Deleted Added
sdiff udiff text old ( 198953 ) new ( 201360 )
full compact
1//===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This header defines the BitcodeReader class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/Bitcode/ReaderWriter.h"
15#include "BitcodeReader.h"
16#include "llvm/Constants.h"
17#include "llvm/DerivedTypes.h"
18#include "llvm/InlineAsm.h"
19#include "llvm/IntrinsicInst.h"
20#include "llvm/LLVMContext.h"
21#include "llvm/Metadata.h"
22#include "llvm/Module.h"
23#include "llvm/Operator.h"
24#include "llvm/AutoUpgrade.h"
25#include "llvm/ADT/SmallString.h"
26#include "llvm/ADT/SmallVector.h"
27#include "llvm/Support/MathExtras.h"
28#include "llvm/Support/MemoryBuffer.h"
29#include "llvm/OperandTraits.h"
30using namespace llvm;
31
32void BitcodeReader::FreeState() {
33 delete Buffer;
34 Buffer = 0;
35 std::vector<PATypeHolder>().swap(TypeList);
36 ValueList.clear();
37 MDValueList.clear();
38
39 std::vector<AttrListPtr>().swap(MAttributes);
40 std::vector<BasicBlock*>().swap(FunctionBBs);
41 std::vector<Function*>().swap(FunctionsWithBodies);
42 DeferredFunctionInfo.clear();
43}
44
45//===----------------------------------------------------------------------===//
46// Helper functions to implement forward reference resolution, etc.
47//===----------------------------------------------------------------------===//
48
49/// ConvertToString - Convert a string from a record into an std::string, return
50/// true on failure.
51template<typename StrTy>
52static bool ConvertToString(SmallVector<uint64_t, 64> &Record, unsigned Idx,
53 StrTy &Result) {
54 if (Idx > Record.size())
55 return true;
56
57 for (unsigned i = Idx, e = Record.size(); i != e; ++i)
58 Result += (char)Record[i];
59 return false;
60}
61
62static GlobalValue::LinkageTypes GetDecodedLinkage(unsigned Val) {
63 switch (Val) {
64 default: // Map unknown/new linkages to external
65 case 0: return GlobalValue::ExternalLinkage;
66 case 1: return GlobalValue::WeakAnyLinkage;
67 case 2: return GlobalValue::AppendingLinkage;
68 case 3: return GlobalValue::InternalLinkage;
69 case 4: return GlobalValue::LinkOnceAnyLinkage;
70 case 5: return GlobalValue::DLLImportLinkage;
71 case 6: return GlobalValue::DLLExportLinkage;
72 case 7: return GlobalValue::ExternalWeakLinkage;
73 case 8: return GlobalValue::CommonLinkage;
74 case 9: return GlobalValue::PrivateLinkage;
75 case 10: return GlobalValue::WeakODRLinkage;
76 case 11: return GlobalValue::LinkOnceODRLinkage;
77 case 12: return GlobalValue::AvailableExternallyLinkage;
78 case 13: return GlobalValue::LinkerPrivateLinkage;
79 }
80}
81
82static GlobalValue::VisibilityTypes GetDecodedVisibility(unsigned Val) {
83 switch (Val) {
84 default: // Map unknown visibilities to default.
85 case 0: return GlobalValue::DefaultVisibility;
86 case 1: return GlobalValue::HiddenVisibility;
87 case 2: return GlobalValue::ProtectedVisibility;
88 }
89}
90
91static int GetDecodedCastOpcode(unsigned Val) {
92 switch (Val) {
93 default: return -1;
94 case bitc::CAST_TRUNC : return Instruction::Trunc;
95 case bitc::CAST_ZEXT : return Instruction::ZExt;
96 case bitc::CAST_SEXT : return Instruction::SExt;
97 case bitc::CAST_FPTOUI : return Instruction::FPToUI;
98 case bitc::CAST_FPTOSI : return Instruction::FPToSI;
99 case bitc::CAST_UITOFP : return Instruction::UIToFP;
100 case bitc::CAST_SITOFP : return Instruction::SIToFP;
101 case bitc::CAST_FPTRUNC : return Instruction::FPTrunc;
102 case bitc::CAST_FPEXT : return Instruction::FPExt;
103 case bitc::CAST_PTRTOINT: return Instruction::PtrToInt;
104 case bitc::CAST_INTTOPTR: return Instruction::IntToPtr;
105 case bitc::CAST_BITCAST : return Instruction::BitCast;
106 }
107}
108static int GetDecodedBinaryOpcode(unsigned Val, const Type *Ty) {
109 switch (Val) {
110 default: return -1;
111 case bitc::BINOP_ADD:
112 return Ty->isFPOrFPVector() ? Instruction::FAdd : Instruction::Add;
113 case bitc::BINOP_SUB:
114 return Ty->isFPOrFPVector() ? Instruction::FSub : Instruction::Sub;
115 case bitc::BINOP_MUL:
116 return Ty->isFPOrFPVector() ? Instruction::FMul : Instruction::Mul;
117 case bitc::BINOP_UDIV: return Instruction::UDiv;
118 case bitc::BINOP_SDIV:
119 return Ty->isFPOrFPVector() ? Instruction::FDiv : Instruction::SDiv;
120 case bitc::BINOP_UREM: return Instruction::URem;
121 case bitc::BINOP_SREM:
122 return Ty->isFPOrFPVector() ? Instruction::FRem : Instruction::SRem;
123 case bitc::BINOP_SHL: return Instruction::Shl;
124 case bitc::BINOP_LSHR: return Instruction::LShr;
125 case bitc::BINOP_ASHR: return Instruction::AShr;
126 case bitc::BINOP_AND: return Instruction::And;
127 case bitc::BINOP_OR: return Instruction::Or;
128 case bitc::BINOP_XOR: return Instruction::Xor;
129 }
130}
131
132namespace llvm {
133namespace {
134 /// @brief A class for maintaining the slot number definition
135 /// as a placeholder for the actual definition for forward constants defs.
136 class ConstantPlaceHolder : public ConstantExpr {
137 ConstantPlaceHolder(); // DO NOT IMPLEMENT
138 void operator=(const ConstantPlaceHolder &); // DO NOT IMPLEMENT
139 public:
140 // allocate space for exactly one operand
141 void *operator new(size_t s) {
142 return User::operator new(s, 1);
143 }
144 explicit ConstantPlaceHolder(const Type *Ty, LLVMContext& Context)
145 : ConstantExpr(Ty, Instruction::UserOp1, &Op<0>(), 1) {
146 Op<0>() = UndefValue::get(Type::getInt32Ty(Context));
147 }
148
149 /// @brief Methods to support type inquiry through isa, cast, and dyn_cast.
150 static inline bool classof(const ConstantPlaceHolder *) { return true; }
151 static bool classof(const Value *V) {
152 return isa<ConstantExpr>(V) &&
153 cast<ConstantExpr>(V)->getOpcode() == Instruction::UserOp1;
154 }
155
156
157 /// Provide fast operand accessors
158 //DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
159 };
160}
161
162// FIXME: can we inherit this from ConstantExpr?
163template <>
164struct OperandTraits<ConstantPlaceHolder> : public FixedNumOperandTraits<1> {
165};
166}
167
168
169void BitcodeReaderValueList::AssignValue(Value *V, unsigned Idx) {
170 if (Idx == size()) {
171 push_back(V);
172 return;
173 }
174
175 if (Idx >= size())
176 resize(Idx+1);
177
178 WeakVH &OldV = ValuePtrs[Idx];
179 if (OldV == 0) {
180 OldV = V;
181 return;
182 }
183
184 // Handle constants and non-constants (e.g. instrs) differently for
185 // efficiency.
186 if (Constant *PHC = dyn_cast<Constant>(&*OldV)) {
187 ResolveConstants.push_back(std::make_pair(PHC, Idx));
188 OldV = V;
189 } else {
190 // If there was a forward reference to this value, replace it.
191 Value *PrevVal = OldV;
192 OldV->replaceAllUsesWith(V);
193 delete PrevVal;
194 }
195}
196
197
198Constant *BitcodeReaderValueList::getConstantFwdRef(unsigned Idx,
199 const Type *Ty) {
200 if (Idx >= size())
201 resize(Idx + 1);
202
203 if (Value *V = ValuePtrs[Idx]) {
204 assert(Ty == V->getType() && "Type mismatch in constant table!");
205 return cast<Constant>(V);
206 }
207
208 // Create and return a placeholder, which will later be RAUW'd.
209 Constant *C = new ConstantPlaceHolder(Ty, Context);
210 ValuePtrs[Idx] = C;
211 return C;
212}
213
214Value *BitcodeReaderValueList::getValueFwdRef(unsigned Idx, const Type *Ty) {
215 if (Idx >= size())
216 resize(Idx + 1);
217
218 if (Value *V = ValuePtrs[Idx]) {
219 assert((Ty == 0 || Ty == V->getType()) && "Type mismatch in value table!");
220 return V;
221 }
222
223 // No type specified, must be invalid reference.
224 if (Ty == 0) return 0;
225
226 // Create and return a placeholder, which will later be RAUW'd.
227 Value *V = new Argument(Ty);
228 ValuePtrs[Idx] = V;
229 return V;
230}
231
232/// ResolveConstantForwardRefs - Once all constants are read, this method bulk
233/// resolves any forward references. The idea behind this is that we sometimes
234/// get constants (such as large arrays) which reference *many* forward ref
235/// constants. Replacing each of these causes a lot of thrashing when
236/// building/reuniquing the constant. Instead of doing this, we look at all the
237/// uses and rewrite all the place holders at once for any constant that uses
238/// a placeholder.
239void BitcodeReaderValueList::ResolveConstantForwardRefs() {
240 // Sort the values by-pointer so that they are efficient to look up with a
241 // binary search.
242 std::sort(ResolveConstants.begin(), ResolveConstants.end());
243
244 SmallVector<Constant*, 64> NewOps;
245
246 while (!ResolveConstants.empty()) {
247 Value *RealVal = operator[](ResolveConstants.back().second);
248 Constant *Placeholder = ResolveConstants.back().first;
249 ResolveConstants.pop_back();
250
251 // Loop over all users of the placeholder, updating them to reference the
252 // new value. If they reference more than one placeholder, update them all
253 // at once.
254 while (!Placeholder->use_empty()) {
255 Value::use_iterator UI = Placeholder->use_begin();
256
257 // If the using object isn't uniqued, just update the operands. This
258 // handles instructions and initializers for global variables.
259 if (!isa<Constant>(*UI) || isa<GlobalValue>(*UI)) {
260 UI.getUse().set(RealVal);
261 continue;
262 }
263
264 // Otherwise, we have a constant that uses the placeholder. Replace that
265 // constant with a new constant that has *all* placeholder uses updated.
266 Constant *UserC = cast<Constant>(*UI);
267 for (User::op_iterator I = UserC->op_begin(), E = UserC->op_end();
268 I != E; ++I) {
269 Value *NewOp;
270 if (!isa<ConstantPlaceHolder>(*I)) {
271 // Not a placeholder reference.
272 NewOp = *I;
273 } else if (*I == Placeholder) {
274 // Common case is that it just references this one placeholder.
275 NewOp = RealVal;
276 } else {
277 // Otherwise, look up the placeholder in ResolveConstants.
278 ResolveConstantsTy::iterator It =
279 std::lower_bound(ResolveConstants.begin(), ResolveConstants.end(),
280 std::pair<Constant*, unsigned>(cast<Constant>(*I),
281 0));
282 assert(It != ResolveConstants.end() && It->first == *I);
283 NewOp = operator[](It->second);
284 }
285
286 NewOps.push_back(cast<Constant>(NewOp));
287 }
288
289 // Make the new constant.
290 Constant *NewC;
291 if (ConstantArray *UserCA = dyn_cast<ConstantArray>(UserC)) {
292 NewC = ConstantArray::get(UserCA->getType(), &NewOps[0],
293 NewOps.size());
294 } else if (ConstantStruct *UserCS = dyn_cast<ConstantStruct>(UserC)) {
295 NewC = ConstantStruct::get(Context, &NewOps[0], NewOps.size(),
296 UserCS->getType()->isPacked());
297 } else if (isa<ConstantVector>(UserC)) {
298 NewC = ConstantVector::get(&NewOps[0], NewOps.size());
299 } else {
300 assert(isa<ConstantExpr>(UserC) && "Must be a ConstantExpr.");
301 NewC = cast<ConstantExpr>(UserC)->getWithOperands(&NewOps[0],
302 NewOps.size());
303 }
304
305 UserC->replaceAllUsesWith(NewC);
306 UserC->destroyConstant();
307 NewOps.clear();
308 }
309
310 // Update all ValueHandles, they should be the only users at this point.
311 Placeholder->replaceAllUsesWith(RealVal);
312 delete Placeholder;
313 }
314}
315
316void BitcodeReaderMDValueList::AssignValue(Value *V, unsigned Idx) {
317 if (Idx == size()) {
318 push_back(V);
319 return;
320 }
321
322 if (Idx >= size())
323 resize(Idx+1);
324
325 WeakVH &OldV = MDValuePtrs[Idx];
326 if (OldV == 0) {
327 OldV = V;
328 return;
329 }
330
331 // If there was a forward reference to this value, replace it.
332 Value *PrevVal = OldV;
333 OldV->replaceAllUsesWith(V);
334 delete PrevVal;
335 // Deleting PrevVal sets Idx value in MDValuePtrs to null. Set new
336 // value for Idx.
337 MDValuePtrs[Idx] = V;
338}
339
340Value *BitcodeReaderMDValueList::getValueFwdRef(unsigned Idx) {
341 if (Idx >= size())
342 resize(Idx + 1);
343
344 if (Value *V = MDValuePtrs[Idx]) {
345 assert(V->getType()->isMetadataTy() && "Type mismatch in value table!");
346 return V;
347 }
348
349 // Create and return a placeholder, which will later be RAUW'd.
350 Value *V = new Argument(Type::getMetadataTy(Context));
351 MDValuePtrs[Idx] = V;
352 return V;
353}
354
355const Type *BitcodeReader::getTypeByID(unsigned ID, bool isTypeTable) {
356 // If the TypeID is in range, return it.
357 if (ID < TypeList.size())
358 return TypeList[ID].get();
359 if (!isTypeTable) return 0;
360
361 // The type table allows forward references. Push as many Opaque types as
362 // needed to get up to ID.
363 while (TypeList.size() <= ID)
364 TypeList.push_back(OpaqueType::get(Context));
365 return TypeList.back().get();
366}
367
368//===----------------------------------------------------------------------===//
369// Functions for parsing blocks from the bitcode file
370//===----------------------------------------------------------------------===//
371
372bool BitcodeReader::ParseAttributeBlock() {
373 if (Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID))
374 return Error("Malformed block record");
375
376 if (!MAttributes.empty())
377 return Error("Multiple PARAMATTR blocks found!");
378
379 SmallVector<uint64_t, 64> Record;
380
381 SmallVector<AttributeWithIndex, 8> Attrs;
382
383 // Read all the records.
384 while (1) {
385 unsigned Code = Stream.ReadCode();
386 if (Code == bitc::END_BLOCK) {
387 if (Stream.ReadBlockEnd())
388 return Error("Error at end of PARAMATTR block");
389 return false;
390 }
391
392 if (Code == bitc::ENTER_SUBBLOCK) {
393 // No known subblocks, always skip them.
394 Stream.ReadSubBlockID();
395 if (Stream.SkipBlock())
396 return Error("Malformed block record");
397 continue;
398 }
399
400 if (Code == bitc::DEFINE_ABBREV) {
401 Stream.ReadAbbrevRecord();
402 continue;
403 }
404
405 // Read a record.
406 Record.clear();
407 switch (Stream.ReadRecord(Code, Record)) {
408 default: // Default behavior: ignore.
409 break;
410 case bitc::PARAMATTR_CODE_ENTRY: { // ENTRY: [paramidx0, attr0, ...]
411 if (Record.size() & 1)
412 return Error("Invalid ENTRY record");
413
414 // FIXME : Remove this autoupgrade code in LLVM 3.0.
415 // If Function attributes are using index 0 then transfer them
416 // to index ~0. Index 0 is used for return value attributes but used to be
417 // used for function attributes.
418 Attributes RetAttribute = Attribute::None;
419 Attributes FnAttribute = Attribute::None;
420 for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
421 // FIXME: remove in LLVM 3.0
422 // The alignment is stored as a 16-bit raw value from bits 31--16.
423 // We shift the bits above 31 down by 11 bits.
424
425 unsigned Alignment = (Record[i+1] & (0xffffull << 16)) >> 16;
426 if (Alignment && !isPowerOf2_32(Alignment))
427 return Error("Alignment is not a power of two.");
428
429 Attributes ReconstitutedAttr = Record[i+1] & 0xffff;
430 if (Alignment)
431 ReconstitutedAttr |= Attribute::constructAlignmentFromInt(Alignment);
432 ReconstitutedAttr |= (Record[i+1] & (0xffffull << 32)) >> 11;
433 Record[i+1] = ReconstitutedAttr;
434
435 if (Record[i] == 0)
436 RetAttribute = Record[i+1];
437 else if (Record[i] == ~0U)
438 FnAttribute = Record[i+1];
439 }
440
441 unsigned OldRetAttrs = (Attribute::NoUnwind|Attribute::NoReturn|
442 Attribute::ReadOnly|Attribute::ReadNone);
443
444 if (FnAttribute == Attribute::None && RetAttribute != Attribute::None &&
445 (RetAttribute & OldRetAttrs) != 0) {
446 if (FnAttribute == Attribute::None) { // add a slot so they get added.
447 Record.push_back(~0U);
448 Record.push_back(0);
449 }
450
451 FnAttribute |= RetAttribute & OldRetAttrs;
452 RetAttribute &= ~OldRetAttrs;
453 }
454
455 for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
456 if (Record[i] == 0) {
457 if (RetAttribute != Attribute::None)
458 Attrs.push_back(AttributeWithIndex::get(0, RetAttribute));
459 } else if (Record[i] == ~0U) {
460 if (FnAttribute != Attribute::None)
461 Attrs.push_back(AttributeWithIndex::get(~0U, FnAttribute));
462 } else if (Record[i+1] != Attribute::None)
463 Attrs.push_back(AttributeWithIndex::get(Record[i], Record[i+1]));
464 }
465
466 MAttributes.push_back(AttrListPtr::get(Attrs.begin(), Attrs.end()));
467 Attrs.clear();
468 break;
469 }
470 }
471 }
472}
473
474
475bool BitcodeReader::ParseTypeTable() {
476 if (Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID))
477 return Error("Malformed block record");
478
479 if (!TypeList.empty())
480 return Error("Multiple TYPE_BLOCKs found!");
481
482 SmallVector<uint64_t, 64> Record;
483 unsigned NumRecords = 0;
484
485 // Read all the records for this type table.
486 while (1) {
487 unsigned Code = Stream.ReadCode();
488 if (Code == bitc::END_BLOCK) {
489 if (NumRecords != TypeList.size())
490 return Error("Invalid type forward reference in TYPE_BLOCK");
491 if (Stream.ReadBlockEnd())
492 return Error("Error at end of type table block");
493 return false;
494 }
495
496 if (Code == bitc::ENTER_SUBBLOCK) {
497 // No known subblocks, always skip them.
498 Stream.ReadSubBlockID();
499 if (Stream.SkipBlock())
500 return Error("Malformed block record");
501 continue;
502 }
503
504 if (Code == bitc::DEFINE_ABBREV) {
505 Stream.ReadAbbrevRecord();
506 continue;
507 }
508
509 // Read a record.
510 Record.clear();
511 const Type *ResultTy = 0;
512 switch (Stream.ReadRecord(Code, Record)) {
513 default: // Default behavior: unknown type.
514 ResultTy = 0;
515 break;
516 case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries]
517 // TYPE_CODE_NUMENTRY contains a count of the number of types in the
518 // type list. This allows us to reserve space.
519 if (Record.size() < 1)
520 return Error("Invalid TYPE_CODE_NUMENTRY record");
521 TypeList.reserve(Record[0]);
522 continue;
523 case bitc::TYPE_CODE_VOID: // VOID
524 ResultTy = Type::getVoidTy(Context);
525 break;
526 case bitc::TYPE_CODE_FLOAT: // FLOAT
527 ResultTy = Type::getFloatTy(Context);
528 break;
529 case bitc::TYPE_CODE_DOUBLE: // DOUBLE
530 ResultTy = Type::getDoubleTy(Context);
531 break;
532 case bitc::TYPE_CODE_X86_FP80: // X86_FP80
533 ResultTy = Type::getX86_FP80Ty(Context);
534 break;
535 case bitc::TYPE_CODE_FP128: // FP128
536 ResultTy = Type::getFP128Ty(Context);
537 break;
538 case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128
539 ResultTy = Type::getPPC_FP128Ty(Context);
540 break;
541 case bitc::TYPE_CODE_LABEL: // LABEL
542 ResultTy = Type::getLabelTy(Context);
543 break;
544 case bitc::TYPE_CODE_OPAQUE: // OPAQUE
545 ResultTy = 0;
546 break;
547 case bitc::TYPE_CODE_METADATA: // METADATA
548 ResultTy = Type::getMetadataTy(Context);
549 break;
550 case bitc::TYPE_CODE_INTEGER: // INTEGER: [width]
551 if (Record.size() < 1)
552 return Error("Invalid Integer type record");
553
554 ResultTy = IntegerType::get(Context, Record[0]);
555 break;
556 case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or
557 // [pointee type, address space]
558 if (Record.size() < 1)
559 return Error("Invalid POINTER type record");
560 unsigned AddressSpace = 0;
561 if (Record.size() == 2)
562 AddressSpace = Record[1];
563 ResultTy = PointerType::get(getTypeByID(Record[0], true),
564 AddressSpace);
565 break;
566 }
567 case bitc::TYPE_CODE_FUNCTION: {
568 // FIXME: attrid is dead, remove it in LLVM 3.0
569 // FUNCTION: [vararg, attrid, retty, paramty x N]
570 if (Record.size() < 3)
571 return Error("Invalid FUNCTION type record");
572 std::vector<const Type*> ArgTys;
573 for (unsigned i = 3, e = Record.size(); i != e; ++i)
574 ArgTys.push_back(getTypeByID(Record[i], true));
575
576 ResultTy = FunctionType::get(getTypeByID(Record[2], true), ArgTys,
577 Record[0]);
578 break;
579 }
580 case bitc::TYPE_CODE_STRUCT: { // STRUCT: [ispacked, eltty x N]
581 if (Record.size() < 1)
582 return Error("Invalid STRUCT type record");
583 std::vector<const Type*> EltTys;
584 for (unsigned i = 1, e = Record.size(); i != e; ++i)
585 EltTys.push_back(getTypeByID(Record[i], true));
586 ResultTy = StructType::get(Context, EltTys, Record[0]);
587 break;
588 }
589 case bitc::TYPE_CODE_ARRAY: // ARRAY: [numelts, eltty]
590 if (Record.size() < 2)
591 return Error("Invalid ARRAY type record");
592 ResultTy = ArrayType::get(getTypeByID(Record[1], true), Record[0]);
593 break;
594 case bitc::TYPE_CODE_VECTOR: // VECTOR: [numelts, eltty]
595 if (Record.size() < 2)
596 return Error("Invalid VECTOR type record");
597 ResultTy = VectorType::get(getTypeByID(Record[1], true), Record[0]);
598 break;
599 }
600
601 if (NumRecords == TypeList.size()) {
602 // If this is a new type slot, just append it.
603 TypeList.push_back(ResultTy ? ResultTy : OpaqueType::get(Context));
604 ++NumRecords;
605 } else if (ResultTy == 0) {
606 // Otherwise, this was forward referenced, so an opaque type was created,
607 // but the result type is actually just an opaque. Leave the one we
608 // created previously.
609 ++NumRecords;
610 } else {
611 // Otherwise, this was forward referenced, so an opaque type was created.
612 // Resolve the opaque type to the real type now.
613 assert(NumRecords < TypeList.size() && "Typelist imbalance");
614 const OpaqueType *OldTy = cast<OpaqueType>(TypeList[NumRecords++].get());
615
616 // Don't directly push the new type on the Tab. Instead we want to replace
617 // the opaque type we previously inserted with the new concrete value. The
618 // refinement from the abstract (opaque) type to the new type causes all
619 // uses of the abstract type to use the concrete type (NewTy). This will
620 // also cause the opaque type to be deleted.
621 const_cast<OpaqueType*>(OldTy)->refineAbstractTypeTo(ResultTy);
622
623 // This should have replaced the old opaque type with the new type in the
624 // value table... or with a preexisting type that was already in the
625 // system. Let's just make sure it did.
626 assert(TypeList[NumRecords-1].get() != OldTy &&
627 "refineAbstractType didn't work!");
628 }
629 }
630}
631
632
633bool BitcodeReader::ParseTypeSymbolTable() {
634 if (Stream.EnterSubBlock(bitc::TYPE_SYMTAB_BLOCK_ID))
635 return Error("Malformed block record");
636
637 SmallVector<uint64_t, 64> Record;
638
639 // Read all the records for this type table.
640 std::string TypeName;
641 while (1) {
642 unsigned Code = Stream.ReadCode();
643 if (Code == bitc::END_BLOCK) {
644 if (Stream.ReadBlockEnd())
645 return Error("Error at end of type symbol table block");
646 return false;
647 }
648
649 if (Code == bitc::ENTER_SUBBLOCK) {
650 // No known subblocks, always skip them.
651 Stream.ReadSubBlockID();
652 if (Stream.SkipBlock())
653 return Error("Malformed block record");
654 continue;
655 }
656
657 if (Code == bitc::DEFINE_ABBREV) {
658 Stream.ReadAbbrevRecord();
659 continue;
660 }
661
662 // Read a record.
663 Record.clear();
664 switch (Stream.ReadRecord(Code, Record)) {
665 default: // Default behavior: unknown type.
666 break;
667 case bitc::TST_CODE_ENTRY: // TST_ENTRY: [typeid, namechar x N]
668 if (ConvertToString(Record, 1, TypeName))
669 return Error("Invalid TST_ENTRY record");
670 unsigned TypeID = Record[0];
671 if (TypeID >= TypeList.size())
672 return Error("Invalid Type ID in TST_ENTRY record");
673
674 TheModule->addTypeName(TypeName, TypeList[TypeID].get());
675 TypeName.clear();
676 break;
677 }
678 }
679}
680
681bool BitcodeReader::ParseValueSymbolTable() {
682 if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
683 return Error("Malformed block record");
684
685 SmallVector<uint64_t, 64> Record;
686
687 // Read all the records for this value table.
688 SmallString<128> ValueName;
689 while (1) {
690 unsigned Code = Stream.ReadCode();
691 if (Code == bitc::END_BLOCK) {
692 if (Stream.ReadBlockEnd())
693 return Error("Error at end of value symbol table block");
694 return false;
695 }
696 if (Code == bitc::ENTER_SUBBLOCK) {
697 // No known subblocks, always skip them.
698 Stream.ReadSubBlockID();
699 if (Stream.SkipBlock())
700 return Error("Malformed block record");
701 continue;
702 }
703
704 if (Code == bitc::DEFINE_ABBREV) {
705 Stream.ReadAbbrevRecord();
706 continue;
707 }
708
709 // Read a record.
710 Record.clear();
711 switch (Stream.ReadRecord(Code, Record)) {
712 default: // Default behavior: unknown type.
713 break;
714 case bitc::VST_CODE_ENTRY: { // VST_ENTRY: [valueid, namechar x N]
715 if (ConvertToString(Record, 1, ValueName))
716 return Error("Invalid VST_ENTRY record");
717 unsigned ValueID = Record[0];
718 if (ValueID >= ValueList.size())
719 return Error("Invalid Value ID in VST_ENTRY record");
720 Value *V = ValueList[ValueID];
721
722 V->setName(StringRef(ValueName.data(), ValueName.size()));
723 ValueName.clear();
724 break;
725 }
726 case bitc::VST_CODE_BBENTRY: {
727 if (ConvertToString(Record, 1, ValueName))
728 return Error("Invalid VST_BBENTRY record");
729 BasicBlock *BB = getBasicBlock(Record[0]);
730 if (BB == 0)
731 return Error("Invalid BB ID in VST_BBENTRY record");
732
733 BB->setName(StringRef(ValueName.data(), ValueName.size()));
734 ValueName.clear();
735 break;
736 }
737 }
738 }
739}
740
741bool BitcodeReader::ParseMetadata() {
742 unsigned NextValueNo = MDValueList.size();
743
744 if (Stream.EnterSubBlock(bitc::METADATA_BLOCK_ID))
745 return Error("Malformed block record");
746
747 SmallVector<uint64_t, 64> Record;
748
749 // Read all the records.
750 while (1) {
751 unsigned Code = Stream.ReadCode();
752 if (Code == bitc::END_BLOCK) {
753 if (Stream.ReadBlockEnd())
754 return Error("Error at end of PARAMATTR block");
755 return false;
756 }
757
758 if (Code == bitc::ENTER_SUBBLOCK) {
759 // No known subblocks, always skip them.
760 Stream.ReadSubBlockID();
761 if (Stream.SkipBlock())
762 return Error("Malformed block record");
763 continue;
764 }
765
766 if (Code == bitc::DEFINE_ABBREV) {
767 Stream.ReadAbbrevRecord();
768 continue;
769 }
770
771 // Read a record.
772 Record.clear();
773 switch (Stream.ReadRecord(Code, Record)) {
774 default: // Default behavior: ignore.
775 break;
776 case bitc::METADATA_NAME: {
777 // Read named of the named metadata.
778 unsigned NameLength = Record.size();
779 SmallString<8> Name;
780 Name.resize(NameLength);
781 for (unsigned i = 0; i != NameLength; ++i)
782 Name[i] = Record[i];
783 Record.clear();
784 Code = Stream.ReadCode();
785
786 // METADATA_NAME is always followed by METADATA_NAMED_NODE.
787 if (Stream.ReadRecord(Code, Record) != bitc::METADATA_NAMED_NODE)
788 assert ( 0 && "Inavlid Named Metadata record");
789
790 // Read named metadata elements.
791 unsigned Size = Record.size();
792 SmallVector<MetadataBase*, 8> Elts;
793 for (unsigned i = 0; i != Size; ++i) {
794 Value *MD = MDValueList.getValueFwdRef(Record[i]);
795 if (MetadataBase *B = dyn_cast<MetadataBase>(MD))
796 Elts.push_back(B);
797 }
798 Value *V = NamedMDNode::Create(Context, Name.str(), Elts.data(),
799 Elts.size(), TheModule);
800 MDValueList.AssignValue(V, NextValueNo++);
801 break;
802 }
803 case bitc::METADATA_NODE: {
804 if (Record.empty() || Record.size() % 2 == 1)
805 return Error("Invalid METADATA_NODE record");
806
807 unsigned Size = Record.size();
808 SmallVector<Value*, 8> Elts;
809 for (unsigned i = 0; i != Size; i += 2) {
810 const Type *Ty = getTypeByID(Record[i], false);
811 if (Ty->isMetadataTy())
812 Elts.push_back(MDValueList.getValueFwdRef(Record[i+1]));
813 else if (Ty != Type::getVoidTy(Context))
814 Elts.push_back(ValueList.getValueFwdRef(Record[i+1], Ty));
815 else
816 Elts.push_back(NULL);
817 }
818 Value *V = MDNode::get(Context, &Elts[0], Elts.size());
819 MDValueList.AssignValue(V, NextValueNo++);
820 break;
821 }
822 case bitc::METADATA_STRING: {
823 unsigned MDStringLength = Record.size();
824 SmallString<8> String;
825 String.resize(MDStringLength);
826 for (unsigned i = 0; i != MDStringLength; ++i)
827 String[i] = Record[i];
828 Value *V = MDString::get(Context,
829 StringRef(String.data(), String.size()));
830 MDValueList.AssignValue(V, NextValueNo++);
831 break;
832 }
833 case bitc::METADATA_KIND: {
834 unsigned RecordLength = Record.size();
835 if (Record.empty() || RecordLength < 2)
836 return Error("Invalid METADATA_KIND record");
837 SmallString<8> Name;
838 Name.resize(RecordLength-1);
839 unsigned Kind = Record[0];
840 (void) Kind;
841 for (unsigned i = 1; i != RecordLength; ++i)
842 Name[i-1] = Record[i];
843 MetadataContext &TheMetadata = Context.getMetadata();
844 unsigned ExistingKind = TheMetadata.getMDKind(Name.str());
845 if (ExistingKind == 0) {
846 unsigned NewKind = TheMetadata.registerMDKind(Name.str());
847 (void) NewKind;
848 assert (Kind == NewKind
849 && "Unable to handle custom metadata mismatch!");
850 } else {
851 assert (ExistingKind == Kind
852 && "Unable to handle custom metadata mismatch!");
853 }
854 break;
855 }
856 }
857 }
858}
859
860/// DecodeSignRotatedValue - Decode a signed value stored with the sign bit in
861/// the LSB for dense VBR encoding.
862static uint64_t DecodeSignRotatedValue(uint64_t V) {
863 if ((V & 1) == 0)
864 return V >> 1;
865 if (V != 1)
866 return -(V >> 1);
867 // There is no such thing as -0 with integers. "-0" really means MININT.
868 return 1ULL << 63;
869}
870
871/// ResolveGlobalAndAliasInits - Resolve all of the initializers for global
872/// values and aliases that we can.
873bool BitcodeReader::ResolveGlobalAndAliasInits() {
874 std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInitWorklist;
875 std::vector<std::pair<GlobalAlias*, unsigned> > AliasInitWorklist;
876
877 GlobalInitWorklist.swap(GlobalInits);
878 AliasInitWorklist.swap(AliasInits);
879
880 while (!GlobalInitWorklist.empty()) {
881 unsigned ValID = GlobalInitWorklist.back().second;
882 if (ValID >= ValueList.size()) {
883 // Not ready to resolve this yet, it requires something later in the file.
884 GlobalInits.push_back(GlobalInitWorklist.back());
885 } else {
886 if (Constant *C = dyn_cast<Constant>(ValueList[ValID]))
887 GlobalInitWorklist.back().first->setInitializer(C);
888 else
889 return Error("Global variable initializer is not a constant!");
890 }
891 GlobalInitWorklist.pop_back();
892 }
893
894 while (!AliasInitWorklist.empty()) {
895 unsigned ValID = AliasInitWorklist.back().second;
896 if (ValID >= ValueList.size()) {
897 AliasInits.push_back(AliasInitWorklist.back());
898 } else {
899 if (Constant *C = dyn_cast<Constant>(ValueList[ValID]))
900 AliasInitWorklist.back().first->setAliasee(C);
901 else
902 return Error("Alias initializer is not a constant!");
903 }
904 AliasInitWorklist.pop_back();
905 }
906 return false;
907}
908
909bool BitcodeReader::ParseConstants() {
910 if (Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID))
911 return Error("Malformed block record");
912
913 SmallVector<uint64_t, 64> Record;
914
915 // Read all the records for this value table.
916 const Type *CurTy = Type::getInt32Ty(Context);
917 unsigned NextCstNo = ValueList.size();
918 while (1) {
919 unsigned Code = Stream.ReadCode();
920 if (Code == bitc::END_BLOCK)
921 break;
922
923 if (Code == bitc::ENTER_SUBBLOCK) {
924 // No known subblocks, always skip them.
925 Stream.ReadSubBlockID();
926 if (Stream.SkipBlock())
927 return Error("Malformed block record");
928 continue;
929 }
930
931 if (Code == bitc::DEFINE_ABBREV) {
932 Stream.ReadAbbrevRecord();
933 continue;
934 }
935
936 // Read a record.
937 Record.clear();
938 Value *V = 0;
939 unsigned BitCode = Stream.ReadRecord(Code, Record);
940 switch (BitCode) {
941 default: // Default behavior: unknown constant
942 case bitc::CST_CODE_UNDEF: // UNDEF
943 V = UndefValue::get(CurTy);
944 break;
945 case bitc::CST_CODE_SETTYPE: // SETTYPE: [typeid]
946 if (Record.empty())
947 return Error("Malformed CST_SETTYPE record");
948 if (Record[0] >= TypeList.size())
949 return Error("Invalid Type ID in CST_SETTYPE record");
950 CurTy = TypeList[Record[0]];
951 continue; // Skip the ValueList manipulation.
952 case bitc::CST_CODE_NULL: // NULL
953 V = Constant::getNullValue(CurTy);
954 break;
955 case bitc::CST_CODE_INTEGER: // INTEGER: [intval]
956 if (!isa<IntegerType>(CurTy) || Record.empty())
957 return Error("Invalid CST_INTEGER record");
958 V = ConstantInt::get(CurTy, DecodeSignRotatedValue(Record[0]));
959 break;
960 case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval]
961 if (!isa<IntegerType>(CurTy) || Record.empty())
962 return Error("Invalid WIDE_INTEGER record");
963
964 unsigned NumWords = Record.size();
965 SmallVector<uint64_t, 8> Words;
966 Words.resize(NumWords);
967 for (unsigned i = 0; i != NumWords; ++i)
968 Words[i] = DecodeSignRotatedValue(Record[i]);
969 V = ConstantInt::get(Context,
970 APInt(cast<IntegerType>(CurTy)->getBitWidth(),
971 NumWords, &Words[0]));
972 break;
973 }
974 case bitc::CST_CODE_FLOAT: { // FLOAT: [fpval]
975 if (Record.empty())
976 return Error("Invalid FLOAT record");
977 if (CurTy->isFloatTy())
978 V = ConstantFP::get(Context, APFloat(APInt(32, (uint32_t)Record[0])));
979 else if (CurTy->isDoubleTy())
980 V = ConstantFP::get(Context, APFloat(APInt(64, Record[0])));
981 else if (CurTy->isX86_FP80Ty()) {
982 // Bits are not stored the same way as a normal i80 APInt, compensate.
983 uint64_t Rearrange[2];
984 Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16);
985 Rearrange[1] = Record[0] >> 48;
986 V = ConstantFP::get(Context, APFloat(APInt(80, 2, Rearrange)));
987 } else if (CurTy->isFP128Ty())
988 V = ConstantFP::get(Context, APFloat(APInt(128, 2, &Record[0]), true));
989 else if (CurTy->isPPC_FP128Ty())
990 V = ConstantFP::get(Context, APFloat(APInt(128, 2, &Record[0])));
991 else
992 V = UndefValue::get(CurTy);
993 break;
994 }
995
996 case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number]
997 if (Record.empty())
998 return Error("Invalid CST_AGGREGATE record");
999
1000 unsigned Size = Record.size();
1001 std::vector<Constant*> Elts;
1002
1003 if (const StructType *STy = dyn_cast<StructType>(CurTy)) {
1004 for (unsigned i = 0; i != Size; ++i)
1005 Elts.push_back(ValueList.getConstantFwdRef(Record[i],
1006 STy->getElementType(i)));
1007 V = ConstantStruct::get(STy, Elts);
1008 } else if (const ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) {
1009 const Type *EltTy = ATy->getElementType();
1010 for (unsigned i = 0; i != Size; ++i)
1011 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
1012 V = ConstantArray::get(ATy, Elts);
1013 } else if (const VectorType *VTy = dyn_cast<VectorType>(CurTy)) {
1014 const Type *EltTy = VTy->getElementType();
1015 for (unsigned i = 0; i != Size; ++i)
1016 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
1017 V = ConstantVector::get(Elts);
1018 } else {
1019 V = UndefValue::get(CurTy);
1020 }
1021 break;
1022 }
1023 case bitc::CST_CODE_STRING: { // STRING: [values]
1024 if (Record.empty())
1025 return Error("Invalid CST_AGGREGATE record");
1026
1027 const ArrayType *ATy = cast<ArrayType>(CurTy);
1028 const Type *EltTy = ATy->getElementType();
1029
1030 unsigned Size = Record.size();
1031 std::vector<Constant*> Elts;
1032 for (unsigned i = 0; i != Size; ++i)
1033 Elts.push_back(ConstantInt::get(EltTy, Record[i]));
1034 V = ConstantArray::get(ATy, Elts);
1035 break;
1036 }
1037 case bitc::CST_CODE_CSTRING: { // CSTRING: [values]
1038 if (Record.empty())
1039 return Error("Invalid CST_AGGREGATE record");
1040
1041 const ArrayType *ATy = cast<ArrayType>(CurTy);
1042 const Type *EltTy = ATy->getElementType();
1043
1044 unsigned Size = Record.size();
1045 std::vector<Constant*> Elts;
1046 for (unsigned i = 0; i != Size; ++i)
1047 Elts.push_back(ConstantInt::get(EltTy, Record[i]));
1048 Elts.push_back(Constant::getNullValue(EltTy));
1049 V = ConstantArray::get(ATy, Elts);
1050 break;
1051 }
1052 case bitc::CST_CODE_CE_BINOP: { // CE_BINOP: [opcode, opval, opval]
1053 if (Record.size() < 3) return Error("Invalid CE_BINOP record");
1054 int Opc = GetDecodedBinaryOpcode(Record[0], CurTy);
1055 if (Opc < 0) {
1056 V = UndefValue::get(CurTy); // Unknown binop.
1057 } else {
1058 Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy);
1059 Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy);
1060 unsigned Flags = 0;
1061 if (Record.size() >= 4) {
1062 if (Opc == Instruction::Add ||
1063 Opc == Instruction::Sub ||
1064 Opc == Instruction::Mul) {
1065 if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP))
1066 Flags |= OverflowingBinaryOperator::NoSignedWrap;
1067 if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
1068 Flags |= OverflowingBinaryOperator::NoUnsignedWrap;
1069 } else if (Opc == Instruction::SDiv) {
1070 if (Record[3] & (1 << bitc::SDIV_EXACT))
1071 Flags |= SDivOperator::IsExact;
1072 }
1073 }
1074 V = ConstantExpr::get(Opc, LHS, RHS, Flags);
1075 }
1076 break;
1077 }
1078 case bitc::CST_CODE_CE_CAST: { // CE_CAST: [opcode, opty, opval]
1079 if (Record.size() < 3) return Error("Invalid CE_CAST record");
1080 int Opc = GetDecodedCastOpcode(Record[0]);
1081 if (Opc < 0) {
1082 V = UndefValue::get(CurTy); // Unknown cast.
1083 } else {
1084 const Type *OpTy = getTypeByID(Record[1]);
1085 if (!OpTy) return Error("Invalid CE_CAST record");
1086 Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy);
1087 V = ConstantExpr::getCast(Opc, Op, CurTy);
1088 }
1089 break;
1090 }
1091 case bitc::CST_CODE_CE_INBOUNDS_GEP:
1092 case bitc::CST_CODE_CE_GEP: { // CE_GEP: [n x operands]
1093 if (Record.size() & 1) return Error("Invalid CE_GEP record");
1094 SmallVector<Constant*, 16> Elts;
1095 for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
1096 const Type *ElTy = getTypeByID(Record[i]);
1097 if (!ElTy) return Error("Invalid CE_GEP record");
1098 Elts.push_back(ValueList.getConstantFwdRef(Record[i+1], ElTy));
1099 }
1100 if (BitCode == bitc::CST_CODE_CE_INBOUNDS_GEP)
1101 V = ConstantExpr::getInBoundsGetElementPtr(Elts[0], &Elts[1],
1102 Elts.size()-1);
1103 else
1104 V = ConstantExpr::getGetElementPtr(Elts[0], &Elts[1],
1105 Elts.size()-1);
1106 break;
1107 }
1108 case bitc::CST_CODE_CE_SELECT: // CE_SELECT: [opval#, opval#, opval#]
1109 if (Record.size() < 3) return Error("Invalid CE_SELECT record");
1110 V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0],
1111 Type::getInt1Ty(Context)),
1112 ValueList.getConstantFwdRef(Record[1],CurTy),
1113 ValueList.getConstantFwdRef(Record[2],CurTy));
1114 break;
1115 case bitc::CST_CODE_CE_EXTRACTELT: { // CE_EXTRACTELT: [opty, opval, opval]
1116 if (Record.size() < 3) return Error("Invalid CE_EXTRACTELT record");
1117 const VectorType *OpTy =
1118 dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
1119 if (OpTy == 0) return Error("Invalid CE_EXTRACTELT record");
1120 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
1121 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context));
1122 V = ConstantExpr::getExtractElement(Op0, Op1);
1123 break;
1124 }
1125 case bitc::CST_CODE_CE_INSERTELT: { // CE_INSERTELT: [opval, opval, opval]
1126 const VectorType *OpTy = dyn_cast<VectorType>(CurTy);
1127 if (Record.size() < 3 || OpTy == 0)
1128 return Error("Invalid CE_INSERTELT record");
1129 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
1130 Constant *Op1 = ValueList.getConstantFwdRef(Record[1],
1131 OpTy->getElementType());
1132 Constant *Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context));
1133 V = ConstantExpr::getInsertElement(Op0, Op1, Op2);
1134 break;
1135 }
1136 case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval]
1137 const VectorType *OpTy = dyn_cast<VectorType>(CurTy);
1138 if (Record.size() < 3 || OpTy == 0)
1139 return Error("Invalid CE_SHUFFLEVEC record");
1140 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
1141 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy);
1142 const Type *ShufTy = VectorType::get(Type::getInt32Ty(Context),
1143 OpTy->getNumElements());
1144 Constant *Op2 = ValueList.getConstantFwdRef(Record[2], ShufTy);
1145 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2);
1146 break;
1147 }
1148 case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval]
1149 const VectorType *RTy = dyn_cast<VectorType>(CurTy);
1150 const VectorType *OpTy = dyn_cast<VectorType>(getTypeByID(Record[0]));
1151 if (Record.size() < 4 || RTy == 0 || OpTy == 0)
1152 return Error("Invalid CE_SHUFVEC_EX record");
1153 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
1154 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy);
1155 const Type *ShufTy = VectorType::get(Type::getInt32Ty(Context),
1156 RTy->getNumElements());
1157 Constant *Op2 = ValueList.getConstantFwdRef(Record[3], ShufTy);
1158 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2);
1159 break;
1160 }
1161 case bitc::CST_CODE_CE_CMP: { // CE_CMP: [opty, opval, opval, pred]
1162 if (Record.size() < 4) return Error("Invalid CE_CMP record");
1163 const Type *OpTy = getTypeByID(Record[0]);
1164 if (OpTy == 0) return Error("Invalid CE_CMP record");
1165 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
1166 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy);
1167
1168 if (OpTy->isFloatingPoint())
1169 V = ConstantExpr::getFCmp(Record[3], Op0, Op1);
1170 else
1171 V = ConstantExpr::getICmp(Record[3], Op0, Op1);
1172 break;
1173 }
1174 case bitc::CST_CODE_INLINEASM: {
1175 if (Record.size() < 2) return Error("Invalid INLINEASM record");
1176 std::string AsmStr, ConstrStr;
1177 bool HasSideEffects = Record[0] & 1;
1178 bool IsAlignStack = Record[0] >> 1;
1179 unsigned AsmStrSize = Record[1];
1180 if (2+AsmStrSize >= Record.size())
1181 return Error("Invalid INLINEASM record");
1182 unsigned ConstStrSize = Record[2+AsmStrSize];
1183 if (3+AsmStrSize+ConstStrSize > Record.size())
1184 return Error("Invalid INLINEASM record");
1185
1186 for (unsigned i = 0; i != AsmStrSize; ++i)
1187 AsmStr += (char)Record[2+i];
1188 for (unsigned i = 0; i != ConstStrSize; ++i)
1189 ConstrStr += (char)Record[3+AsmStrSize+i];
1190 const PointerType *PTy = cast<PointerType>(CurTy);
1191 V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()),
1192 AsmStr, ConstrStr, HasSideEffects, IsAlignStack);
1193 break;
1194 }
1195 case bitc::CST_CODE_BLOCKADDRESS:{
1196 if (Record.size() < 3) return Error("Invalid CE_BLOCKADDRESS record");
1197 const Type *FnTy = getTypeByID(Record[0]);
1198 if (FnTy == 0) return Error("Invalid CE_BLOCKADDRESS record");
1199 Function *Fn =
1200 dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy));
1201 if (Fn == 0) return Error("Invalid CE_BLOCKADDRESS record");
1202
1203 GlobalVariable *FwdRef = new GlobalVariable(*Fn->getParent(),
1204 Type::getInt8Ty(Context),
1205 false, GlobalValue::InternalLinkage,
1206 0, "");
1207 BlockAddrFwdRefs[Fn].push_back(std::make_pair(Record[2], FwdRef));
1208 V = FwdRef;
1209 break;
1210 }
1211 }
1212
1213 ValueList.AssignValue(V, NextCstNo);
1214 ++NextCstNo;
1215 }
1216
1217 if (NextCstNo != ValueList.size())
1218 return Error("Invalid constant reference!");
1219
1220 if (Stream.ReadBlockEnd())
1221 return Error("Error at end of constants block");
1222
1223 // Once all the constants have been read, go through and resolve forward
1224 // references.
1225 ValueList.ResolveConstantForwardRefs();
1226 return false;
1227}
1228
1229/// RememberAndSkipFunctionBody - When we see the block for a function body,
1230/// remember where it is and then skip it. This lets us lazily deserialize the
1231/// functions.
1232bool BitcodeReader::RememberAndSkipFunctionBody() {
1233 // Get the function we are talking about.
1234 if (FunctionsWithBodies.empty())
1235 return Error("Insufficient function protos");
1236
1237 Function *Fn = FunctionsWithBodies.back();
1238 FunctionsWithBodies.pop_back();
1239
1240 // Save the current stream state.
1241 uint64_t CurBit = Stream.GetCurrentBitNo();
1242 DeferredFunctionInfo[Fn] = std::make_pair(CurBit, Fn->getLinkage());
1243
1244 // Set the functions linkage to GhostLinkage so we know it is lazily
1245 // deserialized.
1246 Fn->setLinkage(GlobalValue::GhostLinkage);
1247
1248 // Skip over the function block for now.
1249 if (Stream.SkipBlock())
1250 return Error("Malformed block record");
1251 return false;
1252}
1253
1254bool BitcodeReader::ParseModule(const std::string &ModuleID) {
1255 // Reject multiple MODULE_BLOCK's in a single bitstream.
1256 if (TheModule)
1257 return Error("Multiple MODULE_BLOCKs in same stream");
1258
1259 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
1260 return Error("Malformed block record");
1261
1262 // Otherwise, create the module.
1263 TheModule = new Module(ModuleID, Context);
1264
1265 SmallVector<uint64_t, 64> Record;
1266 std::vector<std::string> SectionTable;
1267 std::vector<std::string> GCTable;
1268
1269 // Read all the records for this module.
1270 while (!Stream.AtEndOfStream()) {
1271 unsigned Code = Stream.ReadCode();
1272 if (Code == bitc::END_BLOCK) {
1273 if (Stream.ReadBlockEnd())
1274 return Error("Error at end of module block");
1275
1276 // Patch the initializers for globals and aliases up.
1277 ResolveGlobalAndAliasInits();
1278 if (!GlobalInits.empty() || !AliasInits.empty())
1279 return Error("Malformed global initializer set");
1280 if (!FunctionsWithBodies.empty())
1281 return Error("Too few function bodies found");
1282
1283 // Look for intrinsic functions which need to be upgraded at some point
1284 for (Module::iterator FI = TheModule->begin(), FE = TheModule->end();
1285 FI != FE; ++FI) {
1286 Function* NewFn;
1287 if (UpgradeIntrinsicFunction(FI, NewFn))
1288 UpgradedIntrinsics.push_back(std::make_pair(FI, NewFn));
1289 }
1290
1291 // Force deallocation of memory for these vectors to favor the client that
1292 // want lazy deserialization.
1293 std::vector<std::pair<GlobalVariable*, unsigned> >().swap(GlobalInits);
1294 std::vector<std::pair<GlobalAlias*, unsigned> >().swap(AliasInits);
1295 std::vector<Function*>().swap(FunctionsWithBodies);
1296 return false;
1297 }
1298
1299 if (Code == bitc::ENTER_SUBBLOCK) {
1300 switch (Stream.ReadSubBlockID()) {
1301 default: // Skip unknown content.
1302 if (Stream.SkipBlock())
1303 return Error("Malformed block record");
1304 break;
1305 case bitc::BLOCKINFO_BLOCK_ID:
1306 if (Stream.ReadBlockInfoBlock())
1307 return Error("Malformed BlockInfoBlock");
1308 break;
1309 case bitc::PARAMATTR_BLOCK_ID:
1310 if (ParseAttributeBlock())
1311 return true;
1312 break;
1313 case bitc::TYPE_BLOCK_ID:
1314 if (ParseTypeTable())
1315 return true;
1316 break;
1317 case bitc::TYPE_SYMTAB_BLOCK_ID:
1318 if (ParseTypeSymbolTable())
1319 return true;
1320 break;
1321 case bitc::VALUE_SYMTAB_BLOCK_ID:
1322 if (ParseValueSymbolTable())
1323 return true;
1324 break;
1325 case bitc::CONSTANTS_BLOCK_ID:
1326 if (ParseConstants() || ResolveGlobalAndAliasInits())
1327 return true;
1328 break;
1329 case bitc::METADATA_BLOCK_ID:
1330 if (ParseMetadata())
1331 return true;
1332 break;
1333 case bitc::FUNCTION_BLOCK_ID:
1334 // If this is the first function body we've seen, reverse the
1335 // FunctionsWithBodies list.
1336 if (!HasReversedFunctionsWithBodies) {
1337 std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end());
1338 HasReversedFunctionsWithBodies = true;
1339 }
1340
1341 if (RememberAndSkipFunctionBody())
1342 return true;
1343 break;
1344 }
1345 continue;
1346 }
1347
1348 if (Code == bitc::DEFINE_ABBREV) {
1349 Stream.ReadAbbrevRecord();
1350 continue;
1351 }
1352
1353 // Read a record.
1354 switch (Stream.ReadRecord(Code, Record)) {
1355 default: break; // Default behavior, ignore unknown content.
1356 case bitc::MODULE_CODE_VERSION: // VERSION: [version#]
1357 if (Record.size() < 1)
1358 return Error("Malformed MODULE_CODE_VERSION");
1359 // Only version #0 is supported so far.
1360 if (Record[0] != 0)
1361 return Error("Unknown bitstream version!");
1362 break;
1363 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N]
1364 std::string S;
1365 if (ConvertToString(Record, 0, S))
1366 return Error("Invalid MODULE_CODE_TRIPLE record");
1367 TheModule->setTargetTriple(S);
1368 break;
1369 }
1370 case bitc::MODULE_CODE_DATALAYOUT: { // DATALAYOUT: [strchr x N]
1371 std::string S;
1372 if (ConvertToString(Record, 0, S))
1373 return Error("Invalid MODULE_CODE_DATALAYOUT record");
1374 TheModule->setDataLayout(S);
1375 break;
1376 }
1377 case bitc::MODULE_CODE_ASM: { // ASM: [strchr x N]
1378 std::string S;
1379 if (ConvertToString(Record, 0, S))
1380 return Error("Invalid MODULE_CODE_ASM record");
1381 TheModule->setModuleInlineAsm(S);
1382 break;
1383 }
1384 case bitc::MODULE_CODE_DEPLIB: { // DEPLIB: [strchr x N]
1385 std::string S;
1386 if (ConvertToString(Record, 0, S))
1387 return Error("Invalid MODULE_CODE_DEPLIB record");
1388 TheModule->addLibrary(S);
1389 break;
1390 }
1391 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N]
1392 std::string S;
1393 if (ConvertToString(Record, 0, S))
1394 return Error("Invalid MODULE_CODE_SECTIONNAME record");
1395 SectionTable.push_back(S);
1396 break;
1397 }
1398 case bitc::MODULE_CODE_GCNAME: { // SECTIONNAME: [strchr x N]
1399 std::string S;
1400 if (ConvertToString(Record, 0, S))
1401 return Error("Invalid MODULE_CODE_GCNAME record");
1402 GCTable.push_back(S);
1403 break;
1404 }
1405 // GLOBALVAR: [pointer type, isconst, initid,
1406 // linkage, alignment, section, visibility, threadlocal]
1407 case bitc::MODULE_CODE_GLOBALVAR: {
1408 if (Record.size() < 6)
1409 return Error("Invalid MODULE_CODE_GLOBALVAR record");
1410 const Type *Ty = getTypeByID(Record[0]);
1411 if (!isa<PointerType>(Ty))
1412 return Error("Global not a pointer type!");
1413 unsigned AddressSpace = cast<PointerType>(Ty)->getAddressSpace();
1414 Ty = cast<PointerType>(Ty)->getElementType();
1415
1416 bool isConstant = Record[1];
1417 GlobalValue::LinkageTypes Linkage = GetDecodedLinkage(Record[3]);
1418 unsigned Alignment = (1 << Record[4]) >> 1;
1419 std::string Section;
1420 if (Record[5]) {
1421 if (Record[5]-1 >= SectionTable.size())
1422 return Error("Invalid section ID");
1423 Section = SectionTable[Record[5]-1];
1424 }
1425 GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility;
1426 if (Record.size() > 6)
1427 Visibility = GetDecodedVisibility(Record[6]);
1428 bool isThreadLocal = false;
1429 if (Record.size() > 7)
1430 isThreadLocal = Record[7];
1431
1432 GlobalVariable *NewGV =
1433 new GlobalVariable(*TheModule, Ty, isConstant, Linkage, 0, "", 0,
1434 isThreadLocal, AddressSpace);
1435 NewGV->setAlignment(Alignment);
1436 if (!Section.empty())
1437 NewGV->setSection(Section);
1438 NewGV->setVisibility(Visibility);
1439 NewGV->setThreadLocal(isThreadLocal);
1440
1441 ValueList.push_back(NewGV);
1442
1443 // Remember which value to use for the global initializer.
1444 if (unsigned InitID = Record[2])
1445 GlobalInits.push_back(std::make_pair(NewGV, InitID-1));
1446 break;
1447 }
1448 // FUNCTION: [type, callingconv, isproto, linkage, paramattr,
1449 // alignment, section, visibility, gc]
1450 case bitc::MODULE_CODE_FUNCTION: {
1451 if (Record.size() < 8)
1452 return Error("Invalid MODULE_CODE_FUNCTION record");
1453 const Type *Ty = getTypeByID(Record[0]);
1454 if (!isa<PointerType>(Ty))
1455 return Error("Function not a pointer type!");
1456 const FunctionType *FTy =
1457 dyn_cast<FunctionType>(cast<PointerType>(Ty)->getElementType());
1458 if (!FTy)
1459 return Error("Function not a pointer to function type!");
1460
1461 Function *Func = Function::Create(FTy, GlobalValue::ExternalLinkage,
1462 "", TheModule);
1463
1464 Func->setCallingConv(static_cast<CallingConv::ID>(Record[1]));
1465 bool isProto = Record[2];
1466 Func->setLinkage(GetDecodedLinkage(Record[3]));
1467 Func->setAttributes(getAttributes(Record[4]));
1468
1469 Func->setAlignment((1 << Record[5]) >> 1);
1470 if (Record[6]) {
1471 if (Record[6]-1 >= SectionTable.size())
1472 return Error("Invalid section ID");
1473 Func->setSection(SectionTable[Record[6]-1]);
1474 }
1475 Func->setVisibility(GetDecodedVisibility(Record[7]));
1476 if (Record.size() > 8 && Record[8]) {
1477 if (Record[8]-1 > GCTable.size())
1478 return Error("Invalid GC ID");
1479 Func->setGC(GCTable[Record[8]-1].c_str());
1480 }
1481 ValueList.push_back(Func);
1482
1483 // If this is a function with a body, remember the prototype we are
1484 // creating now, so that we can match up the body with them later.
1485 if (!isProto)
1486 FunctionsWithBodies.push_back(Func);
1487 break;
1488 }
1489 // ALIAS: [alias type, aliasee val#, linkage]
1490 // ALIAS: [alias type, aliasee val#, linkage, visibility]
1491 case bitc::MODULE_CODE_ALIAS: {
1492 if (Record.size() < 3)
1493 return Error("Invalid MODULE_ALIAS record");
1494 const Type *Ty = getTypeByID(Record[0]);
1495 if (!isa<PointerType>(Ty))
1496 return Error("Function not a pointer type!");
1497
1498 GlobalAlias *NewGA = new GlobalAlias(Ty, GetDecodedLinkage(Record[2]),
1499 "", 0, TheModule);
1500 // Old bitcode files didn't have visibility field.
1501 if (Record.size() > 3)
1502 NewGA->setVisibility(GetDecodedVisibility(Record[3]));
1503 ValueList.push_back(NewGA);
1504 AliasInits.push_back(std::make_pair(NewGA, Record[1]));
1505 break;
1506 }
1507 /// MODULE_CODE_PURGEVALS: [numvals]
1508 case bitc::MODULE_CODE_PURGEVALS:
1509 // Trim down the value list to the specified size.
1510 if (Record.size() < 1 || Record[0] > ValueList.size())
1511 return Error("Invalid MODULE_PURGEVALS record");
1512 ValueList.shrinkTo(Record[0]);
1513 break;
1514 }
1515 Record.clear();
1516 }
1517
1518 return Error("Premature end of bitstream");
1519}
1520
1521bool BitcodeReader::ParseBitcode() {
1522 TheModule = 0;
1523
1524 if (Buffer->getBufferSize() & 3)
1525 return Error("Bitcode stream should be a multiple of 4 bytes in length");
1526
1527 unsigned char *BufPtr = (unsigned char *)Buffer->getBufferStart();
1528 unsigned char *BufEnd = BufPtr+Buffer->getBufferSize();
1529
1530 // If we have a wrapper header, parse it and ignore the non-bc file contents.
1531 // The magic number is 0x0B17C0DE stored in little endian.
1532 if (isBitcodeWrapper(BufPtr, BufEnd))
1533 if (SkipBitcodeWrapperHeader(BufPtr, BufEnd))
1534 return Error("Invalid bitcode wrapper header");
1535
1536 StreamFile.init(BufPtr, BufEnd);
1537 Stream.init(StreamFile);
1538
1539 // Sniff for the signature.
1540 if (Stream.Read(8) != 'B' ||
1541 Stream.Read(8) != 'C' ||
1542 Stream.Read(4) != 0x0 ||
1543 Stream.Read(4) != 0xC ||
1544 Stream.Read(4) != 0xE ||
1545 Stream.Read(4) != 0xD)
1546 return Error("Invalid bitcode signature");
1547
1548 // We expect a number of well-defined blocks, though we don't necessarily
1549 // need to understand them all.
1550 while (!Stream.AtEndOfStream()) {
1551 unsigned Code = Stream.ReadCode();
1552
1553 if (Code != bitc::ENTER_SUBBLOCK)
1554 return Error("Invalid record at top-level");
1555
1556 unsigned BlockID = Stream.ReadSubBlockID();
1557
1558 // We only know the MODULE subblock ID.
1559 switch (BlockID) {
1560 case bitc::BLOCKINFO_BLOCK_ID:
1561 if (Stream.ReadBlockInfoBlock())
1562 return Error("Malformed BlockInfoBlock");
1563 break;
1564 case bitc::MODULE_BLOCK_ID:
1565 if (ParseModule(Buffer->getBufferIdentifier()))
1566 return true;
1567 break;
1568 default:
1569 if (Stream.SkipBlock())
1570 return Error("Malformed block record");
1571 break;
1572 }
1573 }
1574
1575 return false;
1576}
1577
1578/// ParseMetadataAttachment - Parse metadata attachments.
1579bool BitcodeReader::ParseMetadataAttachment() {
1580 if (Stream.EnterSubBlock(bitc::METADATA_ATTACHMENT_ID))
1581 return Error("Malformed block record");
1582
1583 MetadataContext &TheMetadata = Context.getMetadata();
1584 SmallVector<uint64_t, 64> Record;
1585 while(1) {
1586 unsigned Code = Stream.ReadCode();
1587 if (Code == bitc::END_BLOCK) {
1588 if (Stream.ReadBlockEnd())
1589 return Error("Error at end of PARAMATTR block");
1590 break;
1591 }
1592 if (Code == bitc::DEFINE_ABBREV) {
1593 Stream.ReadAbbrevRecord();
1594 continue;
1595 }
1596 // Read a metadata attachment record.
1597 Record.clear();
1598 switch (Stream.ReadRecord(Code, Record)) {
1599 default: // Default behavior: ignore.
1600 break;
1601 case bitc::METADATA_ATTACHMENT: {
1602 unsigned RecordLength = Record.size();
1603 if (Record.empty() || (RecordLength - 1) % 2 == 1)
1604 return Error ("Invalid METADATA_ATTACHMENT reader!");
1605 Instruction *Inst = InstructionList[Record[0]];
1606 for (unsigned i = 1; i != RecordLength; i = i+2) {
1607 unsigned Kind = Record[i];
1608 Value *Node = MDValueList.getValueFwdRef(Record[i+1]);
1609 TheMetadata.addMD(Kind, cast<MDNode>(Node), Inst);
1610 }
1611 break;
1612 }
1613 }
1614 }
1615 return false;
1616}
1617
1618/// ParseFunctionBody - Lazily parse the specified function body block.
1619bool BitcodeReader::ParseFunctionBody(Function *F) {
1620 if (Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID))
1621 return Error("Malformed block record");
1622
1623 unsigned ModuleValueListSize = ValueList.size();
1624
1625 // Add all the function arguments to the value table.
1626 for(Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E; ++I)
1627 ValueList.push_back(I);
1628
1629 unsigned NextValueNo = ValueList.size();
1630 BasicBlock *CurBB = 0;
1631 unsigned CurBBNo = 0;
1632
1633 // Read all the records.
1634 SmallVector<uint64_t, 64> Record;
1635 while (1) {
1636 unsigned Code = Stream.ReadCode();
1637 if (Code == bitc::END_BLOCK) {
1638 if (Stream.ReadBlockEnd())
1639 return Error("Error at end of function block");
1640 break;
1641 }
1642
1643 if (Code == bitc::ENTER_SUBBLOCK) {
1644 switch (Stream.ReadSubBlockID()) {
1645 default: // Skip unknown content.
1646 if (Stream.SkipBlock())
1647 return Error("Malformed block record");
1648 break;
1649 case bitc::CONSTANTS_BLOCK_ID:
1650 if (ParseConstants()) return true;
1651 NextValueNo = ValueList.size();
1652 break;
1653 case bitc::VALUE_SYMTAB_BLOCK_ID:
1654 if (ParseValueSymbolTable()) return true;
1655 break;
1656 case bitc::METADATA_ATTACHMENT_ID:
1657 if (ParseMetadataAttachment()) return true;
1658 break;
1659 }
1660 continue;
1661 }
1662
1663 if (Code == bitc::DEFINE_ABBREV) {
1664 Stream.ReadAbbrevRecord();
1665 continue;
1666 }
1667
1668 // Read a record.
1669 Record.clear();
1670 Instruction *I = 0;
1671 unsigned BitCode = Stream.ReadRecord(Code, Record);
1672 switch (BitCode) {
1673 default: // Default behavior: reject
1674 return Error("Unknown instruction");
1675 case bitc::FUNC_CODE_DECLAREBLOCKS: // DECLAREBLOCKS: [nblocks]
1676 if (Record.size() < 1 || Record[0] == 0)
1677 return Error("Invalid DECLAREBLOCKS record");
1678 // Create all the basic blocks for the function.
1679 FunctionBBs.resize(Record[0]);
1680 for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i)
1681 FunctionBBs[i] = BasicBlock::Create(Context, "", F);
1682 CurBB = FunctionBBs[0];
1683 continue;
1684
1685 case bitc::FUNC_CODE_INST_BINOP: { // BINOP: [opval, ty, opval, opcode]
1686 unsigned OpNum = 0;
1687 Value *LHS, *RHS;
1688 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
1689 getValue(Record, OpNum, LHS->getType(), RHS) ||
1690 OpNum+1 > Record.size())
1691 return Error("Invalid BINOP record");
1692
1693 int Opc = GetDecodedBinaryOpcode(Record[OpNum++], LHS->getType());
1694 if (Opc == -1) return Error("Invalid BINOP record");
1695 I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
1696 InstructionList.push_back(I);
1697 if (OpNum < Record.size()) {
1698 if (Opc == Instruction::Add ||
1699 Opc == Instruction::Sub ||
1700 Opc == Instruction::Mul) {
1701 if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP))
1702 cast<BinaryOperator>(I)->setHasNoSignedWrap(true);
1703 if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
1704 cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true);
1705 } else if (Opc == Instruction::SDiv) {
1706 if (Record[3] & (1 << bitc::SDIV_EXACT))
1707 cast<BinaryOperator>(I)->setIsExact(true);
1708 }
1709 }
1710 break;
1711 }
1712 case bitc::FUNC_CODE_INST_CAST: { // CAST: [opval, opty, destty, castopc]
1713 unsigned OpNum = 0;
1714 Value *Op;
1715 if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
1716 OpNum+2 != Record.size())
1717 return Error("Invalid CAST record");
1718
1719 const Type *ResTy = getTypeByID(Record[OpNum]);
1720 int Opc = GetDecodedCastOpcode(Record[OpNum+1]);
1721 if (Opc == -1 || ResTy == 0)
1722 return Error("Invalid CAST record");
1723 I = CastInst::Create((Instruction::CastOps)Opc, Op, ResTy);
1724 InstructionList.push_back(I);
1725 break;
1726 }
1727 case bitc::FUNC_CODE_INST_INBOUNDS_GEP:
1728 case bitc::FUNC_CODE_INST_GEP: { // GEP: [n x operands]
1729 unsigned OpNum = 0;
1730 Value *BasePtr;
1731 if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr))
1732 return Error("Invalid GEP record");
1733
1734 SmallVector<Value*, 16> GEPIdx;
1735 while (OpNum != Record.size()) {
1736 Value *Op;
1737 if (getValueTypePair(Record, OpNum, NextValueNo, Op))
1738 return Error("Invalid GEP record");
1739 GEPIdx.push_back(Op);
1740 }
1741
1742 I = GetElementPtrInst::Create(BasePtr, GEPIdx.begin(), GEPIdx.end());
1743 InstructionList.push_back(I);
1744 if (BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP)
1745 cast<GetElementPtrInst>(I)->setIsInBounds(true);
1746 break;
1747 }
1748
1749 case bitc::FUNC_CODE_INST_EXTRACTVAL: {
1750 // EXTRACTVAL: [opty, opval, n x indices]
1751 unsigned OpNum = 0;
1752 Value *Agg;
1753 if (getValueTypePair(Record, OpNum, NextValueNo, Agg))
1754 return Error("Invalid EXTRACTVAL record");
1755
1756 SmallVector<unsigned, 4> EXTRACTVALIdx;
1757 for (unsigned RecSize = Record.size();
1758 OpNum != RecSize; ++OpNum) {
1759 uint64_t Index = Record[OpNum];
1760 if ((unsigned)Index != Index)
1761 return Error("Invalid EXTRACTVAL index");
1762 EXTRACTVALIdx.push_back((unsigned)Index);
1763 }
1764
1765 I = ExtractValueInst::Create(Agg,
1766 EXTRACTVALIdx.begin(), EXTRACTVALIdx.end());
1767 InstructionList.push_back(I);
1768 break;
1769 }
1770
1771 case bitc::FUNC_CODE_INST_INSERTVAL: {
1772 // INSERTVAL: [opty, opval, opty, opval, n x indices]
1773 unsigned OpNum = 0;
1774 Value *Agg;
1775 if (getValueTypePair(Record, OpNum, NextValueNo, Agg))
1776 return Error("Invalid INSERTVAL record");
1777 Value *Val;
1778 if (getValueTypePair(Record, OpNum, NextValueNo, Val))
1779 return Error("Invalid INSERTVAL record");
1780
1781 SmallVector<unsigned, 4> INSERTVALIdx;
1782 for (unsigned RecSize = Record.size();
1783 OpNum != RecSize; ++OpNum) {
1784 uint64_t Index = Record[OpNum];
1785 if ((unsigned)Index != Index)
1786 return Error("Invalid INSERTVAL index");
1787 INSERTVALIdx.push_back((unsigned)Index);
1788 }
1789
1790 I = InsertValueInst::Create(Agg, Val,
1791 INSERTVALIdx.begin(), INSERTVALIdx.end());
1792 InstructionList.push_back(I);
1793 break;
1794 }
1795
1796 case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval]
1797 // obsolete form of select
1798 // handles select i1 ... in old bitcode
1799 unsigned OpNum = 0;
1800 Value *TrueVal, *FalseVal, *Cond;
1801 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) ||
1802 getValue(Record, OpNum, TrueVal->getType(), FalseVal) ||
1803 getValue(Record, OpNum, Type::getInt1Ty(Context), Cond))
1804 return Error("Invalid SELECT record");
1805
1806 I = SelectInst::Create(Cond, TrueVal, FalseVal);
1807 InstructionList.push_back(I);
1808 break;
1809 }
1810
1811 case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred]
1812 // new form of select
1813 // handles select i1 or select [N x i1]
1814 unsigned OpNum = 0;
1815 Value *TrueVal, *FalseVal, *Cond;
1816 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) ||
1817 getValue(Record, OpNum, TrueVal->getType(), FalseVal) ||
1818 getValueTypePair(Record, OpNum, NextValueNo, Cond))
1819 return Error("Invalid SELECT record");
1820
1821 // select condition can be either i1 or [N x i1]
1822 if (const VectorType* vector_type =
1823 dyn_cast<const VectorType>(Cond->getType())) {
1824 // expect <n x i1>
1825 if (vector_type->getElementType() != Type::getInt1Ty(Context))
1826 return Error("Invalid SELECT condition type");
1827 } else {
1828 // expect i1
1829 if (Cond->getType() != Type::getInt1Ty(Context))
1830 return Error("Invalid SELECT condition type");
1831 }
1832
1833 I = SelectInst::Create(Cond, TrueVal, FalseVal);
1834 InstructionList.push_back(I);
1835 break;
1836 }
1837
1838 case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval]
1839 unsigned OpNum = 0;
1840 Value *Vec, *Idx;
1841 if (getValueTypePair(Record, OpNum, NextValueNo, Vec) ||
1842 getValue(Record, OpNum, Type::getInt32Ty(Context), Idx))
1843 return Error("Invalid EXTRACTELT record");
1844 I = ExtractElementInst::Create(Vec, Idx);
1845 InstructionList.push_back(I);
1846 break;
1847 }
1848
1849 case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval]
1850 unsigned OpNum = 0;
1851 Value *Vec, *Elt, *Idx;
1852 if (getValueTypePair(Record, OpNum, NextValueNo, Vec) ||
1853 getValue(Record, OpNum,
1854 cast<VectorType>(Vec->getType())->getElementType(), Elt) ||
1855 getValue(Record, OpNum, Type::getInt32Ty(Context), Idx))
1856 return Error("Invalid INSERTELT record");
1857 I = InsertElementInst::Create(Vec, Elt, Idx);
1858 InstructionList.push_back(I);
1859 break;
1860 }
1861
1862 case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval]
1863 unsigned OpNum = 0;
1864 Value *Vec1, *Vec2, *Mask;
1865 if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) ||
1866 getValue(Record, OpNum, Vec1->getType(), Vec2))
1867 return Error("Invalid SHUFFLEVEC record");
1868
1869 if (getValueTypePair(Record, OpNum, NextValueNo, Mask))
1870 return Error("Invalid SHUFFLEVEC record");
1871 I = new ShuffleVectorInst(Vec1, Vec2, Mask);
1872 InstructionList.push_back(I);
1873 break;
1874 }
1875
1876 case bitc::FUNC_CODE_INST_CMP: // CMP: [opty, opval, opval, pred]
1877 // Old form of ICmp/FCmp returning bool
1878 // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were
1879 // both legal on vectors but had different behaviour.
1880 case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred]
1881 // FCmp/ICmp returning bool or vector of bool
1882
1883 unsigned OpNum = 0;
1884 Value *LHS, *RHS;
1885 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
1886 getValue(Record, OpNum, LHS->getType(), RHS) ||
1887 OpNum+1 != Record.size())
1888 return Error("Invalid CMP record");
1889
1890 if (LHS->getType()->isFPOrFPVector())
1891 I = new FCmpInst((FCmpInst::Predicate)Record[OpNum], LHS, RHS);
1892 else
1893 I = new ICmpInst((ICmpInst::Predicate)Record[OpNum], LHS, RHS);
1894 InstructionList.push_back(I);
1895 break;
1896 }
1897
1898 case bitc::FUNC_CODE_INST_GETRESULT: { // GETRESULT: [ty, val, n]
1899 if (Record.size() != 2)
1900 return Error("Invalid GETRESULT record");
1901 unsigned OpNum = 0;
1902 Value *Op;
1903 getValueTypePair(Record, OpNum, NextValueNo, Op);
1904 unsigned Index = Record[1];
1905 I = ExtractValueInst::Create(Op, Index);
1906 InstructionList.push_back(I);
1907 break;
1908 }
1909
1910 case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>]
1911 {
1912 unsigned Size = Record.size();
1913 if (Size == 0) {
1914 I = ReturnInst::Create(Context);
1915 InstructionList.push_back(I);
1916 break;
1917 }
1918
1919 unsigned OpNum = 0;
1920 SmallVector<Value *,4> Vs;
1921 do {
1922 Value *Op = NULL;
1923 if (getValueTypePair(Record, OpNum, NextValueNo, Op))
1924 return Error("Invalid RET record");
1925 Vs.push_back(Op);
1926 } while(OpNum != Record.size());
1927
1928 const Type *ReturnType = F->getReturnType();
1929 if (Vs.size() > 1 ||
1930 (isa<StructType>(ReturnType) &&
1931 (Vs.empty() || Vs[0]->getType() != ReturnType))) {
1932 Value *RV = UndefValue::get(ReturnType);
1933 for (unsigned i = 0, e = Vs.size(); i != e; ++i) {
1934 I = InsertValueInst::Create(RV, Vs[i], i, "mrv");
1935 InstructionList.push_back(I);
1936 CurBB->getInstList().push_back(I);
1937 ValueList.AssignValue(I, NextValueNo++);
1938 RV = I;
1939 }
1940 I = ReturnInst::Create(Context, RV);
1941 InstructionList.push_back(I);
1942 break;
1943 }
1944
1945 I = ReturnInst::Create(Context, Vs[0]);
1946 InstructionList.push_back(I);
1947 break;
1948 }
1949 case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#]
1950 if (Record.size() != 1 && Record.size() != 3)
1951 return Error("Invalid BR record");
1952 BasicBlock *TrueDest = getBasicBlock(Record[0]);
1953 if (TrueDest == 0)
1954 return Error("Invalid BR record");
1955
1956 if (Record.size() == 1) {
1957 I = BranchInst::Create(TrueDest);
1958 InstructionList.push_back(I);
1959 }
1960 else {
1961 BasicBlock *FalseDest = getBasicBlock(Record[1]);
1962 Value *Cond = getFnValueByID(Record[2], Type::getInt1Ty(Context));
1963 if (FalseDest == 0 || Cond == 0)
1964 return Error("Invalid BR record");
1965 I = BranchInst::Create(TrueDest, FalseDest, Cond);
1966 InstructionList.push_back(I);
1967 }
1968 break;
1969 }
1970 case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...]
1971 if (Record.size() < 3 || (Record.size() & 1) == 0)
1972 return Error("Invalid SWITCH record");
1973 const Type *OpTy = getTypeByID(Record[0]);
1974 Value *Cond = getFnValueByID(Record[1], OpTy);
1975 BasicBlock *Default = getBasicBlock(Record[2]);
1976 if (OpTy == 0 || Cond == 0 || Default == 0)
1977 return Error("Invalid SWITCH record");
1978 unsigned NumCases = (Record.size()-3)/2;
1979 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
1980 InstructionList.push_back(SI);
1981 for (unsigned i = 0, e = NumCases; i != e; ++i) {
1982 ConstantInt *CaseVal =
1983 dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy));
1984 BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]);
1985 if (CaseVal == 0 || DestBB == 0) {
1986 delete SI;
1987 return Error("Invalid SWITCH record!");
1988 }
1989 SI->addCase(CaseVal, DestBB);
1990 }
1991 I = SI;
1992 break;
1993 }
1994 case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...]
1995 if (Record.size() < 2)
1996 return Error("Invalid INDIRECTBR record");
1997 const Type *OpTy = getTypeByID(Record[0]);
1998 Value *Address = getFnValueByID(Record[1], OpTy);
1999 if (OpTy == 0 || Address == 0)
2000 return Error("Invalid INDIRECTBR record");
2001 unsigned NumDests = Record.size()-2;
2002 IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests);
2003 InstructionList.push_back(IBI);
2004 for (unsigned i = 0, e = NumDests; i != e; ++i) {
2005 if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) {
2006 IBI->addDestination(DestBB);
2007 } else {
2008 delete IBI;
2009 return Error("Invalid INDIRECTBR record!");
2010 }
2011 }
2012 I = IBI;
2013 break;
2014 }
2015
2016 case bitc::FUNC_CODE_INST_INVOKE: {
2017 // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...]
2018 if (Record.size() < 4) return Error("Invalid INVOKE record");
2019 AttrListPtr PAL = getAttributes(Record[0]);
2020 unsigned CCInfo = Record[1];
2021 BasicBlock *NormalBB = getBasicBlock(Record[2]);
2022 BasicBlock *UnwindBB = getBasicBlock(Record[3]);
2023
2024 unsigned OpNum = 4;
2025 Value *Callee;
2026 if (getValueTypePair(Record, OpNum, NextValueNo, Callee))
2027 return Error("Invalid INVOKE record");
2028
2029 const PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType());
2030 const FunctionType *FTy = !CalleeTy ? 0 :
2031 dyn_cast<FunctionType>(CalleeTy->getElementType());
2032
2033 // Check that the right number of fixed parameters are here.
2034 if (FTy == 0 || NormalBB == 0 || UnwindBB == 0 ||
2035 Record.size() < OpNum+FTy->getNumParams())
2036 return Error("Invalid INVOKE record");
2037
2038 SmallVector<Value*, 16> Ops;
2039 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
2040 Ops.push_back(getFnValueByID(Record[OpNum], FTy->getParamType(i)));
2041 if (Ops.back() == 0) return Error("Invalid INVOKE record");
2042 }
2043
2044 if (!FTy->isVarArg()) {
2045 if (Record.size() != OpNum)
2046 return Error("Invalid INVOKE record");
2047 } else {
2048 // Read type/value pairs for varargs params.
2049 while (OpNum != Record.size()) {
2050 Value *Op;
2051 if (getValueTypePair(Record, OpNum, NextValueNo, Op))
2052 return Error("Invalid INVOKE record");
2053 Ops.push_back(Op);
2054 }
2055 }
2056
2057 I = InvokeInst::Create(Callee, NormalBB, UnwindBB,
2058 Ops.begin(), Ops.end());
2059 InstructionList.push_back(I);
2060 cast<InvokeInst>(I)->setCallingConv(
2061 static_cast<CallingConv::ID>(CCInfo));
2062 cast<InvokeInst>(I)->setAttributes(PAL);
2063 break;
2064 }
2065 case bitc::FUNC_CODE_INST_UNWIND: // UNWIND
2066 I = new UnwindInst(Context);
2067 InstructionList.push_back(I);
2068 break;
2069 case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE
2070 I = new UnreachableInst(Context);
2071 InstructionList.push_back(I);
2072 break;
2073 case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...]
2074 if (Record.size() < 1 || ((Record.size()-1)&1))
2075 return Error("Invalid PHI record");
2076 const Type *Ty = getTypeByID(Record[0]);
2077 if (!Ty) return Error("Invalid PHI record");
2078
2079 PHINode *PN = PHINode::Create(Ty);
2080 InstructionList.push_back(PN);
2081 PN->reserveOperandSpace((Record.size()-1)/2);
2082
2083 for (unsigned i = 0, e = Record.size()-1; i != e; i += 2) {
2084 Value *V = getFnValueByID(Record[1+i], Ty);
2085 BasicBlock *BB = getBasicBlock(Record[2+i]);
2086 if (!V || !BB) return Error("Invalid PHI record");
2087 PN->addIncoming(V, BB);
2088 }
2089 I = PN;
2090 break;
2091 }
2092
2093 case bitc::FUNC_CODE_INST_MALLOC: { // MALLOC: [instty, op, align]
2094 // Autoupgrade malloc instruction to malloc call.
2095 // FIXME: Remove in LLVM 3.0.
2096 if (Record.size() < 3)
2097 return Error("Invalid MALLOC record");
2098 const PointerType *Ty =
2099 dyn_cast_or_null<PointerType>(getTypeByID(Record[0]));
2100 Value *Size = getFnValueByID(Record[1], Type::getInt32Ty(Context));
2101 if (!Ty || !Size) return Error("Invalid MALLOC record");
2102 if (!CurBB) return Error("Invalid malloc instruction with no BB");
2103 const Type *Int32Ty = IntegerType::getInt32Ty(CurBB->getContext());
2104 Constant *AllocSize = ConstantExpr::getSizeOf(Ty->getElementType());
2105 AllocSize = ConstantExpr::getTruncOrBitCast(AllocSize, Int32Ty);
2106 I = CallInst::CreateMalloc(CurBB, Int32Ty, Ty->getElementType(),
2107 AllocSize, Size, NULL);
2108 InstructionList.push_back(I);
2109 break;
2110 }
2111 case bitc::FUNC_CODE_INST_FREE: { // FREE: [op, opty]
2112 unsigned OpNum = 0;
2113 Value *Op;
2114 if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
2115 OpNum != Record.size())
2116 return Error("Invalid FREE record");
2117 if (!CurBB) return Error("Invalid free instruction with no BB");
2118 I = CallInst::CreateFree(Op, CurBB);
2119 InstructionList.push_back(I);
2120 break;
2121 }
2122 case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, op, align]
2123 if (Record.size() < 3)
2124 return Error("Invalid ALLOCA record");
2125 const PointerType *Ty =
2126 dyn_cast_or_null<PointerType>(getTypeByID(Record[0]));
2127 Value *Size = getFnValueByID(Record[1], Type::getInt32Ty(Context));
2128 unsigned Align = Record[2];
2129 if (!Ty || !Size) return Error("Invalid ALLOCA record");
2130 I = new AllocaInst(Ty->getElementType(), Size, (1 << Align) >> 1);
2131 InstructionList.push_back(I);
2132 break;
2133 }
2134 case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol]
2135 unsigned OpNum = 0;
2136 Value *Op;
2137 if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
2138 OpNum+2 != Record.size())
2139 return Error("Invalid LOAD record");
2140
2141 I = new LoadInst(Op, "", Record[OpNum+1], (1 << Record[OpNum]) >> 1);
2142 InstructionList.push_back(I);
2143 break;
2144 }
2145 case bitc::FUNC_CODE_INST_STORE2: { // STORE2:[ptrty, ptr, val, align, vol]
2146 unsigned OpNum = 0;
2147 Value *Val, *Ptr;
2148 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
2149 getValue(Record, OpNum,
2150 cast<PointerType>(Ptr->getType())->getElementType(), Val) ||
2151 OpNum+2 != Record.size())
2152 return Error("Invalid STORE record");
2153
2154 I = new StoreInst(Val, Ptr, Record[OpNum+1], (1 << Record[OpNum]) >> 1);
2155 InstructionList.push_back(I);
2156 break;
2157 }
2158 case bitc::FUNC_CODE_INST_STORE: { // STORE:[val, valty, ptr, align, vol]
2159 // FIXME: Legacy form of store instruction. Should be removed in LLVM 3.0.
2160 unsigned OpNum = 0;
2161 Value *Val, *Ptr;
2162 if (getValueTypePair(Record, OpNum, NextValueNo, Val) ||
2163 getValue(Record, OpNum,
2164 PointerType::getUnqual(Val->getType()), Ptr)||
2165 OpNum+2 != Record.size())
2166 return Error("Invalid STORE record");
2167
2168 I = new StoreInst(Val, Ptr, Record[OpNum+1], (1 << Record[OpNum]) >> 1);
2169 InstructionList.push_back(I);
2170 break;
2171 }
2172 case bitc::FUNC_CODE_INST_CALL: {
2173 // CALL: [paramattrs, cc, fnty, fnid, arg0, arg1...]
2174 if (Record.size() < 3)
2175 return Error("Invalid CALL record");
2176
2177 AttrListPtr PAL = getAttributes(Record[0]);
2178 unsigned CCInfo = Record[1];
2179
2180 unsigned OpNum = 2;
2181 Value *Callee;
2182 if (getValueTypePair(Record, OpNum, NextValueNo, Callee))
2183 return Error("Invalid CALL record");
2184
2185 const PointerType *OpTy = dyn_cast<PointerType>(Callee->getType());
2186 const FunctionType *FTy = 0;
2187 if (OpTy) FTy = dyn_cast<FunctionType>(OpTy->getElementType());
2188 if (!FTy || Record.size() < FTy->getNumParams()+OpNum)
2189 return Error("Invalid CALL record");
2190
2191 SmallVector<Value*, 16> Args;
2192 // Read the fixed params.
2193 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
2194 if (FTy->getParamType(i)->getTypeID()==Type::LabelTyID)
2195 Args.push_back(getBasicBlock(Record[OpNum]));
2196 else
2197 Args.push_back(getFnValueByID(Record[OpNum], FTy->getParamType(i)));
2198 if (Args.back() == 0) return Error("Invalid CALL record");
2199 }
2200
2201 // Read type/value pairs for varargs params.
2202 if (!FTy->isVarArg()) {
2203 if (OpNum != Record.size())
2204 return Error("Invalid CALL record");
2205 } else {
2206 while (OpNum != Record.size()) {
2207 Value *Op;
2208 if (getValueTypePair(Record, OpNum, NextValueNo, Op))
2209 return Error("Invalid CALL record");
2210 Args.push_back(Op);
2211 }
2212 }
2213
2214 I = CallInst::Create(Callee, Args.begin(), Args.end());
2215 InstructionList.push_back(I);
2216 cast<CallInst>(I)->setCallingConv(
2217 static_cast<CallingConv::ID>(CCInfo>>1));
2218 cast<CallInst>(I)->setTailCall(CCInfo & 1);
2219 cast<CallInst>(I)->setAttributes(PAL);
2220 break;
2221 }
2222 case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty]
2223 if (Record.size() < 3)
2224 return Error("Invalid VAARG record");
2225 const Type *OpTy = getTypeByID(Record[0]);
2226 Value *Op = getFnValueByID(Record[1], OpTy);
2227 const Type *ResTy = getTypeByID(Record[2]);
2228 if (!OpTy || !Op || !ResTy)
2229 return Error("Invalid VAARG record");
2230 I = new VAArgInst(Op, ResTy);
2231 InstructionList.push_back(I);
2232 break;
2233 }
2234 }
2235
2236 // Add instruction to end of current BB. If there is no current BB, reject
2237 // this file.
2238 if (CurBB == 0) {
2239 delete I;
2240 return Error("Invalid instruction with no BB");
2241 }
2242 CurBB->getInstList().push_back(I);
2243
2244 // If this was a terminator instruction, move to the next block.
2245 if (isa<TerminatorInst>(I)) {
2246 ++CurBBNo;
2247 CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : 0;
2248 }
2249
2250 // Non-void values get registered in the value table for future use.
2251 if (I && I->getType() != Type::getVoidTy(Context))
2252 ValueList.AssignValue(I, NextValueNo++);
2253 }
2254
2255 // Check the function list for unresolved values.
2256 if (Argument *A = dyn_cast<Argument>(ValueList.back())) {
2257 if (A->getParent() == 0) {
2258 // We found at least one unresolved value. Nuke them all to avoid leaks.
2259 for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){
2260 if ((A = dyn_cast<Argument>(ValueList.back())) && A->getParent() == 0) {
2261 A->replaceAllUsesWith(UndefValue::get(A->getType()));
2262 delete A;
2263 }
2264 }
2265 return Error("Never resolved value found in function!");
2266 }
2267 }
2268
2269 // See if anything took the address of blocks in this function. If so,
2270 // resolve them now.
2271 /// BlockAddrFwdRefs - These are blockaddr references to basic blocks. These
2272 /// are resolved lazily when functions are loaded.
2273 DenseMap<Function*, std::vector<BlockAddrRefTy> >::iterator BAFRI =
2274 BlockAddrFwdRefs.find(F);
2275 if (BAFRI != BlockAddrFwdRefs.end()) {
2276 std::vector<BlockAddrRefTy> &RefList = BAFRI->second;
2277 for (unsigned i = 0, e = RefList.size(); i != e; ++i) {
2278 unsigned BlockIdx = RefList[i].first;
2279 if (BlockIdx >= FunctionBBs.size())
2280 return Error("Invalid blockaddress block #");
2281
2282 GlobalVariable *FwdRef = RefList[i].second;
2283 FwdRef->replaceAllUsesWith(BlockAddress::get(F, FunctionBBs[BlockIdx]));
2284 FwdRef->eraseFromParent();
2285 }
2286
2287 BlockAddrFwdRefs.erase(BAFRI);
2288 }
2289
2290 // Trim the value list down to the size it was before we parsed this function.
2291 ValueList.shrinkTo(ModuleValueListSize);
2292 std::vector<BasicBlock*>().swap(FunctionBBs);
2293
2294 return false;
2295}
2296
2297//===----------------------------------------------------------------------===//
2298// ModuleProvider implementation
2299//===----------------------------------------------------------------------===//
2300
2301
2302bool BitcodeReader::materializeFunction(Function *F, std::string *ErrInfo) {
2303 // If it already is material, ignore the request.
2304 if (!F->hasNotBeenReadFromBitcode()) return false;
2305
2306 DenseMap<Function*, std::pair<uint64_t, unsigned> >::iterator DFII =
2307 DeferredFunctionInfo.find(F);
2308 assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!");
2309
2310 // Move the bit stream to the saved position of the deferred function body and
2311 // restore the real linkage type for the function.
2312 Stream.JumpToBit(DFII->second.first);
2313 F->setLinkage((GlobalValue::LinkageTypes)DFII->second.second);
2314
2315 if (ParseFunctionBody(F)) {
2316 if (ErrInfo) *ErrInfo = ErrorString;
2317 return true;
2318 }
2319
2320 // Upgrade any old intrinsic calls in the function.
2321 for (UpgradedIntrinsicMap::iterator I = UpgradedIntrinsics.begin(),
2322 E = UpgradedIntrinsics.end(); I != E; ++I) {
2323 if (I->first != I->second) {
2324 for (Value::use_iterator UI = I->first->use_begin(),
2325 UE = I->first->use_end(); UI != UE; ) {
2326 if (CallInst* CI = dyn_cast<CallInst>(*UI++))
2327 UpgradeIntrinsicCall(CI, I->second);
2328 }
2329 }
2330 }
2331
2332 return false;
2333}
2334
2335void BitcodeReader::dematerializeFunction(Function *F) {
2336 // If this function isn't materialized, or if it is a proto, this is a noop.
2337 if (F->hasNotBeenReadFromBitcode() || F->isDeclaration())
2338 return;
2339
2340 assert(DeferredFunctionInfo.count(F) && "No info to read function later?");
2341
2342 // Just forget the function body, we can remat it later.
2343 F->deleteBody();
2344 F->setLinkage(GlobalValue::GhostLinkage);
2345}
2346
2347
2348Module *BitcodeReader::materializeModule(std::string *ErrInfo) {
2349 // Iterate over the module, deserializing any functions that are still on
2350 // disk.
2351 for (Module::iterator F = TheModule->begin(), E = TheModule->end();
2352 F != E; ++F)
2353 if (F->hasNotBeenReadFromBitcode() &&
2354 materializeFunction(F, ErrInfo))
2355 return 0;
2356
2357 // Upgrade any intrinsic calls that slipped through (should not happen!) and
2358 // delete the old functions to clean up. We can't do this unless the entire
2359 // module is materialized because there could always be another function body
2360 // with calls to the old function.
2361 for (std::vector<std::pair<Function*, Function*> >::iterator I =
2362 UpgradedIntrinsics.begin(), E = UpgradedIntrinsics.end(); I != E; ++I) {
2363 if (I->first != I->second) {
2364 for (Value::use_iterator UI = I->first->use_begin(),
2365 UE = I->first->use_end(); UI != UE; ) {
2366 if (CallInst* CI = dyn_cast<CallInst>(*UI++))
2367 UpgradeIntrinsicCall(CI, I->second);
2368 }
2369 if (!I->first->use_empty())
2370 I->first->replaceAllUsesWith(I->second);
2371 I->first->eraseFromParent();
2372 }
2373 }
2374 std::vector<std::pair<Function*, Function*> >().swap(UpgradedIntrinsics);
2375
2376 // Check debug info intrinsics.
2377 CheckDebugInfoIntrinsics(TheModule);
2378
2379 return TheModule;
2380}
2381
2382
2383/// This method is provided by the parent ModuleProvde class and overriden
2384/// here. It simply releases the module from its provided and frees up our
2385/// state.
2386/// @brief Release our hold on the generated module
2387Module *BitcodeReader::releaseModule(std::string *ErrInfo) {
2388 // Since we're losing control of this Module, we must hand it back complete
2389 Module *M = ModuleProvider::releaseModule(ErrInfo);
2390 FreeState();
2391 return M;
2392}
2393
2394
2395//===----------------------------------------------------------------------===//
2396// External interface
2397//===----------------------------------------------------------------------===//
2398
2399/// getBitcodeModuleProvider - lazy function-at-a-time loading from a file.
2400///
2401ModuleProvider *llvm::getBitcodeModuleProvider(MemoryBuffer *Buffer,
2402 LLVMContext& Context,
2403 std::string *ErrMsg) {
2404 BitcodeReader *R = new BitcodeReader(Buffer, Context);
2405 if (R->ParseBitcode()) {
2406 if (ErrMsg)
2407 *ErrMsg = R->getErrorString();
2408
2409 // Don't let the BitcodeReader dtor delete 'Buffer'.
2410 R->releaseMemoryBuffer();
2411 delete R;
2412 return 0;
2413 }
2414 return R;
2415}
2416
2417/// ParseBitcodeFile - Read the specified bitcode file, returning the module.
2418/// If an error occurs, return null and fill in *ErrMsg if non-null.
2419Module *llvm::ParseBitcodeFile(MemoryBuffer *Buffer, LLVMContext& Context,
2420 std::string *ErrMsg){
2421 BitcodeReader *R;
2422 R = static_cast<BitcodeReader*>(getBitcodeModuleProvider(Buffer, Context,
2423 ErrMsg));
2424 if (!R) return 0;
2425
2426 // Read in the entire module.
2427 Module *M = R->materializeModule(ErrMsg);
2428
2429 // Don't let the BitcodeReader dtor delete 'Buffer', regardless of whether
2430 // there was an error.
2431 R->releaseMemoryBuffer();
2432
2433 // If there was no error, tell ModuleProvider not to delete it when its dtor
2434 // is run.
2435 if (M)
2436 M = R->releaseModule(ErrMsg);
2437
2438 delete R;
2439 return M;
2440}