Deleted Added
full compact
MipsInstrFPU.td (199481) MipsInstrFPU.td (203954)
1//===- MipsInstrFPU.td - Mips FPU Instruction Information -------*- C++ -*-===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the Mips implementation of the TargetInstrInfo class.
11//
12//===----------------------------------------------------------------------===//
13
14//===----------------------------------------------------------------------===//
15// Floating Point Instructions
16// ------------------------
17// * 64bit fp:
18// - 32 64-bit registers (default mode)
19// - 16 even 32-bit registers (32-bit compatible mode) for
20// single and double access.
21// * 32bit fp:
22// - 16 even 32-bit registers - single and double (aliased)
23// - 32 32-bit registers (within single-only mode)
24//===----------------------------------------------------------------------===//
25
26// Floating Point Compare and Branch
27def SDT_MipsFPBrcond : SDTypeProfile<0, 3, [SDTCisSameAs<0, 2>, SDTCisInt<0>,
28 SDTCisVT<1, OtherVT>]>;
29def SDT_MipsFPCmp : SDTypeProfile<0, 3, [SDTCisSameAs<0, 1>, SDTCisFP<0>,
30 SDTCisInt<2>]>;
31def SDT_MipsFPSelectCC : SDTypeProfile<1, 4, [SDTCisInt<1>, SDTCisInt<4>,
32 SDTCisSameAs<0, 2>, SDTCisSameAs<2, 3>]>;
33
34def MipsFPRound : SDNode<"MipsISD::FPRound", SDTFPRoundOp, [SDNPOptInFlag]>;
35def MipsFPBrcond : SDNode<"MipsISD::FPBrcond", SDT_MipsFPBrcond,
36 [SDNPHasChain]>;
37def MipsFPCmp : SDNode<"MipsISD::FPCmp", SDT_MipsFPCmp>;
38def MipsFPSelectCC : SDNode<"MipsISD::FPSelectCC", SDT_MipsFPSelectCC>;
39
40// Operand for printing out a condition code.
41let PrintMethod = "printFCCOperand" in
42 def condcode : Operand<i32>;
43
44//===----------------------------------------------------------------------===//
45// Feature predicates.
46//===----------------------------------------------------------------------===//
47
48def In32BitMode : Predicate<"!Subtarget.isFP64bit()">;
49def IsSingleFloat : Predicate<"Subtarget.isSingleFloat()">;
50def IsNotSingleFloat : Predicate<"!Subtarget.isSingleFloat()">;
51def IsNotMipsI : Predicate<"!Subtarget.isMips1()">;
52
53//===----------------------------------------------------------------------===//
54// Instruction Class Templates
55//
56// A set of multiclasses is used to address the register usage.
57//
58// S32 - single precision in 16 32bit even fp registers
59// single precision in 32 32bit fp registers in SingleOnly mode
60// S64 - single precision in 32 64bit fp registers (In64BitMode)
61// D32 - double precision in 16 32bit even fp registers
62// D64 - double precision in 32 64bit fp registers (In64BitMode)
63//
64// Only S32 and D32 are supported right now.
65//===----------------------------------------------------------------------===//
66
67multiclass FFR1_1<bits<6> funct, string asmstr>
68{
69 def _S32 : FFR<0x11, funct, 0x0, (outs FGR32:$fd), (ins FGR32:$fs),
70 !strconcat(asmstr, ".s $fd, $fs"), []>;
71
72 def _D32 : FFR<0x11, funct, 0x1, (outs FGR32:$fd), (ins AFGR64:$fs),
73 !strconcat(asmstr, ".d $fd, $fs"), []>, Requires<[In32BitMode]>;
74}
75
76multiclass FFR1_2<bits<6> funct, string asmstr, SDNode FOp>
77{
78 def _S32 : FFR<0x11, funct, 0x0, (outs FGR32:$fd), (ins FGR32:$fs),
79 !strconcat(asmstr, ".s $fd, $fs"),
80 [(set FGR32:$fd, (FOp FGR32:$fs))]>;
81
82 def _D32 : FFR<0x11, funct, 0x1, (outs AFGR64:$fd), (ins AFGR64:$fs),
83 !strconcat(asmstr, ".d $fd, $fs"),
84 [(set AFGR64:$fd, (FOp AFGR64:$fs))]>, Requires<[In32BitMode]>;
85}
86
87class FFR1_3<bits<6> funct, bits<5> fmt, RegisterClass RcSrc,
88 RegisterClass RcDst, string asmstr>:
89 FFR<0x11, funct, fmt, (outs RcSrc:$fd), (ins RcDst:$fs),
90 !strconcat(asmstr, " $fd, $fs"), []>;
91
92
93multiclass FFR1_4<bits<6> funct, string asmstr, SDNode FOp> {
94 def _S32 : FFR<0x11, funct, 0x0, (outs FGR32:$fd),
95 (ins FGR32:$fs, FGR32:$ft),
96 !strconcat(asmstr, ".s $fd, $fs, $ft"),
97 [(set FGR32:$fd, (FOp FGR32:$fs, FGR32:$ft))]>;
98
99 def _D32 : FFR<0x11, funct, 0x1, (outs AFGR64:$fd),
100 (ins AFGR64:$fs, AFGR64:$ft),
101 !strconcat(asmstr, ".d $fd, $fs, $ft"),
102 [(set AFGR64:$fd, (FOp AFGR64:$fs, AFGR64:$ft))]>,
103 Requires<[In32BitMode]>;
104}
105
106//===----------------------------------------------------------------------===//
107// Floating Point Instructions
108//===----------------------------------------------------------------------===//
109
110let ft = 0 in {
111 defm FLOOR_W : FFR1_1<0b001111, "floor.w">;
112 defm CEIL_W : FFR1_1<0b001110, "ceil.w">;
113 defm ROUND_W : FFR1_1<0b001100, "round.w">;
114 defm TRUNC_W : FFR1_1<0b001101, "trunc.w">;
115 defm CVTW : FFR1_1<0b100100, "cvt.w">;
1//===- MipsInstrFPU.td - Mips FPU Instruction Information -------*- C++ -*-===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the Mips implementation of the TargetInstrInfo class.
11//
12//===----------------------------------------------------------------------===//
13
14//===----------------------------------------------------------------------===//
15// Floating Point Instructions
16// ------------------------
17// * 64bit fp:
18// - 32 64-bit registers (default mode)
19// - 16 even 32-bit registers (32-bit compatible mode) for
20// single and double access.
21// * 32bit fp:
22// - 16 even 32-bit registers - single and double (aliased)
23// - 32 32-bit registers (within single-only mode)
24//===----------------------------------------------------------------------===//
25
26// Floating Point Compare and Branch
27def SDT_MipsFPBrcond : SDTypeProfile<0, 3, [SDTCisSameAs<0, 2>, SDTCisInt<0>,
28 SDTCisVT<1, OtherVT>]>;
29def SDT_MipsFPCmp : SDTypeProfile<0, 3, [SDTCisSameAs<0, 1>, SDTCisFP<0>,
30 SDTCisInt<2>]>;
31def SDT_MipsFPSelectCC : SDTypeProfile<1, 4, [SDTCisInt<1>, SDTCisInt<4>,
32 SDTCisSameAs<0, 2>, SDTCisSameAs<2, 3>]>;
33
34def MipsFPRound : SDNode<"MipsISD::FPRound", SDTFPRoundOp, [SDNPOptInFlag]>;
35def MipsFPBrcond : SDNode<"MipsISD::FPBrcond", SDT_MipsFPBrcond,
36 [SDNPHasChain]>;
37def MipsFPCmp : SDNode<"MipsISD::FPCmp", SDT_MipsFPCmp>;
38def MipsFPSelectCC : SDNode<"MipsISD::FPSelectCC", SDT_MipsFPSelectCC>;
39
40// Operand for printing out a condition code.
41let PrintMethod = "printFCCOperand" in
42 def condcode : Operand<i32>;
43
44//===----------------------------------------------------------------------===//
45// Feature predicates.
46//===----------------------------------------------------------------------===//
47
48def In32BitMode : Predicate<"!Subtarget.isFP64bit()">;
49def IsSingleFloat : Predicate<"Subtarget.isSingleFloat()">;
50def IsNotSingleFloat : Predicate<"!Subtarget.isSingleFloat()">;
51def IsNotMipsI : Predicate<"!Subtarget.isMips1()">;
52
53//===----------------------------------------------------------------------===//
54// Instruction Class Templates
55//
56// A set of multiclasses is used to address the register usage.
57//
58// S32 - single precision in 16 32bit even fp registers
59// single precision in 32 32bit fp registers in SingleOnly mode
60// S64 - single precision in 32 64bit fp registers (In64BitMode)
61// D32 - double precision in 16 32bit even fp registers
62// D64 - double precision in 32 64bit fp registers (In64BitMode)
63//
64// Only S32 and D32 are supported right now.
65//===----------------------------------------------------------------------===//
66
67multiclass FFR1_1<bits<6> funct, string asmstr>
68{
69 def _S32 : FFR<0x11, funct, 0x0, (outs FGR32:$fd), (ins FGR32:$fs),
70 !strconcat(asmstr, ".s $fd, $fs"), []>;
71
72 def _D32 : FFR<0x11, funct, 0x1, (outs FGR32:$fd), (ins AFGR64:$fs),
73 !strconcat(asmstr, ".d $fd, $fs"), []>, Requires<[In32BitMode]>;
74}
75
76multiclass FFR1_2<bits<6> funct, string asmstr, SDNode FOp>
77{
78 def _S32 : FFR<0x11, funct, 0x0, (outs FGR32:$fd), (ins FGR32:$fs),
79 !strconcat(asmstr, ".s $fd, $fs"),
80 [(set FGR32:$fd, (FOp FGR32:$fs))]>;
81
82 def _D32 : FFR<0x11, funct, 0x1, (outs AFGR64:$fd), (ins AFGR64:$fs),
83 !strconcat(asmstr, ".d $fd, $fs"),
84 [(set AFGR64:$fd, (FOp AFGR64:$fs))]>, Requires<[In32BitMode]>;
85}
86
87class FFR1_3<bits<6> funct, bits<5> fmt, RegisterClass RcSrc,
88 RegisterClass RcDst, string asmstr>:
89 FFR<0x11, funct, fmt, (outs RcSrc:$fd), (ins RcDst:$fs),
90 !strconcat(asmstr, " $fd, $fs"), []>;
91
92
93multiclass FFR1_4<bits<6> funct, string asmstr, SDNode FOp> {
94 def _S32 : FFR<0x11, funct, 0x0, (outs FGR32:$fd),
95 (ins FGR32:$fs, FGR32:$ft),
96 !strconcat(asmstr, ".s $fd, $fs, $ft"),
97 [(set FGR32:$fd, (FOp FGR32:$fs, FGR32:$ft))]>;
98
99 def _D32 : FFR<0x11, funct, 0x1, (outs AFGR64:$fd),
100 (ins AFGR64:$fs, AFGR64:$ft),
101 !strconcat(asmstr, ".d $fd, $fs, $ft"),
102 [(set AFGR64:$fd, (FOp AFGR64:$fs, AFGR64:$ft))]>,
103 Requires<[In32BitMode]>;
104}
105
106//===----------------------------------------------------------------------===//
107// Floating Point Instructions
108//===----------------------------------------------------------------------===//
109
110let ft = 0 in {
111 defm FLOOR_W : FFR1_1<0b001111, "floor.w">;
112 defm CEIL_W : FFR1_1<0b001110, "ceil.w">;
113 defm ROUND_W : FFR1_1<0b001100, "round.w">;
114 defm TRUNC_W : FFR1_1<0b001101, "trunc.w">;
115 defm CVTW : FFR1_1<0b100100, "cvt.w">;
116 defm FMOV : FFR1_1<0b000110, "mov">;
117
118 defm FABS : FFR1_2<0b000101, "abs", fabs>;
119 defm FNEG : FFR1_2<0b000111, "neg", fneg>;
120 defm FSQRT : FFR1_2<0b000100, "sqrt", fsqrt>;
121
122 /// Convert to Single Precison
123 def CVTS_W32 : FFR1_3<0b100000, 0x2, FGR32, FGR32, "cvt.s.w">;
124
125 let Predicates = [IsNotSingleFloat] in {
126 /// Ceil to long signed integer
127 def CEIL_LS : FFR1_3<0b001010, 0x0, FGR32, FGR32, "ceil.l">;
128 def CEIL_LD : FFR1_3<0b001010, 0x1, AFGR64, AFGR64, "ceil.l">;
129
130 /// Round to long signed integer
131 def ROUND_LS : FFR1_3<0b001000, 0x0, FGR32, FGR32, "round.l">;
132 def ROUND_LD : FFR1_3<0b001000, 0x1, AFGR64, AFGR64, "round.l">;
133
134 /// Floor to long signed integer
135 def FLOOR_LS : FFR1_3<0b001011, 0x0, FGR32, FGR32, "floor.l">;
136 def FLOOR_LD : FFR1_3<0b001011, 0x1, AFGR64, AFGR64, "floor.l">;
137
138 /// Trunc to long signed integer
139 def TRUNC_LS : FFR1_3<0b001001, 0x0, FGR32, FGR32, "trunc.l">;
140 def TRUNC_LD : FFR1_3<0b001001, 0x1, AFGR64, AFGR64, "trunc.l">;
141
142 /// Convert to long signed integer
143 def CVTL_S : FFR1_3<0b100101, 0x0, FGR32, FGR32, "cvt.l">;
144 def CVTL_D : FFR1_3<0b100101, 0x1, AFGR64, AFGR64, "cvt.l">;
145
146 /// Convert to Double Precison
147 def CVTD_S32 : FFR1_3<0b100001, 0x0, AFGR64, FGR32, "cvt.d.s">;
148 def CVTD_W32 : FFR1_3<0b100001, 0x2, AFGR64, FGR32, "cvt.d.w">;
149 def CVTD_L32 : FFR1_3<0b100001, 0x3, AFGR64, AFGR64, "cvt.d.l">;
150
151 /// Convert to Single Precison
152 def CVTS_D32 : FFR1_3<0b100000, 0x1, FGR32, AFGR64, "cvt.s.d">;
153 def CVTS_L32 : FFR1_3<0b100000, 0x3, FGR32, AFGR64, "cvt.s.l">;
154 }
155}
156
157// The odd-numbered registers are only referenced when doing loads,
158// stores, and moves between floating-point and integer registers.
159// When defining instructions, we reference all 32-bit registers,
160// regardless of register aliasing.
161let fd = 0 in {
162 /// Move Control Registers From/To CPU Registers
163 def CFC1 : FFR<0x11, 0x0, 0x2, (outs CPURegs:$rt), (ins CCR:$fs),
164 "cfc1 $rt, $fs", []>;
165
166 def CTC1 : FFR<0x11, 0x0, 0x6, (outs CCR:$rt), (ins CPURegs:$fs),
167 "ctc1 $fs, $rt", []>;
168
169 def MFC1 : FFR<0x11, 0x00, 0x00, (outs CPURegs:$rt), (ins FGR32:$fs),
170 "mfc1 $rt, $fs", []>;
171
172 def MTC1 : FFR<0x11, 0x00, 0x04, (outs FGR32:$fs), (ins CPURegs:$rt),
173 "mtc1 $rt, $fs", []>;
174}
175
116
117 defm FABS : FFR1_2<0b000101, "abs", fabs>;
118 defm FNEG : FFR1_2<0b000111, "neg", fneg>;
119 defm FSQRT : FFR1_2<0b000100, "sqrt", fsqrt>;
120
121 /// Convert to Single Precison
122 def CVTS_W32 : FFR1_3<0b100000, 0x2, FGR32, FGR32, "cvt.s.w">;
123
124 let Predicates = [IsNotSingleFloat] in {
125 /// Ceil to long signed integer
126 def CEIL_LS : FFR1_3<0b001010, 0x0, FGR32, FGR32, "ceil.l">;
127 def CEIL_LD : FFR1_3<0b001010, 0x1, AFGR64, AFGR64, "ceil.l">;
128
129 /// Round to long signed integer
130 def ROUND_LS : FFR1_3<0b001000, 0x0, FGR32, FGR32, "round.l">;
131 def ROUND_LD : FFR1_3<0b001000, 0x1, AFGR64, AFGR64, "round.l">;
132
133 /// Floor to long signed integer
134 def FLOOR_LS : FFR1_3<0b001011, 0x0, FGR32, FGR32, "floor.l">;
135 def FLOOR_LD : FFR1_3<0b001011, 0x1, AFGR64, AFGR64, "floor.l">;
136
137 /// Trunc to long signed integer
138 def TRUNC_LS : FFR1_3<0b001001, 0x0, FGR32, FGR32, "trunc.l">;
139 def TRUNC_LD : FFR1_3<0b001001, 0x1, AFGR64, AFGR64, "trunc.l">;
140
141 /// Convert to long signed integer
142 def CVTL_S : FFR1_3<0b100101, 0x0, FGR32, FGR32, "cvt.l">;
143 def CVTL_D : FFR1_3<0b100101, 0x1, AFGR64, AFGR64, "cvt.l">;
144
145 /// Convert to Double Precison
146 def CVTD_S32 : FFR1_3<0b100001, 0x0, AFGR64, FGR32, "cvt.d.s">;
147 def CVTD_W32 : FFR1_3<0b100001, 0x2, AFGR64, FGR32, "cvt.d.w">;
148 def CVTD_L32 : FFR1_3<0b100001, 0x3, AFGR64, AFGR64, "cvt.d.l">;
149
150 /// Convert to Single Precison
151 def CVTS_D32 : FFR1_3<0b100000, 0x1, FGR32, AFGR64, "cvt.s.d">;
152 def CVTS_L32 : FFR1_3<0b100000, 0x3, FGR32, AFGR64, "cvt.s.l">;
153 }
154}
155
156// The odd-numbered registers are only referenced when doing loads,
157// stores, and moves between floating-point and integer registers.
158// When defining instructions, we reference all 32-bit registers,
159// regardless of register aliasing.
160let fd = 0 in {
161 /// Move Control Registers From/To CPU Registers
162 def CFC1 : FFR<0x11, 0x0, 0x2, (outs CPURegs:$rt), (ins CCR:$fs),
163 "cfc1 $rt, $fs", []>;
164
165 def CTC1 : FFR<0x11, 0x0, 0x6, (outs CCR:$rt), (ins CPURegs:$fs),
166 "ctc1 $fs, $rt", []>;
167
168 def MFC1 : FFR<0x11, 0x00, 0x00, (outs CPURegs:$rt), (ins FGR32:$fs),
169 "mfc1 $rt, $fs", []>;
170
171 def MTC1 : FFR<0x11, 0x00, 0x04, (outs FGR32:$fs), (ins CPURegs:$rt),
172 "mtc1 $rt, $fs", []>;
173}
174
175def FMOV_S32 : FFR<0x11, 0b000110, 0x0, (outs FGR32:$fd), (ins FGR32:$fs),
176 "mov.s $fd, $fs", []>;
177def FMOV_D32 : FFR<0x11, 0b000110, 0x1, (outs AFGR64:$fd), (ins AFGR64:$fs),
178 "mov.d $fd, $fs", []>;
179
176/// Floating Point Memory Instructions
177let Predicates = [IsNotSingleFloat, IsNotMipsI] in {
178 def LDC1 : FFI<0b110101, (outs AFGR64:$ft), (ins mem:$addr),
179 "ldc1 $ft, $addr", [(set AFGR64:$ft, (load addr:$addr))]>;
180
181 def SDC1 : FFI<0b111101, (outs), (ins AFGR64:$ft, mem:$addr),
182 "sdc1 $ft, $addr", [(store AFGR64:$ft, addr:$addr)]>;
183}
184
185// LWC1 and SWC1 can always be emited with odd registers.
186def LWC1 : FFI<0b110001, (outs FGR32:$ft), (ins mem:$addr), "lwc1 $ft, $addr",
187 [(set FGR32:$ft, (load addr:$addr))]>;
188def SWC1 : FFI<0b111001, (outs), (ins FGR32:$ft, mem:$addr), "swc1 $ft, $addr",
189 [(store FGR32:$ft, addr:$addr)]>;
190
191/// Floating-point Aritmetic
192defm FADD : FFR1_4<0x10, "add", fadd>;
193defm FDIV : FFR1_4<0x03, "div", fdiv>;
194defm FMUL : FFR1_4<0x02, "mul", fmul>;
195defm FSUB : FFR1_4<0x01, "sub", fsub>;
196
197//===----------------------------------------------------------------------===//
198// Floating Point Branch Codes
199//===----------------------------------------------------------------------===//
200// Mips branch codes. These correspond to condcode in MipsInstrInfo.h.
201// They must be kept in synch.
202def MIPS_BRANCH_F : PatLeaf<(i32 0)>;
203def MIPS_BRANCH_T : PatLeaf<(i32 1)>;
204def MIPS_BRANCH_FL : PatLeaf<(i32 2)>;
205def MIPS_BRANCH_TL : PatLeaf<(i32 3)>;
206
207/// Floating Point Branch of False/True (Likely)
208let isBranch=1, isTerminator=1, hasDelaySlot=1, base=0x8, Uses=[FCR31] in {
209 class FBRANCH<PatLeaf op, string asmstr> : FFI<0x11, (outs),
210 (ins brtarget:$dst), !strconcat(asmstr, " $dst"),
211 [(MipsFPBrcond op, bb:$dst, FCR31)]>;
212}
213def BC1F : FBRANCH<MIPS_BRANCH_F, "bc1f">;
214def BC1T : FBRANCH<MIPS_BRANCH_T, "bc1t">;
215def BC1FL : FBRANCH<MIPS_BRANCH_FL, "bc1fl">;
216def BC1TL : FBRANCH<MIPS_BRANCH_TL, "bc1tl">;
217
218//===----------------------------------------------------------------------===//
219// Floating Point Flag Conditions
220//===----------------------------------------------------------------------===//
221// Mips condition codes. They must correspond to condcode in MipsInstrInfo.h.
222// They must be kept in synch.
223def MIPS_FCOND_F : PatLeaf<(i32 0)>;
224def MIPS_FCOND_UN : PatLeaf<(i32 1)>;
225def MIPS_FCOND_EQ : PatLeaf<(i32 2)>;
226def MIPS_FCOND_UEQ : PatLeaf<(i32 3)>;
227def MIPS_FCOND_OLT : PatLeaf<(i32 4)>;
228def MIPS_FCOND_ULT : PatLeaf<(i32 5)>;
229def MIPS_FCOND_OLE : PatLeaf<(i32 6)>;
230def MIPS_FCOND_ULE : PatLeaf<(i32 7)>;
231def MIPS_FCOND_SF : PatLeaf<(i32 8)>;
232def MIPS_FCOND_NGLE : PatLeaf<(i32 9)>;
233def MIPS_FCOND_SEQ : PatLeaf<(i32 10)>;
234def MIPS_FCOND_NGL : PatLeaf<(i32 11)>;
235def MIPS_FCOND_LT : PatLeaf<(i32 12)>;
236def MIPS_FCOND_NGE : PatLeaf<(i32 13)>;
237def MIPS_FCOND_LE : PatLeaf<(i32 14)>;
238def MIPS_FCOND_NGT : PatLeaf<(i32 15)>;
239
240/// Floating Point Compare
241let hasDelaySlot = 1, Defs=[FCR31] in {
242 def FCMP_S32 : FCC<0x0, (outs), (ins FGR32:$fs, FGR32:$ft, condcode:$cc),
243 "c.$cc.s $fs, $ft", [(MipsFPCmp FGR32:$fs, FGR32:$ft, imm:$cc),
244 (implicit FCR31)]>;
245
246 def FCMP_D32 : FCC<0x1, (outs), (ins AFGR64:$fs, AFGR64:$ft, condcode:$cc),
247 "c.$cc.d $fs, $ft", [(MipsFPCmp AFGR64:$fs, AFGR64:$ft, imm:$cc),
248 (implicit FCR31)]>, Requires<[In32BitMode]>;
249}
250
251//===----------------------------------------------------------------------===//
252// Floating Point Pseudo-Instructions
253//===----------------------------------------------------------------------===//
254
255// For some explanation, see Select_CC at MipsInstrInfo.td. We also embedd a
256// condiciton code to enable easy handling by the Custom Inserter.
257let usesCustomInserter = 1, Uses=[FCR31] in {
258 class PseudoFPSelCC<RegisterClass RC, string asmstr> :
259 MipsPseudo<(outs RC:$dst),
260 (ins CPURegs:$CmpRes, RC:$T, RC:$F, condcode:$cc), asmstr,
261 [(set RC:$dst, (MipsFPSelectCC CPURegs:$CmpRes, RC:$T, RC:$F,
262 imm:$cc))]>;
263}
264
265// The values to be selected are fp but the condition test is with integers.
266def Select_CC_S32 : PseudoSelCC<FGR32, "# MipsSelect_CC_S32_f32">;
267def Select_CC_D32 : PseudoSelCC<AFGR64, "# MipsSelect_CC_D32_f32">,
268 Requires<[In32BitMode]>;
269
270// The values to be selected are int but the condition test is done with fp.
271def Select_FCC : PseudoFPSelCC<CPURegs, "# MipsSelect_FCC">;
272
273// The values to be selected and the condition test is done with fp.
274def Select_FCC_S32 : PseudoFPSelCC<FGR32, "# MipsSelect_FCC_S32_f32">;
275def Select_FCC_D32 : PseudoFPSelCC<AFGR64, "# MipsSelect_FCC_D32_f32">,
276 Requires<[In32BitMode]>;
277
278def MOVCCRToCCR : MipsPseudo<(outs CCR:$dst), (ins CCR:$src),
279 "# MOVCCRToCCR", []>;
280
281//===----------------------------------------------------------------------===//
282// Floating Point Patterns
283//===----------------------------------------------------------------------===//
284def fpimm0 : PatLeaf<(fpimm), [{
285 return N->isExactlyValue(+0.0);
286}]>;
287
288def fpimm0neg : PatLeaf<(fpimm), [{
289 return N->isExactlyValue(-0.0);
290}]>;
291
292def : Pat<(f32 fpimm0), (MTC1 ZERO)>;
293def : Pat<(f32 fpimm0neg), (FNEG_S32 (MTC1 ZERO))>;
294
295def : Pat<(f32 (sint_to_fp CPURegs:$src)), (CVTS_W32 (MTC1 CPURegs:$src))>;
296def : Pat<(f64 (sint_to_fp CPURegs:$src)), (CVTD_W32 (MTC1 CPURegs:$src))>;
297
298def : Pat<(i32 (fp_to_sint FGR32:$src)), (MFC1 (TRUNC_W_S32 FGR32:$src))>;
299
300def : Pat<(i32 (bitconvert FGR32:$src)), (MFC1 FGR32:$src)>;
301def : Pat<(f32 (bitconvert CPURegs:$src)), (MTC1 CPURegs:$src)>;
302
303let Predicates = [In32BitMode] in {
304 def : Pat<(f32 (fround AFGR64:$src)), (CVTS_D32 AFGR64:$src)>;
305 def : Pat<(f64 (fextend FGR32:$src)), (CVTD_S32 FGR32:$src)>;
306}
307
308// MipsFPRound is only emitted for MipsI targets.
309def : Pat<(f32 (MipsFPRound AFGR64:$src)), (CVTW_D32 AFGR64:$src)>;
310
180/// Floating Point Memory Instructions
181let Predicates = [IsNotSingleFloat, IsNotMipsI] in {
182 def LDC1 : FFI<0b110101, (outs AFGR64:$ft), (ins mem:$addr),
183 "ldc1 $ft, $addr", [(set AFGR64:$ft, (load addr:$addr))]>;
184
185 def SDC1 : FFI<0b111101, (outs), (ins AFGR64:$ft, mem:$addr),
186 "sdc1 $ft, $addr", [(store AFGR64:$ft, addr:$addr)]>;
187}
188
189// LWC1 and SWC1 can always be emited with odd registers.
190def LWC1 : FFI<0b110001, (outs FGR32:$ft), (ins mem:$addr), "lwc1 $ft, $addr",
191 [(set FGR32:$ft, (load addr:$addr))]>;
192def SWC1 : FFI<0b111001, (outs), (ins FGR32:$ft, mem:$addr), "swc1 $ft, $addr",
193 [(store FGR32:$ft, addr:$addr)]>;
194
195/// Floating-point Aritmetic
196defm FADD : FFR1_4<0x10, "add", fadd>;
197defm FDIV : FFR1_4<0x03, "div", fdiv>;
198defm FMUL : FFR1_4<0x02, "mul", fmul>;
199defm FSUB : FFR1_4<0x01, "sub", fsub>;
200
201//===----------------------------------------------------------------------===//
202// Floating Point Branch Codes
203//===----------------------------------------------------------------------===//
204// Mips branch codes. These correspond to condcode in MipsInstrInfo.h.
205// They must be kept in synch.
206def MIPS_BRANCH_F : PatLeaf<(i32 0)>;
207def MIPS_BRANCH_T : PatLeaf<(i32 1)>;
208def MIPS_BRANCH_FL : PatLeaf<(i32 2)>;
209def MIPS_BRANCH_TL : PatLeaf<(i32 3)>;
210
211/// Floating Point Branch of False/True (Likely)
212let isBranch=1, isTerminator=1, hasDelaySlot=1, base=0x8, Uses=[FCR31] in {
213 class FBRANCH<PatLeaf op, string asmstr> : FFI<0x11, (outs),
214 (ins brtarget:$dst), !strconcat(asmstr, " $dst"),
215 [(MipsFPBrcond op, bb:$dst, FCR31)]>;
216}
217def BC1F : FBRANCH<MIPS_BRANCH_F, "bc1f">;
218def BC1T : FBRANCH<MIPS_BRANCH_T, "bc1t">;
219def BC1FL : FBRANCH<MIPS_BRANCH_FL, "bc1fl">;
220def BC1TL : FBRANCH<MIPS_BRANCH_TL, "bc1tl">;
221
222//===----------------------------------------------------------------------===//
223// Floating Point Flag Conditions
224//===----------------------------------------------------------------------===//
225// Mips condition codes. They must correspond to condcode in MipsInstrInfo.h.
226// They must be kept in synch.
227def MIPS_FCOND_F : PatLeaf<(i32 0)>;
228def MIPS_FCOND_UN : PatLeaf<(i32 1)>;
229def MIPS_FCOND_EQ : PatLeaf<(i32 2)>;
230def MIPS_FCOND_UEQ : PatLeaf<(i32 3)>;
231def MIPS_FCOND_OLT : PatLeaf<(i32 4)>;
232def MIPS_FCOND_ULT : PatLeaf<(i32 5)>;
233def MIPS_FCOND_OLE : PatLeaf<(i32 6)>;
234def MIPS_FCOND_ULE : PatLeaf<(i32 7)>;
235def MIPS_FCOND_SF : PatLeaf<(i32 8)>;
236def MIPS_FCOND_NGLE : PatLeaf<(i32 9)>;
237def MIPS_FCOND_SEQ : PatLeaf<(i32 10)>;
238def MIPS_FCOND_NGL : PatLeaf<(i32 11)>;
239def MIPS_FCOND_LT : PatLeaf<(i32 12)>;
240def MIPS_FCOND_NGE : PatLeaf<(i32 13)>;
241def MIPS_FCOND_LE : PatLeaf<(i32 14)>;
242def MIPS_FCOND_NGT : PatLeaf<(i32 15)>;
243
244/// Floating Point Compare
245let hasDelaySlot = 1, Defs=[FCR31] in {
246 def FCMP_S32 : FCC<0x0, (outs), (ins FGR32:$fs, FGR32:$ft, condcode:$cc),
247 "c.$cc.s $fs, $ft", [(MipsFPCmp FGR32:$fs, FGR32:$ft, imm:$cc),
248 (implicit FCR31)]>;
249
250 def FCMP_D32 : FCC<0x1, (outs), (ins AFGR64:$fs, AFGR64:$ft, condcode:$cc),
251 "c.$cc.d $fs, $ft", [(MipsFPCmp AFGR64:$fs, AFGR64:$ft, imm:$cc),
252 (implicit FCR31)]>, Requires<[In32BitMode]>;
253}
254
255//===----------------------------------------------------------------------===//
256// Floating Point Pseudo-Instructions
257//===----------------------------------------------------------------------===//
258
259// For some explanation, see Select_CC at MipsInstrInfo.td. We also embedd a
260// condiciton code to enable easy handling by the Custom Inserter.
261let usesCustomInserter = 1, Uses=[FCR31] in {
262 class PseudoFPSelCC<RegisterClass RC, string asmstr> :
263 MipsPseudo<(outs RC:$dst),
264 (ins CPURegs:$CmpRes, RC:$T, RC:$F, condcode:$cc), asmstr,
265 [(set RC:$dst, (MipsFPSelectCC CPURegs:$CmpRes, RC:$T, RC:$F,
266 imm:$cc))]>;
267}
268
269// The values to be selected are fp but the condition test is with integers.
270def Select_CC_S32 : PseudoSelCC<FGR32, "# MipsSelect_CC_S32_f32">;
271def Select_CC_D32 : PseudoSelCC<AFGR64, "# MipsSelect_CC_D32_f32">,
272 Requires<[In32BitMode]>;
273
274// The values to be selected are int but the condition test is done with fp.
275def Select_FCC : PseudoFPSelCC<CPURegs, "# MipsSelect_FCC">;
276
277// The values to be selected and the condition test is done with fp.
278def Select_FCC_S32 : PseudoFPSelCC<FGR32, "# MipsSelect_FCC_S32_f32">;
279def Select_FCC_D32 : PseudoFPSelCC<AFGR64, "# MipsSelect_FCC_D32_f32">,
280 Requires<[In32BitMode]>;
281
282def MOVCCRToCCR : MipsPseudo<(outs CCR:$dst), (ins CCR:$src),
283 "# MOVCCRToCCR", []>;
284
285//===----------------------------------------------------------------------===//
286// Floating Point Patterns
287//===----------------------------------------------------------------------===//
288def fpimm0 : PatLeaf<(fpimm), [{
289 return N->isExactlyValue(+0.0);
290}]>;
291
292def fpimm0neg : PatLeaf<(fpimm), [{
293 return N->isExactlyValue(-0.0);
294}]>;
295
296def : Pat<(f32 fpimm0), (MTC1 ZERO)>;
297def : Pat<(f32 fpimm0neg), (FNEG_S32 (MTC1 ZERO))>;
298
299def : Pat<(f32 (sint_to_fp CPURegs:$src)), (CVTS_W32 (MTC1 CPURegs:$src))>;
300def : Pat<(f64 (sint_to_fp CPURegs:$src)), (CVTD_W32 (MTC1 CPURegs:$src))>;
301
302def : Pat<(i32 (fp_to_sint FGR32:$src)), (MFC1 (TRUNC_W_S32 FGR32:$src))>;
303
304def : Pat<(i32 (bitconvert FGR32:$src)), (MFC1 FGR32:$src)>;
305def : Pat<(f32 (bitconvert CPURegs:$src)), (MTC1 CPURegs:$src)>;
306
307let Predicates = [In32BitMode] in {
308 def : Pat<(f32 (fround AFGR64:$src)), (CVTS_D32 AFGR64:$src)>;
309 def : Pat<(f64 (fextend FGR32:$src)), (CVTD_S32 FGR32:$src)>;
310}
311
312// MipsFPRound is only emitted for MipsI targets.
313def : Pat<(f32 (MipsFPRound AFGR64:$src)), (CVTW_D32 AFGR64:$src)>;
314