_LEN);
4289
4290 /*
4291 * Locate the node for sender, track state, and then
4292 * pass the (referenced) node up to the 802.11 layer
4293 * for its use.
4294 */
4295 ni = ieee80211_find_rxnode_withkey(ic,
4296 mtod(m, const struct ieee80211_frame_min *),
4297 rs->rs_keyix == HAL_RXKEYIX_INVALID ?
4298 IEEE80211_KEYIX_NONE : rs->rs_keyix);
4299 if (ni != NULL) {
4300 /*
4301 * Sending station is known, dispatch directly.
4302 */
4303#ifdef ATH_SUPPORT_TDMA
4304 sc->sc_tdmars = rs;
4305#endif
4306 type = ieee80211_input(ni, m,
4307 rs->rs_rssi, nf, rs->rs_tstamp);
4308 ieee80211_free_node(ni);
4309 /*
4310 * Arrange to update the last rx timestamp only for
4311 * frames from our ap when operating in station mode.
4312 * This assumes the rx key is always setup when
4313 * associated.
4314 */
4315 if (ic->ic_opmode == IEEE80211_M_STA &&
4316 rs->rs_keyix != HAL_RXKEYIX_INVALID)
4317 ngood++;
4318 } else {
4319 type = ieee80211_input_all(ic, m,
4320 rs->rs_rssi, nf, rs->rs_tstamp);
4321 }
4322 /*
4323 * Track rx rssi and do any rx antenna management.
4324 */
4325 ATH_RSSI_LPF(sc->sc_halstats.ns_avgrssi, rs->rs_rssi);
4326 if (sc->sc_diversity) {
4327 /*
4328 * When using fast diversity, change the default rx
4329 * antenna if diversity chooses the other antenna 3
4330 * times in a row.
4331 */
4332 if (sc->sc_defant != rs->rs_antenna) {
4333 if (++sc->sc_rxotherant >= 3)
4334 ath_setdefantenna(sc, rs->rs_antenna);
4335 } else
4336 sc->sc_rxotherant = 0;
4337 }
4338 if (sc->sc_softled) {
4339 /*
4340 * Blink for any data frame. Otherwise do a
4341 * heartbeat-style blink when idle. The latter
4342 * is mainly for station mode where we depend on
4343 * periodic beacon frames to trigger the poll event.
4344 */
4345 if (type == IEEE80211_FC0_TYPE_DATA) {
4346 const HAL_RATE_TABLE *rt = sc->sc_currates;
4347 ath_led_event(sc,
4348 rt->rateCodeToIndex[rs->rs_rate]);
4349 } else if (ticks - sc->sc_ledevent >= sc->sc_ledidle)
4350 ath_led_event(sc, 0);
4351 }
4352rx_next:
4353 STAILQ_INSERT_TAIL(&sc->sc_rxbuf, bf, bf_list);
4354 } while (ath_rxbuf_init(sc, bf) == 0);
4355
4356 /* rx signal state monitoring */
4357 ath_hal_rxmonitor(ah, &sc->sc_halstats, sc->sc_curchan);
4358 if (ngood)
4359 sc->sc_lastrx = tsf;
4360
4361 if ((ifp->if_drv_flags & IFF_DRV_OACTIVE) == 0 &&
4362 !IFQ_IS_EMPTY(&ifp->if_snd))
4363 ath_start(ifp);
4364
4365#undef PA2DESC
4366}
4367
4368static void
4369ath_txq_init(struct ath_softc *sc, struct ath_txq *txq, int qnum)
4370{
4371 txq->axq_qnum = qnum;
4372 txq->axq_depth = 0;
4373 txq->axq_intrcnt = 0;
4374 txq->axq_link = NULL;
4375 STAILQ_INIT(&txq->axq_q);
4376 ATH_TXQ_LOCK_INIT(sc, txq);
4377 TAILQ_INIT(&txq->axq_stageq);
4378 txq->axq_curage = 0;
4379}
4380
4381/*
4382 * Setup a h/w transmit queue.
4383 */
4384static struct ath_txq *
4385ath_txq_setup(struct ath_softc *sc, int qtype, int subtype)
4386{
4387#define N(a) (sizeof(a)/sizeof(a[0]))
4388 struct ath_hal *ah = sc->sc_ah;
4389 HAL_TXQ_INFO qi;
4390 int qnum;
4391
4392 memset(&qi, 0, sizeof(qi));
4393 qi.tqi_subtype = subtype;
4394 qi.tqi_aifs = HAL_TXQ_USEDEFAULT;
4395 qi.tqi_cwmin = HAL_TXQ_USEDEFAULT;
4396 qi.tqi_cwmax = HAL_TXQ_USEDEFAULT;
4397 /*
4398 * Enable interrupts only for EOL and DESC conditions.
4399 * We mark tx descriptors to receive a DESC interrupt
4400 * when a tx queue gets deep; otherwise waiting for the
4401 * EOL to reap descriptors. Note that this is done to
4402 * reduce interrupt load and this only defers reaping
4403 * descriptors, never transmitting frames. Aside from
4404 * reducing interrupts this also permits more concurrency.
4405 * The only potential downside is if the tx queue backs
4406 * up in which case the top half of the kernel may backup
4407 * due to a lack of tx descriptors.
4408 */
4409 qi.tqi_qflags = HAL_TXQ_TXEOLINT_ENABLE | HAL_TXQ_TXDESCINT_ENABLE;
4410 qnum = ath_hal_setuptxqueue(ah, qtype, &qi);
4411 if (qnum == -1) {
4412 /*
4413 * NB: don't print a message, this happens
4414 * normally on parts with too few tx queues
4415 */
4416 return NULL;
4417 }
4418 if (qnum >= N(sc->sc_txq)) {
4419 device_printf(sc->sc_dev,
4420 "hal qnum %u out of range, max %zu!\n",
4421 qnum, N(sc->sc_txq));
4422 ath_hal_releasetxqueue(ah, qnum);
4423 return NULL;
4424 }
4425 if (!ATH_TXQ_SETUP(sc, qnum)) {
4426 ath_txq_init(sc, &sc->sc_txq[qnum], qnum);
4427 sc->sc_txqsetup |= 1<<qnum;
4428 }
4429 return &sc->sc_txq[qnum];
4430#undef N
4431}
4432
4433/*
4434 * Setup a hardware data transmit queue for the specified
4435 * access control. The hal may not support all requested
4436 * queues in which case it will return a reference to a
4437 * previously setup queue. We record the mapping from ac's
4438 * to h/w queues for use by ath_tx_start and also track
4439 * the set of h/w queues being used to optimize work in the
4440 * transmit interrupt handler and related routines.
4441 */
4442static int
4443ath_tx_setup(struct ath_softc *sc, int ac, int haltype)
4444{
4445#define N(a) (sizeof(a)/sizeof(a[0]))
4446 struct ath_txq *txq;
4447
4448 if (ac >= N(sc->sc_ac2q)) {
4449 device_printf(sc->sc_dev, "AC %u out of range, max %zu!\n",
4450 ac, N(sc->sc_ac2q));
4451 return 0;
4452 }
4453 txq = ath_txq_setup(sc, HAL_TX_QUEUE_DATA, haltype);
4454 if (txq != NULL) {
4455 sc->sc_ac2q[ac] = txq;
4456 return 1;
4457 } else
4458 return 0;
4459#undef N
4460}
4461
4462/*
4463 * Update WME parameters for a transmit queue.
4464 */
4465static int
4466ath_txq_update(struct ath_softc *sc, int ac)
4467{
4468#define ATH_EXPONENT_TO_VALUE(v) ((1<<v)-1)
4469#define ATH_TXOP_TO_US(v) (v<<5)
4470 struct ifnet *ifp = sc->sc_ifp;
4471 struct ieee80211com *ic = ifp->if_l2com;
4472 struct ath_txq *txq = sc->sc_ac2q[ac];
4473 struct wmeParams *wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
4474 struct ath_hal *ah = sc->sc_ah;
4475 HAL_TXQ_INFO qi;
4476
4477 ath_hal_gettxqueueprops(ah, txq->axq_qnum, &qi);
4478#ifdef ATH_SUPPORT_TDMA
4479 if (sc->sc_tdma) {
4480 /*
4481 * AIFS is zero so there's no pre-transmit wait. The
4482 * burst time defines the slot duration and is configured
4483 * via sysctl. The QCU is setup to not do post-xmit
4484 * back off, lockout all lower-priority QCU's, and fire
4485 * off the DMA beacon alert timer which is setup based
4486 * on the slot configuration.
4487 */
4488 qi.tqi_qflags = HAL_TXQ_TXOKINT_ENABLE
4489 | HAL_TXQ_TXERRINT_ENABLE
4490 | HAL_TXQ_TXURNINT_ENABLE
4491 | HAL_TXQ_TXEOLINT_ENABLE
4492 | HAL_TXQ_DBA_GATED
4493 | HAL_TXQ_BACKOFF_DISABLE
4494 | HAL_TXQ_ARB_LOCKOUT_GLOBAL
4495 ;
4496 qi.tqi_aifs = 0;
4497 /* XXX +dbaprep? */
4498 qi.tqi_readyTime = sc->sc_tdmaslotlen;
4499 qi.tqi_burstTime = qi.tqi_readyTime;
4500 } else {
4501#endif
4502 qi.tqi_qflags = HAL_TXQ_TXOKINT_ENABLE
4503 | HAL_TXQ_TXERRINT_ENABLE
4504 | HAL_TXQ_TXDESCINT_ENABLE
4505 | HAL_TXQ_TXURNINT_ENABLE
4506 ;
4507 qi.tqi_aifs = wmep->wmep_aifsn;
4508 qi.tqi_cwmin = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin);
4509 qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax);
4510 qi.tqi_readyTime = 0;
4511 qi.tqi_burstTime = ATH_TXOP_TO_US(wmep->wmep_txopLimit);
4512#ifdef ATH_SUPPORT_TDMA
4513 }
4514#endif
4515
4516 DPRINTF(sc, ATH_DEBUG_RESET,
4517 "%s: Q%u qflags 0x%x aifs %u cwmin %u cwmax %u burstTime %u\n",
4518 __func__, txq->axq_qnum, qi.tqi_qflags,
4519 qi.tqi_aifs, qi.tqi_cwmin, qi.tqi_cwmax, qi.tqi_burstTime);
4520
4521 if (!ath_hal_settxqueueprops(ah, txq->axq_qnum, &qi)) {
4522 if_printf(ifp, "unable to update hardware queue "
4523 "parameters for %s traffic!\n",
4524 ieee80211_wme_acnames[ac]);
4525 return 0;
4526 } else {
4527 ath_hal_resettxqueue(ah, txq->axq_qnum); /* push to h/w */
4528 return 1;
4529 }
4530#undef ATH_TXOP_TO_US
4531#undef ATH_EXPONENT_TO_VALUE
4532}
4533
4534/*
4535 * Callback from the 802.11 layer to update WME parameters.
4536 */
4537static int
4538ath_wme_update(struct ieee80211com *ic)
4539{
4540 struct ath_softc *sc = ic->ic_ifp->if_softc;
4541
4542 return !ath_txq_update(sc, WME_AC_BE) ||
4543 !ath_txq_update(sc, WME_AC_BK) ||
4544 !ath_txq_update(sc, WME_AC_VI) ||
4545 !ath_txq_update(sc, WME_AC_VO) ? EIO : 0;
4546}
4547
4548/*
4549 * Reclaim resources for a setup queue.
4550 */
4551static void
4552ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq)
4553{
4554
4555 ath_hal_releasetxqueue(sc->sc_ah, txq->axq_qnum);
4556 ATH_TXQ_LOCK_DESTROY(txq);
4557 sc->sc_txqsetup &= ~(1<<txq->axq_qnum);
4558}
4559
4560/*
4561 * Reclaim all tx queue resources.
4562 */
4563static void
4564ath_tx_cleanup(struct ath_softc *sc)
4565{
4566 int i;
4567
4568 ATH_TXBUF_LOCK_DESTROY(sc);
4569 for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
4570 if (ATH_TXQ_SETUP(sc, i))
4571 ath_tx_cleanupq(sc, &sc->sc_txq[i]);
4572}
4573
4574/*
4575 * Return h/w rate index for an IEEE rate (w/o basic rate bit).
4576 */
4577static int
4578ath_tx_findrix(const HAL_RATE_TABLE *rt, int rate)
4579{
4580 int i;
4581
4582 for (i = 0; i < rt->rateCount; i++)
4583 if ((rt->info[i].dot11Rate & IEEE80211_RATE_VAL) == rate)
4584 return i;
4585 return 0; /* NB: lowest rate */
4586}
4587
4588/*
4589 * Reclaim mbuf resources. For fragmented frames we
4590 * need to claim each frag chained with m_nextpkt.
4591 */
4592static void
4593ath_freetx(struct mbuf *m)
4594{
4595 struct mbuf *next;
4596
4597 do {
4598 next = m->m_nextpkt;
4599 m->m_nextpkt = NULL;
4600 m_freem(m);
4601 } while ((m = next) != NULL);
4602}
4603
4604static int
4605ath_tx_dmasetup(struct ath_softc *sc, struct ath_buf *bf, struct mbuf *m0)
4606{
4607 struct mbuf *m;
4608 int error;
4609
4610 /*
4611 * Load the DMA map so any coalescing is done. This
4612 * also calculates the number of descriptors we need.
4613 */
4614 error = bus_dmamap_load_mbuf_sg(sc->sc_dmat, bf->bf_dmamap, m0,
4615 bf->bf_segs, &bf->bf_nseg,
4616 BUS_DMA_NOWAIT);
4617 if (error == EFBIG) {
4618 /* XXX packet requires too many descriptors */
4619 bf->bf_nseg = ATH_TXDESC+1;
4620 } else if (error != 0) {
4621 sc->sc_stats.ast_tx_busdma++;
4622 ath_freetx(m0);
4623 return error;
4624 }
4625 /*
4626 * Discard null packets and check for packets that
4627 * require too many TX descriptors. We try to convert
4628 * the latter to a cluster.
4629 */
4630 if (bf->bf_nseg > ATH_TXDESC) { /* too many desc's, linearize */
4631 sc->sc_stats.ast_tx_linear++;
4632 m = m_collapse(m0, M_DONTWAIT, ATH_TXDESC);
4633 if (m == NULL) {
4634 ath_freetx(m0);
4635 sc->sc_stats.ast_tx_nombuf++;
4636 return ENOMEM;
4637 }
4638 m0 = m;
4639 error = bus_dmamap_load_mbuf_sg(sc->sc_dmat, bf->bf_dmamap, m0,
4640 bf->bf_segs, &bf->bf_nseg,
4641 BUS_DMA_NOWAIT);
4642 if (error != 0) {
4643 sc->sc_stats.ast_tx_busdma++;
4644 ath_freetx(m0);
4645 return error;
4646 }
4647 KASSERT(bf->bf_nseg <= ATH_TXDESC,
4648 ("too many segments after defrag; nseg %u", bf->bf_nseg));
4649 } else if (bf->bf_nseg == 0) { /* null packet, discard */
4650 sc->sc_stats.ast_tx_nodata++;
4651 ath_freetx(m0);
4652 return EIO;
4653 }
4654 DPRINTF(sc, ATH_DEBUG_XMIT, "%s: m %p len %u\n",
4655 __func__, m0, m0->m_pkthdr.len);
4656 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_PREWRITE);
4657 bf->bf_m = m0;
4658
4659 return 0;
4660}
4661
4662static void
4663ath_tx_handoff(struct ath_softc *sc, struct ath_txq *txq, struct ath_buf *bf)
4664{
4665 struct ath_hal *ah = sc->sc_ah;
4666 struct ath_desc *ds, *ds0;
4667 int i;
4668
4669 /*
4670 * Fillin the remainder of the descriptor info.
4671 */
4672 ds0 = ds = bf->bf_desc;
4673 for (i = 0; i < bf->bf_nseg; i++, ds++) {
4674 ds->ds_data = bf->bf_segs[i].ds_addr;
4675 if (i == bf->bf_nseg - 1)
4676 ds->ds_link = 0;
4677 else
4678 ds->ds_link = bf->bf_daddr + sizeof(*ds) * (i + 1);
4679 ath_hal_filltxdesc(ah, ds
4680 , bf->bf_segs[i].ds_len /* segment length */
4681 , i == 0 /* first segment */
4682 , i == bf->bf_nseg - 1 /* last segment */
4683 , ds0 /* first descriptor */
4684 );
4685 DPRINTF(sc, ATH_DEBUG_XMIT,
4686 "%s: %d: %08x %08x %08x %08x %08x %08x\n",
4687 __func__, i, ds->ds_link, ds->ds_data,
4688 ds->ds_ctl0, ds->ds_ctl1, ds->ds_hw[0], ds->ds_hw[1]);
4689 }
4690 /*
4691 * Insert the frame on the outbound list and pass it on
4692 * to the hardware. Multicast frames buffered for power
4693 * save stations and transmit from the CAB queue are stored
4694 * on a s/w only queue and loaded on to the CAB queue in
4695 * the SWBA handler since frames only go out on DTIM and
4696 * to avoid possible races.
4697 */
4698 ATH_TXQ_LOCK(txq);
4699 KASSERT((bf->bf_flags & ATH_BUF_BUSY) == 0,
4700 ("busy status 0x%x", bf->bf_flags));
4701 if (txq->axq_qnum != ATH_TXQ_SWQ) {
4702#ifdef ATH_SUPPORT_TDMA
4703 int qbusy;
4704
4705 ATH_TXQ_INSERT_TAIL(txq, bf, bf_list);
4706 qbusy = ath_hal_txqenabled(ah, txq->axq_qnum);
4707 if (txq->axq_link == NULL) {
4708 /*
4709 * Be careful writing the address to TXDP. If
4710 * the tx q is enabled then this write will be
4711 * ignored. Normally this is not an issue but
4712 * when tdma is in use and the q is beacon gated
4713 * this race can occur. If the q is busy then
4714 * defer the work to later--either when another
4715 * packet comes along or when we prepare a beacon
4716 * frame at SWBA.
4717 */
4718 if (!qbusy) {
4719 ath_hal_puttxbuf(ah, txq->axq_qnum, bf->bf_daddr);
4720 txq->axq_flags &= ~ATH_TXQ_PUTPENDING;
4721 DPRINTF(sc, ATH_DEBUG_XMIT,
4722 "%s: TXDP[%u] = %p (%p) depth %d\n",
4723 __func__, txq->axq_qnum,
4724 (caddr_t)bf->bf_daddr, bf->bf_desc,
4725 txq->axq_depth);
4726 } else {
4727 txq->axq_flags |= ATH_TXQ_PUTPENDING;
4728 DPRINTF(sc, ATH_DEBUG_TDMA | ATH_DEBUG_XMIT,
4729 "%s: Q%u busy, defer enable\n", __func__,
4730 txq->axq_qnum);
4731 }
4732 } else {
4733 *txq->axq_link = bf->bf_daddr;
4734 DPRINTF(sc, ATH_DEBUG_XMIT,
4735 "%s: link[%u](%p)=%p (%p) depth %d\n", __func__,
4736 txq->axq_qnum, txq->axq_link,
4737 (caddr_t)bf->bf_daddr, bf->bf_desc, txq->axq_depth);
4738 if ((txq->axq_flags & ATH_TXQ_PUTPENDING) && !qbusy) {
4739 /*
4740 * The q was busy when we previously tried
4741 * to write the address of the first buffer
4742 * in the chain. Since it's not busy now
4743 * handle this chore. We are certain the
4744 * buffer at the front is the right one since
4745 * axq_link is NULL only when the buffer list
4746 * is/was empty.
4747 */
4748 ath_hal_puttxbuf(ah, txq->axq_qnum,
4749 STAILQ_FIRST(&txq->axq_q)->bf_daddr);
4750 txq->axq_flags &= ~ATH_TXQ_PUTPENDING;
4751 DPRINTF(sc, ATH_DEBUG_TDMA | ATH_DEBUG_XMIT,
4752 "%s: Q%u restarted\n", __func__,
4753 txq->axq_qnum);
4754 }
4755 }
4756#else
4757 ATH_TXQ_INSERT_TAIL(txq, bf, bf_list);
4758 if (txq->axq_link == NULL) {
4759 ath_hal_puttxbuf(ah, txq->axq_qnum, bf->bf_daddr);
4760 DPRINTF(sc, ATH_DEBUG_XMIT,
4761 "%s: TXDP[%u] = %p (%p) depth %d\n",
4762 __func__, txq->axq_qnum,
4763 (caddr_t)bf->bf_daddr, bf->bf_desc,
4764 txq->axq_depth);
4765 } else {
4766 *txq->axq_link = bf->bf_daddr;
4767 DPRINTF(sc, ATH_DEBUG_XMIT,
4768 "%s: link[%u](%p)=%p (%p) depth %d\n", __func__,
4769 txq->axq_qnum, txq->axq_link,
4770 (caddr_t)bf->bf_daddr, bf->bf_desc, txq->axq_depth);
4771 }
4772#endif /* ATH_SUPPORT_TDMA */
4773 txq->axq_link = &bf->bf_desc[bf->bf_nseg - 1].ds_link;
4774 ath_hal_txstart(ah, txq->axq_qnum);
4775 } else {
4776 if (txq->axq_link != NULL) {
4777 struct ath_buf *last = ATH_TXQ_LAST(txq);
4778 struct ieee80211_frame *wh;
4779
4780 /* mark previous frame */
4781 wh = mtod(last->bf_m, struct ieee80211_frame *);
4782 wh->i_fc[1] |= IEEE80211_FC1_MORE_DATA;
4783 bus_dmamap_sync(sc->sc_dmat, last->bf_dmamap,
4784 BUS_DMASYNC_PREWRITE);
4785
4786 /* link descriptor */
4787 *txq->axq_link = bf->bf_daddr;
4788 }
4789 ATH_TXQ_INSERT_TAIL(txq, bf, bf_list);
4790 txq->axq_link = &bf->bf_desc[bf->bf_nseg - 1].ds_link;
4791 }
4792 ATH_TXQ_UNLOCK(txq);
4793}
4794
4795static int
4796ath_tx_start(struct ath_softc *sc, struct ieee80211_node *ni, struct ath_buf *bf,
4797 struct mbuf *m0)
4798{
4799 struct ieee80211vap *vap = ni->ni_vap;
4800 struct ath_vap *avp = ATH_VAP(vap);
4801 struct ath_hal *ah = sc->sc_ah;
4802 struct ifnet *ifp = sc->sc_ifp;
4803 struct ieee80211com *ic = ifp->if_l2com;
4804 const struct chanAccParams *cap = &ic->ic_wme.wme_chanParams;
4805 int error, iswep, ismcast, isfrag, ismrr;
4806 int keyix, hdrlen, pktlen, try0;
4807 u_int8_t rix, txrate, ctsrate;
4808 u_int8_t cix = 0xff; /* NB: silence compiler */
4809 struct ath_desc *ds;
4810 struct ath_txq *txq;
4811 struct ieee80211_frame *wh;
4812 u_int subtype, flags, ctsduration;
4813 HAL_PKT_TYPE atype;
4814 const HAL_RATE_TABLE *rt;
4815 HAL_BOOL shortPreamble;
4816 struct ath_node *an;
4817 u_int pri;
4818
4819 wh = mtod(m0, struct ieee80211_frame *);
4820 iswep = wh->i_fc[1] & IEEE80211_FC1_WEP;
4821 ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
4822 isfrag = m0->m_flags & M_FRAG;
4823 hdrlen = ieee80211_anyhdrsize(wh);
4824 /*
4825 * Packet length must not include any
4826 * pad bytes; deduct them here.
4827 */
4828 pktlen = m0->m_pkthdr.len - (hdrlen & 3);
4829
4830 if (iswep) {
4831 const struct ieee80211_cipher *cip;
4832 struct ieee80211_key *k;
4833
4834 /*
4835 * Construct the 802.11 header+trailer for an encrypted
4836 * frame. The only reason this can fail is because of an
4837 * unknown or unsupported cipher/key type.
4838 */
4839 k = ieee80211_crypto_encap(ni, m0);
4840 if (k == NULL) {
4841 /*
4842 * This can happen when the key is yanked after the
4843 * frame was queued. Just discard the frame; the
4844 * 802.11 layer counts failures and provides
4845 * debugging/diagnostics.
4846 */
4847 ath_freetx(m0);
4848 return EIO;
4849 }
4850 /*
4851 * Adjust the packet + header lengths for the crypto
4852 * additions and calculate the h/w key index. When
4853 * a s/w mic is done the frame will have had any mic
4854 * added to it prior to entry so m0->m_pkthdr.len will
4855 * account for it. Otherwise we need to add it to the
4856 * packet length.
4857 */
4858 cip = k->wk_cipher;
4859 hdrlen += cip->ic_header;
4860 pktlen += cip->ic_header + cip->ic_trailer;
4861 /* NB: frags always have any TKIP MIC done in s/w */
4862 if ((k->wk_flags & IEEE80211_KEY_SWMIC) == 0 && !isfrag)
4863 pktlen += cip->ic_miclen;
4864 keyix = k->wk_keyix;
4865
4866 /* packet header may have moved, reset our local pointer */
4867 wh = mtod(m0, struct ieee80211_frame *);
4868 } else if (ni->ni_ucastkey.wk_cipher == &ieee80211_cipher_none) {
4869 /*
4870 * Use station key cache slot, if assigned.
4871 */
4872 keyix = ni->ni_ucastkey.wk_keyix;
4873 if (keyix == IEEE80211_KEYIX_NONE)
4874 keyix = HAL_TXKEYIX_INVALID;
4875 } else
4876 keyix = HAL_TXKEYIX_INVALID;
4877
4878 pktlen += IEEE80211_CRC_LEN;
4879
4880 /*
4881 * Load the DMA map so any coalescing is done. This
4882 * also calculates the number of descriptors we need.
4883 */
4884 error = ath_tx_dmasetup(sc, bf, m0);
4885 if (error != 0)
4886 return error;
4887 bf->bf_node = ni; /* NB: held reference */
4888 m0 = bf->bf_m; /* NB: may have changed */
4889 wh = mtod(m0, struct ieee80211_frame *);
4890
4891 /* setup descriptors */
4892 ds = bf->bf_desc;
4893 rt = sc->sc_currates;
4894 KASSERT(rt != NULL, ("no rate table, mode %u", sc->sc_curmode));
4895
4896 /*
4897 * NB: the 802.11 layer marks whether or not we should
4898 * use short preamble based on the current mode and
4899 * negotiated parameters.
4900 */
4901 if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
4902 (ni->ni_capinfo & IEEE80211_CAPINFO_SHORT_PREAMBLE)) {
4903 shortPreamble = AH_TRUE;
4904 sc->sc_stats.ast_tx_shortpre++;
4905 } else {
4906 shortPreamble = AH_FALSE;
4907 }
4908
4909 an = ATH_NODE(ni);
4910 flags = HAL_TXDESC_CLRDMASK; /* XXX needed for crypto errs */
4911 ismrr = 0; /* default no multi-rate retry*/
4912 pri = M_WME_GETAC(m0); /* honor classification */
4913 /* XXX use txparams instead of fixed values */
4914 /*
4915 * Calculate Atheros packet type from IEEE80211 packet header,
4916 * setup for rate calculations, and select h/w transmit queue.
4917 */
4918 switch (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) {
4919 case IEEE80211_FC0_TYPE_MGT:
4920 subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
4921 if (subtype == IEEE80211_FC0_SUBTYPE_BEACON)
4922 atype = HAL_PKT_TYPE_BEACON;
4923 else if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
4924 atype = HAL_PKT_TYPE_PROBE_RESP;
4925 else if (subtype == IEEE80211_FC0_SUBTYPE_ATIM)
4926 atype = HAL_PKT_TYPE_ATIM;
4927 else
4928 atype = HAL_PKT_TYPE_NORMAL; /* XXX */
4929 rix = an->an_mgmtrix;
4930 txrate = rt->info[rix].rateCode;
4931 if (shortPreamble)
4932 txrate |= rt->info[rix].shortPreamble;
4933 try0 = ATH_TXMGTTRY;
4934 flags |= HAL_TXDESC_INTREQ; /* force interrupt */
4935 break;
4936 case IEEE80211_FC0_TYPE_CTL:
4937 atype = HAL_PKT_TYPE_PSPOLL; /* stop setting of duration */
4938 rix = an->an_mgmtrix;
4939 txrate = rt->info[rix].rateCode;
4940 if (shortPreamble)
4941 txrate |= rt->info[rix].shortPreamble;
4942 try0 = ATH_TXMGTTRY;
4943 flags |= HAL_TXDESC_INTREQ; /* force interrupt */
4944 break;
4945 case IEEE80211_FC0_TYPE_DATA:
4946 atype = HAL_PKT_TYPE_NORMAL; /* default */
4947 /*
4948 * Data frames: multicast frames go out at a fixed rate,
4949 * EAPOL frames use the mgmt frame rate; otherwise consult
4950 * the rate control module for the rate to use.
4951 */
4952 if (ismcast) {
4953 rix = an->an_mcastrix;
4954 txrate = rt->info[rix].rateCode;
4955 if (shortPreamble)
4956 txrate |= rt->info[rix].shortPreamble;
4957 try0 = 1;
4958 } else if (m0->m_flags & M_EAPOL) {
4959 /* XXX? maybe always use long preamble? */
4960 rix = an->an_mgmtrix;
4961 txrate = rt->info[rix].rateCode;
4962 if (shortPreamble)
4963 txrate |= rt->info[rix].shortPreamble;
4964 try0 = ATH_TXMAXTRY; /* XXX?too many? */
4965 } else {
4966 ath_rate_findrate(sc, an, shortPreamble, pktlen,
4967 &rix, &try0, &txrate);
4968 sc->sc_txrix = rix; /* for LED blinking */
4969 sc->sc_lastdatarix = rix; /* for fast frames */
4970 if (try0 != ATH_TXMAXTRY)
4971 ismrr = 1;
4972 }
4973 if (cap->cap_wmeParams[pri].wmep_noackPolicy)
4974 flags |= HAL_TXDESC_NOACK;
4975 break;
4976 default:
4977 if_printf(ifp, "bogus frame type 0x%x (%s)\n",
4978 wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK, __func__);
4979 /* XXX statistic */
4980 ath_freetx(m0);
4981 return EIO;
4982 }
4983 txq = sc->sc_ac2q[pri];
4984
4985 /*
4986 * When servicing one or more stations in power-save mode
4987 * (or) if there is some mcast data waiting on the mcast
4988 * queue (to prevent out of order delivery) multicast
4989 * frames must be buffered until after the beacon.
4990 */
4991 if (ismcast && (vap->iv_ps_sta || avp->av_mcastq.axq_depth))
4992 txq = &avp->av_mcastq;
4993
4994 /*
4995 * Calculate miscellaneous flags.
4996 */
4997 if (ismcast) {
4998 flags |= HAL_TXDESC_NOACK; /* no ack on broad/multicast */
4999 } else if (pktlen > vap->iv_rtsthreshold &&
5000 (ni->ni_ath_flags & IEEE80211_NODE_FF) == 0) {
5001 flags |= HAL_TXDESC_RTSENA; /* RTS based on frame length */
5002 cix = rt->info[rix].controlRate;
5003 sc->sc_stats.ast_tx_rts++;
5004 }
5005 if (flags & HAL_TXDESC_NOACK) /* NB: avoid double counting */
5006 sc->sc_stats.ast_tx_noack++;
5007#ifdef ATH_SUPPORT_TDMA
5008 if (sc->sc_tdma && (flags & HAL_TXDESC_NOACK) == 0) {
5009 DPRINTF(sc, ATH_DEBUG_TDMA,
5010 "%s: discard frame, ACK required w/ TDMA\n", __func__);
5011 sc->sc_stats.ast_tdma_ack++;
5012 ath_freetx(m0);
5013 return EIO;
5014 }
5015#endif
5016
5017 /*
5018 * If 802.11g protection is enabled, determine whether
5019 * to use RTS/CTS or just CTS. Note that this is only
5020 * done for OFDM unicast frames.
5021 */
5022 if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
5023 rt->info[rix].phy == IEEE80211_T_OFDM &&
5024 (flags & HAL_TXDESC_NOACK) == 0) {
5025 /* XXX fragments must use CCK rates w/ protection */
5026 if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
5027 flags |= HAL_TXDESC_RTSENA;
5028 else if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
5029 flags |= HAL_TXDESC_CTSENA;
5030 if (isfrag) {
5031 /*
5032 * For frags it would be desirable to use the
5033 * highest CCK rate for RTS/CTS. But stations
5034 * farther away may detect it at a lower CCK rate
5035 * so use the configured protection rate instead
5036 * (for now).
5037 */
5038 cix = rt->info[sc->sc_protrix].controlRate;
5039 } else
5040 cix = rt->info[sc->sc_protrix].controlRate;
5041 sc->sc_stats.ast_tx_protect++;
5042 }
5043
5044 /*
5045 * Calculate duration. This logically belongs in the 802.11
5046 * layer but it lacks sufficient information to calculate it.
5047 */
5048 if ((flags & HAL_TXDESC_NOACK) == 0 &&
5049 (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_CTL) {
5050 u_int16_t dur;
5051 if (shortPreamble)
5052 dur = rt->info[rix].spAckDuration;
5053 else
5054 dur = rt->info[rix].lpAckDuration;
5055 if (wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG) {
5056 dur += dur; /* additional SIFS+ACK */
5057 KASSERT(m0->m_nextpkt != NULL, ("no fragment"));
5058 /*
5059 * Include the size of next fragment so NAV is
5060 * updated properly. The last fragment uses only
5061 * the ACK duration
5062 */
5063 dur += ath_hal_computetxtime(ah, rt,
5064 m0->m_nextpkt->m_pkthdr.len,
5065 rix, shortPreamble);
5066 }
5067 if (isfrag) {
5068 /*
5069 * Force hardware to use computed duration for next
5070 * fragment by disabling multi-rate retry which updates
5071 * duration based on the multi-rate duration table.
5072 */
5073 ismrr = 0;
5074 try0 = ATH_TXMGTTRY; /* XXX? */
5075 }
5076 *(u_int16_t *)wh->i_dur = htole16(dur);
5077 }
5078
5079 /*
5080 * Calculate RTS/CTS rate and duration if needed.
5081 */
5082 ctsduration = 0;
5083 if (flags & (HAL_TXDESC_RTSENA|HAL_TXDESC_CTSENA)) {
5084 /*
5085 * CTS transmit rate is derived from the transmit rate
5086 * by looking in the h/w rate table. We must also factor
5087 * in whether or not a short preamble is to be used.
5088 */
5089 /* NB: cix is set above where RTS/CTS is enabled */
5090 KASSERT(cix != 0xff, ("cix not setup"));
5091 ctsrate = rt->info[cix].rateCode;
5092 /*
5093 * Compute the transmit duration based on the frame
5094 * size and the size of an ACK frame. We call into the
5095 * HAL to do the computation since it depends on the
5096 * characteristics of the actual PHY being used.
5097 *
5098 * NB: CTS is assumed the same size as an ACK so we can
5099 * use the precalculated ACK durations.
5100 */
5101 if (shortPreamble) {
5102 ctsrate |= rt->info[cix].shortPreamble;
5103 if (flags & HAL_TXDESC_RTSENA) /* SIFS + CTS */
5104 ctsduration += rt->info[cix].spAckDuration;
5105 ctsduration += ath_hal_computetxtime(ah,
5106 rt, pktlen, rix, AH_TRUE);
5107 if ((flags & HAL_TXDESC_NOACK) == 0) /* SIFS + ACK */
5108 ctsduration += rt->info[rix].spAckDuration;
5109 } else {
5110 if (flags & HAL_TXDESC_RTSENA) /* SIFS + CTS */
5111 ctsduration += rt->info[cix].lpAckDuration;
5112 ctsduration += ath_hal_computetxtime(ah,
5113 rt, pktlen, rix, AH_FALSE);
5114 if ((flags & HAL_TXDESC_NOACK) == 0) /* SIFS + ACK */
5115 ctsduration += rt->info[rix].lpAckDuration;
5116 }
5117 /*
5118 * Must disable multi-rate retry when using RTS/CTS.
5119 */
5120 ismrr = 0;
5121 try0 = ATH_TXMGTTRY; /* XXX */
5122 } else
5123 ctsrate = 0;
5124
5125 /*
5126 * At this point we are committed to sending the frame
5127 * and we don't need to look at m_nextpkt; clear it in
5128 * case this frame is part of frag chain.
5129 */
5130 m0->m_nextpkt = NULL;
5131
5132 if (IFF_DUMPPKTS(sc, ATH_DEBUG_XMIT))
5133 ieee80211_dump_pkt(ic, mtod(m0, caddr_t), m0->m_len,
5134 sc->sc_hwmap[rix].ieeerate, -1);
5135
5136 if (bpf_peers_present(ifp->if_bpf)) {
5137 u_int64_t tsf = ath_hal_gettsf64(ah);
5138
5139 sc->sc_tx_th.wt_tsf = htole64(tsf);
5140 sc->sc_tx_th.wt_flags = sc->sc_hwmap[rix].txflags;
5141 if (iswep)
5142 sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_WEP;
5143 if (isfrag)
5144 sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_FRAG;
5145 sc->sc_tx_th.wt_rate = sc->sc_hwmap[rix].ieeerate;
5146 sc->sc_tx_th.wt_txpower = ni->ni_txpower;
5147 sc->sc_tx_th.wt_antenna = sc->sc_txantenna;
5148
5149 bpf_mtap2(ifp->if_bpf, &sc->sc_tx_th, sc->sc_tx_th_len, m0);
5150 }
5151
5152 /*
5153 * Determine if a tx interrupt should be generated for
5154 * this descriptor. We take a tx interrupt to reap
5155 * descriptors when the h/w hits an EOL condition or
5156 * when the descriptor is specifically marked to generate
5157 * an interrupt. We periodically mark descriptors in this
5158 * way to insure timely replenishing of the supply needed
5159 * for sending frames. Defering interrupts reduces system
5160 * load and potentially allows more concurrent work to be
5161 * done but if done to aggressively can cause senders to
5162 * backup.
5163 *
5164 * NB: use >= to deal with sc_txintrperiod changing
5165 * dynamically through sysctl.
5166 */
5167 if (flags & HAL_TXDESC_INTREQ) {
5168 txq->axq_intrcnt = 0;
5169 } else if (++txq->axq_intrcnt >= sc->sc_txintrperiod) {
5170 flags |= HAL_TXDESC_INTREQ;
5171 txq->axq_intrcnt = 0;
5172 }
5173
5174 /*
5175 * Formulate first tx descriptor with tx controls.
5176 */
5177 /* XXX check return value? */
5178 ath_hal_setuptxdesc(ah, ds
5179 , pktlen /* packet length */
5180 , hdrlen /* header length */
5181 , atype /* Atheros packet type */
5182 , ni->ni_txpower /* txpower */
5183 , txrate, try0 /* series 0 rate/tries */
5184 , keyix /* key cache index */
5185 , sc->sc_txantenna /* antenna mode */
5186 , flags /* flags */
5187 , ctsrate /* rts/cts rate */
5188 , ctsduration /* rts/cts duration */
5189 );
5190 bf->bf_txflags = flags;
5191 /*
5192 * Setup the multi-rate retry state only when we're
5193 * going to use it. This assumes ath_hal_setuptxdesc
5194 * initializes the descriptors (so we don't have to)
5195 * when the hardware supports multi-rate retry and
5196 * we don't use it.
5197 */
5198 if (ismrr)
5199 ath_rate_setupxtxdesc(sc, an, ds, shortPreamble, rix);
5200
5201 ath_tx_handoff(sc, txq, bf);
5202 return 0;
5203}
5204
5205/*
5206 * Process completed xmit descriptors from the specified queue.
5207 */
5208static int
5209ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq)
5210{
5211 struct ath_hal *ah = sc->sc_ah;
5212 struct ifnet *ifp = sc->sc_ifp;
5213 struct ieee80211com *ic = ifp->if_l2com;
5214 struct ath_buf *bf, *last;
5215 struct ath_desc *ds, *ds0;
5216 struct ath_tx_status *ts;
5217 struct ieee80211_node *ni;
5218 struct ath_node *an;
5219 int sr, lr, pri, nacked;
5220 HAL_STATUS status;
5221
5222 DPRINTF(sc, ATH_DEBUG_TX_PROC, "%s: tx queue %u head %p link %p\n",
5223 __func__, txq->axq_qnum,
5224 (caddr_t)(uintptr_t) ath_hal_gettxbuf(sc->sc_ah, txq->axq_qnum),
5225 txq->axq_link);
5226 nacked = 0;
5227 for (;;) {
5228 ATH_TXQ_LOCK(txq);
5229 txq->axq_intrcnt = 0; /* reset periodic desc intr count */
5230 bf = STAILQ_FIRST(&txq->axq_q);
5231 if (bf == NULL) {
5232 ATH_TXQ_UNLOCK(txq);
5233 break;
5234 }
5235 ds0 = &bf->bf_desc[0];
5236 ds = &bf->bf_desc[bf->bf_nseg - 1];
5237 ts = &bf->bf_status.ds_txstat;
5238 status = ath_hal_txprocdesc(ah, ds, ts);
5239#ifdef ATH_DEBUG
5240 if (sc->sc_debug & ATH_DEBUG_XMIT_DESC)
5241 ath_printtxbuf(sc, bf, txq->axq_qnum, 0,
5242 status == HAL_OK);
5243#endif
5244 if (status == HAL_EINPROGRESS) {
5245 ATH_TXQ_UNLOCK(txq);
5246 break;
5247 }
5248 ATH_TXQ_REMOVE_HEAD(txq, bf_list);
5249#ifdef ATH_SUPPORT_TDMA
5250 if (txq->axq_depth > 0) {
5251 /*
5252 * More frames follow. Mark the buffer busy
5253 * so it's not re-used while the hardware may
5254 * still re-read the link field in the descriptor.
5255 */
5256 bf->bf_flags |= ATH_BUF_BUSY;
5257 } else
5258#else
5259 if (txq->axq_depth == 0)
5260#endif
5261 txq->axq_link = NULL;
5262 ATH_TXQ_UNLOCK(txq);
5263
5264 ni = bf->bf_node;
5265 if (ni != NULL) {
5266 an = ATH_NODE(ni);
5267 if (ts->ts_status == 0) {
5268 u_int8_t txant = ts->ts_antenna;
5269 sc->sc_stats.ast_ant_tx[txant]++;
5270 sc->sc_ant_tx[txant]++;
5271 if (ts->ts_rate & HAL_TXSTAT_ALTRATE)
5272 sc->sc_stats.ast_tx_altrate++;
5273 pri = M_WME_GETAC(bf->bf_m);
5274 if (pri >= WME_AC_VO)
5275 ic->ic_wme.wme_hipri_traffic++;
5276 if ((bf->bf_txflags & HAL_TXDESC_NOACK) == 0)
5277 ni->ni_inact = ni->ni_inact_reload;
5278 } else {
5279 if (ts->ts_status & HAL_TXERR_XRETRY)
5280 sc->sc_stats.ast_tx_xretries++;
5281 if (ts->ts_status & HAL_TXERR_FIFO)
5282 sc->sc_stats.ast_tx_fifoerr++;
5283 if (ts->ts_status & HAL_TXERR_FILT)
5284 sc->sc_stats.ast_tx_filtered++;
5285 if (bf->bf_m->m_flags & M_FF)
5286 sc->sc_stats.ast_ff_txerr++;
5287 }
5288 sr = ts->ts_shortretry;
5289 lr = ts->ts_longretry;
5290 sc->sc_stats.ast_tx_shortretry += sr;
5291 sc->sc_stats.ast_tx_longretry += lr;
5292 /*
5293 * Hand the descriptor to the rate control algorithm.
5294 */
5295 if ((ts->ts_status & HAL_TXERR_FILT) == 0 &&
5296 (bf->bf_txflags & HAL_TXDESC_NOACK) == 0) {
5297 /*
5298 * If frame was ack'd update statistics,
5299 * including the last rx time used to
5300 * workaround phantom bmiss interrupts.
5301 */
5302 if (ts->ts_status == 0) {
5303 nacked++;
5304 sc->sc_stats.ast_tx_rssi = ts->ts_rssi;
5305 ATH_RSSI_LPF(sc->sc_halstats.ns_avgtxrssi,
5306 ts->ts_rssi);
5307 }
5308 ath_rate_tx_complete(sc, an, bf);
5309 }
5310 /*
5311 * Do any tx complete callback. Note this must
5312 * be done before releasing the node reference.
5313 */
5314 if (bf->bf_m->m_flags & M_TXCB)
5315 ieee80211_process_callback(ni, bf->bf_m,
5316 (bf->bf_txflags & HAL_TXDESC_NOACK) == 0 ?
5317 ts->ts_status : HAL_TXERR_XRETRY);
5318 /*
5319 * Reclaim reference to node.
5320 *
5321 * NB: the node may be reclaimed here if, for example
5322 * this is a DEAUTH message that was sent and the
5323 * node was timed out due to inactivity.
5324 */
5325 ieee80211_free_node(ni);
5326 }
5327 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap,
5328 BUS_DMASYNC_POSTWRITE);
5329 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
5330
5331 m_freem(bf->bf_m);
5332 bf->bf_m = NULL;
5333 bf->bf_node = NULL;
5334
5335 ATH_TXBUF_LOCK(sc);
5336 last = STAILQ_LAST(&sc->sc_txbuf, ath_buf, bf_list);
5337 if (last != NULL)
5338 last->bf_flags &= ~ATH_BUF_BUSY;
5339 STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
5340 ATH_TXBUF_UNLOCK(sc);
5341 }
5342 /*
5343 * Flush fast-frame staging queue when traffic slows.
5344 */
5345 if (txq->axq_depth <= 1)
5346 ath_ff_stageq_flush(sc, txq, ath_ff_always);
5347 return nacked;
5348}
5349
5350static __inline int
5351txqactive(struct ath_hal *ah, int qnum)
5352{
5353 u_int32_t txqs = 1<<qnum;
5354 ath_hal_gettxintrtxqs(ah, &txqs);
5355 return (txqs & (1<<qnum));
5356}
5357
5358/*
5359 * Deferred processing of transmit interrupt; special-cased
5360 * for a single hardware transmit queue (e.g. 5210 and 5211).
5361 */
5362static void
5363ath_tx_proc_q0(void *arg, int npending)
5364{
5365 struct ath_softc *sc = arg;
5366 struct ifnet *ifp = sc->sc_ifp;
5367
5368 if (txqactive(sc->sc_ah, 0) && ath_tx_processq(sc, &sc->sc_txq[0]))
5369 sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
5370 if (txqactive(sc->sc_ah, sc->sc_cabq->axq_qnum))
5371 ath_tx_processq(sc, sc->sc_cabq);
5372 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
5373 ifp->if_timer = 0;
5374
5375 if (sc->sc_softled)
5376 ath_led_event(sc, sc->sc_txrix);
5377
5378 ath_start(ifp);
5379}
5380
5381/*
5382 * Deferred processing of transmit interrupt; special-cased
5383 * for four hardware queues, 0-3 (e.g. 5212 w/ WME support).
5384 */
5385static void
5386ath_tx_proc_q0123(void *arg, int npending)
5387{
5388 struct ath_softc *sc = arg;
5389 struct ifnet *ifp = sc->sc_ifp;
5390 int nacked;
5391
5392 /*
5393 * Process each active queue.
5394 */
5395 nacked = 0;
5396 if (txqactive(sc->sc_ah, 0))
5397 nacked += ath_tx_processq(sc, &sc->sc_txq[0]);
5398 if (txqactive(sc->sc_ah, 1))
5399 nacked += ath_tx_processq(sc, &sc->sc_txq[1]);
5400 if (txqactive(sc->sc_ah, 2))
5401 nacked += ath_tx_processq(sc, &sc->sc_txq[2]);
5402 if (txqactive(sc->sc_ah, 3))
5403 nacked += ath_tx_processq(sc, &sc->sc_txq[3]);
5404 if (txqactive(sc->sc_ah, sc->sc_cabq->axq_qnum))
5405 ath_tx_processq(sc, sc->sc_cabq);
5406 if (nacked)
5407 sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
5408
5409 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
5410 ifp->if_timer = 0;
5411
5412 if (sc->sc_softled)
5413 ath_led_event(sc, sc->sc_txrix);
5414
5415 ath_start(ifp);
5416}
5417
5418/*
5419 * Deferred processing of transmit interrupt.
5420 */
5421static void
5422ath_tx_proc(void *arg, int npending)
5423{
5424 struct ath_softc *sc = arg;
5425 struct ifnet *ifp = sc->sc_ifp;
5426 int i, nacked;
5427
5428 /*
5429 * Process each active queue.
5430 */
5431 nacked = 0;
5432 for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
5433 if (ATH_TXQ_SETUP(sc, i) && txqactive(sc->sc_ah, i))
5434 nacked += ath_tx_processq(sc, &sc->sc_txq[i]);
5435 if (nacked)
5436 sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
5437
5438 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
5439 ifp->if_timer = 0;
5440
5441 if (sc->sc_softled)
5442 ath_led_event(sc, sc->sc_txrix);
5443
5444 ath_start(ifp);
5445}
5446
5447static void
5448ath_tx_draintxq(struct ath_softc *sc, struct ath_txq *txq)
5449{
5450#ifdef ATH_DEBUG
5451 struct ath_hal *ah = sc->sc_ah;
5452#endif
5453 struct ieee80211_node *ni;
5454 struct ath_buf *bf;
5455 u_int ix;
5456
5457 /*
5458 * NB: this assumes output has been stopped and
5459 * we do not need to block ath_tx_proc
5460 */
5461 ATH_TXBUF_LOCK(sc);
5462 bf = STAILQ_LAST(&sc->sc_txbuf, ath_buf, bf_list);
5463 if (bf != NULL)
5464 bf->bf_flags &= ~ATH_BUF_BUSY;
5465 ATH_TXBUF_UNLOCK(sc);
5466 for (ix = 0;; ix++) {
5467 ATH_TXQ_LOCK(txq);
5468 bf = STAILQ_FIRST(&txq->axq_q);
5469 if (bf == NULL) {
5470 txq->axq_link = NULL;
5471 ATH_TXQ_UNLOCK(txq);
5472 break;
5473 }
5474 ATH_TXQ_REMOVE_HEAD(txq, bf_list);
5475 ATH_TXQ_UNLOCK(txq);
5476#ifdef ATH_DEBUG
5477 if (sc->sc_debug & ATH_DEBUG_RESET) {
5478 struct ieee80211com *ic = sc->sc_ifp->if_l2com;
5479
5480 ath_printtxbuf(sc, bf, txq->axq_qnum, ix,
5481 ath_hal_txprocdesc(ah, bf->bf_desc,
5482 &bf->bf_status.ds_txstat) == HAL_OK);
5483 ieee80211_dump_pkt(ic, mtod(bf->bf_m, caddr_t),
5484 bf->bf_m->m_len, 0, -1);
5485 }
5486#endif /* ATH_DEBUG */
5487 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
5488 ni = bf->bf_node;
5489 bf->bf_node = NULL;
5490 if (ni != NULL) {
5491 /*
5492 * Do any callback and reclaim the node reference.
5493 */
5494 if (bf->bf_m->m_flags & M_TXCB)
5495 ieee80211_process_callback(ni, bf->bf_m, -1);
5496 ieee80211_free_node(ni);
5497 }
5498 m_freem(bf->bf_m);
5499 bf->bf_m = NULL;
5500 bf->bf_flags &= ~ATH_BUF_BUSY;
5501
5502 ATH_TXBUF_LOCK(sc);
5503 STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
5504 ATH_TXBUF_UNLOCK(sc);
5505 }
5506}
5507
5508static void
5509ath_tx_stopdma(struct ath_softc *sc, struct ath_txq *txq)
5510{
5511 struct ath_hal *ah = sc->sc_ah;
5512
5513 DPRINTF(sc, ATH_DEBUG_RESET, "%s: tx queue [%u] %p, link %p\n",
5514 __func__, txq->axq_qnum,
5515 (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, txq->axq_qnum),
5516 txq->axq_link);
5517 (void) ath_hal_stoptxdma(ah, txq->axq_qnum);
5518}
5519
5520/*
5521 * Drain the transmit queues and reclaim resources.
5522 */
5523static void
5524ath_draintxq(struct ath_softc *sc)
5525{
5526 struct ath_hal *ah = sc->sc_ah;
5527 struct ifnet *ifp = sc->sc_ifp;
5528 int i;
5529
5530 /* XXX return value */
5531 if (!sc->sc_invalid) {
5532 /* don't touch the hardware if marked invalid */
5533 DPRINTF(sc, ATH_DEBUG_RESET, "%s: tx queue [%u] %p, link %p\n",
5534 __func__, sc->sc_bhalq,
5535 (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, sc->sc_bhalq),
5536 NULL);
5537 (void) ath_hal_stoptxdma(ah, sc->sc_bhalq);
5538 for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
5539 if (ATH_TXQ_SETUP(sc, i))
5540 ath_tx_stopdma(sc, &sc->sc_txq[i]);
5541 }
5542 for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
5543 if (ATH_TXQ_SETUP(sc, i))
5544 ath_tx_draintxq(sc, &sc->sc_txq[i]);
5545#ifdef ATH_DEBUG
5546 if (sc->sc_debug & ATH_DEBUG_RESET) {
5547 struct ath_buf *bf = STAILQ_FIRST(&sc->sc_bbuf);
5548 if (bf != NULL && bf->bf_m != NULL) {
5549 ath_printtxbuf(sc, bf, sc->sc_bhalq, 0,
5550 ath_hal_txprocdesc(ah, bf->bf_desc,
5551 &bf->bf_status.ds_txstat) == HAL_OK);
5552 ieee80211_dump_pkt(ifp->if_l2com, mtod(bf->bf_m, caddr_t),
5553 bf->bf_m->m_len, 0, -1);
5554 }
5555 }
5556#endif /* ATH_DEBUG */
5557 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
5558 ifp->if_timer = 0;
5559}
5560
5561/*
5562 * Disable the receive h/w in preparation for a reset.
5563 */
5564static void
5565ath_stoprecv(struct ath_softc *sc)
5566{
5567#define PA2DESC(_sc, _pa) \
5568 ((struct ath_desc *)((caddr_t)(_sc)->sc_rxdma.dd_desc + \
5569 ((_pa) - (_sc)->sc_rxdma.dd_desc_paddr)))
5570 struct ath_hal *ah = sc->sc_ah;
5571
5572 ath_hal_stoppcurecv(ah); /* disable PCU */
5573 ath_hal_setrxfilter(ah, 0); /* clear recv filter */
5574 ath_hal_stopdmarecv(ah); /* disable DMA engine */
5575 DELAY(3000); /* 3ms is long enough for 1 frame */
5576#ifdef ATH_DEBUG
5577 if (sc->sc_debug & (ATH_DEBUG_RESET | ATH_DEBUG_FATAL)) {
5578 struct ath_buf *bf;
5579 u_int ix;
5580
5581 printf("%s: rx queue %p, link %p\n", __func__,
5582 (caddr_t)(uintptr_t) ath_hal_getrxbuf(ah), sc->sc_rxlink);
5583 ix = 0;
5584 STAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
5585 struct ath_desc *ds = bf->bf_desc;
5586 struct ath_rx_status *rs = &bf->bf_status.ds_rxstat;
5587 HAL_STATUS status = ath_hal_rxprocdesc(ah, ds,
5588 bf->bf_daddr, PA2DESC(sc, ds->ds_link), rs);
5589 if (status == HAL_OK || (sc->sc_debug & ATH_DEBUG_FATAL))
5590 ath_printrxbuf(sc, bf, ix, status == HAL_OK);
5591 ix++;
5592 }
5593 }
5594#endif
5595 if (sc->sc_rxpending != NULL) {
5596 m_freem(sc->sc_rxpending);
5597 sc->sc_rxpending = NULL;
5598 }
5599 sc->sc_rxlink = NULL; /* just in case */
5600#undef PA2DESC
5601}
5602
5603/*
5604 * Enable the receive h/w following a reset.
5605 */
5606static int
5607ath_startrecv(struct ath_softc *sc)
5608{
5609 struct ath_hal *ah = sc->sc_ah;
5610 struct ath_buf *bf;
5611
5612 sc->sc_rxlink = NULL;
5613 sc->sc_rxpending = NULL;
5614 STAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
5615 int error = ath_rxbuf_init(sc, bf);
5616 if (error != 0) {
5617 DPRINTF(sc, ATH_DEBUG_RECV,
5618 "%s: ath_rxbuf_init failed %d\n",
5619 __func__, error);
5620 return error;
5621 }
5622 }
5623
5624 bf = STAILQ_FIRST(&sc->sc_rxbuf);
5625 ath_hal_putrxbuf(ah, bf->bf_daddr);
5626 ath_hal_rxena(ah); /* enable recv descriptors */
5627 ath_mode_init(sc); /* set filters, etc. */
5628 ath_hal_startpcurecv(ah); /* re-enable PCU/DMA engine */
5629 return 0;
5630}
5631
5632/*
5633 * Update internal state after a channel change.
5634 */
5635static void
5636ath_chan_change(struct ath_softc *sc, struct ieee80211_channel *chan)
5637{
5638 enum ieee80211_phymode mode;
5639
5640 /*
5641 * Change channels and update the h/w rate map
5642 * if we're switching; e.g. 11a to 11b/g.
5643 */
5644 mode = ieee80211_chan2mode(chan);
5645 if (mode != sc->sc_curmode)
5646 ath_setcurmode(sc, mode);
5647 sc->sc_curchan = chan;
5648
5649 sc->sc_rx_th.wr_chan_flags = htole32(chan->ic_flags);
5650 sc->sc_tx_th.wt_chan_flags = sc->sc_rx_th.wr_chan_flags;
5651 sc->sc_rx_th.wr_chan_freq = htole16(chan->ic_freq);
5652 sc->sc_tx_th.wt_chan_freq = sc->sc_rx_th.wr_chan_freq;
5653 sc->sc_rx_th.wr_chan_ieee = chan->ic_ieee;
5654 sc->sc_tx_th.wt_chan_ieee = sc->sc_rx_th.wr_chan_ieee;
5655 sc->sc_rx_th.wr_chan_maxpow = chan->ic_maxregpower;
5656 sc->sc_tx_th.wt_chan_maxpow = sc->sc_rx_th.wr_chan_maxpow;
5657}
5658
5659/*
5660 * Set/change channels. If the channel is really being changed,
5661 * it's done by reseting the chip. To accomplish this we must
5662 * first cleanup any pending DMA, then restart stuff after a la
5663 * ath_init.
5664 */
5665static int
5666ath_chan_set(struct ath_softc *sc, struct ieee80211_channel *chan)
5667{
5668 struct ifnet *ifp = sc->sc_ifp;
5669 struct ieee80211com *ic = ifp->if_l2com;
5670 struct ath_hal *ah = sc->sc_ah;
5671
5672 DPRINTF(sc, ATH_DEBUG_RESET, "%s: %u (%u MHz, flags 0x%x)\n",
5673 __func__, ieee80211_chan2ieee(ic, chan),
5674 chan->ic_freq, chan->ic_flags);
5675 if (chan != sc->sc_curchan) {
5676 HAL_STATUS status;
5677 /*
5678 * To switch channels clear any pending DMA operations;
5679 * wait long enough for the RX fifo to drain, reset the
5680 * hardware at the new frequency, and then re-enable
5681 * the relevant bits of the h/w.
5682 */
5683 ath_hal_intrset(ah, 0); /* disable interrupts */
5684 ath_draintxq(sc); /* clear pending tx frames */
5685 ath_stoprecv(sc); /* turn off frame recv */
5686 if (!ath_hal_reset(ah, sc->sc_opmode, chan, AH_TRUE, &status)) {
5687 if_printf(ifp, "%s: unable to reset "
5688 "channel %u (%u Mhz, flags 0x%x), hal status %u\n",
5689 __func__, ieee80211_chan2ieee(ic, chan),
5690 chan->ic_freq, chan->ic_flags, status);
5691 return EIO;
5692 }
5693 sc->sc_diversity = ath_hal_getdiversity(ah);
5694
5695 /*
5696 * Re-enable rx framework.
5697 */
5698 if (ath_startrecv(sc) != 0) {
5699 if_printf(ifp, "%s: unable to restart recv logic\n",
5700 __func__);
5701 return EIO;
5702 }
5703
5704 /*
5705 * Change channels and update the h/w rate map
5706 * if we're switching; e.g. 11a to 11b/g.
5707 */
5708 ath_chan_change(sc, chan);
5709
5710 /*
5711 * Re-enable interrupts.
5712 */
5713 ath_hal_intrset(ah, sc->sc_imask);
5714 }
5715 return 0;
5716}
5717
5718/*
5719 * Periodically recalibrate the PHY to account
5720 * for temperature/environment changes.
5721 */
5722static void
5723ath_calibrate(void *arg)
5724{
5725 struct ath_softc *sc = arg;
5726 struct ath_hal *ah = sc->sc_ah;
5727 struct ifnet *ifp = sc->sc_ifp;
5728 struct ieee80211com *ic = ifp->if_l2com;
5729 HAL_BOOL longCal, isCalDone;
5730 int nextcal;
5731
5732 if (ic->ic_flags & IEEE80211_F_SCAN) /* defer, off channel */
5733 goto restart;
5734 longCal = (ticks - sc->sc_lastlongcal >= ath_longcalinterval*hz);
5735 if (longCal) {
5736 sc->sc_stats.ast_per_cal++;
5737 if (ath_hal_getrfgain(ah) == HAL_RFGAIN_NEED_CHANGE) {
5738 /*
5739 * Rfgain is out of bounds, reset the chip
5740 * to load new gain values.
5741 */
5742 DPRINTF(sc, ATH_DEBUG_CALIBRATE,
5743 "%s: rfgain change\n", __func__);
5744 sc->sc_stats.ast_per_rfgain++;
5745 ath_reset(ifp);
5746 }
5747 /*
5748 * If this long cal is after an idle period, then
5749 * reset the data collection state so we start fresh.
5750 */
5751 if (sc->sc_resetcal) {
5752 (void) ath_hal_calreset(ah, sc->sc_curchan);
5753 sc->sc_lastcalreset = ticks;
5754 sc->sc_resetcal = 0;
5755 }
5756 }
5757 if (ath_hal_calibrateN(ah, sc->sc_curchan, longCal, &isCalDone)) {
5758 if (longCal) {
5759 /*
5760 * Calibrate noise floor data again in case of change.
5761 */
5762 ath_hal_process_noisefloor(ah);
5763 }
5764 } else {
5765 DPRINTF(sc, ATH_DEBUG_ANY,
5766 "%s: calibration of channel %u failed\n",
5767 __func__, sc->sc_curchan->ic_freq);
5768 sc->sc_stats.ast_per_calfail++;
5769 }
5770 if (!isCalDone) {
5771restart:
5772 /*
5773 * Use a shorter interval to potentially collect multiple
5774 * data samples required to complete calibration. Once
5775 * we're told the work is done we drop back to a longer
5776 * interval between requests. We're more aggressive doing
5777 * work when operating as an AP to improve operation right
5778 * after startup.
5779 */
5780 nextcal = (1000*ath_shortcalinterval)/hz;
5781 if (sc->sc_opmode != HAL_M_HOSTAP)
5782 nextcal *= 10;
5783 } else {
5784 nextcal = ath_longcalinterval*hz;
5785 sc->sc_lastlongcal = ticks;
5786 if (sc->sc_lastcalreset == 0)
5787 sc->sc_lastcalreset = sc->sc_lastlongcal;
5788 else if (ticks - sc->sc_lastcalreset >= ath_resetcalinterval*hz)
5789 sc->sc_resetcal = 1; /* setup reset next trip */
5790 }
5791
5792 if (nextcal != 0) {
5793 DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: next +%u (%sisCalDone)\n",
5794 __func__, nextcal, isCalDone ? "" : "!");
5795 callout_reset(&sc->sc_cal_ch, nextcal, ath_calibrate, sc);
5796 } else {
5797 DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: calibration disabled\n",
5798 __func__);
5799 /* NB: don't rearm timer */
5800 }
5801}
5802
5803static void
5804ath_scan_start(struct ieee80211com *ic)
5805{
5806 struct ifnet *ifp = ic->ic_ifp;
5807 struct ath_softc *sc = ifp->if_softc;
5808 struct ath_hal *ah = sc->sc_ah;
5809 u_int32_t rfilt;
5810
5811 /* XXX calibration timer? */
5812
5813 sc->sc_scanning = 1;
5814 sc->sc_syncbeacon = 0;
5815 rfilt = ath_calcrxfilter(sc);
5816 ath_hal_setrxfilter(ah, rfilt);
5817 ath_hal_setassocid(ah, ifp->if_broadcastaddr, 0);
5818
5819 DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0\n",
5820 __func__, rfilt, ether_sprintf(ifp->if_broadcastaddr));
5821}
5822
5823static void
5824ath_scan_end(struct ieee80211com *ic)
5825{
5826 struct ifnet *ifp = ic->ic_ifp;
5827 struct ath_softc *sc = ifp->if_softc;
5828 struct ath_hal *ah = sc->sc_ah;
5829 u_int32_t rfilt;
5830
5831 sc->sc_scanning = 0;
5832 rfilt = ath_calcrxfilter(sc);
5833 ath_hal_setrxfilter(ah, rfilt);
5834 ath_hal_setassocid(ah, sc->sc_curbssid, sc->sc_curaid);
5835
5836 ath_hal_process_noisefloor(ah);
5837
5838 DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0x%x\n",
5839 __func__, rfilt, ether_sprintf(sc->sc_curbssid),
5840 sc->sc_curaid);
5841}
5842
5843static void
5844ath_set_channel(struct ieee80211com *ic)
5845{
5846 struct ifnet *ifp = ic->ic_ifp;
5847 struct ath_softc *sc = ifp->if_softc;
5848
5849 (void) ath_chan_set(sc, ic->ic_curchan);
5850 /*
5851 * If we are returning to our bss channel then mark state
5852 * so the next recv'd beacon's tsf will be used to sync the
5853 * beacon timers. Note that since we only hear beacons in
5854 * sta/ibss mode this has no effect in other operating modes.
5855 */
5856 if (!sc->sc_scanning && ic->ic_curchan == ic->ic_bsschan)
5857 sc->sc_syncbeacon = 1;
5858}
5859
5860/*
5861 * Walk the vap list and check if there any vap's in RUN state.
5862 */
5863static int
5864ath_isanyrunningvaps(struct ieee80211vap *this)
5865{
5866 struct ieee80211com *ic = this->iv_ic;
5867 struct ieee80211vap *vap;
5868
5869 IEEE80211_LOCK_ASSERT(ic);
5870
5871 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
5872 if (vap != this && vap->iv_state == IEEE80211_S_RUN)
5873 return 1;
5874 }
5875 return 0;
5876}
5877
5878static int
5879ath_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
5880{
5881 struct ieee80211com *ic = vap->iv_ic;
5882 struct ath_softc *sc = ic->ic_ifp->if_softc;
5883 struct ath_vap *avp = ATH_VAP(vap);
5884 struct ath_hal *ah = sc->sc_ah;
5885 struct ieee80211_node *ni = NULL;
5886 int i, error, stamode;
5887 u_int32_t rfilt;
5888 static const HAL_LED_STATE leds[] = {
5889 HAL_LED_INIT, /* IEEE80211_S_INIT */
5890 HAL_LED_SCAN, /* IEEE80211_S_SCAN */
5891 HAL_LED_AUTH, /* IEEE80211_S_AUTH */
5892 HAL_LED_ASSOC, /* IEEE80211_S_ASSOC */
5893 HAL_LED_RUN, /* IEEE80211_S_CAC */
5894 HAL_LED_RUN, /* IEEE80211_S_RUN */
5895 HAL_LED_RUN, /* IEEE80211_S_CSA */
5896 HAL_LED_RUN, /* IEEE80211_S_SLEEP */
5897 };
5898
5899 DPRINTF(sc, ATH_DEBUG_STATE, "%s: %s -> %s\n", __func__,
5900 ieee80211_state_name[vap->iv_state],
5901 ieee80211_state_name[nstate]);
5902
5903 callout_stop(&sc->sc_cal_ch);
5904 ath_hal_setledstate(ah, leds[nstate]); /* set LED */
5905
5906 if (nstate == IEEE80211_S_SCAN) {
5907 /*
5908 * Scanning: turn off beacon miss and don't beacon.
5909 * Mark beacon state so when we reach RUN state we'll
5910 * [re]setup beacons. Unblock the task q thread so
5911 * deferred interrupt processing is done.
5912 */
5913 ath_hal_intrset(ah,
5914 sc->sc_imask &~ (HAL_INT_SWBA | HAL_INT_BMISS));
5915 sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
5916 sc->sc_beacons = 0;
5917 taskqueue_unblock(sc->sc_tq);
5918 }
5919
5920 ni = vap->iv_bss;
5921 rfilt = ath_calcrxfilter(sc);
5922 stamode = (vap->iv_opmode == IEEE80211_M_STA ||
5923 vap->iv_opmode == IEEE80211_M_AHDEMO ||
5924 vap->iv_opmode == IEEE80211_M_IBSS);
5925 if (stamode && nstate == IEEE80211_S_RUN) {
5926 sc->sc_curaid = ni->ni_associd;
5927 IEEE80211_ADDR_COPY(sc->sc_curbssid, ni->ni_bssid);
5928 ath_hal_setassocid(ah, sc->sc_curbssid, sc->sc_curaid);
5929 }
5930 DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0x%x\n",
5931 __func__, rfilt, ether_sprintf(sc->sc_curbssid), sc->sc_curaid);
5932 ath_hal_setrxfilter(ah, rfilt);
5933
5934 /* XXX is this to restore keycache on resume? */
5935 if (vap->iv_opmode != IEEE80211_M_STA &&
5936 (vap->iv_flags & IEEE80211_F_PRIVACY)) {
5937 for (i = 0; i < IEEE80211_WEP_NKID; i++)
5938 if (ath_hal_keyisvalid(ah, i))
5939 ath_hal_keysetmac(ah, i, ni->ni_bssid);
5940 }
5941
5942 /*
5943 * Invoke the parent method to do net80211 work.
5944 */
5945 error = avp->av_newstate(vap, nstate, arg);
5946 if (error != 0)
5947 goto bad;
5948
5949 if (nstate == IEEE80211_S_RUN) {
5950 /* NB: collect bss node again, it may have changed */
5951 ni = vap->iv_bss;
5952
5953 DPRINTF(sc, ATH_DEBUG_STATE,
5954 "%s(RUN): iv_flags 0x%08x bintvl %d bssid %s "
5955 "capinfo 0x%04x chan %d\n", __func__,
5956 vap->iv_flags, ni->ni_intval, ether_sprintf(ni->ni_bssid),
5957 ni->ni_capinfo, ieee80211_chan2ieee(ic, ic->ic_curchan));
5958
5959 switch (vap->iv_opmode) {
5960#ifdef ATH_SUPPORT_TDMA
5961 case IEEE80211_M_AHDEMO:
5962 if ((vap->iv_caps & IEEE80211_C_TDMA) == 0)
5963 break;
5964 /* fall thru... */
5965#endif
5966 case IEEE80211_M_HOSTAP:
5967 case IEEE80211_M_IBSS:
5968 /*
5969 * Allocate and setup the beacon frame.
5970 *
5971 * Stop any previous beacon DMA. This may be
5972 * necessary, for example, when an ibss merge
5973 * causes reconfiguration; there will be a state
5974 * transition from RUN->RUN that means we may
5975 * be called with beacon transmission active.
5976 */
5977 ath_hal_stoptxdma(ah, sc->sc_bhalq);
5978
5979 error = ath_beacon_alloc(sc, ni);
5980 if (error != 0)
5981 goto bad;
5982 /*
5983 * If joining an adhoc network defer beacon timer
5984 * configuration to the next beacon frame so we
5985 * have a current TSF to use. Otherwise we're
5986 * starting an ibss/bss so there's no need to delay;
5987 * if this is the first vap moving to RUN state, then
5988 * beacon state needs to be [re]configured.
5989 */
5990 if (vap->iv_opmode == IEEE80211_M_IBSS &&
5991 ni->ni_tstamp.tsf != 0) {
5992 sc->sc_syncbeacon = 1;
5993 } else if (!sc->sc_beacons) {
5994#ifdef ATH_SUPPORT_TDMA
5995 if (vap->iv_caps & IEEE80211_C_TDMA)
5996 ath_tdma_config(sc, vap);
5997 else
5998#endif
5999 ath_beacon_config(sc, vap);
6000 sc->sc_beacons = 1;
6001 }
6002 break;
6003 case IEEE80211_M_STA:
6004 /*
6005 * Defer beacon timer configuration to the next
6006 * beacon frame so we have a current TSF to use
6007 * (any TSF collected when scanning is likely old).
6008 */
6009 sc->sc_syncbeacon = 1;
6010 break;
6011 case IEEE80211_M_MONITOR:
6012 /*
6013 * Monitor mode vaps have only INIT->RUN and RUN->RUN
6014 * transitions so we must re-enable interrupts here to
6015 * handle the case of a single monitor mode vap.
6016 */
6017 ath_hal_intrset(ah, sc->sc_imask);
6018 break;
6019 case IEEE80211_M_WDS:
6020 break;
6021 default:
6022 break;
6023 }
6024 /*
6025 * Let the hal process statistics collected during a
6026 * scan so it can provide calibrated noise floor data.
6027 */
6028 ath_hal_process_noisefloor(ah);
6029 /*
6030 * Reset rssi stats; maybe not the best place...
6031 */
6032 sc->sc_halstats.ns_avgbrssi = ATH_RSSI_DUMMY_MARKER;
6033 sc->sc_halstats.ns_avgrssi = ATH_RSSI_DUMMY_MARKER;
6034 sc->sc_halstats.ns_avgtxrssi = ATH_RSSI_DUMMY_MARKER;
6035 /*
6036 * Finally, start any timers and the task q thread
6037 * (in case we didn't go through SCAN state).
6038 */
6039 if (ath_longcalinterval != 0) {
6040 /* start periodic recalibration timer */
6041 callout_reset(&sc->sc_cal_ch, 1, ath_calibrate, sc);
6042 } else {
6043 DPRINTF(sc, ATH_DEBUG_CALIBRATE,
6044 "%s: calibration disabled\n", __func__);
6045 }
6046 taskqueue_unblock(sc->sc_tq);
6047 } else if (nstate == IEEE80211_S_INIT) {
6048 /*
6049 * If there are no vaps left in RUN state then
6050 * shutdown host/driver operation:
6051 * o disable interrupts
6052 * o disable the task queue thread
6053 * o mark beacon processing as stopped
6054 */
6055 if (!ath_isanyrunningvaps(vap)) {
6056 sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
6057 /* disable interrupts */
6058 ath_hal_intrset(ah, sc->sc_imask &~ HAL_INT_GLOBAL);
6059 taskqueue_block(sc->sc_tq);
6060 sc->sc_beacons = 0;
6061 }
6062#ifdef ATH_SUPPORT_TDMA
6063 ath_hal_setcca(ah, AH_TRUE);
6064#endif
6065 }
6066bad:
6067 return error;
6068}
6069
6070/*
6071 * Allocate a key cache slot to the station so we can
6072 * setup a mapping from key index to node. The key cache
6073 * slot is needed for managing antenna state and for
6074 * compression when stations do not use crypto. We do
6075 * it uniliaterally here; if crypto is employed this slot
6076 * will be reassigned.
6077 */
6078static void
6079ath_setup_stationkey(struct ieee80211_node *ni)
6080{
6081 struct ieee80211vap *vap = ni->ni_vap;
6082 struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc;
6083 ieee80211_keyix keyix, rxkeyix;
6084
6085 if (!ath_key_alloc(vap, &ni->ni_ucastkey, &keyix, &rxkeyix)) {
6086 /*
6087 * Key cache is full; we'll fall back to doing
6088 * the more expensive lookup in software. Note
6089 * this also means no h/w compression.
6090 */
6091 /* XXX msg+statistic */
6092 } else {
6093 /* XXX locking? */
6094 ni->ni_ucastkey.wk_keyix = keyix;
6095 ni->ni_ucastkey.wk_rxkeyix = rxkeyix;
6096 /* NB: must mark device key to get called back on delete */
6097 ni->ni_ucastkey.wk_flags |= IEEE80211_KEY_DEVKEY;
6098 IEEE80211_ADDR_COPY(ni->ni_ucastkey.wk_macaddr, ni->ni_macaddr);
6099 /* NB: this will create a pass-thru key entry */
6100 ath_keyset(sc, &ni->ni_ucastkey, vap->iv_bss);
6101 }
6102}
6103
6104/*
6105 * Setup driver-specific state for a newly associated node.
6106 * Note that we're called also on a re-associate, the isnew
6107 * param tells us if this is the first time or not.
6108 */
6109static void
6110ath_newassoc(struct ieee80211_node *ni, int isnew)
6111{
6112 struct ath_node *an = ATH_NODE(ni);
6113 struct ieee80211vap *vap = ni->ni_vap;
6114 struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc;
6115 const struct ieee80211_txparam *tp = ni->ni_txparms;
6116
6117 an->an_mcastrix = ath_tx_findrix(sc->sc_currates, tp->mcastrate);
6118 an->an_mgmtrix = ath_tx_findrix(sc->sc_currates, tp->mgmtrate);
6119
6120 ath_rate_newassoc(sc, an, isnew);
6121 if (isnew &&
6122 (vap->iv_flags & IEEE80211_F_PRIVACY) == 0 && sc->sc_hasclrkey &&
6123 ni->ni_ucastkey.wk_keyix == IEEE80211_KEYIX_NONE)
6124 ath_setup_stationkey(ni);
6125}
6126
6127static int
6128ath_setregdomain(struct ieee80211com *ic, struct ieee80211_regdomain *reg,
6129 int nchans, struct ieee80211_channel chans[])
6130{
6131 struct ath_softc *sc = ic->ic_ifp->if_softc;
6132 struct ath_hal *ah = sc->sc_ah;
6133 HAL_STATUS status;
6134
6135 DPRINTF(sc, ATH_DEBUG_REGDOMAIN,
6136 "%s: rd %u cc %u location %c%s\n",
6137 __func__, reg->regdomain, reg->country, reg->location,
6138 reg->ecm ? " ecm" : "");
6139
6140 status = ath_hal_set_channels(ah, chans, nchans,
6141 reg->country, reg->regdomain);
6142 if (status != HAL_OK) {
6143 DPRINTF(sc, ATH_DEBUG_REGDOMAIN, "%s: failed, status %u\n",
6144 __func__, status);
6145 return EINVAL; /* XXX */
6146 }
6147 return 0;
6148}
6149
6150static void
6151ath_getradiocaps(struct ieee80211com *ic,
6152 int maxchans, int *nchans, struct ieee80211_channel chans[])
6153{
6154 struct ath_softc *sc = ic->ic_ifp->if_softc;
6155 struct ath_hal *ah = sc->sc_ah;
6156
6157 DPRINTF(sc, ATH_DEBUG_REGDOMAIN, "%s: use rd %u cc %d\n",
6158 __func__, SKU_DEBUG, CTRY_DEFAULT);
6159
6160 /* XXX check return */
6161 (void) ath_hal_getchannels(ah, chans, maxchans, nchans,
6162 HAL_MODE_ALL, CTRY_DEFAULT, SKU_DEBUG, AH_TRUE);
6163
6164}
6165
6166static int
6167ath_getchannels(struct ath_softc *sc)
6168{
6169 struct ifnet *ifp = sc->sc_ifp;
6170 struct ieee80211com *ic = ifp->if_l2com;
6171 struct ath_hal *ah = sc->sc_ah;
6172 HAL_STATUS status;
6173
6174 /*
6175 * Collect channel set based on EEPROM contents.
6176 */
6177 status = ath_hal_init_channels(ah, ic->ic_channels, IEEE80211_CHAN_MAX,
6178 &ic->ic_nchans, HAL_MODE_ALL, CTRY_DEFAULT, SKU_NONE, AH_TRUE);
6179 if (status != HAL_OK) {
6180 if_printf(ifp, "%s: unable to collect channel list from hal, "
6181 "status %d\n", __func__, status);
6182 return EINVAL;
6183 }
6184 (void) ath_hal_getregdomain(ah, &sc->sc_eerd);
6185 ath_hal_getcountrycode(ah, &sc->sc_eecc); /* NB: cannot fail */
6186 /* XXX map Atheros sku's to net80211 SKU's */
6187 /* XXX net80211 types too small */
6188 ic->ic_regdomain.regdomain = (uint16_t) sc->sc_eerd;
6189 ic->ic_regdomain.country = (uint16_t) sc->sc_eecc;
6190 ic->ic_regdomain.isocc[0] = ' '; /* XXX don't know */
6191 ic->ic_regdomain.isocc[1] = ' ';
6192
6193 ic->ic_regdomain.ecm = 1;
6194 ic->ic_regdomain.location = 'I';
6195
6196 DPRINTF(sc, ATH_DEBUG_REGDOMAIN,
6197 "%s: eeprom rd %u cc %u (mapped rd %u cc %u) location %c%s\n",
6198 __func__, sc->sc_eerd, sc->sc_eecc,
6199 ic->ic_regdomain.regdomain, ic->ic_regdomain.country,
6200 ic->ic_regdomain.location, ic->ic_regdomain.ecm ? " ecm" : "");
6201 return 0;
6202}
6203
6204static void
6205ath_led_done(void *arg)
6206{
6207 struct ath_softc *sc = arg;
6208
6209 sc->sc_blinking = 0;
6210}
6211
6212/*
6213 * Turn the LED off: flip the pin and then set a timer so no
6214 * update will happen for the specified duration.
6215 */
6216static void
6217ath_led_off(void *arg)
6218{
6219 struct ath_softc *sc = arg;
6220
6221 ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, !sc->sc_ledon);
6222 callout_reset(&sc->sc_ledtimer, sc->sc_ledoff, ath_led_done, sc);
6223}
6224
6225/*
6226 * Blink the LED according to the specified on/off times.
6227 */
6228static void
6229ath_led_blink(struct ath_softc *sc, int on, int off)
6230{
6231 DPRINTF(sc, ATH_DEBUG_LED, "%s: on %u off %u\n", __func__, on, off);
6232 ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, sc->sc_ledon);
6233 sc->sc_blinking = 1;
6234 sc->sc_ledoff = off;
6235 callout_reset(&sc->sc_ledtimer, on, ath_led_off, sc);
6236}
6237
6238static void
6239ath_led_event(struct ath_softc *sc, int rix)
6240{
6241 sc->sc_ledevent = ticks; /* time of last event */
6242 if (sc->sc_blinking) /* don't interrupt active blink */
6243 return;
6244 ath_led_blink(sc, sc->sc_hwmap[rix].ledon, sc->sc_hwmap[rix].ledoff);
6245}
6246
6247static int
6248ath_rate_setup(struct ath_softc *sc, u_int mode)
6249{
6250 struct ath_hal *ah = sc->sc_ah;
6251 const HAL_RATE_TABLE *rt;
6252
6253 switch (mode) {
6254 case IEEE80211_MODE_11A:
6255 rt = ath_hal_getratetable(ah, HAL_MODE_11A);
6256 break;
6257 case IEEE80211_MODE_HALF:
6258 rt = ath_hal_getratetable(ah, HAL_MODE_11A_HALF_RATE);
6259 break;
6260 case IEEE80211_MODE_QUARTER:
6261 rt = ath_hal_getratetable(ah, HAL_MODE_11A_QUARTER_RATE);
6262 break;
6263 case IEEE80211_MODE_11B:
6264 rt = ath_hal_getratetable(ah, HAL_MODE_11B);
6265 break;
6266 case IEEE80211_MODE_11G:
6267 rt = ath_hal_getratetable(ah, HAL_MODE_11G);
6268 break;
6269 case IEEE80211_MODE_TURBO_A:
6270 rt = ath_hal_getratetable(ah, HAL_MODE_108A);
6271#if HAL_ABI_VERSION < 0x07013100
6272 if (rt == NULL) /* XXX bandaid for old hal's */
6273 rt = ath_hal_getratetable(ah, HAL_MODE_TURBO);
6274#endif
6275 break;
6276 case IEEE80211_MODE_TURBO_G:
6277 rt = ath_hal_getratetable(ah, HAL_MODE_108G);
6278 break;
6279 case IEEE80211_MODE_STURBO_A:
6280 rt = ath_hal_getratetable(ah, HAL_MODE_TURBO);
6281 break;
6282 case IEEE80211_MODE_11NA:
6283 rt = ath_hal_getratetable(ah, HAL_MODE_11NA_HT20);
6284 break;
6285 case IEEE80211_MODE_11NG:
6286 rt = ath_hal_getratetable(ah, HAL_MODE_11NG_HT20);
6287 break;
6288 default:
6289 DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid mode %u\n",
6290 __func__, mode);
6291 return 0;
6292 }
6293 sc->sc_rates[mode] = rt;
6294 return (rt != NULL);
6295}
6296
6297static void
6298ath_setcurmode(struct ath_softc *sc, enum ieee80211_phymode mode)
6299{
6300#define N(a) (sizeof(a)/sizeof(a[0]))
6301 /* NB: on/off times from the Atheros NDIS driver, w/ permission */
6302 static const struct {
6303 u_int rate; /* tx/rx 802.11 rate */
6304 u_int16_t timeOn; /* LED on time (ms) */
6305 u_int16_t timeOff; /* LED off time (ms) */
6306 } blinkrates[] = {
6307 { 108, 40, 10 },
6308 { 96, 44, 11 },
6309 { 72, 50, 13 },
6310 { 48, 57, 14 },
6311 { 36, 67, 16 },
6312 { 24, 80, 20 },
6313 { 22, 100, 25 },
6314 { 18, 133, 34 },
6315 { 12, 160, 40 },
6316 { 10, 200, 50 },
6317 { 6, 240, 58 },
6318 { 4, 267, 66 },
6319 { 2, 400, 100 },
6320 { 0, 500, 130 },
6321 /* XXX half/quarter rates */
6322 };
6323 const HAL_RATE_TABLE *rt;
6324 int i, j;
6325
6326 memset(sc->sc_rixmap, 0xff, sizeof(sc->sc_rixmap));
6327 rt = sc->sc_rates[mode];
6328 KASSERT(rt != NULL, ("no h/w rate set for phy mode %u", mode));
6329 for (i = 0; i < rt->rateCount; i++) {
6330 uint8_t ieeerate = rt->info[i].dot11Rate & IEEE80211_RATE_VAL;
6331 if (rt->info[i].phy != IEEE80211_T_HT)
6332 sc->sc_rixmap[ieeerate] = i;
6333 else
6334 sc->sc_rixmap[ieeerate | IEEE80211_RATE_MCS] = i;
6335 }
6336 memset(sc->sc_hwmap, 0, sizeof(sc->sc_hwmap));
6337 for (i = 0; i < N(sc->sc_hwmap); i++) {
6338 if (i >= rt->rateCount) {
6339 sc->sc_hwmap[i].ledon = (500 * hz) / 1000;
6340 sc->sc_hwmap[i].ledoff = (130 * hz) / 1000;
6341 continue;
6342 }
6343 sc->sc_hwmap[i].ieeerate =
6344 rt->info[i].dot11Rate & IEEE80211_RATE_VAL;
6345 if (rt->info[i].phy == IEEE80211_T_HT)
6346 sc->sc_hwmap[i].ieeerate |= IEEE80211_RATE_MCS;
6347 sc->sc_hwmap[i].txflags = IEEE80211_RADIOTAP_F_DATAPAD;
6348 if (rt->info[i].shortPreamble ||
6349 rt->info[i].phy == IEEE80211_T_OFDM)
6350 sc->sc_hwmap[i].txflags |= IEEE80211_RADIOTAP_F_SHORTPRE;
6351 /* NB: receive frames include FCS */
6352 sc->sc_hwmap[i].rxflags = sc->sc_hwmap[i].txflags |
6353 IEEE80211_RADIOTAP_F_FCS;
6354 /* setup blink rate table to avoid per-packet lookup */
6355 for (j = 0; j < N(blinkrates)-1; j++)
6356 if (blinkrates[j].rate == sc->sc_hwmap[i].ieeerate)
6357 break;
6358 /* NB: this uses the last entry if the rate isn't found */
6359 /* XXX beware of overlow */
6360 sc->sc_hwmap[i].ledon = (blinkrates[j].timeOn * hz) / 1000;
6361 sc->sc_hwmap[i].ledoff = (blinkrates[j].timeOff * hz) / 1000;
6362 }
6363 sc->sc_currates = rt;
6364 sc->sc_curmode = mode;
6365 /*
6366 * All protection frames are transmited at 2Mb/s for
6367 * 11g, otherwise at 1Mb/s.
6368 */
6369 if (mode == IEEE80211_MODE_11G)
6370 sc->sc_protrix = ath_tx_findrix(rt, 2*2);
6371 else
6372 sc->sc_protrix = ath_tx_findrix(rt, 2*1);
6373 /* NB: caller is responsible for reseting rate control state */
6374#undef N
6375}
6376
6377#ifdef ATH_DEBUG
6378static void
6379ath_printrxbuf(struct ath_softc *sc, const struct ath_buf *bf,
6380 u_int ix, int done)
6381{
6382 const struct ath_rx_status *rs = &bf->bf_status.ds_rxstat;
6383 struct ath_hal *ah = sc->sc_ah;
6384 const struct ath_desc *ds;
6385 int i;
6386
6387 for (i = 0, ds = bf->bf_desc; i < bf->bf_nseg; i++, ds++) {
6388 printf("R[%2u] (DS.V:%p DS.P:%p) L:%08x D:%08x%s\n"
6389 " %08x %08x %08x %08x\n",
6390 ix, ds, (const struct ath_desc *)bf->bf_daddr + i,
6391 ds->ds_link, ds->ds_data,
6392 !done ? "" : (rs->rs_status == 0) ? " *" : " !",
6393 ds->ds_ctl0, ds->ds_ctl1,
6394 ds->ds_hw[0], ds->ds_hw[1]);
6395 if (ah->ah_magic == 0x20065416) {
6396 printf(" %08x %08x %08x %08x %08x %08x %08x\n",
6397 ds->ds_hw[2], ds->ds_hw[3], ds->ds_hw[4],
6398 ds->ds_hw[5], ds->ds_hw[6], ds->ds_hw[7],
6399 ds->ds_hw[8]);
6400 }
6401 }
6402}
6403
6404static void
6405ath_printtxbuf(struct ath_softc *sc, const struct ath_buf *bf,
6406 u_int qnum, u_int ix, int done)
6407{
6408 const struct ath_tx_status *ts = &bf->bf_status.ds_txstat;
6409 struct ath_hal *ah = sc->sc_ah;
6410 const struct ath_desc *ds;
6411 int i;
6412
6413 printf("Q%u[%3u]", qnum, ix);
6414 for (i = 0, ds = bf->bf_desc; i < bf->bf_nseg; i++, ds++) {
6415 printf(" (DS.V:%p DS.P:%p) L:%08x D:%08x F:04%x%s\n"
6416 " %08x %08x %08x %08x %08x %08x\n",
6417 ds, (const struct ath_desc *)bf->bf_daddr + i,
6418 ds->ds_link, ds->ds_data, bf->bf_txflags,
6419 !done ? "" : (ts->ts_status == 0) ? " *" : " !",
6420 ds->ds_ctl0, ds->ds_ctl1,
6421 ds->ds_hw[0], ds->ds_hw[1], ds->ds_hw[2], ds->ds_hw[3]);
6422 if (ah->ah_magic == 0x20065416) {
6423 printf(" %08x %08x %08x %08x %08x %08x %08x %08x\n",
6424 ds->ds_hw[4], ds->ds_hw[5], ds->ds_hw[6],
6425 ds->ds_hw[7], ds->ds_hw[8], ds->ds_hw[9],
6426 ds->ds_hw[10],ds->ds_hw[11]);
6427 printf(" %08x %08x %08x %08x %08x %08x %08x %08x\n",
6428 ds->ds_hw[12],ds->ds_hw[13],ds->ds_hw[14],
6429 ds->ds_hw[15],ds->ds_hw[16],ds->ds_hw[17],
6430 ds->ds_hw[18], ds->ds_hw[19]);
6431 }
6432 }
6433}
6434#endif /* ATH_DEBUG */
6435
6436static void
6437ath_watchdog(struct ifnet *ifp)
6438{
6439 struct ath_softc *sc = ifp->if_softc;
6440
6441 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) && !sc->sc_invalid) {
6442 uint32_t hangs;
6443
6444 if (ath_hal_gethangstate(sc->sc_ah, 0xffff, &hangs) &&
6445 hangs != 0) {
6446 if_printf(ifp, "%s hang detected (0x%x)\n",
6447 hangs & 0xff ? "bb" : "mac", hangs);
6448 } else
6449 if_printf(ifp, "device timeout\n");
6450 ath_reset(ifp);
6451 ifp->if_oerrors++;
6452 sc->sc_stats.ast_watchdog++;
6453 }
6454}
6455
6456#ifdef ATH_DIAGAPI
6457/*
6458 * Diagnostic interface to the HAL. This is used by various
6459 * tools to do things like retrieve register contents for
6460 * debugging. The mechanism is intentionally opaque so that
6461 * it can change frequently w/o concern for compatiblity.
6462 */
6463static int
6464ath_ioctl_diag(struct ath_softc *sc, struct ath_diag *ad)
6465{
6466 struct ath_hal *ah = sc->sc_ah;
6467 u_int id = ad->ad_id & ATH_DIAG_ID;
6468 void *indata = NULL;
6469 void *outdata = NULL;
6470 u_int32_t insize = ad->ad_in_size;
6471 u_int32_t outsize = ad->ad_out_size;
6472 int error = 0;
6473
6474 if (ad->ad_id & ATH_DIAG_IN) {
6475 /*
6476 * Copy in data.
6477 */
6478 indata = malloc(insize, M_TEMP, M_NOWAIT);
6479 if (indata == NULL) {
6480 error = ENOMEM;
6481 goto bad;
6482 }
6483 error = copyin(ad->ad_in_data, indata, insize);
6484 if (error)
6485 goto bad;
6486 }
6487 if (ad->ad_id & ATH_DIAG_DYN) {
6488 /*
6489 * Allocate a buffer for the results (otherwise the HAL
6490 * returns a pointer to a buffer where we can read the
6491 * results). Note that we depend on the HAL leaving this
6492 * pointer for us to use below in reclaiming the buffer;
6493 * may want to be more defensive.
6494 */
6495 outdata = malloc(outsize, M_TEMP, M_NOWAIT);
6496 if (outdata == NULL) {
6497 error = ENOMEM;
6498 goto bad;
6499 }
6500 }
6501 if (ath_hal_getdiagstate(ah, id, indata, insize, &outdata, &outsize)) {
6502 if (outsize < ad->ad_out_size)
6503 ad->ad_out_size = outsize;
6504 if (outdata != NULL)
6505 error = copyout(outdata, ad->ad_out_data,
6506 ad->ad_out_size);
6507 } else {
6508 error = EINVAL;
6509 }
6510bad:
6511 if ((ad->ad_id & ATH_DIAG_IN) && indata != NULL)
6512 free(indata, M_TEMP);
6513 if ((ad->ad_id & ATH_DIAG_DYN) && outdata != NULL)
6514 free(outdata, M_TEMP);
6515 return error;
6516}
6517#endif /* ATH_DIAGAPI */
6518
6519static int
6520ath_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
6521{
6522#define IS_RUNNING(ifp) \
6523 ((ifp->if_flags & IFF_UP) && (ifp->if_drv_flags & IFF_DRV_RUNNING))
6524 struct ath_softc *sc = ifp->if_softc;
6525 struct ieee80211com *ic = ifp->if_l2com;
6526 struct ifreq *ifr = (struct ifreq *)data;
6527 const HAL_RATE_TABLE *rt;
6528 int error = 0;
6529
6530 switch (cmd) {
6531 case SIOCSIFFLAGS:
6532 ATH_LOCK(sc);
6533 if (IS_RUNNING(ifp)) {
6534 /*
6535 * To avoid rescanning another access point,
6536 * do not call ath_init() here. Instead,
6537 * only reflect promisc mode settings.
6538 */
6539 ath_mode_init(sc);
6540 } else if (ifp->if_flags & IFF_UP) {
6541 /*
6542 * Beware of being called during attach/detach
6543 * to reset promiscuous mode. In that case we
6544 * will still be marked UP but not RUNNING.
6545 * However trying to re-init the interface
6546 * is the wrong thing to do as we've already
6547 * torn down much of our state. There's
6548 * probably a better way to deal with this.
6549 */
6550 if (!sc->sc_invalid)
6551 ath_init(sc); /* XXX lose error */
6552 } else {
6553 ath_stop_locked(ifp);
6554#ifdef notyet
6555 /* XXX must wakeup in places like ath_vap_delete */
6556 if (!sc->sc_invalid)
6557 ath_hal_setpower(sc->sc_ah, HAL_PM_FULL_SLEEP);
6558#endif
6559 }
6560 ATH_UNLOCK(sc);
6561 break;
6562 case SIOCGIFMEDIA:
6563 case SIOCSIFMEDIA:
6564 error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd);
6565 break;
6566 case SIOCGATHSTATS:
6567 /* NB: embed these numbers to get a consistent view */
6568 sc->sc_stats.ast_tx_packets = ifp->if_opackets;
6569 sc->sc_stats.ast_rx_packets = ifp->if_ipackets;
6570 sc->sc_stats.ast_tx_rssi = ATH_RSSI(sc->sc_halstats.ns_avgtxrssi);
6571 sc->sc_stats.ast_rx_rssi = ATH_RSSI(sc->sc_halstats.ns_avgrssi);
6572#ifdef ATH_SUPPORT_TDMA
6573 sc->sc_stats.ast_tdma_tsfadjp = TDMA_AVG(sc->sc_avgtsfdeltap);
6574 sc->sc_stats.ast_tdma_tsfadjm = TDMA_AVG(sc->sc_avgtsfdeltam);
6575#endif
6576 rt = sc->sc_currates;
6577 /* XXX HT rates */
6578 sc->sc_stats.ast_tx_rate =
6579 rt->info[sc->sc_txrix].dot11Rate &~ IEEE80211_RATE_BASIC;
6580 return copyout(&sc->sc_stats,
6581 ifr->ifr_data, sizeof (sc->sc_stats));
6582 case SIOCZATHSTATS:
6583 error = priv_check(curthread, PRIV_DRIVER);
6584 if (error == 0)
6585 memset(&sc->sc_stats, 0, sizeof(sc->sc_stats));
6586 break;
6587#ifdef ATH_DIAGAPI
6588 case SIOCGATHDIAG:
6589 error = ath_ioctl_diag(sc, (struct ath_diag *) ifr);
6590 break;
6591#endif
6592 case SIOCGIFADDR:
6593 error = ether_ioctl(ifp, cmd, data);
6594 break;
6595 default:
6596 error = EINVAL;
6597 break;
6598 }
6599 return error;
6600#undef IS_RUNNING
6601}
6602
6603static int
6604ath_sysctl_slottime(SYSCTL_HANDLER_ARGS)
6605{
6606 struct ath_softc *sc = arg1;
6607 u_int slottime = ath_hal_getslottime(sc->sc_ah);
6608 int error;
6609
6610 error = sysctl_handle_int(oidp, &slottime, 0, req);
6611 if (error || !req->newptr)
6612 return error;
6613 return !ath_hal_setslottime(sc->sc_ah, slottime) ? EINVAL : 0;
6614}
6615
6616static int
6617ath_sysctl_acktimeout(SYSCTL_HANDLER_ARGS)
6618{
6619 struct ath_softc *sc = arg1;
6620 u_int acktimeout = ath_hal_getacktimeout(sc->sc_ah);
6621 int error;
6622
6623 error = sysctl_handle_int(oidp, &acktimeout, 0, req);
6624 if (error || !req->newptr)
6625 return error;
6626 return !ath_hal_setacktimeout(sc->sc_ah, acktimeout) ? EINVAL : 0;
6627}
6628
6629static int
6630ath_sysctl_ctstimeout(SYSCTL_HANDLER_ARGS)
6631{
6632 struct ath_softc *sc = arg1;
6633 u_int ctstimeout = ath_hal_getctstimeout(sc->sc_ah);
6634 int error;
6635
6636 error = sysctl_handle_int(oidp, &ctstimeout, 0, req);
6637 if (error || !req->newptr)
6638 return error;
6639 return !ath_hal_setctstimeout(sc->sc_ah, ctstimeout) ? EINVAL : 0;
6640}
6641
6642static int
6643ath_sysctl_softled(SYSCTL_HANDLER_ARGS)
6644{
6645 struct ath_softc *sc = arg1;
6646 int softled = sc->sc_softled;
6647 int error;
6648
6649 error = sysctl_handle_int(oidp, &softled, 0, req);
6650 if (error || !req->newptr)
6651 return error;
6652 softled = (softled != 0);
6653 if (softled != sc->sc_softled) {
6654 if (softled) {
6655 /* NB: handle any sc_ledpin change */
6656 ath_hal_gpioCfgOutput(sc->sc_ah, sc->sc_ledpin);
6657 ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin,
6658 !sc->sc_ledon);
6659 }
6660 sc->sc_softled = softled;
6661 }
6662 return 0;
6663}
6664
6665static int
6666ath_sysctl_ledpin(SYSCTL_HANDLER_ARGS)
6667{
6668 struct ath_softc *sc = arg1;
6669 int ledpin = sc->sc_ledpin;
6670 int error;
6671
6672 error = sysctl_handle_int(oidp, &ledpin, 0, req);
6673 if (error || !req->newptr)
6674 return error;
6675 if (ledpin != sc->sc_ledpin) {
6676 sc->sc_ledpin = ledpin;
6677 if (sc->sc_softled) {
6678 ath_hal_gpioCfgOutput(sc->sc_ah, sc->sc_ledpin);
6679 ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin,
6680 !sc->sc_ledon);
6681 }
6682 }
6683 return 0;
6684}
6685
6686static int
6687ath_sysctl_txantenna(SYSCTL_HANDLER_ARGS)
6688{
6689 struct ath_softc *sc = arg1;
6690 u_int txantenna = ath_hal_getantennaswitch(sc->sc_ah);
6691 int error;
6692
6693 error = sysctl_handle_int(oidp, &txantenna, 0, req);
6694 if (!error && req->newptr) {
6695 /* XXX assumes 2 antenna ports */
6696 if (txantenna < HAL_ANT_VARIABLE || txantenna > HAL_ANT_FIXED_B)
6697 return EINVAL;
6698 ath_hal_setantennaswitch(sc->sc_ah, txantenna);
6699 /*
6700 * NB: with the switch locked this isn't meaningful,
6701 * but set it anyway so things like radiotap get
6702 * consistent info in their data.
6703 */
6704 sc->sc_txantenna = txantenna;
6705 }
6706 return error;
6707}
6708
6709static int
6710ath_sysctl_rxantenna(SYSCTL_HANDLER_ARGS)
6711{
6712 struct ath_softc *sc = arg1;
6713 u_int defantenna = ath_hal_getdefantenna(sc->sc_ah);
6714 int error;
6715
6716 error = sysctl_handle_int(oidp, &defantenna, 0, req);
6717 if (!error && req->newptr)
6718 ath_hal_setdefantenna(sc->sc_ah, defantenna);
6719 return error;
6720}
6721
6722static int
6723ath_sysctl_diversity(SYSCTL_HANDLER_ARGS)
6724{
6725 struct ath_softc *sc = arg1;
6726 u_int diversity = ath_hal_getdiversity(sc->sc_ah);
6727 int error;
6728
6729 error = sysctl_handle_int(oidp, &diversity, 0, req);
6730 if (error || !req->newptr)
6731 return error;
6732 if (!ath_hal_setdiversity(sc->sc_ah, diversity))
6733 return EINVAL;
6734 sc->sc_diversity = diversity;
6735 return 0;
6736}
6737
6738static int
6739ath_sysctl_diag(SYSCTL_HANDLER_ARGS)
6740{
6741 struct ath_softc *sc = arg1;
6742 u_int32_t diag;
6743 int error;
6744
6745 if (!ath_hal_getdiag(sc->sc_ah, &diag))
6746 return EINVAL;
6747 error = sysctl_handle_int(oidp, &diag, 0, req);
6748 if (error || !req->newptr)
6749 return error;
6750 return !ath_hal_setdiag(sc->sc_ah, diag) ? EINVAL : 0;
6751}
6752
6753static int
6754ath_sysctl_tpscale(SYSCTL_HANDLER_ARGS)
6755{
6756 struct ath_softc *sc = arg1;
6757 struct ifnet *ifp = sc->sc_ifp;
6758 u_int32_t scale;
6759 int error;
6760
6761 (void) ath_hal_gettpscale(sc->sc_ah, &scale);
6762 error = sysctl_handle_int(oidp, &scale, 0, req);
6763 if (error || !req->newptr)
6764 return error;
6765 return !ath_hal_settpscale(sc->sc_ah, scale) ? EINVAL :
6766 (ifp->if_drv_flags & IFF_DRV_RUNNING) ? ath_reset(ifp) : 0;
6767}
6768
6769static int
6770ath_sysctl_tpc(SYSCTL_HANDLER_ARGS)
6771{
6772 struct ath_softc *sc = arg1;
6773 u_int tpc = ath_hal_gettpc(sc->sc_ah);
6774 int error;
6775
6776 error = sysctl_handle_int(oidp, &tpc, 0, req);
6777 if (error || !req->newptr)
6778 return error;
6779 return !ath_hal_settpc(sc->sc_ah, tpc) ? EINVAL : 0;
6780}
6781
6782static int
6783ath_sysctl_rfkill(SYSCTL_HANDLER_ARGS)
6784{
6785 struct ath_softc *sc = arg1;
6786 struct ifnet *ifp = sc->sc_ifp;
6787 struct ath_hal *ah = sc->sc_ah;
6788 u_int rfkill = ath_hal_getrfkill(ah);
6789 int error;
6790
6791 error = sysctl_handle_int(oidp, &rfkill, 0, req);
6792 if (error || !req->newptr)
6793 return error;
6794 if (rfkill == ath_hal_getrfkill(ah)) /* unchanged */
6795 return 0;
6796 if (!ath_hal_setrfkill(ah, rfkill))
6797 return EINVAL;
6798 return (ifp->if_drv_flags & IFF_DRV_RUNNING) ? ath_reset(ifp) : 0;
6799}
6800
6801static int
6802ath_sysctl_rfsilent(SYSCTL_HANDLER_ARGS)
6803{
6804 struct ath_softc *sc = arg1;
6805 u_int rfsilent;
6806 int error;
6807
6808 (void) ath_hal_getrfsilent(sc->sc_ah, &rfsilent);
6809 error = sysctl_handle_int(oidp, &rfsilent, 0, req);
6810 if (error || !req->newptr)
6811 return error;
6812 if (!ath_hal_setrfsilent(sc->sc_ah, rfsilent))
6813 return EINVAL;
6814 sc->sc_rfsilentpin = rfsilent & 0x1c;
6815 sc->sc_rfsilentpol = (rfsilent & 0x2) != 0;
6816 return 0;
6817}
6818
6819static int
6820ath_sysctl_tpack(SYSCTL_HANDLER_ARGS)
6821{
6822 struct ath_softc *sc = arg1;
6823 u_int32_t tpack;
6824 int error;
6825
6826 (void) ath_hal_gettpack(sc->sc_ah, &tpack);
6827 error = sysctl_handle_int(oidp, &tpack, 0, req);
6828 if (error || !req->newptr)
6829 return error;
6830 return !ath_hal_settpack(sc->sc_ah, tpack) ? EINVAL : 0;
6831}
6832
6833static int
6834ath_sysctl_tpcts(SYSCTL_HANDLER_ARGS)
6835{
6836 struct ath_softc *sc = arg1;
6837 u_int32_t tpcts;
6838 int error;
6839
6840 (void) ath_hal_gettpcts(sc->sc_ah, &tpcts);
6841 error = sysctl_handle_int(oidp, &tpcts, 0, req);
6842 if (error || !req->newptr)
6843 return error;
6844 return !ath_hal_settpcts(sc->sc_ah, tpcts) ? EINVAL : 0;
6845}
6846
6847static int
6848ath_sysctl_intmit(SYSCTL_HANDLER_ARGS)
6849{
6850 struct ath_softc *sc = arg1;
6851 int intmit, error;
6852
6853 intmit = ath_hal_getintmit(sc->sc_ah);
6854 error = sysctl_handle_int(oidp, &intmit, 0, req);
6855 if (error || !req->newptr)
6856 return error;
6857 return !ath_hal_setintmit(sc->sc_ah, intmit) ? EINVAL : 0;
6858}
6859
6860static void
6861ath_sysctlattach(struct ath_softc *sc)
6862{
6863 struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(sc->sc_dev);
6864 struct sysctl_oid *tree = device_get_sysctl_tree(sc->sc_dev);
6865 struct ath_hal *ah = sc->sc_ah;
6866
6867 SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6868 "countrycode", CTLFLAG_RD, &sc->sc_eecc, 0,
6869 "EEPROM country code");
6870 SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6871 "regdomain", CTLFLAG_RD, &sc->sc_eerd, 0,
6872 "EEPROM regdomain code");
6873#ifdef ATH_DEBUG
6874 SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6875 "debug", CTLFLAG_RW, &sc->sc_debug, 0,
6876 "control debugging printfs");
6877#endif
6878 SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6879 "slottime", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
6880 ath_sysctl_slottime, "I", "802.11 slot time (us)");
6881 SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6882 "acktimeout", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
6883 ath_sysctl_acktimeout, "I", "802.11 ACK timeout (us)");
6884 SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6885 "ctstimeout", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
6886 ath_sysctl_ctstimeout, "I", "802.11 CTS timeout (us)");
6887 SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6888 "softled", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
6889 ath_sysctl_softled, "I", "enable/disable software LED support");
6890 SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6891 "ledpin", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
6892 ath_sysctl_ledpin, "I", "GPIO pin connected to LED");
6893 SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6894 "ledon", CTLFLAG_RW, &sc->sc_ledon, 0,
6895 "setting to turn LED on");
6896 SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6897 "ledidle", CTLFLAG_RW, &sc->sc_ledidle, 0,
6898 "idle time for inactivity LED (ticks)");
6899 SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6900 "txantenna", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
6901 ath_sysctl_txantenna, "I", "antenna switch");
6902 SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6903 "rxantenna", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
6904 ath_sysctl_rxantenna, "I", "default/rx antenna");
6905 if (ath_hal_hasdiversity(ah))
6906 SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6907 "diversity", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
6908 ath_sysctl_diversity, "I", "antenna diversity");
6909 sc->sc_txintrperiod = ATH_TXINTR_PERIOD;
6910 SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6911 "txintrperiod", CTLFLAG_RW, &sc->sc_txintrperiod, 0,
6912 "tx descriptor batching");
6913 SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6914 "diag", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
6915 ath_sysctl_diag, "I", "h/w diagnostic control");
6916 SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6917 "tpscale", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
6918 ath_sysctl_tpscale, "I", "tx power scaling");
6919 if (ath_hal_hastpc(ah)) {
6920 SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6921 "tpc", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
6922 ath_sysctl_tpc, "I", "enable/disable per-packet TPC");
6923 SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6924 "tpack", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
6925 ath_sysctl_tpack, "I", "tx power for ack frames");
6926 SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6927 "tpcts", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
6928 ath_sysctl_tpcts, "I", "tx power for cts frames");
6929 }
6930 if (ath_hal_hasfastframes(sc->sc_ah)) {
6931 sc->sc_fftxqmin = ATH_FF_TXQMIN;
6932 SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6933 "fftxqmin", CTLFLAG_RW, &sc->sc_fftxqmin, 0,
6934 "min frames before fast-frame staging");
6935 sc->sc_fftxqmax = ATH_FF_TXQMAX;
6936 SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6937 "fftxqmax", CTLFLAG_RW, &sc->sc_fftxqmax, 0,
6938 "max queued frames before tail drop");
6939 }
6940 if (ath_hal_hasrfsilent(ah)) {
6941 SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6942 "rfsilent", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
6943 ath_sysctl_rfsilent, "I", "h/w RF silent config");
6944 SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6945 "rfkill", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
6946 ath_sysctl_rfkill, "I", "enable/disable RF kill switch");
6947 }
6948 if (ath_hal_hasintmit(ah)) {
6949 SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6950 "intmit", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
6951 ath_sysctl_intmit, "I", "interference mitigation");
6952 }
6953 sc->sc_monpass = HAL_RXERR_DECRYPT | HAL_RXERR_MIC;
6954 SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6955 "monpass", CTLFLAG_RW, &sc->sc_monpass, 0,
6956 "mask of error frames to pass when monitoring");
6957#ifdef ATH_SUPPORT_TDMA
6958 if (ath_hal_macversion(ah) > 0x78) {
6959 sc->sc_tdmadbaprep = 2;
6960 SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6961 "dbaprep", CTLFLAG_RW, &sc->sc_tdmadbaprep, 0,
6962 "TDMA DBA preparation time");
6963 sc->sc_tdmaswbaprep = 10;
6964 SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6965 "swbaprep", CTLFLAG_RW, &sc->sc_tdmaswbaprep, 0,
6966 "TDMA SWBA preparation time");
6967 SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6968 "guardtime", CTLFLAG_RW, &sc->sc_tdmaguard, 0,
6969 "TDMA slot guard time");
6970 SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6971 "superframe", CTLFLAG_RD, &sc->sc_tdmabintval, 0,
6972 "TDMA calculated super frame");
6973 }
6974#endif
6975}
6976
6977static void
6978ath_bpfattach(struct ath_softc *sc)
6979{
6980 struct ifnet *ifp = sc->sc_ifp;
6981
6982 bpfattach(ifp, DLT_IEEE802_11_RADIO,
6983 sizeof(struct ieee80211_frame) + sizeof(sc->sc_tx_th));
6984 /*
6985 * Initialize constant fields.
6986 * XXX make header lengths a multiple of 32-bits so subsequent
6987 * headers are properly aligned; this is a kludge to keep
6988 * certain applications happy.
6989 *
6990 * NB: the channel is setup each time we transition to the
6991 * RUN state to avoid filling it in for each frame.
6992 */
6993 sc->sc_tx_th_len = roundup(sizeof(sc->sc_tx_th), sizeof(u_int32_t));
6994 sc->sc_tx_th.wt_ihdr.it_len = htole16(sc->sc_tx_th_len);
6995 sc->sc_tx_th.wt_ihdr.it_present = htole32(ATH_TX_RADIOTAP_PRESENT);
6996
6997 sc->sc_rx_th_len = roundup(sizeof(sc->sc_rx_th), sizeof(u_int32_t));
6998 sc->sc_rx_th.wr_ihdr.it_len = htole16(sc->sc_rx_th_len);
6999 sc->sc_rx_th.wr_ihdr.it_present = htole32(ATH_RX_RADIOTAP_PRESENT);
7000}
7001
7002static int
7003ath_tx_raw_start(struct ath_softc *sc, struct ieee80211_node *ni,
7004 struct ath_buf *bf, struct mbuf *m0,
7005 const struct ieee80211_bpf_params *params)
7006{
7007 struct ifnet *ifp = sc->sc_ifp;
7008 struct ieee80211com *ic = ifp->if_l2com;
7009 struct ath_hal *ah = sc->sc_ah;
7010 int error, ismcast, ismrr;
7011 int keyix, hdrlen, pktlen, try0, txantenna;
7012 u_int8_t rix, cix, txrate, ctsrate, rate1, rate2, rate3;
7013 struct ieee80211_frame *wh;
7014 u_int flags, ctsduration;
7015 HAL_PKT_TYPE atype;
7016 const HAL_RATE_TABLE *rt;
7017 struct ath_desc *ds;
7018 u_int pri;
7019
7020 wh = mtod(m0, struct ieee80211_frame *);
7021 ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
7022 hdrlen = ieee80211_anyhdrsize(wh);
7023 /*
7024 * Packet length must not include any
7025 * pad bytes; deduct them here.
7026 */
7027 /* XXX honor IEEE80211_BPF_DATAPAD */
7028 pktlen = m0->m_pkthdr.len - (hdrlen & 3) + IEEE80211_CRC_LEN;
7029
7030 if (params->ibp_flags & IEEE80211_BPF_CRYPTO) {
7031 const struct ieee80211_cipher *cip;
7032 struct ieee80211_key *k;
7033
7034 /*
7035 * Construct the 802.11 header+trailer for an encrypted
7036 * frame. The only reason this can fail is because of an
7037 * unknown or unsupported cipher/key type.
7038 */
7039 k = ieee80211_crypto_encap(ni, m0);
7040 if (k == NULL) {
7041 /*
7042 * This can happen when the key is yanked after the
7043 * frame was queued. Just discard the frame; the
7044 * 802.11 layer counts failures and provides
7045 * debugging/diagnostics.
7046 */
7047 ath_freetx(m0);
7048 return EIO;
7049 }
7050 /*
7051 * Adjust the packet + header lengths for the crypto
7052 * additions and calculate the h/w key index. When
7053 * a s/w mic is done the frame will have had any mic
7054 * added to it prior to entry so m0->m_pkthdr.len will
7055 * account for it. Otherwise we need to add it to the
7056 * packet length.
7057 */
7058 cip = k->wk_cipher;
7059 hdrlen += cip->ic_header;
7060 pktlen += cip->ic_header + cip->ic_trailer;
7061 /* NB: frags always have any TKIP MIC done in s/w */
7062 if ((k->wk_flags & IEEE80211_KEY_SWMIC) == 0)
7063 pktlen += cip->ic_miclen;
7064 keyix = k->wk_keyix;
7065
7066 /* packet header may have moved, reset our local pointer */
7067 wh = mtod(m0, struct ieee80211_frame *);
7068 } else if (ni->ni_ucastkey.wk_cipher == &ieee80211_cipher_none) {
7069 /*
7070 * Use station key cache slot, if assigned.
7071 */
7072 keyix = ni->ni_ucastkey.wk_keyix;
7073 if (keyix == IEEE80211_KEYIX_NONE)
7074 keyix = HAL_TXKEYIX_INVALID;
7075 } else
7076 keyix = HAL_TXKEYIX_INVALID;
7077
7078 error = ath_tx_dmasetup(sc, bf, m0);
7079 if (error != 0)
7080 return error;
7081 m0 = bf->bf_m; /* NB: may have changed */
7082 wh = mtod(m0, struct ieee80211_frame *);
7083 bf->bf_node = ni; /* NB: held reference */
7084
7085 flags = HAL_TXDESC_CLRDMASK; /* XXX needed for crypto errs */
7086 flags |= HAL_TXDESC_INTREQ; /* force interrupt */
7087 if (params->ibp_flags & IEEE80211_BPF_RTS)
7088 flags |= HAL_TXDESC_RTSENA;
7089 else if (params->ibp_flags & IEEE80211_BPF_CTS)
7090 flags |= HAL_TXDESC_CTSENA;
7091 /* XXX leave ismcast to injector? */
7092 if ((params->ibp_flags & IEEE80211_BPF_NOACK) || ismcast)
7093 flags |= HAL_TXDESC_NOACK;
7094
7095 rt = sc->sc_currates;
7096 KASSERT(rt != NULL, ("no rate table, mode %u", sc->sc_curmode));
7097 rix = ath_tx_findrix(rt, params->ibp_rate0);
7098 txrate = rt->info[rix].rateCode;
7099 if (params->ibp_flags & IEEE80211_BPF_SHORTPRE)
7100 txrate |= rt->info[rix].shortPreamble;
7101 sc->sc_txrix = rix;
7102 try0 = params->ibp_try0;
7103 ismrr = (params->ibp_try1 != 0);
7104 txantenna = params->ibp_pri >> 2;
7105 if (txantenna == 0) /* XXX? */
7106 txantenna = sc->sc_txantenna;
7107 ctsduration = 0;
7108 if (flags & (HAL_TXDESC_CTSENA | HAL_TXDESC_RTSENA)) {
7109 cix = ath_tx_findrix(rt, params->ibp_ctsrate);
7110 ctsrate = rt->info[cix].rateCode;
7111 if (params->ibp_flags & IEEE80211_BPF_SHORTPRE) {
7112 ctsrate |= rt->info[cix].shortPreamble;
7113 if (flags & HAL_TXDESC_RTSENA) /* SIFS + CTS */
7114 ctsduration += rt->info[cix].spAckDuration;
7115 ctsduration += ath_hal_computetxtime(ah,
7116 rt, pktlen, rix, AH_TRUE);
7117 if ((flags & HAL_TXDESC_NOACK) == 0) /* SIFS + ACK */
7118 ctsduration += rt->info[rix].spAckDuration;
7119 } else {
7120 if (flags & HAL_TXDESC_RTSENA) /* SIFS + CTS */
7121 ctsduration += rt->info[cix].lpAckDuration;
7122 ctsduration += ath_hal_computetxtime(ah,
7123 rt, pktlen, rix, AH_FALSE);
7124 if ((flags & HAL_TXDESC_NOACK) == 0) /* SIFS + ACK */
7125 ctsduration += rt->info[rix].lpAckDuration;
7126 }
7127 ismrr = 0; /* XXX */
7128 } else
7129 ctsrate = 0;
7130 pri = params->ibp_pri & 3;
7131 /*
7132 * NB: we mark all packets as type PSPOLL so the h/w won't
7133 * set the sequence number, duration, etc.
7134 */
7135 atype = HAL_PKT_TYPE_PSPOLL;
7136
7137 if (IFF_DUMPPKTS(sc, ATH_DEBUG_XMIT))
7138 ieee80211_dump_pkt(ic, mtod(m0, caddr_t), m0->m_len,
7139 sc->sc_hwmap[rix].ieeerate, -1);
7140
7141 if (bpf_peers_present(ifp->if_bpf)) {
7142 u_int64_t tsf = ath_hal_gettsf64(ah);
7143
7144 sc->sc_tx_th.wt_tsf = htole64(tsf);
7145 sc->sc_tx_th.wt_flags = sc->sc_hwmap[rix].txflags;
7146 if (wh->i_fc[1] & IEEE80211_FC1_WEP)
7147 sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_WEP;
7148 sc->sc_tx_th.wt_rate = sc->sc_hwmap[rix].ieeerate;
7149 sc->sc_tx_th.wt_txpower = ni->ni_txpower;
7150 sc->sc_tx_th.wt_antenna = sc->sc_txantenna;
7151
7152 bpf_mtap2(ifp->if_bpf, &sc->sc_tx_th, sc->sc_tx_th_len, m0);
7153 }
7154
7155 /*
7156 * Formulate first tx descriptor with tx controls.
7157 */
7158 ds = bf->bf_desc;
7159 /* XXX check return value? */
7160 ath_hal_setuptxdesc(ah, ds
7161 , pktlen /* packet length */
7162 , hdrlen /* header length */
7163 , atype /* Atheros packet type */
7164 , params->ibp_power /* txpower */
7165 , txrate, try0 /* series 0 rate/tries */
7166 , keyix /* key cache index */
7167 , txantenna /* antenna mode */
7168 , flags /* flags */
7169 , ctsrate /* rts/cts rate */
7170 , ctsduration /* rts/cts duration */
7171 );
7172 bf->bf_txflags = flags;
7173
7174 if (ismrr) {
7175 rix = ath_tx_findrix(rt, params->ibp_rate1);
7176 rate1 = rt->info[rix].rateCode;
7177 if (params->ibp_flags & IEEE80211_BPF_SHORTPRE)
7178 rate1 |= rt->info[rix].shortPreamble;
7179 if (params->ibp_try2) {
7180 rix = ath_tx_findrix(rt, params->ibp_rate2);
7181 rate2 = rt->info[rix].rateCode;
7182 if (params->ibp_flags & IEEE80211_BPF_SHORTPRE)
7183 rate2 |= rt->info[rix].shortPreamble;
7184 } else
7185 rate2 = 0;
7186 if (params->ibp_try3) {
7187 rix = ath_tx_findrix(rt, params->ibp_rate3);
7188 rate3 = rt->info[rix].rateCode;
7189 if (params->ibp_flags & IEEE80211_BPF_SHORTPRE)
7190 rate3 |= rt->info[rix].shortPreamble;
7191 } else
7192 rate3 = 0;
7193 ath_hal_setupxtxdesc(ah, ds
7194 , rate1, params->ibp_try1 /* series 1 */
7195 , rate2, params->ibp_try2 /* series 2 */
7196 , rate3, params->ibp_try3 /* series 3 */
7197 );
7198 }
7199
7200 /* NB: no buffered multicast in power save support */
7201 ath_tx_handoff(sc, sc->sc_ac2q[pri], bf);
7202 return 0;
7203}
7204
7205static int
7206ath_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
7207 const struct ieee80211_bpf_params *params)
7208{
7209 struct ieee80211com *ic = ni->ni_ic;
7210 struct ifnet *ifp = ic->ic_ifp;
7211 struct ath_softc *sc = ifp->if_softc;
7212 struct ath_buf *bf;
7213
7214 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0 || sc->sc_invalid) {
7215 DPRINTF(sc, ATH_DEBUG_XMIT, "%s: discard frame, %s", __func__,
7216 (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0 ?
7217 "!running" : "invalid");
7218 sc->sc_stats.ast_tx_raw_fail++;
7219 ieee80211_free_node(ni);
7220 m_freem(m);
7221 return ENETDOWN;
7222 }
7223 /*
7224 * Grab a TX buffer and associated resources.
7225 */
7226 bf = ath_getbuf(sc);
7227 if (bf == NULL) {
7228 /* NB: ath_getbuf handles stat+msg */
7229 ieee80211_free_node(ni);
7230 m_freem(m);
7231 return ENOBUFS;
7232 }
7233
7234 ifp->if_opackets++;
7235 sc->sc_stats.ast_tx_raw++;
7236
7237 if (params == NULL) {
7238 /*
7239 * Legacy path; interpret frame contents to decide
7240 * precisely how to send the frame.
7241 */
7242 if (ath_tx_start(sc, ni, bf, m))
7243 goto bad;
7244 } else {
7245 /*
7246 * Caller supplied explicit parameters to use in
7247 * sending the frame.
7248 */
7249 if (ath_tx_raw_start(sc, ni, bf, m, params))
7250 goto bad;
7251 }
7252 ifp->if_timer = 5;
7253
7254 return 0;
7255bad:
7256 ifp->if_oerrors++;
7257 ATH_TXBUF_LOCK(sc);
7258 STAILQ_INSERT_HEAD(&sc->sc_txbuf, bf, bf_list);
7259 ATH_TXBUF_UNLOCK(sc);
7260 ieee80211_free_node(ni);
7261 return EIO; /* XXX */
7262}
7263
7264/*
7265 * Announce various information on device/driver attach.
7266 */
7267static void
7268ath_announce(struct ath_softc *sc)
7269{
7270 struct ifnet *ifp = sc->sc_ifp;
7271 struct ath_hal *ah = sc->sc_ah;
7272
7273 if_printf(ifp, "AR%s mac %d.%d RF%s phy %d.%d\n",
7274 ath_hal_mac_name(ah), ah->ah_macVersion, ah->ah_macRev,
7275 ath_hal_rf_name(ah), ah->ah_phyRev >> 4, ah->ah_phyRev & 0xf);
7276 if (bootverbose) {
7277 int i;
7278 for (i = 0; i <= WME_AC_VO; i++) {
7279 struct ath_txq *txq = sc->sc_ac2q[i];
7280 if_printf(ifp, "Use hw queue %u for %s traffic\n",
7281 txq->axq_qnum, ieee80211_wme_acnames[i]);
7282 }
7283 if_printf(ifp, "Use hw queue %u for CAB traffic\n",
7284 sc->sc_cabq->axq_qnum);
7285 if_printf(ifp, "Use hw queue %u for beacons\n", sc->sc_bhalq);
7286 }
7287 if (ath_rxbuf != ATH_RXBUF)
7288 if_printf(ifp, "using %u rx buffers\n", ath_rxbuf);
7289 if (ath_txbuf != ATH_TXBUF)
7290 if_printf(ifp, "using %u tx buffers\n", ath_txbuf);
7291}
7292
7293#ifdef ATH_SUPPORT_TDMA
7294static __inline uint32_t
7295ath_hal_getnexttbtt(struct ath_hal *ah)
7296{
7297#define AR_TIMER0 0x8028
7298 return OS_REG_READ(ah, AR_TIMER0);
7299}
7300
7301static __inline void
7302ath_hal_adjusttsf(struct ath_hal *ah, int32_t tsfdelta)
7303{
7304 /* XXX handle wrap/overflow */
7305 OS_REG_WRITE(ah, AR_TSF_L32, OS_REG_READ(ah, AR_TSF_L32) + tsfdelta);
7306}
7307
7308static void
7309ath_tdma_settimers(struct ath_softc *sc, u_int32_t nexttbtt, u_int32_t bintval)
7310{
7311 struct ath_hal *ah = sc->sc_ah;
7312 HAL_BEACON_TIMERS bt;
7313
7314 bt.bt_intval = bintval | HAL_BEACON_ENA;
7315 bt.bt_nexttbtt = nexttbtt;
7316 bt.bt_nextdba = (nexttbtt<<3) - sc->sc_tdmadbaprep;
7317 bt.bt_nextswba = (nexttbtt<<3) - sc->sc_tdmaswbaprep;
7318 bt.bt_nextatim = nexttbtt+1;
7319 ath_hal_beaconsettimers(ah, &bt);
7320}
7321
7322/*
7323 * Calculate the beacon interval. This is periodic in the
7324 * superframe for the bss. We assume each station is configured
7325 * identically wrt transmit rate so the guard time we calculate
7326 * above will be the same on all stations. Note we need to
7327 * factor in the xmit time because the hardware will schedule
7328 * a frame for transmit if the start of the frame is within
7329 * the burst time. When we get hardware that properly kills
7330 * frames in the PCU we can reduce/eliminate the guard time.
7331 *
7332 * Roundup to 1024 is so we have 1 TU buffer in the guard time
7333 * to deal with the granularity of the nexttbtt timer. 11n MAC's
7334 * with 1us timer granularity should allow us to reduce/eliminate
7335 * this.
7336 */
7337static void
7338ath_tdma_bintvalsetup(struct ath_softc *sc,
7339 const struct ieee80211_tdma_state *tdma)
7340{
7341 /* copy from vap state (XXX check all vaps have same value?) */
7342 sc->sc_tdmaslotlen = tdma->tdma_slotlen;
7343 sc->sc_tdmabintcnt = tdma->tdma_bintval;
7344
7345 sc->sc_tdmabintval = roundup((sc->sc_tdmaslotlen+sc->sc_tdmaguard) *
7346 tdma->tdma_slotcnt, 1024);
7347 sc->sc_tdmabintval >>= 10; /* TSF -> TU */
7348 if (sc->sc_tdmabintval & 1)
7349 sc->sc_tdmabintval++;
7350
7351 if (tdma->tdma_slot == 0) {
7352 /*
7353 * Only slot 0 beacons; other slots respond.
7354 */
7355 sc->sc_imask |= HAL_INT_SWBA;
7356 sc->sc_tdmaswba = 0; /* beacon immediately */
7357 } else {
7358 /* XXX all vaps must be slot 0 or slot !0 */
7359 sc->sc_imask &= ~HAL_INT_SWBA;
7360 }
7361}
7362
7363/*
7364 * Max 802.11 overhead. This assumes no 4-address frames and
7365 * the encapsulation done by ieee80211_encap (llc). We also
7366 * include potential crypto overhead.
7367 */
7368#define IEEE80211_MAXOVERHEAD \
7369 (sizeof(struct ieee80211_qosframe) \
7370 + sizeof(struct llc) \
7371 + IEEE80211_ADDR_LEN \
7372 + IEEE80211_WEP_IVLEN \
7373 + IEEE80211_WEP_KIDLEN \
7374 + IEEE80211_WEP_CRCLEN \
7375 + IEEE80211_WEP_MICLEN \
7376 + IEEE80211_CRC_LEN)
7377
7378/*
7379 * Setup initially for tdma operation. Start the beacon
7380 * timers and enable SWBA if we are slot 0. Otherwise
7381 * we wait for slot 0 to arrive so we can sync up before
7382 * starting to transmit.
7383 */
7384static void
7385ath_tdma_config(struct ath_softc *sc, struct ieee80211vap *vap)
7386{
7387 struct ath_hal *ah = sc->sc_ah;
7388 struct ifnet *ifp = sc->sc_ifp;
7389 struct ieee80211com *ic = ifp->if_l2com;
7390 const struct ieee80211_txparam *tp;
7391 const struct ieee80211_tdma_state *tdma = NULL;
7392 int rix;
7393
7394 if (vap == NULL) {
7395 vap = TAILQ_FIRST(&ic->ic_vaps); /* XXX */
7396 if (vap == NULL) {
7397 if_printf(ifp, "%s: no vaps?\n", __func__);
7398 return;
7399 }
7400 }
7401 tp = vap->iv_bss->ni_txparms;
7402 /*
7403 * Calculate the guard time for each slot. This is the
7404 * time to send a maximal-size frame according to the
7405 * fixed/lowest transmit rate. Note that the interface
7406 * mtu does not include the 802.11 overhead so we must
7407 * tack that on (ath_hal_computetxtime includes the
7408 * preamble and plcp in it's calculation).
7409 */
7410 tdma = vap->iv_tdma;
7411 if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE)
7412 rix = ath_tx_findrix(sc->sc_currates, tp->ucastrate);
7413 else
7414 rix = ath_tx_findrix(sc->sc_currates, tp->mcastrate);
7415 /* XXX short preamble assumed */
7416 sc->sc_tdmaguard = ath_hal_computetxtime(ah, sc->sc_currates,
7417 ifp->if_mtu + IEEE80211_MAXOVERHEAD, rix, AH_TRUE);
7418
7419 ath_hal_intrset(ah, 0);
7420
7421 ath_beaconq_config(sc); /* setup h/w beacon q */
7422 ath_hal_setcca(ah, AH_FALSE); /* disable CCA */
7423 ath_tdma_bintvalsetup(sc, tdma); /* calculate beacon interval */
7424 ath_tdma_settimers(sc, sc->sc_tdmabintval,
7425 sc->sc_tdmabintval | HAL_BEACON_RESET_TSF);
7426 sc->sc_syncbeacon = 0;
7427
7428 sc->sc_avgtsfdeltap = TDMA_DUMMY_MARKER;
7429 sc->sc_avgtsfdeltam = TDMA_DUMMY_MARKER;
7430
7431 ath_hal_intrset(ah, sc->sc_imask);
7432
7433 DPRINTF(sc, ATH_DEBUG_TDMA, "%s: slot %u len %uus cnt %u "
7434 "bsched %u guard %uus bintval %u TU dba prep %u\n", __func__,
7435 tdma->tdma_slot, tdma->tdma_slotlen, tdma->tdma_slotcnt,
7436 tdma->tdma_bintval, sc->sc_tdmaguard, sc->sc_tdmabintval,
7437 sc->sc_tdmadbaprep);
7438}
7439
7440/*
7441 * Update tdma operation. Called from the 802.11 layer
7442 * when a beacon is received from the TDMA station operating
7443 * in the slot immediately preceding us in the bss. Use
7444 * the rx timestamp for the beacon frame to update our
7445 * beacon timers so we follow their schedule. Note that
7446 * by using the rx timestamp we implicitly include the
7447 * propagation delay in our schedule.
7448 */
7449static void
7450ath_tdma_update(struct ieee80211_node *ni,
7451 const struct ieee80211_tdma_param *tdma)
7452{
7453#define TSF_TO_TU(_h,_l) \
7454 ((((u_int32_t)(_h)) << 22) | (((u_int32_t)(_l)) >> 10))
7455#define TU_TO_TSF(_tu) (((u_int64_t)(_tu)) << 10)
7456 struct ieee80211vap *vap = ni->ni_vap;
7457 struct ieee80211com *ic = ni->ni_ic;
7458 struct ath_softc *sc = ic->ic_ifp->if_softc;
7459 struct ath_hal *ah = sc->sc_ah;
7460 const HAL_RATE_TABLE *rt = sc->sc_currates;
7461 u_int64_t tsf, rstamp, nextslot;
7462 u_int32_t txtime, nextslottu, timer0;
7463 int32_t tudelta, tsfdelta;
7464 const struct ath_rx_status *rs;
7465 int rix;
7466
7467 sc->sc_stats.ast_tdma_update++;
7468
7469 /*
7470 * Check for and adopt configuration changes.
7471 */
7472 if (isset(ATH_VAP(vap)->av_boff.bo_flags, IEEE80211_BEACON_TDMA)) {
7473 const struct ieee80211_tdma_state *ts = vap->iv_tdma;
7474
7475 ath_tdma_bintvalsetup(sc, ts);
7476
7477 DPRINTF(sc, ATH_DEBUG_TDMA,
7478 "%s: adopt slot %u slotcnt %u slotlen %u us "
7479 "bintval %u TU\n", __func__,
7480 ts->tdma_slot, ts->tdma_slotcnt, ts->tdma_slotlen,
7481 sc->sc_tdmabintval);
7482
7483 ath_beaconq_config(sc);
7484 /* XXX right? */
7485 ath_hal_intrset(ah, sc->sc_imask);
7486 /* NB: beacon timers programmed below */
7487 }
7488
7489 /* extend rx timestamp to 64 bits */
7490 tsf = ath_hal_gettsf64(ah);
7491 rstamp = ath_extend_tsf(ni->ni_rstamp, tsf);
7492 /*
7493 * The rx timestamp is set by the hardware on completing
7494 * reception (at the point where the rx descriptor is DMA'd
7495 * to the host). To find the start of our next slot we
7496 * must adjust this time by the time required to send
7497 * the packet just received.
7498 */
7499 rs = sc->sc_tdmars;
7500 rix = rt->rateCodeToIndex[rs->rs_rate];
7501 txtime = ath_hal_computetxtime(ah, rt, rs->rs_datalen, rix,
7502 rt->info[rix].shortPreamble);
7503 /* NB: << 9 is to cvt to TU and /2 */
7504 nextslot = (rstamp - txtime) + (sc->sc_tdmabintval << 9);
7505 nextslottu = TSF_TO_TU(nextslot>>32, nextslot) & HAL_BEACON_PERIOD;
7506
7507 /*
7508 * TIMER0 is the h/w's idea of NextTBTT (in TU's). Convert
7509 * to usecs and calculate the difference between what the
7510 * other station thinks and what we have programmed. This
7511 * lets us figure how to adjust our timers to match. The
7512 * adjustments are done by pulling the TSF forward and possibly
7513 * rewriting the beacon timers.
7514 */
7515 timer0 = ath_hal_getnexttbtt(ah);
7516 tsfdelta = (int32_t)((nextslot % TU_TO_TSF(HAL_BEACON_PERIOD+1)) - TU_TO_TSF(timer0));
7517
7518 DPRINTF(sc, ATH_DEBUG_TDMA_TIMER,
7519 "tsfdelta %d avg +%d/-%d\n", tsfdelta,
7520 TDMA_AVG(sc->sc_avgtsfdeltap), TDMA_AVG(sc->sc_avgtsfdeltam));
7521
7522 if (tsfdelta < 0) {
7523 TDMA_SAMPLE(sc->sc_avgtsfdeltap, 0);
7524 TDMA_SAMPLE(sc->sc_avgtsfdeltam, -tsfdelta);
7525 tsfdelta = -tsfdelta % 1024;
7526 nextslottu++;
7527 } else if (tsfdelta > 0) {
7528 TDMA_SAMPLE(sc->sc_avgtsfdeltap, tsfdelta);
7529 TDMA_SAMPLE(sc->sc_avgtsfdeltam, 0);
7530 tsfdelta = 1024 - (tsfdelta % 1024);
7531 nextslottu++;
7532 } else {
7533 TDMA_SAMPLE(sc->sc_avgtsfdeltap, 0);
7534 TDMA_SAMPLE(sc->sc_avgtsfdeltam, 0);
7535 }
7536 tudelta = nextslottu - timer0;
7537
7538 /*
7539 * Copy sender's timetstamp into tdma ie so they can
7540 * calculate roundtrip time. We submit a beacon frame
7541 * below after any timer adjustment. The frame goes out
7542 * at the next TBTT so the sender can calculate the
7543 * roundtrip by inspecting the tdma ie in our beacon frame.
7544 *
7545 * NB: This tstamp is subtlely preserved when
7546 * IEEE80211_BEACON_TDMA is marked (e.g. when the
7547 * slot position changes) because ieee80211_add_tdma
7548 * skips over the data.
7549 */
7550 memcpy(ATH_VAP(vap)->av_boff.bo_tdma +
7551 __offsetof(struct ieee80211_tdma_param, tdma_tstamp),
7552 &ni->ni_tstamp.data, 8);
7553#if 0
7554 DPRINTF(sc, ATH_DEBUG_TDMA_TIMER,
7555 "tsf %llu nextslot %llu (%d, %d) nextslottu %u timer0 %u (%d)\n",
7556 (unsigned long long) tsf, (unsigned long long) nextslot,
7557 (int)(nextslot - tsf), tsfdelta,
7558 nextslottu, timer0, tudelta);
7559#endif
7560 /*
7561 * Adjust the beacon timers only when pulling them forward
7562 * or when going back by less than the beacon interval.
7563 * Negative jumps larger than the beacon interval seem to
7564 * cause the timers to stop and generally cause instability.
7565 * This basically filters out jumps due to missed beacons.
7566 */
7567 if (tudelta != 0 && (tudelta > 0 || -tudelta < sc->sc_tdmabintval)) {
7568 ath_tdma_settimers(sc, nextslottu, sc->sc_tdmabintval);
7569 sc->sc_stats.ast_tdma_timers++;
7570 }
7571 if (tsfdelta > 0) {
7572 ath_hal_adjusttsf(ah, tsfdelta);
7573 sc->sc_stats.ast_tdma_tsf++;
7574 }
7575 ath_tdma_beacon_send(sc, vap); /* prepare response */
7576#undef TU_TO_TSF
7577#undef TSF_TO_TU
7578}
7579
7580/*
7581 * Transmit a beacon frame at SWBA. Dynamic updates
7582 * to the frame contents are done as needed.
7583 */
7584static void
7585ath_tdma_beacon_send(struct ath_softc *sc, struct ieee80211vap *vap)
7586{
7587 struct ath_hal *ah = sc->sc_ah;
7588 struct ath_buf *bf;
7589 int otherant;
7590
7591 /*
7592 * Check if the previous beacon has gone out. If
7593 * not don't try to post another, skip this period
7594 * and wait for the next. Missed beacons indicate
7595 * a problem and should not occur. If we miss too
7596 * many consecutive beacons reset the device.
7597 */
7598 if (ath_hal_numtxpending(ah, sc->sc_bhalq) != 0) {
7599 sc->sc_bmisscount++;
7600 DPRINTF(sc, ATH_DEBUG_BEACON,
7601 "%s: missed %u consecutive beacons\n",
7602 __func__, sc->sc_bmisscount);
7603 if (sc->sc_bmisscount >= ath_bstuck_threshold)
7604 taskqueue_enqueue(sc->sc_tq, &sc->sc_bstucktask);
7605 return;
7606 }
7607 if (sc->sc_bmisscount != 0) {
7608 DPRINTF(sc, ATH_DEBUG_BEACON,
7609 "%s: resume beacon xmit after %u misses\n",
7610 __func__, sc->sc_bmisscount);
7611 sc->sc_bmisscount = 0;
7612 }
7613
7614 /*
7615 * Check recent per-antenna transmit statistics and flip
7616 * the default antenna if noticeably more frames went out
7617 * on the non-default antenna.
7618 * XXX assumes 2 anntenae
7619 */
7620 if (!sc->sc_diversity) {
7621 otherant = sc->sc_defant & 1 ? 2 : 1;
7622 if (sc->sc_ant_tx[otherant] > sc->sc_ant_tx[sc->sc_defant] + 2)
7623 ath_setdefantenna(sc, otherant);
7624 sc->sc_ant_tx[1] = sc->sc_ant_tx[2] = 0;
7625 }
7626
7627 bf = ath_beacon_generate(sc, vap);
7628 if (bf != NULL) {
7629 /*
7630 * Stop any current dma and put the new frame on the queue.
7631 * This should never fail since we check above that no frames
7632 * are still pending on the queue.
7633 */
7634 if (!ath_hal_stoptxdma(ah, sc->sc_bhalq)) {
7635 DPRINTF(sc, ATH_DEBUG_ANY,
7636 "%s: beacon queue %u did not stop?\n",
7637 __func__, sc->sc_bhalq);
7638 /* NB: the HAL still stops DMA, so proceed */
7639 }
7640 ath_hal_puttxbuf(ah, sc->sc_bhalq, bf->bf_daddr);
7641 ath_hal_txstart(ah, sc->sc_bhalq);
7642
7643 sc->sc_stats.ast_be_xmit++; /* XXX per-vap? */
7644
7645 /*
7646 * Record local TSF for our last send for use
7647 * in arbitrating slot collisions.
7648 */
7649 vap->iv_bss->ni_tstamp.tsf = ath_hal_gettsf64(ah);
7650 }
7651}
7652#endif /* ATH_SUPPORT_TDMA */