Deleted Added
sdiff udiff text old ( 62754 ) new ( 62755 )
full compact
1/*-
2 * Copyright (c) 1992, 1993, 1994 Henry Spencer.
3 * Copyright (c) 1992, 1993, 1994
4 * The Regents of the University of California. All rights reserved.
5 *
6 * This code is derived from software contributed to Berkeley by
7 * Henry Spencer.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 * must display the following acknowledgement:
19 * This product includes software developed by the University of
20 * California, Berkeley and its contributors.
21 * 4. Neither the name of the University nor the names of its contributors
22 * may be used to endorse or promote products derived from this software
23 * without specific prior written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
28 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
29 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
30 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
31 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
34 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35 * SUCH DAMAGE.
36 *
37 * @(#)regcomp.c 8.5 (Berkeley) 3/20/94
38 *
39 * $FreeBSD: head/lib/libc/regex/regcomp.c 62754 2000-07-07 07:46:36Z dcs $
40 */
41
42#if defined(LIBC_SCCS) && !defined(lint)
43static char sccsid[] = "@(#)regcomp.c 8.5 (Berkeley) 3/20/94";
44#endif /* LIBC_SCCS and not lint */
45
46#include <sys/types.h>
47#include <stdio.h>
48#include <string.h>
49#include <ctype.h>
50#include <limits.h>
51#include <stdlib.h>
52#include <regex.h>
53
54#include "collate.h"
55
56#include "utils.h"
57#include "regex2.h"
58
59#include "cclass.h"
60#include "cname.h"
61
62/*
63 * parse structure, passed up and down to avoid global variables and
64 * other clumsinesses
65 */
66struct parse {
67 char *next; /* next character in RE */
68 char *end; /* end of string (-> NUL normally) */
69 int error; /* has an error been seen? */
70 sop *strip; /* malloced strip */
71 sopno ssize; /* malloced strip size (allocated) */
72 sopno slen; /* malloced strip length (used) */
73 int ncsalloc; /* number of csets allocated */
74 struct re_guts *g;
75# define NPAREN 10 /* we need to remember () 1-9 for back refs */
76 sopno pbegin[NPAREN]; /* -> ( ([0] unused) */
77 sopno pend[NPAREN]; /* -> ) ([0] unused) */
78};
79
80/* ========= begin header generated by ./mkh ========= */
81#ifdef __cplusplus
82extern "C" {
83#endif
84
85/* === regcomp.c === */
86static void p_ere __P((struct parse *p, int stop));
87static void p_ere_exp __P((struct parse *p));
88static void p_str __P((struct parse *p));
89static void p_bre __P((struct parse *p, int end1, int end2));
90static int p_simp_re __P((struct parse *p, int starordinary));
91static int p_count __P((struct parse *p));
92static void p_bracket __P((struct parse *p));
93static void p_b_term __P((struct parse *p, cset *cs));
94static void p_b_cclass __P((struct parse *p, cset *cs));
95static void p_b_eclass __P((struct parse *p, cset *cs));
96static char p_b_symbol __P((struct parse *p));
97static char p_b_coll_elem __P((struct parse *p, int endc));
98static char othercase __P((int ch));
99static void bothcases __P((struct parse *p, int ch));
100static void ordinary __P((struct parse *p, int ch));
101static void nonnewline __P((struct parse *p));
102static void repeat __P((struct parse *p, sopno start, int from, int to));
103static int seterr __P((struct parse *p, int e));
104static cset *allocset __P((struct parse *p));
105static void freeset __P((struct parse *p, cset *cs));
106static int freezeset __P((struct parse *p, cset *cs));
107static int firstch __P((struct parse *p, cset *cs));
108static int nch __P((struct parse *p, cset *cs));
109static void mcadd __P((struct parse *p, cset *cs, char *cp));
110#if used
111static void mcsub __P((cset *cs, char *cp));
112static int mcin __P((cset *cs, char *cp));
113static char *mcfind __P((cset *cs, char *cp));
114#endif
115static void mcinvert __P((struct parse *p, cset *cs));
116static void mccase __P((struct parse *p, cset *cs));
117static int isinsets __P((struct re_guts *g, int c));
118static int samesets __P((struct re_guts *g, int c1, int c2));
119static void categorize __P((struct parse *p, struct re_guts *g));
120static sopno dupl __P((struct parse *p, sopno start, sopno finish));
121static void doemit __P((struct parse *p, sop op, size_t opnd));
122static void doinsert __P((struct parse *p, sop op, size_t opnd, sopno pos));
123static void dofwd __P((struct parse *p, sopno pos, sop value));
124static void enlarge __P((struct parse *p, sopno size));
125static void stripsnug __P((struct parse *p, struct re_guts *g));
126static void findmust __P((struct parse *p, struct re_guts *g));
127static int altoffset __P((sop *scan, int offset, int mccs));
128static void computejumps __P((struct parse *p, struct re_guts *g));
129static void computematchjumps __P((struct parse *p, struct re_guts *g));
130static sopno pluscount __P((struct parse *p, struct re_guts *g));
131
132#ifdef __cplusplus
133}
134#endif
135/* ========= end header generated by ./mkh ========= */
136
137static char nuls[10]; /* place to point scanner in event of error */
138
139/*
140 * macros for use with parse structure
141 * BEWARE: these know that the parse structure is named `p' !!!
142 */
143#define PEEK() (*p->next)
144#define PEEK2() (*(p->next+1))
145#define MORE() (p->next < p->end)
146#define MORE2() (p->next+1 < p->end)
147#define SEE(c) (MORE() && PEEK() == (c))
148#define SEETWO(a, b) (MORE() && MORE2() && PEEK() == (a) && PEEK2() == (b))
149#define EAT(c) ((SEE(c)) ? (NEXT(), 1) : 0)
150#define EATTWO(a, b) ((SEETWO(a, b)) ? (NEXT2(), 1) : 0)
151#define NEXT() (p->next++)
152#define NEXT2() (p->next += 2)
153#define NEXTn(n) (p->next += (n))
154#define GETNEXT() (*p->next++)
155#define SETERROR(e) seterr(p, (e))
156#define REQUIRE(co, e) ((co) || SETERROR(e))
157#define MUSTSEE(c, e) (REQUIRE(MORE() && PEEK() == (c), e))
158#define MUSTEAT(c, e) (REQUIRE(MORE() && GETNEXT() == (c), e))
159#define MUSTNOTSEE(c, e) (REQUIRE(!MORE() || PEEK() != (c), e))
160#define EMIT(op, sopnd) doemit(p, (sop)(op), (size_t)(sopnd))
161#define INSERT(op, pos) doinsert(p, (sop)(op), HERE()-(pos)+1, pos)
162#define AHEAD(pos) dofwd(p, pos, HERE()-(pos))
163#define ASTERN(sop, pos) EMIT(sop, HERE()-pos)
164#define HERE() (p->slen)
165#define THERE() (p->slen - 1)
166#define THERETHERE() (p->slen - 2)
167#define DROP(n) (p->slen -= (n))
168
169#ifndef NDEBUG
170static int never = 0; /* for use in asserts; shuts lint up */
171#else
172#define never 0 /* some <assert.h>s have bugs too */
173#endif
174
175/* Macro used by computejump()/computematchjump() */
176#define MIN(a,b) ((a)<(b)?(a):(b))
177
178/*
179 - regcomp - interface for parser and compilation
180 = extern int regcomp(regex_t *, const char *, int);
181 = #define REG_BASIC 0000
182 = #define REG_EXTENDED 0001
183 = #define REG_ICASE 0002
184 = #define REG_NOSUB 0004
185 = #define REG_NEWLINE 0010
186 = #define REG_NOSPEC 0020
187 = #define REG_PEND 0040
188 = #define REG_DUMP 0200
189 */
190int /* 0 success, otherwise REG_something */
191regcomp(preg, pattern, cflags)
192regex_t *preg;
193const char *pattern;
194int cflags;
195{
196 struct parse pa;
197 register struct re_guts *g;
198 register struct parse *p = &pa;
199 register int i;
200 register size_t len;
201#ifdef REDEBUG
202# define GOODFLAGS(f) (f)
203#else
204# define GOODFLAGS(f) ((f)&~REG_DUMP)
205#endif
206
207 cflags = GOODFLAGS(cflags);
208 if ((cflags&REG_EXTENDED) && (cflags&REG_NOSPEC))
209 return(REG_INVARG);
210
211 if (cflags&REG_PEND) {
212 if (preg->re_endp < pattern)
213 return(REG_INVARG);
214 len = preg->re_endp - pattern;
215 } else
216 len = strlen((char *)pattern);
217
218 /* do the mallocs early so failure handling is easy */
219 g = (struct re_guts *)malloc(sizeof(struct re_guts) +
220 (NC-1)*sizeof(cat_t));
221 if (g == NULL)
222 return(REG_ESPACE);
223 p->ssize = len/(size_t)2*(size_t)3 + (size_t)1; /* ugh */
224 p->strip = (sop *)malloc(p->ssize * sizeof(sop));
225 p->slen = 0;
226 if (p->strip == NULL) {
227 free((char *)g);
228 return(REG_ESPACE);
229 }
230
231 /* set things up */
232 p->g = g;
233 p->next = (char *)pattern; /* convenience; we do not modify it */
234 p->end = p->next + len;
235 p->error = 0;
236 p->ncsalloc = 0;
237 for (i = 0; i < NPAREN; i++) {
238 p->pbegin[i] = 0;
239 p->pend[i] = 0;
240 }
241 g->csetsize = NC;
242 g->sets = NULL;
243 g->setbits = NULL;
244 g->ncsets = 0;
245 g->cflags = cflags;
246 g->iflags = 0;
247 g->nbol = 0;
248 g->neol = 0;
249 g->must = NULL;
250 g->moffset = -1;
251 g->charjump = NULL;
252 g->matchjump = NULL;
253 g->mlen = 0;
254 g->nsub = 0;
255 g->ncategories = 1; /* category 0 is "everything else" */
256 g->categories = &g->catspace[-(CHAR_MIN)];
257 (void) memset((char *)g->catspace, 0, NC*sizeof(cat_t));
258 g->backrefs = 0;
259
260 /* do it */
261 EMIT(OEND, 0);
262 g->firststate = THERE();
263 if (cflags&REG_EXTENDED)
264 p_ere(p, OUT);
265 else if (cflags&REG_NOSPEC)
266 p_str(p);
267 else
268 p_bre(p, OUT, OUT);
269 EMIT(OEND, 0);
270 g->laststate = THERE();
271
272 /* tidy up loose ends and fill things in */
273 categorize(p, g);
274 stripsnug(p, g);
275 findmust(p, g);
276 /* only use Boyer-Moore algorithm if the pattern is bigger
277 * than three characters
278 */
279 if(g->mlen > 3) {
280 computejumps(p, g);
281 computematchjumps(p, g);
282 if(g->matchjump == NULL) {
283 free(g->charjump);
284 g->charjump = NULL;
285 }
286 }
287 g->nplus = pluscount(p, g);
288 g->magic = MAGIC2;
289 preg->re_nsub = g->nsub;
290 preg->re_g = g;
291 preg->re_magic = MAGIC1;
292#ifndef REDEBUG
293 /* not debugging, so can't rely on the assert() in regexec() */
294 if (g->iflags&BAD)
295 SETERROR(REG_ASSERT);
296#endif
297
298 /* win or lose, we're done */
299 if (p->error != 0) /* lose */
300 regfree(preg);
301 return(p->error);
302}
303
304/*
305 - p_ere - ERE parser top level, concatenation and alternation
306 == static void p_ere(register struct parse *p, int stop);
307 */
308static void
309p_ere(p, stop)
310register struct parse *p;
311int stop; /* character this ERE should end at */
312{
313 register char c;
314 register sopno prevback;
315 register sopno prevfwd;
316 register sopno conc;
317 register int first = 1; /* is this the first alternative? */
318
319 for (;;) {
320 /* do a bunch of concatenated expressions */
321 conc = HERE();
322 while (MORE() && (c = PEEK()) != '|' && c != stop)
323 p_ere_exp(p);
324 (void)REQUIRE(HERE() != conc, REG_EMPTY); /* require nonempty */
325
326 if (!EAT('|'))
327 break; /* NOTE BREAK OUT */
328
329 if (first) {
330 INSERT(OCH_, conc); /* offset is wrong */
331 prevfwd = conc;
332 prevback = conc;
333 first = 0;
334 }
335 ASTERN(OOR1, prevback);
336 prevback = THERE();
337 AHEAD(prevfwd); /* fix previous offset */
338 prevfwd = HERE();
339 EMIT(OOR2, 0); /* offset is very wrong */
340 }
341
342 if (!first) { /* tail-end fixups */
343 AHEAD(prevfwd);
344 ASTERN(O_CH, prevback);
345 }
346
347 assert(!MORE() || SEE(stop));
348}
349
350/*
351 - p_ere_exp - parse one subERE, an atom possibly followed by a repetition op
352 == static void p_ere_exp(register struct parse *p);
353 */
354static void
355p_ere_exp(p)
356register struct parse *p;
357{
358 register char c;
359 register sopno pos;
360 register int count;
361 register int count2;
362 register sopno subno;
363 int wascaret = 0;
364
365 assert(MORE()); /* caller should have ensured this */
366 c = GETNEXT();
367
368 pos = HERE();
369 switch (c) {
370 case '(':
371 (void)REQUIRE(MORE(), REG_EPAREN);
372 p->g->nsub++;
373 subno = p->g->nsub;
374 if (subno < NPAREN)
375 p->pbegin[subno] = HERE();
376 EMIT(OLPAREN, subno);
377 if (!SEE(')'))
378 p_ere(p, ')');
379 if (subno < NPAREN) {
380 p->pend[subno] = HERE();
381 assert(p->pend[subno] != 0);
382 }
383 EMIT(ORPAREN, subno);
384 (void)MUSTEAT(')', REG_EPAREN);
385 break;
386#ifndef POSIX_MISTAKE
387 case ')': /* happens only if no current unmatched ( */
388 /*
389 * You may ask, why the ifndef? Because I didn't notice
390 * this until slightly too late for 1003.2, and none of the
391 * other 1003.2 regular-expression reviewers noticed it at
392 * all. So an unmatched ) is legal POSIX, at least until
393 * we can get it fixed.
394 */
395 SETERROR(REG_EPAREN);
396 break;
397#endif
398 case '^':
399 EMIT(OBOL, 0);
400 p->g->iflags |= USEBOL;
401 p->g->nbol++;
402 wascaret = 1;
403 break;
404 case '$':
405 EMIT(OEOL, 0);
406 p->g->iflags |= USEEOL;
407 p->g->neol++;
408 break;
409 case '|':
410 SETERROR(REG_EMPTY);
411 break;
412 case '*':
413 case '+':
414 case '?':
415 SETERROR(REG_BADRPT);
416 break;
417 case '.':
418 if (p->g->cflags&REG_NEWLINE)
419 nonnewline(p);
420 else
421 EMIT(OANY, 0);
422 break;
423 case '[':
424 p_bracket(p);
425 break;
426 case '\\':
427 (void)REQUIRE(MORE(), REG_EESCAPE);
428 c = GETNEXT();
429 ordinary(p, c);
430 break;
431 case '{': /* okay as ordinary except if digit follows */
432 (void)REQUIRE(!MORE() || !isdigit((uch)PEEK()), REG_BADRPT);
433 /* FALLTHROUGH */
434 default:
435 ordinary(p, c);
436 break;
437 }
438
439 if (!MORE())
440 return;
441 c = PEEK();
442 /* we call { a repetition if followed by a digit */
443 if (!( c == '*' || c == '+' || c == '?' ||
444 (c == '{' && MORE2() && isdigit((uch)PEEK2())) ))
445 return; /* no repetition, we're done */
446 NEXT();
447
448 (void)REQUIRE(!wascaret, REG_BADRPT);
449 switch (c) {
450 case '*': /* implemented as +? */
451 /* this case does not require the (y|) trick, noKLUDGE */
452 INSERT(OPLUS_, pos);
453 ASTERN(O_PLUS, pos);
454 INSERT(OQUEST_, pos);
455 ASTERN(O_QUEST, pos);
456 break;
457 case '+':
458 INSERT(OPLUS_, pos);
459 ASTERN(O_PLUS, pos);
460 break;
461 case '?':
462 /* KLUDGE: emit y? as (y|) until subtle bug gets fixed */
463 INSERT(OCH_, pos); /* offset slightly wrong */
464 ASTERN(OOR1, pos); /* this one's right */
465 AHEAD(pos); /* fix the OCH_ */
466 EMIT(OOR2, 0); /* offset very wrong... */
467 AHEAD(THERE()); /* ...so fix it */
468 ASTERN(O_CH, THERETHERE());
469 break;
470 case '{':
471 count = p_count(p);
472 if (EAT(',')) {
473 if (isdigit((uch)PEEK())) {
474 count2 = p_count(p);
475 (void)REQUIRE(count <= count2, REG_BADBR);
476 } else /* single number with comma */
477 count2 = INFINITY;
478 } else /* just a single number */
479 count2 = count;
480 repeat(p, pos, count, count2);
481 if (!EAT('}')) { /* error heuristics */
482 while (MORE() && PEEK() != '}')
483 NEXT();
484 (void)REQUIRE(MORE(), REG_EBRACE);
485 SETERROR(REG_BADBR);
486 }
487 break;
488 }
489
490 if (!MORE())
491 return;
492 c = PEEK();
493 if (!( c == '*' || c == '+' || c == '?' ||
494 (c == '{' && MORE2() && isdigit((uch)PEEK2())) ) )
495 return;
496 SETERROR(REG_BADRPT);
497}
498
499/*
500 - p_str - string (no metacharacters) "parser"
501 == static void p_str(register struct parse *p);
502 */
503static void
504p_str(p)
505register struct parse *p;
506{
507 (void)REQUIRE(MORE(), REG_EMPTY);
508 while (MORE())
509 ordinary(p, GETNEXT());
510}
511
512/*
513 - p_bre - BRE parser top level, anchoring and concatenation
514 == static void p_bre(register struct parse *p, register int end1, \
515 == register int end2);
516 * Giving end1 as OUT essentially eliminates the end1/end2 check.
517 *
518 * This implementation is a bit of a kludge, in that a trailing $ is first
519 * taken as an ordinary character and then revised to be an anchor. The
520 * only undesirable side effect is that '$' gets included as a character
521 * category in such cases. This is fairly harmless; not worth fixing.
522 * The amount of lookahead needed to avoid this kludge is excessive.
523 */
524static void
525p_bre(p, end1, end2)
526register struct parse *p;
527register int end1; /* first terminating character */
528register int end2; /* second terminating character */
529{
530 register sopno start = HERE();
531 register int first = 1; /* first subexpression? */
532 register int wasdollar = 0;
533
534 if (EAT('^')) {
535 EMIT(OBOL, 0);
536 p->g->iflags |= USEBOL;
537 p->g->nbol++;
538 }
539 while (MORE() && !SEETWO(end1, end2)) {
540 wasdollar = p_simp_re(p, first);
541 first = 0;
542 }
543 if (wasdollar) { /* oops, that was a trailing anchor */
544 DROP(1);
545 EMIT(OEOL, 0);
546 p->g->iflags |= USEEOL;
547 p->g->neol++;
548 }
549
550 (void)REQUIRE(HERE() != start, REG_EMPTY); /* require nonempty */
551}
552
553/*
554 - p_simp_re - parse a simple RE, an atom possibly followed by a repetition
555 == static int p_simp_re(register struct parse *p, int starordinary);
556 */
557static int /* was the simple RE an unbackslashed $? */
558p_simp_re(p, starordinary)
559register struct parse *p;
560int starordinary; /* is a leading * an ordinary character? */
561{
562 register int c;
563 register int count;
564 register int count2;
565 register sopno pos;
566 register int i;
567 register sopno subno;
568# define BACKSL (1<<CHAR_BIT)
569
570 pos = HERE(); /* repetion op, if any, covers from here */
571
572 assert(MORE()); /* caller should have ensured this */
573 c = GETNEXT();
574 if (c == '\\') {
575 (void)REQUIRE(MORE(), REG_EESCAPE);
576 c = BACKSL | GETNEXT();
577 }
578 switch (c) {
579 case '.':
580 if (p->g->cflags&REG_NEWLINE)
581 nonnewline(p);
582 else
583 EMIT(OANY, 0);
584 break;
585 case '[':
586 p_bracket(p);
587 break;
588 case BACKSL|'{':
589 SETERROR(REG_BADRPT);
590 break;
591 case BACKSL|'(':
592 p->g->nsub++;
593 subno = p->g->nsub;
594 if (subno < NPAREN)
595 p->pbegin[subno] = HERE();
596 EMIT(OLPAREN, subno);
597 /* the MORE here is an error heuristic */
598 if (MORE() && !SEETWO('\\', ')'))
599 p_bre(p, '\\', ')');
600 if (subno < NPAREN) {
601 p->pend[subno] = HERE();
602 assert(p->pend[subno] != 0);
603 }
604 EMIT(ORPAREN, subno);
605 (void)REQUIRE(EATTWO('\\', ')'), REG_EPAREN);
606 break;
607 case BACKSL|')': /* should not get here -- must be user */
608 case BACKSL|'}':
609 SETERROR(REG_EPAREN);
610 break;
611 case BACKSL|'1':
612 case BACKSL|'2':
613 case BACKSL|'3':
614 case BACKSL|'4':
615 case BACKSL|'5':
616 case BACKSL|'6':
617 case BACKSL|'7':
618 case BACKSL|'8':
619 case BACKSL|'9':
620 i = (c&~BACKSL) - '0';
621 assert(i < NPAREN);
622 if (p->pend[i] != 0) {
623 assert(i <= p->g->nsub);
624 EMIT(OBACK_, i);
625 assert(p->pbegin[i] != 0);
626 assert(OP(p->strip[p->pbegin[i]]) == OLPAREN);
627 assert(OP(p->strip[p->pend[i]]) == ORPAREN);
628 (void) dupl(p, p->pbegin[i]+1, p->pend[i]);
629 EMIT(O_BACK, i);
630 } else
631 SETERROR(REG_ESUBREG);
632 p->g->backrefs = 1;
633 break;
634 case '*':
635 (void)REQUIRE(starordinary, REG_BADRPT);
636 /* FALLTHROUGH */
637 default:
638 ordinary(p, (char)c);
639 break;
640 }
641
642 if (EAT('*')) { /* implemented as +? */
643 /* this case does not require the (y|) trick, noKLUDGE */
644 INSERT(OPLUS_, pos);
645 ASTERN(O_PLUS, pos);
646 INSERT(OQUEST_, pos);
647 ASTERN(O_QUEST, pos);
648 } else if (EATTWO('\\', '{')) {
649 count = p_count(p);
650 if (EAT(',')) {
651 if (MORE() && isdigit((uch)PEEK())) {
652 count2 = p_count(p);
653 (void)REQUIRE(count <= count2, REG_BADBR);
654 } else /* single number with comma */
655 count2 = INFINITY;
656 } else /* just a single number */
657 count2 = count;
658 repeat(p, pos, count, count2);
659 if (!EATTWO('\\', '}')) { /* error heuristics */
660 while (MORE() && !SEETWO('\\', '}'))
661 NEXT();
662 (void)REQUIRE(MORE(), REG_EBRACE);
663 SETERROR(REG_BADBR);
664 }
665 } else if (c == '$') /* $ (but not \$) ends it */
666 return(1);
667
668 return(0);
669}
670
671/*
672 - p_count - parse a repetition count
673 == static int p_count(register struct parse *p);
674 */
675static int /* the value */
676p_count(p)
677register struct parse *p;
678{
679 register int count = 0;
680 register int ndigits = 0;
681
682 while (MORE() && isdigit((uch)PEEK()) && count <= DUPMAX) {
683 count = count*10 + (GETNEXT() - '0');
684 ndigits++;
685 }
686
687 (void)REQUIRE(ndigits > 0 && count <= DUPMAX, REG_BADBR);
688 return(count);
689}
690
691/*
692 - p_bracket - parse a bracketed character list
693 == static void p_bracket(register struct parse *p);
694 *
695 * Note a significant property of this code: if the allocset() did SETERROR,
696 * no set operations are done.
697 */
698static void
699p_bracket(p)
700register struct parse *p;
701{
702 register cset *cs = allocset(p);
703 register int invert = 0;
704
705 /* Dept of Truly Sickening Special-Case Kludges */
706 if (p->next + 5 < p->end && strncmp(p->next, "[:<:]]", 6) == 0) {
707 EMIT(OBOW, 0);
708 NEXTn(6);
709 return;
710 }
711 if (p->next + 5 < p->end && strncmp(p->next, "[:>:]]", 6) == 0) {
712 EMIT(OEOW, 0);
713 NEXTn(6);
714 return;
715 }
716
717 if (EAT('^'))
718 invert++; /* make note to invert set at end */
719 if (EAT(']'))
720 CHadd(cs, ']');
721 else if (EAT('-'))
722 CHadd(cs, '-');
723 while (MORE() && PEEK() != ']' && !SEETWO('-', ']'))
724 p_b_term(p, cs);
725 if (EAT('-'))
726 CHadd(cs, '-');
727 (void)MUSTEAT(']', REG_EBRACK);
728
729 if (p->error != 0) /* don't mess things up further */
730 return;
731
732 if (p->g->cflags&REG_ICASE) {
733 register int i;
734 register int ci;
735
736 for (i = p->g->csetsize - 1; i >= 0; i--)
737 if (CHIN(cs, i) && isalpha(i)) {
738 ci = othercase(i);
739 if (ci != i)
740 CHadd(cs, ci);
741 }
742 if (cs->multis != NULL)
743 mccase(p, cs);
744 }
745 if (invert) {
746 register int i;
747
748 for (i = p->g->csetsize - 1; i >= 0; i--)
749 if (CHIN(cs, i))
750 CHsub(cs, i);
751 else
752 CHadd(cs, i);
753 if (p->g->cflags&REG_NEWLINE)
754 CHsub(cs, '\n');
755 if (cs->multis != NULL)
756 mcinvert(p, cs);
757 }
758
759 assert(cs->multis == NULL); /* xxx */
760
761 if (nch(p, cs) == 1) { /* optimize singleton sets */
762 ordinary(p, firstch(p, cs));
763 freeset(p, cs);
764 } else
765 EMIT(OANYOF, freezeset(p, cs));
766}
767
768/*
769 - p_b_term - parse one term of a bracketed character list
770 == static void p_b_term(register struct parse *p, register cset *cs);
771 */
772static void
773p_b_term(p, cs)
774register struct parse *p;
775register cset *cs;
776{
777 register char c;
778 register char start, finish;
779 register int i;
780
781 /* classify what we've got */
782 switch ((MORE()) ? PEEK() : '\0') {
783 case '[':
784 c = (MORE2()) ? PEEK2() : '\0';
785 break;
786 case '-':
787 SETERROR(REG_ERANGE);
788 return; /* NOTE RETURN */
789 break;
790 default:
791 c = '\0';
792 break;
793 }
794
795 switch (c) {
796 case ':': /* character class */
797 NEXT2();
798 (void)REQUIRE(MORE(), REG_EBRACK);
799 c = PEEK();
800 (void)REQUIRE(c != '-' && c != ']', REG_ECTYPE);
801 p_b_cclass(p, cs);
802 (void)REQUIRE(MORE(), REG_EBRACK);
803 (void)REQUIRE(EATTWO(':', ']'), REG_ECTYPE);
804 break;
805 case '=': /* equivalence class */
806 NEXT2();
807 (void)REQUIRE(MORE(), REG_EBRACK);
808 c = PEEK();
809 (void)REQUIRE(c != '-' && c != ']', REG_ECOLLATE);
810 p_b_eclass(p, cs);
811 (void)REQUIRE(MORE(), REG_EBRACK);
812 (void)REQUIRE(EATTWO('=', ']'), REG_ECOLLATE);
813 break;
814 default: /* symbol, ordinary character, or range */
815/* xxx revision needed for multichar stuff */
816 start = p_b_symbol(p);
817 if (SEE('-') && MORE2() && PEEK2() != ']') {
818 /* range */
819 NEXT();
820 if (EAT('-'))
821 finish = '-';
822 else
823 finish = p_b_symbol(p);
824 } else
825 finish = start;
826 if (start == finish)
827 CHadd(cs, start);
828 else {
829 if (__collate_load_error) {
830 (void)REQUIRE((uch)start <= (uch)finish, REG_ERANGE);
831 for (i = (uch)start; i <= (uch)finish; i++)
832 CHadd(cs, i);
833 } else {
834 (void)REQUIRE(__collate_range_cmp(start, finish) <= 0, REG_ERANGE);
835 for (i = CHAR_MIN; i <= CHAR_MAX; i++) {
836 if ( __collate_range_cmp(start, i) <= 0
837 && __collate_range_cmp(i, finish) <= 0
838 )
839 CHadd(cs, i);
840 }
841 }
842 }
843 break;
844 }
845}
846
847/*
848 - p_b_cclass - parse a character-class name and deal with it
849 == static void p_b_cclass(register struct parse *p, register cset *cs);
850 */
851static void
852p_b_cclass(p, cs)
853register struct parse *p;
854register cset *cs;
855{
856 register int c;
857 register char *sp = p->next;
858 register struct cclass *cp;
859 register size_t len;
860
861 while (MORE() && isalpha((uch)PEEK()))
862 NEXT();
863 len = p->next - sp;
864 for (cp = cclasses; cp->name != NULL; cp++)
865 if (strncmp(cp->name, sp, len) == 0 && cp->name[len] == '\0')
866 break;
867 if (cp->name == NULL) {
868 /* oops, didn't find it */
869 SETERROR(REG_ECTYPE);
870 return;
871 }
872
873 switch (cp->fidx) {
874 case CALNUM:
875 for (c = CHAR_MIN; c <= CHAR_MAX; c++)
876 if (isalnum((uch)c))
877 CHadd(cs, c);
878 break;
879 case CALPHA:
880 for (c = CHAR_MIN; c <= CHAR_MAX; c++)
881 if (isalpha((uch)c))
882 CHadd(cs, c);
883 break;
884 case CBLANK:
885 for (c = CHAR_MIN; c <= CHAR_MAX; c++)
886 if (isblank((uch)c))
887 CHadd(cs, c);
888 break;
889 case CCNTRL:
890 for (c = CHAR_MIN; c <= CHAR_MAX; c++)
891 if (iscntrl((uch)c))
892 CHadd(cs, c);
893 break;
894 case CDIGIT:
895 for (c = CHAR_MIN; c <= CHAR_MAX; c++)
896 if (isdigit((uch)c))
897 CHadd(cs, c);
898 break;
899 case CGRAPH:
900 for (c = CHAR_MIN; c <= CHAR_MAX; c++)
901 if (isgraph((uch)c))
902 CHadd(cs, c);
903 break;
904 case CLOWER:
905 for (c = CHAR_MIN; c <= CHAR_MAX; c++)
906 if (islower((uch)c))
907 CHadd(cs, c);
908 break;
909 case CPRINT:
910 for (c = CHAR_MIN; c <= CHAR_MAX; c++)
911 if (isprint((uch)c))
912 CHadd(cs, c);
913 break;
914 case CPUNCT:
915 for (c = CHAR_MIN; c <= CHAR_MAX; c++)
916 if (ispunct((uch)c))
917 CHadd(cs, c);
918 break;
919 case CSPACE:
920 for (c = CHAR_MIN; c <= CHAR_MAX; c++)
921 if (isspace((uch)c))
922 CHadd(cs, c);
923 break;
924 case CUPPER:
925 for (c = CHAR_MIN; c <= CHAR_MAX; c++)
926 if (isupper((uch)c))
927 CHadd(cs, c);
928 break;
929 case CXDIGIT:
930 for (c = CHAR_MIN; c <= CHAR_MAX; c++)
931 if (isxdigit((uch)c))
932 CHadd(cs, c);
933 break;
934 }
935#if 0
936 for (u = cp->multis; *u != '\0'; u += strlen(u) + 1)
937 MCadd(p, cs, u);
938#endif
939}
940
941/*
942 - p_b_eclass - parse an equivalence-class name and deal with it
943 == static void p_b_eclass(register struct parse *p, register cset *cs);
944 *
945 * This implementation is incomplete. xxx
946 */
947static void
948p_b_eclass(p, cs)
949register struct parse *p;
950register cset *cs;
951{
952 register char c;
953
954 c = p_b_coll_elem(p, '=');
955 CHadd(cs, c);
956}
957
958/*
959 - p_b_symbol - parse a character or [..]ed multicharacter collating symbol
960 == static char p_b_symbol(register struct parse *p);
961 */
962static char /* value of symbol */
963p_b_symbol(p)
964register struct parse *p;
965{
966 register char value;
967
968 (void)REQUIRE(MORE(), REG_EBRACK);
969 if (!EATTWO('[', '.'))
970 return(GETNEXT());
971
972 /* collating symbol */
973 value = p_b_coll_elem(p, '.');
974 (void)REQUIRE(EATTWO('.', ']'), REG_ECOLLATE);
975 return(value);
976}
977
978/*
979 - p_b_coll_elem - parse a collating-element name and look it up
980 == static char p_b_coll_elem(register struct parse *p, int endc);
981 */
982static char /* value of collating element */
983p_b_coll_elem(p, endc)
984register struct parse *p;
985int endc; /* name ended by endc,']' */
986{
987 register char *sp = p->next;
988 register struct cname *cp;
989 register int len;
990
991 while (MORE() && !SEETWO(endc, ']'))
992 NEXT();
993 if (!MORE()) {
994 SETERROR(REG_EBRACK);
995 return(0);
996 }
997 len = p->next - sp;
998 for (cp = cnames; cp->name != NULL; cp++)
999 if (strncmp(cp->name, sp, len) == 0 && cp->name[len] == '\0')
1000 return(cp->code); /* known name */
1001 if (len == 1)
1002 return(*sp); /* single character */
1003 SETERROR(REG_ECOLLATE); /* neither */
1004 return(0);
1005}
1006
1007/*
1008 - othercase - return the case counterpart of an alphabetic
1009 == static char othercase(int ch);
1010 */
1011static char /* if no counterpart, return ch */
1012othercase(ch)
1013int ch;
1014{
1015 ch = (uch)ch;
1016 assert(isalpha(ch));
1017 if (isupper(ch))
1018 return(tolower(ch));
1019 else if (islower(ch))
1020 return(toupper(ch));
1021 else /* peculiar, but could happen */
1022 return(ch);
1023}
1024
1025/*
1026 - bothcases - emit a dualcase version of a two-case character
1027 == static void bothcases(register struct parse *p, int ch);
1028 *
1029 * Boy, is this implementation ever a kludge...
1030 */
1031static void
1032bothcases(p, ch)
1033register struct parse *p;
1034int ch;
1035{
1036 register char *oldnext = p->next;
1037 register char *oldend = p->end;
1038 char bracket[3];
1039
1040 ch = (uch)ch;
1041 assert(othercase(ch) != ch); /* p_bracket() would recurse */
1042 p->next = bracket;
1043 p->end = bracket+2;
1044 bracket[0] = ch;
1045 bracket[1] = ']';
1046 bracket[2] = '\0';
1047 p_bracket(p);
1048 assert(p->next == bracket+2);
1049 p->next = oldnext;
1050 p->end = oldend;
1051}
1052
1053/*
1054 - ordinary - emit an ordinary character
1055 == static void ordinary(register struct parse *p, register int ch);
1056 */
1057static void
1058ordinary(p, ch)
1059register struct parse *p;
1060register int ch;
1061{
1062 register cat_t *cap = p->g->categories;
1063
1064 if ((p->g->cflags&REG_ICASE) && isalpha((uch)ch) && othercase(ch) != ch)
1065 bothcases(p, ch);
1066 else {
1067 EMIT(OCHAR, (uch)ch);
1068 if (cap[ch] == 0)
1069 cap[ch] = p->g->ncategories++;
1070 }
1071}
1072
1073/*
1074 - nonnewline - emit REG_NEWLINE version of OANY
1075 == static void nonnewline(register struct parse *p);
1076 *
1077 * Boy, is this implementation ever a kludge...
1078 */
1079static void
1080nonnewline(p)
1081register struct parse *p;
1082{
1083 register char *oldnext = p->next;
1084 register char *oldend = p->end;
1085 char bracket[4];
1086
1087 p->next = bracket;
1088 p->end = bracket+3;
1089 bracket[0] = '^';
1090 bracket[1] = '\n';
1091 bracket[2] = ']';
1092 bracket[3] = '\0';
1093 p_bracket(p);
1094 assert(p->next == bracket+3);
1095 p->next = oldnext;
1096 p->end = oldend;
1097}
1098
1099/*
1100 - repeat - generate code for a bounded repetition, recursively if needed
1101 == static void repeat(register struct parse *p, sopno start, int from, int to);
1102 */
1103static void
1104repeat(p, start, from, to)
1105register struct parse *p;
1106sopno start; /* operand from here to end of strip */
1107int from; /* repeated from this number */
1108int to; /* to this number of times (maybe INFINITY) */
1109{
1110 register sopno finish = HERE();
1111# define N 2
1112# define INF 3
1113# define REP(f, t) ((f)*8 + (t))
1114# define MAP(n) (((n) <= 1) ? (n) : ((n) == INFINITY) ? INF : N)
1115 register sopno copy;
1116
1117 if (p->error != 0) /* head off possible runaway recursion */
1118 return;
1119
1120 assert(from <= to);
1121
1122 switch (REP(MAP(from), MAP(to))) {
1123 case REP(0, 0): /* must be user doing this */
1124 DROP(finish-start); /* drop the operand */
1125 break;
1126 case REP(0, 1): /* as x{1,1}? */
1127 case REP(0, N): /* as x{1,n}? */
1128 case REP(0, INF): /* as x{1,}? */
1129 /* KLUDGE: emit y? as (y|) until subtle bug gets fixed */
1130 INSERT(OCH_, start); /* offset is wrong... */
1131 repeat(p, start+1, 1, to);
1132 ASTERN(OOR1, start);
1133 AHEAD(start); /* ... fix it */
1134 EMIT(OOR2, 0);
1135 AHEAD(THERE());
1136 ASTERN(O_CH, THERETHERE());
1137 break;
1138 case REP(1, 1): /* trivial case */
1139 /* done */
1140 break;
1141 case REP(1, N): /* as x?x{1,n-1} */
1142 /* KLUDGE: emit y? as (y|) until subtle bug gets fixed */
1143 INSERT(OCH_, start);
1144 ASTERN(OOR1, start);
1145 AHEAD(start);
1146 EMIT(OOR2, 0); /* offset very wrong... */
1147 AHEAD(THERE()); /* ...so fix it */
1148 ASTERN(O_CH, THERETHERE());
1149 copy = dupl(p, start+1, finish+1);
1150 assert(copy == finish+4);
1151 repeat(p, copy, 1, to-1);
1152 break;
1153 case REP(1, INF): /* as x+ */
1154 INSERT(OPLUS_, start);
1155 ASTERN(O_PLUS, start);
1156 break;
1157 case REP(N, N): /* as xx{m-1,n-1} */
1158 copy = dupl(p, start, finish);
1159 repeat(p, copy, from-1, to-1);
1160 break;
1161 case REP(N, INF): /* as xx{n-1,INF} */
1162 copy = dupl(p, start, finish);
1163 repeat(p, copy, from-1, to);
1164 break;
1165 default: /* "can't happen" */
1166 SETERROR(REG_ASSERT); /* just in case */
1167 break;
1168 }
1169}
1170
1171/*
1172 - seterr - set an error condition
1173 == static int seterr(register struct parse *p, int e);
1174 */
1175static int /* useless but makes type checking happy */
1176seterr(p, e)
1177register struct parse *p;
1178int e;
1179{
1180 if (p->error == 0) /* keep earliest error condition */
1181 p->error = e;
1182 p->next = nuls; /* try to bring things to a halt */
1183 p->end = nuls;
1184 return(0); /* make the return value well-defined */
1185}
1186
1187/*
1188 - allocset - allocate a set of characters for []
1189 == static cset *allocset(register struct parse *p);
1190 */
1191static cset *
1192allocset(p)
1193register struct parse *p;
1194{
1195 register int no = p->g->ncsets++;
1196 register size_t nc;
1197 register size_t nbytes;
1198 register cset *cs;
1199 register size_t css = (size_t)p->g->csetsize;
1200 register int i;
1201
1202 if (no >= p->ncsalloc) { /* need another column of space */
1203 p->ncsalloc += CHAR_BIT;
1204 nc = p->ncsalloc;
1205 assert(nc % CHAR_BIT == 0);
1206 nbytes = nc / CHAR_BIT * css;
1207 if (p->g->sets == NULL)
1208 p->g->sets = (cset *)malloc(nc * sizeof(cset));
1209 else
1210 p->g->sets = (cset *)reallocf((char *)p->g->sets,
1211 nc * sizeof(cset));
1212 if (p->g->setbits == NULL)
1213 p->g->setbits = (uch *)malloc(nbytes);
1214 else {
1215 p->g->setbits = (uch *)reallocf((char *)p->g->setbits,
1216 nbytes);
1217 /* xxx this isn't right if setbits is now NULL */
1218 for (i = 0; i < no; i++)
1219 p->g->sets[i].ptr = p->g->setbits + css*(i/CHAR_BIT);
1220 }
1221 if (p->g->sets != NULL && p->g->setbits != NULL)
1222 (void) memset((char *)p->g->setbits + (nbytes - css),
1223 0, css);
1224 else {
1225 no = 0;
1226 SETERROR(REG_ESPACE);
1227 /* caller's responsibility not to do set ops */
1228 }
1229 }
1230
1231 assert(p->g->sets != NULL); /* xxx */
1232 cs = &p->g->sets[no];
1233 cs->ptr = p->g->setbits + css*((no)/CHAR_BIT);
1234 cs->mask = 1 << ((no) % CHAR_BIT);
1235 cs->hash = 0;
1236 cs->smultis = 0;
1237 cs->multis = NULL;
1238
1239 return(cs);
1240}
1241
1242/*
1243 - freeset - free a now-unused set
1244 == static void freeset(register struct parse *p, register cset *cs);
1245 */
1246static void
1247freeset(p, cs)
1248register struct parse *p;
1249register cset *cs;
1250{
1251 register int i;
1252 register cset *top = &p->g->sets[p->g->ncsets];
1253 register size_t css = (size_t)p->g->csetsize;
1254
1255 for (i = 0; i < css; i++)
1256 CHsub(cs, i);
1257 if (cs == top-1) /* recover only the easy case */
1258 p->g->ncsets--;
1259}
1260
1261/*
1262 - freezeset - final processing on a set of characters
1263 == static int freezeset(register struct parse *p, register cset *cs);
1264 *
1265 * The main task here is merging identical sets. This is usually a waste
1266 * of time (although the hash code minimizes the overhead), but can win
1267 * big if REG_ICASE is being used. REG_ICASE, by the way, is why the hash
1268 * is done using addition rather than xor -- all ASCII [aA] sets xor to
1269 * the same value!
1270 */
1271static int /* set number */
1272freezeset(p, cs)
1273register struct parse *p;
1274register cset *cs;
1275{
1276 register short h = cs->hash;
1277 register int i;
1278 register cset *top = &p->g->sets[p->g->ncsets];
1279 register cset *cs2;
1280 register size_t css = (size_t)p->g->csetsize;
1281
1282 /* look for an earlier one which is the same */
1283 for (cs2 = &p->g->sets[0]; cs2 < top; cs2++)
1284 if (cs2->hash == h && cs2 != cs) {
1285 /* maybe */
1286 for (i = 0; i < css; i++)
1287 if (!!CHIN(cs2, i) != !!CHIN(cs, i))
1288 break; /* no */
1289 if (i == css)
1290 break; /* yes */
1291 }
1292
1293 if (cs2 < top) { /* found one */
1294 freeset(p, cs);
1295 cs = cs2;
1296 }
1297
1298 return((int)(cs - p->g->sets));
1299}
1300
1301/*
1302 - firstch - return first character in a set (which must have at least one)
1303 == static int firstch(register struct parse *p, register cset *cs);
1304 */
1305static int /* character; there is no "none" value */
1306firstch(p, cs)
1307register struct parse *p;
1308register cset *cs;
1309{
1310 register int i;
1311 register size_t css = (size_t)p->g->csetsize;
1312
1313 for (i = 0; i < css; i++)
1314 if (CHIN(cs, i))
1315 return((char)i);
1316 assert(never);
1317 return(0); /* arbitrary */
1318}
1319
1320/*
1321 - nch - number of characters in a set
1322 == static int nch(register struct parse *p, register cset *cs);
1323 */
1324static int
1325nch(p, cs)
1326register struct parse *p;
1327register cset *cs;
1328{
1329 register int i;
1330 register size_t css = (size_t)p->g->csetsize;
1331 register int n = 0;
1332
1333 for (i = 0; i < css; i++)
1334 if (CHIN(cs, i))
1335 n++;
1336 return(n);
1337}
1338
1339/*
1340 - mcadd - add a collating element to a cset
1341 == static void mcadd(register struct parse *p, register cset *cs, \
1342 == register char *cp);
1343 */
1344static void
1345mcadd(p, cs, cp)
1346register struct parse *p;
1347register cset *cs;
1348register char *cp;
1349{
1350 register size_t oldend = cs->smultis;
1351
1352 cs->smultis += strlen(cp) + 1;
1353 if (cs->multis == NULL)
1354 cs->multis = malloc(cs->smultis);
1355 else
1356 cs->multis = reallocf(cs->multis, cs->smultis);
1357 if (cs->multis == NULL) {
1358 SETERROR(REG_ESPACE);
1359 return;
1360 }
1361
1362 (void) strcpy(cs->multis + oldend - 1, cp);
1363 cs->multis[cs->smultis - 1] = '\0';
1364}
1365
1366#if used
1367/*
1368 - mcsub - subtract a collating element from a cset
1369 == static void mcsub(register cset *cs, register char *cp);
1370 */
1371static void
1372mcsub(cs, cp)
1373register cset *cs;
1374register char *cp;
1375{
1376 register char *fp = mcfind(cs, cp);
1377 register size_t len = strlen(fp);
1378
1379 assert(fp != NULL);
1380 (void) memmove(fp, fp + len + 1,
1381 cs->smultis - (fp + len + 1 - cs->multis));
1382 cs->smultis -= len;
1383
1384 if (cs->smultis == 0) {
1385 free(cs->multis);
1386 cs->multis = NULL;
1387 return;
1388 }
1389
1390 cs->multis = reallocf(cs->multis, cs->smultis);
1391 assert(cs->multis != NULL);
1392}
1393
1394/*
1395 - mcin - is a collating element in a cset?
1396 == static int mcin(register cset *cs, register char *cp);
1397 */
1398static int
1399mcin(cs, cp)
1400register cset *cs;
1401register char *cp;
1402{
1403 return(mcfind(cs, cp) != NULL);
1404}
1405
1406/*
1407 - mcfind - find a collating element in a cset
1408 == static char *mcfind(register cset *cs, register char *cp);
1409 */
1410static char *
1411mcfind(cs, cp)
1412register cset *cs;
1413register char *cp;
1414{
1415 register char *p;
1416
1417 if (cs->multis == NULL)
1418 return(NULL);
1419 for (p = cs->multis; *p != '\0'; p += strlen(p) + 1)
1420 if (strcmp(cp, p) == 0)
1421 return(p);
1422 return(NULL);
1423}
1424#endif
1425
1426/*
1427 - mcinvert - invert the list of collating elements in a cset
1428 == static void mcinvert(register struct parse *p, register cset *cs);
1429 *
1430 * This would have to know the set of possibilities. Implementation
1431 * is deferred.
1432 */
1433static void
1434mcinvert(p, cs)
1435register struct parse *p;
1436register cset *cs;
1437{
1438 assert(cs->multis == NULL); /* xxx */
1439}
1440
1441/*
1442 - mccase - add case counterparts of the list of collating elements in a cset
1443 == static void mccase(register struct parse *p, register cset *cs);
1444 *
1445 * This would have to know the set of possibilities. Implementation
1446 * is deferred.
1447 */
1448static void
1449mccase(p, cs)
1450register struct parse *p;
1451register cset *cs;
1452{
1453 assert(cs->multis == NULL); /* xxx */
1454}
1455
1456/*
1457 - isinsets - is this character in any sets?
1458 == static int isinsets(register struct re_guts *g, int c);
1459 */
1460static int /* predicate */
1461isinsets(g, c)
1462register struct re_guts *g;
1463int c;
1464{
1465 register uch *col;
1466 register int i;
1467 register int ncols = (g->ncsets+(CHAR_BIT-1)) / CHAR_BIT;
1468 register unsigned uc = (uch)c;
1469
1470 for (i = 0, col = g->setbits; i < ncols; i++, col += g->csetsize)
1471 if (col[uc] != 0)
1472 return(1);
1473 return(0);
1474}
1475
1476/*
1477 - samesets - are these two characters in exactly the same sets?
1478 == static int samesets(register struct re_guts *g, int c1, int c2);
1479 */
1480static int /* predicate */
1481samesets(g, c1, c2)
1482register struct re_guts *g;
1483int c1;
1484int c2;
1485{
1486 register uch *col;
1487 register int i;
1488 register int ncols = (g->ncsets+(CHAR_BIT-1)) / CHAR_BIT;
1489 register unsigned uc1 = (uch)c1;
1490 register unsigned uc2 = (uch)c2;
1491
1492 for (i = 0, col = g->setbits; i < ncols; i++, col += g->csetsize)
1493 if (col[uc1] != col[uc2])
1494 return(0);
1495 return(1);
1496}
1497
1498/*
1499 - categorize - sort out character categories
1500 == static void categorize(struct parse *p, register struct re_guts *g);
1501 */
1502static void
1503categorize(p, g)
1504struct parse *p;
1505register struct re_guts *g;
1506{
1507 register cat_t *cats = g->categories;
1508 register int c;
1509 register int c2;
1510 register cat_t cat;
1511
1512 /* avoid making error situations worse */
1513 if (p->error != 0)
1514 return;
1515
1516 for (c = CHAR_MIN; c <= CHAR_MAX; c++)
1517 if (cats[c] == 0 && isinsets(g, c)) {
1518 cat = g->ncategories++;
1519 cats[c] = cat;
1520 for (c2 = c+1; c2 <= CHAR_MAX; c2++)
1521 if (cats[c2] == 0 && samesets(g, c, c2))
1522 cats[c2] = cat;
1523 }
1524}
1525
1526/*
1527 - dupl - emit a duplicate of a bunch of sops
1528 == static sopno dupl(register struct parse *p, sopno start, sopno finish);
1529 */
1530static sopno /* start of duplicate */
1531dupl(p, start, finish)
1532register struct parse *p;
1533sopno start; /* from here */
1534sopno finish; /* to this less one */
1535{
1536 register sopno ret = HERE();
1537 register sopno len = finish - start;
1538
1539 assert(finish >= start);
1540 if (len == 0)
1541 return(ret);
1542 enlarge(p, p->ssize + len); /* this many unexpected additions */
1543 assert(p->ssize >= p->slen + len);
1544 (void) memcpy((char *)(p->strip + p->slen),
1545 (char *)(p->strip + start), (size_t)len*sizeof(sop));
1546 p->slen += len;
1547 return(ret);
1548}
1549
1550/*
1551 - doemit - emit a strip operator
1552 == static void doemit(register struct parse *p, sop op, size_t opnd);
1553 *
1554 * It might seem better to implement this as a macro with a function as
1555 * hard-case backup, but it's just too big and messy unless there are
1556 * some changes to the data structures. Maybe later.
1557 */
1558static void
1559doemit(p, op, opnd)
1560register struct parse *p;
1561sop op;
1562size_t opnd;
1563{
1564 /* avoid making error situations worse */
1565 if (p->error != 0)
1566 return;
1567
1568 /* deal with oversize operands ("can't happen", more or less) */
1569 assert(opnd < 1<<OPSHIFT);
1570
1571 /* deal with undersized strip */
1572 if (p->slen >= p->ssize)
1573 enlarge(p, (p->ssize+1) / 2 * 3); /* +50% */
1574 assert(p->slen < p->ssize);
1575
1576 /* finally, it's all reduced to the easy case */
1577 p->strip[p->slen++] = SOP(op, opnd);
1578}
1579
1580/*
1581 - doinsert - insert a sop into the strip
1582 == static void doinsert(register struct parse *p, sop op, size_t opnd, sopno pos);
1583 */
1584static void
1585doinsert(p, op, opnd, pos)
1586register struct parse *p;
1587sop op;
1588size_t opnd;
1589sopno pos;
1590{
1591 register sopno sn;
1592 register sop s;
1593 register int i;
1594
1595 /* avoid making error situations worse */
1596 if (p->error != 0)
1597 return;
1598
1599 sn = HERE();
1600 EMIT(op, opnd); /* do checks, ensure space */
1601 assert(HERE() == sn+1);
1602 s = p->strip[sn];
1603
1604 /* adjust paren pointers */
1605 assert(pos > 0);
1606 for (i = 1; i < NPAREN; i++) {
1607 if (p->pbegin[i] >= pos) {
1608 p->pbegin[i]++;
1609 }
1610 if (p->pend[i] >= pos) {
1611 p->pend[i]++;
1612 }
1613 }
1614
1615 memmove((char *)&p->strip[pos+1], (char *)&p->strip[pos],
1616 (HERE()-pos-1)*sizeof(sop));
1617 p->strip[pos] = s;
1618}
1619
1620/*
1621 - dofwd - complete a forward reference
1622 == static void dofwd(register struct parse *p, sopno pos, sop value);
1623 */
1624static void
1625dofwd(p, pos, value)
1626register struct parse *p;
1627register sopno pos;
1628sop value;
1629{
1630 /* avoid making error situations worse */
1631 if (p->error != 0)
1632 return;
1633
1634 assert(value < 1<<OPSHIFT);
1635 p->strip[pos] = OP(p->strip[pos]) | value;
1636}
1637
1638/*
1639 - enlarge - enlarge the strip
1640 == static void enlarge(register struct parse *p, sopno size);
1641 */
1642static void
1643enlarge(p, size)
1644register struct parse *p;
1645register sopno size;
1646{
1647 register sop *sp;
1648
1649 if (p->ssize >= size)
1650 return;
1651
1652 sp = (sop *)realloc(p->strip, size*sizeof(sop));
1653 if (sp == NULL) {
1654 SETERROR(REG_ESPACE);
1655 return;
1656 }
1657 p->strip = sp;
1658 p->ssize = size;
1659}
1660
1661/*
1662 - stripsnug - compact the strip
1663 == static void stripsnug(register struct parse *p, register struct re_guts *g);
1664 */
1665static void
1666stripsnug(p, g)
1667register struct parse *p;
1668register struct re_guts *g;
1669{
1670 g->nstates = p->slen;
1671 g->strip = (sop *)realloc((char *)p->strip, p->slen * sizeof(sop));
1672 if (g->strip == NULL) {
1673 SETERROR(REG_ESPACE);
1674 g->strip = p->strip;
1675 }
1676}
1677
1678/*
1679 - findmust - fill in must and mlen with longest mandatory literal string
1680 == static void findmust(register struct parse *p, register struct re_guts *g);
1681 *
1682 * This algorithm could do fancy things like analyzing the operands of |
1683 * for common subsequences. Someday. This code is simple and finds most
1684 * of the interesting cases.
1685 *
1686 * Note that must and mlen got initialized during setup.
1687 */
1688static void
1689findmust(p, g)
1690struct parse *p;
1691register struct re_guts *g;
1692{
1693 register sop *scan;
1694 sop *start;
1695 register sop *newstart;
1696 register sopno newlen;
1697 register sop s;
1698 register char *cp;
1699 register sopno i;
1700 int offset;
1701 int cs, mccs;
1702
1703 /* avoid making error situations worse */
1704 if (p->error != 0)
1705 return;
1706
1707 /* Find out if we can handle OANYOF or not */
1708 mccs = 0;
1709 for (cs = 0; cs < g->ncsets; cs++)
1710 if (g->sets[cs].multis != NULL)
1711 mccs = 1;
1712
1713 /* find the longest OCHAR sequence in strip */
1714 newlen = 0;
1715 offset = 0;
1716 g->moffset = 0;
1717 scan = g->strip + 1;
1718 do {
1719 s = *scan++;
1720 switch (OP(s)) {
1721 case OCHAR: /* sequence member */
1722 if (newlen == 0) /* new sequence */
1723 newstart = scan - 1;
1724 newlen++;
1725 break;
1726 case OPLUS_: /* things that don't break one */
1727 case OLPAREN:
1728 case ORPAREN:
1729 break;
1730 case OQUEST_: /* things that must be skipped */
1731 case OCH_:
1732 offset = altoffset(scan, offset, mccs);
1733 scan--;
1734 do {
1735 scan += OPND(s);
1736 s = *scan;
1737 /* assert() interferes w debug printouts */
1738 if (OP(s) != O_QUEST && OP(s) != O_CH &&
1739 OP(s) != OOR2) {
1740 g->iflags |= BAD;
1741 return;
1742 }
1743 } while (OP(s) != O_QUEST && OP(s) != O_CH);
1744 /* fallthrough */
1745 case OBOW: /* things that break a sequence */
1746 case OEOW:
1747 case OBOL:
1748 case OEOL:
1749 case O_QUEST:
1750 case O_CH:
1751 case OEND:
1752 if (newlen > g->mlen) { /* ends one */
1753 start = newstart;
1754 g->mlen = newlen;
1755 if (offset > -1) {
1756 g->moffset += offset;
1757 offset = newlen;
1758 } else
1759 g->moffset = offset;
1760 } else {
1761 if (offset > -1)
1762 offset += newlen;
1763 }
1764 newlen = 0;
1765 break;
1766 case OANY:
1767 if (newlen > g->mlen) { /* ends one */
1768 start = newstart;
1769 g->mlen = newlen;
1770 if (offset > -1) {
1771 g->moffset += offset;
1772 offset = newlen;
1773 } else
1774 g->moffset = offset;
1775 } else {
1776 if (offset > -1)
1777 offset += newlen;
1778 }
1779 if (offset > -1)
1780 offset++;
1781 newlen = 0;
1782 break;
1783 case OANYOF: /* may or may not invalidate offset */
1784 /* First, everything as OANY */
1785 if (newlen > g->mlen) { /* ends one */
1786 start = newstart;
1787 g->mlen = newlen;
1788 if (offset > -1) {
1789 g->moffset += offset;
1790 offset = newlen;
1791 } else
1792 g->moffset = offset;
1793 } else {
1794 if (offset > -1)
1795 offset += newlen;
1796 }
1797 if (offset > -1)
1798 offset++;
1799 newlen = 0;
1800 /* And, now, if we found out we can't deal with
1801 * it, make offset = -1.
1802 */
1803 if (mccs)
1804 offset = -1;
1805 break;
1806 default:
1807 /* Anything here makes it impossible or too hard
1808 * to calculate the offset -- so we give up;
1809 * save the last known good offset, in case the
1810 * must sequence doesn't occur later.
1811 */
1812 if (newlen > g->mlen) { /* ends one */
1813 start = newstart;
1814 g->mlen = newlen;
1815 if (offset > -1)
1816 g->moffset += offset;
1817 else
1818 g->moffset = offset;
1819 }
1820 offset = -1;
1821 newlen = 0;
1822 break;
1823 }
1824 } while (OP(s) != OEND);
1825
1826 if (g->mlen == 0) { /* there isn't one */
1827 g->moffset = -1;
1828 return;
1829 }
1830
1831 /* turn it into a character string */
1832 g->must = malloc((size_t)g->mlen + 1);
1833 if (g->must == NULL) { /* argh; just forget it */
1834 g->mlen = 0;
1835 g->moffset = -1;
1836 return;
1837 }
1838 cp = g->must;
1839 scan = start;
1840 for (i = g->mlen; i > 0; i--) {
1841 while (OP(s = *scan++) != OCHAR)
1842 continue;
1843 assert(cp < g->must + g->mlen);
1844 *cp++ = (char)OPND(s);
1845 }
1846 assert(cp == g->must + g->mlen);
1847 *cp++ = '\0'; /* just on general principles */
1848}
1849
1850/*
1851 - altoffset - choose biggest offset among multiple choices
1852 == static int altoffset(sop *scan, int offset, int mccs);
1853 *
1854 * Compute, recursively if necessary, the largest offset among multiple
1855 * re paths.
1856 */
1857static int
1858altoffset(scan, offset, mccs)
1859sop *scan;
1860int offset;
1861int mccs;
1862{
1863 int largest;
1864 int try;
1865 sop s;
1866
1867 /* If we gave up already on offsets, return */
1868 if (offset == -1)
1869 return -1;
1870
1871 largest = 0;
1872 try = 0;
1873 s = *scan++;
1874 while (OP(s) != O_QUEST && OP(s) != O_CH) {
1875 switch (OP(s)) {
1876 case OOR1:
1877 if (try > largest)
1878 largest = try;
1879 try = 0;
1880 break;
1881 case OQUEST_:
1882 case OCH_:
1883 try = altoffset(scan, try, mccs);
1884 if (try == -1)
1885 return -1;
1886 scan--;
1887 do {
1888 scan += OPND(s);
1889 s = *scan;
1890 if (OP(s) != O_QUEST && OP(s) != O_CH &&
1891 OP(s) != OOR2)
1892 return -1;
1893 } while (OP(s) != O_QUEST && OP(s) != O_CH);
1894 break;
1895 case OANYOF:
1896 if (mccs)
1897 return -1;
1898 case OCHAR:
1899 case OANY:
1900 try++;
1901 case OBOW:
1902 case OEOW:
1903 case OLPAREN:
1904 case ORPAREN:
1905 case OOR2:
1906 break;
1907 default:
1908 try = -1;
1909 break;
1910 }
1911 if (try == -1)
1912 return -1;
1913 s = *scan++;
1914 }
1915
1916 if (try > largest)
1917 largest = try;
1918
1919 return largest+offset;
1920}
1921
1922/*
1923 - computejumps - compute char jumps for BM scan
1924 == static void computejumps(register struct parse *p, register struct re_guts *g);
1925 *
1926 * This algorithm assumes g->must exists and is has size greater than
1927 * zero. It's based on the algorithm found on Computer Algorithms by
1928 * Sara Baase.
1929 *
1930 * A char jump is the number of characters one needs to jump based on
1931 * the value of the character from the text that was mismatched.
1932 */
1933static void
1934computejumps(p, g)
1935struct parse *p;
1936struct re_guts *g;
1937{
1938 int ch;
1939 int mindex;
1940
1941 /* Avoid making errors worse */
1942 if (p->error != 0)
1943 return;
1944
1945 g->charjump = malloc((NC + 1) * sizeof(int));
1946 if (g->charjump == NULL) /* Not a fatal error */
1947 return;
1948 /* Adjust for signed chars, if necessary */
1949 g->charjump = &g->charjump[-(CHAR_MIN)];
1950
1951 /* If the character does not exist in the pattern, the jump
1952 * is equal to the number of characters in the pattern.
1953 */
1954 for (ch = CHAR_MIN; ch < (CHAR_MAX + 1); ch++)
1955 g->charjump[ch] = g->mlen;
1956
1957 /* If the character does exist, compute the jump that would
1958 * take us to the last character in the pattern equal to it
1959 * (notice that we match right to left, so that last character
1960 * is the first one that would be matched).
1961 */
1962 for (mindex = 0; mindex < g->mlen; mindex++)
1963 g->charjump[g->must[mindex]] = g->mlen - mindex - 1;
1964}
1965
1966/*
1967 - computematchjumps - compute match jumps for BM scan
1968 == static void computematchjumps(register struct parse *p, register struct re_guts *g);
1969 *
1970 * This algorithm assumes g->must exists and is has size greater than
1971 * zero. It's based on the algorithm found on Computer Algorithms by
1972 * Sara Baase.
1973 *
1974 * A match jump is the number of characters one needs to advance based
1975 * on the already-matched suffix.
1976 * Notice that all values here are minus (g->mlen-1), because of the way
1977 * the search algorithm works.
1978 */
1979static void
1980computematchjumps(p, g)
1981struct parse *p;
1982struct re_guts *g;
1983{
1984 int mindex; /* General "must" iterator */
1985 int suffix; /* Keeps track of matching suffix */
1986 int ssuffix; /* Keeps track of suffixes' suffix */
1987 int* pmatches; /* pmatches[k] points to the next i
1988 * such that i+1...mlen is a substring
1989 * of k+1...k+mlen-i-1
1990 */
1991
1992 /* Avoid making errors worse */
1993 if (p->error != 0)
1994 return;
1995
1996 pmatches = malloc(g->mlen * sizeof(unsigned int));
1997 if (pmatches == NULL) {
1998 g->matchjump = NULL;
1999 return;
2000 }
2001
2002 g->matchjump = malloc(g->mlen * sizeof(unsigned int));
2003 if (g->matchjump == NULL) /* Not a fatal error */
2004 return;
2005
2006 /* Set maximum possible jump for each character in the pattern */
2007 for (mindex = 0; mindex < g->mlen; mindex++)
2008 g->matchjump[mindex] = 2*g->mlen - mindex - 1;
2009
2010 /* Compute pmatches[] */
2011 for (mindex = g->mlen - 1, suffix = g->mlen; mindex >= 0;
2012 mindex--, suffix--) {
2013 pmatches[mindex] = suffix;
2014
2015 /* If a mismatch is found, interrupting the substring,
2016 * compute the matchjump for that position. If no
2017 * mismatch is found, then a text substring mismatched
2018 * against the suffix will also mismatch against the
2019 * substring.
2020 */
2021 while (suffix < g->mlen
2022 && g->must[mindex] != g->must[suffix]) {
2023 g->matchjump[suffix] = MIN(g->matchjump[suffix],
2024 g->mlen - mindex - 1);
2025 suffix = pmatches[suffix];
2026 }
2027 }
2028
2029 /* Compute the matchjump up to the last substring found to jump
2030 * to the beginning of the largest must pattern prefix matching
2031 * it's own suffix.
2032 */
2033 for (mindex = 0; mindex <= suffix; mindex++)
2034 g->matchjump[mindex] = MIN(g->matchjump[mindex],
2035 g->mlen + suffix - mindex);
2036
2037 ssuffix = pmatches[suffix];
2038 while (suffix < g->mlen) {
2039 while (suffix <= ssuffix && suffix < g->mlen) {
2040 g->matchjump[suffix] = MIN(g->matchjump[suffix],
2041 g->mlen + ssuffix - suffix);
2042 suffix++;
2043 }
2044 ssuffix = pmatches[ssuffix];
2045 }
2046
2047 free(pmatches);
2048}
2049
2050/*
2051 - pluscount - count + nesting
2052 == static sopno pluscount(register struct parse *p, register struct re_guts *g);
2053 */
2054static sopno /* nesting depth */
2055pluscount(p, g)
2056struct parse *p;
2057register struct re_guts *g;
2058{
2059 register sop *scan;
2060 register sop s;
2061 register sopno plusnest = 0;
2062 register sopno maxnest = 0;
2063
2064 if (p->error != 0)
2065 return(0); /* there may not be an OEND */
2066
2067 scan = g->strip + 1;
2068 do {
2069 s = *scan++;
2070 switch (OP(s)) {
2071 case OPLUS_:
2072 plusnest++;
2073 break;
2074 case O_PLUS:
2075 if (plusnest > maxnest)
2076 maxnest = plusnest;
2077 plusnest--;
2078 break;
2079 }
2080 } while (OP(s) != OEND);
2081 if (plusnest != 0)
2082 g->iflags |= BAD;
2083 return(maxnest);
2084}