Deleted Added
full compact
ip6_output.c (189303) ip6_output.c (191672)
1/*-
2 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 * notice, this list of conditions and the following disclaimer in the
12 * documentation and/or other materials provided with the distribution.
13 * 3. Neither the name of the project nor the names of its contributors
14 * may be used to endorse or promote products derived from this software
15 * without specific prior written permission.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 *
29 * $KAME: ip6_output.c,v 1.279 2002/01/26 06:12:30 jinmei Exp $
30 */
31
32/*-
33 * Copyright (c) 1982, 1986, 1988, 1990, 1993
34 * The Regents of the University of California. All rights reserved.
35 *
36 * Redistribution and use in source and binary forms, with or without
37 * modification, are permitted provided that the following conditions
38 * are met:
39 * 1. Redistributions of source code must retain the above copyright
40 * notice, this list of conditions and the following disclaimer.
41 * 2. Redistributions in binary form must reproduce the above copyright
42 * notice, this list of conditions and the following disclaimer in the
43 * documentation and/or other materials provided with the distribution.
44 * 4. Neither the name of the University nor the names of its contributors
45 * may be used to endorse or promote products derived from this software
46 * without specific prior written permission.
47 *
48 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
49 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
50 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
51 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
52 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
53 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
54 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
55 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
56 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
57 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
58 * SUCH DAMAGE.
59 *
60 * @(#)ip_output.c 8.3 (Berkeley) 1/21/94
61 */
62
63#include <sys/cdefs.h>
1/*-
2 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 * notice, this list of conditions and the following disclaimer in the
12 * documentation and/or other materials provided with the distribution.
13 * 3. Neither the name of the project nor the names of its contributors
14 * may be used to endorse or promote products derived from this software
15 * without specific prior written permission.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 *
29 * $KAME: ip6_output.c,v 1.279 2002/01/26 06:12:30 jinmei Exp $
30 */
31
32/*-
33 * Copyright (c) 1982, 1986, 1988, 1990, 1993
34 * The Regents of the University of California. All rights reserved.
35 *
36 * Redistribution and use in source and binary forms, with or without
37 * modification, are permitted provided that the following conditions
38 * are met:
39 * 1. Redistributions of source code must retain the above copyright
40 * notice, this list of conditions and the following disclaimer.
41 * 2. Redistributions in binary form must reproduce the above copyright
42 * notice, this list of conditions and the following disclaimer in the
43 * documentation and/or other materials provided with the distribution.
44 * 4. Neither the name of the University nor the names of its contributors
45 * may be used to endorse or promote products derived from this software
46 * without specific prior written permission.
47 *
48 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
49 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
50 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
51 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
52 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
53 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
54 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
55 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
56 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
57 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
58 * SUCH DAMAGE.
59 *
60 * @(#)ip_output.c 8.3 (Berkeley) 1/21/94
61 */
62
63#include <sys/cdefs.h>
64__FBSDID("$FreeBSD: head/sys/netinet6/ip6_output.c 189303 2009-03-03 13:12:12Z bz $");
64__FBSDID("$FreeBSD: head/sys/netinet6/ip6_output.c 191672 2009-04-29 19:19:13Z bms $");
65
66#include "opt_inet.h"
67#include "opt_inet6.h"
68#include "opt_ipsec.h"
69#include "opt_route.h"
70
71#include <sys/param.h>
72#include <sys/kernel.h>
73#include <sys/malloc.h>
74#include <sys/mbuf.h>
75#include <sys/errno.h>
76#include <sys/priv.h>
77#include <sys/proc.h>
78#include <sys/protosw.h>
79#include <sys/socket.h>
80#include <sys/socketvar.h>
81#include <sys/syslog.h>
82#include <sys/ucred.h>
83#include <sys/vimage.h>
84
85#include <net/if.h>
86#include <net/netisr.h>
87#include <net/route.h>
88#include <net/pfil.h>
89#include <net/vnet.h>
90
91#include <netinet/in.h>
92#include <netinet/in_var.h>
93#include <netinet6/in6_var.h>
94#include <netinet/ip6.h>
95#include <netinet/icmp6.h>
96#include <netinet6/ip6_var.h>
97#include <netinet/in_pcb.h>
98#include <netinet/tcp_var.h>
99#include <netinet6/nd6.h>
100#include <netinet/vinet.h>
101
102#ifdef IPSEC
103#include <netipsec/ipsec.h>
104#include <netipsec/ipsec6.h>
105#include <netipsec/key.h>
106#include <netinet6/ip6_ipsec.h>
107#endif /* IPSEC */
108
109#include <netinet6/ip6protosw.h>
110#include <netinet6/scope6_var.h>
111#include <netinet6/vinet6.h>
112
65
66#include "opt_inet.h"
67#include "opt_inet6.h"
68#include "opt_ipsec.h"
69#include "opt_route.h"
70
71#include <sys/param.h>
72#include <sys/kernel.h>
73#include <sys/malloc.h>
74#include <sys/mbuf.h>
75#include <sys/errno.h>
76#include <sys/priv.h>
77#include <sys/proc.h>
78#include <sys/protosw.h>
79#include <sys/socket.h>
80#include <sys/socketvar.h>
81#include <sys/syslog.h>
82#include <sys/ucred.h>
83#include <sys/vimage.h>
84
85#include <net/if.h>
86#include <net/netisr.h>
87#include <net/route.h>
88#include <net/pfil.h>
89#include <net/vnet.h>
90
91#include <netinet/in.h>
92#include <netinet/in_var.h>
93#include <netinet6/in6_var.h>
94#include <netinet/ip6.h>
95#include <netinet/icmp6.h>
96#include <netinet6/ip6_var.h>
97#include <netinet/in_pcb.h>
98#include <netinet/tcp_var.h>
99#include <netinet6/nd6.h>
100#include <netinet/vinet.h>
101
102#ifdef IPSEC
103#include <netipsec/ipsec.h>
104#include <netipsec/ipsec6.h>
105#include <netipsec/key.h>
106#include <netinet6/ip6_ipsec.h>
107#endif /* IPSEC */
108
109#include <netinet6/ip6protosw.h>
110#include <netinet6/scope6_var.h>
111#include <netinet6/vinet6.h>
112
113static MALLOC_DEFINE(M_IP6MOPTS, "ip6_moptions", "internet multicast options");
113extern int in6_mcast_loop;
114
115struct ip6_exthdrs {
116 struct mbuf *ip6e_ip6;
117 struct mbuf *ip6e_hbh;
118 struct mbuf *ip6e_dest1;
119 struct mbuf *ip6e_rthdr;
120 struct mbuf *ip6e_dest2;
121};
122
123static int ip6_pcbopt __P((int, u_char *, int, struct ip6_pktopts **,
124 struct ucred *, int));
125static int ip6_pcbopts __P((struct ip6_pktopts **, struct mbuf *,
126 struct socket *, struct sockopt *));
127static int ip6_getpcbopt(struct ip6_pktopts *, int, struct sockopt *);
128static int ip6_setpktopt __P((int, u_char *, int, struct ip6_pktopts *,
129 struct ucred *, int, int, int));
130
114
115struct ip6_exthdrs {
116 struct mbuf *ip6e_ip6;
117 struct mbuf *ip6e_hbh;
118 struct mbuf *ip6e_dest1;
119 struct mbuf *ip6e_rthdr;
120 struct mbuf *ip6e_dest2;
121};
122
123static int ip6_pcbopt __P((int, u_char *, int, struct ip6_pktopts **,
124 struct ucred *, int));
125static int ip6_pcbopts __P((struct ip6_pktopts **, struct mbuf *,
126 struct socket *, struct sockopt *));
127static int ip6_getpcbopt(struct ip6_pktopts *, int, struct sockopt *);
128static int ip6_setpktopt __P((int, u_char *, int, struct ip6_pktopts *,
129 struct ucred *, int, int, int));
130
131static int ip6_setmoptions(int, struct ip6_moptions **, struct mbuf *);
132static int ip6_getmoptions(int, struct ip6_moptions *, struct mbuf **);
133static int ip6_copyexthdr(struct mbuf **, caddr_t, int);
134static int ip6_insertfraghdr __P((struct mbuf *, struct mbuf *, int,
135 struct ip6_frag **));
136static int ip6_insert_jumboopt(struct ip6_exthdrs *, u_int32_t);
137static int ip6_splithdr(struct mbuf *, struct ip6_exthdrs *);
138static int ip6_getpmtu __P((struct route_in6 *, struct route_in6 *,
139 struct ifnet *, struct in6_addr *, u_long *, int *));
140static int copypktopts(struct ip6_pktopts *, struct ip6_pktopts *, int);
141
142
143/*
144 * Make an extension header from option data. hp is the source, and
145 * mp is the destination.
146 */
147#define MAKE_EXTHDR(hp, mp) \
148 do { \
149 if (hp) { \
150 struct ip6_ext *eh = (struct ip6_ext *)(hp); \
151 error = ip6_copyexthdr((mp), (caddr_t)(hp), \
152 ((eh)->ip6e_len + 1) << 3); \
153 if (error) \
154 goto freehdrs; \
155 } \
156 } while (/*CONSTCOND*/ 0)
157
158/*
159 * Form a chain of extension headers.
160 * m is the extension header mbuf
161 * mp is the previous mbuf in the chain
162 * p is the next header
163 * i is the type of option.
164 */
165#define MAKE_CHAIN(m, mp, p, i)\
166 do {\
167 if (m) {\
168 if (!hdrsplit) \
169 panic("assumption failed: hdr not split"); \
170 *mtod((m), u_char *) = *(p);\
171 *(p) = (i);\
172 p = mtod((m), u_char *);\
173 (m)->m_next = (mp)->m_next;\
174 (mp)->m_next = (m);\
175 (mp) = (m);\
176 }\
177 } while (/*CONSTCOND*/ 0)
178
179/*
180 * IP6 output. The packet in mbuf chain m contains a skeletal IP6
181 * header (with pri, len, nxt, hlim, src, dst).
182 * This function may modify ver and hlim only.
183 * The mbuf chain containing the packet will be freed.
184 * The mbuf opt, if present, will not be freed.
185 *
186 * type of "mtu": rt_rmx.rmx_mtu is u_long, ifnet.ifr_mtu is int, and
187 * nd_ifinfo.linkmtu is u_int32_t. so we use u_long to hold largest one,
188 * which is rt_rmx.rmx_mtu.
189 *
190 * ifpp - XXX: just for statistics
191 */
192int
193ip6_output(struct mbuf *m0, struct ip6_pktopts *opt,
194 struct route_in6 *ro, int flags, struct ip6_moptions *im6o,
195 struct ifnet **ifpp, struct inpcb *inp)
196{
197 INIT_VNET_NET(curvnet);
198 INIT_VNET_INET6(curvnet);
199 struct ip6_hdr *ip6, *mhip6;
200 struct ifnet *ifp, *origifp;
201 struct mbuf *m = m0;
202 struct mbuf *mprev = NULL;
203 int hlen, tlen, len, off;
204 struct route_in6 ip6route;
205 struct rtentry *rt = NULL;
206 struct sockaddr_in6 *dst, src_sa, dst_sa;
207 struct in6_addr odst;
208 int error = 0;
209 struct in6_ifaddr *ia = NULL;
210 u_long mtu;
211 int alwaysfrag, dontfrag;
212 u_int32_t optlen = 0, plen = 0, unfragpartlen = 0;
213 struct ip6_exthdrs exthdrs;
214 struct in6_addr finaldst, src0, dst0;
215 u_int32_t zone;
216 struct route_in6 *ro_pmtu = NULL;
217 int hdrsplit = 0;
218 int needipsec = 0;
219#ifdef IPSEC
220 struct ipsec_output_state state;
221 struct ip6_rthdr *rh = NULL;
222 int needipsectun = 0;
223 int segleft_org = 0;
224 struct secpolicy *sp = NULL;
225#endif /* IPSEC */
226
227 ip6 = mtod(m, struct ip6_hdr *);
228 if (ip6 == NULL) {
229 printf ("ip6 is NULL");
230 goto bad;
231 }
232
233 finaldst = ip6->ip6_dst;
234
235 bzero(&exthdrs, sizeof(exthdrs));
236
237 if (opt) {
238 /* Hop-by-Hop options header */
239 MAKE_EXTHDR(opt->ip6po_hbh, &exthdrs.ip6e_hbh);
240 /* Destination options header(1st part) */
241 if (opt->ip6po_rthdr) {
242 /*
243 * Destination options header(1st part)
244 * This only makes sense with a routing header.
245 * See Section 9.2 of RFC 3542.
246 * Disabling this part just for MIP6 convenience is
247 * a bad idea. We need to think carefully about a
248 * way to make the advanced API coexist with MIP6
249 * options, which might automatically be inserted in
250 * the kernel.
251 */
252 MAKE_EXTHDR(opt->ip6po_dest1, &exthdrs.ip6e_dest1);
253 }
254 /* Routing header */
255 MAKE_EXTHDR(opt->ip6po_rthdr, &exthdrs.ip6e_rthdr);
256 /* Destination options header(2nd part) */
257 MAKE_EXTHDR(opt->ip6po_dest2, &exthdrs.ip6e_dest2);
258 }
259
260 /*
261 * IPSec checking which handles several cases.
262 * FAST IPSEC: We re-injected the packet.
263 */
264#ifdef IPSEC
265 switch(ip6_ipsec_output(&m, inp, &flags, &error, &ifp, &sp))
266 {
267 case 1: /* Bad packet */
268 goto freehdrs;
269 case -1: /* Do IPSec */
270 needipsec = 1;
271 case 0: /* No IPSec */
272 default:
273 break;
274 }
275#endif /* IPSEC */
276
277 /*
278 * Calculate the total length of the extension header chain.
279 * Keep the length of the unfragmentable part for fragmentation.
280 */
281 optlen = 0;
282 if (exthdrs.ip6e_hbh)
283 optlen += exthdrs.ip6e_hbh->m_len;
284 if (exthdrs.ip6e_dest1)
285 optlen += exthdrs.ip6e_dest1->m_len;
286 if (exthdrs.ip6e_rthdr)
287 optlen += exthdrs.ip6e_rthdr->m_len;
288 unfragpartlen = optlen + sizeof(struct ip6_hdr);
289
290 /* NOTE: we don't add AH/ESP length here. do that later. */
291 if (exthdrs.ip6e_dest2)
292 optlen += exthdrs.ip6e_dest2->m_len;
293
294 /*
295 * If we need IPsec, or there is at least one extension header,
296 * separate IP6 header from the payload.
297 */
298 if ((needipsec || optlen) && !hdrsplit) {
299 if ((error = ip6_splithdr(m, &exthdrs)) != 0) {
300 m = NULL;
301 goto freehdrs;
302 }
303 m = exthdrs.ip6e_ip6;
304 hdrsplit++;
305 }
306
307 /* adjust pointer */
308 ip6 = mtod(m, struct ip6_hdr *);
309
310 /* adjust mbuf packet header length */
311 m->m_pkthdr.len += optlen;
312 plen = m->m_pkthdr.len - sizeof(*ip6);
313
314 /* If this is a jumbo payload, insert a jumbo payload option. */
315 if (plen > IPV6_MAXPACKET) {
316 if (!hdrsplit) {
317 if ((error = ip6_splithdr(m, &exthdrs)) != 0) {
318 m = NULL;
319 goto freehdrs;
320 }
321 m = exthdrs.ip6e_ip6;
322 hdrsplit++;
323 }
324 /* adjust pointer */
325 ip6 = mtod(m, struct ip6_hdr *);
326 if ((error = ip6_insert_jumboopt(&exthdrs, plen)) != 0)
327 goto freehdrs;
328 ip6->ip6_plen = 0;
329 } else
330 ip6->ip6_plen = htons(plen);
331
332 /*
333 * Concatenate headers and fill in next header fields.
334 * Here we have, on "m"
335 * IPv6 payload
336 * and we insert headers accordingly. Finally, we should be getting:
337 * IPv6 hbh dest1 rthdr ah* [esp* dest2 payload]
338 *
339 * during the header composing process, "m" points to IPv6 header.
340 * "mprev" points to an extension header prior to esp.
341 */
342 u_char *nexthdrp = &ip6->ip6_nxt;
343 mprev = m;
344
345 /*
346 * we treat dest2 specially. this makes IPsec processing
347 * much easier. the goal here is to make mprev point the
348 * mbuf prior to dest2.
349 *
350 * result: IPv6 dest2 payload
351 * m and mprev will point to IPv6 header.
352 */
353 if (exthdrs.ip6e_dest2) {
354 if (!hdrsplit)
355 panic("assumption failed: hdr not split");
356 exthdrs.ip6e_dest2->m_next = m->m_next;
357 m->m_next = exthdrs.ip6e_dest2;
358 *mtod(exthdrs.ip6e_dest2, u_char *) = ip6->ip6_nxt;
359 ip6->ip6_nxt = IPPROTO_DSTOPTS;
360 }
361
362 /*
363 * result: IPv6 hbh dest1 rthdr dest2 payload
364 * m will point to IPv6 header. mprev will point to the
365 * extension header prior to dest2 (rthdr in the above case).
366 */
367 MAKE_CHAIN(exthdrs.ip6e_hbh, mprev, nexthdrp, IPPROTO_HOPOPTS);
368 MAKE_CHAIN(exthdrs.ip6e_dest1, mprev, nexthdrp,
369 IPPROTO_DSTOPTS);
370 MAKE_CHAIN(exthdrs.ip6e_rthdr, mprev, nexthdrp,
371 IPPROTO_ROUTING);
372
373#ifdef IPSEC
374 if (!needipsec)
375 goto skip_ipsec2;
376
377 /*
378 * pointers after IPsec headers are not valid any more.
379 * other pointers need a great care too.
380 * (IPsec routines should not mangle mbufs prior to AH/ESP)
381 */
382 exthdrs.ip6e_dest2 = NULL;
383
384 if (exthdrs.ip6e_rthdr) {
385 rh = mtod(exthdrs.ip6e_rthdr, struct ip6_rthdr *);
386 segleft_org = rh->ip6r_segleft;
387 rh->ip6r_segleft = 0;
388 }
389
390 bzero(&state, sizeof(state));
391 state.m = m;
392 error = ipsec6_output_trans(&state, nexthdrp, mprev, sp, flags,
393 &needipsectun);
394 m = state.m;
395 if (error == EJUSTRETURN) {
396 /*
397 * We had a SP with a level of 'use' and no SA. We
398 * will just continue to process the packet without
399 * IPsec processing.
400 */
401 ;
402 } else if (error) {
403 /* mbuf is already reclaimed in ipsec6_output_trans. */
404 m = NULL;
405 switch (error) {
406 case EHOSTUNREACH:
407 case ENETUNREACH:
408 case EMSGSIZE:
409 case ENOBUFS:
410 case ENOMEM:
411 break;
412 default:
413 printf("[%s:%d] (ipsec): error code %d\n",
414 __func__, __LINE__, error);
415 /* FALLTHROUGH */
416 case ENOENT:
417 /* don't show these error codes to the user */
418 error = 0;
419 break;
420 }
421 goto bad;
422 } else if (!needipsectun) {
423 /*
424 * In the FAST IPSec case we have already
425 * re-injected the packet and it has been freed
426 * by the ipsec_done() function. So, just clean
427 * up after ourselves.
428 */
429 m = NULL;
430 goto done;
431 }
432 if (exthdrs.ip6e_rthdr) {
433 /* ah6_output doesn't modify mbuf chain */
434 rh->ip6r_segleft = segleft_org;
435 }
436skip_ipsec2:;
437#endif /* IPSEC */
438
439 /*
440 * If there is a routing header, replace the destination address field
441 * with the first hop of the routing header.
442 */
443 if (exthdrs.ip6e_rthdr) {
444 struct ip6_rthdr *rh =
445 (struct ip6_rthdr *)(mtod(exthdrs.ip6e_rthdr,
446 struct ip6_rthdr *));
447
448 /*
449 * While this switch may look gratuitous, leave it in
450 * in favour of RH2 implementations, etc.
451 */
452 switch (rh->ip6r_type) {
453#ifndef BURN_BRIDGES
454 case IPV6_RTHDR_TYPE_0:
455 /*
456 * According to RFC 5095 we should not implement
457 * it in any way but we may want to give the user
458 * a hint for now.
459 */
460 log(LOG_INFO, "[%s:%d] IPv6 Type 0 Routing Headers are "
461 "deprecated.\n", __func__, __LINE__);
462 /* FALLTHROUGH */
463#endif
464 default: /* is it possible? */
465 error = EINVAL;
466 goto bad;
467 }
468 }
469
470 /* Source address validation */
471 if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src) &&
472 (flags & IPV6_UNSPECSRC) == 0) {
473 error = EOPNOTSUPP;
474 V_ip6stat.ip6s_badscope++;
475 goto bad;
476 }
477 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_src)) {
478 error = EOPNOTSUPP;
479 V_ip6stat.ip6s_badscope++;
480 goto bad;
481 }
482
483 V_ip6stat.ip6s_localout++;
484
485 /*
486 * Route packet.
487 */
488 if (ro == 0) {
489 ro = &ip6route;
490 bzero((caddr_t)ro, sizeof(*ro));
491 }
492 ro_pmtu = ro;
493 if (opt && opt->ip6po_rthdr)
494 ro = &opt->ip6po_route;
495 dst = (struct sockaddr_in6 *)&ro->ro_dst;
496
497again:
498 /*
499 * if specified, try to fill in the traffic class field.
500 * do not override if a non-zero value is already set.
501 * we check the diffserv field and the ecn field separately.
502 */
503 if (opt && opt->ip6po_tclass >= 0) {
504 int mask = 0;
505
506 if ((ip6->ip6_flow & htonl(0xfc << 20)) == 0)
507 mask |= 0xfc;
508 if ((ip6->ip6_flow & htonl(0x03 << 20)) == 0)
509 mask |= 0x03;
510 if (mask != 0)
511 ip6->ip6_flow |= htonl((opt->ip6po_tclass & mask) << 20);
512 }
513
514 /* fill in or override the hop limit field, if necessary. */
515 if (opt && opt->ip6po_hlim != -1)
516 ip6->ip6_hlim = opt->ip6po_hlim & 0xff;
517 else if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) {
518 if (im6o != NULL)
519 ip6->ip6_hlim = im6o->im6o_multicast_hlim;
520 else
521 ip6->ip6_hlim = V_ip6_defmcasthlim;
522 }
523
524#ifdef IPSEC
525 /*
526 * We may re-inject packets into the stack here.
527 */
528 if (needipsec && needipsectun) {
529 struct ipsec_output_state state;
530
531 /*
532 * All the extension headers will become inaccessible
533 * (since they can be encrypted).
534 * Don't panic, we need no more updates to extension headers
535 * on inner IPv6 packet (since they are now encapsulated).
536 *
537 * IPv6 [ESP|AH] IPv6 [extension headers] payload
538 */
539 bzero(&exthdrs, sizeof(exthdrs));
540 exthdrs.ip6e_ip6 = m;
541
542 bzero(&state, sizeof(state));
543 state.m = m;
544 state.ro = (struct route *)ro;
545 state.dst = (struct sockaddr *)dst;
546
547 error = ipsec6_output_tunnel(&state, sp, flags);
548
549 m = state.m;
550 ro = (struct route_in6 *)state.ro;
551 dst = (struct sockaddr_in6 *)state.dst;
552 if (error == EJUSTRETURN) {
553 /*
554 * We had a SP with a level of 'use' and no SA. We
555 * will just continue to process the packet without
556 * IPsec processing.
557 */
558 ;
559 } else if (error) {
560 /* mbuf is already reclaimed in ipsec6_output_tunnel. */
561 m0 = m = NULL;
562 m = NULL;
563 switch (error) {
564 case EHOSTUNREACH:
565 case ENETUNREACH:
566 case EMSGSIZE:
567 case ENOBUFS:
568 case ENOMEM:
569 break;
570 default:
571 printf("[%s:%d] (ipsec): error code %d\n",
572 __func__, __LINE__, error);
573 /* FALLTHROUGH */
574 case ENOENT:
575 /* don't show these error codes to the user */
576 error = 0;
577 break;
578 }
579 goto bad;
580 } else {
581 /*
582 * In the FAST IPSec case we have already
583 * re-injected the packet and it has been freed
584 * by the ipsec_done() function. So, just clean
585 * up after ourselves.
586 */
587 m = NULL;
588 goto done;
589 }
590
591 exthdrs.ip6e_ip6 = m;
592 }
593#endif /* IPSEC */
594
595 /* adjust pointer */
596 ip6 = mtod(m, struct ip6_hdr *);
597
598 bzero(&dst_sa, sizeof(dst_sa));
599 dst_sa.sin6_family = AF_INET6;
600 dst_sa.sin6_len = sizeof(dst_sa);
601 dst_sa.sin6_addr = ip6->ip6_dst;
602 if ((error = in6_selectroute(&dst_sa, opt, im6o, ro,
603 &ifp, &rt)) != 0) {
604 switch (error) {
605 case EHOSTUNREACH:
606 V_ip6stat.ip6s_noroute++;
607 break;
608 case EADDRNOTAVAIL:
609 default:
610 break; /* XXX statistics? */
611 }
612 if (ifp != NULL)
613 in6_ifstat_inc(ifp, ifs6_out_discard);
614 goto bad;
615 }
616 if (rt == NULL) {
617 /*
618 * If in6_selectroute() does not return a route entry,
619 * dst may not have been updated.
620 */
621 *dst = dst_sa; /* XXX */
622 }
623
624 /*
625 * then rt (for unicast) and ifp must be non-NULL valid values.
626 */
627 if ((flags & IPV6_FORWARDING) == 0) {
628 /* XXX: the FORWARDING flag can be set for mrouting. */
629 in6_ifstat_inc(ifp, ifs6_out_request);
630 }
631 if (rt != NULL) {
632 ia = (struct in6_ifaddr *)(rt->rt_ifa);
633 rt->rt_use++;
634 }
635
636 /*
637 * The outgoing interface must be in the zone of source and
638 * destination addresses. We should use ia_ifp to support the
639 * case of sending packets to an address of our own.
640 */
641 if (ia != NULL && ia->ia_ifp)
642 origifp = ia->ia_ifp;
643 else
644 origifp = ifp;
645
646 src0 = ip6->ip6_src;
647 if (in6_setscope(&src0, origifp, &zone))
648 goto badscope;
649 bzero(&src_sa, sizeof(src_sa));
650 src_sa.sin6_family = AF_INET6;
651 src_sa.sin6_len = sizeof(src_sa);
652 src_sa.sin6_addr = ip6->ip6_src;
653 if (sa6_recoverscope(&src_sa) || zone != src_sa.sin6_scope_id)
654 goto badscope;
655
656 dst0 = ip6->ip6_dst;
657 if (in6_setscope(&dst0, origifp, &zone))
658 goto badscope;
659 /* re-initialize to be sure */
660 bzero(&dst_sa, sizeof(dst_sa));
661 dst_sa.sin6_family = AF_INET6;
662 dst_sa.sin6_len = sizeof(dst_sa);
663 dst_sa.sin6_addr = ip6->ip6_dst;
664 if (sa6_recoverscope(&dst_sa) || zone != dst_sa.sin6_scope_id) {
665 goto badscope;
666 }
667
668 /* scope check is done. */
669 goto routefound;
670
671 badscope:
672 V_ip6stat.ip6s_badscope++;
673 in6_ifstat_inc(origifp, ifs6_out_discard);
674 if (error == 0)
675 error = EHOSTUNREACH; /* XXX */
676 goto bad;
677
678 routefound:
679 if (rt && !IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) {
680 if (opt && opt->ip6po_nextroute.ro_rt) {
681 /*
682 * The nexthop is explicitly specified by the
683 * application. We assume the next hop is an IPv6
684 * address.
685 */
686 dst = (struct sockaddr_in6 *)opt->ip6po_nexthop;
687 }
688 else if ((rt->rt_flags & RTF_GATEWAY))
689 dst = (struct sockaddr_in6 *)rt->rt_gateway;
690 }
691
692 if (!IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) {
693 m->m_flags &= ~(M_BCAST | M_MCAST); /* just in case */
694 } else {
131static int ip6_copyexthdr(struct mbuf **, caddr_t, int);
132static int ip6_insertfraghdr __P((struct mbuf *, struct mbuf *, int,
133 struct ip6_frag **));
134static int ip6_insert_jumboopt(struct ip6_exthdrs *, u_int32_t);
135static int ip6_splithdr(struct mbuf *, struct ip6_exthdrs *);
136static int ip6_getpmtu __P((struct route_in6 *, struct route_in6 *,
137 struct ifnet *, struct in6_addr *, u_long *, int *));
138static int copypktopts(struct ip6_pktopts *, struct ip6_pktopts *, int);
139
140
141/*
142 * Make an extension header from option data. hp is the source, and
143 * mp is the destination.
144 */
145#define MAKE_EXTHDR(hp, mp) \
146 do { \
147 if (hp) { \
148 struct ip6_ext *eh = (struct ip6_ext *)(hp); \
149 error = ip6_copyexthdr((mp), (caddr_t)(hp), \
150 ((eh)->ip6e_len + 1) << 3); \
151 if (error) \
152 goto freehdrs; \
153 } \
154 } while (/*CONSTCOND*/ 0)
155
156/*
157 * Form a chain of extension headers.
158 * m is the extension header mbuf
159 * mp is the previous mbuf in the chain
160 * p is the next header
161 * i is the type of option.
162 */
163#define MAKE_CHAIN(m, mp, p, i)\
164 do {\
165 if (m) {\
166 if (!hdrsplit) \
167 panic("assumption failed: hdr not split"); \
168 *mtod((m), u_char *) = *(p);\
169 *(p) = (i);\
170 p = mtod((m), u_char *);\
171 (m)->m_next = (mp)->m_next;\
172 (mp)->m_next = (m);\
173 (mp) = (m);\
174 }\
175 } while (/*CONSTCOND*/ 0)
176
177/*
178 * IP6 output. The packet in mbuf chain m contains a skeletal IP6
179 * header (with pri, len, nxt, hlim, src, dst).
180 * This function may modify ver and hlim only.
181 * The mbuf chain containing the packet will be freed.
182 * The mbuf opt, if present, will not be freed.
183 *
184 * type of "mtu": rt_rmx.rmx_mtu is u_long, ifnet.ifr_mtu is int, and
185 * nd_ifinfo.linkmtu is u_int32_t. so we use u_long to hold largest one,
186 * which is rt_rmx.rmx_mtu.
187 *
188 * ifpp - XXX: just for statistics
189 */
190int
191ip6_output(struct mbuf *m0, struct ip6_pktopts *opt,
192 struct route_in6 *ro, int flags, struct ip6_moptions *im6o,
193 struct ifnet **ifpp, struct inpcb *inp)
194{
195 INIT_VNET_NET(curvnet);
196 INIT_VNET_INET6(curvnet);
197 struct ip6_hdr *ip6, *mhip6;
198 struct ifnet *ifp, *origifp;
199 struct mbuf *m = m0;
200 struct mbuf *mprev = NULL;
201 int hlen, tlen, len, off;
202 struct route_in6 ip6route;
203 struct rtentry *rt = NULL;
204 struct sockaddr_in6 *dst, src_sa, dst_sa;
205 struct in6_addr odst;
206 int error = 0;
207 struct in6_ifaddr *ia = NULL;
208 u_long mtu;
209 int alwaysfrag, dontfrag;
210 u_int32_t optlen = 0, plen = 0, unfragpartlen = 0;
211 struct ip6_exthdrs exthdrs;
212 struct in6_addr finaldst, src0, dst0;
213 u_int32_t zone;
214 struct route_in6 *ro_pmtu = NULL;
215 int hdrsplit = 0;
216 int needipsec = 0;
217#ifdef IPSEC
218 struct ipsec_output_state state;
219 struct ip6_rthdr *rh = NULL;
220 int needipsectun = 0;
221 int segleft_org = 0;
222 struct secpolicy *sp = NULL;
223#endif /* IPSEC */
224
225 ip6 = mtod(m, struct ip6_hdr *);
226 if (ip6 == NULL) {
227 printf ("ip6 is NULL");
228 goto bad;
229 }
230
231 finaldst = ip6->ip6_dst;
232
233 bzero(&exthdrs, sizeof(exthdrs));
234
235 if (opt) {
236 /* Hop-by-Hop options header */
237 MAKE_EXTHDR(opt->ip6po_hbh, &exthdrs.ip6e_hbh);
238 /* Destination options header(1st part) */
239 if (opt->ip6po_rthdr) {
240 /*
241 * Destination options header(1st part)
242 * This only makes sense with a routing header.
243 * See Section 9.2 of RFC 3542.
244 * Disabling this part just for MIP6 convenience is
245 * a bad idea. We need to think carefully about a
246 * way to make the advanced API coexist with MIP6
247 * options, which might automatically be inserted in
248 * the kernel.
249 */
250 MAKE_EXTHDR(opt->ip6po_dest1, &exthdrs.ip6e_dest1);
251 }
252 /* Routing header */
253 MAKE_EXTHDR(opt->ip6po_rthdr, &exthdrs.ip6e_rthdr);
254 /* Destination options header(2nd part) */
255 MAKE_EXTHDR(opt->ip6po_dest2, &exthdrs.ip6e_dest2);
256 }
257
258 /*
259 * IPSec checking which handles several cases.
260 * FAST IPSEC: We re-injected the packet.
261 */
262#ifdef IPSEC
263 switch(ip6_ipsec_output(&m, inp, &flags, &error, &ifp, &sp))
264 {
265 case 1: /* Bad packet */
266 goto freehdrs;
267 case -1: /* Do IPSec */
268 needipsec = 1;
269 case 0: /* No IPSec */
270 default:
271 break;
272 }
273#endif /* IPSEC */
274
275 /*
276 * Calculate the total length of the extension header chain.
277 * Keep the length of the unfragmentable part for fragmentation.
278 */
279 optlen = 0;
280 if (exthdrs.ip6e_hbh)
281 optlen += exthdrs.ip6e_hbh->m_len;
282 if (exthdrs.ip6e_dest1)
283 optlen += exthdrs.ip6e_dest1->m_len;
284 if (exthdrs.ip6e_rthdr)
285 optlen += exthdrs.ip6e_rthdr->m_len;
286 unfragpartlen = optlen + sizeof(struct ip6_hdr);
287
288 /* NOTE: we don't add AH/ESP length here. do that later. */
289 if (exthdrs.ip6e_dest2)
290 optlen += exthdrs.ip6e_dest2->m_len;
291
292 /*
293 * If we need IPsec, or there is at least one extension header,
294 * separate IP6 header from the payload.
295 */
296 if ((needipsec || optlen) && !hdrsplit) {
297 if ((error = ip6_splithdr(m, &exthdrs)) != 0) {
298 m = NULL;
299 goto freehdrs;
300 }
301 m = exthdrs.ip6e_ip6;
302 hdrsplit++;
303 }
304
305 /* adjust pointer */
306 ip6 = mtod(m, struct ip6_hdr *);
307
308 /* adjust mbuf packet header length */
309 m->m_pkthdr.len += optlen;
310 plen = m->m_pkthdr.len - sizeof(*ip6);
311
312 /* If this is a jumbo payload, insert a jumbo payload option. */
313 if (plen > IPV6_MAXPACKET) {
314 if (!hdrsplit) {
315 if ((error = ip6_splithdr(m, &exthdrs)) != 0) {
316 m = NULL;
317 goto freehdrs;
318 }
319 m = exthdrs.ip6e_ip6;
320 hdrsplit++;
321 }
322 /* adjust pointer */
323 ip6 = mtod(m, struct ip6_hdr *);
324 if ((error = ip6_insert_jumboopt(&exthdrs, plen)) != 0)
325 goto freehdrs;
326 ip6->ip6_plen = 0;
327 } else
328 ip6->ip6_plen = htons(plen);
329
330 /*
331 * Concatenate headers and fill in next header fields.
332 * Here we have, on "m"
333 * IPv6 payload
334 * and we insert headers accordingly. Finally, we should be getting:
335 * IPv6 hbh dest1 rthdr ah* [esp* dest2 payload]
336 *
337 * during the header composing process, "m" points to IPv6 header.
338 * "mprev" points to an extension header prior to esp.
339 */
340 u_char *nexthdrp = &ip6->ip6_nxt;
341 mprev = m;
342
343 /*
344 * we treat dest2 specially. this makes IPsec processing
345 * much easier. the goal here is to make mprev point the
346 * mbuf prior to dest2.
347 *
348 * result: IPv6 dest2 payload
349 * m and mprev will point to IPv6 header.
350 */
351 if (exthdrs.ip6e_dest2) {
352 if (!hdrsplit)
353 panic("assumption failed: hdr not split");
354 exthdrs.ip6e_dest2->m_next = m->m_next;
355 m->m_next = exthdrs.ip6e_dest2;
356 *mtod(exthdrs.ip6e_dest2, u_char *) = ip6->ip6_nxt;
357 ip6->ip6_nxt = IPPROTO_DSTOPTS;
358 }
359
360 /*
361 * result: IPv6 hbh dest1 rthdr dest2 payload
362 * m will point to IPv6 header. mprev will point to the
363 * extension header prior to dest2 (rthdr in the above case).
364 */
365 MAKE_CHAIN(exthdrs.ip6e_hbh, mprev, nexthdrp, IPPROTO_HOPOPTS);
366 MAKE_CHAIN(exthdrs.ip6e_dest1, mprev, nexthdrp,
367 IPPROTO_DSTOPTS);
368 MAKE_CHAIN(exthdrs.ip6e_rthdr, mprev, nexthdrp,
369 IPPROTO_ROUTING);
370
371#ifdef IPSEC
372 if (!needipsec)
373 goto skip_ipsec2;
374
375 /*
376 * pointers after IPsec headers are not valid any more.
377 * other pointers need a great care too.
378 * (IPsec routines should not mangle mbufs prior to AH/ESP)
379 */
380 exthdrs.ip6e_dest2 = NULL;
381
382 if (exthdrs.ip6e_rthdr) {
383 rh = mtod(exthdrs.ip6e_rthdr, struct ip6_rthdr *);
384 segleft_org = rh->ip6r_segleft;
385 rh->ip6r_segleft = 0;
386 }
387
388 bzero(&state, sizeof(state));
389 state.m = m;
390 error = ipsec6_output_trans(&state, nexthdrp, mprev, sp, flags,
391 &needipsectun);
392 m = state.m;
393 if (error == EJUSTRETURN) {
394 /*
395 * We had a SP with a level of 'use' and no SA. We
396 * will just continue to process the packet without
397 * IPsec processing.
398 */
399 ;
400 } else if (error) {
401 /* mbuf is already reclaimed in ipsec6_output_trans. */
402 m = NULL;
403 switch (error) {
404 case EHOSTUNREACH:
405 case ENETUNREACH:
406 case EMSGSIZE:
407 case ENOBUFS:
408 case ENOMEM:
409 break;
410 default:
411 printf("[%s:%d] (ipsec): error code %d\n",
412 __func__, __LINE__, error);
413 /* FALLTHROUGH */
414 case ENOENT:
415 /* don't show these error codes to the user */
416 error = 0;
417 break;
418 }
419 goto bad;
420 } else if (!needipsectun) {
421 /*
422 * In the FAST IPSec case we have already
423 * re-injected the packet and it has been freed
424 * by the ipsec_done() function. So, just clean
425 * up after ourselves.
426 */
427 m = NULL;
428 goto done;
429 }
430 if (exthdrs.ip6e_rthdr) {
431 /* ah6_output doesn't modify mbuf chain */
432 rh->ip6r_segleft = segleft_org;
433 }
434skip_ipsec2:;
435#endif /* IPSEC */
436
437 /*
438 * If there is a routing header, replace the destination address field
439 * with the first hop of the routing header.
440 */
441 if (exthdrs.ip6e_rthdr) {
442 struct ip6_rthdr *rh =
443 (struct ip6_rthdr *)(mtod(exthdrs.ip6e_rthdr,
444 struct ip6_rthdr *));
445
446 /*
447 * While this switch may look gratuitous, leave it in
448 * in favour of RH2 implementations, etc.
449 */
450 switch (rh->ip6r_type) {
451#ifndef BURN_BRIDGES
452 case IPV6_RTHDR_TYPE_0:
453 /*
454 * According to RFC 5095 we should not implement
455 * it in any way but we may want to give the user
456 * a hint for now.
457 */
458 log(LOG_INFO, "[%s:%d] IPv6 Type 0 Routing Headers are "
459 "deprecated.\n", __func__, __LINE__);
460 /* FALLTHROUGH */
461#endif
462 default: /* is it possible? */
463 error = EINVAL;
464 goto bad;
465 }
466 }
467
468 /* Source address validation */
469 if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src) &&
470 (flags & IPV6_UNSPECSRC) == 0) {
471 error = EOPNOTSUPP;
472 V_ip6stat.ip6s_badscope++;
473 goto bad;
474 }
475 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_src)) {
476 error = EOPNOTSUPP;
477 V_ip6stat.ip6s_badscope++;
478 goto bad;
479 }
480
481 V_ip6stat.ip6s_localout++;
482
483 /*
484 * Route packet.
485 */
486 if (ro == 0) {
487 ro = &ip6route;
488 bzero((caddr_t)ro, sizeof(*ro));
489 }
490 ro_pmtu = ro;
491 if (opt && opt->ip6po_rthdr)
492 ro = &opt->ip6po_route;
493 dst = (struct sockaddr_in6 *)&ro->ro_dst;
494
495again:
496 /*
497 * if specified, try to fill in the traffic class field.
498 * do not override if a non-zero value is already set.
499 * we check the diffserv field and the ecn field separately.
500 */
501 if (opt && opt->ip6po_tclass >= 0) {
502 int mask = 0;
503
504 if ((ip6->ip6_flow & htonl(0xfc << 20)) == 0)
505 mask |= 0xfc;
506 if ((ip6->ip6_flow & htonl(0x03 << 20)) == 0)
507 mask |= 0x03;
508 if (mask != 0)
509 ip6->ip6_flow |= htonl((opt->ip6po_tclass & mask) << 20);
510 }
511
512 /* fill in or override the hop limit field, if necessary. */
513 if (opt && opt->ip6po_hlim != -1)
514 ip6->ip6_hlim = opt->ip6po_hlim & 0xff;
515 else if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) {
516 if (im6o != NULL)
517 ip6->ip6_hlim = im6o->im6o_multicast_hlim;
518 else
519 ip6->ip6_hlim = V_ip6_defmcasthlim;
520 }
521
522#ifdef IPSEC
523 /*
524 * We may re-inject packets into the stack here.
525 */
526 if (needipsec && needipsectun) {
527 struct ipsec_output_state state;
528
529 /*
530 * All the extension headers will become inaccessible
531 * (since they can be encrypted).
532 * Don't panic, we need no more updates to extension headers
533 * on inner IPv6 packet (since they are now encapsulated).
534 *
535 * IPv6 [ESP|AH] IPv6 [extension headers] payload
536 */
537 bzero(&exthdrs, sizeof(exthdrs));
538 exthdrs.ip6e_ip6 = m;
539
540 bzero(&state, sizeof(state));
541 state.m = m;
542 state.ro = (struct route *)ro;
543 state.dst = (struct sockaddr *)dst;
544
545 error = ipsec6_output_tunnel(&state, sp, flags);
546
547 m = state.m;
548 ro = (struct route_in6 *)state.ro;
549 dst = (struct sockaddr_in6 *)state.dst;
550 if (error == EJUSTRETURN) {
551 /*
552 * We had a SP with a level of 'use' and no SA. We
553 * will just continue to process the packet without
554 * IPsec processing.
555 */
556 ;
557 } else if (error) {
558 /* mbuf is already reclaimed in ipsec6_output_tunnel. */
559 m0 = m = NULL;
560 m = NULL;
561 switch (error) {
562 case EHOSTUNREACH:
563 case ENETUNREACH:
564 case EMSGSIZE:
565 case ENOBUFS:
566 case ENOMEM:
567 break;
568 default:
569 printf("[%s:%d] (ipsec): error code %d\n",
570 __func__, __LINE__, error);
571 /* FALLTHROUGH */
572 case ENOENT:
573 /* don't show these error codes to the user */
574 error = 0;
575 break;
576 }
577 goto bad;
578 } else {
579 /*
580 * In the FAST IPSec case we have already
581 * re-injected the packet and it has been freed
582 * by the ipsec_done() function. So, just clean
583 * up after ourselves.
584 */
585 m = NULL;
586 goto done;
587 }
588
589 exthdrs.ip6e_ip6 = m;
590 }
591#endif /* IPSEC */
592
593 /* adjust pointer */
594 ip6 = mtod(m, struct ip6_hdr *);
595
596 bzero(&dst_sa, sizeof(dst_sa));
597 dst_sa.sin6_family = AF_INET6;
598 dst_sa.sin6_len = sizeof(dst_sa);
599 dst_sa.sin6_addr = ip6->ip6_dst;
600 if ((error = in6_selectroute(&dst_sa, opt, im6o, ro,
601 &ifp, &rt)) != 0) {
602 switch (error) {
603 case EHOSTUNREACH:
604 V_ip6stat.ip6s_noroute++;
605 break;
606 case EADDRNOTAVAIL:
607 default:
608 break; /* XXX statistics? */
609 }
610 if (ifp != NULL)
611 in6_ifstat_inc(ifp, ifs6_out_discard);
612 goto bad;
613 }
614 if (rt == NULL) {
615 /*
616 * If in6_selectroute() does not return a route entry,
617 * dst may not have been updated.
618 */
619 *dst = dst_sa; /* XXX */
620 }
621
622 /*
623 * then rt (for unicast) and ifp must be non-NULL valid values.
624 */
625 if ((flags & IPV6_FORWARDING) == 0) {
626 /* XXX: the FORWARDING flag can be set for mrouting. */
627 in6_ifstat_inc(ifp, ifs6_out_request);
628 }
629 if (rt != NULL) {
630 ia = (struct in6_ifaddr *)(rt->rt_ifa);
631 rt->rt_use++;
632 }
633
634 /*
635 * The outgoing interface must be in the zone of source and
636 * destination addresses. We should use ia_ifp to support the
637 * case of sending packets to an address of our own.
638 */
639 if (ia != NULL && ia->ia_ifp)
640 origifp = ia->ia_ifp;
641 else
642 origifp = ifp;
643
644 src0 = ip6->ip6_src;
645 if (in6_setscope(&src0, origifp, &zone))
646 goto badscope;
647 bzero(&src_sa, sizeof(src_sa));
648 src_sa.sin6_family = AF_INET6;
649 src_sa.sin6_len = sizeof(src_sa);
650 src_sa.sin6_addr = ip6->ip6_src;
651 if (sa6_recoverscope(&src_sa) || zone != src_sa.sin6_scope_id)
652 goto badscope;
653
654 dst0 = ip6->ip6_dst;
655 if (in6_setscope(&dst0, origifp, &zone))
656 goto badscope;
657 /* re-initialize to be sure */
658 bzero(&dst_sa, sizeof(dst_sa));
659 dst_sa.sin6_family = AF_INET6;
660 dst_sa.sin6_len = sizeof(dst_sa);
661 dst_sa.sin6_addr = ip6->ip6_dst;
662 if (sa6_recoverscope(&dst_sa) || zone != dst_sa.sin6_scope_id) {
663 goto badscope;
664 }
665
666 /* scope check is done. */
667 goto routefound;
668
669 badscope:
670 V_ip6stat.ip6s_badscope++;
671 in6_ifstat_inc(origifp, ifs6_out_discard);
672 if (error == 0)
673 error = EHOSTUNREACH; /* XXX */
674 goto bad;
675
676 routefound:
677 if (rt && !IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) {
678 if (opt && opt->ip6po_nextroute.ro_rt) {
679 /*
680 * The nexthop is explicitly specified by the
681 * application. We assume the next hop is an IPv6
682 * address.
683 */
684 dst = (struct sockaddr_in6 *)opt->ip6po_nexthop;
685 }
686 else if ((rt->rt_flags & RTF_GATEWAY))
687 dst = (struct sockaddr_in6 *)rt->rt_gateway;
688 }
689
690 if (!IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) {
691 m->m_flags &= ~(M_BCAST | M_MCAST); /* just in case */
692 } else {
695 struct in6_multi *in6m;
696
697 m->m_flags = (m->m_flags & ~M_BCAST) | M_MCAST;
693 m->m_flags = (m->m_flags & ~M_BCAST) | M_MCAST;
698
699 in6_ifstat_inc(ifp, ifs6_out_mcast);
694 in6_ifstat_inc(ifp, ifs6_out_mcast);
700
701 /*
702 * Confirm that the outgoing interface supports multicast.
703 */
704 if (!(ifp->if_flags & IFF_MULTICAST)) {
705 V_ip6stat.ip6s_noroute++;
706 in6_ifstat_inc(ifp, ifs6_out_discard);
707 error = ENETUNREACH;
708 goto bad;
709 }
695 /*
696 * Confirm that the outgoing interface supports multicast.
697 */
698 if (!(ifp->if_flags & IFF_MULTICAST)) {
699 V_ip6stat.ip6s_noroute++;
700 in6_ifstat_inc(ifp, ifs6_out_discard);
701 error = ENETUNREACH;
702 goto bad;
703 }
710 IN6_LOOKUP_MULTI(ip6->ip6_dst, ifp, in6m);
711 if (in6m != NULL &&
712 (im6o == NULL || im6o->im6o_multicast_loop)) {
704 if ((im6o == NULL && in6_mcast_loop) ||
705 (im6o && im6o->im6o_multicast_loop)) {
713 /*
706 /*
714 * If we belong to the destination multicast group
715 * on the outgoing interface, and the caller did not
716 * forbid loopback, loop back a copy.
707 * Loop back multicast datagram if not expressly
708 * forbidden to do so, even if we have not joined
709 * the address; protocols will filter it later,
710 * thus deferring a hash lookup and lock acquisition
711 * at the expense of an m_copym().
717 */
718 ip6_mloopback(ifp, m, dst);
719 } else {
720 /*
721 * If we are acting as a multicast router, perform
722 * multicast forwarding as if the packet had just
723 * arrived on the interface to which we are about
724 * to send. The multicast forwarding function
725 * recursively calls this function, using the
726 * IPV6_FORWARDING flag to prevent infinite recursion.
727 *
728 * Multicasts that are looped back by ip6_mloopback(),
729 * above, will be forwarded by the ip6_input() routine,
730 * if necessary.
731 */
712 */
713 ip6_mloopback(ifp, m, dst);
714 } else {
715 /*
716 * If we are acting as a multicast router, perform
717 * multicast forwarding as if the packet had just
718 * arrived on the interface to which we are about
719 * to send. The multicast forwarding function
720 * recursively calls this function, using the
721 * IPV6_FORWARDING flag to prevent infinite recursion.
722 *
723 * Multicasts that are looped back by ip6_mloopback(),
724 * above, will be forwarded by the ip6_input() routine,
725 * if necessary.
726 */
732 if (ip6_mrouter && (flags & IPV6_FORWARDING) == 0) {
727 if (V_ip6_mrouter && (flags & IPV6_FORWARDING) == 0) {
733 /*
734 * XXX: ip6_mforward expects that rcvif is NULL
735 * when it is called from the originating path.
736 * However, it is not always the case, since
737 * some versions of MGETHDR() does not
738 * initialize the field.
739 */
740 m->m_pkthdr.rcvif = NULL;
741 if (ip6_mforward(ip6, ifp, m) != 0) {
742 m_freem(m);
743 goto done;
744 }
745 }
746 }
747 /*
748 * Multicasts with a hoplimit of zero may be looped back,
749 * above, but must not be transmitted on a network.
750 * Also, multicasts addressed to the loopback interface
751 * are not sent -- the above call to ip6_mloopback() will
752 * loop back a copy if this host actually belongs to the
753 * destination group on the loopback interface.
754 */
755 if (ip6->ip6_hlim == 0 || (ifp->if_flags & IFF_LOOPBACK) ||
756 IN6_IS_ADDR_MC_INTFACELOCAL(&ip6->ip6_dst)) {
757 m_freem(m);
758 goto done;
759 }
760 }
761
762 /*
763 * Fill the outgoing inteface to tell the upper layer
764 * to increment per-interface statistics.
765 */
766 if (ifpp)
767 *ifpp = ifp;
768
769 /* Determine path MTU. */
770 if ((error = ip6_getpmtu(ro_pmtu, ro, ifp, &finaldst, &mtu,
771 &alwaysfrag)) != 0)
772 goto bad;
773
774 /*
775 * The caller of this function may specify to use the minimum MTU
776 * in some cases.
777 * An advanced API option (IPV6_USE_MIN_MTU) can also override MTU
778 * setting. The logic is a bit complicated; by default, unicast
779 * packets will follow path MTU while multicast packets will be sent at
780 * the minimum MTU. If IP6PO_MINMTU_ALL is specified, all packets
781 * including unicast ones will be sent at the minimum MTU. Multicast
782 * packets will always be sent at the minimum MTU unless
783 * IP6PO_MINMTU_DISABLE is explicitly specified.
784 * See RFC 3542 for more details.
785 */
786 if (mtu > IPV6_MMTU) {
787 if ((flags & IPV6_MINMTU))
788 mtu = IPV6_MMTU;
789 else if (opt && opt->ip6po_minmtu == IP6PO_MINMTU_ALL)
790 mtu = IPV6_MMTU;
791 else if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) &&
792 (opt == NULL ||
793 opt->ip6po_minmtu != IP6PO_MINMTU_DISABLE)) {
794 mtu = IPV6_MMTU;
795 }
796 }
797
798 /*
799 * clear embedded scope identifiers if necessary.
800 * in6_clearscope will touch the addresses only when necessary.
801 */
802 in6_clearscope(&ip6->ip6_src);
803 in6_clearscope(&ip6->ip6_dst);
804
805 /*
806 * If the outgoing packet contains a hop-by-hop options header,
807 * it must be examined and processed even by the source node.
808 * (RFC 2460, section 4.)
809 */
810 if (exthdrs.ip6e_hbh) {
811 struct ip6_hbh *hbh = mtod(exthdrs.ip6e_hbh, struct ip6_hbh *);
812 u_int32_t dummy; /* XXX unused */
813 u_int32_t plen = 0; /* XXX: ip6_process will check the value */
814
815#ifdef DIAGNOSTIC
816 if ((hbh->ip6h_len + 1) << 3 > exthdrs.ip6e_hbh->m_len)
817 panic("ip6e_hbh is not continuous");
818#endif
819 /*
820 * XXX: if we have to send an ICMPv6 error to the sender,
821 * we need the M_LOOP flag since icmp6_error() expects
822 * the IPv6 and the hop-by-hop options header are
823 * continuous unless the flag is set.
824 */
825 m->m_flags |= M_LOOP;
826 m->m_pkthdr.rcvif = ifp;
827 if (ip6_process_hopopts(m, (u_int8_t *)(hbh + 1),
828 ((hbh->ip6h_len + 1) << 3) - sizeof(struct ip6_hbh),
829 &dummy, &plen) < 0) {
830 /* m was already freed at this point */
831 error = EINVAL;/* better error? */
832 goto done;
833 }
834 m->m_flags &= ~M_LOOP; /* XXX */
835 m->m_pkthdr.rcvif = NULL;
836 }
837
838 /* Jump over all PFIL processing if hooks are not active. */
839 if (!PFIL_HOOKED(&inet6_pfil_hook))
840 goto passout;
841
842 odst = ip6->ip6_dst;
843 /* Run through list of hooks for output packets. */
844 error = pfil_run_hooks(&inet6_pfil_hook, &m, ifp, PFIL_OUT, inp);
845 if (error != 0 || m == NULL)
846 goto done;
847 ip6 = mtod(m, struct ip6_hdr *);
848
849 /* See if destination IP address was changed by packet filter. */
850 if (!IN6_ARE_ADDR_EQUAL(&odst, &ip6->ip6_dst)) {
851 m->m_flags |= M_SKIP_FIREWALL;
852 /* If destination is now ourself drop to ip6_input(). */
853 if (in6_localaddr(&ip6->ip6_dst)) {
854 if (m->m_pkthdr.rcvif == NULL)
855 m->m_pkthdr.rcvif = V_loif;
856 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
857 m->m_pkthdr.csum_flags |=
858 CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
859 m->m_pkthdr.csum_data = 0xffff;
860 }
861 m->m_pkthdr.csum_flags |=
862 CSUM_IP_CHECKED | CSUM_IP_VALID;
863 error = netisr_queue(NETISR_IPV6, m);
864 goto done;
865 } else
866 goto again; /* Redo the routing table lookup. */
867 }
868
869 /* XXX: IPFIREWALL_FORWARD */
870
871passout:
872 /*
873 * Send the packet to the outgoing interface.
874 * If necessary, do IPv6 fragmentation before sending.
875 *
876 * the logic here is rather complex:
877 * 1: normal case (dontfrag == 0, alwaysfrag == 0)
878 * 1-a: send as is if tlen <= path mtu
879 * 1-b: fragment if tlen > path mtu
880 *
881 * 2: if user asks us not to fragment (dontfrag == 1)
882 * 2-a: send as is if tlen <= interface mtu
883 * 2-b: error if tlen > interface mtu
884 *
885 * 3: if we always need to attach fragment header (alwaysfrag == 1)
886 * always fragment
887 *
888 * 4: if dontfrag == 1 && alwaysfrag == 1
889 * error, as we cannot handle this conflicting request
890 */
891 tlen = m->m_pkthdr.len;
892
893 if (opt && (opt->ip6po_flags & IP6PO_DONTFRAG))
894 dontfrag = 1;
895 else
896 dontfrag = 0;
897 if (dontfrag && alwaysfrag) { /* case 4 */
898 /* conflicting request - can't transmit */
899 error = EMSGSIZE;
900 goto bad;
901 }
902 if (dontfrag && tlen > IN6_LINKMTU(ifp)) { /* case 2-b */
903 /*
904 * Even if the DONTFRAG option is specified, we cannot send the
905 * packet when the data length is larger than the MTU of the
906 * outgoing interface.
907 * Notify the error by sending IPV6_PATHMTU ancillary data as
908 * well as returning an error code (the latter is not described
909 * in the API spec.)
910 */
911 u_int32_t mtu32;
912 struct ip6ctlparam ip6cp;
913
914 mtu32 = (u_int32_t)mtu;
915 bzero(&ip6cp, sizeof(ip6cp));
916 ip6cp.ip6c_cmdarg = (void *)&mtu32;
917 pfctlinput2(PRC_MSGSIZE, (struct sockaddr *)&ro_pmtu->ro_dst,
918 (void *)&ip6cp);
919
920 error = EMSGSIZE;
921 goto bad;
922 }
923
924 /*
925 * transmit packet without fragmentation
926 */
927 if (dontfrag || (!alwaysfrag && tlen <= mtu)) { /* case 1-a and 2-a */
928 struct in6_ifaddr *ia6;
929
930 ip6 = mtod(m, struct ip6_hdr *);
931 ia6 = in6_ifawithifp(ifp, &ip6->ip6_src);
932 if (ia6) {
933 /* Record statistics for this interface address. */
934 ia6->ia_ifa.if_opackets++;
935 ia6->ia_ifa.if_obytes += m->m_pkthdr.len;
936 }
937 error = nd6_output(ifp, origifp, m, dst, ro->ro_rt);
938 goto done;
939 }
940
941 /*
942 * try to fragment the packet. case 1-b and 3
943 */
944 if (mtu < IPV6_MMTU) {
945 /* path MTU cannot be less than IPV6_MMTU */
946 error = EMSGSIZE;
947 in6_ifstat_inc(ifp, ifs6_out_fragfail);
948 goto bad;
949 } else if (ip6->ip6_plen == 0) {
950 /* jumbo payload cannot be fragmented */
951 error = EMSGSIZE;
952 in6_ifstat_inc(ifp, ifs6_out_fragfail);
953 goto bad;
954 } else {
955 struct mbuf **mnext, *m_frgpart;
956 struct ip6_frag *ip6f;
957 u_int32_t id = htonl(ip6_randomid());
958 u_char nextproto;
959
960 int qslots = ifp->if_snd.ifq_maxlen - ifp->if_snd.ifq_len;
961
962 /*
963 * Too large for the destination or interface;
964 * fragment if possible.
965 * Must be able to put at least 8 bytes per fragment.
966 */
967 hlen = unfragpartlen;
968 if (mtu > IPV6_MAXPACKET)
969 mtu = IPV6_MAXPACKET;
970
971 len = (mtu - hlen - sizeof(struct ip6_frag)) & ~7;
972 if (len < 8) {
973 error = EMSGSIZE;
974 in6_ifstat_inc(ifp, ifs6_out_fragfail);
975 goto bad;
976 }
977
978 /*
979 * Verify that we have any chance at all of being able to queue
980 * the packet or packet fragments
981 */
982 if (qslots <= 0 || ((u_int)qslots * (mtu - hlen)
983 < tlen /* - hlen */)) {
984 error = ENOBUFS;
985 V_ip6stat.ip6s_odropped++;
986 goto bad;
987 }
988
989 mnext = &m->m_nextpkt;
990
991 /*
992 * Change the next header field of the last header in the
993 * unfragmentable part.
994 */
995 if (exthdrs.ip6e_rthdr) {
996 nextproto = *mtod(exthdrs.ip6e_rthdr, u_char *);
997 *mtod(exthdrs.ip6e_rthdr, u_char *) = IPPROTO_FRAGMENT;
998 } else if (exthdrs.ip6e_dest1) {
999 nextproto = *mtod(exthdrs.ip6e_dest1, u_char *);
1000 *mtod(exthdrs.ip6e_dest1, u_char *) = IPPROTO_FRAGMENT;
1001 } else if (exthdrs.ip6e_hbh) {
1002 nextproto = *mtod(exthdrs.ip6e_hbh, u_char *);
1003 *mtod(exthdrs.ip6e_hbh, u_char *) = IPPROTO_FRAGMENT;
1004 } else {
1005 nextproto = ip6->ip6_nxt;
1006 ip6->ip6_nxt = IPPROTO_FRAGMENT;
1007 }
1008
1009 /*
1010 * Loop through length of segment after first fragment,
1011 * make new header and copy data of each part and link onto
1012 * chain.
1013 */
1014 m0 = m;
1015 for (off = hlen; off < tlen; off += len) {
1016 MGETHDR(m, M_DONTWAIT, MT_HEADER);
1017 if (!m) {
1018 error = ENOBUFS;
1019 V_ip6stat.ip6s_odropped++;
1020 goto sendorfree;
1021 }
1022 m->m_pkthdr.rcvif = NULL;
1023 m->m_flags = m0->m_flags & M_COPYFLAGS;
1024 *mnext = m;
1025 mnext = &m->m_nextpkt;
1026 m->m_data += max_linkhdr;
1027 mhip6 = mtod(m, struct ip6_hdr *);
1028 *mhip6 = *ip6;
1029 m->m_len = sizeof(*mhip6);
1030 error = ip6_insertfraghdr(m0, m, hlen, &ip6f);
1031 if (error) {
1032 V_ip6stat.ip6s_odropped++;
1033 goto sendorfree;
1034 }
1035 ip6f->ip6f_offlg = htons((u_short)((off - hlen) & ~7));
1036 if (off + len >= tlen)
1037 len = tlen - off;
1038 else
1039 ip6f->ip6f_offlg |= IP6F_MORE_FRAG;
1040 mhip6->ip6_plen = htons((u_short)(len + hlen +
1041 sizeof(*ip6f) - sizeof(struct ip6_hdr)));
1042 if ((m_frgpart = m_copy(m0, off, len)) == 0) {
1043 error = ENOBUFS;
1044 V_ip6stat.ip6s_odropped++;
1045 goto sendorfree;
1046 }
1047 m_cat(m, m_frgpart);
1048 m->m_pkthdr.len = len + hlen + sizeof(*ip6f);
1049 m->m_pkthdr.rcvif = NULL;
1050 ip6f->ip6f_reserved = 0;
1051 ip6f->ip6f_ident = id;
1052 ip6f->ip6f_nxt = nextproto;
1053 V_ip6stat.ip6s_ofragments++;
1054 in6_ifstat_inc(ifp, ifs6_out_fragcreat);
1055 }
1056
1057 in6_ifstat_inc(ifp, ifs6_out_fragok);
1058 }
1059
1060 /*
1061 * Remove leading garbages.
1062 */
1063sendorfree:
1064 m = m0->m_nextpkt;
1065 m0->m_nextpkt = 0;
1066 m_freem(m0);
1067 for (m0 = m; m; m = m0) {
1068 m0 = m->m_nextpkt;
1069 m->m_nextpkt = 0;
1070 if (error == 0) {
1071 /* Record statistics for this interface address. */
1072 if (ia) {
1073 ia->ia_ifa.if_opackets++;
1074 ia->ia_ifa.if_obytes += m->m_pkthdr.len;
1075 }
1076 error = nd6_output(ifp, origifp, m, dst, ro->ro_rt);
1077 } else
1078 m_freem(m);
1079 }
1080
1081 if (error == 0)
1082 V_ip6stat.ip6s_fragmented++;
1083
1084done:
1085 if (ro == &ip6route && ro->ro_rt) { /* brace necessary for RTFREE */
1086 RTFREE(ro->ro_rt);
1087 } else if (ro_pmtu == &ip6route && ro_pmtu->ro_rt) {
1088 RTFREE(ro_pmtu->ro_rt);
1089 }
1090#ifdef IPSEC
1091 if (sp != NULL)
1092 KEY_FREESP(&sp);
1093#endif
1094
1095 return (error);
1096
1097freehdrs:
1098 m_freem(exthdrs.ip6e_hbh); /* m_freem will check if mbuf is 0 */
1099 m_freem(exthdrs.ip6e_dest1);
1100 m_freem(exthdrs.ip6e_rthdr);
1101 m_freem(exthdrs.ip6e_dest2);
1102 /* FALLTHROUGH */
1103bad:
1104 if (m)
1105 m_freem(m);
1106 goto done;
1107}
1108
1109static int
1110ip6_copyexthdr(struct mbuf **mp, caddr_t hdr, int hlen)
1111{
1112 struct mbuf *m;
1113
1114 if (hlen > MCLBYTES)
1115 return (ENOBUFS); /* XXX */
1116
1117 MGET(m, M_DONTWAIT, MT_DATA);
1118 if (!m)
1119 return (ENOBUFS);
1120
1121 if (hlen > MLEN) {
1122 MCLGET(m, M_DONTWAIT);
1123 if ((m->m_flags & M_EXT) == 0) {
1124 m_free(m);
1125 return (ENOBUFS);
1126 }
1127 }
1128 m->m_len = hlen;
1129 if (hdr)
1130 bcopy(hdr, mtod(m, caddr_t), hlen);
1131
1132 *mp = m;
1133 return (0);
1134}
1135
1136/*
1137 * Insert jumbo payload option.
1138 */
1139static int
1140ip6_insert_jumboopt(struct ip6_exthdrs *exthdrs, u_int32_t plen)
1141{
1142 struct mbuf *mopt;
1143 u_char *optbuf;
1144 u_int32_t v;
1145
1146#define JUMBOOPTLEN 8 /* length of jumbo payload option and padding */
1147
1148 /*
1149 * If there is no hop-by-hop options header, allocate new one.
1150 * If there is one but it doesn't have enough space to store the
1151 * jumbo payload option, allocate a cluster to store the whole options.
1152 * Otherwise, use it to store the options.
1153 */
1154 if (exthdrs->ip6e_hbh == 0) {
1155 MGET(mopt, M_DONTWAIT, MT_DATA);
1156 if (mopt == 0)
1157 return (ENOBUFS);
1158 mopt->m_len = JUMBOOPTLEN;
1159 optbuf = mtod(mopt, u_char *);
1160 optbuf[1] = 0; /* = ((JUMBOOPTLEN) >> 3) - 1 */
1161 exthdrs->ip6e_hbh = mopt;
1162 } else {
1163 struct ip6_hbh *hbh;
1164
1165 mopt = exthdrs->ip6e_hbh;
1166 if (M_TRAILINGSPACE(mopt) < JUMBOOPTLEN) {
1167 /*
1168 * XXX assumption:
1169 * - exthdrs->ip6e_hbh is not referenced from places
1170 * other than exthdrs.
1171 * - exthdrs->ip6e_hbh is not an mbuf chain.
1172 */
1173 int oldoptlen = mopt->m_len;
1174 struct mbuf *n;
1175
1176 /*
1177 * XXX: give up if the whole (new) hbh header does
1178 * not fit even in an mbuf cluster.
1179 */
1180 if (oldoptlen + JUMBOOPTLEN > MCLBYTES)
1181 return (ENOBUFS);
1182
1183 /*
1184 * As a consequence, we must always prepare a cluster
1185 * at this point.
1186 */
1187 MGET(n, M_DONTWAIT, MT_DATA);
1188 if (n) {
1189 MCLGET(n, M_DONTWAIT);
1190 if ((n->m_flags & M_EXT) == 0) {
1191 m_freem(n);
1192 n = NULL;
1193 }
1194 }
1195 if (!n)
1196 return (ENOBUFS);
1197 n->m_len = oldoptlen + JUMBOOPTLEN;
1198 bcopy(mtod(mopt, caddr_t), mtod(n, caddr_t),
1199 oldoptlen);
1200 optbuf = mtod(n, caddr_t) + oldoptlen;
1201 m_freem(mopt);
1202 mopt = exthdrs->ip6e_hbh = n;
1203 } else {
1204 optbuf = mtod(mopt, u_char *) + mopt->m_len;
1205 mopt->m_len += JUMBOOPTLEN;
1206 }
1207 optbuf[0] = IP6OPT_PADN;
1208 optbuf[1] = 1;
1209
1210 /*
1211 * Adjust the header length according to the pad and
1212 * the jumbo payload option.
1213 */
1214 hbh = mtod(mopt, struct ip6_hbh *);
1215 hbh->ip6h_len += (JUMBOOPTLEN >> 3);
1216 }
1217
1218 /* fill in the option. */
1219 optbuf[2] = IP6OPT_JUMBO;
1220 optbuf[3] = 4;
1221 v = (u_int32_t)htonl(plen + JUMBOOPTLEN);
1222 bcopy(&v, &optbuf[4], sizeof(u_int32_t));
1223
1224 /* finally, adjust the packet header length */
1225 exthdrs->ip6e_ip6->m_pkthdr.len += JUMBOOPTLEN;
1226
1227 return (0);
1228#undef JUMBOOPTLEN
1229}
1230
1231/*
1232 * Insert fragment header and copy unfragmentable header portions.
1233 */
1234static int
1235ip6_insertfraghdr(struct mbuf *m0, struct mbuf *m, int hlen,
1236 struct ip6_frag **frghdrp)
1237{
1238 struct mbuf *n, *mlast;
1239
1240 if (hlen > sizeof(struct ip6_hdr)) {
1241 n = m_copym(m0, sizeof(struct ip6_hdr),
1242 hlen - sizeof(struct ip6_hdr), M_DONTWAIT);
1243 if (n == 0)
1244 return (ENOBUFS);
1245 m->m_next = n;
1246 } else
1247 n = m;
1248
1249 /* Search for the last mbuf of unfragmentable part. */
1250 for (mlast = n; mlast->m_next; mlast = mlast->m_next)
1251 ;
1252
1253 if ((mlast->m_flags & M_EXT) == 0 &&
1254 M_TRAILINGSPACE(mlast) >= sizeof(struct ip6_frag)) {
1255 /* use the trailing space of the last mbuf for the fragment hdr */
1256 *frghdrp = (struct ip6_frag *)(mtod(mlast, caddr_t) +
1257 mlast->m_len);
1258 mlast->m_len += sizeof(struct ip6_frag);
1259 m->m_pkthdr.len += sizeof(struct ip6_frag);
1260 } else {
1261 /* allocate a new mbuf for the fragment header */
1262 struct mbuf *mfrg;
1263
1264 MGET(mfrg, M_DONTWAIT, MT_DATA);
1265 if (mfrg == 0)
1266 return (ENOBUFS);
1267 mfrg->m_len = sizeof(struct ip6_frag);
1268 *frghdrp = mtod(mfrg, struct ip6_frag *);
1269 mlast->m_next = mfrg;
1270 }
1271
1272 return (0);
1273}
1274
1275static int
1276ip6_getpmtu(struct route_in6 *ro_pmtu, struct route_in6 *ro,
1277 struct ifnet *ifp, struct in6_addr *dst, u_long *mtup,
1278 int *alwaysfragp)
1279{
1280 u_int32_t mtu = 0;
1281 int alwaysfrag = 0;
1282 int error = 0;
1283
1284 if (ro_pmtu != ro) {
1285 /* The first hop and the final destination may differ. */
1286 struct sockaddr_in6 *sa6_dst =
1287 (struct sockaddr_in6 *)&ro_pmtu->ro_dst;
1288 if (ro_pmtu->ro_rt &&
1289 ((ro_pmtu->ro_rt->rt_flags & RTF_UP) == 0 ||
1290 !IN6_ARE_ADDR_EQUAL(&sa6_dst->sin6_addr, dst))) {
1291 RTFREE(ro_pmtu->ro_rt);
1292 ro_pmtu->ro_rt = (struct rtentry *)NULL;
1293 }
1294 if (ro_pmtu->ro_rt == NULL) {
1295 bzero(sa6_dst, sizeof(*sa6_dst));
1296 sa6_dst->sin6_family = AF_INET6;
1297 sa6_dst->sin6_len = sizeof(struct sockaddr_in6);
1298 sa6_dst->sin6_addr = *dst;
1299
1300 rtalloc((struct route *)ro_pmtu);
1301 }
1302 }
1303 if (ro_pmtu->ro_rt) {
1304 u_int32_t ifmtu;
1305 struct in_conninfo inc;
1306
1307 bzero(&inc, sizeof(inc));
1308 inc.inc_flags |= INC_ISIPV6;
1309 inc.inc6_faddr = *dst;
1310
1311 if (ifp == NULL)
1312 ifp = ro_pmtu->ro_rt->rt_ifp;
1313 ifmtu = IN6_LINKMTU(ifp);
1314 mtu = tcp_hc_getmtu(&inc);
1315 if (mtu)
1316 mtu = min(mtu, ro_pmtu->ro_rt->rt_rmx.rmx_mtu);
1317 else
1318 mtu = ro_pmtu->ro_rt->rt_rmx.rmx_mtu;
1319 if (mtu == 0)
1320 mtu = ifmtu;
1321 else if (mtu < IPV6_MMTU) {
1322 /*
1323 * RFC2460 section 5, last paragraph:
1324 * if we record ICMPv6 too big message with
1325 * mtu < IPV6_MMTU, transmit packets sized IPV6_MMTU
1326 * or smaller, with framgent header attached.
1327 * (fragment header is needed regardless from the
1328 * packet size, for translators to identify packets)
1329 */
1330 alwaysfrag = 1;
1331 mtu = IPV6_MMTU;
1332 } else if (mtu > ifmtu) {
1333 /*
1334 * The MTU on the route is larger than the MTU on
1335 * the interface! This shouldn't happen, unless the
1336 * MTU of the interface has been changed after the
1337 * interface was brought up. Change the MTU in the
1338 * route to match the interface MTU (as long as the
1339 * field isn't locked).
1340 */
1341 mtu = ifmtu;
1342 ro_pmtu->ro_rt->rt_rmx.rmx_mtu = mtu;
1343 }
1344 } else if (ifp) {
1345 mtu = IN6_LINKMTU(ifp);
1346 } else
1347 error = EHOSTUNREACH; /* XXX */
1348
1349 *mtup = mtu;
1350 if (alwaysfragp)
1351 *alwaysfragp = alwaysfrag;
1352 return (error);
1353}
1354
1355/*
1356 * IP6 socket option processing.
1357 */
1358int
1359ip6_ctloutput(struct socket *so, struct sockopt *sopt)
1360{
1361 int optdatalen, uproto;
1362 void *optdata;
1363 struct inpcb *in6p = sotoinpcb(so);
1364 int error, optval;
1365 int level, op, optname;
1366 int optlen;
1367 struct thread *td;
1368
1369 level = sopt->sopt_level;
1370 op = sopt->sopt_dir;
1371 optname = sopt->sopt_name;
1372 optlen = sopt->sopt_valsize;
1373 td = sopt->sopt_td;
1374 error = 0;
1375 optval = 0;
1376 uproto = (int)so->so_proto->pr_protocol;
1377
1378 if (level == IPPROTO_IPV6) {
1379 switch (op) {
1380
1381 case SOPT_SET:
1382 switch (optname) {
1383 case IPV6_2292PKTOPTIONS:
1384#ifdef IPV6_PKTOPTIONS
1385 case IPV6_PKTOPTIONS:
1386#endif
1387 {
1388 struct mbuf *m;
1389
1390 error = soopt_getm(sopt, &m); /* XXX */
1391 if (error != 0)
1392 break;
1393 error = soopt_mcopyin(sopt, m); /* XXX */
1394 if (error != 0)
1395 break;
1396 error = ip6_pcbopts(&in6p->in6p_outputopts,
1397 m, so, sopt);
1398 m_freem(m); /* XXX */
1399 break;
1400 }
1401
1402 /*
1403 * Use of some Hop-by-Hop options or some
1404 * Destination options, might require special
1405 * privilege. That is, normal applications
1406 * (without special privilege) might be forbidden
1407 * from setting certain options in outgoing packets,
1408 * and might never see certain options in received
1409 * packets. [RFC 2292 Section 6]
1410 * KAME specific note:
1411 * KAME prevents non-privileged users from sending or
1412 * receiving ANY hbh/dst options in order to avoid
1413 * overhead of parsing options in the kernel.
1414 */
1415 case IPV6_RECVHOPOPTS:
1416 case IPV6_RECVDSTOPTS:
1417 case IPV6_RECVRTHDRDSTOPTS:
1418 if (td != NULL) {
1419 error = priv_check(td,
1420 PRIV_NETINET_SETHDROPTS);
1421 if (error)
1422 break;
1423 }
1424 /* FALLTHROUGH */
1425 case IPV6_UNICAST_HOPS:
1426 case IPV6_HOPLIMIT:
1427 case IPV6_FAITH:
1428
1429 case IPV6_RECVPKTINFO:
1430 case IPV6_RECVHOPLIMIT:
1431 case IPV6_RECVRTHDR:
1432 case IPV6_RECVPATHMTU:
1433 case IPV6_RECVTCLASS:
1434 case IPV6_V6ONLY:
1435 case IPV6_AUTOFLOWLABEL:
1436 if (optlen != sizeof(int)) {
1437 error = EINVAL;
1438 break;
1439 }
1440 error = sooptcopyin(sopt, &optval,
1441 sizeof optval, sizeof optval);
1442 if (error)
1443 break;
1444 switch (optname) {
1445
1446 case IPV6_UNICAST_HOPS:
1447 if (optval < -1 || optval >= 256)
1448 error = EINVAL;
1449 else {
1450 /* -1 = kernel default */
1451 in6p->in6p_hops = optval;
1452 if ((in6p->inp_vflag &
1453 INP_IPV4) != 0)
1454 in6p->inp_ip_ttl = optval;
1455 }
1456 break;
1457#define OPTSET(bit) \
1458do { \
1459 if (optval) \
1460 in6p->inp_flags |= (bit); \
1461 else \
1462 in6p->inp_flags &= ~(bit); \
1463} while (/*CONSTCOND*/ 0)
1464#define OPTSET2292(bit) \
1465do { \
1466 in6p->inp_flags |= IN6P_RFC2292; \
1467 if (optval) \
1468 in6p->inp_flags |= (bit); \
1469 else \
1470 in6p->inp_flags &= ~(bit); \
1471} while (/*CONSTCOND*/ 0)
1472#define OPTBIT(bit) (in6p->inp_flags & (bit) ? 1 : 0)
1473
1474 case IPV6_RECVPKTINFO:
1475 /* cannot mix with RFC2292 */
1476 if (OPTBIT(IN6P_RFC2292)) {
1477 error = EINVAL;
1478 break;
1479 }
1480 OPTSET(IN6P_PKTINFO);
1481 break;
1482
1483 case IPV6_HOPLIMIT:
1484 {
1485 struct ip6_pktopts **optp;
1486
1487 /* cannot mix with RFC2292 */
1488 if (OPTBIT(IN6P_RFC2292)) {
1489 error = EINVAL;
1490 break;
1491 }
1492 optp = &in6p->in6p_outputopts;
1493 error = ip6_pcbopt(IPV6_HOPLIMIT,
1494 (u_char *)&optval, sizeof(optval),
1495 optp, (td != NULL) ? td->td_ucred :
1496 NULL, uproto);
1497 break;
1498 }
1499
1500 case IPV6_RECVHOPLIMIT:
1501 /* cannot mix with RFC2292 */
1502 if (OPTBIT(IN6P_RFC2292)) {
1503 error = EINVAL;
1504 break;
1505 }
1506 OPTSET(IN6P_HOPLIMIT);
1507 break;
1508
1509 case IPV6_RECVHOPOPTS:
1510 /* cannot mix with RFC2292 */
1511 if (OPTBIT(IN6P_RFC2292)) {
1512 error = EINVAL;
1513 break;
1514 }
1515 OPTSET(IN6P_HOPOPTS);
1516 break;
1517
1518 case IPV6_RECVDSTOPTS:
1519 /* cannot mix with RFC2292 */
1520 if (OPTBIT(IN6P_RFC2292)) {
1521 error = EINVAL;
1522 break;
1523 }
1524 OPTSET(IN6P_DSTOPTS);
1525 break;
1526
1527 case IPV6_RECVRTHDRDSTOPTS:
1528 /* cannot mix with RFC2292 */
1529 if (OPTBIT(IN6P_RFC2292)) {
1530 error = EINVAL;
1531 break;
1532 }
1533 OPTSET(IN6P_RTHDRDSTOPTS);
1534 break;
1535
1536 case IPV6_RECVRTHDR:
1537 /* cannot mix with RFC2292 */
1538 if (OPTBIT(IN6P_RFC2292)) {
1539 error = EINVAL;
1540 break;
1541 }
1542 OPTSET(IN6P_RTHDR);
1543 break;
1544
1545 case IPV6_FAITH:
1546 OPTSET(INP_FAITH);
1547 break;
1548
1549 case IPV6_RECVPATHMTU:
1550 /*
1551 * We ignore this option for TCP
1552 * sockets.
1553 * (RFC3542 leaves this case
1554 * unspecified.)
1555 */
1556 if (uproto != IPPROTO_TCP)
1557 OPTSET(IN6P_MTU);
1558 break;
1559
1560 case IPV6_V6ONLY:
1561 /*
1562 * make setsockopt(IPV6_V6ONLY)
1563 * available only prior to bind(2).
1564 * see ipng mailing list, Jun 22 2001.
1565 */
1566 if (in6p->inp_lport ||
1567 !IN6_IS_ADDR_UNSPECIFIED(&in6p->in6p_laddr)) {
1568 error = EINVAL;
1569 break;
1570 }
1571 OPTSET(IN6P_IPV6_V6ONLY);
1572 if (optval)
1573 in6p->inp_vflag &= ~INP_IPV4;
1574 else
1575 in6p->inp_vflag |= INP_IPV4;
1576 break;
1577 case IPV6_RECVTCLASS:
1578 /* cannot mix with RFC2292 XXX */
1579 if (OPTBIT(IN6P_RFC2292)) {
1580 error = EINVAL;
1581 break;
1582 }
1583 OPTSET(IN6P_TCLASS);
1584 break;
1585 case IPV6_AUTOFLOWLABEL:
1586 OPTSET(IN6P_AUTOFLOWLABEL);
1587 break;
1588
1589 }
1590 break;
1591
1592 case IPV6_TCLASS:
1593 case IPV6_DONTFRAG:
1594 case IPV6_USE_MIN_MTU:
1595 case IPV6_PREFER_TEMPADDR:
1596 if (optlen != sizeof(optval)) {
1597 error = EINVAL;
1598 break;
1599 }
1600 error = sooptcopyin(sopt, &optval,
1601 sizeof optval, sizeof optval);
1602 if (error)
1603 break;
1604 {
1605 struct ip6_pktopts **optp;
1606 optp = &in6p->in6p_outputopts;
1607 error = ip6_pcbopt(optname,
1608 (u_char *)&optval, sizeof(optval),
1609 optp, (td != NULL) ? td->td_ucred :
1610 NULL, uproto);
1611 break;
1612 }
1613
1614 case IPV6_2292PKTINFO:
1615 case IPV6_2292HOPLIMIT:
1616 case IPV6_2292HOPOPTS:
1617 case IPV6_2292DSTOPTS:
1618 case IPV6_2292RTHDR:
1619 /* RFC 2292 */
1620 if (optlen != sizeof(int)) {
1621 error = EINVAL;
1622 break;
1623 }
1624 error = sooptcopyin(sopt, &optval,
1625 sizeof optval, sizeof optval);
1626 if (error)
1627 break;
1628 switch (optname) {
1629 case IPV6_2292PKTINFO:
1630 OPTSET2292(IN6P_PKTINFO);
1631 break;
1632 case IPV6_2292HOPLIMIT:
1633 OPTSET2292(IN6P_HOPLIMIT);
1634 break;
1635 case IPV6_2292HOPOPTS:
1636 /*
1637 * Check super-user privilege.
1638 * See comments for IPV6_RECVHOPOPTS.
1639 */
1640 if (td != NULL) {
1641 error = priv_check(td,
1642 PRIV_NETINET_SETHDROPTS);
1643 if (error)
1644 return (error);
1645 }
1646 OPTSET2292(IN6P_HOPOPTS);
1647 break;
1648 case IPV6_2292DSTOPTS:
1649 if (td != NULL) {
1650 error = priv_check(td,
1651 PRIV_NETINET_SETHDROPTS);
1652 if (error)
1653 return (error);
1654 }
1655 OPTSET2292(IN6P_DSTOPTS|IN6P_RTHDRDSTOPTS); /* XXX */
1656 break;
1657 case IPV6_2292RTHDR:
1658 OPTSET2292(IN6P_RTHDR);
1659 break;
1660 }
1661 break;
1662 case IPV6_PKTINFO:
1663 case IPV6_HOPOPTS:
1664 case IPV6_RTHDR:
1665 case IPV6_DSTOPTS:
1666 case IPV6_RTHDRDSTOPTS:
1667 case IPV6_NEXTHOP:
1668 {
1669 /* new advanced API (RFC3542) */
1670 u_char *optbuf;
1671 u_char optbuf_storage[MCLBYTES];
1672 int optlen;
1673 struct ip6_pktopts **optp;
1674
1675 /* cannot mix with RFC2292 */
1676 if (OPTBIT(IN6P_RFC2292)) {
1677 error = EINVAL;
1678 break;
1679 }
1680
1681 /*
1682 * We only ensure valsize is not too large
1683 * here. Further validation will be done
1684 * later.
1685 */
1686 error = sooptcopyin(sopt, optbuf_storage,
1687 sizeof(optbuf_storage), 0);
1688 if (error)
1689 break;
1690 optlen = sopt->sopt_valsize;
1691 optbuf = optbuf_storage;
1692 optp = &in6p->in6p_outputopts;
1693 error = ip6_pcbopt(optname, optbuf, optlen,
1694 optp, (td != NULL) ? td->td_ucred : NULL,
1695 uproto);
1696 break;
1697 }
1698#undef OPTSET
1699
1700 case IPV6_MULTICAST_IF:
1701 case IPV6_MULTICAST_HOPS:
1702 case IPV6_MULTICAST_LOOP:
1703 case IPV6_JOIN_GROUP:
1704 case IPV6_LEAVE_GROUP:
728 /*
729 * XXX: ip6_mforward expects that rcvif is NULL
730 * when it is called from the originating path.
731 * However, it is not always the case, since
732 * some versions of MGETHDR() does not
733 * initialize the field.
734 */
735 m->m_pkthdr.rcvif = NULL;
736 if (ip6_mforward(ip6, ifp, m) != 0) {
737 m_freem(m);
738 goto done;
739 }
740 }
741 }
742 /*
743 * Multicasts with a hoplimit of zero may be looped back,
744 * above, but must not be transmitted on a network.
745 * Also, multicasts addressed to the loopback interface
746 * are not sent -- the above call to ip6_mloopback() will
747 * loop back a copy if this host actually belongs to the
748 * destination group on the loopback interface.
749 */
750 if (ip6->ip6_hlim == 0 || (ifp->if_flags & IFF_LOOPBACK) ||
751 IN6_IS_ADDR_MC_INTFACELOCAL(&ip6->ip6_dst)) {
752 m_freem(m);
753 goto done;
754 }
755 }
756
757 /*
758 * Fill the outgoing inteface to tell the upper layer
759 * to increment per-interface statistics.
760 */
761 if (ifpp)
762 *ifpp = ifp;
763
764 /* Determine path MTU. */
765 if ((error = ip6_getpmtu(ro_pmtu, ro, ifp, &finaldst, &mtu,
766 &alwaysfrag)) != 0)
767 goto bad;
768
769 /*
770 * The caller of this function may specify to use the minimum MTU
771 * in some cases.
772 * An advanced API option (IPV6_USE_MIN_MTU) can also override MTU
773 * setting. The logic is a bit complicated; by default, unicast
774 * packets will follow path MTU while multicast packets will be sent at
775 * the minimum MTU. If IP6PO_MINMTU_ALL is specified, all packets
776 * including unicast ones will be sent at the minimum MTU. Multicast
777 * packets will always be sent at the minimum MTU unless
778 * IP6PO_MINMTU_DISABLE is explicitly specified.
779 * See RFC 3542 for more details.
780 */
781 if (mtu > IPV6_MMTU) {
782 if ((flags & IPV6_MINMTU))
783 mtu = IPV6_MMTU;
784 else if (opt && opt->ip6po_minmtu == IP6PO_MINMTU_ALL)
785 mtu = IPV6_MMTU;
786 else if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) &&
787 (opt == NULL ||
788 opt->ip6po_minmtu != IP6PO_MINMTU_DISABLE)) {
789 mtu = IPV6_MMTU;
790 }
791 }
792
793 /*
794 * clear embedded scope identifiers if necessary.
795 * in6_clearscope will touch the addresses only when necessary.
796 */
797 in6_clearscope(&ip6->ip6_src);
798 in6_clearscope(&ip6->ip6_dst);
799
800 /*
801 * If the outgoing packet contains a hop-by-hop options header,
802 * it must be examined and processed even by the source node.
803 * (RFC 2460, section 4.)
804 */
805 if (exthdrs.ip6e_hbh) {
806 struct ip6_hbh *hbh = mtod(exthdrs.ip6e_hbh, struct ip6_hbh *);
807 u_int32_t dummy; /* XXX unused */
808 u_int32_t plen = 0; /* XXX: ip6_process will check the value */
809
810#ifdef DIAGNOSTIC
811 if ((hbh->ip6h_len + 1) << 3 > exthdrs.ip6e_hbh->m_len)
812 panic("ip6e_hbh is not continuous");
813#endif
814 /*
815 * XXX: if we have to send an ICMPv6 error to the sender,
816 * we need the M_LOOP flag since icmp6_error() expects
817 * the IPv6 and the hop-by-hop options header are
818 * continuous unless the flag is set.
819 */
820 m->m_flags |= M_LOOP;
821 m->m_pkthdr.rcvif = ifp;
822 if (ip6_process_hopopts(m, (u_int8_t *)(hbh + 1),
823 ((hbh->ip6h_len + 1) << 3) - sizeof(struct ip6_hbh),
824 &dummy, &plen) < 0) {
825 /* m was already freed at this point */
826 error = EINVAL;/* better error? */
827 goto done;
828 }
829 m->m_flags &= ~M_LOOP; /* XXX */
830 m->m_pkthdr.rcvif = NULL;
831 }
832
833 /* Jump over all PFIL processing if hooks are not active. */
834 if (!PFIL_HOOKED(&inet6_pfil_hook))
835 goto passout;
836
837 odst = ip6->ip6_dst;
838 /* Run through list of hooks for output packets. */
839 error = pfil_run_hooks(&inet6_pfil_hook, &m, ifp, PFIL_OUT, inp);
840 if (error != 0 || m == NULL)
841 goto done;
842 ip6 = mtod(m, struct ip6_hdr *);
843
844 /* See if destination IP address was changed by packet filter. */
845 if (!IN6_ARE_ADDR_EQUAL(&odst, &ip6->ip6_dst)) {
846 m->m_flags |= M_SKIP_FIREWALL;
847 /* If destination is now ourself drop to ip6_input(). */
848 if (in6_localaddr(&ip6->ip6_dst)) {
849 if (m->m_pkthdr.rcvif == NULL)
850 m->m_pkthdr.rcvif = V_loif;
851 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
852 m->m_pkthdr.csum_flags |=
853 CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
854 m->m_pkthdr.csum_data = 0xffff;
855 }
856 m->m_pkthdr.csum_flags |=
857 CSUM_IP_CHECKED | CSUM_IP_VALID;
858 error = netisr_queue(NETISR_IPV6, m);
859 goto done;
860 } else
861 goto again; /* Redo the routing table lookup. */
862 }
863
864 /* XXX: IPFIREWALL_FORWARD */
865
866passout:
867 /*
868 * Send the packet to the outgoing interface.
869 * If necessary, do IPv6 fragmentation before sending.
870 *
871 * the logic here is rather complex:
872 * 1: normal case (dontfrag == 0, alwaysfrag == 0)
873 * 1-a: send as is if tlen <= path mtu
874 * 1-b: fragment if tlen > path mtu
875 *
876 * 2: if user asks us not to fragment (dontfrag == 1)
877 * 2-a: send as is if tlen <= interface mtu
878 * 2-b: error if tlen > interface mtu
879 *
880 * 3: if we always need to attach fragment header (alwaysfrag == 1)
881 * always fragment
882 *
883 * 4: if dontfrag == 1 && alwaysfrag == 1
884 * error, as we cannot handle this conflicting request
885 */
886 tlen = m->m_pkthdr.len;
887
888 if (opt && (opt->ip6po_flags & IP6PO_DONTFRAG))
889 dontfrag = 1;
890 else
891 dontfrag = 0;
892 if (dontfrag && alwaysfrag) { /* case 4 */
893 /* conflicting request - can't transmit */
894 error = EMSGSIZE;
895 goto bad;
896 }
897 if (dontfrag && tlen > IN6_LINKMTU(ifp)) { /* case 2-b */
898 /*
899 * Even if the DONTFRAG option is specified, we cannot send the
900 * packet when the data length is larger than the MTU of the
901 * outgoing interface.
902 * Notify the error by sending IPV6_PATHMTU ancillary data as
903 * well as returning an error code (the latter is not described
904 * in the API spec.)
905 */
906 u_int32_t mtu32;
907 struct ip6ctlparam ip6cp;
908
909 mtu32 = (u_int32_t)mtu;
910 bzero(&ip6cp, sizeof(ip6cp));
911 ip6cp.ip6c_cmdarg = (void *)&mtu32;
912 pfctlinput2(PRC_MSGSIZE, (struct sockaddr *)&ro_pmtu->ro_dst,
913 (void *)&ip6cp);
914
915 error = EMSGSIZE;
916 goto bad;
917 }
918
919 /*
920 * transmit packet without fragmentation
921 */
922 if (dontfrag || (!alwaysfrag && tlen <= mtu)) { /* case 1-a and 2-a */
923 struct in6_ifaddr *ia6;
924
925 ip6 = mtod(m, struct ip6_hdr *);
926 ia6 = in6_ifawithifp(ifp, &ip6->ip6_src);
927 if (ia6) {
928 /* Record statistics for this interface address. */
929 ia6->ia_ifa.if_opackets++;
930 ia6->ia_ifa.if_obytes += m->m_pkthdr.len;
931 }
932 error = nd6_output(ifp, origifp, m, dst, ro->ro_rt);
933 goto done;
934 }
935
936 /*
937 * try to fragment the packet. case 1-b and 3
938 */
939 if (mtu < IPV6_MMTU) {
940 /* path MTU cannot be less than IPV6_MMTU */
941 error = EMSGSIZE;
942 in6_ifstat_inc(ifp, ifs6_out_fragfail);
943 goto bad;
944 } else if (ip6->ip6_plen == 0) {
945 /* jumbo payload cannot be fragmented */
946 error = EMSGSIZE;
947 in6_ifstat_inc(ifp, ifs6_out_fragfail);
948 goto bad;
949 } else {
950 struct mbuf **mnext, *m_frgpart;
951 struct ip6_frag *ip6f;
952 u_int32_t id = htonl(ip6_randomid());
953 u_char nextproto;
954
955 int qslots = ifp->if_snd.ifq_maxlen - ifp->if_snd.ifq_len;
956
957 /*
958 * Too large for the destination or interface;
959 * fragment if possible.
960 * Must be able to put at least 8 bytes per fragment.
961 */
962 hlen = unfragpartlen;
963 if (mtu > IPV6_MAXPACKET)
964 mtu = IPV6_MAXPACKET;
965
966 len = (mtu - hlen - sizeof(struct ip6_frag)) & ~7;
967 if (len < 8) {
968 error = EMSGSIZE;
969 in6_ifstat_inc(ifp, ifs6_out_fragfail);
970 goto bad;
971 }
972
973 /*
974 * Verify that we have any chance at all of being able to queue
975 * the packet or packet fragments
976 */
977 if (qslots <= 0 || ((u_int)qslots * (mtu - hlen)
978 < tlen /* - hlen */)) {
979 error = ENOBUFS;
980 V_ip6stat.ip6s_odropped++;
981 goto bad;
982 }
983
984 mnext = &m->m_nextpkt;
985
986 /*
987 * Change the next header field of the last header in the
988 * unfragmentable part.
989 */
990 if (exthdrs.ip6e_rthdr) {
991 nextproto = *mtod(exthdrs.ip6e_rthdr, u_char *);
992 *mtod(exthdrs.ip6e_rthdr, u_char *) = IPPROTO_FRAGMENT;
993 } else if (exthdrs.ip6e_dest1) {
994 nextproto = *mtod(exthdrs.ip6e_dest1, u_char *);
995 *mtod(exthdrs.ip6e_dest1, u_char *) = IPPROTO_FRAGMENT;
996 } else if (exthdrs.ip6e_hbh) {
997 nextproto = *mtod(exthdrs.ip6e_hbh, u_char *);
998 *mtod(exthdrs.ip6e_hbh, u_char *) = IPPROTO_FRAGMENT;
999 } else {
1000 nextproto = ip6->ip6_nxt;
1001 ip6->ip6_nxt = IPPROTO_FRAGMENT;
1002 }
1003
1004 /*
1005 * Loop through length of segment after first fragment,
1006 * make new header and copy data of each part and link onto
1007 * chain.
1008 */
1009 m0 = m;
1010 for (off = hlen; off < tlen; off += len) {
1011 MGETHDR(m, M_DONTWAIT, MT_HEADER);
1012 if (!m) {
1013 error = ENOBUFS;
1014 V_ip6stat.ip6s_odropped++;
1015 goto sendorfree;
1016 }
1017 m->m_pkthdr.rcvif = NULL;
1018 m->m_flags = m0->m_flags & M_COPYFLAGS;
1019 *mnext = m;
1020 mnext = &m->m_nextpkt;
1021 m->m_data += max_linkhdr;
1022 mhip6 = mtod(m, struct ip6_hdr *);
1023 *mhip6 = *ip6;
1024 m->m_len = sizeof(*mhip6);
1025 error = ip6_insertfraghdr(m0, m, hlen, &ip6f);
1026 if (error) {
1027 V_ip6stat.ip6s_odropped++;
1028 goto sendorfree;
1029 }
1030 ip6f->ip6f_offlg = htons((u_short)((off - hlen) & ~7));
1031 if (off + len >= tlen)
1032 len = tlen - off;
1033 else
1034 ip6f->ip6f_offlg |= IP6F_MORE_FRAG;
1035 mhip6->ip6_plen = htons((u_short)(len + hlen +
1036 sizeof(*ip6f) - sizeof(struct ip6_hdr)));
1037 if ((m_frgpart = m_copy(m0, off, len)) == 0) {
1038 error = ENOBUFS;
1039 V_ip6stat.ip6s_odropped++;
1040 goto sendorfree;
1041 }
1042 m_cat(m, m_frgpart);
1043 m->m_pkthdr.len = len + hlen + sizeof(*ip6f);
1044 m->m_pkthdr.rcvif = NULL;
1045 ip6f->ip6f_reserved = 0;
1046 ip6f->ip6f_ident = id;
1047 ip6f->ip6f_nxt = nextproto;
1048 V_ip6stat.ip6s_ofragments++;
1049 in6_ifstat_inc(ifp, ifs6_out_fragcreat);
1050 }
1051
1052 in6_ifstat_inc(ifp, ifs6_out_fragok);
1053 }
1054
1055 /*
1056 * Remove leading garbages.
1057 */
1058sendorfree:
1059 m = m0->m_nextpkt;
1060 m0->m_nextpkt = 0;
1061 m_freem(m0);
1062 for (m0 = m; m; m = m0) {
1063 m0 = m->m_nextpkt;
1064 m->m_nextpkt = 0;
1065 if (error == 0) {
1066 /* Record statistics for this interface address. */
1067 if (ia) {
1068 ia->ia_ifa.if_opackets++;
1069 ia->ia_ifa.if_obytes += m->m_pkthdr.len;
1070 }
1071 error = nd6_output(ifp, origifp, m, dst, ro->ro_rt);
1072 } else
1073 m_freem(m);
1074 }
1075
1076 if (error == 0)
1077 V_ip6stat.ip6s_fragmented++;
1078
1079done:
1080 if (ro == &ip6route && ro->ro_rt) { /* brace necessary for RTFREE */
1081 RTFREE(ro->ro_rt);
1082 } else if (ro_pmtu == &ip6route && ro_pmtu->ro_rt) {
1083 RTFREE(ro_pmtu->ro_rt);
1084 }
1085#ifdef IPSEC
1086 if (sp != NULL)
1087 KEY_FREESP(&sp);
1088#endif
1089
1090 return (error);
1091
1092freehdrs:
1093 m_freem(exthdrs.ip6e_hbh); /* m_freem will check if mbuf is 0 */
1094 m_freem(exthdrs.ip6e_dest1);
1095 m_freem(exthdrs.ip6e_rthdr);
1096 m_freem(exthdrs.ip6e_dest2);
1097 /* FALLTHROUGH */
1098bad:
1099 if (m)
1100 m_freem(m);
1101 goto done;
1102}
1103
1104static int
1105ip6_copyexthdr(struct mbuf **mp, caddr_t hdr, int hlen)
1106{
1107 struct mbuf *m;
1108
1109 if (hlen > MCLBYTES)
1110 return (ENOBUFS); /* XXX */
1111
1112 MGET(m, M_DONTWAIT, MT_DATA);
1113 if (!m)
1114 return (ENOBUFS);
1115
1116 if (hlen > MLEN) {
1117 MCLGET(m, M_DONTWAIT);
1118 if ((m->m_flags & M_EXT) == 0) {
1119 m_free(m);
1120 return (ENOBUFS);
1121 }
1122 }
1123 m->m_len = hlen;
1124 if (hdr)
1125 bcopy(hdr, mtod(m, caddr_t), hlen);
1126
1127 *mp = m;
1128 return (0);
1129}
1130
1131/*
1132 * Insert jumbo payload option.
1133 */
1134static int
1135ip6_insert_jumboopt(struct ip6_exthdrs *exthdrs, u_int32_t plen)
1136{
1137 struct mbuf *mopt;
1138 u_char *optbuf;
1139 u_int32_t v;
1140
1141#define JUMBOOPTLEN 8 /* length of jumbo payload option and padding */
1142
1143 /*
1144 * If there is no hop-by-hop options header, allocate new one.
1145 * If there is one but it doesn't have enough space to store the
1146 * jumbo payload option, allocate a cluster to store the whole options.
1147 * Otherwise, use it to store the options.
1148 */
1149 if (exthdrs->ip6e_hbh == 0) {
1150 MGET(mopt, M_DONTWAIT, MT_DATA);
1151 if (mopt == 0)
1152 return (ENOBUFS);
1153 mopt->m_len = JUMBOOPTLEN;
1154 optbuf = mtod(mopt, u_char *);
1155 optbuf[1] = 0; /* = ((JUMBOOPTLEN) >> 3) - 1 */
1156 exthdrs->ip6e_hbh = mopt;
1157 } else {
1158 struct ip6_hbh *hbh;
1159
1160 mopt = exthdrs->ip6e_hbh;
1161 if (M_TRAILINGSPACE(mopt) < JUMBOOPTLEN) {
1162 /*
1163 * XXX assumption:
1164 * - exthdrs->ip6e_hbh is not referenced from places
1165 * other than exthdrs.
1166 * - exthdrs->ip6e_hbh is not an mbuf chain.
1167 */
1168 int oldoptlen = mopt->m_len;
1169 struct mbuf *n;
1170
1171 /*
1172 * XXX: give up if the whole (new) hbh header does
1173 * not fit even in an mbuf cluster.
1174 */
1175 if (oldoptlen + JUMBOOPTLEN > MCLBYTES)
1176 return (ENOBUFS);
1177
1178 /*
1179 * As a consequence, we must always prepare a cluster
1180 * at this point.
1181 */
1182 MGET(n, M_DONTWAIT, MT_DATA);
1183 if (n) {
1184 MCLGET(n, M_DONTWAIT);
1185 if ((n->m_flags & M_EXT) == 0) {
1186 m_freem(n);
1187 n = NULL;
1188 }
1189 }
1190 if (!n)
1191 return (ENOBUFS);
1192 n->m_len = oldoptlen + JUMBOOPTLEN;
1193 bcopy(mtod(mopt, caddr_t), mtod(n, caddr_t),
1194 oldoptlen);
1195 optbuf = mtod(n, caddr_t) + oldoptlen;
1196 m_freem(mopt);
1197 mopt = exthdrs->ip6e_hbh = n;
1198 } else {
1199 optbuf = mtod(mopt, u_char *) + mopt->m_len;
1200 mopt->m_len += JUMBOOPTLEN;
1201 }
1202 optbuf[0] = IP6OPT_PADN;
1203 optbuf[1] = 1;
1204
1205 /*
1206 * Adjust the header length according to the pad and
1207 * the jumbo payload option.
1208 */
1209 hbh = mtod(mopt, struct ip6_hbh *);
1210 hbh->ip6h_len += (JUMBOOPTLEN >> 3);
1211 }
1212
1213 /* fill in the option. */
1214 optbuf[2] = IP6OPT_JUMBO;
1215 optbuf[3] = 4;
1216 v = (u_int32_t)htonl(plen + JUMBOOPTLEN);
1217 bcopy(&v, &optbuf[4], sizeof(u_int32_t));
1218
1219 /* finally, adjust the packet header length */
1220 exthdrs->ip6e_ip6->m_pkthdr.len += JUMBOOPTLEN;
1221
1222 return (0);
1223#undef JUMBOOPTLEN
1224}
1225
1226/*
1227 * Insert fragment header and copy unfragmentable header portions.
1228 */
1229static int
1230ip6_insertfraghdr(struct mbuf *m0, struct mbuf *m, int hlen,
1231 struct ip6_frag **frghdrp)
1232{
1233 struct mbuf *n, *mlast;
1234
1235 if (hlen > sizeof(struct ip6_hdr)) {
1236 n = m_copym(m0, sizeof(struct ip6_hdr),
1237 hlen - sizeof(struct ip6_hdr), M_DONTWAIT);
1238 if (n == 0)
1239 return (ENOBUFS);
1240 m->m_next = n;
1241 } else
1242 n = m;
1243
1244 /* Search for the last mbuf of unfragmentable part. */
1245 for (mlast = n; mlast->m_next; mlast = mlast->m_next)
1246 ;
1247
1248 if ((mlast->m_flags & M_EXT) == 0 &&
1249 M_TRAILINGSPACE(mlast) >= sizeof(struct ip6_frag)) {
1250 /* use the trailing space of the last mbuf for the fragment hdr */
1251 *frghdrp = (struct ip6_frag *)(mtod(mlast, caddr_t) +
1252 mlast->m_len);
1253 mlast->m_len += sizeof(struct ip6_frag);
1254 m->m_pkthdr.len += sizeof(struct ip6_frag);
1255 } else {
1256 /* allocate a new mbuf for the fragment header */
1257 struct mbuf *mfrg;
1258
1259 MGET(mfrg, M_DONTWAIT, MT_DATA);
1260 if (mfrg == 0)
1261 return (ENOBUFS);
1262 mfrg->m_len = sizeof(struct ip6_frag);
1263 *frghdrp = mtod(mfrg, struct ip6_frag *);
1264 mlast->m_next = mfrg;
1265 }
1266
1267 return (0);
1268}
1269
1270static int
1271ip6_getpmtu(struct route_in6 *ro_pmtu, struct route_in6 *ro,
1272 struct ifnet *ifp, struct in6_addr *dst, u_long *mtup,
1273 int *alwaysfragp)
1274{
1275 u_int32_t mtu = 0;
1276 int alwaysfrag = 0;
1277 int error = 0;
1278
1279 if (ro_pmtu != ro) {
1280 /* The first hop and the final destination may differ. */
1281 struct sockaddr_in6 *sa6_dst =
1282 (struct sockaddr_in6 *)&ro_pmtu->ro_dst;
1283 if (ro_pmtu->ro_rt &&
1284 ((ro_pmtu->ro_rt->rt_flags & RTF_UP) == 0 ||
1285 !IN6_ARE_ADDR_EQUAL(&sa6_dst->sin6_addr, dst))) {
1286 RTFREE(ro_pmtu->ro_rt);
1287 ro_pmtu->ro_rt = (struct rtentry *)NULL;
1288 }
1289 if (ro_pmtu->ro_rt == NULL) {
1290 bzero(sa6_dst, sizeof(*sa6_dst));
1291 sa6_dst->sin6_family = AF_INET6;
1292 sa6_dst->sin6_len = sizeof(struct sockaddr_in6);
1293 sa6_dst->sin6_addr = *dst;
1294
1295 rtalloc((struct route *)ro_pmtu);
1296 }
1297 }
1298 if (ro_pmtu->ro_rt) {
1299 u_int32_t ifmtu;
1300 struct in_conninfo inc;
1301
1302 bzero(&inc, sizeof(inc));
1303 inc.inc_flags |= INC_ISIPV6;
1304 inc.inc6_faddr = *dst;
1305
1306 if (ifp == NULL)
1307 ifp = ro_pmtu->ro_rt->rt_ifp;
1308 ifmtu = IN6_LINKMTU(ifp);
1309 mtu = tcp_hc_getmtu(&inc);
1310 if (mtu)
1311 mtu = min(mtu, ro_pmtu->ro_rt->rt_rmx.rmx_mtu);
1312 else
1313 mtu = ro_pmtu->ro_rt->rt_rmx.rmx_mtu;
1314 if (mtu == 0)
1315 mtu = ifmtu;
1316 else if (mtu < IPV6_MMTU) {
1317 /*
1318 * RFC2460 section 5, last paragraph:
1319 * if we record ICMPv6 too big message with
1320 * mtu < IPV6_MMTU, transmit packets sized IPV6_MMTU
1321 * or smaller, with framgent header attached.
1322 * (fragment header is needed regardless from the
1323 * packet size, for translators to identify packets)
1324 */
1325 alwaysfrag = 1;
1326 mtu = IPV6_MMTU;
1327 } else if (mtu > ifmtu) {
1328 /*
1329 * The MTU on the route is larger than the MTU on
1330 * the interface! This shouldn't happen, unless the
1331 * MTU of the interface has been changed after the
1332 * interface was brought up. Change the MTU in the
1333 * route to match the interface MTU (as long as the
1334 * field isn't locked).
1335 */
1336 mtu = ifmtu;
1337 ro_pmtu->ro_rt->rt_rmx.rmx_mtu = mtu;
1338 }
1339 } else if (ifp) {
1340 mtu = IN6_LINKMTU(ifp);
1341 } else
1342 error = EHOSTUNREACH; /* XXX */
1343
1344 *mtup = mtu;
1345 if (alwaysfragp)
1346 *alwaysfragp = alwaysfrag;
1347 return (error);
1348}
1349
1350/*
1351 * IP6 socket option processing.
1352 */
1353int
1354ip6_ctloutput(struct socket *so, struct sockopt *sopt)
1355{
1356 int optdatalen, uproto;
1357 void *optdata;
1358 struct inpcb *in6p = sotoinpcb(so);
1359 int error, optval;
1360 int level, op, optname;
1361 int optlen;
1362 struct thread *td;
1363
1364 level = sopt->sopt_level;
1365 op = sopt->sopt_dir;
1366 optname = sopt->sopt_name;
1367 optlen = sopt->sopt_valsize;
1368 td = sopt->sopt_td;
1369 error = 0;
1370 optval = 0;
1371 uproto = (int)so->so_proto->pr_protocol;
1372
1373 if (level == IPPROTO_IPV6) {
1374 switch (op) {
1375
1376 case SOPT_SET:
1377 switch (optname) {
1378 case IPV6_2292PKTOPTIONS:
1379#ifdef IPV6_PKTOPTIONS
1380 case IPV6_PKTOPTIONS:
1381#endif
1382 {
1383 struct mbuf *m;
1384
1385 error = soopt_getm(sopt, &m); /* XXX */
1386 if (error != 0)
1387 break;
1388 error = soopt_mcopyin(sopt, m); /* XXX */
1389 if (error != 0)
1390 break;
1391 error = ip6_pcbopts(&in6p->in6p_outputopts,
1392 m, so, sopt);
1393 m_freem(m); /* XXX */
1394 break;
1395 }
1396
1397 /*
1398 * Use of some Hop-by-Hop options or some
1399 * Destination options, might require special
1400 * privilege. That is, normal applications
1401 * (without special privilege) might be forbidden
1402 * from setting certain options in outgoing packets,
1403 * and might never see certain options in received
1404 * packets. [RFC 2292 Section 6]
1405 * KAME specific note:
1406 * KAME prevents non-privileged users from sending or
1407 * receiving ANY hbh/dst options in order to avoid
1408 * overhead of parsing options in the kernel.
1409 */
1410 case IPV6_RECVHOPOPTS:
1411 case IPV6_RECVDSTOPTS:
1412 case IPV6_RECVRTHDRDSTOPTS:
1413 if (td != NULL) {
1414 error = priv_check(td,
1415 PRIV_NETINET_SETHDROPTS);
1416 if (error)
1417 break;
1418 }
1419 /* FALLTHROUGH */
1420 case IPV6_UNICAST_HOPS:
1421 case IPV6_HOPLIMIT:
1422 case IPV6_FAITH:
1423
1424 case IPV6_RECVPKTINFO:
1425 case IPV6_RECVHOPLIMIT:
1426 case IPV6_RECVRTHDR:
1427 case IPV6_RECVPATHMTU:
1428 case IPV6_RECVTCLASS:
1429 case IPV6_V6ONLY:
1430 case IPV6_AUTOFLOWLABEL:
1431 if (optlen != sizeof(int)) {
1432 error = EINVAL;
1433 break;
1434 }
1435 error = sooptcopyin(sopt, &optval,
1436 sizeof optval, sizeof optval);
1437 if (error)
1438 break;
1439 switch (optname) {
1440
1441 case IPV6_UNICAST_HOPS:
1442 if (optval < -1 || optval >= 256)
1443 error = EINVAL;
1444 else {
1445 /* -1 = kernel default */
1446 in6p->in6p_hops = optval;
1447 if ((in6p->inp_vflag &
1448 INP_IPV4) != 0)
1449 in6p->inp_ip_ttl = optval;
1450 }
1451 break;
1452#define OPTSET(bit) \
1453do { \
1454 if (optval) \
1455 in6p->inp_flags |= (bit); \
1456 else \
1457 in6p->inp_flags &= ~(bit); \
1458} while (/*CONSTCOND*/ 0)
1459#define OPTSET2292(bit) \
1460do { \
1461 in6p->inp_flags |= IN6P_RFC2292; \
1462 if (optval) \
1463 in6p->inp_flags |= (bit); \
1464 else \
1465 in6p->inp_flags &= ~(bit); \
1466} while (/*CONSTCOND*/ 0)
1467#define OPTBIT(bit) (in6p->inp_flags & (bit) ? 1 : 0)
1468
1469 case IPV6_RECVPKTINFO:
1470 /* cannot mix with RFC2292 */
1471 if (OPTBIT(IN6P_RFC2292)) {
1472 error = EINVAL;
1473 break;
1474 }
1475 OPTSET(IN6P_PKTINFO);
1476 break;
1477
1478 case IPV6_HOPLIMIT:
1479 {
1480 struct ip6_pktopts **optp;
1481
1482 /* cannot mix with RFC2292 */
1483 if (OPTBIT(IN6P_RFC2292)) {
1484 error = EINVAL;
1485 break;
1486 }
1487 optp = &in6p->in6p_outputopts;
1488 error = ip6_pcbopt(IPV6_HOPLIMIT,
1489 (u_char *)&optval, sizeof(optval),
1490 optp, (td != NULL) ? td->td_ucred :
1491 NULL, uproto);
1492 break;
1493 }
1494
1495 case IPV6_RECVHOPLIMIT:
1496 /* cannot mix with RFC2292 */
1497 if (OPTBIT(IN6P_RFC2292)) {
1498 error = EINVAL;
1499 break;
1500 }
1501 OPTSET(IN6P_HOPLIMIT);
1502 break;
1503
1504 case IPV6_RECVHOPOPTS:
1505 /* cannot mix with RFC2292 */
1506 if (OPTBIT(IN6P_RFC2292)) {
1507 error = EINVAL;
1508 break;
1509 }
1510 OPTSET(IN6P_HOPOPTS);
1511 break;
1512
1513 case IPV6_RECVDSTOPTS:
1514 /* cannot mix with RFC2292 */
1515 if (OPTBIT(IN6P_RFC2292)) {
1516 error = EINVAL;
1517 break;
1518 }
1519 OPTSET(IN6P_DSTOPTS);
1520 break;
1521
1522 case IPV6_RECVRTHDRDSTOPTS:
1523 /* cannot mix with RFC2292 */
1524 if (OPTBIT(IN6P_RFC2292)) {
1525 error = EINVAL;
1526 break;
1527 }
1528 OPTSET(IN6P_RTHDRDSTOPTS);
1529 break;
1530
1531 case IPV6_RECVRTHDR:
1532 /* cannot mix with RFC2292 */
1533 if (OPTBIT(IN6P_RFC2292)) {
1534 error = EINVAL;
1535 break;
1536 }
1537 OPTSET(IN6P_RTHDR);
1538 break;
1539
1540 case IPV6_FAITH:
1541 OPTSET(INP_FAITH);
1542 break;
1543
1544 case IPV6_RECVPATHMTU:
1545 /*
1546 * We ignore this option for TCP
1547 * sockets.
1548 * (RFC3542 leaves this case
1549 * unspecified.)
1550 */
1551 if (uproto != IPPROTO_TCP)
1552 OPTSET(IN6P_MTU);
1553 break;
1554
1555 case IPV6_V6ONLY:
1556 /*
1557 * make setsockopt(IPV6_V6ONLY)
1558 * available only prior to bind(2).
1559 * see ipng mailing list, Jun 22 2001.
1560 */
1561 if (in6p->inp_lport ||
1562 !IN6_IS_ADDR_UNSPECIFIED(&in6p->in6p_laddr)) {
1563 error = EINVAL;
1564 break;
1565 }
1566 OPTSET(IN6P_IPV6_V6ONLY);
1567 if (optval)
1568 in6p->inp_vflag &= ~INP_IPV4;
1569 else
1570 in6p->inp_vflag |= INP_IPV4;
1571 break;
1572 case IPV6_RECVTCLASS:
1573 /* cannot mix with RFC2292 XXX */
1574 if (OPTBIT(IN6P_RFC2292)) {
1575 error = EINVAL;
1576 break;
1577 }
1578 OPTSET(IN6P_TCLASS);
1579 break;
1580 case IPV6_AUTOFLOWLABEL:
1581 OPTSET(IN6P_AUTOFLOWLABEL);
1582 break;
1583
1584 }
1585 break;
1586
1587 case IPV6_TCLASS:
1588 case IPV6_DONTFRAG:
1589 case IPV6_USE_MIN_MTU:
1590 case IPV6_PREFER_TEMPADDR:
1591 if (optlen != sizeof(optval)) {
1592 error = EINVAL;
1593 break;
1594 }
1595 error = sooptcopyin(sopt, &optval,
1596 sizeof optval, sizeof optval);
1597 if (error)
1598 break;
1599 {
1600 struct ip6_pktopts **optp;
1601 optp = &in6p->in6p_outputopts;
1602 error = ip6_pcbopt(optname,
1603 (u_char *)&optval, sizeof(optval),
1604 optp, (td != NULL) ? td->td_ucred :
1605 NULL, uproto);
1606 break;
1607 }
1608
1609 case IPV6_2292PKTINFO:
1610 case IPV6_2292HOPLIMIT:
1611 case IPV6_2292HOPOPTS:
1612 case IPV6_2292DSTOPTS:
1613 case IPV6_2292RTHDR:
1614 /* RFC 2292 */
1615 if (optlen != sizeof(int)) {
1616 error = EINVAL;
1617 break;
1618 }
1619 error = sooptcopyin(sopt, &optval,
1620 sizeof optval, sizeof optval);
1621 if (error)
1622 break;
1623 switch (optname) {
1624 case IPV6_2292PKTINFO:
1625 OPTSET2292(IN6P_PKTINFO);
1626 break;
1627 case IPV6_2292HOPLIMIT:
1628 OPTSET2292(IN6P_HOPLIMIT);
1629 break;
1630 case IPV6_2292HOPOPTS:
1631 /*
1632 * Check super-user privilege.
1633 * See comments for IPV6_RECVHOPOPTS.
1634 */
1635 if (td != NULL) {
1636 error = priv_check(td,
1637 PRIV_NETINET_SETHDROPTS);
1638 if (error)
1639 return (error);
1640 }
1641 OPTSET2292(IN6P_HOPOPTS);
1642 break;
1643 case IPV6_2292DSTOPTS:
1644 if (td != NULL) {
1645 error = priv_check(td,
1646 PRIV_NETINET_SETHDROPTS);
1647 if (error)
1648 return (error);
1649 }
1650 OPTSET2292(IN6P_DSTOPTS|IN6P_RTHDRDSTOPTS); /* XXX */
1651 break;
1652 case IPV6_2292RTHDR:
1653 OPTSET2292(IN6P_RTHDR);
1654 break;
1655 }
1656 break;
1657 case IPV6_PKTINFO:
1658 case IPV6_HOPOPTS:
1659 case IPV6_RTHDR:
1660 case IPV6_DSTOPTS:
1661 case IPV6_RTHDRDSTOPTS:
1662 case IPV6_NEXTHOP:
1663 {
1664 /* new advanced API (RFC3542) */
1665 u_char *optbuf;
1666 u_char optbuf_storage[MCLBYTES];
1667 int optlen;
1668 struct ip6_pktopts **optp;
1669
1670 /* cannot mix with RFC2292 */
1671 if (OPTBIT(IN6P_RFC2292)) {
1672 error = EINVAL;
1673 break;
1674 }
1675
1676 /*
1677 * We only ensure valsize is not too large
1678 * here. Further validation will be done
1679 * later.
1680 */
1681 error = sooptcopyin(sopt, optbuf_storage,
1682 sizeof(optbuf_storage), 0);
1683 if (error)
1684 break;
1685 optlen = sopt->sopt_valsize;
1686 optbuf = optbuf_storage;
1687 optp = &in6p->in6p_outputopts;
1688 error = ip6_pcbopt(optname, optbuf, optlen,
1689 optp, (td != NULL) ? td->td_ucred : NULL,
1690 uproto);
1691 break;
1692 }
1693#undef OPTSET
1694
1695 case IPV6_MULTICAST_IF:
1696 case IPV6_MULTICAST_HOPS:
1697 case IPV6_MULTICAST_LOOP:
1698 case IPV6_JOIN_GROUP:
1699 case IPV6_LEAVE_GROUP:
1705 {
1706 if (sopt->sopt_valsize > MLEN) {
1707 error = EMSGSIZE;
1708 break;
1709 }
1710 /* XXX */
1711 }
1712 /* FALLTHROUGH */
1713 {
1714 struct mbuf *m;
1715
1716 if (sopt->sopt_valsize > MCLBYTES) {
1717 error = EMSGSIZE;
1718 break;
1719 }
1720 /* XXX */
1721 MGET(m, sopt->sopt_td ? M_WAIT : M_DONTWAIT, MT_DATA);
1722 if (m == 0) {
1723 error = ENOBUFS;
1724 break;
1725 }
1726 if (sopt->sopt_valsize > MLEN) {
1727 MCLGET(m, sopt->sopt_td ? M_WAIT : M_DONTWAIT);
1728 if ((m->m_flags & M_EXT) == 0) {
1729 m_free(m);
1730 error = ENOBUFS;
1731 break;
1732 }
1733 }
1734 m->m_len = sopt->sopt_valsize;
1735 error = sooptcopyin(sopt, mtod(m, char *),
1736 m->m_len, m->m_len);
1737 if (error) {
1738 (void)m_free(m);
1739 break;
1740 }
1741 error = ip6_setmoptions(sopt->sopt_name,
1742 &in6p->in6p_moptions,
1743 m);
1744 (void)m_free(m);
1745 }
1700 case IPV6_MSFILTER:
1701 case MCAST_BLOCK_SOURCE:
1702 case MCAST_UNBLOCK_SOURCE:
1703 case MCAST_JOIN_GROUP:
1704 case MCAST_LEAVE_GROUP:
1705 case MCAST_JOIN_SOURCE_GROUP:
1706 case MCAST_LEAVE_SOURCE_GROUP:
1707 error = ip6_setmoptions(in6p, sopt);
1746 break;
1747
1748 case IPV6_PORTRANGE:
1749 error = sooptcopyin(sopt, &optval,
1750 sizeof optval, sizeof optval);
1751 if (error)
1752 break;
1753
1754 switch (optval) {
1755 case IPV6_PORTRANGE_DEFAULT:
1756 in6p->inp_flags &= ~(INP_LOWPORT);
1757 in6p->inp_flags &= ~(INP_HIGHPORT);
1758 break;
1759
1760 case IPV6_PORTRANGE_HIGH:
1761 in6p->inp_flags &= ~(INP_LOWPORT);
1762 in6p->inp_flags |= INP_HIGHPORT;
1763 break;
1764
1765 case IPV6_PORTRANGE_LOW:
1766 in6p->inp_flags &= ~(INP_HIGHPORT);
1767 in6p->inp_flags |= INP_LOWPORT;
1768 break;
1769
1770 default:
1771 error = EINVAL;
1772 break;
1773 }
1774 break;
1775
1776#ifdef IPSEC
1777 case IPV6_IPSEC_POLICY:
1778 {
1779 caddr_t req;
1780 struct mbuf *m;
1781
1782 if ((error = soopt_getm(sopt, &m)) != 0) /* XXX */
1783 break;
1784 if ((error = soopt_mcopyin(sopt, m)) != 0) /* XXX */
1785 break;
1786 req = mtod(m, caddr_t);
1787 error = ipsec_set_policy(in6p, optname, req,
1788 m->m_len, (sopt->sopt_td != NULL) ?
1789 sopt->sopt_td->td_ucred : NULL);
1790 m_freem(m);
1791 break;
1792 }
1793#endif /* IPSEC */
1794
1795 default:
1796 error = ENOPROTOOPT;
1797 break;
1798 }
1799 break;
1800
1801 case SOPT_GET:
1802 switch (optname) {
1803
1804 case IPV6_2292PKTOPTIONS:
1805#ifdef IPV6_PKTOPTIONS
1806 case IPV6_PKTOPTIONS:
1807#endif
1808 /*
1809 * RFC3542 (effectively) deprecated the
1810 * semantics of the 2292-style pktoptions.
1811 * Since it was not reliable in nature (i.e.,
1812 * applications had to expect the lack of some
1813 * information after all), it would make sense
1814 * to simplify this part by always returning
1815 * empty data.
1816 */
1817 sopt->sopt_valsize = 0;
1818 break;
1819
1820 case IPV6_RECVHOPOPTS:
1821 case IPV6_RECVDSTOPTS:
1822 case IPV6_RECVRTHDRDSTOPTS:
1823 case IPV6_UNICAST_HOPS:
1824 case IPV6_RECVPKTINFO:
1825 case IPV6_RECVHOPLIMIT:
1826 case IPV6_RECVRTHDR:
1827 case IPV6_RECVPATHMTU:
1828
1829 case IPV6_FAITH:
1830 case IPV6_V6ONLY:
1831 case IPV6_PORTRANGE:
1832 case IPV6_RECVTCLASS:
1833 case IPV6_AUTOFLOWLABEL:
1834 switch (optname) {
1835
1836 case IPV6_RECVHOPOPTS:
1837 optval = OPTBIT(IN6P_HOPOPTS);
1838 break;
1839
1840 case IPV6_RECVDSTOPTS:
1841 optval = OPTBIT(IN6P_DSTOPTS);
1842 break;
1843
1844 case IPV6_RECVRTHDRDSTOPTS:
1845 optval = OPTBIT(IN6P_RTHDRDSTOPTS);
1846 break;
1847
1848 case IPV6_UNICAST_HOPS:
1849 optval = in6p->in6p_hops;
1850 break;
1851
1852 case IPV6_RECVPKTINFO:
1853 optval = OPTBIT(IN6P_PKTINFO);
1854 break;
1855
1856 case IPV6_RECVHOPLIMIT:
1857 optval = OPTBIT(IN6P_HOPLIMIT);
1858 break;
1859
1860 case IPV6_RECVRTHDR:
1861 optval = OPTBIT(IN6P_RTHDR);
1862 break;
1863
1864 case IPV6_RECVPATHMTU:
1865 optval = OPTBIT(IN6P_MTU);
1866 break;
1867
1868 case IPV6_FAITH:
1869 optval = OPTBIT(INP_FAITH);
1870 break;
1871
1872 case IPV6_V6ONLY:
1873 optval = OPTBIT(IN6P_IPV6_V6ONLY);
1874 break;
1875
1876 case IPV6_PORTRANGE:
1877 {
1878 int flags;
1879 flags = in6p->inp_flags;
1880 if (flags & INP_HIGHPORT)
1881 optval = IPV6_PORTRANGE_HIGH;
1882 else if (flags & INP_LOWPORT)
1883 optval = IPV6_PORTRANGE_LOW;
1884 else
1885 optval = 0;
1886 break;
1887 }
1888 case IPV6_RECVTCLASS:
1889 optval = OPTBIT(IN6P_TCLASS);
1890 break;
1891
1892 case IPV6_AUTOFLOWLABEL:
1893 optval = OPTBIT(IN6P_AUTOFLOWLABEL);
1894 break;
1895 }
1896 if (error)
1897 break;
1898 error = sooptcopyout(sopt, &optval,
1899 sizeof optval);
1900 break;
1901
1902 case IPV6_PATHMTU:
1903 {
1904 u_long pmtu = 0;
1905 struct ip6_mtuinfo mtuinfo;
1906 struct route_in6 sro;
1907
1908 bzero(&sro, sizeof(sro));
1909
1910 if (!(so->so_state & SS_ISCONNECTED))
1911 return (ENOTCONN);
1912 /*
1913 * XXX: we dot not consider the case of source
1914 * routing, or optional information to specify
1915 * the outgoing interface.
1916 */
1917 error = ip6_getpmtu(&sro, NULL, NULL,
1918 &in6p->in6p_faddr, &pmtu, NULL);
1919 if (sro.ro_rt)
1920 RTFREE(sro.ro_rt);
1921 if (error)
1922 break;
1923 if (pmtu > IPV6_MAXPACKET)
1924 pmtu = IPV6_MAXPACKET;
1925
1926 bzero(&mtuinfo, sizeof(mtuinfo));
1927 mtuinfo.ip6m_mtu = (u_int32_t)pmtu;
1928 optdata = (void *)&mtuinfo;
1929 optdatalen = sizeof(mtuinfo);
1930 error = sooptcopyout(sopt, optdata,
1931 optdatalen);
1932 break;
1933 }
1934
1935 case IPV6_2292PKTINFO:
1936 case IPV6_2292HOPLIMIT:
1937 case IPV6_2292HOPOPTS:
1938 case IPV6_2292RTHDR:
1939 case IPV6_2292DSTOPTS:
1940 switch (optname) {
1941 case IPV6_2292PKTINFO:
1942 optval = OPTBIT(IN6P_PKTINFO);
1943 break;
1944 case IPV6_2292HOPLIMIT:
1945 optval = OPTBIT(IN6P_HOPLIMIT);
1946 break;
1947 case IPV6_2292HOPOPTS:
1948 optval = OPTBIT(IN6P_HOPOPTS);
1949 break;
1950 case IPV6_2292RTHDR:
1951 optval = OPTBIT(IN6P_RTHDR);
1952 break;
1953 case IPV6_2292DSTOPTS:
1954 optval = OPTBIT(IN6P_DSTOPTS|IN6P_RTHDRDSTOPTS);
1955 break;
1956 }
1957 error = sooptcopyout(sopt, &optval,
1958 sizeof optval);
1959 break;
1960 case IPV6_PKTINFO:
1961 case IPV6_HOPOPTS:
1962 case IPV6_RTHDR:
1963 case IPV6_DSTOPTS:
1964 case IPV6_RTHDRDSTOPTS:
1965 case IPV6_NEXTHOP:
1966 case IPV6_TCLASS:
1967 case IPV6_DONTFRAG:
1968 case IPV6_USE_MIN_MTU:
1969 case IPV6_PREFER_TEMPADDR:
1970 error = ip6_getpcbopt(in6p->in6p_outputopts,
1971 optname, sopt);
1972 break;
1973
1974 case IPV6_MULTICAST_IF:
1975 case IPV6_MULTICAST_HOPS:
1976 case IPV6_MULTICAST_LOOP:
1708 break;
1709
1710 case IPV6_PORTRANGE:
1711 error = sooptcopyin(sopt, &optval,
1712 sizeof optval, sizeof optval);
1713 if (error)
1714 break;
1715
1716 switch (optval) {
1717 case IPV6_PORTRANGE_DEFAULT:
1718 in6p->inp_flags &= ~(INP_LOWPORT);
1719 in6p->inp_flags &= ~(INP_HIGHPORT);
1720 break;
1721
1722 case IPV6_PORTRANGE_HIGH:
1723 in6p->inp_flags &= ~(INP_LOWPORT);
1724 in6p->inp_flags |= INP_HIGHPORT;
1725 break;
1726
1727 case IPV6_PORTRANGE_LOW:
1728 in6p->inp_flags &= ~(INP_HIGHPORT);
1729 in6p->inp_flags |= INP_LOWPORT;
1730 break;
1731
1732 default:
1733 error = EINVAL;
1734 break;
1735 }
1736 break;
1737
1738#ifdef IPSEC
1739 case IPV6_IPSEC_POLICY:
1740 {
1741 caddr_t req;
1742 struct mbuf *m;
1743
1744 if ((error = soopt_getm(sopt, &m)) != 0) /* XXX */
1745 break;
1746 if ((error = soopt_mcopyin(sopt, m)) != 0) /* XXX */
1747 break;
1748 req = mtod(m, caddr_t);
1749 error = ipsec_set_policy(in6p, optname, req,
1750 m->m_len, (sopt->sopt_td != NULL) ?
1751 sopt->sopt_td->td_ucred : NULL);
1752 m_freem(m);
1753 break;
1754 }
1755#endif /* IPSEC */
1756
1757 default:
1758 error = ENOPROTOOPT;
1759 break;
1760 }
1761 break;
1762
1763 case SOPT_GET:
1764 switch (optname) {
1765
1766 case IPV6_2292PKTOPTIONS:
1767#ifdef IPV6_PKTOPTIONS
1768 case IPV6_PKTOPTIONS:
1769#endif
1770 /*
1771 * RFC3542 (effectively) deprecated the
1772 * semantics of the 2292-style pktoptions.
1773 * Since it was not reliable in nature (i.e.,
1774 * applications had to expect the lack of some
1775 * information after all), it would make sense
1776 * to simplify this part by always returning
1777 * empty data.
1778 */
1779 sopt->sopt_valsize = 0;
1780 break;
1781
1782 case IPV6_RECVHOPOPTS:
1783 case IPV6_RECVDSTOPTS:
1784 case IPV6_RECVRTHDRDSTOPTS:
1785 case IPV6_UNICAST_HOPS:
1786 case IPV6_RECVPKTINFO:
1787 case IPV6_RECVHOPLIMIT:
1788 case IPV6_RECVRTHDR:
1789 case IPV6_RECVPATHMTU:
1790
1791 case IPV6_FAITH:
1792 case IPV6_V6ONLY:
1793 case IPV6_PORTRANGE:
1794 case IPV6_RECVTCLASS:
1795 case IPV6_AUTOFLOWLABEL:
1796 switch (optname) {
1797
1798 case IPV6_RECVHOPOPTS:
1799 optval = OPTBIT(IN6P_HOPOPTS);
1800 break;
1801
1802 case IPV6_RECVDSTOPTS:
1803 optval = OPTBIT(IN6P_DSTOPTS);
1804 break;
1805
1806 case IPV6_RECVRTHDRDSTOPTS:
1807 optval = OPTBIT(IN6P_RTHDRDSTOPTS);
1808 break;
1809
1810 case IPV6_UNICAST_HOPS:
1811 optval = in6p->in6p_hops;
1812 break;
1813
1814 case IPV6_RECVPKTINFO:
1815 optval = OPTBIT(IN6P_PKTINFO);
1816 break;
1817
1818 case IPV6_RECVHOPLIMIT:
1819 optval = OPTBIT(IN6P_HOPLIMIT);
1820 break;
1821
1822 case IPV6_RECVRTHDR:
1823 optval = OPTBIT(IN6P_RTHDR);
1824 break;
1825
1826 case IPV6_RECVPATHMTU:
1827 optval = OPTBIT(IN6P_MTU);
1828 break;
1829
1830 case IPV6_FAITH:
1831 optval = OPTBIT(INP_FAITH);
1832 break;
1833
1834 case IPV6_V6ONLY:
1835 optval = OPTBIT(IN6P_IPV6_V6ONLY);
1836 break;
1837
1838 case IPV6_PORTRANGE:
1839 {
1840 int flags;
1841 flags = in6p->inp_flags;
1842 if (flags & INP_HIGHPORT)
1843 optval = IPV6_PORTRANGE_HIGH;
1844 else if (flags & INP_LOWPORT)
1845 optval = IPV6_PORTRANGE_LOW;
1846 else
1847 optval = 0;
1848 break;
1849 }
1850 case IPV6_RECVTCLASS:
1851 optval = OPTBIT(IN6P_TCLASS);
1852 break;
1853
1854 case IPV6_AUTOFLOWLABEL:
1855 optval = OPTBIT(IN6P_AUTOFLOWLABEL);
1856 break;
1857 }
1858 if (error)
1859 break;
1860 error = sooptcopyout(sopt, &optval,
1861 sizeof optval);
1862 break;
1863
1864 case IPV6_PATHMTU:
1865 {
1866 u_long pmtu = 0;
1867 struct ip6_mtuinfo mtuinfo;
1868 struct route_in6 sro;
1869
1870 bzero(&sro, sizeof(sro));
1871
1872 if (!(so->so_state & SS_ISCONNECTED))
1873 return (ENOTCONN);
1874 /*
1875 * XXX: we dot not consider the case of source
1876 * routing, or optional information to specify
1877 * the outgoing interface.
1878 */
1879 error = ip6_getpmtu(&sro, NULL, NULL,
1880 &in6p->in6p_faddr, &pmtu, NULL);
1881 if (sro.ro_rt)
1882 RTFREE(sro.ro_rt);
1883 if (error)
1884 break;
1885 if (pmtu > IPV6_MAXPACKET)
1886 pmtu = IPV6_MAXPACKET;
1887
1888 bzero(&mtuinfo, sizeof(mtuinfo));
1889 mtuinfo.ip6m_mtu = (u_int32_t)pmtu;
1890 optdata = (void *)&mtuinfo;
1891 optdatalen = sizeof(mtuinfo);
1892 error = sooptcopyout(sopt, optdata,
1893 optdatalen);
1894 break;
1895 }
1896
1897 case IPV6_2292PKTINFO:
1898 case IPV6_2292HOPLIMIT:
1899 case IPV6_2292HOPOPTS:
1900 case IPV6_2292RTHDR:
1901 case IPV6_2292DSTOPTS:
1902 switch (optname) {
1903 case IPV6_2292PKTINFO:
1904 optval = OPTBIT(IN6P_PKTINFO);
1905 break;
1906 case IPV6_2292HOPLIMIT:
1907 optval = OPTBIT(IN6P_HOPLIMIT);
1908 break;
1909 case IPV6_2292HOPOPTS:
1910 optval = OPTBIT(IN6P_HOPOPTS);
1911 break;
1912 case IPV6_2292RTHDR:
1913 optval = OPTBIT(IN6P_RTHDR);
1914 break;
1915 case IPV6_2292DSTOPTS:
1916 optval = OPTBIT(IN6P_DSTOPTS|IN6P_RTHDRDSTOPTS);
1917 break;
1918 }
1919 error = sooptcopyout(sopt, &optval,
1920 sizeof optval);
1921 break;
1922 case IPV6_PKTINFO:
1923 case IPV6_HOPOPTS:
1924 case IPV6_RTHDR:
1925 case IPV6_DSTOPTS:
1926 case IPV6_RTHDRDSTOPTS:
1927 case IPV6_NEXTHOP:
1928 case IPV6_TCLASS:
1929 case IPV6_DONTFRAG:
1930 case IPV6_USE_MIN_MTU:
1931 case IPV6_PREFER_TEMPADDR:
1932 error = ip6_getpcbopt(in6p->in6p_outputopts,
1933 optname, sopt);
1934 break;
1935
1936 case IPV6_MULTICAST_IF:
1937 case IPV6_MULTICAST_HOPS:
1938 case IPV6_MULTICAST_LOOP:
1977 case IPV6_JOIN_GROUP:
1978 case IPV6_LEAVE_GROUP:
1979 {
1980 struct mbuf *m;
1981 error = ip6_getmoptions(sopt->sopt_name,
1982 in6p->in6p_moptions, &m);
1983 if (error == 0)
1984 error = sooptcopyout(sopt,
1985 mtod(m, char *), m->m_len);
1986 m_freem(m);
1987 }
1939 case IPV6_MSFILTER:
1940 error = ip6_getmoptions(in6p, sopt);
1988 break;
1989
1990#ifdef IPSEC
1991 case IPV6_IPSEC_POLICY:
1992 {
1993 caddr_t req = NULL;
1994 size_t len = 0;
1995 struct mbuf *m = NULL;
1996 struct mbuf **mp = &m;
1997 size_t ovalsize = sopt->sopt_valsize;
1998 caddr_t oval = (caddr_t)sopt->sopt_val;
1999
2000 error = soopt_getm(sopt, &m); /* XXX */
2001 if (error != 0)
2002 break;
2003 error = soopt_mcopyin(sopt, m); /* XXX */
2004 if (error != 0)
2005 break;
2006 sopt->sopt_valsize = ovalsize;
2007 sopt->sopt_val = oval;
2008 if (m) {
2009 req = mtod(m, caddr_t);
2010 len = m->m_len;
2011 }
2012 error = ipsec_get_policy(in6p, req, len, mp);
2013 if (error == 0)
2014 error = soopt_mcopyout(sopt, m); /* XXX */
2015 if (error == 0 && m)
2016 m_freem(m);
2017 break;
2018 }
2019#endif /* IPSEC */
2020
2021 default:
2022 error = ENOPROTOOPT;
2023 break;
2024 }
2025 break;
2026 }
2027 } else { /* level != IPPROTO_IPV6 */
2028 error = EINVAL;
2029 }
2030 return (error);
2031}
2032
2033int
2034ip6_raw_ctloutput(struct socket *so, struct sockopt *sopt)
2035{
2036 int error = 0, optval, optlen;
2037 const int icmp6off = offsetof(struct icmp6_hdr, icmp6_cksum);
2038 struct inpcb *in6p = sotoinpcb(so);
2039 int level, op, optname;
2040
2041 level = sopt->sopt_level;
2042 op = sopt->sopt_dir;
2043 optname = sopt->sopt_name;
2044 optlen = sopt->sopt_valsize;
2045
2046 if (level != IPPROTO_IPV6) {
2047 return (EINVAL);
2048 }
2049
2050 switch (optname) {
2051 case IPV6_CHECKSUM:
2052 /*
2053 * For ICMPv6 sockets, no modification allowed for checksum
2054 * offset, permit "no change" values to help existing apps.
2055 *
2056 * RFC3542 says: "An attempt to set IPV6_CHECKSUM
2057 * for an ICMPv6 socket will fail."
2058 * The current behavior does not meet RFC3542.
2059 */
2060 switch (op) {
2061 case SOPT_SET:
2062 if (optlen != sizeof(int)) {
2063 error = EINVAL;
2064 break;
2065 }
2066 error = sooptcopyin(sopt, &optval, sizeof(optval),
2067 sizeof(optval));
2068 if (error)
2069 break;
2070 if ((optval % 2) != 0) {
2071 /* the API assumes even offset values */
2072 error = EINVAL;
2073 } else if (so->so_proto->pr_protocol ==
2074 IPPROTO_ICMPV6) {
2075 if (optval != icmp6off)
2076 error = EINVAL;
2077 } else
2078 in6p->in6p_cksum = optval;
2079 break;
2080
2081 case SOPT_GET:
2082 if (so->so_proto->pr_protocol == IPPROTO_ICMPV6)
2083 optval = icmp6off;
2084 else
2085 optval = in6p->in6p_cksum;
2086
2087 error = sooptcopyout(sopt, &optval, sizeof(optval));
2088 break;
2089
2090 default:
2091 error = EINVAL;
2092 break;
2093 }
2094 break;
2095
2096 default:
2097 error = ENOPROTOOPT;
2098 break;
2099 }
2100
2101 return (error);
2102}
2103
2104/*
2105 * Set up IP6 options in pcb for insertion in output packets or
2106 * specifying behavior of outgoing packets.
2107 */
2108static int
2109ip6_pcbopts(struct ip6_pktopts **pktopt, struct mbuf *m,
2110 struct socket *so, struct sockopt *sopt)
2111{
2112 struct ip6_pktopts *opt = *pktopt;
2113 int error = 0;
2114 struct thread *td = sopt->sopt_td;
2115
2116 /* turn off any old options. */
2117 if (opt) {
2118#ifdef DIAGNOSTIC
2119 if (opt->ip6po_pktinfo || opt->ip6po_nexthop ||
2120 opt->ip6po_hbh || opt->ip6po_dest1 || opt->ip6po_dest2 ||
2121 opt->ip6po_rhinfo.ip6po_rhi_rthdr)
2122 printf("ip6_pcbopts: all specified options are cleared.\n");
2123#endif
2124 ip6_clearpktopts(opt, -1);
2125 } else
2126 opt = malloc(sizeof(*opt), M_IP6OPT, M_WAITOK);
2127 *pktopt = NULL;
2128
2129 if (!m || m->m_len == 0) {
2130 /*
2131 * Only turning off any previous options, regardless of
2132 * whether the opt is just created or given.
2133 */
2134 free(opt, M_IP6OPT);
2135 return (0);
2136 }
2137
2138 /* set options specified by user. */
2139 if ((error = ip6_setpktopts(m, opt, NULL, (td != NULL) ?
2140 td->td_ucred : NULL, so->so_proto->pr_protocol)) != 0) {
2141 ip6_clearpktopts(opt, -1); /* XXX: discard all options */
2142 free(opt, M_IP6OPT);
2143 return (error);
2144 }
2145 *pktopt = opt;
2146 return (0);
2147}
2148
2149/*
2150 * initialize ip6_pktopts. beware that there are non-zero default values in
2151 * the struct.
2152 */
2153void
2154ip6_initpktopts(struct ip6_pktopts *opt)
2155{
2156
2157 bzero(opt, sizeof(*opt));
2158 opt->ip6po_hlim = -1; /* -1 means default hop limit */
2159 opt->ip6po_tclass = -1; /* -1 means default traffic class */
2160 opt->ip6po_minmtu = IP6PO_MINMTU_MCASTONLY;
2161 opt->ip6po_prefer_tempaddr = IP6PO_TEMPADDR_SYSTEM;
2162}
2163
2164static int
2165ip6_pcbopt(int optname, u_char *buf, int len, struct ip6_pktopts **pktopt,
2166 struct ucred *cred, int uproto)
2167{
2168 struct ip6_pktopts *opt;
2169
2170 if (*pktopt == NULL) {
2171 *pktopt = malloc(sizeof(struct ip6_pktopts), M_IP6OPT,
2172 M_WAITOK);
2173 ip6_initpktopts(*pktopt);
2174 }
2175 opt = *pktopt;
2176
2177 return (ip6_setpktopt(optname, buf, len, opt, cred, 1, 0, uproto));
2178}
2179
2180static int
2181ip6_getpcbopt(struct ip6_pktopts *pktopt, int optname, struct sockopt *sopt)
2182{
2183 void *optdata = NULL;
2184 int optdatalen = 0;
2185 struct ip6_ext *ip6e;
2186 int error = 0;
2187 struct in6_pktinfo null_pktinfo;
2188 int deftclass = 0, on;
2189 int defminmtu = IP6PO_MINMTU_MCASTONLY;
2190 int defpreftemp = IP6PO_TEMPADDR_SYSTEM;
2191
2192 switch (optname) {
2193 case IPV6_PKTINFO:
2194 if (pktopt && pktopt->ip6po_pktinfo)
2195 optdata = (void *)pktopt->ip6po_pktinfo;
2196 else {
2197 /* XXX: we don't have to do this every time... */
2198 bzero(&null_pktinfo, sizeof(null_pktinfo));
2199 optdata = (void *)&null_pktinfo;
2200 }
2201 optdatalen = sizeof(struct in6_pktinfo);
2202 break;
2203 case IPV6_TCLASS:
2204 if (pktopt && pktopt->ip6po_tclass >= 0)
2205 optdata = (void *)&pktopt->ip6po_tclass;
2206 else
2207 optdata = (void *)&deftclass;
2208 optdatalen = sizeof(int);
2209 break;
2210 case IPV6_HOPOPTS:
2211 if (pktopt && pktopt->ip6po_hbh) {
2212 optdata = (void *)pktopt->ip6po_hbh;
2213 ip6e = (struct ip6_ext *)pktopt->ip6po_hbh;
2214 optdatalen = (ip6e->ip6e_len + 1) << 3;
2215 }
2216 break;
2217 case IPV6_RTHDR:
2218 if (pktopt && pktopt->ip6po_rthdr) {
2219 optdata = (void *)pktopt->ip6po_rthdr;
2220 ip6e = (struct ip6_ext *)pktopt->ip6po_rthdr;
2221 optdatalen = (ip6e->ip6e_len + 1) << 3;
2222 }
2223 break;
2224 case IPV6_RTHDRDSTOPTS:
2225 if (pktopt && pktopt->ip6po_dest1) {
2226 optdata = (void *)pktopt->ip6po_dest1;
2227 ip6e = (struct ip6_ext *)pktopt->ip6po_dest1;
2228 optdatalen = (ip6e->ip6e_len + 1) << 3;
2229 }
2230 break;
2231 case IPV6_DSTOPTS:
2232 if (pktopt && pktopt->ip6po_dest2) {
2233 optdata = (void *)pktopt->ip6po_dest2;
2234 ip6e = (struct ip6_ext *)pktopt->ip6po_dest2;
2235 optdatalen = (ip6e->ip6e_len + 1) << 3;
2236 }
2237 break;
2238 case IPV6_NEXTHOP:
2239 if (pktopt && pktopt->ip6po_nexthop) {
2240 optdata = (void *)pktopt->ip6po_nexthop;
2241 optdatalen = pktopt->ip6po_nexthop->sa_len;
2242 }
2243 break;
2244 case IPV6_USE_MIN_MTU:
2245 if (pktopt)
2246 optdata = (void *)&pktopt->ip6po_minmtu;
2247 else
2248 optdata = (void *)&defminmtu;
2249 optdatalen = sizeof(int);
2250 break;
2251 case IPV6_DONTFRAG:
2252 if (pktopt && ((pktopt->ip6po_flags) & IP6PO_DONTFRAG))
2253 on = 1;
2254 else
2255 on = 0;
2256 optdata = (void *)&on;
2257 optdatalen = sizeof(on);
2258 break;
2259 case IPV6_PREFER_TEMPADDR:
2260 if (pktopt)
2261 optdata = (void *)&pktopt->ip6po_prefer_tempaddr;
2262 else
2263 optdata = (void *)&defpreftemp;
2264 optdatalen = sizeof(int);
2265 break;
2266 default: /* should not happen */
2267#ifdef DIAGNOSTIC
2268 panic("ip6_getpcbopt: unexpected option\n");
2269#endif
2270 return (ENOPROTOOPT);
2271 }
2272
2273 error = sooptcopyout(sopt, optdata, optdatalen);
2274
2275 return (error);
2276}
2277
2278void
2279ip6_clearpktopts(struct ip6_pktopts *pktopt, int optname)
2280{
2281 if (pktopt == NULL)
2282 return;
2283
2284 if (optname == -1 || optname == IPV6_PKTINFO) {
2285 if (pktopt->ip6po_pktinfo)
2286 free(pktopt->ip6po_pktinfo, M_IP6OPT);
2287 pktopt->ip6po_pktinfo = NULL;
2288 }
2289 if (optname == -1 || optname == IPV6_HOPLIMIT)
2290 pktopt->ip6po_hlim = -1;
2291 if (optname == -1 || optname == IPV6_TCLASS)
2292 pktopt->ip6po_tclass = -1;
2293 if (optname == -1 || optname == IPV6_NEXTHOP) {
2294 if (pktopt->ip6po_nextroute.ro_rt) {
2295 RTFREE(pktopt->ip6po_nextroute.ro_rt);
2296 pktopt->ip6po_nextroute.ro_rt = NULL;
2297 }
2298 if (pktopt->ip6po_nexthop)
2299 free(pktopt->ip6po_nexthop, M_IP6OPT);
2300 pktopt->ip6po_nexthop = NULL;
2301 }
2302 if (optname == -1 || optname == IPV6_HOPOPTS) {
2303 if (pktopt->ip6po_hbh)
2304 free(pktopt->ip6po_hbh, M_IP6OPT);
2305 pktopt->ip6po_hbh = NULL;
2306 }
2307 if (optname == -1 || optname == IPV6_RTHDRDSTOPTS) {
2308 if (pktopt->ip6po_dest1)
2309 free(pktopt->ip6po_dest1, M_IP6OPT);
2310 pktopt->ip6po_dest1 = NULL;
2311 }
2312 if (optname == -1 || optname == IPV6_RTHDR) {
2313 if (pktopt->ip6po_rhinfo.ip6po_rhi_rthdr)
2314 free(pktopt->ip6po_rhinfo.ip6po_rhi_rthdr, M_IP6OPT);
2315 pktopt->ip6po_rhinfo.ip6po_rhi_rthdr = NULL;
2316 if (pktopt->ip6po_route.ro_rt) {
2317 RTFREE(pktopt->ip6po_route.ro_rt);
2318 pktopt->ip6po_route.ro_rt = NULL;
2319 }
2320 }
2321 if (optname == -1 || optname == IPV6_DSTOPTS) {
2322 if (pktopt->ip6po_dest2)
2323 free(pktopt->ip6po_dest2, M_IP6OPT);
2324 pktopt->ip6po_dest2 = NULL;
2325 }
2326}
2327
2328#define PKTOPT_EXTHDRCPY(type) \
2329do {\
2330 if (src->type) {\
2331 int hlen = (((struct ip6_ext *)src->type)->ip6e_len + 1) << 3;\
2332 dst->type = malloc(hlen, M_IP6OPT, canwait);\
2333 if (dst->type == NULL && canwait == M_NOWAIT)\
2334 goto bad;\
2335 bcopy(src->type, dst->type, hlen);\
2336 }\
2337} while (/*CONSTCOND*/ 0)
2338
2339static int
2340copypktopts(struct ip6_pktopts *dst, struct ip6_pktopts *src, int canwait)
2341{
2342 if (dst == NULL || src == NULL) {
2343 printf("ip6_clearpktopts: invalid argument\n");
2344 return (EINVAL);
2345 }
2346
2347 dst->ip6po_hlim = src->ip6po_hlim;
2348 dst->ip6po_tclass = src->ip6po_tclass;
2349 dst->ip6po_flags = src->ip6po_flags;
2350 if (src->ip6po_pktinfo) {
2351 dst->ip6po_pktinfo = malloc(sizeof(*dst->ip6po_pktinfo),
2352 M_IP6OPT, canwait);
2353 if (dst->ip6po_pktinfo == NULL)
2354 goto bad;
2355 *dst->ip6po_pktinfo = *src->ip6po_pktinfo;
2356 }
2357 if (src->ip6po_nexthop) {
2358 dst->ip6po_nexthop = malloc(src->ip6po_nexthop->sa_len,
2359 M_IP6OPT, canwait);
2360 if (dst->ip6po_nexthop == NULL)
2361 goto bad;
2362 bcopy(src->ip6po_nexthop, dst->ip6po_nexthop,
2363 src->ip6po_nexthop->sa_len);
2364 }
2365 PKTOPT_EXTHDRCPY(ip6po_hbh);
2366 PKTOPT_EXTHDRCPY(ip6po_dest1);
2367 PKTOPT_EXTHDRCPY(ip6po_dest2);
2368 PKTOPT_EXTHDRCPY(ip6po_rthdr); /* not copy the cached route */
2369 return (0);
2370
2371 bad:
2372 ip6_clearpktopts(dst, -1);
2373 return (ENOBUFS);
2374}
2375#undef PKTOPT_EXTHDRCPY
2376
2377struct ip6_pktopts *
2378ip6_copypktopts(struct ip6_pktopts *src, int canwait)
2379{
2380 int error;
2381 struct ip6_pktopts *dst;
2382
2383 dst = malloc(sizeof(*dst), M_IP6OPT, canwait);
2384 if (dst == NULL)
2385 return (NULL);
2386 ip6_initpktopts(dst);
2387
2388 if ((error = copypktopts(dst, src, canwait)) != 0) {
2389 free(dst, M_IP6OPT);
2390 return (NULL);
2391 }
2392
2393 return (dst);
2394}
2395
2396void
2397ip6_freepcbopts(struct ip6_pktopts *pktopt)
2398{
2399 if (pktopt == NULL)
2400 return;
2401
2402 ip6_clearpktopts(pktopt, -1);
2403
2404 free(pktopt, M_IP6OPT);
2405}
2406
2407/*
1941 break;
1942
1943#ifdef IPSEC
1944 case IPV6_IPSEC_POLICY:
1945 {
1946 caddr_t req = NULL;
1947 size_t len = 0;
1948 struct mbuf *m = NULL;
1949 struct mbuf **mp = &m;
1950 size_t ovalsize = sopt->sopt_valsize;
1951 caddr_t oval = (caddr_t)sopt->sopt_val;
1952
1953 error = soopt_getm(sopt, &m); /* XXX */
1954 if (error != 0)
1955 break;
1956 error = soopt_mcopyin(sopt, m); /* XXX */
1957 if (error != 0)
1958 break;
1959 sopt->sopt_valsize = ovalsize;
1960 sopt->sopt_val = oval;
1961 if (m) {
1962 req = mtod(m, caddr_t);
1963 len = m->m_len;
1964 }
1965 error = ipsec_get_policy(in6p, req, len, mp);
1966 if (error == 0)
1967 error = soopt_mcopyout(sopt, m); /* XXX */
1968 if (error == 0 && m)
1969 m_freem(m);
1970 break;
1971 }
1972#endif /* IPSEC */
1973
1974 default:
1975 error = ENOPROTOOPT;
1976 break;
1977 }
1978 break;
1979 }
1980 } else { /* level != IPPROTO_IPV6 */
1981 error = EINVAL;
1982 }
1983 return (error);
1984}
1985
1986int
1987ip6_raw_ctloutput(struct socket *so, struct sockopt *sopt)
1988{
1989 int error = 0, optval, optlen;
1990 const int icmp6off = offsetof(struct icmp6_hdr, icmp6_cksum);
1991 struct inpcb *in6p = sotoinpcb(so);
1992 int level, op, optname;
1993
1994 level = sopt->sopt_level;
1995 op = sopt->sopt_dir;
1996 optname = sopt->sopt_name;
1997 optlen = sopt->sopt_valsize;
1998
1999 if (level != IPPROTO_IPV6) {
2000 return (EINVAL);
2001 }
2002
2003 switch (optname) {
2004 case IPV6_CHECKSUM:
2005 /*
2006 * For ICMPv6 sockets, no modification allowed for checksum
2007 * offset, permit "no change" values to help existing apps.
2008 *
2009 * RFC3542 says: "An attempt to set IPV6_CHECKSUM
2010 * for an ICMPv6 socket will fail."
2011 * The current behavior does not meet RFC3542.
2012 */
2013 switch (op) {
2014 case SOPT_SET:
2015 if (optlen != sizeof(int)) {
2016 error = EINVAL;
2017 break;
2018 }
2019 error = sooptcopyin(sopt, &optval, sizeof(optval),
2020 sizeof(optval));
2021 if (error)
2022 break;
2023 if ((optval % 2) != 0) {
2024 /* the API assumes even offset values */
2025 error = EINVAL;
2026 } else if (so->so_proto->pr_protocol ==
2027 IPPROTO_ICMPV6) {
2028 if (optval != icmp6off)
2029 error = EINVAL;
2030 } else
2031 in6p->in6p_cksum = optval;
2032 break;
2033
2034 case SOPT_GET:
2035 if (so->so_proto->pr_protocol == IPPROTO_ICMPV6)
2036 optval = icmp6off;
2037 else
2038 optval = in6p->in6p_cksum;
2039
2040 error = sooptcopyout(sopt, &optval, sizeof(optval));
2041 break;
2042
2043 default:
2044 error = EINVAL;
2045 break;
2046 }
2047 break;
2048
2049 default:
2050 error = ENOPROTOOPT;
2051 break;
2052 }
2053
2054 return (error);
2055}
2056
2057/*
2058 * Set up IP6 options in pcb for insertion in output packets or
2059 * specifying behavior of outgoing packets.
2060 */
2061static int
2062ip6_pcbopts(struct ip6_pktopts **pktopt, struct mbuf *m,
2063 struct socket *so, struct sockopt *sopt)
2064{
2065 struct ip6_pktopts *opt = *pktopt;
2066 int error = 0;
2067 struct thread *td = sopt->sopt_td;
2068
2069 /* turn off any old options. */
2070 if (opt) {
2071#ifdef DIAGNOSTIC
2072 if (opt->ip6po_pktinfo || opt->ip6po_nexthop ||
2073 opt->ip6po_hbh || opt->ip6po_dest1 || opt->ip6po_dest2 ||
2074 opt->ip6po_rhinfo.ip6po_rhi_rthdr)
2075 printf("ip6_pcbopts: all specified options are cleared.\n");
2076#endif
2077 ip6_clearpktopts(opt, -1);
2078 } else
2079 opt = malloc(sizeof(*opt), M_IP6OPT, M_WAITOK);
2080 *pktopt = NULL;
2081
2082 if (!m || m->m_len == 0) {
2083 /*
2084 * Only turning off any previous options, regardless of
2085 * whether the opt is just created or given.
2086 */
2087 free(opt, M_IP6OPT);
2088 return (0);
2089 }
2090
2091 /* set options specified by user. */
2092 if ((error = ip6_setpktopts(m, opt, NULL, (td != NULL) ?
2093 td->td_ucred : NULL, so->so_proto->pr_protocol)) != 0) {
2094 ip6_clearpktopts(opt, -1); /* XXX: discard all options */
2095 free(opt, M_IP6OPT);
2096 return (error);
2097 }
2098 *pktopt = opt;
2099 return (0);
2100}
2101
2102/*
2103 * initialize ip6_pktopts. beware that there are non-zero default values in
2104 * the struct.
2105 */
2106void
2107ip6_initpktopts(struct ip6_pktopts *opt)
2108{
2109
2110 bzero(opt, sizeof(*opt));
2111 opt->ip6po_hlim = -1; /* -1 means default hop limit */
2112 opt->ip6po_tclass = -1; /* -1 means default traffic class */
2113 opt->ip6po_minmtu = IP6PO_MINMTU_MCASTONLY;
2114 opt->ip6po_prefer_tempaddr = IP6PO_TEMPADDR_SYSTEM;
2115}
2116
2117static int
2118ip6_pcbopt(int optname, u_char *buf, int len, struct ip6_pktopts **pktopt,
2119 struct ucred *cred, int uproto)
2120{
2121 struct ip6_pktopts *opt;
2122
2123 if (*pktopt == NULL) {
2124 *pktopt = malloc(sizeof(struct ip6_pktopts), M_IP6OPT,
2125 M_WAITOK);
2126 ip6_initpktopts(*pktopt);
2127 }
2128 opt = *pktopt;
2129
2130 return (ip6_setpktopt(optname, buf, len, opt, cred, 1, 0, uproto));
2131}
2132
2133static int
2134ip6_getpcbopt(struct ip6_pktopts *pktopt, int optname, struct sockopt *sopt)
2135{
2136 void *optdata = NULL;
2137 int optdatalen = 0;
2138 struct ip6_ext *ip6e;
2139 int error = 0;
2140 struct in6_pktinfo null_pktinfo;
2141 int deftclass = 0, on;
2142 int defminmtu = IP6PO_MINMTU_MCASTONLY;
2143 int defpreftemp = IP6PO_TEMPADDR_SYSTEM;
2144
2145 switch (optname) {
2146 case IPV6_PKTINFO:
2147 if (pktopt && pktopt->ip6po_pktinfo)
2148 optdata = (void *)pktopt->ip6po_pktinfo;
2149 else {
2150 /* XXX: we don't have to do this every time... */
2151 bzero(&null_pktinfo, sizeof(null_pktinfo));
2152 optdata = (void *)&null_pktinfo;
2153 }
2154 optdatalen = sizeof(struct in6_pktinfo);
2155 break;
2156 case IPV6_TCLASS:
2157 if (pktopt && pktopt->ip6po_tclass >= 0)
2158 optdata = (void *)&pktopt->ip6po_tclass;
2159 else
2160 optdata = (void *)&deftclass;
2161 optdatalen = sizeof(int);
2162 break;
2163 case IPV6_HOPOPTS:
2164 if (pktopt && pktopt->ip6po_hbh) {
2165 optdata = (void *)pktopt->ip6po_hbh;
2166 ip6e = (struct ip6_ext *)pktopt->ip6po_hbh;
2167 optdatalen = (ip6e->ip6e_len + 1) << 3;
2168 }
2169 break;
2170 case IPV6_RTHDR:
2171 if (pktopt && pktopt->ip6po_rthdr) {
2172 optdata = (void *)pktopt->ip6po_rthdr;
2173 ip6e = (struct ip6_ext *)pktopt->ip6po_rthdr;
2174 optdatalen = (ip6e->ip6e_len + 1) << 3;
2175 }
2176 break;
2177 case IPV6_RTHDRDSTOPTS:
2178 if (pktopt && pktopt->ip6po_dest1) {
2179 optdata = (void *)pktopt->ip6po_dest1;
2180 ip6e = (struct ip6_ext *)pktopt->ip6po_dest1;
2181 optdatalen = (ip6e->ip6e_len + 1) << 3;
2182 }
2183 break;
2184 case IPV6_DSTOPTS:
2185 if (pktopt && pktopt->ip6po_dest2) {
2186 optdata = (void *)pktopt->ip6po_dest2;
2187 ip6e = (struct ip6_ext *)pktopt->ip6po_dest2;
2188 optdatalen = (ip6e->ip6e_len + 1) << 3;
2189 }
2190 break;
2191 case IPV6_NEXTHOP:
2192 if (pktopt && pktopt->ip6po_nexthop) {
2193 optdata = (void *)pktopt->ip6po_nexthop;
2194 optdatalen = pktopt->ip6po_nexthop->sa_len;
2195 }
2196 break;
2197 case IPV6_USE_MIN_MTU:
2198 if (pktopt)
2199 optdata = (void *)&pktopt->ip6po_minmtu;
2200 else
2201 optdata = (void *)&defminmtu;
2202 optdatalen = sizeof(int);
2203 break;
2204 case IPV6_DONTFRAG:
2205 if (pktopt && ((pktopt->ip6po_flags) & IP6PO_DONTFRAG))
2206 on = 1;
2207 else
2208 on = 0;
2209 optdata = (void *)&on;
2210 optdatalen = sizeof(on);
2211 break;
2212 case IPV6_PREFER_TEMPADDR:
2213 if (pktopt)
2214 optdata = (void *)&pktopt->ip6po_prefer_tempaddr;
2215 else
2216 optdata = (void *)&defpreftemp;
2217 optdatalen = sizeof(int);
2218 break;
2219 default: /* should not happen */
2220#ifdef DIAGNOSTIC
2221 panic("ip6_getpcbopt: unexpected option\n");
2222#endif
2223 return (ENOPROTOOPT);
2224 }
2225
2226 error = sooptcopyout(sopt, optdata, optdatalen);
2227
2228 return (error);
2229}
2230
2231void
2232ip6_clearpktopts(struct ip6_pktopts *pktopt, int optname)
2233{
2234 if (pktopt == NULL)
2235 return;
2236
2237 if (optname == -1 || optname == IPV6_PKTINFO) {
2238 if (pktopt->ip6po_pktinfo)
2239 free(pktopt->ip6po_pktinfo, M_IP6OPT);
2240 pktopt->ip6po_pktinfo = NULL;
2241 }
2242 if (optname == -1 || optname == IPV6_HOPLIMIT)
2243 pktopt->ip6po_hlim = -1;
2244 if (optname == -1 || optname == IPV6_TCLASS)
2245 pktopt->ip6po_tclass = -1;
2246 if (optname == -1 || optname == IPV6_NEXTHOP) {
2247 if (pktopt->ip6po_nextroute.ro_rt) {
2248 RTFREE(pktopt->ip6po_nextroute.ro_rt);
2249 pktopt->ip6po_nextroute.ro_rt = NULL;
2250 }
2251 if (pktopt->ip6po_nexthop)
2252 free(pktopt->ip6po_nexthop, M_IP6OPT);
2253 pktopt->ip6po_nexthop = NULL;
2254 }
2255 if (optname == -1 || optname == IPV6_HOPOPTS) {
2256 if (pktopt->ip6po_hbh)
2257 free(pktopt->ip6po_hbh, M_IP6OPT);
2258 pktopt->ip6po_hbh = NULL;
2259 }
2260 if (optname == -1 || optname == IPV6_RTHDRDSTOPTS) {
2261 if (pktopt->ip6po_dest1)
2262 free(pktopt->ip6po_dest1, M_IP6OPT);
2263 pktopt->ip6po_dest1 = NULL;
2264 }
2265 if (optname == -1 || optname == IPV6_RTHDR) {
2266 if (pktopt->ip6po_rhinfo.ip6po_rhi_rthdr)
2267 free(pktopt->ip6po_rhinfo.ip6po_rhi_rthdr, M_IP6OPT);
2268 pktopt->ip6po_rhinfo.ip6po_rhi_rthdr = NULL;
2269 if (pktopt->ip6po_route.ro_rt) {
2270 RTFREE(pktopt->ip6po_route.ro_rt);
2271 pktopt->ip6po_route.ro_rt = NULL;
2272 }
2273 }
2274 if (optname == -1 || optname == IPV6_DSTOPTS) {
2275 if (pktopt->ip6po_dest2)
2276 free(pktopt->ip6po_dest2, M_IP6OPT);
2277 pktopt->ip6po_dest2 = NULL;
2278 }
2279}
2280
2281#define PKTOPT_EXTHDRCPY(type) \
2282do {\
2283 if (src->type) {\
2284 int hlen = (((struct ip6_ext *)src->type)->ip6e_len + 1) << 3;\
2285 dst->type = malloc(hlen, M_IP6OPT, canwait);\
2286 if (dst->type == NULL && canwait == M_NOWAIT)\
2287 goto bad;\
2288 bcopy(src->type, dst->type, hlen);\
2289 }\
2290} while (/*CONSTCOND*/ 0)
2291
2292static int
2293copypktopts(struct ip6_pktopts *dst, struct ip6_pktopts *src, int canwait)
2294{
2295 if (dst == NULL || src == NULL) {
2296 printf("ip6_clearpktopts: invalid argument\n");
2297 return (EINVAL);
2298 }
2299
2300 dst->ip6po_hlim = src->ip6po_hlim;
2301 dst->ip6po_tclass = src->ip6po_tclass;
2302 dst->ip6po_flags = src->ip6po_flags;
2303 if (src->ip6po_pktinfo) {
2304 dst->ip6po_pktinfo = malloc(sizeof(*dst->ip6po_pktinfo),
2305 M_IP6OPT, canwait);
2306 if (dst->ip6po_pktinfo == NULL)
2307 goto bad;
2308 *dst->ip6po_pktinfo = *src->ip6po_pktinfo;
2309 }
2310 if (src->ip6po_nexthop) {
2311 dst->ip6po_nexthop = malloc(src->ip6po_nexthop->sa_len,
2312 M_IP6OPT, canwait);
2313 if (dst->ip6po_nexthop == NULL)
2314 goto bad;
2315 bcopy(src->ip6po_nexthop, dst->ip6po_nexthop,
2316 src->ip6po_nexthop->sa_len);
2317 }
2318 PKTOPT_EXTHDRCPY(ip6po_hbh);
2319 PKTOPT_EXTHDRCPY(ip6po_dest1);
2320 PKTOPT_EXTHDRCPY(ip6po_dest2);
2321 PKTOPT_EXTHDRCPY(ip6po_rthdr); /* not copy the cached route */
2322 return (0);
2323
2324 bad:
2325 ip6_clearpktopts(dst, -1);
2326 return (ENOBUFS);
2327}
2328#undef PKTOPT_EXTHDRCPY
2329
2330struct ip6_pktopts *
2331ip6_copypktopts(struct ip6_pktopts *src, int canwait)
2332{
2333 int error;
2334 struct ip6_pktopts *dst;
2335
2336 dst = malloc(sizeof(*dst), M_IP6OPT, canwait);
2337 if (dst == NULL)
2338 return (NULL);
2339 ip6_initpktopts(dst);
2340
2341 if ((error = copypktopts(dst, src, canwait)) != 0) {
2342 free(dst, M_IP6OPT);
2343 return (NULL);
2344 }
2345
2346 return (dst);
2347}
2348
2349void
2350ip6_freepcbopts(struct ip6_pktopts *pktopt)
2351{
2352 if (pktopt == NULL)
2353 return;
2354
2355 ip6_clearpktopts(pktopt, -1);
2356
2357 free(pktopt, M_IP6OPT);
2358}
2359
2360/*
2408 * Set the IP6 multicast options in response to user setsockopt().
2409 */
2410static int
2411ip6_setmoptions(int optname, struct ip6_moptions **im6op, struct mbuf *m)
2412{
2413 INIT_VNET_NET(curvnet);
2414 INIT_VNET_INET6(curvnet);
2415 int error = 0;
2416 u_int loop, ifindex;
2417 struct ipv6_mreq *mreq;
2418 struct ifnet *ifp;
2419 struct ip6_moptions *im6o = *im6op;
2420 struct route_in6 ro;
2421 struct in6_multi_mship *imm;
2422
2423 if (im6o == NULL) {
2424 /*
2425 * No multicast option buffer attached to the pcb;
2426 * allocate one and initialize to default values.
2427 */
2428 im6o = (struct ip6_moptions *)
2429 malloc(sizeof(*im6o), M_IP6MOPTS, M_WAITOK);
2430
2431 if (im6o == NULL)
2432 return (ENOBUFS);
2433 *im6op = im6o;
2434 im6o->im6o_multicast_ifp = NULL;
2435 im6o->im6o_multicast_hlim = V_ip6_defmcasthlim;
2436 im6o->im6o_multicast_loop = IPV6_DEFAULT_MULTICAST_LOOP;
2437 LIST_INIT(&im6o->im6o_memberships);
2438 }
2439
2440 switch (optname) {
2441
2442 case IPV6_MULTICAST_IF:
2443 /*
2444 * Select the interface for outgoing multicast packets.
2445 */
2446 if (m == NULL || m->m_len != sizeof(u_int)) {
2447 error = EINVAL;
2448 break;
2449 }
2450 bcopy(mtod(m, u_int *), &ifindex, sizeof(ifindex));
2451 if (ifindex < 0 || V_if_index < ifindex) {
2452 error = ENXIO; /* XXX EINVAL? */
2453 break;
2454 }
2455 ifp = ifnet_byindex(ifindex);
2456 if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
2457 error = EADDRNOTAVAIL;
2458 break;
2459 }
2460 im6o->im6o_multicast_ifp = ifp;
2461 break;
2462
2463 case IPV6_MULTICAST_HOPS:
2464 {
2465 /*
2466 * Set the IP6 hoplimit for outgoing multicast packets.
2467 */
2468 int optval;
2469 if (m == NULL || m->m_len != sizeof(int)) {
2470 error = EINVAL;
2471 break;
2472 }
2473 bcopy(mtod(m, u_int *), &optval, sizeof(optval));
2474 if (optval < -1 || optval >= 256)
2475 error = EINVAL;
2476 else if (optval == -1)
2477 im6o->im6o_multicast_hlim = V_ip6_defmcasthlim;
2478 else
2479 im6o->im6o_multicast_hlim = optval;
2480 break;
2481 }
2482
2483 case IPV6_MULTICAST_LOOP:
2484 /*
2485 * Set the loopback flag for outgoing multicast packets.
2486 * Must be zero or one.
2487 */
2488 if (m == NULL || m->m_len != sizeof(u_int)) {
2489 error = EINVAL;
2490 break;
2491 }
2492 bcopy(mtod(m, u_int *), &loop, sizeof(loop));
2493 if (loop > 1) {
2494 error = EINVAL;
2495 break;
2496 }
2497 im6o->im6o_multicast_loop = loop;
2498 break;
2499
2500 case IPV6_JOIN_GROUP:
2501 /*
2502 * Add a multicast group membership.
2503 * Group must be a valid IP6 multicast address.
2504 */
2505 if (m == NULL || m->m_len != sizeof(struct ipv6_mreq)) {
2506 error = EINVAL;
2507 break;
2508 }
2509 mreq = mtod(m, struct ipv6_mreq *);
2510
2511 if (IN6_IS_ADDR_UNSPECIFIED(&mreq->ipv6mr_multiaddr)) {
2512 /*
2513 * We use the unspecified address to specify to accept
2514 * all multicast addresses. Only super user is allowed
2515 * to do this.
2516 */
2517 /* XXX-BZ might need a better PRIV_NETINET_x for this */
2518 error = priv_check(curthread, PRIV_NETINET_MROUTE);
2519 if (error)
2520 break;
2521 } else if (!IN6_IS_ADDR_MULTICAST(&mreq->ipv6mr_multiaddr)) {
2522 error = EINVAL;
2523 break;
2524 }
2525
2526 /*
2527 * If no interface was explicitly specified, choose an
2528 * appropriate one according to the given multicast address.
2529 */
2530 if (mreq->ipv6mr_interface == 0) {
2531 struct sockaddr_in6 *dst;
2532
2533 /*
2534 * Look up the routing table for the
2535 * address, and choose the outgoing interface.
2536 * XXX: is it a good approach?
2537 */
2538 ro.ro_rt = NULL;
2539 dst = (struct sockaddr_in6 *)&ro.ro_dst;
2540 bzero(dst, sizeof(*dst));
2541 dst->sin6_family = AF_INET6;
2542 dst->sin6_len = sizeof(*dst);
2543 dst->sin6_addr = mreq->ipv6mr_multiaddr;
2544 rtalloc((struct route *)&ro);
2545 if (ro.ro_rt == NULL) {
2546 error = EADDRNOTAVAIL;
2547 break;
2548 }
2549 ifp = ro.ro_rt->rt_ifp;
2550 RTFREE(ro.ro_rt);
2551 } else {
2552 /*
2553 * If the interface is specified, validate it.
2554 */
2555 if (mreq->ipv6mr_interface < 0 ||
2556 V_if_index < mreq->ipv6mr_interface) {
2557 error = ENXIO; /* XXX EINVAL? */
2558 break;
2559 }
2560 ifp = ifnet_byindex(mreq->ipv6mr_interface);
2561 if (!ifp) {
2562 error = ENXIO; /* XXX EINVAL? */
2563 break;
2564 }
2565 }
2566
2567 /*
2568 * See if we found an interface, and confirm that it
2569 * supports multicast
2570 */
2571 if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
2572 error = EADDRNOTAVAIL;
2573 break;
2574 }
2575
2576 if (in6_setscope(&mreq->ipv6mr_multiaddr, ifp, NULL)) {
2577 error = EADDRNOTAVAIL; /* XXX: should not happen */
2578 break;
2579 }
2580
2581 /*
2582 * See if the membership already exists.
2583 */
2584 for (imm = im6o->im6o_memberships.lh_first;
2585 imm != NULL; imm = imm->i6mm_chain.le_next)
2586 if (imm->i6mm_maddr->in6m_ifp == ifp &&
2587 IN6_ARE_ADDR_EQUAL(&imm->i6mm_maddr->in6m_addr,
2588 &mreq->ipv6mr_multiaddr))
2589 break;
2590 if (imm != NULL) {
2591 error = EADDRINUSE;
2592 break;
2593 }
2594 /*
2595 * Everything looks good; add a new record to the multicast
2596 * address list for the given interface.
2597 */
2598 imm = in6_joingroup(ifp, &mreq->ipv6mr_multiaddr, &error, 0);
2599 if (imm == NULL)
2600 break;
2601 LIST_INSERT_HEAD(&im6o->im6o_memberships, imm, i6mm_chain);
2602 break;
2603
2604 case IPV6_LEAVE_GROUP:
2605 /*
2606 * Drop a multicast group membership.
2607 * Group must be a valid IP6 multicast address.
2608 */
2609 if (m == NULL || m->m_len != sizeof(struct ipv6_mreq)) {
2610 error = EINVAL;
2611 break;
2612 }
2613 mreq = mtod(m, struct ipv6_mreq *);
2614
2615 /*
2616 * If an interface address was specified, get a pointer
2617 * to its ifnet structure.
2618 */
2619 if (mreq->ipv6mr_interface < 0 ||
2620 V_if_index < mreq->ipv6mr_interface) {
2621 error = ENXIO; /* XXX EINVAL? */
2622 break;
2623 }
2624 if (mreq->ipv6mr_interface == 0)
2625 ifp = NULL;
2626 else
2627 ifp = ifnet_byindex(mreq->ipv6mr_interface);
2628
2629 /* Fill in the scope zone ID */
2630 if (ifp) {
2631 if (in6_setscope(&mreq->ipv6mr_multiaddr, ifp, NULL)) {
2632 /* XXX: should not happen */
2633 error = EADDRNOTAVAIL;
2634 break;
2635 }
2636 } else if (mreq->ipv6mr_interface != 0) {
2637 /*
2638 * This case happens when the (positive) index is in
2639 * the valid range, but the corresponding interface has
2640 * been detached dynamically (XXX).
2641 */
2642 error = EADDRNOTAVAIL;
2643 break;
2644 } else { /* ipv6mr_interface == 0 */
2645 struct sockaddr_in6 sa6_mc;
2646
2647 /*
2648 * The API spec says as follows:
2649 * If the interface index is specified as 0, the
2650 * system may choose a multicast group membership to
2651 * drop by matching the multicast address only.
2652 * On the other hand, we cannot disambiguate the scope
2653 * zone unless an interface is provided. Thus, we
2654 * check if there's ambiguity with the default scope
2655 * zone as the last resort.
2656 */
2657 bzero(&sa6_mc, sizeof(sa6_mc));
2658 sa6_mc.sin6_family = AF_INET6;
2659 sa6_mc.sin6_len = sizeof(sa6_mc);
2660 sa6_mc.sin6_addr = mreq->ipv6mr_multiaddr;
2661 error = sa6_embedscope(&sa6_mc, V_ip6_use_defzone);
2662 if (error != 0)
2663 break;
2664 mreq->ipv6mr_multiaddr = sa6_mc.sin6_addr;
2665 }
2666
2667 /*
2668 * Find the membership in the membership list.
2669 */
2670 for (imm = im6o->im6o_memberships.lh_first;
2671 imm != NULL; imm = imm->i6mm_chain.le_next) {
2672 if ((ifp == NULL || imm->i6mm_maddr->in6m_ifp == ifp) &&
2673 IN6_ARE_ADDR_EQUAL(&imm->i6mm_maddr->in6m_addr,
2674 &mreq->ipv6mr_multiaddr))
2675 break;
2676 }
2677 if (imm == NULL) {
2678 /* Unable to resolve interface */
2679 error = EADDRNOTAVAIL;
2680 break;
2681 }
2682 /*
2683 * Give up the multicast address record to which the
2684 * membership points.
2685 */
2686 LIST_REMOVE(imm, i6mm_chain);
2687 in6_delmulti(imm->i6mm_maddr);
2688 free(imm, M_IP6MADDR);
2689 break;
2690
2691 default:
2692 error = EOPNOTSUPP;
2693 break;
2694 }
2695
2696 /*
2697 * If all options have default values, no need to keep the mbuf.
2698 */
2699 if (im6o->im6o_multicast_ifp == NULL &&
2700 im6o->im6o_multicast_hlim == V_ip6_defmcasthlim &&
2701 im6o->im6o_multicast_loop == IPV6_DEFAULT_MULTICAST_LOOP &&
2702 im6o->im6o_memberships.lh_first == NULL) {
2703 free(*im6op, M_IP6MOPTS);
2704 *im6op = NULL;
2705 }
2706
2707 return (error);
2708}
2709
2710/*
2711 * Return the IP6 multicast options in response to user getsockopt().
2712 */
2713static int
2714ip6_getmoptions(int optname, struct ip6_moptions *im6o, struct mbuf **mp)
2715{
2716 INIT_VNET_INET6(curvnet);
2717 u_int *hlim, *loop, *ifindex;
2718
2719 *mp = m_get(M_WAIT, MT_HEADER); /* XXX */
2720
2721 switch (optname) {
2722
2723 case IPV6_MULTICAST_IF:
2724 ifindex = mtod(*mp, u_int *);
2725 (*mp)->m_len = sizeof(u_int);
2726 if (im6o == NULL || im6o->im6o_multicast_ifp == NULL)
2727 *ifindex = 0;
2728 else
2729 *ifindex = im6o->im6o_multicast_ifp->if_index;
2730 return (0);
2731
2732 case IPV6_MULTICAST_HOPS:
2733 hlim = mtod(*mp, u_int *);
2734 (*mp)->m_len = sizeof(u_int);
2735 if (im6o == NULL)
2736 *hlim = V_ip6_defmcasthlim;
2737 else
2738 *hlim = im6o->im6o_multicast_hlim;
2739 return (0);
2740
2741 case IPV6_MULTICAST_LOOP:
2742 loop = mtod(*mp, u_int *);
2743 (*mp)->m_len = sizeof(u_int);
2744 if (im6o == NULL)
2745 *loop = V_ip6_defmcasthlim;
2746 else
2747 *loop = im6o->im6o_multicast_loop;
2748 return (0);
2749
2750 default:
2751 return (EOPNOTSUPP);
2752 }
2753}
2754
2755/*
2756 * Discard the IP6 multicast options.
2757 */
2758void
2759ip6_freemoptions(struct ip6_moptions *im6o)
2760{
2761 struct in6_multi_mship *imm;
2762
2763 if (im6o == NULL)
2764 return;
2765
2766 while ((imm = im6o->im6o_memberships.lh_first) != NULL) {
2767 LIST_REMOVE(imm, i6mm_chain);
2768 if (imm->i6mm_maddr)
2769 in6_delmulti(imm->i6mm_maddr);
2770 free(imm, M_IP6MADDR);
2771 }
2772 free(im6o, M_IP6MOPTS);
2773}
2774
2775/*
2776 * Set IPv6 outgoing packet options based on advanced API.
2777 */
2778int
2779ip6_setpktopts(struct mbuf *control, struct ip6_pktopts *opt,
2780 struct ip6_pktopts *stickyopt, struct ucred *cred, int uproto)
2781{
2782 struct cmsghdr *cm = 0;
2783
2784 if (control == NULL || opt == NULL)
2785 return (EINVAL);
2786
2787 ip6_initpktopts(opt);
2788 if (stickyopt) {
2789 int error;
2790
2791 /*
2792 * If stickyopt is provided, make a local copy of the options
2793 * for this particular packet, then override them by ancillary
2794 * objects.
2795 * XXX: copypktopts() does not copy the cached route to a next
2796 * hop (if any). This is not very good in terms of efficiency,
2797 * but we can allow this since this option should be rarely
2798 * used.
2799 */
2800 if ((error = copypktopts(opt, stickyopt, M_NOWAIT)) != 0)
2801 return (error);
2802 }
2803
2804 /*
2805 * XXX: Currently, we assume all the optional information is stored
2806 * in a single mbuf.
2807 */
2808 if (control->m_next)
2809 return (EINVAL);
2810
2811 for (; control->m_len > 0; control->m_data += CMSG_ALIGN(cm->cmsg_len),
2812 control->m_len -= CMSG_ALIGN(cm->cmsg_len)) {
2813 int error;
2814
2815 if (control->m_len < CMSG_LEN(0))
2816 return (EINVAL);
2817
2818 cm = mtod(control, struct cmsghdr *);
2819 if (cm->cmsg_len == 0 || cm->cmsg_len > control->m_len)
2820 return (EINVAL);
2821 if (cm->cmsg_level != IPPROTO_IPV6)
2822 continue;
2823
2824 error = ip6_setpktopt(cm->cmsg_type, CMSG_DATA(cm),
2825 cm->cmsg_len - CMSG_LEN(0), opt, cred, 0, 1, uproto);
2826 if (error)
2827 return (error);
2828 }
2829
2830 return (0);
2831}
2832
2833/*
2834 * Set a particular packet option, as a sticky option or an ancillary data
2835 * item. "len" can be 0 only when it's a sticky option.
2836 * We have 4 cases of combination of "sticky" and "cmsg":
2837 * "sticky=0, cmsg=0": impossible
2838 * "sticky=0, cmsg=1": RFC2292 or RFC3542 ancillary data
2839 * "sticky=1, cmsg=0": RFC3542 socket option
2840 * "sticky=1, cmsg=1": RFC2292 socket option
2841 */
2842static int
2843ip6_setpktopt(int optname, u_char *buf, int len, struct ip6_pktopts *opt,
2844 struct ucred *cred, int sticky, int cmsg, int uproto)
2845{
2846 INIT_VNET_NET(curvnet);
2847 INIT_VNET_INET6(curvnet);
2848 int minmtupolicy, preftemp;
2849 int error;
2850
2851 if (!sticky && !cmsg) {
2852#ifdef DIAGNOSTIC
2853 printf("ip6_setpktopt: impossible case\n");
2854#endif
2855 return (EINVAL);
2856 }
2857
2858 /*
2859 * IPV6_2292xxx is for backward compatibility to RFC2292, and should
2860 * not be specified in the context of RFC3542. Conversely,
2861 * RFC3542 types should not be specified in the context of RFC2292.
2862 */
2863 if (!cmsg) {
2864 switch (optname) {
2865 case IPV6_2292PKTINFO:
2866 case IPV6_2292HOPLIMIT:
2867 case IPV6_2292NEXTHOP:
2868 case IPV6_2292HOPOPTS:
2869 case IPV6_2292DSTOPTS:
2870 case IPV6_2292RTHDR:
2871 case IPV6_2292PKTOPTIONS:
2872 return (ENOPROTOOPT);
2873 }
2874 }
2875 if (sticky && cmsg) {
2876 switch (optname) {
2877 case IPV6_PKTINFO:
2878 case IPV6_HOPLIMIT:
2879 case IPV6_NEXTHOP:
2880 case IPV6_HOPOPTS:
2881 case IPV6_DSTOPTS:
2882 case IPV6_RTHDRDSTOPTS:
2883 case IPV6_RTHDR:
2884 case IPV6_USE_MIN_MTU:
2885 case IPV6_DONTFRAG:
2886 case IPV6_TCLASS:
2887 case IPV6_PREFER_TEMPADDR: /* XXX: not an RFC3542 option */
2888 return (ENOPROTOOPT);
2889 }
2890 }
2891
2892 switch (optname) {
2893 case IPV6_2292PKTINFO:
2894 case IPV6_PKTINFO:
2895 {
2896 struct ifnet *ifp = NULL;
2897 struct in6_pktinfo *pktinfo;
2898
2899 if (len != sizeof(struct in6_pktinfo))
2900 return (EINVAL);
2901
2902 pktinfo = (struct in6_pktinfo *)buf;
2903
2904 /*
2905 * An application can clear any sticky IPV6_PKTINFO option by
2906 * doing a "regular" setsockopt with ipi6_addr being
2907 * in6addr_any and ipi6_ifindex being zero.
2908 * [RFC 3542, Section 6]
2909 */
2910 if (optname == IPV6_PKTINFO && opt->ip6po_pktinfo &&
2911 pktinfo->ipi6_ifindex == 0 &&
2912 IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) {
2913 ip6_clearpktopts(opt, optname);
2914 break;
2915 }
2916
2917 if (uproto == IPPROTO_TCP && optname == IPV6_PKTINFO &&
2918 sticky && !IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) {
2919 return (EINVAL);
2920 }
2921
2922 /* validate the interface index if specified. */
2923 if (pktinfo->ipi6_ifindex > V_if_index ||
2924 pktinfo->ipi6_ifindex < 0) {
2925 return (ENXIO);
2926 }
2927 if (pktinfo->ipi6_ifindex) {
2928 ifp = ifnet_byindex(pktinfo->ipi6_ifindex);
2929 if (ifp == NULL)
2930 return (ENXIO);
2931 }
2932
2933 /*
2934 * We store the address anyway, and let in6_selectsrc()
2935 * validate the specified address. This is because ipi6_addr
2936 * may not have enough information about its scope zone, and
2937 * we may need additional information (such as outgoing
2938 * interface or the scope zone of a destination address) to
2939 * disambiguate the scope.
2940 * XXX: the delay of the validation may confuse the
2941 * application when it is used as a sticky option.
2942 */
2943 if (opt->ip6po_pktinfo == NULL) {
2944 opt->ip6po_pktinfo = malloc(sizeof(*pktinfo),
2945 M_IP6OPT, M_NOWAIT);
2946 if (opt->ip6po_pktinfo == NULL)
2947 return (ENOBUFS);
2948 }
2949 bcopy(pktinfo, opt->ip6po_pktinfo, sizeof(*pktinfo));
2950 break;
2951 }
2952
2953 case IPV6_2292HOPLIMIT:
2954 case IPV6_HOPLIMIT:
2955 {
2956 int *hlimp;
2957
2958 /*
2959 * RFC 3542 deprecated the usage of sticky IPV6_HOPLIMIT
2960 * to simplify the ordering among hoplimit options.
2961 */
2962 if (optname == IPV6_HOPLIMIT && sticky)
2963 return (ENOPROTOOPT);
2964
2965 if (len != sizeof(int))
2966 return (EINVAL);
2967 hlimp = (int *)buf;
2968 if (*hlimp < -1 || *hlimp > 255)
2969 return (EINVAL);
2970
2971 opt->ip6po_hlim = *hlimp;
2972 break;
2973 }
2974
2975 case IPV6_TCLASS:
2976 {
2977 int tclass;
2978
2979 if (len != sizeof(int))
2980 return (EINVAL);
2981 tclass = *(int *)buf;
2982 if (tclass < -1 || tclass > 255)
2983 return (EINVAL);
2984
2985 opt->ip6po_tclass = tclass;
2986 break;
2987 }
2988
2989 case IPV6_2292NEXTHOP:
2990 case IPV6_NEXTHOP:
2991 if (cred != NULL) {
2992 error = priv_check_cred(cred,
2993 PRIV_NETINET_SETHDROPTS, 0);
2994 if (error)
2995 return (error);
2996 }
2997
2998 if (len == 0) { /* just remove the option */
2999 ip6_clearpktopts(opt, IPV6_NEXTHOP);
3000 break;
3001 }
3002
3003 /* check if cmsg_len is large enough for sa_len */
3004 if (len < sizeof(struct sockaddr) || len < *buf)
3005 return (EINVAL);
3006
3007 switch (((struct sockaddr *)buf)->sa_family) {
3008 case AF_INET6:
3009 {
3010 struct sockaddr_in6 *sa6 = (struct sockaddr_in6 *)buf;
3011 int error;
3012
3013 if (sa6->sin6_len != sizeof(struct sockaddr_in6))
3014 return (EINVAL);
3015
3016 if (IN6_IS_ADDR_UNSPECIFIED(&sa6->sin6_addr) ||
3017 IN6_IS_ADDR_MULTICAST(&sa6->sin6_addr)) {
3018 return (EINVAL);
3019 }
3020 if ((error = sa6_embedscope(sa6, V_ip6_use_defzone))
3021 != 0) {
3022 return (error);
3023 }
3024 break;
3025 }
3026 case AF_LINK: /* should eventually be supported */
3027 default:
3028 return (EAFNOSUPPORT);
3029 }
3030
3031 /* turn off the previous option, then set the new option. */
3032 ip6_clearpktopts(opt, IPV6_NEXTHOP);
3033 opt->ip6po_nexthop = malloc(*buf, M_IP6OPT, M_NOWAIT);
3034 if (opt->ip6po_nexthop == NULL)
3035 return (ENOBUFS);
3036 bcopy(buf, opt->ip6po_nexthop, *buf);
3037 break;
3038
3039 case IPV6_2292HOPOPTS:
3040 case IPV6_HOPOPTS:
3041 {
3042 struct ip6_hbh *hbh;
3043 int hbhlen;
3044
3045 /*
3046 * XXX: We don't allow a non-privileged user to set ANY HbH
3047 * options, since per-option restriction has too much
3048 * overhead.
3049 */
3050 if (cred != NULL) {
3051 error = priv_check_cred(cred,
3052 PRIV_NETINET_SETHDROPTS, 0);
3053 if (error)
3054 return (error);
3055 }
3056
3057 if (len == 0) {
3058 ip6_clearpktopts(opt, IPV6_HOPOPTS);
3059 break; /* just remove the option */
3060 }
3061
3062 /* message length validation */
3063 if (len < sizeof(struct ip6_hbh))
3064 return (EINVAL);
3065 hbh = (struct ip6_hbh *)buf;
3066 hbhlen = (hbh->ip6h_len + 1) << 3;
3067 if (len != hbhlen)
3068 return (EINVAL);
3069
3070 /* turn off the previous option, then set the new option. */
3071 ip6_clearpktopts(opt, IPV6_HOPOPTS);
3072 opt->ip6po_hbh = malloc(hbhlen, M_IP6OPT, M_NOWAIT);
3073 if (opt->ip6po_hbh == NULL)
3074 return (ENOBUFS);
3075 bcopy(hbh, opt->ip6po_hbh, hbhlen);
3076
3077 break;
3078 }
3079
3080 case IPV6_2292DSTOPTS:
3081 case IPV6_DSTOPTS:
3082 case IPV6_RTHDRDSTOPTS:
3083 {
3084 struct ip6_dest *dest, **newdest = NULL;
3085 int destlen;
3086
3087 if (cred != NULL) { /* XXX: see the comment for IPV6_HOPOPTS */
3088 error = priv_check_cred(cred,
3089 PRIV_NETINET_SETHDROPTS, 0);
3090 if (error)
3091 return (error);
3092 }
3093
3094 if (len == 0) {
3095 ip6_clearpktopts(opt, optname);
3096 break; /* just remove the option */
3097 }
3098
3099 /* message length validation */
3100 if (len < sizeof(struct ip6_dest))
3101 return (EINVAL);
3102 dest = (struct ip6_dest *)buf;
3103 destlen = (dest->ip6d_len + 1) << 3;
3104 if (len != destlen)
3105 return (EINVAL);
3106
3107 /*
3108 * Determine the position that the destination options header
3109 * should be inserted; before or after the routing header.
3110 */
3111 switch (optname) {
3112 case IPV6_2292DSTOPTS:
3113 /*
3114 * The old advacned API is ambiguous on this point.
3115 * Our approach is to determine the position based
3116 * according to the existence of a routing header.
3117 * Note, however, that this depends on the order of the
3118 * extension headers in the ancillary data; the 1st
3119 * part of the destination options header must appear
3120 * before the routing header in the ancillary data,
3121 * too.
3122 * RFC3542 solved the ambiguity by introducing
3123 * separate ancillary data or option types.
3124 */
3125 if (opt->ip6po_rthdr == NULL)
3126 newdest = &opt->ip6po_dest1;
3127 else
3128 newdest = &opt->ip6po_dest2;
3129 break;
3130 case IPV6_RTHDRDSTOPTS:
3131 newdest = &opt->ip6po_dest1;
3132 break;
3133 case IPV6_DSTOPTS:
3134 newdest = &opt->ip6po_dest2;
3135 break;
3136 }
3137
3138 /* turn off the previous option, then set the new option. */
3139 ip6_clearpktopts(opt, optname);
3140 *newdest = malloc(destlen, M_IP6OPT, M_NOWAIT);
3141 if (*newdest == NULL)
3142 return (ENOBUFS);
3143 bcopy(dest, *newdest, destlen);
3144
3145 break;
3146 }
3147
3148 case IPV6_2292RTHDR:
3149 case IPV6_RTHDR:
3150 {
3151 struct ip6_rthdr *rth;
3152 int rthlen;
3153
3154 if (len == 0) {
3155 ip6_clearpktopts(opt, IPV6_RTHDR);
3156 break; /* just remove the option */
3157 }
3158
3159 /* message length validation */
3160 if (len < sizeof(struct ip6_rthdr))
3161 return (EINVAL);
3162 rth = (struct ip6_rthdr *)buf;
3163 rthlen = (rth->ip6r_len + 1) << 3;
3164 if (len != rthlen)
3165 return (EINVAL);
3166
3167 switch (rth->ip6r_type) {
3168 case IPV6_RTHDR_TYPE_0:
3169 if (rth->ip6r_len == 0) /* must contain one addr */
3170 return (EINVAL);
3171 if (rth->ip6r_len % 2) /* length must be even */
3172 return (EINVAL);
3173 if (rth->ip6r_len / 2 != rth->ip6r_segleft)
3174 return (EINVAL);
3175 break;
3176 default:
3177 return (EINVAL); /* not supported */
3178 }
3179
3180 /* turn off the previous option */
3181 ip6_clearpktopts(opt, IPV6_RTHDR);
3182 opt->ip6po_rthdr = malloc(rthlen, M_IP6OPT, M_NOWAIT);
3183 if (opt->ip6po_rthdr == NULL)
3184 return (ENOBUFS);
3185 bcopy(rth, opt->ip6po_rthdr, rthlen);
3186
3187 break;
3188 }
3189
3190 case IPV6_USE_MIN_MTU:
3191 if (len != sizeof(int))
3192 return (EINVAL);
3193 minmtupolicy = *(int *)buf;
3194 if (minmtupolicy != IP6PO_MINMTU_MCASTONLY &&
3195 minmtupolicy != IP6PO_MINMTU_DISABLE &&
3196 minmtupolicy != IP6PO_MINMTU_ALL) {
3197 return (EINVAL);
3198 }
3199 opt->ip6po_minmtu = minmtupolicy;
3200 break;
3201
3202 case IPV6_DONTFRAG:
3203 if (len != sizeof(int))
3204 return (EINVAL);
3205
3206 if (uproto == IPPROTO_TCP || *(int *)buf == 0) {
3207 /*
3208 * we ignore this option for TCP sockets.
3209 * (RFC3542 leaves this case unspecified.)
3210 */
3211 opt->ip6po_flags &= ~IP6PO_DONTFRAG;
3212 } else
3213 opt->ip6po_flags |= IP6PO_DONTFRAG;
3214 break;
3215
3216 case IPV6_PREFER_TEMPADDR:
3217 if (len != sizeof(int))
3218 return (EINVAL);
3219 preftemp = *(int *)buf;
3220 if (preftemp != IP6PO_TEMPADDR_SYSTEM &&
3221 preftemp != IP6PO_TEMPADDR_NOTPREFER &&
3222 preftemp != IP6PO_TEMPADDR_PREFER) {
3223 return (EINVAL);
3224 }
3225 opt->ip6po_prefer_tempaddr = preftemp;
3226 break;
3227
3228 default:
3229 return (ENOPROTOOPT);
3230 } /* end of switch */
3231
3232 return (0);
3233}
3234
3235/*
3236 * Routine called from ip6_output() to loop back a copy of an IP6 multicast
3237 * packet to the input queue of a specified interface. Note that this
3238 * calls the output routine of the loopback "driver", but with an interface
3239 * pointer that might NOT be &loif -- easier than replicating that code here.
3240 */
3241void
3242ip6_mloopback(struct ifnet *ifp, struct mbuf *m, struct sockaddr_in6 *dst)
3243{
3244 struct mbuf *copym;
3245 struct ip6_hdr *ip6;
3246
3247 copym = m_copy(m, 0, M_COPYALL);
3248 if (copym == NULL)
3249 return;
3250
3251 /*
3252 * Make sure to deep-copy IPv6 header portion in case the data
3253 * is in an mbuf cluster, so that we can safely override the IPv6
3254 * header portion later.
3255 */
3256 if ((copym->m_flags & M_EXT) != 0 ||
3257 copym->m_len < sizeof(struct ip6_hdr)) {
3258 copym = m_pullup(copym, sizeof(struct ip6_hdr));
3259 if (copym == NULL)
3260 return;
3261 }
3262
3263#ifdef DIAGNOSTIC
3264 if (copym->m_len < sizeof(*ip6)) {
3265 m_freem(copym);
3266 return;
3267 }
3268#endif
3269
3270 ip6 = mtod(copym, struct ip6_hdr *);
3271 /*
3272 * clear embedded scope identifiers if necessary.
3273 * in6_clearscope will touch the addresses only when necessary.
3274 */
3275 in6_clearscope(&ip6->ip6_src);
3276 in6_clearscope(&ip6->ip6_dst);
3277
3278 (void)if_simloop(ifp, copym, dst->sin6_family, 0);
3279}
3280
3281/*
3282 * Chop IPv6 header off from the payload.
3283 */
3284static int
3285ip6_splithdr(struct mbuf *m, struct ip6_exthdrs *exthdrs)
3286{
3287 struct mbuf *mh;
3288 struct ip6_hdr *ip6;
3289
3290 ip6 = mtod(m, struct ip6_hdr *);
3291 if (m->m_len > sizeof(*ip6)) {
3292 MGETHDR(mh, M_DONTWAIT, MT_HEADER);
3293 if (mh == 0) {
3294 m_freem(m);
3295 return ENOBUFS;
3296 }
3297 M_MOVE_PKTHDR(mh, m);
3298 MH_ALIGN(mh, sizeof(*ip6));
3299 m->m_len -= sizeof(*ip6);
3300 m->m_data += sizeof(*ip6);
3301 mh->m_next = m;
3302 m = mh;
3303 m->m_len = sizeof(*ip6);
3304 bcopy((caddr_t)ip6, mtod(m, caddr_t), sizeof(*ip6));
3305 }
3306 exthdrs->ip6e_ip6 = m;
3307 return 0;
3308}
3309
3310/*
3311 * Compute IPv6 extension header length.
3312 */
3313int
3314ip6_optlen(struct inpcb *in6p)
3315{
3316 int len;
3317
3318 if (!in6p->in6p_outputopts)
3319 return 0;
3320
3321 len = 0;
3322#define elen(x) \
3323 (((struct ip6_ext *)(x)) ? (((struct ip6_ext *)(x))->ip6e_len + 1) << 3 : 0)
3324
3325 len += elen(in6p->in6p_outputopts->ip6po_hbh);
3326 if (in6p->in6p_outputopts->ip6po_rthdr)
3327 /* dest1 is valid with rthdr only */
3328 len += elen(in6p->in6p_outputopts->ip6po_dest1);
3329 len += elen(in6p->in6p_outputopts->ip6po_rthdr);
3330 len += elen(in6p->in6p_outputopts->ip6po_dest2);
3331 return len;
3332#undef elen
3333}
2361 * Set IPv6 outgoing packet options based on advanced API.
2362 */
2363int
2364ip6_setpktopts(struct mbuf *control, struct ip6_pktopts *opt,
2365 struct ip6_pktopts *stickyopt, struct ucred *cred, int uproto)
2366{
2367 struct cmsghdr *cm = 0;
2368
2369 if (control == NULL || opt == NULL)
2370 return (EINVAL);
2371
2372 ip6_initpktopts(opt);
2373 if (stickyopt) {
2374 int error;
2375
2376 /*
2377 * If stickyopt is provided, make a local copy of the options
2378 * for this particular packet, then override them by ancillary
2379 * objects.
2380 * XXX: copypktopts() does not copy the cached route to a next
2381 * hop (if any). This is not very good in terms of efficiency,
2382 * but we can allow this since this option should be rarely
2383 * used.
2384 */
2385 if ((error = copypktopts(opt, stickyopt, M_NOWAIT)) != 0)
2386 return (error);
2387 }
2388
2389 /*
2390 * XXX: Currently, we assume all the optional information is stored
2391 * in a single mbuf.
2392 */
2393 if (control->m_next)
2394 return (EINVAL);
2395
2396 for (; control->m_len > 0; control->m_data += CMSG_ALIGN(cm->cmsg_len),
2397 control->m_len -= CMSG_ALIGN(cm->cmsg_len)) {
2398 int error;
2399
2400 if (control->m_len < CMSG_LEN(0))
2401 return (EINVAL);
2402
2403 cm = mtod(control, struct cmsghdr *);
2404 if (cm->cmsg_len == 0 || cm->cmsg_len > control->m_len)
2405 return (EINVAL);
2406 if (cm->cmsg_level != IPPROTO_IPV6)
2407 continue;
2408
2409 error = ip6_setpktopt(cm->cmsg_type, CMSG_DATA(cm),
2410 cm->cmsg_len - CMSG_LEN(0), opt, cred, 0, 1, uproto);
2411 if (error)
2412 return (error);
2413 }
2414
2415 return (0);
2416}
2417
2418/*
2419 * Set a particular packet option, as a sticky option or an ancillary data
2420 * item. "len" can be 0 only when it's a sticky option.
2421 * We have 4 cases of combination of "sticky" and "cmsg":
2422 * "sticky=0, cmsg=0": impossible
2423 * "sticky=0, cmsg=1": RFC2292 or RFC3542 ancillary data
2424 * "sticky=1, cmsg=0": RFC3542 socket option
2425 * "sticky=1, cmsg=1": RFC2292 socket option
2426 */
2427static int
2428ip6_setpktopt(int optname, u_char *buf, int len, struct ip6_pktopts *opt,
2429 struct ucred *cred, int sticky, int cmsg, int uproto)
2430{
2431 INIT_VNET_NET(curvnet);
2432 INIT_VNET_INET6(curvnet);
2433 int minmtupolicy, preftemp;
2434 int error;
2435
2436 if (!sticky && !cmsg) {
2437#ifdef DIAGNOSTIC
2438 printf("ip6_setpktopt: impossible case\n");
2439#endif
2440 return (EINVAL);
2441 }
2442
2443 /*
2444 * IPV6_2292xxx is for backward compatibility to RFC2292, and should
2445 * not be specified in the context of RFC3542. Conversely,
2446 * RFC3542 types should not be specified in the context of RFC2292.
2447 */
2448 if (!cmsg) {
2449 switch (optname) {
2450 case IPV6_2292PKTINFO:
2451 case IPV6_2292HOPLIMIT:
2452 case IPV6_2292NEXTHOP:
2453 case IPV6_2292HOPOPTS:
2454 case IPV6_2292DSTOPTS:
2455 case IPV6_2292RTHDR:
2456 case IPV6_2292PKTOPTIONS:
2457 return (ENOPROTOOPT);
2458 }
2459 }
2460 if (sticky && cmsg) {
2461 switch (optname) {
2462 case IPV6_PKTINFO:
2463 case IPV6_HOPLIMIT:
2464 case IPV6_NEXTHOP:
2465 case IPV6_HOPOPTS:
2466 case IPV6_DSTOPTS:
2467 case IPV6_RTHDRDSTOPTS:
2468 case IPV6_RTHDR:
2469 case IPV6_USE_MIN_MTU:
2470 case IPV6_DONTFRAG:
2471 case IPV6_TCLASS:
2472 case IPV6_PREFER_TEMPADDR: /* XXX: not an RFC3542 option */
2473 return (ENOPROTOOPT);
2474 }
2475 }
2476
2477 switch (optname) {
2478 case IPV6_2292PKTINFO:
2479 case IPV6_PKTINFO:
2480 {
2481 struct ifnet *ifp = NULL;
2482 struct in6_pktinfo *pktinfo;
2483
2484 if (len != sizeof(struct in6_pktinfo))
2485 return (EINVAL);
2486
2487 pktinfo = (struct in6_pktinfo *)buf;
2488
2489 /*
2490 * An application can clear any sticky IPV6_PKTINFO option by
2491 * doing a "regular" setsockopt with ipi6_addr being
2492 * in6addr_any and ipi6_ifindex being zero.
2493 * [RFC 3542, Section 6]
2494 */
2495 if (optname == IPV6_PKTINFO && opt->ip6po_pktinfo &&
2496 pktinfo->ipi6_ifindex == 0 &&
2497 IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) {
2498 ip6_clearpktopts(opt, optname);
2499 break;
2500 }
2501
2502 if (uproto == IPPROTO_TCP && optname == IPV6_PKTINFO &&
2503 sticky && !IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) {
2504 return (EINVAL);
2505 }
2506
2507 /* validate the interface index if specified. */
2508 if (pktinfo->ipi6_ifindex > V_if_index ||
2509 pktinfo->ipi6_ifindex < 0) {
2510 return (ENXIO);
2511 }
2512 if (pktinfo->ipi6_ifindex) {
2513 ifp = ifnet_byindex(pktinfo->ipi6_ifindex);
2514 if (ifp == NULL)
2515 return (ENXIO);
2516 }
2517
2518 /*
2519 * We store the address anyway, and let in6_selectsrc()
2520 * validate the specified address. This is because ipi6_addr
2521 * may not have enough information about its scope zone, and
2522 * we may need additional information (such as outgoing
2523 * interface or the scope zone of a destination address) to
2524 * disambiguate the scope.
2525 * XXX: the delay of the validation may confuse the
2526 * application when it is used as a sticky option.
2527 */
2528 if (opt->ip6po_pktinfo == NULL) {
2529 opt->ip6po_pktinfo = malloc(sizeof(*pktinfo),
2530 M_IP6OPT, M_NOWAIT);
2531 if (opt->ip6po_pktinfo == NULL)
2532 return (ENOBUFS);
2533 }
2534 bcopy(pktinfo, opt->ip6po_pktinfo, sizeof(*pktinfo));
2535 break;
2536 }
2537
2538 case IPV6_2292HOPLIMIT:
2539 case IPV6_HOPLIMIT:
2540 {
2541 int *hlimp;
2542
2543 /*
2544 * RFC 3542 deprecated the usage of sticky IPV6_HOPLIMIT
2545 * to simplify the ordering among hoplimit options.
2546 */
2547 if (optname == IPV6_HOPLIMIT && sticky)
2548 return (ENOPROTOOPT);
2549
2550 if (len != sizeof(int))
2551 return (EINVAL);
2552 hlimp = (int *)buf;
2553 if (*hlimp < -1 || *hlimp > 255)
2554 return (EINVAL);
2555
2556 opt->ip6po_hlim = *hlimp;
2557 break;
2558 }
2559
2560 case IPV6_TCLASS:
2561 {
2562 int tclass;
2563
2564 if (len != sizeof(int))
2565 return (EINVAL);
2566 tclass = *(int *)buf;
2567 if (tclass < -1 || tclass > 255)
2568 return (EINVAL);
2569
2570 opt->ip6po_tclass = tclass;
2571 break;
2572 }
2573
2574 case IPV6_2292NEXTHOP:
2575 case IPV6_NEXTHOP:
2576 if (cred != NULL) {
2577 error = priv_check_cred(cred,
2578 PRIV_NETINET_SETHDROPTS, 0);
2579 if (error)
2580 return (error);
2581 }
2582
2583 if (len == 0) { /* just remove the option */
2584 ip6_clearpktopts(opt, IPV6_NEXTHOP);
2585 break;
2586 }
2587
2588 /* check if cmsg_len is large enough for sa_len */
2589 if (len < sizeof(struct sockaddr) || len < *buf)
2590 return (EINVAL);
2591
2592 switch (((struct sockaddr *)buf)->sa_family) {
2593 case AF_INET6:
2594 {
2595 struct sockaddr_in6 *sa6 = (struct sockaddr_in6 *)buf;
2596 int error;
2597
2598 if (sa6->sin6_len != sizeof(struct sockaddr_in6))
2599 return (EINVAL);
2600
2601 if (IN6_IS_ADDR_UNSPECIFIED(&sa6->sin6_addr) ||
2602 IN6_IS_ADDR_MULTICAST(&sa6->sin6_addr)) {
2603 return (EINVAL);
2604 }
2605 if ((error = sa6_embedscope(sa6, V_ip6_use_defzone))
2606 != 0) {
2607 return (error);
2608 }
2609 break;
2610 }
2611 case AF_LINK: /* should eventually be supported */
2612 default:
2613 return (EAFNOSUPPORT);
2614 }
2615
2616 /* turn off the previous option, then set the new option. */
2617 ip6_clearpktopts(opt, IPV6_NEXTHOP);
2618 opt->ip6po_nexthop = malloc(*buf, M_IP6OPT, M_NOWAIT);
2619 if (opt->ip6po_nexthop == NULL)
2620 return (ENOBUFS);
2621 bcopy(buf, opt->ip6po_nexthop, *buf);
2622 break;
2623
2624 case IPV6_2292HOPOPTS:
2625 case IPV6_HOPOPTS:
2626 {
2627 struct ip6_hbh *hbh;
2628 int hbhlen;
2629
2630 /*
2631 * XXX: We don't allow a non-privileged user to set ANY HbH
2632 * options, since per-option restriction has too much
2633 * overhead.
2634 */
2635 if (cred != NULL) {
2636 error = priv_check_cred(cred,
2637 PRIV_NETINET_SETHDROPTS, 0);
2638 if (error)
2639 return (error);
2640 }
2641
2642 if (len == 0) {
2643 ip6_clearpktopts(opt, IPV6_HOPOPTS);
2644 break; /* just remove the option */
2645 }
2646
2647 /* message length validation */
2648 if (len < sizeof(struct ip6_hbh))
2649 return (EINVAL);
2650 hbh = (struct ip6_hbh *)buf;
2651 hbhlen = (hbh->ip6h_len + 1) << 3;
2652 if (len != hbhlen)
2653 return (EINVAL);
2654
2655 /* turn off the previous option, then set the new option. */
2656 ip6_clearpktopts(opt, IPV6_HOPOPTS);
2657 opt->ip6po_hbh = malloc(hbhlen, M_IP6OPT, M_NOWAIT);
2658 if (opt->ip6po_hbh == NULL)
2659 return (ENOBUFS);
2660 bcopy(hbh, opt->ip6po_hbh, hbhlen);
2661
2662 break;
2663 }
2664
2665 case IPV6_2292DSTOPTS:
2666 case IPV6_DSTOPTS:
2667 case IPV6_RTHDRDSTOPTS:
2668 {
2669 struct ip6_dest *dest, **newdest = NULL;
2670 int destlen;
2671
2672 if (cred != NULL) { /* XXX: see the comment for IPV6_HOPOPTS */
2673 error = priv_check_cred(cred,
2674 PRIV_NETINET_SETHDROPTS, 0);
2675 if (error)
2676 return (error);
2677 }
2678
2679 if (len == 0) {
2680 ip6_clearpktopts(opt, optname);
2681 break; /* just remove the option */
2682 }
2683
2684 /* message length validation */
2685 if (len < sizeof(struct ip6_dest))
2686 return (EINVAL);
2687 dest = (struct ip6_dest *)buf;
2688 destlen = (dest->ip6d_len + 1) << 3;
2689 if (len != destlen)
2690 return (EINVAL);
2691
2692 /*
2693 * Determine the position that the destination options header
2694 * should be inserted; before or after the routing header.
2695 */
2696 switch (optname) {
2697 case IPV6_2292DSTOPTS:
2698 /*
2699 * The old advacned API is ambiguous on this point.
2700 * Our approach is to determine the position based
2701 * according to the existence of a routing header.
2702 * Note, however, that this depends on the order of the
2703 * extension headers in the ancillary data; the 1st
2704 * part of the destination options header must appear
2705 * before the routing header in the ancillary data,
2706 * too.
2707 * RFC3542 solved the ambiguity by introducing
2708 * separate ancillary data or option types.
2709 */
2710 if (opt->ip6po_rthdr == NULL)
2711 newdest = &opt->ip6po_dest1;
2712 else
2713 newdest = &opt->ip6po_dest2;
2714 break;
2715 case IPV6_RTHDRDSTOPTS:
2716 newdest = &opt->ip6po_dest1;
2717 break;
2718 case IPV6_DSTOPTS:
2719 newdest = &opt->ip6po_dest2;
2720 break;
2721 }
2722
2723 /* turn off the previous option, then set the new option. */
2724 ip6_clearpktopts(opt, optname);
2725 *newdest = malloc(destlen, M_IP6OPT, M_NOWAIT);
2726 if (*newdest == NULL)
2727 return (ENOBUFS);
2728 bcopy(dest, *newdest, destlen);
2729
2730 break;
2731 }
2732
2733 case IPV6_2292RTHDR:
2734 case IPV6_RTHDR:
2735 {
2736 struct ip6_rthdr *rth;
2737 int rthlen;
2738
2739 if (len == 0) {
2740 ip6_clearpktopts(opt, IPV6_RTHDR);
2741 break; /* just remove the option */
2742 }
2743
2744 /* message length validation */
2745 if (len < sizeof(struct ip6_rthdr))
2746 return (EINVAL);
2747 rth = (struct ip6_rthdr *)buf;
2748 rthlen = (rth->ip6r_len + 1) << 3;
2749 if (len != rthlen)
2750 return (EINVAL);
2751
2752 switch (rth->ip6r_type) {
2753 case IPV6_RTHDR_TYPE_0:
2754 if (rth->ip6r_len == 0) /* must contain one addr */
2755 return (EINVAL);
2756 if (rth->ip6r_len % 2) /* length must be even */
2757 return (EINVAL);
2758 if (rth->ip6r_len / 2 != rth->ip6r_segleft)
2759 return (EINVAL);
2760 break;
2761 default:
2762 return (EINVAL); /* not supported */
2763 }
2764
2765 /* turn off the previous option */
2766 ip6_clearpktopts(opt, IPV6_RTHDR);
2767 opt->ip6po_rthdr = malloc(rthlen, M_IP6OPT, M_NOWAIT);
2768 if (opt->ip6po_rthdr == NULL)
2769 return (ENOBUFS);
2770 bcopy(rth, opt->ip6po_rthdr, rthlen);
2771
2772 break;
2773 }
2774
2775 case IPV6_USE_MIN_MTU:
2776 if (len != sizeof(int))
2777 return (EINVAL);
2778 minmtupolicy = *(int *)buf;
2779 if (minmtupolicy != IP6PO_MINMTU_MCASTONLY &&
2780 minmtupolicy != IP6PO_MINMTU_DISABLE &&
2781 minmtupolicy != IP6PO_MINMTU_ALL) {
2782 return (EINVAL);
2783 }
2784 opt->ip6po_minmtu = minmtupolicy;
2785 break;
2786
2787 case IPV6_DONTFRAG:
2788 if (len != sizeof(int))
2789 return (EINVAL);
2790
2791 if (uproto == IPPROTO_TCP || *(int *)buf == 0) {
2792 /*
2793 * we ignore this option for TCP sockets.
2794 * (RFC3542 leaves this case unspecified.)
2795 */
2796 opt->ip6po_flags &= ~IP6PO_DONTFRAG;
2797 } else
2798 opt->ip6po_flags |= IP6PO_DONTFRAG;
2799 break;
2800
2801 case IPV6_PREFER_TEMPADDR:
2802 if (len != sizeof(int))
2803 return (EINVAL);
2804 preftemp = *(int *)buf;
2805 if (preftemp != IP6PO_TEMPADDR_SYSTEM &&
2806 preftemp != IP6PO_TEMPADDR_NOTPREFER &&
2807 preftemp != IP6PO_TEMPADDR_PREFER) {
2808 return (EINVAL);
2809 }
2810 opt->ip6po_prefer_tempaddr = preftemp;
2811 break;
2812
2813 default:
2814 return (ENOPROTOOPT);
2815 } /* end of switch */
2816
2817 return (0);
2818}
2819
2820/*
2821 * Routine called from ip6_output() to loop back a copy of an IP6 multicast
2822 * packet to the input queue of a specified interface. Note that this
2823 * calls the output routine of the loopback "driver", but with an interface
2824 * pointer that might NOT be &loif -- easier than replicating that code here.
2825 */
2826void
2827ip6_mloopback(struct ifnet *ifp, struct mbuf *m, struct sockaddr_in6 *dst)
2828{
2829 struct mbuf *copym;
2830 struct ip6_hdr *ip6;
2831
2832 copym = m_copy(m, 0, M_COPYALL);
2833 if (copym == NULL)
2834 return;
2835
2836 /*
2837 * Make sure to deep-copy IPv6 header portion in case the data
2838 * is in an mbuf cluster, so that we can safely override the IPv6
2839 * header portion later.
2840 */
2841 if ((copym->m_flags & M_EXT) != 0 ||
2842 copym->m_len < sizeof(struct ip6_hdr)) {
2843 copym = m_pullup(copym, sizeof(struct ip6_hdr));
2844 if (copym == NULL)
2845 return;
2846 }
2847
2848#ifdef DIAGNOSTIC
2849 if (copym->m_len < sizeof(*ip6)) {
2850 m_freem(copym);
2851 return;
2852 }
2853#endif
2854
2855 ip6 = mtod(copym, struct ip6_hdr *);
2856 /*
2857 * clear embedded scope identifiers if necessary.
2858 * in6_clearscope will touch the addresses only when necessary.
2859 */
2860 in6_clearscope(&ip6->ip6_src);
2861 in6_clearscope(&ip6->ip6_dst);
2862
2863 (void)if_simloop(ifp, copym, dst->sin6_family, 0);
2864}
2865
2866/*
2867 * Chop IPv6 header off from the payload.
2868 */
2869static int
2870ip6_splithdr(struct mbuf *m, struct ip6_exthdrs *exthdrs)
2871{
2872 struct mbuf *mh;
2873 struct ip6_hdr *ip6;
2874
2875 ip6 = mtod(m, struct ip6_hdr *);
2876 if (m->m_len > sizeof(*ip6)) {
2877 MGETHDR(mh, M_DONTWAIT, MT_HEADER);
2878 if (mh == 0) {
2879 m_freem(m);
2880 return ENOBUFS;
2881 }
2882 M_MOVE_PKTHDR(mh, m);
2883 MH_ALIGN(mh, sizeof(*ip6));
2884 m->m_len -= sizeof(*ip6);
2885 m->m_data += sizeof(*ip6);
2886 mh->m_next = m;
2887 m = mh;
2888 m->m_len = sizeof(*ip6);
2889 bcopy((caddr_t)ip6, mtod(m, caddr_t), sizeof(*ip6));
2890 }
2891 exthdrs->ip6e_ip6 = m;
2892 return 0;
2893}
2894
2895/*
2896 * Compute IPv6 extension header length.
2897 */
2898int
2899ip6_optlen(struct inpcb *in6p)
2900{
2901 int len;
2902
2903 if (!in6p->in6p_outputopts)
2904 return 0;
2905
2906 len = 0;
2907#define elen(x) \
2908 (((struct ip6_ext *)(x)) ? (((struct ip6_ext *)(x))->ip6e_len + 1) << 3 : 0)
2909
2910 len += elen(in6p->in6p_outputopts->ip6po_hbh);
2911 if (in6p->in6p_outputopts->ip6po_rthdr)
2912 /* dest1 is valid with rthdr only */
2913 len += elen(in6p->in6p_outputopts->ip6po_dest1);
2914 len += elen(in6p->in6p_outputopts->ip6po_rthdr);
2915 len += elen(in6p->in6p_outputopts->ip6po_dest2);
2916 return len;
2917#undef elen
2918}