Deleted Added
full compact
space_map.c (208372) space_map.c (209962)
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
22 * Copyright 2008 Sun Microsystems, Inc. All rights reserved.
22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved.
23 * Use is subject to license terms.
24 */
25
26#include <sys/zfs_context.h>
27#include <sys/spa.h>
28#include <sys/dmu.h>
29#include <sys/zio.h>
30#include <sys/space_map.h>
31
32/*
33 * Space map routines.
34 * NOTE: caller is responsible for all locking.
35 */
36static int
37space_map_seg_compare(const void *x1, const void *x2)
38{
39 const space_seg_t *s1 = x1;
40 const space_seg_t *s2 = x2;
41
42 if (s1->ss_start < s2->ss_start) {
43 if (s1->ss_end > s2->ss_start)
44 return (0);
45 return (-1);
46 }
47 if (s1->ss_start > s2->ss_start) {
48 if (s1->ss_start < s2->ss_end)
49 return (0);
50 return (1);
51 }
52 return (0);
53}
54
55void
56space_map_create(space_map_t *sm, uint64_t start, uint64_t size, uint8_t shift,
57 kmutex_t *lp)
58{
59 bzero(sm, sizeof (*sm));
60
61 cv_init(&sm->sm_load_cv, NULL, CV_DEFAULT, NULL);
62
63 avl_create(&sm->sm_root, space_map_seg_compare,
64 sizeof (space_seg_t), offsetof(struct space_seg, ss_node));
65
66 sm->sm_start = start;
67 sm->sm_size = size;
68 sm->sm_shift = shift;
69 sm->sm_lock = lp;
70}
71
72void
73space_map_destroy(space_map_t *sm)
74{
75 ASSERT(!sm->sm_loaded && !sm->sm_loading);
76 VERIFY3U(sm->sm_space, ==, 0);
77 avl_destroy(&sm->sm_root);
78 cv_destroy(&sm->sm_load_cv);
79}
80
81void
82space_map_add(space_map_t *sm, uint64_t start, uint64_t size)
83{
84 avl_index_t where;
85 space_seg_t ssearch, *ss_before, *ss_after, *ss;
86 uint64_t end = start + size;
87 int merge_before, merge_after;
88
89 ASSERT(MUTEX_HELD(sm->sm_lock));
90 VERIFY(size != 0);
91 VERIFY3U(start, >=, sm->sm_start);
92 VERIFY3U(end, <=, sm->sm_start + sm->sm_size);
93 VERIFY(sm->sm_space + size <= sm->sm_size);
94 VERIFY(P2PHASE(start, 1ULL << sm->sm_shift) == 0);
95 VERIFY(P2PHASE(size, 1ULL << sm->sm_shift) == 0);
96
97 ssearch.ss_start = start;
98 ssearch.ss_end = end;
99 ss = avl_find(&sm->sm_root, &ssearch, &where);
100
101 if (ss != NULL && ss->ss_start <= start && ss->ss_end >= end) {
102 zfs_panic_recover("zfs: allocating allocated segment"
103 "(offset=%llu size=%llu)\n",
104 (longlong_t)start, (longlong_t)size);
105 return;
106 }
107
108 /* Make sure we don't overlap with either of our neighbors */
109 VERIFY(ss == NULL);
110
111 ss_before = avl_nearest(&sm->sm_root, where, AVL_BEFORE);
112 ss_after = avl_nearest(&sm->sm_root, where, AVL_AFTER);
113
114 merge_before = (ss_before != NULL && ss_before->ss_end == start);
115 merge_after = (ss_after != NULL && ss_after->ss_start == end);
116
117 if (merge_before && merge_after) {
118 avl_remove(&sm->sm_root, ss_before);
23 * Use is subject to license terms.
24 */
25
26#include <sys/zfs_context.h>
27#include <sys/spa.h>
28#include <sys/dmu.h>
29#include <sys/zio.h>
30#include <sys/space_map.h>
31
32/*
33 * Space map routines.
34 * NOTE: caller is responsible for all locking.
35 */
36static int
37space_map_seg_compare(const void *x1, const void *x2)
38{
39 const space_seg_t *s1 = x1;
40 const space_seg_t *s2 = x2;
41
42 if (s1->ss_start < s2->ss_start) {
43 if (s1->ss_end > s2->ss_start)
44 return (0);
45 return (-1);
46 }
47 if (s1->ss_start > s2->ss_start) {
48 if (s1->ss_start < s2->ss_end)
49 return (0);
50 return (1);
51 }
52 return (0);
53}
54
55void
56space_map_create(space_map_t *sm, uint64_t start, uint64_t size, uint8_t shift,
57 kmutex_t *lp)
58{
59 bzero(sm, sizeof (*sm));
60
61 cv_init(&sm->sm_load_cv, NULL, CV_DEFAULT, NULL);
62
63 avl_create(&sm->sm_root, space_map_seg_compare,
64 sizeof (space_seg_t), offsetof(struct space_seg, ss_node));
65
66 sm->sm_start = start;
67 sm->sm_size = size;
68 sm->sm_shift = shift;
69 sm->sm_lock = lp;
70}
71
72void
73space_map_destroy(space_map_t *sm)
74{
75 ASSERT(!sm->sm_loaded && !sm->sm_loading);
76 VERIFY3U(sm->sm_space, ==, 0);
77 avl_destroy(&sm->sm_root);
78 cv_destroy(&sm->sm_load_cv);
79}
80
81void
82space_map_add(space_map_t *sm, uint64_t start, uint64_t size)
83{
84 avl_index_t where;
85 space_seg_t ssearch, *ss_before, *ss_after, *ss;
86 uint64_t end = start + size;
87 int merge_before, merge_after;
88
89 ASSERT(MUTEX_HELD(sm->sm_lock));
90 VERIFY(size != 0);
91 VERIFY3U(start, >=, sm->sm_start);
92 VERIFY3U(end, <=, sm->sm_start + sm->sm_size);
93 VERIFY(sm->sm_space + size <= sm->sm_size);
94 VERIFY(P2PHASE(start, 1ULL << sm->sm_shift) == 0);
95 VERIFY(P2PHASE(size, 1ULL << sm->sm_shift) == 0);
96
97 ssearch.ss_start = start;
98 ssearch.ss_end = end;
99 ss = avl_find(&sm->sm_root, &ssearch, &where);
100
101 if (ss != NULL && ss->ss_start <= start && ss->ss_end >= end) {
102 zfs_panic_recover("zfs: allocating allocated segment"
103 "(offset=%llu size=%llu)\n",
104 (longlong_t)start, (longlong_t)size);
105 return;
106 }
107
108 /* Make sure we don't overlap with either of our neighbors */
109 VERIFY(ss == NULL);
110
111 ss_before = avl_nearest(&sm->sm_root, where, AVL_BEFORE);
112 ss_after = avl_nearest(&sm->sm_root, where, AVL_AFTER);
113
114 merge_before = (ss_before != NULL && ss_before->ss_end == start);
115 merge_after = (ss_after != NULL && ss_after->ss_start == end);
116
117 if (merge_before && merge_after) {
118 avl_remove(&sm->sm_root, ss_before);
119 if (sm->sm_pp_root) {
120 avl_remove(sm->sm_pp_root, ss_before);
121 avl_remove(sm->sm_pp_root, ss_after);
122 }
119 ss_after->ss_start = ss_before->ss_start;
120 kmem_free(ss_before, sizeof (*ss_before));
123 ss_after->ss_start = ss_before->ss_start;
124 kmem_free(ss_before, sizeof (*ss_before));
125 ss = ss_after;
121 } else if (merge_before) {
122 ss_before->ss_end = end;
126 } else if (merge_before) {
127 ss_before->ss_end = end;
128 if (sm->sm_pp_root)
129 avl_remove(sm->sm_pp_root, ss_before);
130 ss = ss_before;
123 } else if (merge_after) {
124 ss_after->ss_start = start;
131 } else if (merge_after) {
132 ss_after->ss_start = start;
133 if (sm->sm_pp_root)
134 avl_remove(sm->sm_pp_root, ss_after);
135 ss = ss_after;
125 } else {
126 ss = kmem_alloc(sizeof (*ss), KM_SLEEP);
127 ss->ss_start = start;
128 ss->ss_end = end;
129 avl_insert(&sm->sm_root, ss, where);
130 }
131
136 } else {
137 ss = kmem_alloc(sizeof (*ss), KM_SLEEP);
138 ss->ss_start = start;
139 ss->ss_end = end;
140 avl_insert(&sm->sm_root, ss, where);
141 }
142
143 if (sm->sm_pp_root)
144 avl_add(sm->sm_pp_root, ss);
145
132 sm->sm_space += size;
133}
134
135void
136space_map_remove(space_map_t *sm, uint64_t start, uint64_t size)
137{
138 avl_index_t where;
139 space_seg_t ssearch, *ss, *newseg;
140 uint64_t end = start + size;
141 int left_over, right_over;
142
143 ASSERT(MUTEX_HELD(sm->sm_lock));
144 VERIFY(size != 0);
145 VERIFY(P2PHASE(start, 1ULL << sm->sm_shift) == 0);
146 VERIFY(P2PHASE(size, 1ULL << sm->sm_shift) == 0);
147
148 ssearch.ss_start = start;
149 ssearch.ss_end = end;
150 ss = avl_find(&sm->sm_root, &ssearch, &where);
151
152 /* Make sure we completely overlap with someone */
153 if (ss == NULL) {
154 zfs_panic_recover("zfs: freeing free segment "
155 "(offset=%llu size=%llu)",
156 (longlong_t)start, (longlong_t)size);
157 return;
158 }
159 VERIFY3U(ss->ss_start, <=, start);
160 VERIFY3U(ss->ss_end, >=, end);
161 VERIFY(sm->sm_space - size <= sm->sm_size);
162
163 left_over = (ss->ss_start != start);
164 right_over = (ss->ss_end != end);
165
146 sm->sm_space += size;
147}
148
149void
150space_map_remove(space_map_t *sm, uint64_t start, uint64_t size)
151{
152 avl_index_t where;
153 space_seg_t ssearch, *ss, *newseg;
154 uint64_t end = start + size;
155 int left_over, right_over;
156
157 ASSERT(MUTEX_HELD(sm->sm_lock));
158 VERIFY(size != 0);
159 VERIFY(P2PHASE(start, 1ULL << sm->sm_shift) == 0);
160 VERIFY(P2PHASE(size, 1ULL << sm->sm_shift) == 0);
161
162 ssearch.ss_start = start;
163 ssearch.ss_end = end;
164 ss = avl_find(&sm->sm_root, &ssearch, &where);
165
166 /* Make sure we completely overlap with someone */
167 if (ss == NULL) {
168 zfs_panic_recover("zfs: freeing free segment "
169 "(offset=%llu size=%llu)",
170 (longlong_t)start, (longlong_t)size);
171 return;
172 }
173 VERIFY3U(ss->ss_start, <=, start);
174 VERIFY3U(ss->ss_end, >=, end);
175 VERIFY(sm->sm_space - size <= sm->sm_size);
176
177 left_over = (ss->ss_start != start);
178 right_over = (ss->ss_end != end);
179
180 if (sm->sm_pp_root)
181 avl_remove(sm->sm_pp_root, ss);
182
166 if (left_over && right_over) {
167 newseg = kmem_alloc(sizeof (*newseg), KM_SLEEP);
168 newseg->ss_start = end;
169 newseg->ss_end = ss->ss_end;
170 ss->ss_end = start;
171 avl_insert_here(&sm->sm_root, newseg, ss, AVL_AFTER);
183 if (left_over && right_over) {
184 newseg = kmem_alloc(sizeof (*newseg), KM_SLEEP);
185 newseg->ss_start = end;
186 newseg->ss_end = ss->ss_end;
187 ss->ss_end = start;
188 avl_insert_here(&sm->sm_root, newseg, ss, AVL_AFTER);
189 if (sm->sm_pp_root)
190 avl_add(sm->sm_pp_root, newseg);
172 } else if (left_over) {
173 ss->ss_end = start;
174 } else if (right_over) {
175 ss->ss_start = end;
176 } else {
177 avl_remove(&sm->sm_root, ss);
178 kmem_free(ss, sizeof (*ss));
191 } else if (left_over) {
192 ss->ss_end = start;
193 } else if (right_over) {
194 ss->ss_start = end;
195 } else {
196 avl_remove(&sm->sm_root, ss);
197 kmem_free(ss, sizeof (*ss));
198 ss = NULL;
179 }
180
199 }
200
201 if (sm->sm_pp_root && ss != NULL)
202 avl_add(sm->sm_pp_root, ss);
203
181 sm->sm_space -= size;
182}
183
204 sm->sm_space -= size;
205}
206
184int
207boolean_t
185space_map_contains(space_map_t *sm, uint64_t start, uint64_t size)
186{
187 avl_index_t where;
188 space_seg_t ssearch, *ss;
189 uint64_t end = start + size;
190
191 ASSERT(MUTEX_HELD(sm->sm_lock));
192 VERIFY(size != 0);
193 VERIFY(P2PHASE(start, 1ULL << sm->sm_shift) == 0);
194 VERIFY(P2PHASE(size, 1ULL << sm->sm_shift) == 0);
195
196 ssearch.ss_start = start;
197 ssearch.ss_end = end;
198 ss = avl_find(&sm->sm_root, &ssearch, &where);
199
200 return (ss != NULL && ss->ss_start <= start && ss->ss_end >= end);
201}
202
203void
204space_map_vacate(space_map_t *sm, space_map_func_t *func, space_map_t *mdest)
205{
206 space_seg_t *ss;
207 void *cookie = NULL;
208
209 ASSERT(MUTEX_HELD(sm->sm_lock));
210
211 while ((ss = avl_destroy_nodes(&sm->sm_root, &cookie)) != NULL) {
212 if (func != NULL)
213 func(mdest, ss->ss_start, ss->ss_end - ss->ss_start);
214 kmem_free(ss, sizeof (*ss));
215 }
216 sm->sm_space = 0;
217}
218
219void
220space_map_walk(space_map_t *sm, space_map_func_t *func, space_map_t *mdest)
221{
222 space_seg_t *ss;
223
208space_map_contains(space_map_t *sm, uint64_t start, uint64_t size)
209{
210 avl_index_t where;
211 space_seg_t ssearch, *ss;
212 uint64_t end = start + size;
213
214 ASSERT(MUTEX_HELD(sm->sm_lock));
215 VERIFY(size != 0);
216 VERIFY(P2PHASE(start, 1ULL << sm->sm_shift) == 0);
217 VERIFY(P2PHASE(size, 1ULL << sm->sm_shift) == 0);
218
219 ssearch.ss_start = start;
220 ssearch.ss_end = end;
221 ss = avl_find(&sm->sm_root, &ssearch, &where);
222
223 return (ss != NULL && ss->ss_start <= start && ss->ss_end >= end);
224}
225
226void
227space_map_vacate(space_map_t *sm, space_map_func_t *func, space_map_t *mdest)
228{
229 space_seg_t *ss;
230 void *cookie = NULL;
231
232 ASSERT(MUTEX_HELD(sm->sm_lock));
233
234 while ((ss = avl_destroy_nodes(&sm->sm_root, &cookie)) != NULL) {
235 if (func != NULL)
236 func(mdest, ss->ss_start, ss->ss_end - ss->ss_start);
237 kmem_free(ss, sizeof (*ss));
238 }
239 sm->sm_space = 0;
240}
241
242void
243space_map_walk(space_map_t *sm, space_map_func_t *func, space_map_t *mdest)
244{
245 space_seg_t *ss;
246
247 ASSERT(MUTEX_HELD(sm->sm_lock));
248
224 for (ss = avl_first(&sm->sm_root); ss; ss = AVL_NEXT(&sm->sm_root, ss))
225 func(mdest, ss->ss_start, ss->ss_end - ss->ss_start);
226}
227
249 for (ss = avl_first(&sm->sm_root); ss; ss = AVL_NEXT(&sm->sm_root, ss))
250 func(mdest, ss->ss_start, ss->ss_end - ss->ss_start);
251}
252
228void
229space_map_excise(space_map_t *sm, uint64_t start, uint64_t size)
230{
231 avl_tree_t *t = &sm->sm_root;
232 avl_index_t where;
233 space_seg_t *ss, search;
234 uint64_t end = start + size;
235 uint64_t rm_start, rm_end;
236
237 ASSERT(MUTEX_HELD(sm->sm_lock));
238
239 search.ss_start = start;
240 search.ss_end = start;
241
242 for (;;) {
243 ss = avl_find(t, &search, &where);
244
245 if (ss == NULL)
246 ss = avl_nearest(t, where, AVL_AFTER);
247
248 if (ss == NULL || ss->ss_start >= end)
249 break;
250
251 rm_start = MAX(ss->ss_start, start);
252 rm_end = MIN(ss->ss_end, end);
253
254 space_map_remove(sm, rm_start, rm_end - rm_start);
255 }
256}
257
258/*
253/*
259 * Replace smd with the union of smd and sms.
260 */
261void
262space_map_union(space_map_t *smd, space_map_t *sms)
263{
264 avl_tree_t *t = &sms->sm_root;
265 space_seg_t *ss;
266
267 ASSERT(MUTEX_HELD(smd->sm_lock));
268
269 /*
270 * For each source segment, remove any intersections with the
271 * destination, then add the source segment to the destination.
272 */
273 for (ss = avl_first(t); ss != NULL; ss = AVL_NEXT(t, ss)) {
274 space_map_excise(smd, ss->ss_start, ss->ss_end - ss->ss_start);
275 space_map_add(smd, ss->ss_start, ss->ss_end - ss->ss_start);
276 }
277}
278
279/*
280 * Wait for any in-progress space_map_load() to complete.
281 */
282void
283space_map_load_wait(space_map_t *sm)
284{
285 ASSERT(MUTEX_HELD(sm->sm_lock));
286
287 while (sm->sm_loading)
288 cv_wait(&sm->sm_load_cv, sm->sm_lock);
289}
290
291/*
292 * Note: space_map_load() will drop sm_lock across dmu_read() calls.
293 * The caller must be OK with this.
294 */
295int
296space_map_load(space_map_t *sm, space_map_ops_t *ops, uint8_t maptype,
297 space_map_obj_t *smo, objset_t *os)
298{
299 uint64_t *entry, *entry_map, *entry_map_end;
300 uint64_t bufsize, size, offset, end, space;
301 uint64_t mapstart = sm->sm_start;
302 int error = 0;
303
304 ASSERT(MUTEX_HELD(sm->sm_lock));
305
306 space_map_load_wait(sm);
307
308 if (sm->sm_loaded)
309 return (0);
310
311 sm->sm_loading = B_TRUE;
312 end = smo->smo_objsize;
313 space = smo->smo_alloc;
314
315 ASSERT(sm->sm_ops == NULL);
316 VERIFY3U(sm->sm_space, ==, 0);
317
318 if (maptype == SM_FREE) {
319 space_map_add(sm, sm->sm_start, sm->sm_size);
320 space = sm->sm_size - space;
321 }
322
323 bufsize = 1ULL << SPACE_MAP_BLOCKSHIFT;
324 entry_map = zio_buf_alloc(bufsize);
325
326 mutex_exit(sm->sm_lock);
327 if (end > bufsize)
328 dmu_prefetch(os, smo->smo_object, bufsize, end - bufsize);
329 mutex_enter(sm->sm_lock);
330
331 for (offset = 0; offset < end; offset += bufsize) {
332 size = MIN(end - offset, bufsize);
333 VERIFY(P2PHASE(size, sizeof (uint64_t)) == 0);
334 VERIFY(size != 0);
335
336 dprintf("object=%llu offset=%llx size=%llx\n",
337 smo->smo_object, offset, size);
338
339 mutex_exit(sm->sm_lock);
254 * Wait for any in-progress space_map_load() to complete.
255 */
256void
257space_map_load_wait(space_map_t *sm)
258{
259 ASSERT(MUTEX_HELD(sm->sm_lock));
260
261 while (sm->sm_loading)
262 cv_wait(&sm->sm_load_cv, sm->sm_lock);
263}
264
265/*
266 * Note: space_map_load() will drop sm_lock across dmu_read() calls.
267 * The caller must be OK with this.
268 */
269int
270space_map_load(space_map_t *sm, space_map_ops_t *ops, uint8_t maptype,
271 space_map_obj_t *smo, objset_t *os)
272{
273 uint64_t *entry, *entry_map, *entry_map_end;
274 uint64_t bufsize, size, offset, end, space;
275 uint64_t mapstart = sm->sm_start;
276 int error = 0;
277
278 ASSERT(MUTEX_HELD(sm->sm_lock));
279
280 space_map_load_wait(sm);
281
282 if (sm->sm_loaded)
283 return (0);
284
285 sm->sm_loading = B_TRUE;
286 end = smo->smo_objsize;
287 space = smo->smo_alloc;
288
289 ASSERT(sm->sm_ops == NULL);
290 VERIFY3U(sm->sm_space, ==, 0);
291
292 if (maptype == SM_FREE) {
293 space_map_add(sm, sm->sm_start, sm->sm_size);
294 space = sm->sm_size - space;
295 }
296
297 bufsize = 1ULL << SPACE_MAP_BLOCKSHIFT;
298 entry_map = zio_buf_alloc(bufsize);
299
300 mutex_exit(sm->sm_lock);
301 if (end > bufsize)
302 dmu_prefetch(os, smo->smo_object, bufsize, end - bufsize);
303 mutex_enter(sm->sm_lock);
304
305 for (offset = 0; offset < end; offset += bufsize) {
306 size = MIN(end - offset, bufsize);
307 VERIFY(P2PHASE(size, sizeof (uint64_t)) == 0);
308 VERIFY(size != 0);
309
310 dprintf("object=%llu offset=%llx size=%llx\n",
311 smo->smo_object, offset, size);
312
313 mutex_exit(sm->sm_lock);
340 error = dmu_read(os, smo->smo_object, offset, size, entry_map);
314 error = dmu_read(os, smo->smo_object, offset, size, entry_map,
315 DMU_READ_PREFETCH);
341 mutex_enter(sm->sm_lock);
342 if (error != 0)
343 break;
344
345 entry_map_end = entry_map + (size / sizeof (uint64_t));
346 for (entry = entry_map; entry < entry_map_end; entry++) {
347 uint64_t e = *entry;
348
349 if (SM_DEBUG_DECODE(e)) /* Skip debug entries */
350 continue;
351
352 (SM_TYPE_DECODE(e) == maptype ?
353 space_map_add : space_map_remove)(sm,
354 (SM_OFFSET_DECODE(e) << sm->sm_shift) + mapstart,
355 SM_RUN_DECODE(e) << sm->sm_shift);
356 }
357 }
358
359 if (error == 0) {
360 VERIFY3U(sm->sm_space, ==, space);
361
362 sm->sm_loaded = B_TRUE;
363 sm->sm_ops = ops;
364 if (ops != NULL)
365 ops->smop_load(sm);
366 } else {
367 space_map_vacate(sm, NULL, NULL);
368 }
369
370 zio_buf_free(entry_map, bufsize);
371
372 sm->sm_loading = B_FALSE;
373
374 cv_broadcast(&sm->sm_load_cv);
375
376 return (error);
377}
378
379void
380space_map_unload(space_map_t *sm)
381{
382 ASSERT(MUTEX_HELD(sm->sm_lock));
383
384 if (sm->sm_loaded && sm->sm_ops != NULL)
385 sm->sm_ops->smop_unload(sm);
386
387 sm->sm_loaded = B_FALSE;
388 sm->sm_ops = NULL;
389
390 space_map_vacate(sm, NULL, NULL);
391}
392
393uint64_t
316 mutex_enter(sm->sm_lock);
317 if (error != 0)
318 break;
319
320 entry_map_end = entry_map + (size / sizeof (uint64_t));
321 for (entry = entry_map; entry < entry_map_end; entry++) {
322 uint64_t e = *entry;
323
324 if (SM_DEBUG_DECODE(e)) /* Skip debug entries */
325 continue;
326
327 (SM_TYPE_DECODE(e) == maptype ?
328 space_map_add : space_map_remove)(sm,
329 (SM_OFFSET_DECODE(e) << sm->sm_shift) + mapstart,
330 SM_RUN_DECODE(e) << sm->sm_shift);
331 }
332 }
333
334 if (error == 0) {
335 VERIFY3U(sm->sm_space, ==, space);
336
337 sm->sm_loaded = B_TRUE;
338 sm->sm_ops = ops;
339 if (ops != NULL)
340 ops->smop_load(sm);
341 } else {
342 space_map_vacate(sm, NULL, NULL);
343 }
344
345 zio_buf_free(entry_map, bufsize);
346
347 sm->sm_loading = B_FALSE;
348
349 cv_broadcast(&sm->sm_load_cv);
350
351 return (error);
352}
353
354void
355space_map_unload(space_map_t *sm)
356{
357 ASSERT(MUTEX_HELD(sm->sm_lock));
358
359 if (sm->sm_loaded && sm->sm_ops != NULL)
360 sm->sm_ops->smop_unload(sm);
361
362 sm->sm_loaded = B_FALSE;
363 sm->sm_ops = NULL;
364
365 space_map_vacate(sm, NULL, NULL);
366}
367
368uint64_t
369space_map_maxsize(space_map_t *sm)
370{
371 if (sm->sm_loaded && sm->sm_ops != NULL)
372 return (sm->sm_ops->smop_max(sm));
373 else
374 return (-1ULL);
375}
376
377uint64_t
394space_map_alloc(space_map_t *sm, uint64_t size)
395{
396 uint64_t start;
397
398 start = sm->sm_ops->smop_alloc(sm, size);
399 if (start != -1ULL)
400 space_map_remove(sm, start, size);
401 return (start);
402}
403
404void
405space_map_claim(space_map_t *sm, uint64_t start, uint64_t size)
406{
407 sm->sm_ops->smop_claim(sm, start, size);
408 space_map_remove(sm, start, size);
409}
410
411void
412space_map_free(space_map_t *sm, uint64_t start, uint64_t size)
413{
414 space_map_add(sm, start, size);
415 sm->sm_ops->smop_free(sm, start, size);
416}
417
418/*
419 * Note: space_map_sync() will drop sm_lock across dmu_write() calls.
420 */
421void
422space_map_sync(space_map_t *sm, uint8_t maptype,
423 space_map_obj_t *smo, objset_t *os, dmu_tx_t *tx)
424{
425 spa_t *spa = dmu_objset_spa(os);
426 void *cookie = NULL;
427 space_seg_t *ss;
428 uint64_t bufsize, start, size, run_len;
429 uint64_t *entry, *entry_map, *entry_map_end;
430
431 ASSERT(MUTEX_HELD(sm->sm_lock));
432
433 if (sm->sm_space == 0)
434 return;
435
436 dprintf("object %4llu, txg %llu, pass %d, %c, count %lu, space %llx\n",
437 smo->smo_object, dmu_tx_get_txg(tx), spa_sync_pass(spa),
438 maptype == SM_ALLOC ? 'A' : 'F', avl_numnodes(&sm->sm_root),
439 sm->sm_space);
440
441 if (maptype == SM_ALLOC)
442 smo->smo_alloc += sm->sm_space;
443 else
444 smo->smo_alloc -= sm->sm_space;
445
446 bufsize = (8 + avl_numnodes(&sm->sm_root)) * sizeof (uint64_t);
447 bufsize = MIN(bufsize, 1ULL << SPACE_MAP_BLOCKSHIFT);
448 entry_map = zio_buf_alloc(bufsize);
449 entry_map_end = entry_map + (bufsize / sizeof (uint64_t));
450 entry = entry_map;
451
452 *entry++ = SM_DEBUG_ENCODE(1) |
453 SM_DEBUG_ACTION_ENCODE(maptype) |
454 SM_DEBUG_SYNCPASS_ENCODE(spa_sync_pass(spa)) |
455 SM_DEBUG_TXG_ENCODE(dmu_tx_get_txg(tx));
456
457 while ((ss = avl_destroy_nodes(&sm->sm_root, &cookie)) != NULL) {
458 size = ss->ss_end - ss->ss_start;
459 start = (ss->ss_start - sm->sm_start) >> sm->sm_shift;
460
461 sm->sm_space -= size;
462 size >>= sm->sm_shift;
463
464 while (size) {
465 run_len = MIN(size, SM_RUN_MAX);
466
467 if (entry == entry_map_end) {
468 mutex_exit(sm->sm_lock);
469 dmu_write(os, smo->smo_object, smo->smo_objsize,
470 bufsize, entry_map, tx);
471 mutex_enter(sm->sm_lock);
472 smo->smo_objsize += bufsize;
473 entry = entry_map;
474 }
475
476 *entry++ = SM_OFFSET_ENCODE(start) |
477 SM_TYPE_ENCODE(maptype) |
478 SM_RUN_ENCODE(run_len);
479
480 start += run_len;
481 size -= run_len;
482 }
483 kmem_free(ss, sizeof (*ss));
484 }
485
486 if (entry != entry_map) {
487 size = (entry - entry_map) * sizeof (uint64_t);
488 mutex_exit(sm->sm_lock);
489 dmu_write(os, smo->smo_object, smo->smo_objsize,
490 size, entry_map, tx);
491 mutex_enter(sm->sm_lock);
492 smo->smo_objsize += size;
493 }
494
495 zio_buf_free(entry_map, bufsize);
496
497 VERIFY3U(sm->sm_space, ==, 0);
498}
499
500void
501space_map_truncate(space_map_obj_t *smo, objset_t *os, dmu_tx_t *tx)
502{
503 VERIFY(dmu_free_range(os, smo->smo_object, 0, -1ULL, tx) == 0);
504
505 smo->smo_objsize = 0;
506 smo->smo_alloc = 0;
507}
378space_map_alloc(space_map_t *sm, uint64_t size)
379{
380 uint64_t start;
381
382 start = sm->sm_ops->smop_alloc(sm, size);
383 if (start != -1ULL)
384 space_map_remove(sm, start, size);
385 return (start);
386}
387
388void
389space_map_claim(space_map_t *sm, uint64_t start, uint64_t size)
390{
391 sm->sm_ops->smop_claim(sm, start, size);
392 space_map_remove(sm, start, size);
393}
394
395void
396space_map_free(space_map_t *sm, uint64_t start, uint64_t size)
397{
398 space_map_add(sm, start, size);
399 sm->sm_ops->smop_free(sm, start, size);
400}
401
402/*
403 * Note: space_map_sync() will drop sm_lock across dmu_write() calls.
404 */
405void
406space_map_sync(space_map_t *sm, uint8_t maptype,
407 space_map_obj_t *smo, objset_t *os, dmu_tx_t *tx)
408{
409 spa_t *spa = dmu_objset_spa(os);
410 void *cookie = NULL;
411 space_seg_t *ss;
412 uint64_t bufsize, start, size, run_len;
413 uint64_t *entry, *entry_map, *entry_map_end;
414
415 ASSERT(MUTEX_HELD(sm->sm_lock));
416
417 if (sm->sm_space == 0)
418 return;
419
420 dprintf("object %4llu, txg %llu, pass %d, %c, count %lu, space %llx\n",
421 smo->smo_object, dmu_tx_get_txg(tx), spa_sync_pass(spa),
422 maptype == SM_ALLOC ? 'A' : 'F', avl_numnodes(&sm->sm_root),
423 sm->sm_space);
424
425 if (maptype == SM_ALLOC)
426 smo->smo_alloc += sm->sm_space;
427 else
428 smo->smo_alloc -= sm->sm_space;
429
430 bufsize = (8 + avl_numnodes(&sm->sm_root)) * sizeof (uint64_t);
431 bufsize = MIN(bufsize, 1ULL << SPACE_MAP_BLOCKSHIFT);
432 entry_map = zio_buf_alloc(bufsize);
433 entry_map_end = entry_map + (bufsize / sizeof (uint64_t));
434 entry = entry_map;
435
436 *entry++ = SM_DEBUG_ENCODE(1) |
437 SM_DEBUG_ACTION_ENCODE(maptype) |
438 SM_DEBUG_SYNCPASS_ENCODE(spa_sync_pass(spa)) |
439 SM_DEBUG_TXG_ENCODE(dmu_tx_get_txg(tx));
440
441 while ((ss = avl_destroy_nodes(&sm->sm_root, &cookie)) != NULL) {
442 size = ss->ss_end - ss->ss_start;
443 start = (ss->ss_start - sm->sm_start) >> sm->sm_shift;
444
445 sm->sm_space -= size;
446 size >>= sm->sm_shift;
447
448 while (size) {
449 run_len = MIN(size, SM_RUN_MAX);
450
451 if (entry == entry_map_end) {
452 mutex_exit(sm->sm_lock);
453 dmu_write(os, smo->smo_object, smo->smo_objsize,
454 bufsize, entry_map, tx);
455 mutex_enter(sm->sm_lock);
456 smo->smo_objsize += bufsize;
457 entry = entry_map;
458 }
459
460 *entry++ = SM_OFFSET_ENCODE(start) |
461 SM_TYPE_ENCODE(maptype) |
462 SM_RUN_ENCODE(run_len);
463
464 start += run_len;
465 size -= run_len;
466 }
467 kmem_free(ss, sizeof (*ss));
468 }
469
470 if (entry != entry_map) {
471 size = (entry - entry_map) * sizeof (uint64_t);
472 mutex_exit(sm->sm_lock);
473 dmu_write(os, smo->smo_object, smo->smo_objsize,
474 size, entry_map, tx);
475 mutex_enter(sm->sm_lock);
476 smo->smo_objsize += size;
477 }
478
479 zio_buf_free(entry_map, bufsize);
480
481 VERIFY3U(sm->sm_space, ==, 0);
482}
483
484void
485space_map_truncate(space_map_obj_t *smo, objset_t *os, dmu_tx_t *tx)
486{
487 VERIFY(dmu_free_range(os, smo->smo_object, 0, -1ULL, tx) == 0);
488
489 smo->smo_objsize = 0;
490 smo->smo_alloc = 0;
491}
492
493/*
494 * Space map reference trees.
495 *
496 * A space map is a collection of integers. Every integer is either
497 * in the map, or it's not. A space map reference tree generalizes
498 * the idea: it allows its members to have arbitrary reference counts,
499 * as opposed to the implicit reference count of 0 or 1 in a space map.
500 * This representation comes in handy when computing the union or
501 * intersection of multiple space maps. For example, the union of
502 * N space maps is the subset of the reference tree with refcnt >= 1.
503 * The intersection of N space maps is the subset with refcnt >= N.
504 *
505 * [It's very much like a Fourier transform. Unions and intersections
506 * are hard to perform in the 'space map domain', so we convert the maps
507 * into the 'reference count domain', where it's trivial, then invert.]
508 *
509 * vdev_dtl_reassess() uses computations of this form to determine
510 * DTL_MISSING and DTL_OUTAGE for interior vdevs -- e.g. a RAID-Z vdev
511 * has an outage wherever refcnt >= vdev_nparity + 1, and a mirror vdev
512 * has an outage wherever refcnt >= vdev_children.
513 */
514static int
515space_map_ref_compare(const void *x1, const void *x2)
516{
517 const space_ref_t *sr1 = x1;
518 const space_ref_t *sr2 = x2;
519
520 if (sr1->sr_offset < sr2->sr_offset)
521 return (-1);
522 if (sr1->sr_offset > sr2->sr_offset)
523 return (1);
524
525 if (sr1 < sr2)
526 return (-1);
527 if (sr1 > sr2)
528 return (1);
529
530 return (0);
531}
532
533void
534space_map_ref_create(avl_tree_t *t)
535{
536 avl_create(t, space_map_ref_compare,
537 sizeof (space_ref_t), offsetof(space_ref_t, sr_node));
538}
539
540void
541space_map_ref_destroy(avl_tree_t *t)
542{
543 space_ref_t *sr;
544 void *cookie = NULL;
545
546 while ((sr = avl_destroy_nodes(t, &cookie)) != NULL)
547 kmem_free(sr, sizeof (*sr));
548
549 avl_destroy(t);
550}
551
552static void
553space_map_ref_add_node(avl_tree_t *t, uint64_t offset, int64_t refcnt)
554{
555 space_ref_t *sr;
556
557 sr = kmem_alloc(sizeof (*sr), KM_SLEEP);
558 sr->sr_offset = offset;
559 sr->sr_refcnt = refcnt;
560
561 avl_add(t, sr);
562}
563
564void
565space_map_ref_add_seg(avl_tree_t *t, uint64_t start, uint64_t end,
566 int64_t refcnt)
567{
568 space_map_ref_add_node(t, start, refcnt);
569 space_map_ref_add_node(t, end, -refcnt);
570}
571
572/*
573 * Convert (or add) a space map into a reference tree.
574 */
575void
576space_map_ref_add_map(avl_tree_t *t, space_map_t *sm, int64_t refcnt)
577{
578 space_seg_t *ss;
579
580 ASSERT(MUTEX_HELD(sm->sm_lock));
581
582 for (ss = avl_first(&sm->sm_root); ss; ss = AVL_NEXT(&sm->sm_root, ss))
583 space_map_ref_add_seg(t, ss->ss_start, ss->ss_end, refcnt);
584}
585
586/*
587 * Convert a reference tree into a space map. The space map will contain
588 * all members of the reference tree for which refcnt >= minref.
589 */
590void
591space_map_ref_generate_map(avl_tree_t *t, space_map_t *sm, int64_t minref)
592{
593 uint64_t start = -1ULL;
594 int64_t refcnt = 0;
595 space_ref_t *sr;
596
597 ASSERT(MUTEX_HELD(sm->sm_lock));
598
599 space_map_vacate(sm, NULL, NULL);
600
601 for (sr = avl_first(t); sr != NULL; sr = AVL_NEXT(t, sr)) {
602 refcnt += sr->sr_refcnt;
603 if (refcnt >= minref) {
604 if (start == -1ULL) {
605 start = sr->sr_offset;
606 }
607 } else {
608 if (start != -1ULL) {
609 uint64_t end = sr->sr_offset;
610 ASSERT(start <= end);
611 if (end > start)
612 space_map_add(sm, start, end - start);
613 start = -1ULL;
614 }
615 }
616 }
617 ASSERT(refcnt == 0);
618 ASSERT(start == -1ULL);
619}