Deleted Added
full compact
machine.c (131310) machine.c (131402)
1/*
2 * top - a top users display for Unix
3 *
4 * SYNOPSIS: For FreeBSD-2.x and later
5 *
6 * DESCRIPTION:
7 * Originally written for BSD4.4 system by Christos Zoulas.
8 * Ported to FreeBSD 2.x by Steven Wallace && Wolfram Schneider
9 * Order support hacked in from top-3.5beta6/machine/m_aix41.c
10 * by Monte Mitzelfelt (for latest top see http://www.groupsys.com/topinfo/)
11 *
12 * This is the machine-dependent module for FreeBSD 2.2
13 * Works for:
14 * FreeBSD 2.2.x, 3.x, 4.x, and probably FreeBSD 2.1.x
15 *
16 * LIBS: -lkvm
17 *
18 * AUTHOR: Christos Zoulas <christos@ee.cornell.edu>
19 * Steven Wallace <swallace@freebsd.org>
20 * Wolfram Schneider <wosch@FreeBSD.org>
21 * Thomas Moestl <tmoestl@gmx.net>
22 *
1/*
2 * top - a top users display for Unix
3 *
4 * SYNOPSIS: For FreeBSD-2.x and later
5 *
6 * DESCRIPTION:
7 * Originally written for BSD4.4 system by Christos Zoulas.
8 * Ported to FreeBSD 2.x by Steven Wallace && Wolfram Schneider
9 * Order support hacked in from top-3.5beta6/machine/m_aix41.c
10 * by Monte Mitzelfelt (for latest top see http://www.groupsys.com/topinfo/)
11 *
12 * This is the machine-dependent module for FreeBSD 2.2
13 * Works for:
14 * FreeBSD 2.2.x, 3.x, 4.x, and probably FreeBSD 2.1.x
15 *
16 * LIBS: -lkvm
17 *
18 * AUTHOR: Christos Zoulas <christos@ee.cornell.edu>
19 * Steven Wallace <swallace@freebsd.org>
20 * Wolfram Schneider <wosch@FreeBSD.org>
21 * Thomas Moestl <tmoestl@gmx.net>
22 *
23 * $FreeBSD: head/usr.bin/top/machine.c 131310 2004-06-30 04:19:23Z alfred $
23 * $FreeBSD: head/usr.bin/top/machine.c 131402 2004-07-01 09:12:38Z alfred $
24 */
25
26
27#include <sys/time.h>
28#include <sys/types.h>
29#include <sys/signal.h>
30#include <sys/param.h>
31
32#include "os.h"
33#include <stdio.h>
34#include <nlist.h>
35#include <math.h>
36#include <kvm.h>
37#include <pwd.h>
38#include <sys/errno.h>
39#include <sys/sysctl.h>
40#include <sys/file.h>
41#include <sys/time.h>
42#include <sys/proc.h>
43#include <sys/user.h>
44#include <sys/vmmeter.h>
45#include <sys/resource.h>
46#include <sys/rtprio.h>
47
48/* Swap */
49#include <stdlib.h>
50
51#include <unistd.h>
52#include <osreldate.h> /* for changes in kernel structures */
53
54#include "top.h"
55#include "machine.h"
56#include "screen.h"
57#include "utils.h"
58
59static void getsysctl(char *, void *, size_t);
60
61#define GETSYSCTL(name, var) getsysctl(name, &(var), sizeof(var))
62
63extern char* printable(char *);
64int swapmode(int *retavail, int *retfree);
65static int smpmode;
24 */
25
26
27#include <sys/time.h>
28#include <sys/types.h>
29#include <sys/signal.h>
30#include <sys/param.h>
31
32#include "os.h"
33#include <stdio.h>
34#include <nlist.h>
35#include <math.h>
36#include <kvm.h>
37#include <pwd.h>
38#include <sys/errno.h>
39#include <sys/sysctl.h>
40#include <sys/file.h>
41#include <sys/time.h>
42#include <sys/proc.h>
43#include <sys/user.h>
44#include <sys/vmmeter.h>
45#include <sys/resource.h>
46#include <sys/rtprio.h>
47
48/* Swap */
49#include <stdlib.h>
50
51#include <unistd.h>
52#include <osreldate.h> /* for changes in kernel structures */
53
54#include "top.h"
55#include "machine.h"
56#include "screen.h"
57#include "utils.h"
58
59static void getsysctl(char *, void *, size_t);
60
61#define GETSYSCTL(name, var) getsysctl(name, &(var), sizeof(var))
62
63extern char* printable(char *);
64int swapmode(int *retavail, int *retfree);
65static int smpmode;
66enum displaymodes displaymode;
66static int namelength;
67static int cmdlengthdelta;
68
69/* Prototypes for top internals */
70void quit(int);
67static int namelength;
68static int cmdlengthdelta;
69
70/* Prototypes for top internals */
71void quit(int);
72int compare_pid(const void *a, const void *b);
71
72/* get_process_info passes back a handle. This is what it looks like: */
73
74struct handle
75{
76 struct kinfo_proc **next_proc; /* points to next valid proc pointer */
77 int remaining; /* number of pointers remaining */
78};
79
80/* declarations for load_avg */
81#include "loadavg.h"
82
83/* define what weighted cpu is. */
84#define weighted_cpu(pct, pp) ((pp)->ki_swtime == 0 ? 0.0 : \
85 ((pct) / (1.0 - exp((pp)->ki_swtime * logcpu))))
86
87/* what we consider to be process size: */
88#define PROCSIZE(pp) ((pp)->ki_size / 1024)
89
73
74/* get_process_info passes back a handle. This is what it looks like: */
75
76struct handle
77{
78 struct kinfo_proc **next_proc; /* points to next valid proc pointer */
79 int remaining; /* number of pointers remaining */
80};
81
82/* declarations for load_avg */
83#include "loadavg.h"
84
85/* define what weighted cpu is. */
86#define weighted_cpu(pct, pp) ((pp)->ki_swtime == 0 ? 0.0 : \
87 ((pct) / (1.0 - exp((pp)->ki_swtime * logcpu))))
88
89/* what we consider to be process size: */
90#define PROCSIZE(pp) ((pp)->ki_size / 1024)
91
92#define RU(pp) (&(pp)->ki_rusage)
93#define RUTOT(pp) \
94 (RU(pp)->ru_inblock + RU(pp)->ru_oublock + RU(pp)->ru_majflt)
95
96
90/* definitions for indices in the nlist array */
91
92/*
93 * These definitions control the format of the per-process area
94 */
95
97/* definitions for indices in the nlist array */
98
99/*
100 * These definitions control the format of the per-process area
101 */
102
103static char io_header[] =
104 " PID %-*.*s READ WRITE FAULT TOTAL COMMAND";
105
106#define io_Proc_format \
107 "%5d %-*.*s %6d %6d %6d %6d %.*s"
108
96static char smp_header[] =
97 " PID %-*.*s PRI NICE SIZE RES STATE C TIME WCPU CPU COMMAND";
98
99#define smp_Proc_format \
100 "%5d %-*.*s %3d %4d%7s %6s %-6.6s %1x%7s %5.2f%% %5.2f%% %.*s"
101
102static char up_header[] =
103 " PID %-*.*s PRI NICE SIZE RES STATE TIME WCPU CPU COMMAND";
104
105#define up_Proc_format \
106 "%5d %-*.*s %3d %4d%7s %6s %-6.6s%.0d%7s %5.2f%% %5.2f%% %.*s"
107
108
109
110/* process state names for the "STATE" column of the display */
111/* the extra nulls in the string "run" are for adding a slash and
112 the processor number when needed */
113
114char *state_abbrev[] =
115{
116 "", "START", "RUN\0\0\0", "SLEEP", "STOP", "ZOMB", "WAIT", "LOCK"
117};
118
119
120static kvm_t *kd;
121
122/* values that we stash away in _init and use in later routines */
123
124static double logcpu;
125
126/* these are retrieved from the kernel in _init */
127
128static load_avg ccpu;
129
130/* these are used in the get_ functions */
131
132static int lastpid;
133
134/* these are for calculating cpu state percentages */
135
136static long cp_time[CPUSTATES];
137static long cp_old[CPUSTATES];
138static long cp_diff[CPUSTATES];
139
140/* these are for detailing the process states */
141
142int process_states[8];
143char *procstatenames[] = {
144 "", " starting, ", " running, ", " sleeping, ", " stopped, ",
145 " zombie, ", " waiting, ", " lock, ",
146 NULL
147};
148
149/* these are for detailing the cpu states */
150
151int cpu_states[CPUSTATES];
152char *cpustatenames[] = {
153 "user", "nice", "system", "interrupt", "idle", NULL
154};
155
156/* these are for detailing the memory statistics */
157
158int memory_stats[7];
159char *memorynames[] = {
160 "K Active, ", "K Inact, ", "K Wired, ", "K Cache, ", "K Buf, ", "K Free",
161 NULL
162};
163
164int swap_stats[7];
165char *swapnames[] = {
166/* 0 1 2 3 4 5 */
167 "K Total, ", "K Used, ", "K Free, ", "% Inuse, ", "K In, ", "K Out",
168 NULL
169};
170
171
172/* these are for keeping track of the proc array */
173
174static int nproc;
175static int onproc = -1;
176static int pref_len;
177static struct kinfo_proc *pbase;
178static struct kinfo_proc **pref;
109static char smp_header[] =
110 " PID %-*.*s PRI NICE SIZE RES STATE C TIME WCPU CPU COMMAND";
111
112#define smp_Proc_format \
113 "%5d %-*.*s %3d %4d%7s %6s %-6.6s %1x%7s %5.2f%% %5.2f%% %.*s"
114
115static char up_header[] =
116 " PID %-*.*s PRI NICE SIZE RES STATE TIME WCPU CPU COMMAND";
117
118#define up_Proc_format \
119 "%5d %-*.*s %3d %4d%7s %6s %-6.6s%.0d%7s %5.2f%% %5.2f%% %.*s"
120
121
122
123/* process state names for the "STATE" column of the display */
124/* the extra nulls in the string "run" are for adding a slash and
125 the processor number when needed */
126
127char *state_abbrev[] =
128{
129 "", "START", "RUN\0\0\0", "SLEEP", "STOP", "ZOMB", "WAIT", "LOCK"
130};
131
132
133static kvm_t *kd;
134
135/* values that we stash away in _init and use in later routines */
136
137static double logcpu;
138
139/* these are retrieved from the kernel in _init */
140
141static load_avg ccpu;
142
143/* these are used in the get_ functions */
144
145static int lastpid;
146
147/* these are for calculating cpu state percentages */
148
149static long cp_time[CPUSTATES];
150static long cp_old[CPUSTATES];
151static long cp_diff[CPUSTATES];
152
153/* these are for detailing the process states */
154
155int process_states[8];
156char *procstatenames[] = {
157 "", " starting, ", " running, ", " sleeping, ", " stopped, ",
158 " zombie, ", " waiting, ", " lock, ",
159 NULL
160};
161
162/* these are for detailing the cpu states */
163
164int cpu_states[CPUSTATES];
165char *cpustatenames[] = {
166 "user", "nice", "system", "interrupt", "idle", NULL
167};
168
169/* these are for detailing the memory statistics */
170
171int memory_stats[7];
172char *memorynames[] = {
173 "K Active, ", "K Inact, ", "K Wired, ", "K Cache, ", "K Buf, ", "K Free",
174 NULL
175};
176
177int swap_stats[7];
178char *swapnames[] = {
179/* 0 1 2 3 4 5 */
180 "K Total, ", "K Used, ", "K Free, ", "% Inuse, ", "K In, ", "K Out",
181 NULL
182};
183
184
185/* these are for keeping track of the proc array */
186
187static int nproc;
188static int onproc = -1;
189static int pref_len;
190static struct kinfo_proc *pbase;
191static struct kinfo_proc **pref;
192static struct kinfo_proc *previous_procs;
193static struct kinfo_proc **previous_pref;
194static int previous_proc_count = 0;
195static int previous_proc_count_max = 0;
179
180/* these are for getting the memory statistics */
181
182static int pageshift; /* log base 2 of the pagesize */
183
184/* define pagetok in terms of pageshift */
185
186#define pagetok(size) ((size) << pageshift)
187
188/* useful externals */
189long percentages();
190
191#ifdef ORDER
192/* sorting orders. first is default */
193char *ordernames[] = {
194 "cpu", "size", "res", "time", "pri", NULL
195};
196#endif
197
198int
199machine_init(statics)
200 struct statics *statics;
201{
202 int pagesize;
203 size_t modelen;
204 struct passwd *pw;
205
206 modelen = sizeof(smpmode);
207 if ((sysctlbyname("machdep.smp_active", &smpmode, &modelen, NULL, 0) < 0 &&
208 sysctlbyname("kern.smp.active", &smpmode, &modelen, NULL, 0) < 0) ||
209 modelen != sizeof(smpmode))
210 smpmode = 0;
211
212 while ((pw = getpwent()) != NULL) {
213 if (strlen(pw->pw_name) > namelength)
214 namelength = strlen(pw->pw_name);
215 }
216 if (namelength < 8)
217 namelength = 8;
218 if (smpmode && namelength > 13)
219 namelength = 13;
220 else if (namelength > 15)
221 namelength = 15;
222
223 if ((kd = kvm_open("/dev/null", "/dev/null", "/dev/null", O_RDONLY, "kvm_open")) == NULL)
224 return -1;
225
226 GETSYSCTL("kern.ccpu", ccpu);
227
228 /* this is used in calculating WCPU -- calculate it ahead of time */
229 logcpu = log(loaddouble(ccpu));
230
231 pbase = NULL;
232 pref = NULL;
233 nproc = 0;
234 onproc = -1;
235 /* get the page size with "getpagesize" and calculate pageshift from it */
236 pagesize = getpagesize();
237 pageshift = 0;
238 while (pagesize > 1)
239 {
240 pageshift++;
241 pagesize >>= 1;
242 }
243
244 /* we only need the amount of log(2)1024 for our conversion */
245 pageshift -= LOG1024;
246
247 /* fill in the statics information */
248 statics->procstate_names = procstatenames;
249 statics->cpustate_names = cpustatenames;
250 statics->memory_names = memorynames;
251 statics->swap_names = swapnames;
252#ifdef ORDER
253 statics->order_names = ordernames;
254#endif
255
256 /* all done! */
257 return(0);
258}
259
260char *
261format_header(uname_field)
262 char *uname_field;
263
264{
265 static char Header[128];
196
197/* these are for getting the memory statistics */
198
199static int pageshift; /* log base 2 of the pagesize */
200
201/* define pagetok in terms of pageshift */
202
203#define pagetok(size) ((size) << pageshift)
204
205/* useful externals */
206long percentages();
207
208#ifdef ORDER
209/* sorting orders. first is default */
210char *ordernames[] = {
211 "cpu", "size", "res", "time", "pri", NULL
212};
213#endif
214
215int
216machine_init(statics)
217 struct statics *statics;
218{
219 int pagesize;
220 size_t modelen;
221 struct passwd *pw;
222
223 modelen = sizeof(smpmode);
224 if ((sysctlbyname("machdep.smp_active", &smpmode, &modelen, NULL, 0) < 0 &&
225 sysctlbyname("kern.smp.active", &smpmode, &modelen, NULL, 0) < 0) ||
226 modelen != sizeof(smpmode))
227 smpmode = 0;
228
229 while ((pw = getpwent()) != NULL) {
230 if (strlen(pw->pw_name) > namelength)
231 namelength = strlen(pw->pw_name);
232 }
233 if (namelength < 8)
234 namelength = 8;
235 if (smpmode && namelength > 13)
236 namelength = 13;
237 else if (namelength > 15)
238 namelength = 15;
239
240 if ((kd = kvm_open("/dev/null", "/dev/null", "/dev/null", O_RDONLY, "kvm_open")) == NULL)
241 return -1;
242
243 GETSYSCTL("kern.ccpu", ccpu);
244
245 /* this is used in calculating WCPU -- calculate it ahead of time */
246 logcpu = log(loaddouble(ccpu));
247
248 pbase = NULL;
249 pref = NULL;
250 nproc = 0;
251 onproc = -1;
252 /* get the page size with "getpagesize" and calculate pageshift from it */
253 pagesize = getpagesize();
254 pageshift = 0;
255 while (pagesize > 1)
256 {
257 pageshift++;
258 pagesize >>= 1;
259 }
260
261 /* we only need the amount of log(2)1024 for our conversion */
262 pageshift -= LOG1024;
263
264 /* fill in the statics information */
265 statics->procstate_names = procstatenames;
266 statics->cpustate_names = cpustatenames;
267 statics->memory_names = memorynames;
268 statics->swap_names = swapnames;
269#ifdef ORDER
270 statics->order_names = ordernames;
271#endif
272
273 /* all done! */
274 return(0);
275}
276
277char *
278format_header(uname_field)
279 char *uname_field;
280
281{
282 static char Header[128];
283 const char *prehead;
266
284
267 snprintf(Header, sizeof(Header), smpmode ? smp_header : up_header,
285 switch (displaymode) {
286 case DISP_CPU:
287 prehead = smpmode ? smp_header : up_header;
288 break;
289 case DISP_IO:
290 prehead = io_header;
291 break;
292 }
293
294 snprintf(Header, sizeof(Header), prehead,
268 namelength, namelength, uname_field);
269
270 cmdlengthdelta = strlen(Header) - 7;
271
272 return Header;
273}
274
275static int swappgsin = -1;
276static int swappgsout = -1;
277extern struct timeval timeout;
278
279void
280get_system_info(si)
281 struct system_info *si;
282{
283 long total;
284 struct loadavg sysload;
285 int mib[2];
286 struct timeval boottime;
287 size_t bt_size;
288
289 /* get the cp_time array */
290 GETSYSCTL("kern.cp_time", cp_time);
291 GETSYSCTL("vm.loadavg", sysload);
292 GETSYSCTL("kern.lastpid", lastpid);
293
294 /* convert load averages to doubles */
295 {
296 int i;
297 double *infoloadp;
298
299 infoloadp = si->load_avg;
300 for (i = 0; i < 3; i++)
301 {
302#ifdef notyet
303 *infoloadp++ = ((double) sysload.ldavg[i]) / sysload.fscale;
304#endif
305 *infoloadp++ = loaddouble(sysload.ldavg[i]);
306 }
307 }
308
309 /* convert cp_time counts to percentages */
310 total = percentages(CPUSTATES, cpu_states, cp_time, cp_old, cp_diff);
311
312 /* sum memory & swap statistics */
313 {
314 static unsigned int swap_delay = 0;
315 static int swapavail = 0;
316 static int swapfree = 0;
317 static int bufspace = 0;
318 static int nspgsin, nspgsout;
319
320 GETSYSCTL("vfs.bufspace", bufspace);
321 GETSYSCTL("vm.stats.vm.v_active_count", memory_stats[0]);
322 GETSYSCTL("vm.stats.vm.v_inactive_count", memory_stats[1]);
323 GETSYSCTL("vm.stats.vm.v_wire_count", memory_stats[2]);
324 GETSYSCTL("vm.stats.vm.v_cache_count", memory_stats[3]);
325 GETSYSCTL("vm.stats.vm.v_free_count", memory_stats[5]);
326 GETSYSCTL("vm.stats.vm.v_swappgsin", nspgsin);
327 GETSYSCTL("vm.stats.vm.v_swappgsout", nspgsout);
328 /* convert memory stats to Kbytes */
329 memory_stats[0] = pagetok(memory_stats[0]);
330 memory_stats[1] = pagetok(memory_stats[1]);
331 memory_stats[2] = pagetok(memory_stats[2]);
332 memory_stats[3] = pagetok(memory_stats[3]);
333 memory_stats[4] = bufspace / 1024;
334 memory_stats[5] = pagetok(memory_stats[5]);
335 memory_stats[6] = -1;
336
337 /* first interval */
338 if (swappgsin < 0) {
339 swap_stats[4] = 0;
340 swap_stats[5] = 0;
341 }
342
343 /* compute differences between old and new swap statistic */
344 else {
345 swap_stats[4] = pagetok(((nspgsin - swappgsin)));
346 swap_stats[5] = pagetok(((nspgsout - swappgsout)));
347 }
348
349 swappgsin = nspgsin;
350 swappgsout = nspgsout;
351
352 /* call CPU heavy swapmode() only for changes */
353 if (swap_stats[4] > 0 || swap_stats[5] > 0 || swap_delay == 0) {
354 swap_stats[3] = swapmode(&swapavail, &swapfree);
355 swap_stats[0] = swapavail;
356 swap_stats[1] = swapavail - swapfree;
357 swap_stats[2] = swapfree;
358 }
359 swap_delay = 1;
360 swap_stats[6] = -1;
361 }
362
363 /* set arrays and strings */
364 si->cpustates = cpu_states;
365 si->memory = memory_stats;
366 si->swap = swap_stats;
367
368
369 if(lastpid > 0) {
370 si->last_pid = lastpid;
371 } else {
372 si->last_pid = -1;
373 }
374
375 /*
376 * Print how long system has been up.
377 * (Found by looking getting "boottime" from the kernel)
378 */
379 mib[0] = CTL_KERN;
380 mib[1] = KERN_BOOTTIME;
381 bt_size = sizeof(boottime);
382 if (sysctl(mib, 2, &boottime, &bt_size, NULL, 0) != -1 &&
383 boottime.tv_sec != 0) {
384 si->boottime = boottime;
385 } else {
386 si->boottime.tv_sec = -1;
387 }
388}
389
295 namelength, namelength, uname_field);
296
297 cmdlengthdelta = strlen(Header) - 7;
298
299 return Header;
300}
301
302static int swappgsin = -1;
303static int swappgsout = -1;
304extern struct timeval timeout;
305
306void
307get_system_info(si)
308 struct system_info *si;
309{
310 long total;
311 struct loadavg sysload;
312 int mib[2];
313 struct timeval boottime;
314 size_t bt_size;
315
316 /* get the cp_time array */
317 GETSYSCTL("kern.cp_time", cp_time);
318 GETSYSCTL("vm.loadavg", sysload);
319 GETSYSCTL("kern.lastpid", lastpid);
320
321 /* convert load averages to doubles */
322 {
323 int i;
324 double *infoloadp;
325
326 infoloadp = si->load_avg;
327 for (i = 0; i < 3; i++)
328 {
329#ifdef notyet
330 *infoloadp++ = ((double) sysload.ldavg[i]) / sysload.fscale;
331#endif
332 *infoloadp++ = loaddouble(sysload.ldavg[i]);
333 }
334 }
335
336 /* convert cp_time counts to percentages */
337 total = percentages(CPUSTATES, cpu_states, cp_time, cp_old, cp_diff);
338
339 /* sum memory & swap statistics */
340 {
341 static unsigned int swap_delay = 0;
342 static int swapavail = 0;
343 static int swapfree = 0;
344 static int bufspace = 0;
345 static int nspgsin, nspgsout;
346
347 GETSYSCTL("vfs.bufspace", bufspace);
348 GETSYSCTL("vm.stats.vm.v_active_count", memory_stats[0]);
349 GETSYSCTL("vm.stats.vm.v_inactive_count", memory_stats[1]);
350 GETSYSCTL("vm.stats.vm.v_wire_count", memory_stats[2]);
351 GETSYSCTL("vm.stats.vm.v_cache_count", memory_stats[3]);
352 GETSYSCTL("vm.stats.vm.v_free_count", memory_stats[5]);
353 GETSYSCTL("vm.stats.vm.v_swappgsin", nspgsin);
354 GETSYSCTL("vm.stats.vm.v_swappgsout", nspgsout);
355 /* convert memory stats to Kbytes */
356 memory_stats[0] = pagetok(memory_stats[0]);
357 memory_stats[1] = pagetok(memory_stats[1]);
358 memory_stats[2] = pagetok(memory_stats[2]);
359 memory_stats[3] = pagetok(memory_stats[3]);
360 memory_stats[4] = bufspace / 1024;
361 memory_stats[5] = pagetok(memory_stats[5]);
362 memory_stats[6] = -1;
363
364 /* first interval */
365 if (swappgsin < 0) {
366 swap_stats[4] = 0;
367 swap_stats[5] = 0;
368 }
369
370 /* compute differences between old and new swap statistic */
371 else {
372 swap_stats[4] = pagetok(((nspgsin - swappgsin)));
373 swap_stats[5] = pagetok(((nspgsout - swappgsout)));
374 }
375
376 swappgsin = nspgsin;
377 swappgsout = nspgsout;
378
379 /* call CPU heavy swapmode() only for changes */
380 if (swap_stats[4] > 0 || swap_stats[5] > 0 || swap_delay == 0) {
381 swap_stats[3] = swapmode(&swapavail, &swapfree);
382 swap_stats[0] = swapavail;
383 swap_stats[1] = swapavail - swapfree;
384 swap_stats[2] = swapfree;
385 }
386 swap_delay = 1;
387 swap_stats[6] = -1;
388 }
389
390 /* set arrays and strings */
391 si->cpustates = cpu_states;
392 si->memory = memory_stats;
393 si->swap = swap_stats;
394
395
396 if(lastpid > 0) {
397 si->last_pid = lastpid;
398 } else {
399 si->last_pid = -1;
400 }
401
402 /*
403 * Print how long system has been up.
404 * (Found by looking getting "boottime" from the kernel)
405 */
406 mib[0] = CTL_KERN;
407 mib[1] = KERN_BOOTTIME;
408 bt_size = sizeof(boottime);
409 if (sysctl(mib, 2, &boottime, &bt_size, NULL, 0) != -1 &&
410 boottime.tv_sec != 0) {
411 si->boottime = boottime;
412 } else {
413 si->boottime.tv_sec = -1;
414 }
415}
416
417const struct kinfo_proc *
418get_old_proc(struct kinfo_proc *pp)
419{
420 struct kinfo_proc **oldpp, *oldp;
421
422 if (previous_proc_count == 0)
423 return (NULL);
424 oldpp = bsearch(&pp, previous_pref, previous_proc_count,
425 sizeof(struct kinfo_proc *), compare_pid);
426 if (oldpp == NULL)
427 return (NULL);
428 oldp = *oldpp;
429 if (bcmp(&oldp->ki_start, &pp->ki_start, sizeof(pp->ki_start)) != 0)
430 return (NULL);
431 return (oldp);
432}
433
434long
435get_io_total(struct kinfo_proc *pp)
436{
437 const struct kinfo_proc *oldp;
438 static struct kinfo_proc dummy;
439 long ret;
440
441 oldp = get_old_proc(pp);
442 if (oldp == NULL) {
443 bzero(&dummy, sizeof(dummy));
444 oldp = &dummy;
445 }
446
447 ret =
448 (RU(pp)->ru_inblock - RU(oldp)->ru_inblock) +
449 (RU(pp)->ru_oublock - RU(oldp)->ru_oublock) +
450 (RU(pp)->ru_majflt - RU(oldp)->ru_majflt);
451 return (ret);
452}
453
390static struct handle handle;
391
392caddr_t
393get_process_info(si, sel, compare)
394 struct system_info *si;
395 struct process_select *sel;
396 int (*compare)();
397{
398 int i;
399 int total_procs;
400 int active_procs;
401 struct kinfo_proc **prefp;
402 struct kinfo_proc *pp;
403 struct kinfo_proc *prev_pp = NULL;
404
405 /* these are copied out of sel for speed */
406 int show_idle;
407 int show_self;
408 int show_system;
409 int show_uid;
410 int show_command;
411
454static struct handle handle;
455
456caddr_t
457get_process_info(si, sel, compare)
458 struct system_info *si;
459 struct process_select *sel;
460 int (*compare)();
461{
462 int i;
463 int total_procs;
464 int active_procs;
465 struct kinfo_proc **prefp;
466 struct kinfo_proc *pp;
467 struct kinfo_proc *prev_pp = NULL;
468
469 /* these are copied out of sel for speed */
470 int show_idle;
471 int show_self;
472 int show_system;
473 int show_uid;
474 int show_command;
475
476 /*
477 * Save the previous process info.
478 */
479 if (previous_proc_count_max < nproc) {
480 free(previous_procs);
481 previous_procs = malloc(nproc * sizeof(struct kinfo_proc));
482 free(previous_pref);
483 previous_pref = malloc(nproc * sizeof(struct kinfo_proc *));
484 if (previous_procs == NULL || previous_pref == NULL) {
485 (void) fprintf(stderr, "top: Out of memory.\n");
486 quit(23);
487 }
488 previous_proc_count_max = nproc;
489 }
490 if (nproc) {
491 for (i = 0; i < nproc; i++)
492 previous_pref[i] = &previous_procs[i];
493 bcopy(pbase, previous_procs, nproc * sizeof(struct kinfo_proc));
494 qsort(previous_pref, nproc,
495 sizeof(struct kinfo_proc *), compare_pid);
496 }
497 previous_proc_count = nproc;
498
412 pbase = kvm_getprocs(kd, KERN_PROC_ALL, 0, &nproc);
413 if (nproc > onproc)
414 pref = (struct kinfo_proc **) realloc(pref, sizeof(struct kinfo_proc *)
415 * (onproc = nproc));
416 if (pref == NULL || pbase == NULL) {
417 (void) fprintf(stderr, "top: Out of memory.\n");
418 quit(23);
419 }
420 /* get a pointer to the states summary array */
421 si->procstates = process_states;
422
423 /* set up flags which define what we are going to select */
424 show_idle = sel->idle;
425 show_self = sel->self;
426 show_system = sel->system;
427 show_uid = sel->uid != -1;
428 show_command = sel->command != NULL;
429
430 /* count up process states and get pointers to interesting procs */
431 total_procs = 0;
432 active_procs = 0;
433 memset((char *)process_states, 0, sizeof(process_states));
434 prefp = pref;
435 for (pp = pbase, i = 0; i < nproc; pp++, i++)
436 {
437 /*
438 * Place pointers to each valid proc structure in pref[].
439 * Process slots that are actually in use have a non-zero
440 * status field. Processes with P_SYSTEM set are system
441 * processes---these get ignored unless show_sysprocs is set.
442 */
443 if (pp->ki_stat != 0 &&
444 (show_self != pp->ki_pid) &&
445 (show_system || ((pp->ki_flag & P_SYSTEM) == 0)))
446 {
447 total_procs++;
448 process_states[(unsigned char) pp->ki_stat]++;
449 if ((pp->ki_stat != SZOMB) &&
499 pbase = kvm_getprocs(kd, KERN_PROC_ALL, 0, &nproc);
500 if (nproc > onproc)
501 pref = (struct kinfo_proc **) realloc(pref, sizeof(struct kinfo_proc *)
502 * (onproc = nproc));
503 if (pref == NULL || pbase == NULL) {
504 (void) fprintf(stderr, "top: Out of memory.\n");
505 quit(23);
506 }
507 /* get a pointer to the states summary array */
508 si->procstates = process_states;
509
510 /* set up flags which define what we are going to select */
511 show_idle = sel->idle;
512 show_self = sel->self;
513 show_system = sel->system;
514 show_uid = sel->uid != -1;
515 show_command = sel->command != NULL;
516
517 /* count up process states and get pointers to interesting procs */
518 total_procs = 0;
519 active_procs = 0;
520 memset((char *)process_states, 0, sizeof(process_states));
521 prefp = pref;
522 for (pp = pbase, i = 0; i < nproc; pp++, i++)
523 {
524 /*
525 * Place pointers to each valid proc structure in pref[].
526 * Process slots that are actually in use have a non-zero
527 * status field. Processes with P_SYSTEM set are system
528 * processes---these get ignored unless show_sysprocs is set.
529 */
530 if (pp->ki_stat != 0 &&
531 (show_self != pp->ki_pid) &&
532 (show_system || ((pp->ki_flag & P_SYSTEM) == 0)))
533 {
534 total_procs++;
535 process_states[(unsigned char) pp->ki_stat]++;
536 if ((pp->ki_stat != SZOMB) &&
450 (show_idle || (pp->ki_pctcpu != 0) ||
451 (pp->ki_stat == SRUN)) &&
537 (displaymode == DISP_CPU &&
538 (show_idle || (pp->ki_pctcpu != 0) || pp->ki_stat == SRUN)) ||
539 (show_idle || (displaymode == DISP_IO && get_io_total(pp))) &&
452 (!show_uid || pp->ki_ruid == (uid_t)sel->uid))
453 {
454 /*
455 * When not showing threads, take the first thread
456 * for output and add the fields that we can from
457 * the rest of the process's threads rather than
458 * using the system's mostly-broken KERN_PROC_PROC.
459 */
460 if (sel->thread || prev_pp == NULL ||
461 prev_pp->ki_pid != pp->ki_pid)
462 {
463 *prefp++ = pp;
464 active_procs++;
465 prev_pp = pp;
466 } else {
467 prev_pp->ki_pctcpu += pp->ki_pctcpu;
468 }
469 }
470 }
471 }
472
473 /* if requested, sort the "interesting" processes */
474 if (compare != NULL)
475 {
476 qsort((char *)pref, active_procs, sizeof(struct kinfo_proc *), compare);
477 }
478
479 /* remember active and total counts */
480 si->p_total = total_procs;
481 si->p_active = pref_len = active_procs;
482
483 /* pass back a handle */
484 handle.next_proc = pref;
485 handle.remaining = active_procs;
486 return((caddr_t)&handle);
487}
488
489char fmt[128]; /* static area where result is built */
490
491char *
492format_next_process(handle, get_userid)
493 caddr_t handle;
494 char *(*get_userid)();
495{
496 struct kinfo_proc *pp;
540 (!show_uid || pp->ki_ruid == (uid_t)sel->uid))
541 {
542 /*
543 * When not showing threads, take the first thread
544 * for output and add the fields that we can from
545 * the rest of the process's threads rather than
546 * using the system's mostly-broken KERN_PROC_PROC.
547 */
548 if (sel->thread || prev_pp == NULL ||
549 prev_pp->ki_pid != pp->ki_pid)
550 {
551 *prefp++ = pp;
552 active_procs++;
553 prev_pp = pp;
554 } else {
555 prev_pp->ki_pctcpu += pp->ki_pctcpu;
556 }
557 }
558 }
559 }
560
561 /* if requested, sort the "interesting" processes */
562 if (compare != NULL)
563 {
564 qsort((char *)pref, active_procs, sizeof(struct kinfo_proc *), compare);
565 }
566
567 /* remember active and total counts */
568 si->p_total = total_procs;
569 si->p_active = pref_len = active_procs;
570
571 /* pass back a handle */
572 handle.next_proc = pref;
573 handle.remaining = active_procs;
574 return((caddr_t)&handle);
575}
576
577char fmt[128]; /* static area where result is built */
578
579char *
580format_next_process(handle, get_userid)
581 caddr_t handle;
582 char *(*get_userid)();
583{
584 struct kinfo_proc *pp;
585 const struct kinfo_proc *oldp;
497 long cputime;
498 double pct;
499 struct handle *hp;
500 char status[16];
501 int state;
586 long cputime;
587 double pct;
588 struct handle *hp;
589 char status[16];
590 int state;
591 struct rusage ru, *rup;
502
503 /* find and remember the next proc structure */
504 hp = (struct handle *)handle;
505 pp = *(hp->next_proc++);
506 hp->remaining--;
507
508 /* get the process's command name */
509 if ((pp->ki_sflag & PS_INMEM) == 0) {
510 /*
511 * Print swapped processes as <pname>
512 */
513 char *comm = pp->ki_comm;
514#define COMSIZ sizeof(pp->ki_comm)
515 char buf[COMSIZ];
516 (void) strncpy(buf, comm, COMSIZ);
517 comm[0] = '<';
518 (void) strncpy(&comm[1], buf, COMSIZ - 2);
519 comm[COMSIZ - 2] = '\0';
520 (void) strncat(comm, ">", COMSIZ - 1);
521 comm[COMSIZ - 1] = '\0';
522 }
523
524 /*
525 * Convert the process's runtime from microseconds to seconds. This
526 * time includes the interrupt time although that is not wanted here.
527 * ps(1) is similarly sloppy.
528 */
529 cputime = (pp->ki_runtime + 500000) / 1000000;
530
531 /* calculate the base for cpu percentages */
532 pct = pctdouble(pp->ki_pctcpu);
533
534 /* generate "STATE" field */
535 switch (state = pp->ki_stat) {
536 case SRUN:
537 if (smpmode && pp->ki_oncpu != 0xff)
538 sprintf(status, "CPU%d", pp->ki_oncpu);
539 else
540 strcpy(status, "RUN");
541 break;
542 case SLOCK:
543 if (pp->ki_kiflag & KI_LOCKBLOCK) {
544 sprintf(status, "*%.6s", pp->ki_lockname);
545 break;
546 }
547 /* fall through */
548 case SSLEEP:
549 if (pp->ki_wmesg != NULL) {
550 sprintf(status, "%.6s", pp->ki_wmesg);
551 break;
552 }
553 /* FALLTHROUGH */
554 default:
555
556 if (state >= 0 &&
557 state < sizeof(state_abbrev) / sizeof(*state_abbrev))
558 sprintf(status, "%.6s", state_abbrev[(unsigned char) state]);
559 else
560 sprintf(status, "?%5d", state);
561 break;
562 }
563
592
593 /* find and remember the next proc structure */
594 hp = (struct handle *)handle;
595 pp = *(hp->next_proc++);
596 hp->remaining--;
597
598 /* get the process's command name */
599 if ((pp->ki_sflag & PS_INMEM) == 0) {
600 /*
601 * Print swapped processes as <pname>
602 */
603 char *comm = pp->ki_comm;
604#define COMSIZ sizeof(pp->ki_comm)
605 char buf[COMSIZ];
606 (void) strncpy(buf, comm, COMSIZ);
607 comm[0] = '<';
608 (void) strncpy(&comm[1], buf, COMSIZ - 2);
609 comm[COMSIZ - 2] = '\0';
610 (void) strncat(comm, ">", COMSIZ - 1);
611 comm[COMSIZ - 1] = '\0';
612 }
613
614 /*
615 * Convert the process's runtime from microseconds to seconds. This
616 * time includes the interrupt time although that is not wanted here.
617 * ps(1) is similarly sloppy.
618 */
619 cputime = (pp->ki_runtime + 500000) / 1000000;
620
621 /* calculate the base for cpu percentages */
622 pct = pctdouble(pp->ki_pctcpu);
623
624 /* generate "STATE" field */
625 switch (state = pp->ki_stat) {
626 case SRUN:
627 if (smpmode && pp->ki_oncpu != 0xff)
628 sprintf(status, "CPU%d", pp->ki_oncpu);
629 else
630 strcpy(status, "RUN");
631 break;
632 case SLOCK:
633 if (pp->ki_kiflag & KI_LOCKBLOCK) {
634 sprintf(status, "*%.6s", pp->ki_lockname);
635 break;
636 }
637 /* fall through */
638 case SSLEEP:
639 if (pp->ki_wmesg != NULL) {
640 sprintf(status, "%.6s", pp->ki_wmesg);
641 break;
642 }
643 /* FALLTHROUGH */
644 default:
645
646 if (state >= 0 &&
647 state < sizeof(state_abbrev) / sizeof(*state_abbrev))
648 sprintf(status, "%.6s", state_abbrev[(unsigned char) state]);
649 else
650 sprintf(status, "?%5d", state);
651 break;
652 }
653
654 if (displaymode == DISP_IO) {
655 oldp = get_old_proc(pp);
656 if (oldp != NULL) {
657 ru.ru_inblock = RU(pp)->ru_inblock - RU(oldp)->ru_inblock;
658 ru.ru_oublock = RU(pp)->ru_oublock - RU(oldp)->ru_oublock;
659 ru.ru_majflt = RU(pp)->ru_majflt - RU(oldp)->ru_majflt;
660 rup = &ru;
661 } else {
662 rup = RU(pp);
663 }
664
665 sprintf(fmt, io_Proc_format,
666 pp->ki_pid,
667 namelength, namelength,
668 (*get_userid)(pp->ki_ruid),
669 (int)rup->ru_inblock,
670 (int)rup->ru_oublock,
671 (int)rup->ru_majflt,
672 (int)(rup->ru_inblock + rup->ru_oublock + rup->ru_majflt),
673 screen_width > cmdlengthdelta ?
674 screen_width - cmdlengthdelta : 0,
675 printable(pp->ki_comm));
676 return (fmt);
677 }
564 /* format this entry */
565 sprintf(fmt,
566 smpmode ? smp_Proc_format : up_Proc_format,
567 pp->ki_pid,
568 namelength, namelength,
569 (*get_userid)(pp->ki_ruid),
570 pp->ki_pri.pri_level - PZERO,
571
572 /*
573 * normal time -> nice value -20 - +20
574 * real time 0 - 31 -> nice value -52 - -21
575 * idle time 0 - 31 -> nice value +21 - +52
576 */
577 (pp->ki_pri.pri_class == PRI_TIMESHARE ?
578 pp->ki_nice - NZERO :
579 (PRI_IS_REALTIME(pp->ki_pri.pri_class) ?
580 (PRIO_MIN - 1 - (PRI_MAX_REALTIME - pp->ki_pri.pri_level)) :
581 (PRIO_MAX + 1 + pp->ki_pri.pri_level - PRI_MIN_IDLE))),
582 format_k2(PROCSIZE(pp)),
583 format_k2(pagetok(pp->ki_rssize)),
584 status,
585 smpmode ? pp->ki_lastcpu : 0,
586 format_time(cputime),
587 100.0 * weighted_cpu(pct, pp),
588 100.0 * pct,
589 screen_width > cmdlengthdelta ?
590 screen_width - cmdlengthdelta :
591 0,
592 printable(pp->ki_comm));
593
594 /* return the result */
595 return(fmt);
596}
597
598static void
599getsysctl(name, ptr, len)
600 char *name;
601 void *ptr;
602 size_t len;
603{
604 size_t nlen = len;
605
606 if (sysctlbyname(name, ptr, &nlen, NULL, 0) == -1) {
607 fprintf(stderr, "top: sysctl(%s...) failed: %s\n", name,
608 strerror(errno));
609 quit(23);
610 }
611 if (nlen != len) {
612 fprintf(stderr, "top: sysctl(%s...) expected %lu, got %lu\n", name,
613 (unsigned long)len, (unsigned long)nlen);
614 quit(23);
615 }
616}
617
618/* comparison routines for qsort */
619
678 /* format this entry */
679 sprintf(fmt,
680 smpmode ? smp_Proc_format : up_Proc_format,
681 pp->ki_pid,
682 namelength, namelength,
683 (*get_userid)(pp->ki_ruid),
684 pp->ki_pri.pri_level - PZERO,
685
686 /*
687 * normal time -> nice value -20 - +20
688 * real time 0 - 31 -> nice value -52 - -21
689 * idle time 0 - 31 -> nice value +21 - +52
690 */
691 (pp->ki_pri.pri_class == PRI_TIMESHARE ?
692 pp->ki_nice - NZERO :
693 (PRI_IS_REALTIME(pp->ki_pri.pri_class) ?
694 (PRIO_MIN - 1 - (PRI_MAX_REALTIME - pp->ki_pri.pri_level)) :
695 (PRIO_MAX + 1 + pp->ki_pri.pri_level - PRI_MIN_IDLE))),
696 format_k2(PROCSIZE(pp)),
697 format_k2(pagetok(pp->ki_rssize)),
698 status,
699 smpmode ? pp->ki_lastcpu : 0,
700 format_time(cputime),
701 100.0 * weighted_cpu(pct, pp),
702 100.0 * pct,
703 screen_width > cmdlengthdelta ?
704 screen_width - cmdlengthdelta :
705 0,
706 printable(pp->ki_comm));
707
708 /* return the result */
709 return(fmt);
710}
711
712static void
713getsysctl(name, ptr, len)
714 char *name;
715 void *ptr;
716 size_t len;
717{
718 size_t nlen = len;
719
720 if (sysctlbyname(name, ptr, &nlen, NULL, 0) == -1) {
721 fprintf(stderr, "top: sysctl(%s...) failed: %s\n", name,
722 strerror(errno));
723 quit(23);
724 }
725 if (nlen != len) {
726 fprintf(stderr, "top: sysctl(%s...) expected %lu, got %lu\n", name,
727 (unsigned long)len, (unsigned long)nlen);
728 quit(23);
729 }
730}
731
732/* comparison routines for qsort */
733
734int
735compare_pid(p1, p2)
736 const void *p1, *p2;
737{
738 const struct kinfo_proc * const *pp1 = p1;
739 const struct kinfo_proc * const *pp2 = p2;
740
741 if ((*pp2)->ki_pid < 0 || (*pp1)->ki_pid < 0)
742 abort();
743
744 return ((*pp1)->ki_pid - (*pp2)->ki_pid);
745}
746
620/*
621 * proc_compare - comparison function for "qsort"
622 * Compares the resource consumption of two processes using five
623 * distinct keys. The keys (in descending order of importance) are:
624 * percent cpu, cpu ticks, state, resident set size, total virtual
625 * memory usage. The process states are ordered as follows (from least
626 * to most important): WAIT, zombie, sleep, stop, start, run. The
627 * array declaration below maps a process state index into a number
628 * that reflects this ordering.
629 */
630
631static unsigned char sorted_state[] =
632{
633 0, /* not used */
634 3, /* sleep */
635 1, /* ABANDONED (WAIT) */
636 6, /* run */
637 5, /* start */
638 2, /* zombie */
639 4 /* stop */
640};
641
642
643#define ORDERKEY_PCTCPU \
644 if (lresult = (long) p2->ki_pctcpu - (long) p1->ki_pctcpu, \
645 (result = lresult > 0 ? 1 : lresult < 0 ? -1 : 0) == 0)
646
647#define ORDERKEY_CPTICKS \
648 if ((result = p2->ki_runtime > p1->ki_runtime ? 1 : \
649 p2->ki_runtime < p1->ki_runtime ? -1 : 0) == 0)
650
651#define ORDERKEY_STATE \
652 if ((result = sorted_state[(unsigned char) p2->ki_stat] - \
653 sorted_state[(unsigned char) p1->ki_stat]) == 0)
654
655#define ORDERKEY_PRIO \
656 if ((result = p2->ki_pri.pri_level - p1->ki_pri.pri_level) == 0)
657
658#define ORDERKEY_RSSIZE \
659 if ((result = p2->ki_rssize - p1->ki_rssize) == 0)
660
661#define ORDERKEY_MEM \
662 if ( (result = PROCSIZE(p2) - PROCSIZE(p1)) == 0 )
663
664/* compare_cpu - the comparison function for sorting by cpu percentage */
665
666int
667#ifdef ORDER
668compare_cpu(pp1, pp2)
669#else
670proc_compare(pp1, pp2)
671#endif
672 struct proc **pp1;
673 struct proc **pp2;
674{
675 struct kinfo_proc *p1;
676 struct kinfo_proc *p2;
677 int result;
678 pctcpu lresult;
679
680 /* remove one level of indirection */
681 p1 = *(struct kinfo_proc **) pp1;
682 p2 = *(struct kinfo_proc **) pp2;
683
684 ORDERKEY_PCTCPU
685 ORDERKEY_CPTICKS
686 ORDERKEY_STATE
687 ORDERKEY_PRIO
688 ORDERKEY_RSSIZE
689 ORDERKEY_MEM
690 ;
691
692 return(result);
693}
694
695#ifdef ORDER
696/* compare routines */
697int compare_size(), compare_res(), compare_time(), compare_prio();
698
699int (*proc_compares[])() = {
700 compare_cpu,
701 compare_size,
702 compare_res,
703 compare_time,
704 compare_prio,
705 NULL
706};
707
708/* compare_size - the comparison function for sorting by total memory usage */
709
710int
711compare_size(pp1, pp2)
712 struct proc **pp1;
713 struct proc **pp2;
714{
715 struct kinfo_proc *p1;
716 struct kinfo_proc *p2;
717 int result;
718 pctcpu lresult;
719
720 /* remove one level of indirection */
721 p1 = *(struct kinfo_proc **) pp1;
722 p2 = *(struct kinfo_proc **) pp2;
723
724 ORDERKEY_MEM
725 ORDERKEY_RSSIZE
726 ORDERKEY_PCTCPU
727 ORDERKEY_CPTICKS
728 ORDERKEY_STATE
729 ORDERKEY_PRIO
730 ;
731
732 return(result);
733}
734
735/* compare_res - the comparison function for sorting by resident set size */
736
737int
738compare_res(pp1, pp2)
739 struct proc **pp1;
740 struct proc **pp2;
741{
742 struct kinfo_proc *p1;
743 struct kinfo_proc *p2;
744 int result;
745 pctcpu lresult;
746
747 /* remove one level of indirection */
748 p1 = *(struct kinfo_proc **) pp1;
749 p2 = *(struct kinfo_proc **) pp2;
750
751 ORDERKEY_RSSIZE
752 ORDERKEY_MEM
753 ORDERKEY_PCTCPU
754 ORDERKEY_CPTICKS
755 ORDERKEY_STATE
756 ORDERKEY_PRIO
757 ;
758
759 return(result);
760}
761
762/* compare_time - the comparison function for sorting by total cpu time */
763
764int
765compare_time(pp1, pp2)
766 struct proc **pp1;
767 struct proc **pp2;
768{
769 struct kinfo_proc *p1;
770 struct kinfo_proc *p2;
771 int result;
772 pctcpu lresult;
773
774 /* remove one level of indirection */
775 p1 = *(struct kinfo_proc **) pp1;
776 p2 = *(struct kinfo_proc **) pp2;
777
778 ORDERKEY_CPTICKS
779 ORDERKEY_PCTCPU
780 ORDERKEY_STATE
781 ORDERKEY_PRIO
782 ORDERKEY_RSSIZE
783 ORDERKEY_MEM
784 ;
785
786 return(result);
787 }
788
789/* compare_prio - the comparison function for sorting by cpu percentage */
790
791int
792compare_prio(pp1, pp2)
793 struct proc **pp1;
794 struct proc **pp2;
795{
796 struct kinfo_proc *p1;
797 struct kinfo_proc *p2;
798 int result;
799 pctcpu lresult;
800
801 /* remove one level of indirection */
802 p1 = *(struct kinfo_proc **) pp1;
803 p2 = *(struct kinfo_proc **) pp2;
804
805 ORDERKEY_PRIO
806 ORDERKEY_CPTICKS
807 ORDERKEY_PCTCPU
808 ORDERKEY_STATE
809 ORDERKEY_RSSIZE
810 ORDERKEY_MEM
811 ;
812
813 return(result);
814}
815#endif
816
747/*
748 * proc_compare - comparison function for "qsort"
749 * Compares the resource consumption of two processes using five
750 * distinct keys. The keys (in descending order of importance) are:
751 * percent cpu, cpu ticks, state, resident set size, total virtual
752 * memory usage. The process states are ordered as follows (from least
753 * to most important): WAIT, zombie, sleep, stop, start, run. The
754 * array declaration below maps a process state index into a number
755 * that reflects this ordering.
756 */
757
758static unsigned char sorted_state[] =
759{
760 0, /* not used */
761 3, /* sleep */
762 1, /* ABANDONED (WAIT) */
763 6, /* run */
764 5, /* start */
765 2, /* zombie */
766 4 /* stop */
767};
768
769
770#define ORDERKEY_PCTCPU \
771 if (lresult = (long) p2->ki_pctcpu - (long) p1->ki_pctcpu, \
772 (result = lresult > 0 ? 1 : lresult < 0 ? -1 : 0) == 0)
773
774#define ORDERKEY_CPTICKS \
775 if ((result = p2->ki_runtime > p1->ki_runtime ? 1 : \
776 p2->ki_runtime < p1->ki_runtime ? -1 : 0) == 0)
777
778#define ORDERKEY_STATE \
779 if ((result = sorted_state[(unsigned char) p2->ki_stat] - \
780 sorted_state[(unsigned char) p1->ki_stat]) == 0)
781
782#define ORDERKEY_PRIO \
783 if ((result = p2->ki_pri.pri_level - p1->ki_pri.pri_level) == 0)
784
785#define ORDERKEY_RSSIZE \
786 if ((result = p2->ki_rssize - p1->ki_rssize) == 0)
787
788#define ORDERKEY_MEM \
789 if ( (result = PROCSIZE(p2) - PROCSIZE(p1)) == 0 )
790
791/* compare_cpu - the comparison function for sorting by cpu percentage */
792
793int
794#ifdef ORDER
795compare_cpu(pp1, pp2)
796#else
797proc_compare(pp1, pp2)
798#endif
799 struct proc **pp1;
800 struct proc **pp2;
801{
802 struct kinfo_proc *p1;
803 struct kinfo_proc *p2;
804 int result;
805 pctcpu lresult;
806
807 /* remove one level of indirection */
808 p1 = *(struct kinfo_proc **) pp1;
809 p2 = *(struct kinfo_proc **) pp2;
810
811 ORDERKEY_PCTCPU
812 ORDERKEY_CPTICKS
813 ORDERKEY_STATE
814 ORDERKEY_PRIO
815 ORDERKEY_RSSIZE
816 ORDERKEY_MEM
817 ;
818
819 return(result);
820}
821
822#ifdef ORDER
823/* compare routines */
824int compare_size(), compare_res(), compare_time(), compare_prio();
825
826int (*proc_compares[])() = {
827 compare_cpu,
828 compare_size,
829 compare_res,
830 compare_time,
831 compare_prio,
832 NULL
833};
834
835/* compare_size - the comparison function for sorting by total memory usage */
836
837int
838compare_size(pp1, pp2)
839 struct proc **pp1;
840 struct proc **pp2;
841{
842 struct kinfo_proc *p1;
843 struct kinfo_proc *p2;
844 int result;
845 pctcpu lresult;
846
847 /* remove one level of indirection */
848 p1 = *(struct kinfo_proc **) pp1;
849 p2 = *(struct kinfo_proc **) pp2;
850
851 ORDERKEY_MEM
852 ORDERKEY_RSSIZE
853 ORDERKEY_PCTCPU
854 ORDERKEY_CPTICKS
855 ORDERKEY_STATE
856 ORDERKEY_PRIO
857 ;
858
859 return(result);
860}
861
862/* compare_res - the comparison function for sorting by resident set size */
863
864int
865compare_res(pp1, pp2)
866 struct proc **pp1;
867 struct proc **pp2;
868{
869 struct kinfo_proc *p1;
870 struct kinfo_proc *p2;
871 int result;
872 pctcpu lresult;
873
874 /* remove one level of indirection */
875 p1 = *(struct kinfo_proc **) pp1;
876 p2 = *(struct kinfo_proc **) pp2;
877
878 ORDERKEY_RSSIZE
879 ORDERKEY_MEM
880 ORDERKEY_PCTCPU
881 ORDERKEY_CPTICKS
882 ORDERKEY_STATE
883 ORDERKEY_PRIO
884 ;
885
886 return(result);
887}
888
889/* compare_time - the comparison function for sorting by total cpu time */
890
891int
892compare_time(pp1, pp2)
893 struct proc **pp1;
894 struct proc **pp2;
895{
896 struct kinfo_proc *p1;
897 struct kinfo_proc *p2;
898 int result;
899 pctcpu lresult;
900
901 /* remove one level of indirection */
902 p1 = *(struct kinfo_proc **) pp1;
903 p2 = *(struct kinfo_proc **) pp2;
904
905 ORDERKEY_CPTICKS
906 ORDERKEY_PCTCPU
907 ORDERKEY_STATE
908 ORDERKEY_PRIO
909 ORDERKEY_RSSIZE
910 ORDERKEY_MEM
911 ;
912
913 return(result);
914 }
915
916/* compare_prio - the comparison function for sorting by cpu percentage */
917
918int
919compare_prio(pp1, pp2)
920 struct proc **pp1;
921 struct proc **pp2;
922{
923 struct kinfo_proc *p1;
924 struct kinfo_proc *p2;
925 int result;
926 pctcpu lresult;
927
928 /* remove one level of indirection */
929 p1 = *(struct kinfo_proc **) pp1;
930 p2 = *(struct kinfo_proc **) pp2;
931
932 ORDERKEY_PRIO
933 ORDERKEY_CPTICKS
934 ORDERKEY_PCTCPU
935 ORDERKEY_STATE
936 ORDERKEY_RSSIZE
937 ORDERKEY_MEM
938 ;
939
940 return(result);
941}
942#endif
943
944int
945io_compare(pp1, pp2)
946 struct kinfo_proc **pp1, **pp2;
947{
948 long t1, t2;
949
950 t1 = get_io_total(*pp1);
951 t2 = get_io_total(*pp2);
952 return (t2 - t1);
953}
817/*
818 * proc_owner(pid) - returns the uid that owns process "pid", or -1 if
819 * the process does not exist.
820 * It is EXTREMLY IMPORTANT that this function work correctly.
821 * If top runs setuid root (as in SVR4), then this function
822 * is the only thing that stands in the way of a serious
823 * security problem. It validates requests for the "kill"
824 * and "renice" commands.
825 */
826
827int
828proc_owner(pid)
829 int pid;
830{
831 int cnt;
832 struct kinfo_proc **prefp;
833 struct kinfo_proc *pp;
834
835 prefp = pref;
836 cnt = pref_len;
837 while (--cnt >= 0)
838 {
839 pp = *prefp++;
840 if (pp->ki_pid == (pid_t)pid)
841 {
842 return((int)pp->ki_ruid);
843 }
844 }
845 return(-1);
846}
847
848int
849swapmode(retavail, retfree)
850 int *retavail;
851 int *retfree;
852{
853 int n;
854 int pagesize = getpagesize();
855 struct kvm_swap swapary[1];
856
857 *retavail = 0;
858 *retfree = 0;
859
860#define CONVERT(v) ((quad_t)(v) * pagesize / 1024)
861
862 n = kvm_getswapinfo(kd, swapary, 1, 0);
863 if (n < 0 || swapary[0].ksw_total == 0)
864 return(0);
865
866 *retavail = CONVERT(swapary[0].ksw_total);
867 *retfree = CONVERT(swapary[0].ksw_total - swapary[0].ksw_used);
868
869 n = (int)((double)swapary[0].ksw_used * 100.0 /
870 (double)swapary[0].ksw_total);
871 return(n);
872}
873
954/*
955 * proc_owner(pid) - returns the uid that owns process "pid", or -1 if
956 * the process does not exist.
957 * It is EXTREMLY IMPORTANT that this function work correctly.
958 * If top runs setuid root (as in SVR4), then this function
959 * is the only thing that stands in the way of a serious
960 * security problem. It validates requests for the "kill"
961 * and "renice" commands.
962 */
963
964int
965proc_owner(pid)
966 int pid;
967{
968 int cnt;
969 struct kinfo_proc **prefp;
970 struct kinfo_proc *pp;
971
972 prefp = pref;
973 cnt = pref_len;
974 while (--cnt >= 0)
975 {
976 pp = *prefp++;
977 if (pp->ki_pid == (pid_t)pid)
978 {
979 return((int)pp->ki_ruid);
980 }
981 }
982 return(-1);
983}
984
985int
986swapmode(retavail, retfree)
987 int *retavail;
988 int *retfree;
989{
990 int n;
991 int pagesize = getpagesize();
992 struct kvm_swap swapary[1];
993
994 *retavail = 0;
995 *retfree = 0;
996
997#define CONVERT(v) ((quad_t)(v) * pagesize / 1024)
998
999 n = kvm_getswapinfo(kd, swapary, 1, 0);
1000 if (n < 0 || swapary[0].ksw_total == 0)
1001 return(0);
1002
1003 *retavail = CONVERT(swapary[0].ksw_total);
1004 *retfree = CONVERT(swapary[0].ksw_total - swapary[0].ksw_used);
1005
1006 n = (int)((double)swapary[0].ksw_used * 100.0 /
1007 (double)swapary[0].ksw_total);
1008 return(n);
1009}
1010