Deleted Added
sdiff udiff text old ( 222543 ) new ( 228621 )
full compact
1/*-
2 * Copyright (c) 2006,2007
3 * Damien Bergamini <damien.bergamini@free.fr>
4 * Benjamin Close <Benjamin.Close@clearchain.com>
5 *
6 * Permission to use, copy, modify, and distribute this software for any
7 * purpose with or without fee is hereby granted, provided that the above
8 * copyright notice and this permission notice appear in all copies.
9 *
10 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
11 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
12 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
13 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
14 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
15 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
16 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
17 */
18
19#define VERSION "20071127"
20
21#include <sys/cdefs.h>
22__FBSDID("$FreeBSD: head/sys/dev/wpi/if_wpi.c 222543 2011-05-31 19:08:25Z bschmidt $");
23
24/*
25 * Driver for Intel PRO/Wireless 3945ABG 802.11 network adapters.
26 *
27 * The 3945ABG network adapter doesn't use traditional hardware as
28 * many other adaptors do. Instead at run time the eeprom is set into a known
29 * state and told to load boot firmware. The boot firmware loads an init and a
30 * main binary firmware image into SRAM on the card via DMA.
31 * Once the firmware is loaded, the driver/hw then
32 * communicate by way of circular dma rings via the SRAM to the firmware.
33 *
34 * There is 6 memory rings. 1 command ring, 1 rx data ring & 4 tx data rings.
35 * The 4 tx data rings allow for prioritization QoS.
36 *
37 * The rx data ring consists of 32 dma buffers. Two registers are used to
38 * indicate where in the ring the driver and the firmware are up to. The
39 * driver sets the initial read index (reg1) and the initial write index (reg2),
40 * the firmware updates the read index (reg1) on rx of a packet and fires an
41 * interrupt. The driver then processes the buffers starting at reg1 indicating
42 * to the firmware which buffers have been accessed by updating reg2. At the
43 * same time allocating new memory for the processed buffer.
44 *
45 * A similar thing happens with the tx rings. The difference is the firmware
46 * stop processing buffers once the queue is full and until confirmation
47 * of a successful transmition (tx_intr) has occurred.
48 *
49 * The command ring operates in the same manner as the tx queues.
50 *
51 * All communication direct to the card (ie eeprom) is classed as Stage1
52 * communication
53 *
54 * All communication via the firmware to the card is classed as State2.
55 * The firmware consists of 2 parts. A bootstrap firmware and a runtime
56 * firmware. The bootstrap firmware and runtime firmware are loaded
57 * from host memory via dma to the card then told to execute. From this point
58 * on the majority of communications between the driver and the card goes
59 * via the firmware.
60 */
61
62#include <sys/param.h>
63#include <sys/sysctl.h>
64#include <sys/sockio.h>
65#include <sys/mbuf.h>
66#include <sys/kernel.h>
67#include <sys/socket.h>
68#include <sys/systm.h>
69#include <sys/malloc.h>
70#include <sys/queue.h>
71#include <sys/taskqueue.h>
72#include <sys/module.h>
73#include <sys/bus.h>
74#include <sys/endian.h>
75#include <sys/linker.h>
76#include <sys/firmware.h>
77
78#include <machine/bus.h>
79#include <machine/resource.h>
80#include <sys/rman.h>
81
82#include <dev/pci/pcireg.h>
83#include <dev/pci/pcivar.h>
84
85#include <net/bpf.h>
86#include <net/if.h>
87#include <net/if_arp.h>
88#include <net/ethernet.h>
89#include <net/if_dl.h>
90#include <net/if_media.h>
91#include <net/if_types.h>
92
93#include <net80211/ieee80211_var.h>
94#include <net80211/ieee80211_radiotap.h>
95#include <net80211/ieee80211_regdomain.h>
96#include <net80211/ieee80211_ratectl.h>
97
98#include <netinet/in.h>
99#include <netinet/in_systm.h>
100#include <netinet/in_var.h>
101#include <netinet/ip.h>
102#include <netinet/if_ether.h>
103
104#include <dev/wpi/if_wpireg.h>
105#include <dev/wpi/if_wpivar.h>
106
107#define WPI_DEBUG
108
109#ifdef WPI_DEBUG
110#define DPRINTF(x) do { if (wpi_debug != 0) printf x; } while (0)
111#define DPRINTFN(n, x) do { if (wpi_debug & n) printf x; } while (0)
112#define WPI_DEBUG_SET (wpi_debug != 0)
113
114enum {
115 WPI_DEBUG_UNUSED = 0x00000001, /* Unused */
116 WPI_DEBUG_HW = 0x00000002, /* Stage 1 (eeprom) debugging */
117 WPI_DEBUG_TX = 0x00000004, /* Stage 2 TX intrp debugging*/
118 WPI_DEBUG_RX = 0x00000008, /* Stage 2 RX intrp debugging */
119 WPI_DEBUG_CMD = 0x00000010, /* Stage 2 CMD intrp debugging*/
120 WPI_DEBUG_FIRMWARE = 0x00000020, /* firmware(9) loading debug */
121 WPI_DEBUG_DMA = 0x00000040, /* DMA (de)allocations/syncs */
122 WPI_DEBUG_SCANNING = 0x00000080, /* Stage 2 Scanning debugging */
123 WPI_DEBUG_NOTIFY = 0x00000100, /* State 2 Noftif intr debug */
124 WPI_DEBUG_TEMP = 0x00000200, /* TXPower/Temp Calibration */
125 WPI_DEBUG_OPS = 0x00000400, /* wpi_ops taskq debug */
126 WPI_DEBUG_WATCHDOG = 0x00000800, /* Watch dog debug */
127 WPI_DEBUG_ANY = 0xffffffff
128};
129
130static int wpi_debug = 0;
131SYSCTL_INT(_debug, OID_AUTO, wpi, CTLFLAG_RW, &wpi_debug, 0, "wpi debug level");
132TUNABLE_INT("debug.wpi", &wpi_debug);
133
134#else
135#define DPRINTF(x)
136#define DPRINTFN(n, x)
137#define WPI_DEBUG_SET 0
138#endif
139
140struct wpi_ident {
141 uint16_t vendor;
142 uint16_t device;
143 uint16_t subdevice;
144 const char *name;
145};
146
147static const struct wpi_ident wpi_ident_table[] = {
148 /* The below entries support ABG regardless of the subid */
149 { 0x8086, 0x4222, 0x0, "Intel(R) PRO/Wireless 3945ABG" },
150 { 0x8086, 0x4227, 0x0, "Intel(R) PRO/Wireless 3945ABG" },
151 /* The below entries only support BG */
152 { 0x8086, 0x4222, 0x1005, "Intel(R) PRO/Wireless 3945BG" },
153 { 0x8086, 0x4222, 0x1034, "Intel(R) PRO/Wireless 3945BG" },
154 { 0x8086, 0x4227, 0x1014, "Intel(R) PRO/Wireless 3945BG" },
155 { 0x8086, 0x4222, 0x1044, "Intel(R) PRO/Wireless 3945BG" },
156 { 0, 0, 0, NULL }
157};
158
159static struct ieee80211vap *wpi_vap_create(struct ieee80211com *,
160 const char name[IFNAMSIZ], int unit, int opmode,
161 int flags, const uint8_t bssid[IEEE80211_ADDR_LEN],
162 const uint8_t mac[IEEE80211_ADDR_LEN]);
163static void wpi_vap_delete(struct ieee80211vap *);
164static int wpi_dma_contig_alloc(struct wpi_softc *, struct wpi_dma_info *,
165 void **, bus_size_t, bus_size_t, int);
166static void wpi_dma_contig_free(struct wpi_dma_info *);
167static void wpi_dma_map_addr(void *, bus_dma_segment_t *, int, int);
168static int wpi_alloc_shared(struct wpi_softc *);
169static void wpi_free_shared(struct wpi_softc *);
170static int wpi_alloc_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
171static void wpi_reset_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
172static void wpi_free_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
173static int wpi_alloc_tx_ring(struct wpi_softc *, struct wpi_tx_ring *,
174 int, int);
175static void wpi_reset_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
176static void wpi_free_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
177static int wpi_newstate(struct ieee80211vap *, enum ieee80211_state, int);
178static void wpi_mem_lock(struct wpi_softc *);
179static void wpi_mem_unlock(struct wpi_softc *);
180static uint32_t wpi_mem_read(struct wpi_softc *, uint16_t);
181static void wpi_mem_write(struct wpi_softc *, uint16_t, uint32_t);
182static void wpi_mem_write_region_4(struct wpi_softc *, uint16_t,
183 const uint32_t *, int);
184static uint16_t wpi_read_prom_data(struct wpi_softc *, uint32_t, void *, int);
185static int wpi_alloc_fwmem(struct wpi_softc *);
186static void wpi_free_fwmem(struct wpi_softc *);
187static int wpi_load_firmware(struct wpi_softc *);
188static void wpi_unload_firmware(struct wpi_softc *);
189static int wpi_load_microcode(struct wpi_softc *, const uint8_t *, int);
190static void wpi_rx_intr(struct wpi_softc *, struct wpi_rx_desc *,
191 struct wpi_rx_data *);
192static void wpi_tx_intr(struct wpi_softc *, struct wpi_rx_desc *);
193static void wpi_cmd_intr(struct wpi_softc *, struct wpi_rx_desc *);
194static void wpi_notif_intr(struct wpi_softc *);
195static void wpi_intr(void *);
196static uint8_t wpi_plcp_signal(int);
197static void wpi_watchdog(void *);
198static int wpi_tx_data(struct wpi_softc *, struct mbuf *,
199 struct ieee80211_node *, int);
200static void wpi_start(struct ifnet *);
201static void wpi_start_locked(struct ifnet *);
202static int wpi_raw_xmit(struct ieee80211_node *, struct mbuf *,
203 const struct ieee80211_bpf_params *);
204static void wpi_scan_start(struct ieee80211com *);
205static void wpi_scan_end(struct ieee80211com *);
206static void wpi_set_channel(struct ieee80211com *);
207static void wpi_scan_curchan(struct ieee80211_scan_state *, unsigned long);
208static void wpi_scan_mindwell(struct ieee80211_scan_state *);
209static int wpi_ioctl(struct ifnet *, u_long, caddr_t);
210static void wpi_read_eeprom(struct wpi_softc *,
211 uint8_t macaddr[IEEE80211_ADDR_LEN]);
212static void wpi_read_eeprom_channels(struct wpi_softc *, int);
213static void wpi_read_eeprom_group(struct wpi_softc *, int);
214static int wpi_cmd(struct wpi_softc *, int, const void *, int, int);
215static int wpi_wme_update(struct ieee80211com *);
216static int wpi_mrr_setup(struct wpi_softc *);
217static void wpi_set_led(struct wpi_softc *, uint8_t, uint8_t, uint8_t);
218static void wpi_enable_tsf(struct wpi_softc *, struct ieee80211_node *);
219#if 0
220static int wpi_setup_beacon(struct wpi_softc *, struct ieee80211_node *);
221#endif
222static int wpi_auth(struct wpi_softc *, struct ieee80211vap *);
223static int wpi_run(struct wpi_softc *, struct ieee80211vap *);
224static int wpi_scan(struct wpi_softc *);
225static int wpi_config(struct wpi_softc *);
226static void wpi_stop_master(struct wpi_softc *);
227static int wpi_power_up(struct wpi_softc *);
228static int wpi_reset(struct wpi_softc *);
229static void wpi_hwreset(void *, int);
230static void wpi_rfreset(void *, int);
231static void wpi_hw_config(struct wpi_softc *);
232static void wpi_init(void *);
233static void wpi_init_locked(struct wpi_softc *, int);
234static void wpi_stop(struct wpi_softc *);
235static void wpi_stop_locked(struct wpi_softc *);
236
237static int wpi_set_txpower(struct wpi_softc *, struct ieee80211_channel *,
238 int);
239static void wpi_calib_timeout(void *);
240static void wpi_power_calibration(struct wpi_softc *, int);
241static int wpi_get_power_index(struct wpi_softc *,
242 struct wpi_power_group *, struct ieee80211_channel *, int);
243#ifdef WPI_DEBUG
244static const char *wpi_cmd_str(int);
245#endif
246static int wpi_probe(device_t);
247static int wpi_attach(device_t);
248static int wpi_detach(device_t);
249static int wpi_shutdown(device_t);
250static int wpi_suspend(device_t);
251static int wpi_resume(device_t);
252
253
254static device_method_t wpi_methods[] = {
255 /* Device interface */
256 DEVMETHOD(device_probe, wpi_probe),
257 DEVMETHOD(device_attach, wpi_attach),
258 DEVMETHOD(device_detach, wpi_detach),
259 DEVMETHOD(device_shutdown, wpi_shutdown),
260 DEVMETHOD(device_suspend, wpi_suspend),
261 DEVMETHOD(device_resume, wpi_resume),
262
263 { 0, 0 }
264};
265
266static driver_t wpi_driver = {
267 "wpi",
268 wpi_methods,
269 sizeof (struct wpi_softc)
270};
271
272static devclass_t wpi_devclass;
273
274DRIVER_MODULE(wpi, pci, wpi_driver, wpi_devclass, 0, 0);
275
276MODULE_VERSION(wpi, 1);
277
278static const uint8_t wpi_ridx_to_plcp[] = {
279 /* OFDM: IEEE Std 802.11a-1999, pp. 14 Table 80 */
280 /* R1-R4 (ral/ural is R4-R1) */
281 0xd, 0xf, 0x5, 0x7, 0x9, 0xb, 0x1, 0x3,
282 /* CCK: device-dependent */
283 10, 20, 55, 110
284};
285static const uint8_t wpi_ridx_to_rate[] = {
286 12, 18, 24, 36, 48, 72, 96, 108, /* OFDM */
287 2, 4, 11, 22 /*CCK */
288};
289
290
291static int
292wpi_probe(device_t dev)
293{
294 const struct wpi_ident *ident;
295
296 for (ident = wpi_ident_table; ident->name != NULL; ident++) {
297 if (pci_get_vendor(dev) == ident->vendor &&
298 pci_get_device(dev) == ident->device) {
299 device_set_desc(dev, ident->name);
300 return 0;
301 }
302 }
303 return ENXIO;
304}
305
306/**
307 * Load the firmare image from disk to the allocated dma buffer.
308 * we also maintain the reference to the firmware pointer as there
309 * is times where we may need to reload the firmware but we are not
310 * in a context that can access the filesystem (ie taskq cause by restart)
311 *
312 * @return 0 on success, an errno on failure
313 */
314static int
315wpi_load_firmware(struct wpi_softc *sc)
316{
317 const struct firmware *fp;
318 struct wpi_dma_info *dma = &sc->fw_dma;
319 const struct wpi_firmware_hdr *hdr;
320 const uint8_t *itext, *idata, *rtext, *rdata, *btext;
321 uint32_t itextsz, idatasz, rtextsz, rdatasz, btextsz;
322 int error;
323
324 DPRINTFN(WPI_DEBUG_FIRMWARE,
325 ("Attempting Loading Firmware from wpi_fw module\n"));
326
327 WPI_UNLOCK(sc);
328
329 if (sc->fw_fp == NULL && (sc->fw_fp = firmware_get("wpifw")) == NULL) {
330 device_printf(sc->sc_dev,
331 "could not load firmware image 'wpifw'\n");
332 error = ENOENT;
333 WPI_LOCK(sc);
334 goto fail;
335 }
336
337 fp = sc->fw_fp;
338
339 WPI_LOCK(sc);
340
341 /* Validate the firmware is minimum a particular version */
342 if (fp->version < WPI_FW_MINVERSION) {
343 device_printf(sc->sc_dev,
344 "firmware version is too old. Need %d, got %d\n",
345 WPI_FW_MINVERSION,
346 fp->version);
347 error = ENXIO;
348 goto fail;
349 }
350
351 if (fp->datasize < sizeof (struct wpi_firmware_hdr)) {
352 device_printf(sc->sc_dev,
353 "firmware file too short: %zu bytes\n", fp->datasize);
354 error = ENXIO;
355 goto fail;
356 }
357
358 hdr = (const struct wpi_firmware_hdr *)fp->data;
359
360 /* | RUNTIME FIRMWARE | INIT FIRMWARE | BOOT FW |
361 |HDR|<--TEXT-->|<--DATA-->|<--TEXT-->|<--DATA-->|<--TEXT-->| */
362
363 rtextsz = le32toh(hdr->rtextsz);
364 rdatasz = le32toh(hdr->rdatasz);
365 itextsz = le32toh(hdr->itextsz);
366 idatasz = le32toh(hdr->idatasz);
367 btextsz = le32toh(hdr->btextsz);
368
369 /* check that all firmware segments are present */
370 if (fp->datasize < sizeof (struct wpi_firmware_hdr) +
371 rtextsz + rdatasz + itextsz + idatasz + btextsz) {
372 device_printf(sc->sc_dev,
373 "firmware file too short: %zu bytes\n", fp->datasize);
374 error = ENXIO; /* XXX appropriate error code? */
375 goto fail;
376 }
377
378 /* get pointers to firmware segments */
379 rtext = (const uint8_t *)(hdr + 1);
380 rdata = rtext + rtextsz;
381 itext = rdata + rdatasz;
382 idata = itext + itextsz;
383 btext = idata + idatasz;
384
385 DPRINTFN(WPI_DEBUG_FIRMWARE,
386 ("Firmware Version: Major %d, Minor %d, Driver %d, \n"
387 "runtime (text: %u, data: %u) init (text: %u, data %u) boot (text %u)\n",
388 (le32toh(hdr->version) & 0xff000000) >> 24,
389 (le32toh(hdr->version) & 0x00ff0000) >> 16,
390 (le32toh(hdr->version) & 0x0000ffff),
391 rtextsz, rdatasz,
392 itextsz, idatasz, btextsz));
393
394 DPRINTFN(WPI_DEBUG_FIRMWARE,("rtext 0x%x\n", *(const uint32_t *)rtext));
395 DPRINTFN(WPI_DEBUG_FIRMWARE,("rdata 0x%x\n", *(const uint32_t *)rdata));
396 DPRINTFN(WPI_DEBUG_FIRMWARE,("itext 0x%x\n", *(const uint32_t *)itext));
397 DPRINTFN(WPI_DEBUG_FIRMWARE,("idata 0x%x\n", *(const uint32_t *)idata));
398 DPRINTFN(WPI_DEBUG_FIRMWARE,("btext 0x%x\n", *(const uint32_t *)btext));
399
400 /* sanity checks */
401 if (rtextsz > WPI_FW_MAIN_TEXT_MAXSZ ||
402 rdatasz > WPI_FW_MAIN_DATA_MAXSZ ||
403 itextsz > WPI_FW_INIT_TEXT_MAXSZ ||
404 idatasz > WPI_FW_INIT_DATA_MAXSZ ||
405 btextsz > WPI_FW_BOOT_TEXT_MAXSZ ||
406 (btextsz & 3) != 0) {
407 device_printf(sc->sc_dev, "firmware invalid\n");
408 error = EINVAL;
409 goto fail;
410 }
411
412 /* copy initialization images into pre-allocated DMA-safe memory */
413 memcpy(dma->vaddr, idata, idatasz);
414 memcpy(dma->vaddr + WPI_FW_INIT_DATA_MAXSZ, itext, itextsz);
415
416 bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
417
418 /* tell adapter where to find initialization images */
419 wpi_mem_lock(sc);
420 wpi_mem_write(sc, WPI_MEM_DATA_BASE, dma->paddr);
421 wpi_mem_write(sc, WPI_MEM_DATA_SIZE, idatasz);
422 wpi_mem_write(sc, WPI_MEM_TEXT_BASE,
423 dma->paddr + WPI_FW_INIT_DATA_MAXSZ);
424 wpi_mem_write(sc, WPI_MEM_TEXT_SIZE, itextsz);
425 wpi_mem_unlock(sc);
426
427 /* load firmware boot code */
428 if ((error = wpi_load_microcode(sc, btext, btextsz)) != 0) {
429 device_printf(sc->sc_dev, "Failed to load microcode\n");
430 goto fail;
431 }
432
433 /* now press "execute" */
434 WPI_WRITE(sc, WPI_RESET, 0);
435
436 /* wait at most one second for the first alive notification */
437 if ((error = msleep(sc, &sc->sc_mtx, PCATCH, "wpiinit", hz)) != 0) {
438 device_printf(sc->sc_dev,
439 "timeout waiting for adapter to initialize\n");
440 goto fail;
441 }
442
443 /* copy runtime images into pre-allocated DMA-sage memory */
444 memcpy(dma->vaddr, rdata, rdatasz);
445 memcpy(dma->vaddr + WPI_FW_MAIN_DATA_MAXSZ, rtext, rtextsz);
446 bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
447
448 /* tell adapter where to find runtime images */
449 wpi_mem_lock(sc);
450 wpi_mem_write(sc, WPI_MEM_DATA_BASE, dma->paddr);
451 wpi_mem_write(sc, WPI_MEM_DATA_SIZE, rdatasz);
452 wpi_mem_write(sc, WPI_MEM_TEXT_BASE,
453 dma->paddr + WPI_FW_MAIN_DATA_MAXSZ);
454 wpi_mem_write(sc, WPI_MEM_TEXT_SIZE, WPI_FW_UPDATED | rtextsz);
455 wpi_mem_unlock(sc);
456
457 /* wait at most one second for the first alive notification */
458 if ((error = msleep(sc, &sc->sc_mtx, PCATCH, "wpiinit", hz)) != 0) {
459 device_printf(sc->sc_dev,
460 "timeout waiting for adapter to initialize2\n");
461 goto fail;
462 }
463
464 DPRINTFN(WPI_DEBUG_FIRMWARE,
465 ("Firmware loaded to driver successfully\n"));
466 return error;
467fail:
468 wpi_unload_firmware(sc);
469 return error;
470}
471
472/**
473 * Free the referenced firmware image
474 */
475static void
476wpi_unload_firmware(struct wpi_softc *sc)
477{
478
479 if (sc->fw_fp) {
480 WPI_UNLOCK(sc);
481 firmware_put(sc->fw_fp, FIRMWARE_UNLOAD);
482 WPI_LOCK(sc);
483 sc->fw_fp = NULL;
484 }
485}
486
487static int
488wpi_attach(device_t dev)
489{
490 struct wpi_softc *sc = device_get_softc(dev);
491 struct ifnet *ifp;
492 struct ieee80211com *ic;
493 int ac, error, supportsa = 1;
494 uint32_t tmp;
495 const struct wpi_ident *ident;
496 uint8_t macaddr[IEEE80211_ADDR_LEN];
497
498 sc->sc_dev = dev;
499
500 if (bootverbose || WPI_DEBUG_SET)
501 device_printf(sc->sc_dev,"Driver Revision %s\n", VERSION);
502
503 /*
504 * Some card's only support 802.11b/g not a, check to see if
505 * this is one such card. A 0x0 in the subdevice table indicates
506 * the entire subdevice range is to be ignored.
507 */
508 for (ident = wpi_ident_table; ident->name != NULL; ident++) {
509 if (ident->subdevice &&
510 pci_get_subdevice(dev) == ident->subdevice) {
511 supportsa = 0;
512 break;
513 }
514 }
515
516 /* Create the tasks that can be queued */
517 TASK_INIT(&sc->sc_restarttask, 0, wpi_hwreset, sc);
518 TASK_INIT(&sc->sc_radiotask, 0, wpi_rfreset, sc);
519
520 WPI_LOCK_INIT(sc);
521
522 callout_init_mtx(&sc->calib_to, &sc->sc_mtx, 0);
523 callout_init_mtx(&sc->watchdog_to, &sc->sc_mtx, 0);
524
525 if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
526 device_printf(dev, "chip is in D%d power mode "
527 "-- setting to D0\n", pci_get_powerstate(dev));
528 pci_set_powerstate(dev, PCI_POWERSTATE_D0);
529 }
530
531 /* disable the retry timeout register */
532 pci_write_config(dev, 0x41, 0, 1);
533
534 /* enable bus-mastering */
535 pci_enable_busmaster(dev);
536
537 sc->mem_rid = PCIR_BAR(0);
538 sc->mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &sc->mem_rid,
539 RF_ACTIVE);
540 if (sc->mem == NULL) {
541 device_printf(dev, "could not allocate memory resource\n");
542 error = ENOMEM;
543 goto fail;
544 }
545
546 sc->sc_st = rman_get_bustag(sc->mem);
547 sc->sc_sh = rman_get_bushandle(sc->mem);
548
549 sc->irq_rid = 0;
550 sc->irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &sc->irq_rid,
551 RF_ACTIVE | RF_SHAREABLE);
552 if (sc->irq == NULL) {
553 device_printf(dev, "could not allocate interrupt resource\n");
554 error = ENOMEM;
555 goto fail;
556 }
557
558 /*
559 * Allocate DMA memory for firmware transfers.
560 */
561 if ((error = wpi_alloc_fwmem(sc)) != 0) {
562 printf(": could not allocate firmware memory\n");
563 error = ENOMEM;
564 goto fail;
565 }
566
567 /*
568 * Put adapter into a known state.
569 */
570 if ((error = wpi_reset(sc)) != 0) {
571 device_printf(dev, "could not reset adapter\n");
572 goto fail;
573 }
574
575 wpi_mem_lock(sc);
576 tmp = wpi_mem_read(sc, WPI_MEM_PCIDEV);
577 if (bootverbose || WPI_DEBUG_SET)
578 device_printf(sc->sc_dev, "Hardware Revision (0x%X)\n", tmp);
579
580 wpi_mem_unlock(sc);
581
582 /* Allocate shared page */
583 if ((error = wpi_alloc_shared(sc)) != 0) {
584 device_printf(dev, "could not allocate shared page\n");
585 goto fail;
586 }
587
588 /* tx data queues - 4 for QoS purposes */
589 for (ac = 0; ac < WME_NUM_AC; ac++) {
590 error = wpi_alloc_tx_ring(sc, &sc->txq[ac], WPI_TX_RING_COUNT, ac);
591 if (error != 0) {
592 device_printf(dev, "could not allocate Tx ring %d\n",ac);
593 goto fail;
594 }
595 }
596
597 /* command queue to talk to the card's firmware */
598 error = wpi_alloc_tx_ring(sc, &sc->cmdq, WPI_CMD_RING_COUNT, 4);
599 if (error != 0) {
600 device_printf(dev, "could not allocate command ring\n");
601 goto fail;
602 }
603
604 /* receive data queue */
605 error = wpi_alloc_rx_ring(sc, &sc->rxq);
606 if (error != 0) {
607 device_printf(dev, "could not allocate Rx ring\n");
608 goto fail;
609 }
610
611 ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211);
612 if (ifp == NULL) {
613 device_printf(dev, "can not if_alloc()\n");
614 error = ENOMEM;
615 goto fail;
616 }
617 ic = ifp->if_l2com;
618
619 ic->ic_ifp = ifp;
620 ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */
621 ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */
622
623 /* set device capabilities */
624 ic->ic_caps =
625 IEEE80211_C_STA /* station mode supported */
626 | IEEE80211_C_MONITOR /* monitor mode supported */
627 | IEEE80211_C_TXPMGT /* tx power management */
628 | IEEE80211_C_SHSLOT /* short slot time supported */
629 | IEEE80211_C_SHPREAMBLE /* short preamble supported */
630 | IEEE80211_C_WPA /* 802.11i */
631/* XXX looks like WME is partly supported? */
632#if 0
633 | IEEE80211_C_IBSS /* IBSS mode support */
634 | IEEE80211_C_BGSCAN /* capable of bg scanning */
635 | IEEE80211_C_WME /* 802.11e */
636 | IEEE80211_C_HOSTAP /* Host access point mode */
637#endif
638 ;
639
640 /*
641 * Read in the eeprom and also setup the channels for
642 * net80211. We don't set the rates as net80211 does this for us
643 */
644 wpi_read_eeprom(sc, macaddr);
645
646 if (bootverbose || WPI_DEBUG_SET) {
647 device_printf(sc->sc_dev, "Regulatory Domain: %.4s\n", sc->domain);
648 device_printf(sc->sc_dev, "Hardware Type: %c\n",
649 sc->type > 1 ? 'B': '?');
650 device_printf(sc->sc_dev, "Hardware Revision: %c\n",
651 ((le16toh(sc->rev) & 0xf0) == 0xd0) ? 'D': '?');
652 device_printf(sc->sc_dev, "SKU %s support 802.11a\n",
653 supportsa ? "does" : "does not");
654
655 /* XXX hw_config uses the PCIDEV for the Hardware rev. Must check
656 what sc->rev really represents - benjsc 20070615 */
657 }
658
659 if_initname(ifp, device_get_name(dev), device_get_unit(dev));
660 ifp->if_softc = sc;
661 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
662 ifp->if_init = wpi_init;
663 ifp->if_ioctl = wpi_ioctl;
664 ifp->if_start = wpi_start;
665 IFQ_SET_MAXLEN(&ifp->if_snd, ifqmaxlen);
666 ifp->if_snd.ifq_drv_maxlen = ifqmaxlen;
667 IFQ_SET_READY(&ifp->if_snd);
668
669 ieee80211_ifattach(ic, macaddr);
670 /* override default methods */
671 ic->ic_raw_xmit = wpi_raw_xmit;
672 ic->ic_wme.wme_update = wpi_wme_update;
673 ic->ic_scan_start = wpi_scan_start;
674 ic->ic_scan_end = wpi_scan_end;
675 ic->ic_set_channel = wpi_set_channel;
676 ic->ic_scan_curchan = wpi_scan_curchan;
677 ic->ic_scan_mindwell = wpi_scan_mindwell;
678
679 ic->ic_vap_create = wpi_vap_create;
680 ic->ic_vap_delete = wpi_vap_delete;
681
682 ieee80211_radiotap_attach(ic,
683 &sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap),
684 WPI_TX_RADIOTAP_PRESENT,
685 &sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap),
686 WPI_RX_RADIOTAP_PRESENT);
687
688 /*
689 * Hook our interrupt after all initialization is complete.
690 */
691 error = bus_setup_intr(dev, sc->irq, INTR_TYPE_NET |INTR_MPSAFE,
692 NULL, wpi_intr, sc, &sc->sc_ih);
693 if (error != 0) {
694 device_printf(dev, "could not set up interrupt\n");
695 goto fail;
696 }
697
698 if (bootverbose)
699 ieee80211_announce(ic);
700#ifdef XXX_DEBUG
701 ieee80211_announce_channels(ic);
702#endif
703 return 0;
704
705fail: wpi_detach(dev);
706 return ENXIO;
707}
708
709static int
710wpi_detach(device_t dev)
711{
712 struct wpi_softc *sc = device_get_softc(dev);
713 struct ifnet *ifp = sc->sc_ifp;
714 struct ieee80211com *ic;
715 int ac;
716
717 if (ifp != NULL) {
718 ic = ifp->if_l2com;
719
720 ieee80211_draintask(ic, &sc->sc_restarttask);
721 ieee80211_draintask(ic, &sc->sc_radiotask);
722 wpi_stop(sc);
723 callout_drain(&sc->watchdog_to);
724 callout_drain(&sc->calib_to);
725 ieee80211_ifdetach(ic);
726 }
727
728 WPI_LOCK(sc);
729 if (sc->txq[0].data_dmat) {
730 for (ac = 0; ac < WME_NUM_AC; ac++)
731 wpi_free_tx_ring(sc, &sc->txq[ac]);
732
733 wpi_free_tx_ring(sc, &sc->cmdq);
734 wpi_free_rx_ring(sc, &sc->rxq);
735 wpi_free_shared(sc);
736 }
737
738 if (sc->fw_fp != NULL) {
739 wpi_unload_firmware(sc);
740 }
741
742 if (sc->fw_dma.tag)
743 wpi_free_fwmem(sc);
744 WPI_UNLOCK(sc);
745
746 if (sc->irq != NULL) {
747 bus_teardown_intr(dev, sc->irq, sc->sc_ih);
748 bus_release_resource(dev, SYS_RES_IRQ, sc->irq_rid, sc->irq);
749 }
750
751 if (sc->mem != NULL)
752 bus_release_resource(dev, SYS_RES_MEMORY, sc->mem_rid, sc->mem);
753
754 if (ifp != NULL)
755 if_free(ifp);
756
757 WPI_LOCK_DESTROY(sc);
758
759 return 0;
760}
761
762static struct ieee80211vap *
763wpi_vap_create(struct ieee80211com *ic,
764 const char name[IFNAMSIZ], int unit, int opmode, int flags,
765 const uint8_t bssid[IEEE80211_ADDR_LEN],
766 const uint8_t mac[IEEE80211_ADDR_LEN])
767{
768 struct wpi_vap *wvp;
769 struct ieee80211vap *vap;
770
771 if (!TAILQ_EMPTY(&ic->ic_vaps)) /* only one at a time */
772 return NULL;
773 wvp = (struct wpi_vap *) malloc(sizeof(struct wpi_vap),
774 M_80211_VAP, M_NOWAIT | M_ZERO);
775 if (wvp == NULL)
776 return NULL;
777 vap = &wvp->vap;
778 ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, bssid, mac);
779 /* override with driver methods */
780 wvp->newstate = vap->iv_newstate;
781 vap->iv_newstate = wpi_newstate;
782
783 ieee80211_ratectl_init(vap);
784 /* complete setup */
785 ieee80211_vap_attach(vap, ieee80211_media_change, ieee80211_media_status);
786 ic->ic_opmode = opmode;
787 return vap;
788}
789
790static void
791wpi_vap_delete(struct ieee80211vap *vap)
792{
793 struct wpi_vap *wvp = WPI_VAP(vap);
794
795 ieee80211_ratectl_deinit(vap);
796 ieee80211_vap_detach(vap);
797 free(wvp, M_80211_VAP);
798}
799
800static void
801wpi_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
802{
803 if (error != 0)
804 return;
805
806 KASSERT(nsegs == 1, ("too many DMA segments, %d should be 1", nsegs));
807
808 *(bus_addr_t *)arg = segs[0].ds_addr;
809}
810
811/*
812 * Allocates a contiguous block of dma memory of the requested size and
813 * alignment. Due to limitations of the FreeBSD dma subsystem as of 20071217,
814 * allocations greater than 4096 may fail. Hence if the requested alignment is
815 * greater we allocate 'alignment' size extra memory and shift the vaddr and
816 * paddr after the dma load. This bypasses the problem at the cost of a little
817 * more memory.
818 */
819static int
820wpi_dma_contig_alloc(struct wpi_softc *sc, struct wpi_dma_info *dma,
821 void **kvap, bus_size_t size, bus_size_t alignment, int flags)
822{
823 int error;
824 bus_size_t align;
825 bus_size_t reqsize;
826
827 DPRINTFN(WPI_DEBUG_DMA,
828 ("Size: %zd - alignment %zd\n", size, alignment));
829
830 dma->size = size;
831 dma->tag = NULL;
832
833 if (alignment > 4096) {
834 align = PAGE_SIZE;
835 reqsize = size + alignment;
836 } else {
837 align = alignment;
838 reqsize = size;
839 }
840 error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), align,
841 0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR,
842 NULL, NULL, reqsize,
843 1, reqsize, flags,
844 NULL, NULL, &dma->tag);
845 if (error != 0) {
846 device_printf(sc->sc_dev,
847 "could not create shared page DMA tag\n");
848 goto fail;
849 }
850 error = bus_dmamem_alloc(dma->tag, (void **)&dma->vaddr_start,
851 flags | BUS_DMA_ZERO, &dma->map);
852 if (error != 0) {
853 device_printf(sc->sc_dev,
854 "could not allocate shared page DMA memory\n");
855 goto fail;
856 }
857
858 error = bus_dmamap_load(dma->tag, dma->map, dma->vaddr_start,
859 reqsize, wpi_dma_map_addr, &dma->paddr_start, flags);
860
861 /* Save the original pointers so we can free all the memory */
862 dma->paddr = dma->paddr_start;
863 dma->vaddr = dma->vaddr_start;
864
865 /*
866 * Check the alignment and increment by 4096 until we get the
867 * requested alignment. Fail if can't obtain the alignment
868 * we requested.
869 */
870 if ((dma->paddr & (alignment -1 )) != 0) {
871 int i;
872
873 for (i = 0; i < alignment / 4096; i++) {
874 if ((dma->paddr & (alignment - 1 )) == 0)
875 break;
876 dma->paddr += 4096;
877 dma->vaddr += 4096;
878 }
879 if (i == alignment / 4096) {
880 device_printf(sc->sc_dev,
881 "alignment requirement was not satisfied\n");
882 goto fail;
883 }
884 }
885
886 if (error != 0) {
887 device_printf(sc->sc_dev,
888 "could not load shared page DMA map\n");
889 goto fail;
890 }
891
892 if (kvap != NULL)
893 *kvap = dma->vaddr;
894
895 return 0;
896
897fail:
898 wpi_dma_contig_free(dma);
899 return error;
900}
901
902static void
903wpi_dma_contig_free(struct wpi_dma_info *dma)
904{
905 if (dma->tag) {
906 if (dma->map != NULL) {
907 if (dma->paddr_start != 0) {
908 bus_dmamap_sync(dma->tag, dma->map,
909 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
910 bus_dmamap_unload(dma->tag, dma->map);
911 }
912 bus_dmamem_free(dma->tag, &dma->vaddr_start, dma->map);
913 }
914 bus_dma_tag_destroy(dma->tag);
915 }
916}
917
918/*
919 * Allocate a shared page between host and NIC.
920 */
921static int
922wpi_alloc_shared(struct wpi_softc *sc)
923{
924 int error;
925
926 error = wpi_dma_contig_alloc(sc, &sc->shared_dma,
927 (void **)&sc->shared, sizeof (struct wpi_shared),
928 PAGE_SIZE,
929 BUS_DMA_NOWAIT);
930
931 if (error != 0) {
932 device_printf(sc->sc_dev,
933 "could not allocate shared area DMA memory\n");
934 }
935
936 return error;
937}
938
939static void
940wpi_free_shared(struct wpi_softc *sc)
941{
942 wpi_dma_contig_free(&sc->shared_dma);
943}
944
945static int
946wpi_alloc_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
947{
948
949 int i, error;
950
951 ring->cur = 0;
952
953 error = wpi_dma_contig_alloc(sc, &ring->desc_dma,
954 (void **)&ring->desc, WPI_RX_RING_COUNT * sizeof (uint32_t),
955 WPI_RING_DMA_ALIGN, BUS_DMA_NOWAIT);
956
957 if (error != 0) {
958 device_printf(sc->sc_dev,
959 "%s: could not allocate rx ring DMA memory, error %d\n",
960 __func__, error);
961 goto fail;
962 }
963
964 error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0,
965 BUS_SPACE_MAXADDR_32BIT,
966 BUS_SPACE_MAXADDR, NULL, NULL, MJUMPAGESIZE, 1,
967 MJUMPAGESIZE, BUS_DMA_NOWAIT, NULL, NULL, &ring->data_dmat);
968 if (error != 0) {
969 device_printf(sc->sc_dev,
970 "%s: bus_dma_tag_create_failed, error %d\n",
971 __func__, error);
972 goto fail;
973 }
974
975 /*
976 * Setup Rx buffers.
977 */
978 for (i = 0; i < WPI_RX_RING_COUNT; i++) {
979 struct wpi_rx_data *data = &ring->data[i];
980 struct mbuf *m;
981 bus_addr_t paddr;
982
983 error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
984 if (error != 0) {
985 device_printf(sc->sc_dev,
986 "%s: bus_dmamap_create failed, error %d\n",
987 __func__, error);
988 goto fail;
989 }
990 m = m_getjcl(M_DONTWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE);
991 if (m == NULL) {
992 device_printf(sc->sc_dev,
993 "%s: could not allocate rx mbuf\n", __func__);
994 error = ENOMEM;
995 goto fail;
996 }
997 /* map page */
998 error = bus_dmamap_load(ring->data_dmat, data->map,
999 mtod(m, caddr_t), MJUMPAGESIZE,
1000 wpi_dma_map_addr, &paddr, BUS_DMA_NOWAIT);
1001 if (error != 0 && error != EFBIG) {
1002 device_printf(sc->sc_dev,
1003 "%s: bus_dmamap_load failed, error %d\n",
1004 __func__, error);
1005 m_freem(m);
1006 error = ENOMEM; /* XXX unique code */
1007 goto fail;
1008 }
1009 bus_dmamap_sync(ring->data_dmat, data->map,
1010 BUS_DMASYNC_PREWRITE);
1011
1012 data->m = m;
1013 ring->desc[i] = htole32(paddr);
1014 }
1015 bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
1016 BUS_DMASYNC_PREWRITE);
1017 return 0;
1018fail:
1019 wpi_free_rx_ring(sc, ring);
1020 return error;
1021}
1022
1023static void
1024wpi_reset_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
1025{
1026 int ntries;
1027
1028 wpi_mem_lock(sc);
1029
1030 WPI_WRITE(sc, WPI_RX_CONFIG, 0);
1031
1032 for (ntries = 0; ntries < 100; ntries++) {
1033 if (WPI_READ(sc, WPI_RX_STATUS) & WPI_RX_IDLE)
1034 break;
1035 DELAY(10);
1036 }
1037
1038 wpi_mem_unlock(sc);
1039
1040#ifdef WPI_DEBUG
1041 if (ntries == 100 && wpi_debug > 0)
1042 device_printf(sc->sc_dev, "timeout resetting Rx ring\n");
1043#endif
1044
1045 ring->cur = 0;
1046}
1047
1048static void
1049wpi_free_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
1050{
1051 int i;
1052
1053 wpi_dma_contig_free(&ring->desc_dma);
1054
1055 for (i = 0; i < WPI_RX_RING_COUNT; i++) {
1056 struct wpi_rx_data *data = &ring->data[i];
1057
1058 if (data->m != NULL) {
1059 bus_dmamap_sync(ring->data_dmat, data->map,
1060 BUS_DMASYNC_POSTREAD);
1061 bus_dmamap_unload(ring->data_dmat, data->map);
1062 m_freem(data->m);
1063 }
1064 if (data->map != NULL)
1065 bus_dmamap_destroy(ring->data_dmat, data->map);
1066 }
1067}
1068
1069static int
1070wpi_alloc_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring, int count,
1071 int qid)
1072{
1073 struct wpi_tx_data *data;
1074 int i, error;
1075
1076 ring->qid = qid;
1077 ring->count = count;
1078 ring->queued = 0;
1079 ring->cur = 0;
1080 ring->data = NULL;
1081
1082 error = wpi_dma_contig_alloc(sc, &ring->desc_dma,
1083 (void **)&ring->desc, count * sizeof (struct wpi_tx_desc),
1084 WPI_RING_DMA_ALIGN, BUS_DMA_NOWAIT);
1085
1086 if (error != 0) {
1087 device_printf(sc->sc_dev, "could not allocate tx dma memory\n");
1088 goto fail;
1089 }
1090
1091 /* update shared page with ring's base address */
1092 sc->shared->txbase[qid] = htole32(ring->desc_dma.paddr);
1093
1094 error = wpi_dma_contig_alloc(sc, &ring->cmd_dma, (void **)&ring->cmd,
1095 count * sizeof (struct wpi_tx_cmd), WPI_RING_DMA_ALIGN,
1096 BUS_DMA_NOWAIT);
1097
1098 if (error != 0) {
1099 device_printf(sc->sc_dev,
1100 "could not allocate tx command DMA memory\n");
1101 goto fail;
1102 }
1103
1104 ring->data = malloc(count * sizeof (struct wpi_tx_data), M_DEVBUF,
1105 M_NOWAIT | M_ZERO);
1106 if (ring->data == NULL) {
1107 device_printf(sc->sc_dev,
1108 "could not allocate tx data slots\n");
1109 goto fail;
1110 }
1111
1112 error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0,
1113 BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES,
1114 WPI_MAX_SCATTER - 1, MCLBYTES, BUS_DMA_NOWAIT, NULL, NULL,
1115 &ring->data_dmat);
1116 if (error != 0) {
1117 device_printf(sc->sc_dev, "could not create data DMA tag\n");
1118 goto fail;
1119 }
1120
1121 for (i = 0; i < count; i++) {
1122 data = &ring->data[i];
1123
1124 error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
1125 if (error != 0) {
1126 device_printf(sc->sc_dev,
1127 "could not create tx buf DMA map\n");
1128 goto fail;
1129 }
1130 bus_dmamap_sync(ring->data_dmat, data->map,
1131 BUS_DMASYNC_PREWRITE);
1132 }
1133
1134 return 0;
1135
1136fail:
1137 wpi_free_tx_ring(sc, ring);
1138 return error;
1139}
1140
1141static void
1142wpi_reset_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
1143{
1144 struct wpi_tx_data *data;
1145 int i, ntries;
1146
1147 wpi_mem_lock(sc);
1148
1149 WPI_WRITE(sc, WPI_TX_CONFIG(ring->qid), 0);
1150 for (ntries = 0; ntries < 100; ntries++) {
1151 if (WPI_READ(sc, WPI_TX_STATUS) & WPI_TX_IDLE(ring->qid))
1152 break;
1153 DELAY(10);
1154 }
1155#ifdef WPI_DEBUG
1156 if (ntries == 100 && wpi_debug > 0)
1157 device_printf(sc->sc_dev, "timeout resetting Tx ring %d\n",
1158 ring->qid);
1159#endif
1160 wpi_mem_unlock(sc);
1161
1162 for (i = 0; i < ring->count; i++) {
1163 data = &ring->data[i];
1164
1165 if (data->m != NULL) {
1166 bus_dmamap_unload(ring->data_dmat, data->map);
1167 m_freem(data->m);
1168 data->m = NULL;
1169 }
1170 }
1171
1172 ring->queued = 0;
1173 ring->cur = 0;
1174}
1175
1176static void
1177wpi_free_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
1178{
1179 struct wpi_tx_data *data;
1180 int i;
1181
1182 wpi_dma_contig_free(&ring->desc_dma);
1183 wpi_dma_contig_free(&ring->cmd_dma);
1184
1185 if (ring->data != NULL) {
1186 for (i = 0; i < ring->count; i++) {
1187 data = &ring->data[i];
1188
1189 if (data->m != NULL) {
1190 bus_dmamap_sync(ring->data_dmat, data->map,
1191 BUS_DMASYNC_POSTWRITE);
1192 bus_dmamap_unload(ring->data_dmat, data->map);
1193 m_freem(data->m);
1194 data->m = NULL;
1195 }
1196 }
1197 free(ring->data, M_DEVBUF);
1198 }
1199
1200 if (ring->data_dmat != NULL)
1201 bus_dma_tag_destroy(ring->data_dmat);
1202}
1203
1204static int
1205wpi_shutdown(device_t dev)
1206{
1207 struct wpi_softc *sc = device_get_softc(dev);
1208
1209 WPI_LOCK(sc);
1210 wpi_stop_locked(sc);
1211 wpi_unload_firmware(sc);
1212 WPI_UNLOCK(sc);
1213
1214 return 0;
1215}
1216
1217static int
1218wpi_suspend(device_t dev)
1219{
1220 struct wpi_softc *sc = device_get_softc(dev);
1221
1222 wpi_stop(sc);
1223 return 0;
1224}
1225
1226static int
1227wpi_resume(device_t dev)
1228{
1229 struct wpi_softc *sc = device_get_softc(dev);
1230 struct ifnet *ifp = sc->sc_ifp;
1231
1232 pci_write_config(dev, 0x41, 0, 1);
1233
1234 if (ifp->if_flags & IFF_UP) {
1235 wpi_init(ifp->if_softc);
1236 if (ifp->if_drv_flags & IFF_DRV_RUNNING)
1237 wpi_start(ifp);
1238 }
1239 return 0;
1240}
1241
1242/**
1243 * Called by net80211 when ever there is a change to 80211 state machine
1244 */
1245static int
1246wpi_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
1247{
1248 struct wpi_vap *wvp = WPI_VAP(vap);
1249 struct ieee80211com *ic = vap->iv_ic;
1250 struct ifnet *ifp = ic->ic_ifp;
1251 struct wpi_softc *sc = ifp->if_softc;
1252 int error;
1253
1254 DPRINTF(("%s: %s -> %s flags 0x%x\n", __func__,
1255 ieee80211_state_name[vap->iv_state],
1256 ieee80211_state_name[nstate], sc->flags));
1257
1258 IEEE80211_UNLOCK(ic);
1259 WPI_LOCK(sc);
1260 if (nstate == IEEE80211_S_SCAN && vap->iv_state != IEEE80211_S_INIT) {
1261 /*
1262 * On !INIT -> SCAN transitions, we need to clear any possible
1263 * knowledge about associations.
1264 */
1265 error = wpi_config(sc);
1266 if (error != 0) {
1267 device_printf(sc->sc_dev,
1268 "%s: device config failed, error %d\n",
1269 __func__, error);
1270 }
1271 }
1272 if (nstate == IEEE80211_S_AUTH ||
1273 (nstate == IEEE80211_S_ASSOC && vap->iv_state == IEEE80211_S_RUN)) {
1274 /*
1275 * The node must be registered in the firmware before auth.
1276 * Also the associd must be cleared on RUN -> ASSOC
1277 * transitions.
1278 */
1279 error = wpi_auth(sc, vap);
1280 if (error != 0) {
1281 device_printf(sc->sc_dev,
1282 "%s: could not move to auth state, error %d\n",
1283 __func__, error);
1284 }
1285 }
1286 if (nstate == IEEE80211_S_RUN && vap->iv_state != IEEE80211_S_RUN) {
1287 error = wpi_run(sc, vap);
1288 if (error != 0) {
1289 device_printf(sc->sc_dev,
1290 "%s: could not move to run state, error %d\n",
1291 __func__, error);
1292 }
1293 }
1294 if (nstate == IEEE80211_S_RUN) {
1295 /* RUN -> RUN transition; just restart the timers */
1296 wpi_calib_timeout(sc);
1297 /* XXX split out rate control timer */
1298 }
1299 WPI_UNLOCK(sc);
1300 IEEE80211_LOCK(ic);
1301 return wvp->newstate(vap, nstate, arg);
1302}
1303
1304/*
1305 * Grab exclusive access to NIC memory.
1306 */
1307static void
1308wpi_mem_lock(struct wpi_softc *sc)
1309{
1310 int ntries;
1311 uint32_t tmp;
1312
1313 tmp = WPI_READ(sc, WPI_GPIO_CTL);
1314 WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_MAC);
1315
1316 /* spin until we actually get the lock */
1317 for (ntries = 0; ntries < 100; ntries++) {
1318 if ((WPI_READ(sc, WPI_GPIO_CTL) &
1319 (WPI_GPIO_CLOCK | WPI_GPIO_SLEEP)) == WPI_GPIO_CLOCK)
1320 break;
1321 DELAY(10);
1322 }
1323 if (ntries == 100)
1324 device_printf(sc->sc_dev, "could not lock memory\n");
1325}
1326
1327/*
1328 * Release lock on NIC memory.
1329 */
1330static void
1331wpi_mem_unlock(struct wpi_softc *sc)
1332{
1333 uint32_t tmp = WPI_READ(sc, WPI_GPIO_CTL);
1334 WPI_WRITE(sc, WPI_GPIO_CTL, tmp & ~WPI_GPIO_MAC);
1335}
1336
1337static uint32_t
1338wpi_mem_read(struct wpi_softc *sc, uint16_t addr)
1339{
1340 WPI_WRITE(sc, WPI_READ_MEM_ADDR, WPI_MEM_4 | addr);
1341 return WPI_READ(sc, WPI_READ_MEM_DATA);
1342}
1343
1344static void
1345wpi_mem_write(struct wpi_softc *sc, uint16_t addr, uint32_t data)
1346{
1347 WPI_WRITE(sc, WPI_WRITE_MEM_ADDR, WPI_MEM_4 | addr);
1348 WPI_WRITE(sc, WPI_WRITE_MEM_DATA, data);
1349}
1350
1351static void
1352wpi_mem_write_region_4(struct wpi_softc *sc, uint16_t addr,
1353 const uint32_t *data, int wlen)
1354{
1355 for (; wlen > 0; wlen--, data++, addr+=4)
1356 wpi_mem_write(sc, addr, *data);
1357}
1358
1359/*
1360 * Read data from the EEPROM. We access EEPROM through the MAC instead of
1361 * using the traditional bit-bang method. Data is read up until len bytes have
1362 * been obtained.
1363 */
1364static uint16_t
1365wpi_read_prom_data(struct wpi_softc *sc, uint32_t addr, void *data, int len)
1366{
1367 int ntries;
1368 uint32_t val;
1369 uint8_t *out = data;
1370
1371 wpi_mem_lock(sc);
1372
1373 for (; len > 0; len -= 2, addr++) {
1374 WPI_WRITE(sc, WPI_EEPROM_CTL, addr << 2);
1375
1376 for (ntries = 0; ntries < 10; ntries++) {
1377 if ((val = WPI_READ(sc, WPI_EEPROM_CTL)) & WPI_EEPROM_READY)
1378 break;
1379 DELAY(5);
1380 }
1381
1382 if (ntries == 10) {
1383 device_printf(sc->sc_dev, "could not read EEPROM\n");
1384 return ETIMEDOUT;
1385 }
1386
1387 *out++= val >> 16;
1388 if (len > 1)
1389 *out ++= val >> 24;
1390 }
1391
1392 wpi_mem_unlock(sc);
1393
1394 return 0;
1395}
1396
1397/*
1398 * The firmware text and data segments are transferred to the NIC using DMA.
1399 * The driver just copies the firmware into DMA-safe memory and tells the NIC
1400 * where to find it. Once the NIC has copied the firmware into its internal
1401 * memory, we can free our local copy in the driver.
1402 */
1403static int
1404wpi_load_microcode(struct wpi_softc *sc, const uint8_t *fw, int size)
1405{
1406 int error, ntries;
1407
1408 DPRINTFN(WPI_DEBUG_HW,("Loading microcode size 0x%x\n", size));
1409
1410 size /= sizeof(uint32_t);
1411
1412 wpi_mem_lock(sc);
1413
1414 wpi_mem_write_region_4(sc, WPI_MEM_UCODE_BASE,
1415 (const uint32_t *)fw, size);
1416
1417 wpi_mem_write(sc, WPI_MEM_UCODE_SRC, 0);
1418 wpi_mem_write(sc, WPI_MEM_UCODE_DST, WPI_FW_TEXT);
1419 wpi_mem_write(sc, WPI_MEM_UCODE_SIZE, size);
1420
1421 /* run microcode */
1422 wpi_mem_write(sc, WPI_MEM_UCODE_CTL, WPI_UC_RUN);
1423
1424 /* wait while the adapter is busy copying the firmware */
1425 for (error = 0, ntries = 0; ntries < 1000; ntries++) {
1426 uint32_t status = WPI_READ(sc, WPI_TX_STATUS);
1427 DPRINTFN(WPI_DEBUG_HW,
1428 ("firmware status=0x%x, val=0x%x, result=0x%x\n", status,
1429 WPI_TX_IDLE(6), status & WPI_TX_IDLE(6)));
1430 if (status & WPI_TX_IDLE(6)) {
1431 DPRINTFN(WPI_DEBUG_HW,
1432 ("Status Match! - ntries = %d\n", ntries));
1433 break;
1434 }
1435 DELAY(10);
1436 }
1437 if (ntries == 1000) {
1438 device_printf(sc->sc_dev, "timeout transferring firmware\n");
1439 error = ETIMEDOUT;
1440 }
1441
1442 /* start the microcode executing */
1443 wpi_mem_write(sc, WPI_MEM_UCODE_CTL, WPI_UC_ENABLE);
1444
1445 wpi_mem_unlock(sc);
1446
1447 return (error);
1448}
1449
1450static void
1451wpi_rx_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc,
1452 struct wpi_rx_data *data)
1453{
1454 struct ifnet *ifp = sc->sc_ifp;
1455 struct ieee80211com *ic = ifp->if_l2com;
1456 struct wpi_rx_ring *ring = &sc->rxq;
1457 struct wpi_rx_stat *stat;
1458 struct wpi_rx_head *head;
1459 struct wpi_rx_tail *tail;
1460 struct ieee80211_node *ni;
1461 struct mbuf *m, *mnew;
1462 bus_addr_t paddr;
1463 int error;
1464
1465 stat = (struct wpi_rx_stat *)(desc + 1);
1466
1467 if (stat->len > WPI_STAT_MAXLEN) {
1468 device_printf(sc->sc_dev, "invalid rx statistic header\n");
1469 ifp->if_ierrors++;
1470 return;
1471 }
1472
1473 bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTREAD);
1474 head = (struct wpi_rx_head *)((caddr_t)(stat + 1) + stat->len);
1475 tail = (struct wpi_rx_tail *)((caddr_t)(head + 1) + le16toh(head->len));
1476
1477 DPRINTFN(WPI_DEBUG_RX, ("rx intr: idx=%d len=%d stat len=%d rssi=%d "
1478 "rate=%x chan=%d tstamp=%ju\n", ring->cur, le32toh(desc->len),
1479 le16toh(head->len), (int8_t)stat->rssi, head->rate, head->chan,
1480 (uintmax_t)le64toh(tail->tstamp)));
1481
1482 /* discard Rx frames with bad CRC early */
1483 if ((le32toh(tail->flags) & WPI_RX_NOERROR) != WPI_RX_NOERROR) {
1484 DPRINTFN(WPI_DEBUG_RX, ("%s: rx flags error %x\n", __func__,
1485 le32toh(tail->flags)));
1486 ifp->if_ierrors++;
1487 return;
1488 }
1489 if (le16toh(head->len) < sizeof (struct ieee80211_frame)) {
1490 DPRINTFN(WPI_DEBUG_RX, ("%s: frame too short: %d\n", __func__,
1491 le16toh(head->len)));
1492 ifp->if_ierrors++;
1493 return;
1494 }
1495
1496 /* XXX don't need mbuf, just dma buffer */
1497 mnew = m_getjcl(M_DONTWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE);
1498 if (mnew == NULL) {
1499 DPRINTFN(WPI_DEBUG_RX, ("%s: no mbuf to restock ring\n",
1500 __func__));
1501 ifp->if_ierrors++;
1502 return;
1503 }
1504 bus_dmamap_unload(ring->data_dmat, data->map);
1505
1506 error = bus_dmamap_load(ring->data_dmat, data->map,
1507 mtod(mnew, caddr_t), MJUMPAGESIZE,
1508 wpi_dma_map_addr, &paddr, BUS_DMA_NOWAIT);
1509 if (error != 0 && error != EFBIG) {
1510 device_printf(sc->sc_dev,
1511 "%s: bus_dmamap_load failed, error %d\n", __func__, error);
1512 m_freem(mnew);
1513 ifp->if_ierrors++;
1514 return;
1515 }
1516 bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
1517
1518 /* finalize mbuf and swap in new one */
1519 m = data->m;
1520 m->m_pkthdr.rcvif = ifp;
1521 m->m_data = (caddr_t)(head + 1);
1522 m->m_pkthdr.len = m->m_len = le16toh(head->len);
1523
1524 data->m = mnew;
1525 /* update Rx descriptor */
1526 ring->desc[ring->cur] = htole32(paddr);
1527
1528 if (ieee80211_radiotap_active(ic)) {
1529 struct wpi_rx_radiotap_header *tap = &sc->sc_rxtap;
1530
1531 tap->wr_flags = 0;
1532 tap->wr_chan_freq =
1533 htole16(ic->ic_channels[head->chan].ic_freq);
1534 tap->wr_chan_flags =
1535 htole16(ic->ic_channels[head->chan].ic_flags);
1536 tap->wr_dbm_antsignal = (int8_t)(stat->rssi - WPI_RSSI_OFFSET);
1537 tap->wr_dbm_antnoise = (int8_t)le16toh(stat->noise);
1538 tap->wr_tsft = tail->tstamp;
1539 tap->wr_antenna = (le16toh(head->flags) >> 4) & 0xf;
1540 switch (head->rate) {
1541 /* CCK rates */
1542 case 10: tap->wr_rate = 2; break;
1543 case 20: tap->wr_rate = 4; break;
1544 case 55: tap->wr_rate = 11; break;
1545 case 110: tap->wr_rate = 22; break;
1546 /* OFDM rates */
1547 case 0xd: tap->wr_rate = 12; break;
1548 case 0xf: tap->wr_rate = 18; break;
1549 case 0x5: tap->wr_rate = 24; break;
1550 case 0x7: tap->wr_rate = 36; break;
1551 case 0x9: tap->wr_rate = 48; break;
1552 case 0xb: tap->wr_rate = 72; break;
1553 case 0x1: tap->wr_rate = 96; break;
1554 case 0x3: tap->wr_rate = 108; break;
1555 /* unknown rate: should not happen */
1556 default: tap->wr_rate = 0;
1557 }
1558 if (le16toh(head->flags) & 0x4)
1559 tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
1560 }
1561
1562 WPI_UNLOCK(sc);
1563
1564 ni = ieee80211_find_rxnode(ic, mtod(m, struct ieee80211_frame_min *));
1565 if (ni != NULL) {
1566 (void) ieee80211_input(ni, m, stat->rssi, 0);
1567 ieee80211_free_node(ni);
1568 } else
1569 (void) ieee80211_input_all(ic, m, stat->rssi, 0);
1570
1571 WPI_LOCK(sc);
1572}
1573
1574static void
1575wpi_tx_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc)
1576{
1577 struct ifnet *ifp = sc->sc_ifp;
1578 struct wpi_tx_ring *ring = &sc->txq[desc->qid & 0x3];
1579 struct wpi_tx_data *txdata = &ring->data[desc->idx];
1580 struct wpi_tx_stat *stat = (struct wpi_tx_stat *)(desc + 1);
1581 struct ieee80211_node *ni = txdata->ni;
1582 struct ieee80211vap *vap = ni->ni_vap;
1583 int retrycnt = 0;
1584
1585 DPRINTFN(WPI_DEBUG_TX, ("tx done: qid=%d idx=%d retries=%d nkill=%d "
1586 "rate=%x duration=%d status=%x\n", desc->qid, desc->idx,
1587 stat->ntries, stat->nkill, stat->rate, le32toh(stat->duration),
1588 le32toh(stat->status)));
1589
1590 /*
1591 * Update rate control statistics for the node.
1592 * XXX we should not count mgmt frames since they're always sent at
1593 * the lowest available bit-rate.
1594 * XXX frames w/o ACK shouldn't be used either
1595 */
1596 if (stat->ntries > 0) {
1597 DPRINTFN(WPI_DEBUG_TX, ("%d retries\n", stat->ntries));
1598 retrycnt = 1;
1599 }
1600 ieee80211_ratectl_tx_complete(vap, ni, IEEE80211_RATECTL_TX_SUCCESS,
1601 &retrycnt, NULL);
1602
1603 /* XXX oerrors should only count errors !maxtries */
1604 if ((le32toh(stat->status) & 0xff) != 1)
1605 ifp->if_oerrors++;
1606 else
1607 ifp->if_opackets++;
1608
1609 bus_dmamap_sync(ring->data_dmat, txdata->map, BUS_DMASYNC_POSTWRITE);
1610 bus_dmamap_unload(ring->data_dmat, txdata->map);
1611 /* XXX handle M_TXCB? */
1612 m_freem(txdata->m);
1613 txdata->m = NULL;
1614 ieee80211_free_node(txdata->ni);
1615 txdata->ni = NULL;
1616
1617 ring->queued--;
1618
1619 sc->sc_tx_timer = 0;
1620 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1621 wpi_start_locked(ifp);
1622}
1623
1624static void
1625wpi_cmd_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc)
1626{
1627 struct wpi_tx_ring *ring = &sc->cmdq;
1628 struct wpi_tx_data *data;
1629
1630 DPRINTFN(WPI_DEBUG_CMD, ("cmd notification qid=%x idx=%d flags=%x "
1631 "type=%s len=%d\n", desc->qid, desc->idx,
1632 desc->flags, wpi_cmd_str(desc->type),
1633 le32toh(desc->len)));
1634
1635 if ((desc->qid & 7) != 4)
1636 return; /* not a command ack */
1637
1638 data = &ring->data[desc->idx];
1639
1640 /* if the command was mapped in a mbuf, free it */
1641 if (data->m != NULL) {
1642 bus_dmamap_unload(ring->data_dmat, data->map);
1643 m_freem(data->m);
1644 data->m = NULL;
1645 }
1646
1647 sc->flags &= ~WPI_FLAG_BUSY;
1648 wakeup(&ring->cmd[desc->idx]);
1649}
1650
1651static void
1652wpi_notif_intr(struct wpi_softc *sc)
1653{
1654 struct ifnet *ifp = sc->sc_ifp;
1655 struct ieee80211com *ic = ifp->if_l2com;
1656 struct wpi_rx_desc *desc;
1657 struct wpi_rx_data *data;
1658 uint32_t hw;
1659
1660 bus_dmamap_sync(sc->shared_dma.tag, sc->shared_dma.map,
1661 BUS_DMASYNC_POSTREAD);
1662
1663 hw = le32toh(sc->shared->next);
1664 while (sc->rxq.cur != hw) {
1665 data = &sc->rxq.data[sc->rxq.cur];
1666
1667 bus_dmamap_sync(sc->rxq.data_dmat, data->map,
1668 BUS_DMASYNC_POSTREAD);
1669 desc = (void *)data->m->m_ext.ext_buf;
1670
1671 DPRINTFN(WPI_DEBUG_NOTIFY,
1672 ("notify qid=%x idx=%d flags=%x type=%d len=%d\n",
1673 desc->qid,
1674 desc->idx,
1675 desc->flags,
1676 desc->type,
1677 le32toh(desc->len)));
1678
1679 if (!(desc->qid & 0x80)) /* reply to a command */
1680 wpi_cmd_intr(sc, desc);
1681
1682 switch (desc->type) {
1683 case WPI_RX_DONE:
1684 /* a 802.11 frame was received */
1685 wpi_rx_intr(sc, desc, data);
1686 break;
1687
1688 case WPI_TX_DONE:
1689 /* a 802.11 frame has been transmitted */
1690 wpi_tx_intr(sc, desc);
1691 break;
1692
1693 case WPI_UC_READY:
1694 {
1695 struct wpi_ucode_info *uc =
1696 (struct wpi_ucode_info *)(desc + 1);
1697
1698 /* the microcontroller is ready */
1699 DPRINTF(("microcode alive notification version %x "
1700 "alive %x\n", le32toh(uc->version),
1701 le32toh(uc->valid)));
1702
1703 if (le32toh(uc->valid) != 1) {
1704 device_printf(sc->sc_dev,
1705 "microcontroller initialization failed\n");
1706 wpi_stop_locked(sc);
1707 }
1708 break;
1709 }
1710 case WPI_STATE_CHANGED:
1711 {
1712 uint32_t *status = (uint32_t *)(desc + 1);
1713
1714 /* enabled/disabled notification */
1715 DPRINTF(("state changed to %x\n", le32toh(*status)));
1716
1717 if (le32toh(*status) & 1) {
1718 device_printf(sc->sc_dev,
1719 "Radio transmitter is switched off\n");
1720 sc->flags |= WPI_FLAG_HW_RADIO_OFF;
1721 ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1722 /* Disable firmware commands */
1723 WPI_WRITE(sc, WPI_UCODE_SET, WPI_DISABLE_CMD);
1724 }
1725 break;
1726 }
1727 case WPI_START_SCAN:
1728 {
1729#ifdef WPI_DEBUG
1730 struct wpi_start_scan *scan =
1731 (struct wpi_start_scan *)(desc + 1);
1732#endif
1733
1734 DPRINTFN(WPI_DEBUG_SCANNING,
1735 ("scanning channel %d status %x\n",
1736 scan->chan, le32toh(scan->status)));
1737 break;
1738 }
1739 case WPI_STOP_SCAN:
1740 {
1741#ifdef WPI_DEBUG
1742 struct wpi_stop_scan *scan =
1743 (struct wpi_stop_scan *)(desc + 1);
1744#endif
1745 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
1746
1747 DPRINTFN(WPI_DEBUG_SCANNING,
1748 ("scan finished nchan=%d status=%d chan=%d\n",
1749 scan->nchan, scan->status, scan->chan));
1750
1751 sc->sc_scan_timer = 0;
1752 ieee80211_scan_next(vap);
1753 break;
1754 }
1755 case WPI_MISSED_BEACON:
1756 {
1757 struct wpi_missed_beacon *beacon =
1758 (struct wpi_missed_beacon *)(desc + 1);
1759 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
1760
1761 if (le32toh(beacon->consecutive) >=
1762 vap->iv_bmissthreshold) {
1763 DPRINTF(("Beacon miss: %u >= %u\n",
1764 le32toh(beacon->consecutive),
1765 vap->iv_bmissthreshold));
1766 ieee80211_beacon_miss(ic);
1767 }
1768 break;
1769 }
1770 }
1771
1772 sc->rxq.cur = (sc->rxq.cur + 1) % WPI_RX_RING_COUNT;
1773 }
1774
1775 /* tell the firmware what we have processed */
1776 hw = (hw == 0) ? WPI_RX_RING_COUNT - 1 : hw - 1;
1777 WPI_WRITE(sc, WPI_RX_WIDX, hw & ~7);
1778}
1779
1780static void
1781wpi_intr(void *arg)
1782{
1783 struct wpi_softc *sc = arg;
1784 uint32_t r;
1785
1786 WPI_LOCK(sc);
1787
1788 r = WPI_READ(sc, WPI_INTR);
1789 if (r == 0 || r == 0xffffffff) {
1790 WPI_UNLOCK(sc);
1791 return;
1792 }
1793
1794 /* disable interrupts */
1795 WPI_WRITE(sc, WPI_MASK, 0);
1796 /* ack interrupts */
1797 WPI_WRITE(sc, WPI_INTR, r);
1798
1799 if (r & (WPI_SW_ERROR | WPI_HW_ERROR)) {
1800 struct ifnet *ifp = sc->sc_ifp;
1801 struct ieee80211com *ic = ifp->if_l2com;
1802 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
1803
1804 device_printf(sc->sc_dev, "fatal firmware error\n");
1805 DPRINTFN(6,("(%s)\n", (r & WPI_SW_ERROR) ? "(Software Error)" :
1806 "(Hardware Error)"));
1807 if (vap != NULL)
1808 ieee80211_cancel_scan(vap);
1809 ieee80211_runtask(ic, &sc->sc_restarttask);
1810 sc->flags &= ~WPI_FLAG_BUSY;
1811 WPI_UNLOCK(sc);
1812 return;
1813 }
1814
1815 if (r & WPI_RX_INTR)
1816 wpi_notif_intr(sc);
1817
1818 if (r & WPI_ALIVE_INTR) /* firmware initialized */
1819 wakeup(sc);
1820
1821 /* re-enable interrupts */
1822 if (sc->sc_ifp->if_flags & IFF_UP)
1823 WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK);
1824
1825 WPI_UNLOCK(sc);
1826}
1827
1828static uint8_t
1829wpi_plcp_signal(int rate)
1830{
1831 switch (rate) {
1832 /* CCK rates (returned values are device-dependent) */
1833 case 2: return 10;
1834 case 4: return 20;
1835 case 11: return 55;
1836 case 22: return 110;
1837
1838 /* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
1839 /* R1-R4 (ral/ural is R4-R1) */
1840 case 12: return 0xd;
1841 case 18: return 0xf;
1842 case 24: return 0x5;
1843 case 36: return 0x7;
1844 case 48: return 0x9;
1845 case 72: return 0xb;
1846 case 96: return 0x1;
1847 case 108: return 0x3;
1848
1849 /* unsupported rates (should not get there) */
1850 default: return 0;
1851 }
1852}
1853
1854/* quickly determine if a given rate is CCK or OFDM */
1855#define WPI_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22)
1856
1857/*
1858 * Construct the data packet for a transmit buffer and acutally put
1859 * the buffer onto the transmit ring, kicking the card to process the
1860 * the buffer.
1861 */
1862static int
1863wpi_tx_data(struct wpi_softc *sc, struct mbuf *m0, struct ieee80211_node *ni,
1864 int ac)
1865{
1866 struct ieee80211vap *vap = ni->ni_vap;
1867 struct ifnet *ifp = sc->sc_ifp;
1868 struct ieee80211com *ic = ifp->if_l2com;
1869 const struct chanAccParams *cap = &ic->ic_wme.wme_chanParams;
1870 struct wpi_tx_ring *ring = &sc->txq[ac];
1871 struct wpi_tx_desc *desc;
1872 struct wpi_tx_data *data;
1873 struct wpi_tx_cmd *cmd;
1874 struct wpi_cmd_data *tx;
1875 struct ieee80211_frame *wh;
1876 const struct ieee80211_txparam *tp;
1877 struct ieee80211_key *k;
1878 struct mbuf *mnew;
1879 int i, error, nsegs, rate, hdrlen, ismcast;
1880 bus_dma_segment_t segs[WPI_MAX_SCATTER];
1881
1882 desc = &ring->desc[ring->cur];
1883 data = &ring->data[ring->cur];
1884
1885 wh = mtod(m0, struct ieee80211_frame *);
1886
1887 hdrlen = ieee80211_hdrsize(wh);
1888 ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
1889
1890 if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1891 k = ieee80211_crypto_encap(ni, m0);
1892 if (k == NULL) {
1893 m_freem(m0);
1894 return ENOBUFS;
1895 }
1896 /* packet header may have moved, reset our local pointer */
1897 wh = mtod(m0, struct ieee80211_frame *);
1898 }
1899
1900 cmd = &ring->cmd[ring->cur];
1901 cmd->code = WPI_CMD_TX_DATA;
1902 cmd->flags = 0;
1903 cmd->qid = ring->qid;
1904 cmd->idx = ring->cur;
1905
1906 tx = (struct wpi_cmd_data *)cmd->data;
1907 tx->flags = htole32(WPI_TX_AUTO_SEQ);
1908 tx->timeout = htole16(0);
1909 tx->ofdm_mask = 0xff;
1910 tx->cck_mask = 0x0f;
1911 tx->lifetime = htole32(WPI_LIFETIME_INFINITE);
1912 tx->id = ismcast ? WPI_ID_BROADCAST : WPI_ID_BSS;
1913 tx->len = htole16(m0->m_pkthdr.len);
1914
1915 if (!ismcast) {
1916 if ((ni->ni_flags & IEEE80211_NODE_QOS) == 0 ||
1917 !cap->cap_wmeParams[ac].wmep_noackPolicy)
1918 tx->flags |= htole32(WPI_TX_NEED_ACK);
1919 if (m0->m_pkthdr.len + IEEE80211_CRC_LEN > vap->iv_rtsthreshold) {
1920 tx->flags |= htole32(WPI_TX_NEED_RTS|WPI_TX_FULL_TXOP);
1921 tx->rts_ntries = 7;
1922 }
1923 }
1924 /* pick a rate */
1925 tp = &vap->iv_txparms[ieee80211_chan2mode(ni->ni_chan)];
1926 if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) == IEEE80211_FC0_TYPE_MGT) {
1927 uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
1928 /* tell h/w to set timestamp in probe responses */
1929 if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
1930 tx->flags |= htole32(WPI_TX_INSERT_TSTAMP);
1931 if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ ||
1932 subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ)
1933 tx->timeout = htole16(3);
1934 else
1935 tx->timeout = htole16(2);
1936 rate = tp->mgmtrate;
1937 } else if (ismcast) {
1938 rate = tp->mcastrate;
1939 } else if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE) {
1940 rate = tp->ucastrate;
1941 } else {
1942 (void) ieee80211_ratectl_rate(ni, NULL, 0);
1943 rate = ni->ni_txrate;
1944 }
1945 tx->rate = wpi_plcp_signal(rate);
1946
1947 /* be very persistant at sending frames out */
1948#if 0
1949 tx->data_ntries = tp->maxretry;
1950#else
1951 tx->data_ntries = 15; /* XXX way too high */
1952#endif
1953
1954 if (ieee80211_radiotap_active_vap(vap)) {
1955 struct wpi_tx_radiotap_header *tap = &sc->sc_txtap;
1956 tap->wt_flags = 0;
1957 tap->wt_rate = rate;
1958 tap->wt_hwqueue = ac;
1959 if (wh->i_fc[1] & IEEE80211_FC1_WEP)
1960 tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
1961
1962 ieee80211_radiotap_tx(vap, m0);
1963 }
1964
1965 /* save and trim IEEE802.11 header */
1966 m_copydata(m0, 0, hdrlen, (caddr_t)&tx->wh);
1967 m_adj(m0, hdrlen);
1968
1969 error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map, m0, segs,
1970 &nsegs, BUS_DMA_NOWAIT);
1971 if (error != 0 && error != EFBIG) {
1972 device_printf(sc->sc_dev, "could not map mbuf (error %d)\n",
1973 error);
1974 m_freem(m0);
1975 return error;
1976 }
1977 if (error != 0) {
1978 /* XXX use m_collapse */
1979 mnew = m_defrag(m0, M_DONTWAIT);
1980 if (mnew == NULL) {
1981 device_printf(sc->sc_dev,
1982 "could not defragment mbuf\n");
1983 m_freem(m0);
1984 return ENOBUFS;
1985 }
1986 m0 = mnew;
1987
1988 error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map,
1989 m0, segs, &nsegs, BUS_DMA_NOWAIT);
1990 if (error != 0) {
1991 device_printf(sc->sc_dev,
1992 "could not map mbuf (error %d)\n", error);
1993 m_freem(m0);
1994 return error;
1995 }
1996 }
1997
1998 data->m = m0;
1999 data->ni = ni;
2000
2001 DPRINTFN(WPI_DEBUG_TX, ("sending data: qid=%d idx=%d len=%d nsegs=%d\n",
2002 ring->qid, ring->cur, m0->m_pkthdr.len, nsegs));
2003
2004 /* first scatter/gather segment is used by the tx data command */
2005 desc->flags = htole32(WPI_PAD32(m0->m_pkthdr.len) << 28 |
2006 (1 + nsegs) << 24);
2007 desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
2008 ring->cur * sizeof (struct wpi_tx_cmd));
2009 desc->segs[0].len = htole32(4 + sizeof (struct wpi_cmd_data));
2010 for (i = 1; i <= nsegs; i++) {
2011 desc->segs[i].addr = htole32(segs[i - 1].ds_addr);
2012 desc->segs[i].len = htole32(segs[i - 1].ds_len);
2013 }
2014
2015 bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
2016 bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
2017 BUS_DMASYNC_PREWRITE);
2018
2019 ring->queued++;
2020
2021 /* kick ring */
2022 ring->cur = (ring->cur + 1) % WPI_TX_RING_COUNT;
2023 WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2024
2025 return 0;
2026}
2027
2028/**
2029 * Process data waiting to be sent on the IFNET output queue
2030 */
2031static void
2032wpi_start(struct ifnet *ifp)
2033{
2034 struct wpi_softc *sc = ifp->if_softc;
2035
2036 WPI_LOCK(sc);
2037 wpi_start_locked(ifp);
2038 WPI_UNLOCK(sc);
2039}
2040
2041static void
2042wpi_start_locked(struct ifnet *ifp)
2043{
2044 struct wpi_softc *sc = ifp->if_softc;
2045 struct ieee80211_node *ni;
2046 struct mbuf *m;
2047 int ac;
2048
2049 WPI_LOCK_ASSERT(sc);
2050
2051 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
2052 return;
2053
2054 for (;;) {
2055 IFQ_DRV_DEQUEUE(&ifp->if_snd, m);
2056 if (m == NULL)
2057 break;
2058 ac = M_WME_GETAC(m);
2059 if (sc->txq[ac].queued > sc->txq[ac].count - 8) {
2060 /* there is no place left in this ring */
2061 IFQ_DRV_PREPEND(&ifp->if_snd, m);
2062 ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2063 break;
2064 }
2065 ni = (struct ieee80211_node *) m->m_pkthdr.rcvif;
2066 if (wpi_tx_data(sc, m, ni, ac) != 0) {
2067 ieee80211_free_node(ni);
2068 ifp->if_oerrors++;
2069 break;
2070 }
2071 sc->sc_tx_timer = 5;
2072 }
2073}
2074
2075static int
2076wpi_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
2077 const struct ieee80211_bpf_params *params)
2078{
2079 struct ieee80211com *ic = ni->ni_ic;
2080 struct ifnet *ifp = ic->ic_ifp;
2081 struct wpi_softc *sc = ifp->if_softc;
2082
2083 /* prevent management frames from being sent if we're not ready */
2084 if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
2085 m_freem(m);
2086 ieee80211_free_node(ni);
2087 return ENETDOWN;
2088 }
2089 WPI_LOCK(sc);
2090
2091 /* management frames go into ring 0 */
2092 if (sc->txq[0].queued > sc->txq[0].count - 8) {
2093 ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2094 m_freem(m);
2095 WPI_UNLOCK(sc);
2096 ieee80211_free_node(ni);
2097 return ENOBUFS; /* XXX */
2098 }
2099
2100 ifp->if_opackets++;
2101 if (wpi_tx_data(sc, m, ni, 0) != 0)
2102 goto bad;
2103 sc->sc_tx_timer = 5;
2104 callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc);
2105
2106 WPI_UNLOCK(sc);
2107 return 0;
2108bad:
2109 ifp->if_oerrors++;
2110 WPI_UNLOCK(sc);
2111 ieee80211_free_node(ni);
2112 return EIO; /* XXX */
2113}
2114
2115static int
2116wpi_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
2117{
2118 struct wpi_softc *sc = ifp->if_softc;
2119 struct ieee80211com *ic = ifp->if_l2com;
2120 struct ifreq *ifr = (struct ifreq *) data;
2121 int error = 0, startall = 0;
2122
2123 switch (cmd) {
2124 case SIOCSIFFLAGS:
2125 WPI_LOCK(sc);
2126 if ((ifp->if_flags & IFF_UP)) {
2127 if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
2128 wpi_init_locked(sc, 0);
2129 startall = 1;
2130 }
2131 } else if ((ifp->if_drv_flags & IFF_DRV_RUNNING) ||
2132 (sc->flags & WPI_FLAG_HW_RADIO_OFF))
2133 wpi_stop_locked(sc);
2134 WPI_UNLOCK(sc);
2135 if (startall)
2136 ieee80211_start_all(ic);
2137 break;
2138 case SIOCGIFMEDIA:
2139 error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd);
2140 break;
2141 case SIOCGIFADDR:
2142 error = ether_ioctl(ifp, cmd, data);
2143 break;
2144 default:
2145 error = EINVAL;
2146 break;
2147 }
2148 return error;
2149}
2150
2151/*
2152 * Extract various information from EEPROM.
2153 */
2154static void
2155wpi_read_eeprom(struct wpi_softc *sc, uint8_t macaddr[IEEE80211_ADDR_LEN])
2156{
2157 int i;
2158
2159 /* read the hardware capabilities, revision and SKU type */
2160 wpi_read_prom_data(sc, WPI_EEPROM_CAPABILITIES, &sc->cap,1);
2161 wpi_read_prom_data(sc, WPI_EEPROM_REVISION, &sc->rev,2);
2162 wpi_read_prom_data(sc, WPI_EEPROM_TYPE, &sc->type, 1);
2163
2164 /* read the regulatory domain */
2165 wpi_read_prom_data(sc, WPI_EEPROM_DOMAIN, sc->domain, 4);
2166
2167 /* read in the hw MAC address */
2168 wpi_read_prom_data(sc, WPI_EEPROM_MAC, macaddr, 6);
2169
2170 /* read the list of authorized channels */
2171 for (i = 0; i < WPI_CHAN_BANDS_COUNT; i++)
2172 wpi_read_eeprom_channels(sc,i);
2173
2174 /* read the power level calibration info for each group */
2175 for (i = 0; i < WPI_POWER_GROUPS_COUNT; i++)
2176 wpi_read_eeprom_group(sc,i);
2177}
2178
2179/*
2180 * Send a command to the firmware.
2181 */
2182static int
2183wpi_cmd(struct wpi_softc *sc, int code, const void *buf, int size, int async)
2184{
2185 struct wpi_tx_ring *ring = &sc->cmdq;
2186 struct wpi_tx_desc *desc;
2187 struct wpi_tx_cmd *cmd;
2188
2189#ifdef WPI_DEBUG
2190 if (!async) {
2191 WPI_LOCK_ASSERT(sc);
2192 }
2193#endif
2194
2195 DPRINTFN(WPI_DEBUG_CMD,("wpi_cmd %d size %d async %d\n", code, size,
2196 async));
2197
2198 if (sc->flags & WPI_FLAG_BUSY) {
2199 device_printf(sc->sc_dev, "%s: cmd %d not sent, busy\n",
2200 __func__, code);
2201 return EAGAIN;
2202 }
2203 sc->flags|= WPI_FLAG_BUSY;
2204
2205 KASSERT(size <= sizeof cmd->data, ("command %d too large: %d bytes",
2206 code, size));
2207
2208 desc = &ring->desc[ring->cur];
2209 cmd = &ring->cmd[ring->cur];
2210
2211 cmd->code = code;
2212 cmd->flags = 0;
2213 cmd->qid = ring->qid;
2214 cmd->idx = ring->cur;
2215 memcpy(cmd->data, buf, size);
2216
2217 desc->flags = htole32(WPI_PAD32(size) << 28 | 1 << 24);
2218 desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
2219 ring->cur * sizeof (struct wpi_tx_cmd));
2220 desc->segs[0].len = htole32(4 + size);
2221
2222 /* kick cmd ring */
2223 ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2224 WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2225
2226 if (async) {
2227 sc->flags &= ~ WPI_FLAG_BUSY;
2228 return 0;
2229 }
2230
2231 return msleep(cmd, &sc->sc_mtx, PCATCH, "wpicmd", hz);
2232}
2233
2234static int
2235wpi_wme_update(struct ieee80211com *ic)
2236{
2237#define WPI_EXP2(v) htole16((1 << (v)) - 1)
2238#define WPI_USEC(v) htole16(IEEE80211_TXOP_TO_US(v))
2239 struct wpi_softc *sc = ic->ic_ifp->if_softc;
2240 const struct wmeParams *wmep;
2241 struct wpi_wme_setup wme;
2242 int ac;
2243
2244 /* don't override default WME values if WME is not actually enabled */
2245 if (!(ic->ic_flags & IEEE80211_F_WME))
2246 return 0;
2247
2248 wme.flags = 0;
2249 for (ac = 0; ac < WME_NUM_AC; ac++) {
2250 wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
2251 wme.ac[ac].aifsn = wmep->wmep_aifsn;
2252 wme.ac[ac].cwmin = WPI_EXP2(wmep->wmep_logcwmin);
2253 wme.ac[ac].cwmax = WPI_EXP2(wmep->wmep_logcwmax);
2254 wme.ac[ac].txop = WPI_USEC(wmep->wmep_txopLimit);
2255
2256 DPRINTF(("setting WME for queue %d aifsn=%d cwmin=%d cwmax=%d "
2257 "txop=%d\n", ac, wme.ac[ac].aifsn, wme.ac[ac].cwmin,
2258 wme.ac[ac].cwmax, wme.ac[ac].txop));
2259 }
2260 return wpi_cmd(sc, WPI_CMD_SET_WME, &wme, sizeof wme, 1);
2261#undef WPI_USEC
2262#undef WPI_EXP2
2263}
2264
2265/*
2266 * Configure h/w multi-rate retries.
2267 */
2268static int
2269wpi_mrr_setup(struct wpi_softc *sc)
2270{
2271 struct ifnet *ifp = sc->sc_ifp;
2272 struct ieee80211com *ic = ifp->if_l2com;
2273 struct wpi_mrr_setup mrr;
2274 int i, error;
2275
2276 memset(&mrr, 0, sizeof (struct wpi_mrr_setup));
2277
2278 /* CCK rates (not used with 802.11a) */
2279 for (i = WPI_CCK1; i <= WPI_CCK11; i++) {
2280 mrr.rates[i].flags = 0;
2281 mrr.rates[i].signal = wpi_ridx_to_plcp[i];
2282 /* fallback to the immediate lower CCK rate (if any) */
2283 mrr.rates[i].next = (i == WPI_CCK1) ? WPI_CCK1 : i - 1;
2284 /* try one time at this rate before falling back to "next" */
2285 mrr.rates[i].ntries = 1;
2286 }
2287
2288 /* OFDM rates (not used with 802.11b) */
2289 for (i = WPI_OFDM6; i <= WPI_OFDM54; i++) {
2290 mrr.rates[i].flags = 0;
2291 mrr.rates[i].signal = wpi_ridx_to_plcp[i];
2292 /* fallback to the immediate lower OFDM rate (if any) */
2293 /* we allow fallback from OFDM/6 to CCK/2 in 11b/g mode */
2294 mrr.rates[i].next = (i == WPI_OFDM6) ?
2295 ((ic->ic_curmode == IEEE80211_MODE_11A) ?
2296 WPI_OFDM6 : WPI_CCK2) :
2297 i - 1;
2298 /* try one time at this rate before falling back to "next" */
2299 mrr.rates[i].ntries = 1;
2300 }
2301
2302 /* setup MRR for control frames */
2303 mrr.which = WPI_MRR_CTL;
2304 error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
2305 if (error != 0) {
2306 device_printf(sc->sc_dev,
2307 "could not setup MRR for control frames\n");
2308 return error;
2309 }
2310
2311 /* setup MRR for data frames */
2312 mrr.which = WPI_MRR_DATA;
2313 error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
2314 if (error != 0) {
2315 device_printf(sc->sc_dev,
2316 "could not setup MRR for data frames\n");
2317 return error;
2318 }
2319
2320 return 0;
2321}
2322
2323static void
2324wpi_set_led(struct wpi_softc *sc, uint8_t which, uint8_t off, uint8_t on)
2325{
2326 struct wpi_cmd_led led;
2327
2328 led.which = which;
2329 led.unit = htole32(100000); /* on/off in unit of 100ms */
2330 led.off = off;
2331 led.on = on;
2332
2333 (void)wpi_cmd(sc, WPI_CMD_SET_LED, &led, sizeof led, 1);
2334}
2335
2336static void
2337wpi_enable_tsf(struct wpi_softc *sc, struct ieee80211_node *ni)
2338{
2339 struct wpi_cmd_tsf tsf;
2340 uint64_t val, mod;
2341
2342 memset(&tsf, 0, sizeof tsf);
2343 memcpy(&tsf.tstamp, ni->ni_tstamp.data, 8);
2344 tsf.bintval = htole16(ni->ni_intval);
2345 tsf.lintval = htole16(10);
2346
2347 /* compute remaining time until next beacon */
2348 val = (uint64_t)ni->ni_intval * 1024; /* msec -> usec */
2349 mod = le64toh(tsf.tstamp) % val;
2350 tsf.binitval = htole32((uint32_t)(val - mod));
2351
2352 if (wpi_cmd(sc, WPI_CMD_TSF, &tsf, sizeof tsf, 1) != 0)
2353 device_printf(sc->sc_dev, "could not enable TSF\n");
2354}
2355
2356#if 0
2357/*
2358 * Build a beacon frame that the firmware will broadcast periodically in
2359 * IBSS or HostAP modes.
2360 */
2361static int
2362wpi_setup_beacon(struct wpi_softc *sc, struct ieee80211_node *ni)
2363{
2364 struct ifnet *ifp = sc->sc_ifp;
2365 struct ieee80211com *ic = ifp->if_l2com;
2366 struct wpi_tx_ring *ring = &sc->cmdq;
2367 struct wpi_tx_desc *desc;
2368 struct wpi_tx_data *data;
2369 struct wpi_tx_cmd *cmd;
2370 struct wpi_cmd_beacon *bcn;
2371 struct ieee80211_beacon_offsets bo;
2372 struct mbuf *m0;
2373 bus_addr_t physaddr;
2374 int error;
2375
2376 desc = &ring->desc[ring->cur];
2377 data = &ring->data[ring->cur];
2378
2379 m0 = ieee80211_beacon_alloc(ic, ni, &bo);
2380 if (m0 == NULL) {
2381 device_printf(sc->sc_dev, "could not allocate beacon frame\n");
2382 return ENOMEM;
2383 }
2384
2385 cmd = &ring->cmd[ring->cur];
2386 cmd->code = WPI_CMD_SET_BEACON;
2387 cmd->flags = 0;
2388 cmd->qid = ring->qid;
2389 cmd->idx = ring->cur;
2390
2391 bcn = (struct wpi_cmd_beacon *)cmd->data;
2392 memset(bcn, 0, sizeof (struct wpi_cmd_beacon));
2393 bcn->id = WPI_ID_BROADCAST;
2394 bcn->ofdm_mask = 0xff;
2395 bcn->cck_mask = 0x0f;
2396 bcn->lifetime = htole32(WPI_LIFETIME_INFINITE);
2397 bcn->len = htole16(m0->m_pkthdr.len);
2398 bcn->rate = (ic->ic_curmode == IEEE80211_MODE_11A) ?
2399 wpi_plcp_signal(12) : wpi_plcp_signal(2);
2400 bcn->flags = htole32(WPI_TX_AUTO_SEQ | WPI_TX_INSERT_TSTAMP);
2401
2402 /* save and trim IEEE802.11 header */
2403 m_copydata(m0, 0, sizeof (struct ieee80211_frame), (caddr_t)&bcn->wh);
2404 m_adj(m0, sizeof (struct ieee80211_frame));
2405
2406 /* assume beacon frame is contiguous */
2407 error = bus_dmamap_load(ring->data_dmat, data->map, mtod(m0, void *),
2408 m0->m_pkthdr.len, wpi_dma_map_addr, &physaddr, 0);
2409 if (error != 0) {
2410 device_printf(sc->sc_dev, "could not map beacon\n");
2411 m_freem(m0);
2412 return error;
2413 }
2414
2415 data->m = m0;
2416
2417 /* first scatter/gather segment is used by the beacon command */
2418 desc->flags = htole32(WPI_PAD32(m0->m_pkthdr.len) << 28 | 2 << 24);
2419 desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
2420 ring->cur * sizeof (struct wpi_tx_cmd));
2421 desc->segs[0].len = htole32(4 + sizeof (struct wpi_cmd_beacon));
2422 desc->segs[1].addr = htole32(physaddr);
2423 desc->segs[1].len = htole32(m0->m_pkthdr.len);
2424
2425 /* kick cmd ring */
2426 ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2427 WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2428
2429 return 0;
2430}
2431#endif
2432
2433static int
2434wpi_auth(struct wpi_softc *sc, struct ieee80211vap *vap)
2435{
2436 struct ieee80211com *ic = vap->iv_ic;
2437 struct ieee80211_node *ni = vap->iv_bss;
2438 struct wpi_node_info node;
2439 int error;
2440
2441
2442 /* update adapter's configuration */
2443 sc->config.associd = 0;
2444 sc->config.filter &= ~htole32(WPI_FILTER_BSS);
2445 IEEE80211_ADDR_COPY(sc->config.bssid, ni->ni_bssid);
2446 sc->config.chan = ieee80211_chan2ieee(ic, ni->ni_chan);
2447 if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan)) {
2448 sc->config.flags |= htole32(WPI_CONFIG_AUTO |
2449 WPI_CONFIG_24GHZ);
2450 } else {
2451 sc->config.flags &= ~htole32(WPI_CONFIG_AUTO |
2452 WPI_CONFIG_24GHZ);
2453 }
2454 if (IEEE80211_IS_CHAN_A(ni->ni_chan)) {
2455 sc->config.cck_mask = 0;
2456 sc->config.ofdm_mask = 0x15;
2457 } else if (IEEE80211_IS_CHAN_B(ni->ni_chan)) {
2458 sc->config.cck_mask = 0x03;
2459 sc->config.ofdm_mask = 0;
2460 } else {
2461 /* XXX assume 802.11b/g */
2462 sc->config.cck_mask = 0x0f;
2463 sc->config.ofdm_mask = 0x15;
2464 }
2465
2466 DPRINTF(("config chan %d flags %x cck %x ofdm %x\n", sc->config.chan,
2467 sc->config.flags, sc->config.cck_mask, sc->config.ofdm_mask));
2468 error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
2469 sizeof (struct wpi_config), 1);
2470 if (error != 0) {
2471 device_printf(sc->sc_dev, "could not configure\n");
2472 return error;
2473 }
2474
2475 /* configuration has changed, set Tx power accordingly */
2476 if ((error = wpi_set_txpower(sc, ni->ni_chan, 1)) != 0) {
2477 device_printf(sc->sc_dev, "could not set Tx power\n");
2478 return error;
2479 }
2480
2481 /* add default node */
2482 memset(&node, 0, sizeof node);
2483 IEEE80211_ADDR_COPY(node.bssid, ni->ni_bssid);
2484 node.id = WPI_ID_BSS;
2485 node.rate = (ic->ic_curmode == IEEE80211_MODE_11A) ?
2486 wpi_plcp_signal(12) : wpi_plcp_signal(2);
2487 node.action = htole32(WPI_ACTION_SET_RATE);
2488 node.antenna = WPI_ANTENNA_BOTH;
2489 error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 1);
2490 if (error != 0)
2491 device_printf(sc->sc_dev, "could not add BSS node\n");
2492
2493 return (error);
2494}
2495
2496static int
2497wpi_run(struct wpi_softc *sc, struct ieee80211vap *vap)
2498{
2499 struct ieee80211com *ic = vap->iv_ic;
2500 struct ieee80211_node *ni = vap->iv_bss;
2501 int error;
2502
2503 if (vap->iv_opmode == IEEE80211_M_MONITOR) {
2504 /* link LED blinks while monitoring */
2505 wpi_set_led(sc, WPI_LED_LINK, 5, 5);
2506 return 0;
2507 }
2508
2509 wpi_enable_tsf(sc, ni);
2510
2511 /* update adapter's configuration */
2512 sc->config.associd = htole16(ni->ni_associd & ~0xc000);
2513 /* short preamble/slot time are negotiated when associating */
2514 sc->config.flags &= ~htole32(WPI_CONFIG_SHPREAMBLE |
2515 WPI_CONFIG_SHSLOT);
2516 if (ic->ic_flags & IEEE80211_F_SHSLOT)
2517 sc->config.flags |= htole32(WPI_CONFIG_SHSLOT);
2518 if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
2519 sc->config.flags |= htole32(WPI_CONFIG_SHPREAMBLE);
2520 sc->config.filter |= htole32(WPI_FILTER_BSS);
2521
2522 /* XXX put somewhere HC_QOS_SUPPORT_ASSOC + HC_IBSS_START */
2523
2524 DPRINTF(("config chan %d flags %x\n", sc->config.chan,
2525 sc->config.flags));
2526 error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config, sizeof (struct
2527 wpi_config), 1);
2528 if (error != 0) {
2529 device_printf(sc->sc_dev, "could not update configuration\n");
2530 return error;
2531 }
2532
2533 error = wpi_set_txpower(sc, ni->ni_chan, 1);
2534 if (error != 0) {
2535 device_printf(sc->sc_dev, "could set txpower\n");
2536 return error;
2537 }
2538
2539 /* link LED always on while associated */
2540 wpi_set_led(sc, WPI_LED_LINK, 0, 1);
2541
2542 /* start automatic rate control timer */
2543 callout_reset(&sc->calib_to, 60*hz, wpi_calib_timeout, sc);
2544
2545 return (error);
2546}
2547
2548/*
2549 * Send a scan request to the firmware. Since this command is huge, we map it
2550 * into a mbufcluster instead of using the pre-allocated set of commands. Note,
2551 * much of this code is similar to that in wpi_cmd but because we must manually
2552 * construct the probe & channels, we duplicate what's needed here. XXX In the
2553 * future, this function should be modified to use wpi_cmd to help cleanup the
2554 * code base.
2555 */
2556static int
2557wpi_scan(struct wpi_softc *sc)
2558{
2559 struct ifnet *ifp = sc->sc_ifp;
2560 struct ieee80211com *ic = ifp->if_l2com;
2561 struct ieee80211_scan_state *ss = ic->ic_scan;
2562 struct wpi_tx_ring *ring = &sc->cmdq;
2563 struct wpi_tx_desc *desc;
2564 struct wpi_tx_data *data;
2565 struct wpi_tx_cmd *cmd;
2566 struct wpi_scan_hdr *hdr;
2567 struct wpi_scan_chan *chan;
2568 struct ieee80211_frame *wh;
2569 struct ieee80211_rateset *rs;
2570 struct ieee80211_channel *c;
2571 enum ieee80211_phymode mode;
2572 uint8_t *frm;
2573 int nrates, pktlen, error, i, nssid;
2574 bus_addr_t physaddr;
2575
2576 desc = &ring->desc[ring->cur];
2577 data = &ring->data[ring->cur];
2578
2579 data->m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
2580 if (data->m == NULL) {
2581 device_printf(sc->sc_dev,
2582 "could not allocate mbuf for scan command\n");
2583 return ENOMEM;
2584 }
2585
2586 cmd = mtod(data->m, struct wpi_tx_cmd *);
2587 cmd->code = WPI_CMD_SCAN;
2588 cmd->flags = 0;
2589 cmd->qid = ring->qid;
2590 cmd->idx = ring->cur;
2591
2592 hdr = (struct wpi_scan_hdr *)cmd->data;
2593 memset(hdr, 0, sizeof(struct wpi_scan_hdr));
2594
2595 /*
2596 * Move to the next channel if no packets are received within 5 msecs
2597 * after sending the probe request (this helps to reduce the duration
2598 * of active scans).
2599 */
2600 hdr->quiet = htole16(5);
2601 hdr->threshold = htole16(1);
2602
2603 if (IEEE80211_IS_CHAN_A(ic->ic_curchan)) {
2604 /* send probe requests at 6Mbps */
2605 hdr->tx.rate = wpi_ridx_to_plcp[WPI_OFDM6];
2606
2607 /* Enable crc checking */
2608 hdr->promotion = htole16(1);
2609 } else {
2610 hdr->flags = htole32(WPI_CONFIG_24GHZ | WPI_CONFIG_AUTO);
2611 /* send probe requests at 1Mbps */
2612 hdr->tx.rate = wpi_ridx_to_plcp[WPI_CCK1];
2613 }
2614 hdr->tx.id = WPI_ID_BROADCAST;
2615 hdr->tx.lifetime = htole32(WPI_LIFETIME_INFINITE);
2616 hdr->tx.flags = htole32(WPI_TX_AUTO_SEQ);
2617
2618 memset(hdr->scan_essids, 0, sizeof(hdr->scan_essids));
2619 nssid = MIN(ss->ss_nssid, WPI_SCAN_MAX_ESSIDS);
2620 for (i = 0; i < nssid; i++) {
2621 hdr->scan_essids[i].id = IEEE80211_ELEMID_SSID;
2622 hdr->scan_essids[i].esslen = MIN(ss->ss_ssid[i].len, 32);
2623 memcpy(hdr->scan_essids[i].essid, ss->ss_ssid[i].ssid,
2624 hdr->scan_essids[i].esslen);
2625#ifdef WPI_DEBUG
2626 if (wpi_debug & WPI_DEBUG_SCANNING) {
2627 printf("Scanning Essid: ");
2628 ieee80211_print_essid(hdr->scan_essids[i].essid,
2629 hdr->scan_essids[i].esslen);
2630 printf("\n");
2631 }
2632#endif
2633 }
2634
2635 /*
2636 * Build a probe request frame. Most of the following code is a
2637 * copy & paste of what is done in net80211.
2638 */
2639 wh = (struct ieee80211_frame *)&hdr->scan_essids[4];
2640 wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
2641 IEEE80211_FC0_SUBTYPE_PROBE_REQ;
2642 wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
2643 IEEE80211_ADDR_COPY(wh->i_addr1, ifp->if_broadcastaddr);
2644 IEEE80211_ADDR_COPY(wh->i_addr2, IF_LLADDR(ifp));
2645 IEEE80211_ADDR_COPY(wh->i_addr3, ifp->if_broadcastaddr);
2646 *(u_int16_t *)&wh->i_dur[0] = 0; /* filled by h/w */
2647 *(u_int16_t *)&wh->i_seq[0] = 0; /* filled by h/w */
2648
2649 frm = (uint8_t *)(wh + 1);
2650
2651 /* add essid IE, the hardware will fill this in for us */
2652 *frm++ = IEEE80211_ELEMID_SSID;
2653 *frm++ = 0;
2654
2655 mode = ieee80211_chan2mode(ic->ic_curchan);
2656 rs = &ic->ic_sup_rates[mode];
2657
2658 /* add supported rates IE */
2659 *frm++ = IEEE80211_ELEMID_RATES;
2660 nrates = rs->rs_nrates;
2661 if (nrates > IEEE80211_RATE_SIZE)
2662 nrates = IEEE80211_RATE_SIZE;
2663 *frm++ = nrates;
2664 memcpy(frm, rs->rs_rates, nrates);
2665 frm += nrates;
2666
2667 /* add supported xrates IE */
2668 if (rs->rs_nrates > IEEE80211_RATE_SIZE) {
2669 nrates = rs->rs_nrates - IEEE80211_RATE_SIZE;
2670 *frm++ = IEEE80211_ELEMID_XRATES;
2671 *frm++ = nrates;
2672 memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates);
2673 frm += nrates;
2674 }
2675
2676 /* setup length of probe request */
2677 hdr->tx.len = htole16(frm - (uint8_t *)wh);
2678
2679 /*
2680 * Construct information about the channel that we
2681 * want to scan. The firmware expects this to be directly
2682 * after the scan probe request
2683 */
2684 c = ic->ic_curchan;
2685 chan = (struct wpi_scan_chan *)frm;
2686 chan->chan = ieee80211_chan2ieee(ic, c);
2687 chan->flags = 0;
2688 if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE)) {
2689 chan->flags |= WPI_CHAN_ACTIVE;
2690 if (nssid != 0)
2691 chan->flags |= WPI_CHAN_DIRECT;
2692 }
2693 chan->gain_dsp = 0x6e; /* Default level */
2694 if (IEEE80211_IS_CHAN_5GHZ(c)) {
2695 chan->active = htole16(10);
2696 chan->passive = htole16(ss->ss_maxdwell);
2697 chan->gain_radio = 0x3b;
2698 } else {
2699 chan->active = htole16(20);
2700 chan->passive = htole16(ss->ss_maxdwell);
2701 chan->gain_radio = 0x28;
2702 }
2703
2704 DPRINTFN(WPI_DEBUG_SCANNING,
2705 ("Scanning %u Passive: %d\n",
2706 chan->chan,
2707 c->ic_flags & IEEE80211_CHAN_PASSIVE));
2708
2709 hdr->nchan++;
2710 chan++;
2711
2712 frm += sizeof (struct wpi_scan_chan);
2713#if 0
2714 // XXX All Channels....
2715 for (c = &ic->ic_channels[1];
2716 c <= &ic->ic_channels[IEEE80211_CHAN_MAX]; c++) {
2717 if ((c->ic_flags & ic->ic_curchan->ic_flags) != ic->ic_curchan->ic_flags)
2718 continue;
2719
2720 chan->chan = ieee80211_chan2ieee(ic, c);
2721 chan->flags = 0;
2722 if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE)) {
2723 chan->flags |= WPI_CHAN_ACTIVE;
2724 if (ic->ic_des_ssid[0].len != 0)
2725 chan->flags |= WPI_CHAN_DIRECT;
2726 }
2727 chan->gain_dsp = 0x6e; /* Default level */
2728 if (IEEE80211_IS_CHAN_5GHZ(c)) {
2729 chan->active = htole16(10);
2730 chan->passive = htole16(110);
2731 chan->gain_radio = 0x3b;
2732 } else {
2733 chan->active = htole16(20);
2734 chan->passive = htole16(120);
2735 chan->gain_radio = 0x28;
2736 }
2737
2738 DPRINTFN(WPI_DEBUG_SCANNING,
2739 ("Scanning %u Passive: %d\n",
2740 chan->chan,
2741 c->ic_flags & IEEE80211_CHAN_PASSIVE));
2742
2743 hdr->nchan++;
2744 chan++;
2745
2746 frm += sizeof (struct wpi_scan_chan);
2747 }
2748#endif
2749
2750 hdr->len = htole16(frm - (uint8_t *)hdr);
2751 pktlen = frm - (uint8_t *)cmd;
2752
2753 error = bus_dmamap_load(ring->data_dmat, data->map, cmd, pktlen,
2754 wpi_dma_map_addr, &physaddr, BUS_DMA_NOWAIT);
2755 if (error != 0) {
2756 device_printf(sc->sc_dev, "could not map scan command\n");
2757 m_freem(data->m);
2758 data->m = NULL;
2759 return error;
2760 }
2761
2762 desc->flags = htole32(WPI_PAD32(pktlen) << 28 | 1 << 24);
2763 desc->segs[0].addr = htole32(physaddr);
2764 desc->segs[0].len = htole32(pktlen);
2765
2766 bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
2767 BUS_DMASYNC_PREWRITE);
2768 bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
2769
2770 /* kick cmd ring */
2771 ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2772 WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2773
2774 sc->sc_scan_timer = 5;
2775 return 0; /* will be notified async. of failure/success */
2776}
2777
2778/**
2779 * Configure the card to listen to a particular channel, this transisions the
2780 * card in to being able to receive frames from remote devices.
2781 */
2782static int
2783wpi_config(struct wpi_softc *sc)
2784{
2785 struct ifnet *ifp = sc->sc_ifp;
2786 struct ieee80211com *ic = ifp->if_l2com;
2787 struct wpi_power power;
2788 struct wpi_bluetooth bluetooth;
2789 struct wpi_node_info node;
2790 int error;
2791
2792 /* set power mode */
2793 memset(&power, 0, sizeof power);
2794 power.flags = htole32(WPI_POWER_CAM|0x8);
2795 error = wpi_cmd(sc, WPI_CMD_SET_POWER_MODE, &power, sizeof power, 0);
2796 if (error != 0) {
2797 device_printf(sc->sc_dev, "could not set power mode\n");
2798 return error;
2799 }
2800
2801 /* configure bluetooth coexistence */
2802 memset(&bluetooth, 0, sizeof bluetooth);
2803 bluetooth.flags = 3;
2804 bluetooth.lead = 0xaa;
2805 bluetooth.kill = 1;
2806 error = wpi_cmd(sc, WPI_CMD_BLUETOOTH, &bluetooth, sizeof bluetooth,
2807 0);
2808 if (error != 0) {
2809 device_printf(sc->sc_dev,
2810 "could not configure bluetooth coexistence\n");
2811 return error;
2812 }
2813
2814 /* configure adapter */
2815 memset(&sc->config, 0, sizeof (struct wpi_config));
2816 IEEE80211_ADDR_COPY(sc->config.myaddr, IF_LLADDR(ifp));
2817 /*set default channel*/
2818 sc->config.chan = htole16(ieee80211_chan2ieee(ic, ic->ic_curchan));
2819 sc->config.flags = htole32(WPI_CONFIG_TSF);
2820 if (IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan)) {
2821 sc->config.flags |= htole32(WPI_CONFIG_AUTO |
2822 WPI_CONFIG_24GHZ);
2823 }
2824 sc->config.filter = 0;
2825 switch (ic->ic_opmode) {
2826 case IEEE80211_M_STA:
2827 case IEEE80211_M_WDS: /* No know setup, use STA for now */
2828 sc->config.mode = WPI_MODE_STA;
2829 sc->config.filter |= htole32(WPI_FILTER_MULTICAST);
2830 break;
2831 case IEEE80211_M_IBSS:
2832 case IEEE80211_M_AHDEMO:
2833 sc->config.mode = WPI_MODE_IBSS;
2834 sc->config.filter |= htole32(WPI_FILTER_BEACON |
2835 WPI_FILTER_MULTICAST);
2836 break;
2837 case IEEE80211_M_HOSTAP:
2838 sc->config.mode = WPI_MODE_HOSTAP;
2839 break;
2840 case IEEE80211_M_MONITOR:
2841 sc->config.mode = WPI_MODE_MONITOR;
2842 sc->config.filter |= htole32(WPI_FILTER_MULTICAST |
2843 WPI_FILTER_CTL | WPI_FILTER_PROMISC);
2844 break;
2845 default:
2846 device_printf(sc->sc_dev, "unknown opmode %d\n", ic->ic_opmode);
2847 return EINVAL;
2848 }
2849 sc->config.cck_mask = 0x0f; /* not yet negotiated */
2850 sc->config.ofdm_mask = 0xff; /* not yet negotiated */
2851 error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
2852 sizeof (struct wpi_config), 0);
2853 if (error != 0) {
2854 device_printf(sc->sc_dev, "configure command failed\n");
2855 return error;
2856 }
2857
2858 /* configuration has changed, set Tx power accordingly */
2859 if ((error = wpi_set_txpower(sc, ic->ic_curchan, 0)) != 0) {
2860 device_printf(sc->sc_dev, "could not set Tx power\n");
2861 return error;
2862 }
2863
2864 /* add broadcast node */
2865 memset(&node, 0, sizeof node);
2866 IEEE80211_ADDR_COPY(node.bssid, ifp->if_broadcastaddr);
2867 node.id = WPI_ID_BROADCAST;
2868 node.rate = wpi_plcp_signal(2);
2869 error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 0);
2870 if (error != 0) {
2871 device_printf(sc->sc_dev, "could not add broadcast node\n");
2872 return error;
2873 }
2874
2875 /* Setup rate scalling */
2876 error = wpi_mrr_setup(sc);
2877 if (error != 0) {
2878 device_printf(sc->sc_dev, "could not setup MRR\n");
2879 return error;
2880 }
2881
2882 return 0;
2883}
2884
2885static void
2886wpi_stop_master(struct wpi_softc *sc)
2887{
2888 uint32_t tmp;
2889 int ntries;
2890
2891 DPRINTFN(WPI_DEBUG_HW,("Disabling Firmware execution\n"));
2892
2893 tmp = WPI_READ(sc, WPI_RESET);
2894 WPI_WRITE(sc, WPI_RESET, tmp | WPI_STOP_MASTER | WPI_NEVO_RESET);
2895
2896 tmp = WPI_READ(sc, WPI_GPIO_CTL);
2897 if ((tmp & WPI_GPIO_PWR_STATUS) == WPI_GPIO_PWR_SLEEP)
2898 return; /* already asleep */
2899
2900 for (ntries = 0; ntries < 100; ntries++) {
2901 if (WPI_READ(sc, WPI_RESET) & WPI_MASTER_DISABLED)
2902 break;
2903 DELAY(10);
2904 }
2905 if (ntries == 100) {
2906 device_printf(sc->sc_dev, "timeout waiting for master\n");
2907 }
2908}
2909
2910static int
2911wpi_power_up(struct wpi_softc *sc)
2912{
2913 uint32_t tmp;
2914 int ntries;
2915
2916 wpi_mem_lock(sc);
2917 tmp = wpi_mem_read(sc, WPI_MEM_POWER);
2918 wpi_mem_write(sc, WPI_MEM_POWER, tmp & ~0x03000000);
2919 wpi_mem_unlock(sc);
2920
2921 for (ntries = 0; ntries < 5000; ntries++) {
2922 if (WPI_READ(sc, WPI_GPIO_STATUS) & WPI_POWERED)
2923 break;
2924 DELAY(10);
2925 }
2926 if (ntries == 5000) {
2927 device_printf(sc->sc_dev,
2928 "timeout waiting for NIC to power up\n");
2929 return ETIMEDOUT;
2930 }
2931 return 0;
2932}
2933
2934static int
2935wpi_reset(struct wpi_softc *sc)
2936{
2937 uint32_t tmp;
2938 int ntries;
2939
2940 DPRINTFN(WPI_DEBUG_HW,
2941 ("Resetting the card - clearing any uploaded firmware\n"));
2942
2943 /* clear any pending interrupts */
2944 WPI_WRITE(sc, WPI_INTR, 0xffffffff);
2945
2946 tmp = WPI_READ(sc, WPI_PLL_CTL);
2947 WPI_WRITE(sc, WPI_PLL_CTL, tmp | WPI_PLL_INIT);
2948
2949 tmp = WPI_READ(sc, WPI_CHICKEN);
2950 WPI_WRITE(sc, WPI_CHICKEN, tmp | WPI_CHICKEN_RXNOLOS);
2951
2952 tmp = WPI_READ(sc, WPI_GPIO_CTL);
2953 WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_INIT);
2954
2955 /* wait for clock stabilization */
2956 for (ntries = 0; ntries < 25000; ntries++) {
2957 if (WPI_READ(sc, WPI_GPIO_CTL) & WPI_GPIO_CLOCK)
2958 break;
2959 DELAY(10);
2960 }
2961 if (ntries == 25000) {
2962 device_printf(sc->sc_dev,
2963 "timeout waiting for clock stabilization\n");
2964 return ETIMEDOUT;
2965 }
2966
2967 /* initialize EEPROM */
2968 tmp = WPI_READ(sc, WPI_EEPROM_STATUS);
2969
2970 if ((tmp & WPI_EEPROM_VERSION) == 0) {
2971 device_printf(sc->sc_dev, "EEPROM not found\n");
2972 return EIO;
2973 }
2974 WPI_WRITE(sc, WPI_EEPROM_STATUS, tmp & ~WPI_EEPROM_LOCKED);
2975
2976 return 0;
2977}
2978
2979static void
2980wpi_hw_config(struct wpi_softc *sc)
2981{
2982 uint32_t rev, hw;
2983
2984 /* voodoo from the Linux "driver".. */
2985 hw = WPI_READ(sc, WPI_HWCONFIG);
2986
2987 rev = pci_read_config(sc->sc_dev, PCIR_REVID, 1);
2988 if ((rev & 0xc0) == 0x40)
2989 hw |= WPI_HW_ALM_MB;
2990 else if (!(rev & 0x80))
2991 hw |= WPI_HW_ALM_MM;
2992
2993 if (sc->cap == 0x80)
2994 hw |= WPI_HW_SKU_MRC;
2995
2996 hw &= ~WPI_HW_REV_D;
2997 if ((le16toh(sc->rev) & 0xf0) == 0xd0)
2998 hw |= WPI_HW_REV_D;
2999
3000 if (sc->type > 1)
3001 hw |= WPI_HW_TYPE_B;
3002
3003 WPI_WRITE(sc, WPI_HWCONFIG, hw);
3004}
3005
3006static void
3007wpi_rfkill_resume(struct wpi_softc *sc)
3008{
3009 struct ifnet *ifp = sc->sc_ifp;
3010 struct ieee80211com *ic = ifp->if_l2com;
3011 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3012 int ntries;
3013
3014 /* enable firmware again */
3015 WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3016 WPI_WRITE(sc, WPI_UCODE_CLR, WPI_DISABLE_CMD);
3017
3018 /* wait for thermal sensors to calibrate */
3019 for (ntries = 0; ntries < 1000; ntries++) {
3020 if ((sc->temp = (int)WPI_READ(sc, WPI_TEMPERATURE)) != 0)
3021 break;
3022 DELAY(10);
3023 }
3024
3025 if (ntries == 1000) {
3026 device_printf(sc->sc_dev,
3027 "timeout waiting for thermal calibration\n");
3028 return;
3029 }
3030 DPRINTFN(WPI_DEBUG_TEMP,("temperature %d\n", sc->temp));
3031
3032 if (wpi_config(sc) != 0) {
3033 device_printf(sc->sc_dev, "device config failed\n");
3034 return;
3035 }
3036
3037 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3038 ifp->if_drv_flags |= IFF_DRV_RUNNING;
3039 sc->flags &= ~WPI_FLAG_HW_RADIO_OFF;
3040
3041 if (vap != NULL) {
3042 if ((ic->ic_flags & IEEE80211_F_SCAN) == 0) {
3043 if (vap->iv_opmode != IEEE80211_M_MONITOR) {
3044 ieee80211_beacon_miss(ic);
3045 wpi_set_led(sc, WPI_LED_LINK, 0, 1);
3046 } else
3047 wpi_set_led(sc, WPI_LED_LINK, 5, 5);
3048 } else {
3049 ieee80211_scan_next(vap);
3050 wpi_set_led(sc, WPI_LED_LINK, 20, 2);
3051 }
3052 }
3053
3054 callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc);
3055}
3056
3057static void
3058wpi_init_locked(struct wpi_softc *sc, int force)
3059{
3060 struct ifnet *ifp = sc->sc_ifp;
3061 uint32_t tmp;
3062 int ntries, qid;
3063
3064 wpi_stop_locked(sc);
3065 (void)wpi_reset(sc);
3066
3067 wpi_mem_lock(sc);
3068 wpi_mem_write(sc, WPI_MEM_CLOCK1, 0xa00);
3069 DELAY(20);
3070 tmp = wpi_mem_read(sc, WPI_MEM_PCIDEV);
3071 wpi_mem_write(sc, WPI_MEM_PCIDEV, tmp | 0x800);
3072 wpi_mem_unlock(sc);
3073
3074 (void)wpi_power_up(sc);
3075 wpi_hw_config(sc);
3076
3077 /* init Rx ring */
3078 wpi_mem_lock(sc);
3079 WPI_WRITE(sc, WPI_RX_BASE, sc->rxq.desc_dma.paddr);
3080 WPI_WRITE(sc, WPI_RX_RIDX_PTR, sc->shared_dma.paddr +
3081 offsetof(struct wpi_shared, next));
3082 WPI_WRITE(sc, WPI_RX_WIDX, (WPI_RX_RING_COUNT - 1) & ~7);
3083 WPI_WRITE(sc, WPI_RX_CONFIG, 0xa9601010);
3084 wpi_mem_unlock(sc);
3085
3086 /* init Tx rings */
3087 wpi_mem_lock(sc);
3088 wpi_mem_write(sc, WPI_MEM_MODE, 2); /* bypass mode */
3089 wpi_mem_write(sc, WPI_MEM_RA, 1); /* enable RA0 */
3090 wpi_mem_write(sc, WPI_MEM_TXCFG, 0x3f); /* enable all 6 Tx rings */
3091 wpi_mem_write(sc, WPI_MEM_BYPASS1, 0x10000);
3092 wpi_mem_write(sc, WPI_MEM_BYPASS2, 0x30002);
3093 wpi_mem_write(sc, WPI_MEM_MAGIC4, 4);
3094 wpi_mem_write(sc, WPI_MEM_MAGIC5, 5);
3095
3096 WPI_WRITE(sc, WPI_TX_BASE_PTR, sc->shared_dma.paddr);
3097 WPI_WRITE(sc, WPI_MSG_CONFIG, 0xffff05a5);
3098
3099 for (qid = 0; qid < 6; qid++) {
3100 WPI_WRITE(sc, WPI_TX_CTL(qid), 0);
3101 WPI_WRITE(sc, WPI_TX_BASE(qid), 0);
3102 WPI_WRITE(sc, WPI_TX_CONFIG(qid), 0x80200008);
3103 }
3104 wpi_mem_unlock(sc);
3105
3106 /* clear "radio off" and "disable command" bits (reversed logic) */
3107 WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3108 WPI_WRITE(sc, WPI_UCODE_CLR, WPI_DISABLE_CMD);
3109 sc->flags &= ~WPI_FLAG_HW_RADIO_OFF;
3110
3111 /* clear any pending interrupts */
3112 WPI_WRITE(sc, WPI_INTR, 0xffffffff);
3113
3114 /* enable interrupts */
3115 WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK);
3116
3117 WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3118 WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3119
3120 if ((wpi_load_firmware(sc)) != 0) {
3121 device_printf(sc->sc_dev,
3122 "A problem occurred loading the firmware to the driver\n");
3123 return;
3124 }
3125
3126 /* At this point the firmware is up and running. If the hardware
3127 * RF switch is turned off thermal calibration will fail, though
3128 * the card is still happy to continue to accept commands, catch
3129 * this case and schedule a task to watch for it to be turned on.
3130 */
3131 wpi_mem_lock(sc);
3132 tmp = wpi_mem_read(sc, WPI_MEM_HW_RADIO_OFF);
3133 wpi_mem_unlock(sc);
3134
3135 if (!(tmp & 0x1)) {
3136 sc->flags |= WPI_FLAG_HW_RADIO_OFF;
3137 device_printf(sc->sc_dev,"Radio Transmitter is switched off\n");
3138 goto out;
3139 }
3140
3141 /* wait for thermal sensors to calibrate */
3142 for (ntries = 0; ntries < 1000; ntries++) {
3143 if ((sc->temp = (int)WPI_READ(sc, WPI_TEMPERATURE)) != 0)
3144 break;
3145 DELAY(10);
3146 }
3147
3148 if (ntries == 1000) {
3149 device_printf(sc->sc_dev,
3150 "timeout waiting for thermal sensors calibration\n");
3151 return;
3152 }
3153 DPRINTFN(WPI_DEBUG_TEMP,("temperature %d\n", sc->temp));
3154
3155 if (wpi_config(sc) != 0) {
3156 device_printf(sc->sc_dev, "device config failed\n");
3157 return;
3158 }
3159
3160 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3161 ifp->if_drv_flags |= IFF_DRV_RUNNING;
3162out:
3163 callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc);
3164}
3165
3166static void
3167wpi_init(void *arg)
3168{
3169 struct wpi_softc *sc = arg;
3170 struct ifnet *ifp = sc->sc_ifp;
3171 struct ieee80211com *ic = ifp->if_l2com;
3172
3173 WPI_LOCK(sc);
3174 wpi_init_locked(sc, 0);
3175 WPI_UNLOCK(sc);
3176
3177 if (ifp->if_drv_flags & IFF_DRV_RUNNING)
3178 ieee80211_start_all(ic); /* start all vaps */
3179}
3180
3181static void
3182wpi_stop_locked(struct wpi_softc *sc)
3183{
3184 struct ifnet *ifp = sc->sc_ifp;
3185 uint32_t tmp;
3186 int ac;
3187
3188 sc->sc_tx_timer = 0;
3189 sc->sc_scan_timer = 0;
3190 ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
3191 sc->flags &= ~WPI_FLAG_HW_RADIO_OFF;
3192 callout_stop(&sc->watchdog_to);
3193 callout_stop(&sc->calib_to);
3194
3195
3196 /* disable interrupts */
3197 WPI_WRITE(sc, WPI_MASK, 0);
3198 WPI_WRITE(sc, WPI_INTR, WPI_INTR_MASK);
3199 WPI_WRITE(sc, WPI_INTR_STATUS, 0xff);
3200 WPI_WRITE(sc, WPI_INTR_STATUS, 0x00070000);
3201
3202 wpi_mem_lock(sc);
3203 wpi_mem_write(sc, WPI_MEM_MODE, 0);
3204 wpi_mem_unlock(sc);
3205
3206 /* reset all Tx rings */
3207 for (ac = 0; ac < 4; ac++)
3208 wpi_reset_tx_ring(sc, &sc->txq[ac]);
3209 wpi_reset_tx_ring(sc, &sc->cmdq);
3210
3211 /* reset Rx ring */
3212 wpi_reset_rx_ring(sc, &sc->rxq);
3213
3214 wpi_mem_lock(sc);
3215 wpi_mem_write(sc, WPI_MEM_CLOCK2, 0x200);
3216 wpi_mem_unlock(sc);
3217
3218 DELAY(5);
3219
3220 wpi_stop_master(sc);
3221
3222 tmp = WPI_READ(sc, WPI_RESET);
3223 WPI_WRITE(sc, WPI_RESET, tmp | WPI_SW_RESET);
3224 sc->flags &= ~WPI_FLAG_BUSY;
3225}
3226
3227static void
3228wpi_stop(struct wpi_softc *sc)
3229{
3230 WPI_LOCK(sc);
3231 wpi_stop_locked(sc);
3232 WPI_UNLOCK(sc);
3233}
3234
3235static void
3236wpi_calib_timeout(void *arg)
3237{
3238 struct wpi_softc *sc = arg;
3239 struct ifnet *ifp = sc->sc_ifp;
3240 struct ieee80211com *ic = ifp->if_l2com;
3241 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3242 int temp;
3243
3244 if (vap->iv_state != IEEE80211_S_RUN)
3245 return;
3246
3247 /* update sensor data */
3248 temp = (int)WPI_READ(sc, WPI_TEMPERATURE);
3249 DPRINTFN(WPI_DEBUG_TEMP,("Temp in calibration is: %d\n", temp));
3250
3251 wpi_power_calibration(sc, temp);
3252
3253 callout_reset(&sc->calib_to, 60*hz, wpi_calib_timeout, sc);
3254}
3255
3256/*
3257 * This function is called periodically (every 60 seconds) to adjust output
3258 * power to temperature changes.
3259 */
3260static void
3261wpi_power_calibration(struct wpi_softc *sc, int temp)
3262{
3263 struct ifnet *ifp = sc->sc_ifp;
3264 struct ieee80211com *ic = ifp->if_l2com;
3265 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3266
3267 /* sanity-check read value */
3268 if (temp < -260 || temp > 25) {
3269 /* this can't be correct, ignore */
3270 DPRINTFN(WPI_DEBUG_TEMP,
3271 ("out-of-range temperature reported: %d\n", temp));
3272 return;
3273 }
3274
3275 DPRINTFN(WPI_DEBUG_TEMP,("temperature %d->%d\n", sc->temp, temp));
3276
3277 /* adjust Tx power if need be */
3278 if (abs(temp - sc->temp) <= 6)
3279 return;
3280
3281 sc->temp = temp;
3282
3283 if (wpi_set_txpower(sc, vap->iv_bss->ni_chan, 1) != 0) {
3284 /* just warn, too bad for the automatic calibration... */
3285 device_printf(sc->sc_dev,"could not adjust Tx power\n");
3286 }
3287}
3288
3289/**
3290 * Read the eeprom to find out what channels are valid for the given
3291 * band and update net80211 with what we find.
3292 */
3293static void
3294wpi_read_eeprom_channels(struct wpi_softc *sc, int n)
3295{
3296 struct ifnet *ifp = sc->sc_ifp;
3297 struct ieee80211com *ic = ifp->if_l2com;
3298 const struct wpi_chan_band *band = &wpi_bands[n];
3299 struct wpi_eeprom_chan channels[WPI_MAX_CHAN_PER_BAND];
3300 struct ieee80211_channel *c;
3301 int chan, i, passive;
3302
3303 wpi_read_prom_data(sc, band->addr, channels,
3304 band->nchan * sizeof (struct wpi_eeprom_chan));
3305
3306 for (i = 0; i < band->nchan; i++) {
3307 if (!(channels[i].flags & WPI_EEPROM_CHAN_VALID)) {
3308 DPRINTFN(WPI_DEBUG_HW,
3309 ("Channel Not Valid: %d, band %d\n",
3310 band->chan[i],n));
3311 continue;
3312 }
3313
3314 passive = 0;
3315 chan = band->chan[i];
3316 c = &ic->ic_channels[ic->ic_nchans++];
3317
3318 /* is active scan allowed on this channel? */
3319 if (!(channels[i].flags & WPI_EEPROM_CHAN_ACTIVE)) {
3320 passive = IEEE80211_CHAN_PASSIVE;
3321 }
3322
3323 if (n == 0) { /* 2GHz band */
3324 c->ic_ieee = chan;
3325 c->ic_freq = ieee80211_ieee2mhz(chan,
3326 IEEE80211_CHAN_2GHZ);
3327 c->ic_flags = IEEE80211_CHAN_B | passive;
3328
3329 c = &ic->ic_channels[ic->ic_nchans++];
3330 c->ic_ieee = chan;
3331 c->ic_freq = ieee80211_ieee2mhz(chan,
3332 IEEE80211_CHAN_2GHZ);
3333 c->ic_flags = IEEE80211_CHAN_G | passive;
3334
3335 } else { /* 5GHz band */
3336 /*
3337 * Some 3945ABG adapters support channels 7, 8, 11
3338 * and 12 in the 2GHz *and* 5GHz bands.
3339 * Because of limitations in our net80211(9) stack,
3340 * we can't support these channels in 5GHz band.
3341 * XXX not true; just need to map to proper frequency
3342 */
3343 if (chan <= 14)
3344 continue;
3345
3346 c->ic_ieee = chan;
3347 c->ic_freq = ieee80211_ieee2mhz(chan,
3348 IEEE80211_CHAN_5GHZ);
3349 c->ic_flags = IEEE80211_CHAN_A | passive;
3350 }
3351
3352 /* save maximum allowed power for this channel */
3353 sc->maxpwr[chan] = channels[i].maxpwr;
3354
3355#if 0
3356 // XXX We can probably use this an get rid of maxpwr - ben 20070617
3357 ic->ic_channels[chan].ic_maxpower = channels[i].maxpwr;
3358 //ic->ic_channels[chan].ic_minpower...
3359 //ic->ic_channels[chan].ic_maxregtxpower...
3360#endif
3361
3362 DPRINTF(("adding chan %d (%dMHz) flags=0x%x maxpwr=%d"
3363 " passive=%d, offset %d\n", chan, c->ic_freq,
3364 channels[i].flags, sc->maxpwr[chan],
3365 (c->ic_flags & IEEE80211_CHAN_PASSIVE) != 0,
3366 ic->ic_nchans));
3367 }
3368}
3369
3370static void
3371wpi_read_eeprom_group(struct wpi_softc *sc, int n)
3372{
3373 struct wpi_power_group *group = &sc->groups[n];
3374 struct wpi_eeprom_group rgroup;
3375 int i;
3376
3377 wpi_read_prom_data(sc, WPI_EEPROM_POWER_GRP + n * 32, &rgroup,
3378 sizeof rgroup);
3379
3380 /* save power group information */
3381 group->chan = rgroup.chan;
3382 group->maxpwr = rgroup.maxpwr;
3383 /* temperature at which the samples were taken */
3384 group->temp = (int16_t)le16toh(rgroup.temp);
3385
3386 DPRINTF(("power group %d: chan=%d maxpwr=%d temp=%d\n", n,
3387 group->chan, group->maxpwr, group->temp));
3388
3389 for (i = 0; i < WPI_SAMPLES_COUNT; i++) {
3390 group->samples[i].index = rgroup.samples[i].index;
3391 group->samples[i].power = rgroup.samples[i].power;
3392
3393 DPRINTF(("\tsample %d: index=%d power=%d\n", i,
3394 group->samples[i].index, group->samples[i].power));
3395 }
3396}
3397
3398/*
3399 * Update Tx power to match what is defined for channel `c'.
3400 */
3401static int
3402wpi_set_txpower(struct wpi_softc *sc, struct ieee80211_channel *c, int async)
3403{
3404 struct ifnet *ifp = sc->sc_ifp;
3405 struct ieee80211com *ic = ifp->if_l2com;
3406 struct wpi_power_group *group;
3407 struct wpi_cmd_txpower txpower;
3408 u_int chan;
3409 int i;
3410
3411 /* get channel number */
3412 chan = ieee80211_chan2ieee(ic, c);
3413
3414 /* find the power group to which this channel belongs */
3415 if (IEEE80211_IS_CHAN_5GHZ(c)) {
3416 for (group = &sc->groups[1]; group < &sc->groups[4]; group++)
3417 if (chan <= group->chan)
3418 break;
3419 } else
3420 group = &sc->groups[0];
3421
3422 memset(&txpower, 0, sizeof txpower);
3423 txpower.band = IEEE80211_IS_CHAN_5GHZ(c) ? 0 : 1;
3424 txpower.channel = htole16(chan);
3425
3426 /* set Tx power for all OFDM and CCK rates */
3427 for (i = 0; i <= 11 ; i++) {
3428 /* retrieve Tx power for this channel/rate combination */
3429 int idx = wpi_get_power_index(sc, group, c,
3430 wpi_ridx_to_rate[i]);
3431
3432 txpower.rates[i].rate = wpi_ridx_to_plcp[i];
3433
3434 if (IEEE80211_IS_CHAN_5GHZ(c)) {
3435 txpower.rates[i].gain_radio = wpi_rf_gain_5ghz[idx];
3436 txpower.rates[i].gain_dsp = wpi_dsp_gain_5ghz[idx];
3437 } else {
3438 txpower.rates[i].gain_radio = wpi_rf_gain_2ghz[idx];
3439 txpower.rates[i].gain_dsp = wpi_dsp_gain_2ghz[idx];
3440 }
3441 DPRINTFN(WPI_DEBUG_TEMP,("chan %d/rate %d: power index %d\n",
3442 chan, wpi_ridx_to_rate[i], idx));
3443 }
3444
3445 return wpi_cmd(sc, WPI_CMD_TXPOWER, &txpower, sizeof txpower, async);
3446}
3447
3448/*
3449 * Determine Tx power index for a given channel/rate combination.
3450 * This takes into account the regulatory information from EEPROM and the
3451 * current temperature.
3452 */
3453static int
3454wpi_get_power_index(struct wpi_softc *sc, struct wpi_power_group *group,
3455 struct ieee80211_channel *c, int rate)
3456{
3457/* fixed-point arithmetic division using a n-bit fractional part */
3458#define fdivround(a, b, n) \
3459 ((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n))
3460
3461/* linear interpolation */
3462#define interpolate(x, x1, y1, x2, y2, n) \
3463 ((y1) + fdivround(((x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n))
3464
3465 struct ifnet *ifp = sc->sc_ifp;
3466 struct ieee80211com *ic = ifp->if_l2com;
3467 struct wpi_power_sample *sample;
3468 int pwr, idx;
3469 u_int chan;
3470
3471 /* get channel number */
3472 chan = ieee80211_chan2ieee(ic, c);
3473
3474 /* default power is group's maximum power - 3dB */
3475 pwr = group->maxpwr / 2;
3476
3477 /* decrease power for highest OFDM rates to reduce distortion */
3478 switch (rate) {
3479 case 72: /* 36Mb/s */
3480 pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 0 : 5;
3481 break;
3482 case 96: /* 48Mb/s */
3483 pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 7 : 10;
3484 break;
3485 case 108: /* 54Mb/s */
3486 pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 9 : 12;
3487 break;
3488 }
3489
3490 /* never exceed channel's maximum allowed Tx power */
3491 pwr = min(pwr, sc->maxpwr[chan]);
3492
3493 /* retrieve power index into gain tables from samples */
3494 for (sample = group->samples; sample < &group->samples[3]; sample++)
3495 if (pwr > sample[1].power)
3496 break;
3497 /* fixed-point linear interpolation using a 19-bit fractional part */
3498 idx = interpolate(pwr, sample[0].power, sample[0].index,
3499 sample[1].power, sample[1].index, 19);
3500
3501 /*
3502 * Adjust power index based on current temperature
3503 * - if colder than factory-calibrated: decreate output power
3504 * - if warmer than factory-calibrated: increase output power
3505 */
3506 idx -= (sc->temp - group->temp) * 11 / 100;
3507
3508 /* decrease power for CCK rates (-5dB) */
3509 if (!WPI_RATE_IS_OFDM(rate))
3510 idx += 10;
3511
3512 /* keep power index in a valid range */
3513 if (idx < 0)
3514 return 0;
3515 if (idx > WPI_MAX_PWR_INDEX)
3516 return WPI_MAX_PWR_INDEX;
3517 return idx;
3518
3519#undef interpolate
3520#undef fdivround
3521}
3522
3523/**
3524 * Called by net80211 framework to indicate that a scan
3525 * is starting. This function doesn't actually do the scan,
3526 * wpi_scan_curchan starts things off. This function is more
3527 * of an early warning from the framework we should get ready
3528 * for the scan.
3529 */
3530static void
3531wpi_scan_start(struct ieee80211com *ic)
3532{
3533 struct ifnet *ifp = ic->ic_ifp;
3534 struct wpi_softc *sc = ifp->if_softc;
3535
3536 WPI_LOCK(sc);
3537 wpi_set_led(sc, WPI_LED_LINK, 20, 2);
3538 WPI_UNLOCK(sc);
3539}
3540
3541/**
3542 * Called by the net80211 framework, indicates that the
3543 * scan has ended. If there is a scan in progress on the card
3544 * then it should be aborted.
3545 */
3546static void
3547wpi_scan_end(struct ieee80211com *ic)
3548{
3549 /* XXX ignore */
3550}
3551
3552/**
3553 * Called by the net80211 framework to indicate to the driver
3554 * that the channel should be changed
3555 */
3556static void
3557wpi_set_channel(struct ieee80211com *ic)
3558{
3559 struct ifnet *ifp = ic->ic_ifp;
3560 struct wpi_softc *sc = ifp->if_softc;
3561 int error;
3562
3563 /*
3564 * Only need to set the channel in Monitor mode. AP scanning and auth
3565 * are already taken care of by their respective firmware commands.
3566 */
3567 if (ic->ic_opmode == IEEE80211_M_MONITOR) {
3568 WPI_LOCK(sc);
3569 error = wpi_config(sc);
3570 WPI_UNLOCK(sc);
3571 if (error != 0)
3572 device_printf(sc->sc_dev,
3573 "error %d settting channel\n", error);
3574 }
3575}
3576
3577/**
3578 * Called by net80211 to indicate that we need to scan the current
3579 * channel. The channel is previously be set via the wpi_set_channel
3580 * callback.
3581 */
3582static void
3583wpi_scan_curchan(struct ieee80211_scan_state *ss, unsigned long maxdwell)
3584{
3585 struct ieee80211vap *vap = ss->ss_vap;
3586 struct ifnet *ifp = vap->iv_ic->ic_ifp;
3587 struct wpi_softc *sc = ifp->if_softc;
3588
3589 WPI_LOCK(sc);
3590 if (wpi_scan(sc))
3591 ieee80211_cancel_scan(vap);
3592 WPI_UNLOCK(sc);
3593}
3594
3595/**
3596 * Called by the net80211 framework to indicate
3597 * the minimum dwell time has been met, terminate the scan.
3598 * We don't actually terminate the scan as the firmware will notify
3599 * us when it's finished and we have no way to interrupt it.
3600 */
3601static void
3602wpi_scan_mindwell(struct ieee80211_scan_state *ss)
3603{
3604 /* NB: don't try to abort scan; wait for firmware to finish */
3605}
3606
3607static void
3608wpi_hwreset(void *arg, int pending)
3609{
3610 struct wpi_softc *sc = arg;
3611
3612 WPI_LOCK(sc);
3613 wpi_init_locked(sc, 0);
3614 WPI_UNLOCK(sc);
3615}
3616
3617static void
3618wpi_rfreset(void *arg, int pending)
3619{
3620 struct wpi_softc *sc = arg;
3621
3622 WPI_LOCK(sc);
3623 wpi_rfkill_resume(sc);
3624 WPI_UNLOCK(sc);
3625}
3626
3627/*
3628 * Allocate DMA-safe memory for firmware transfer.
3629 */
3630static int
3631wpi_alloc_fwmem(struct wpi_softc *sc)
3632{
3633 /* allocate enough contiguous space to store text and data */
3634 return wpi_dma_contig_alloc(sc, &sc->fw_dma, NULL,
3635 WPI_FW_MAIN_TEXT_MAXSZ + WPI_FW_MAIN_DATA_MAXSZ, 1,
3636 BUS_DMA_NOWAIT);
3637}
3638
3639static void
3640wpi_free_fwmem(struct wpi_softc *sc)
3641{
3642 wpi_dma_contig_free(&sc->fw_dma);
3643}
3644
3645/**
3646 * Called every second, wpi_watchdog used by the watch dog timer
3647 * to check that the card is still alive
3648 */
3649static void
3650wpi_watchdog(void *arg)
3651{
3652 struct wpi_softc *sc = arg;
3653 struct ifnet *ifp = sc->sc_ifp;
3654 struct ieee80211com *ic = ifp->if_l2com;
3655 uint32_t tmp;
3656
3657 DPRINTFN(WPI_DEBUG_WATCHDOG,("Watchdog: tick\n"));
3658
3659 if (sc->flags & WPI_FLAG_HW_RADIO_OFF) {
3660 /* No need to lock firmware memory */
3661 tmp = wpi_mem_read(sc, WPI_MEM_HW_RADIO_OFF);
3662
3663 if ((tmp & 0x1) == 0) {
3664 /* Radio kill switch is still off */
3665 callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc);
3666 return;
3667 }
3668
3669 device_printf(sc->sc_dev, "Hardware Switch Enabled\n");
3670 ieee80211_runtask(ic, &sc->sc_radiotask);
3671 return;
3672 }
3673
3674 if (sc->sc_tx_timer > 0) {
3675 if (--sc->sc_tx_timer == 0) {
3676 device_printf(sc->sc_dev,"device timeout\n");
3677 ifp->if_oerrors++;
3678 ieee80211_runtask(ic, &sc->sc_restarttask);
3679 }
3680 }
3681 if (sc->sc_scan_timer > 0) {
3682 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3683 if (--sc->sc_scan_timer == 0 && vap != NULL) {
3684 device_printf(sc->sc_dev,"scan timeout\n");
3685 ieee80211_cancel_scan(vap);
3686 ieee80211_runtask(ic, &sc->sc_restarttask);
3687 }
3688 }
3689
3690 if (ifp->if_drv_flags & IFF_DRV_RUNNING)
3691 callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc);
3692}
3693
3694#ifdef WPI_DEBUG
3695static const char *wpi_cmd_str(int cmd)
3696{
3697 switch (cmd) {
3698 case WPI_DISABLE_CMD: return "WPI_DISABLE_CMD";
3699 case WPI_CMD_CONFIGURE: return "WPI_CMD_CONFIGURE";
3700 case WPI_CMD_ASSOCIATE: return "WPI_CMD_ASSOCIATE";
3701 case WPI_CMD_SET_WME: return "WPI_CMD_SET_WME";
3702 case WPI_CMD_TSF: return "WPI_CMD_TSF";
3703 case WPI_CMD_ADD_NODE: return "WPI_CMD_ADD_NODE";
3704 case WPI_CMD_TX_DATA: return "WPI_CMD_TX_DATA";
3705 case WPI_CMD_MRR_SETUP: return "WPI_CMD_MRR_SETUP";
3706 case WPI_CMD_SET_LED: return "WPI_CMD_SET_LED";
3707 case WPI_CMD_SET_POWER_MODE: return "WPI_CMD_SET_POWER_MODE";
3708 case WPI_CMD_SCAN: return "WPI_CMD_SCAN";
3709 case WPI_CMD_SET_BEACON:return "WPI_CMD_SET_BEACON";
3710 case WPI_CMD_TXPOWER: return "WPI_CMD_TXPOWER";
3711 case WPI_CMD_BLUETOOTH: return "WPI_CMD_BLUETOOTH";
3712
3713 default:
3714 KASSERT(1, ("Unknown Command: %d\n", cmd));
3715 return "UNKNOWN CMD"; /* Make the compiler happy */
3716 }
3717}
3718#endif
3719
3720MODULE_DEPEND(wpi, pci, 1, 1, 1);
3721MODULE_DEPEND(wpi, wlan, 1, 1, 1);
3722MODULE_DEPEND(wpi, firmware, 1, 1, 1);