Deleted Added
full compact
if_msk.c (187208) if_msk.c (187325)
1/******************************************************************************
2 *
3 * Name : sky2.c
4 * Project: Gigabit Ethernet Driver for FreeBSD 5.x/6.x
5 * Version: $Revision: 1.23 $
6 * Date : $Date: 2005/12/22 09:04:11 $
7 * Purpose: Main driver source file
8 *
9 *****************************************************************************/
10
11/******************************************************************************
12 *
13 * LICENSE:
14 * Copyright (C) Marvell International Ltd. and/or its affiliates
15 *
16 * The computer program files contained in this folder ("Files")
17 * are provided to you under the BSD-type license terms provided
18 * below, and any use of such Files and any derivative works
19 * thereof created by you shall be governed by the following terms
20 * and conditions:
21 *
22 * - Redistributions of source code must retain the above copyright
23 * notice, this list of conditions and the following disclaimer.
24 * - Redistributions in binary form must reproduce the above
25 * copyright notice, this list of conditions and the following
26 * disclaimer in the documentation and/or other materials provided
27 * with the distribution.
28 * - Neither the name of Marvell nor the names of its contributors
29 * may be used to endorse or promote products derived from this
30 * software without specific prior written permission.
31 *
32 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
33 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
34 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
35 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
36 * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
37 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
38 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
39 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
40 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
41 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
42 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
43 * OF THE POSSIBILITY OF SUCH DAMAGE.
44 * /LICENSE
45 *
46 *****************************************************************************/
47
48/*-
49 * Copyright (c) 1997, 1998, 1999, 2000
50 * Bill Paul <wpaul@ctr.columbia.edu>. All rights reserved.
51 *
52 * Redistribution and use in source and binary forms, with or without
53 * modification, are permitted provided that the following conditions
54 * are met:
55 * 1. Redistributions of source code must retain the above copyright
56 * notice, this list of conditions and the following disclaimer.
57 * 2. Redistributions in binary form must reproduce the above copyright
58 * notice, this list of conditions and the following disclaimer in the
59 * documentation and/or other materials provided with the distribution.
60 * 3. All advertising materials mentioning features or use of this software
61 * must display the following acknowledgement:
62 * This product includes software developed by Bill Paul.
63 * 4. Neither the name of the author nor the names of any co-contributors
64 * may be used to endorse or promote products derived from this software
65 * without specific prior written permission.
66 *
67 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
68 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
69 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
70 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
71 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
72 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
73 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
74 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
75 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
76 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
77 * THE POSSIBILITY OF SUCH DAMAGE.
78 */
79/*-
80 * Copyright (c) 2003 Nathan L. Binkert <binkertn@umich.edu>
81 *
82 * Permission to use, copy, modify, and distribute this software for any
83 * purpose with or without fee is hereby granted, provided that the above
84 * copyright notice and this permission notice appear in all copies.
85 *
86 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
87 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
88 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
89 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
90 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
91 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
92 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
93 */
94
95/*
96 * Device driver for the Marvell Yukon II Ethernet controller.
97 * Due to lack of documentation, this driver is based on the code from
98 * sk(4) and Marvell's myk(4) driver for FreeBSD 5.x.
99 */
100
101#include <sys/cdefs.h>
1/******************************************************************************
2 *
3 * Name : sky2.c
4 * Project: Gigabit Ethernet Driver for FreeBSD 5.x/6.x
5 * Version: $Revision: 1.23 $
6 * Date : $Date: 2005/12/22 09:04:11 $
7 * Purpose: Main driver source file
8 *
9 *****************************************************************************/
10
11/******************************************************************************
12 *
13 * LICENSE:
14 * Copyright (C) Marvell International Ltd. and/or its affiliates
15 *
16 * The computer program files contained in this folder ("Files")
17 * are provided to you under the BSD-type license terms provided
18 * below, and any use of such Files and any derivative works
19 * thereof created by you shall be governed by the following terms
20 * and conditions:
21 *
22 * - Redistributions of source code must retain the above copyright
23 * notice, this list of conditions and the following disclaimer.
24 * - Redistributions in binary form must reproduce the above
25 * copyright notice, this list of conditions and the following
26 * disclaimer in the documentation and/or other materials provided
27 * with the distribution.
28 * - Neither the name of Marvell nor the names of its contributors
29 * may be used to endorse or promote products derived from this
30 * software without specific prior written permission.
31 *
32 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
33 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
34 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
35 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
36 * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
37 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
38 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
39 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
40 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
41 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
42 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
43 * OF THE POSSIBILITY OF SUCH DAMAGE.
44 * /LICENSE
45 *
46 *****************************************************************************/
47
48/*-
49 * Copyright (c) 1997, 1998, 1999, 2000
50 * Bill Paul <wpaul@ctr.columbia.edu>. All rights reserved.
51 *
52 * Redistribution and use in source and binary forms, with or without
53 * modification, are permitted provided that the following conditions
54 * are met:
55 * 1. Redistributions of source code must retain the above copyright
56 * notice, this list of conditions and the following disclaimer.
57 * 2. Redistributions in binary form must reproduce the above copyright
58 * notice, this list of conditions and the following disclaimer in the
59 * documentation and/or other materials provided with the distribution.
60 * 3. All advertising materials mentioning features or use of this software
61 * must display the following acknowledgement:
62 * This product includes software developed by Bill Paul.
63 * 4. Neither the name of the author nor the names of any co-contributors
64 * may be used to endorse or promote products derived from this software
65 * without specific prior written permission.
66 *
67 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
68 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
69 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
70 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
71 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
72 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
73 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
74 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
75 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
76 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
77 * THE POSSIBILITY OF SUCH DAMAGE.
78 */
79/*-
80 * Copyright (c) 2003 Nathan L. Binkert <binkertn@umich.edu>
81 *
82 * Permission to use, copy, modify, and distribute this software for any
83 * purpose with or without fee is hereby granted, provided that the above
84 * copyright notice and this permission notice appear in all copies.
85 *
86 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
87 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
88 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
89 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
90 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
91 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
92 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
93 */
94
95/*
96 * Device driver for the Marvell Yukon II Ethernet controller.
97 * Due to lack of documentation, this driver is based on the code from
98 * sk(4) and Marvell's myk(4) driver for FreeBSD 5.x.
99 */
100
101#include <sys/cdefs.h>
102__FBSDID("$FreeBSD: head/sys/dev/msk/if_msk.c 187208 2009-01-14 05:08:52Z yongari $");
102__FBSDID("$FreeBSD: head/sys/dev/msk/if_msk.c 187325 2009-01-16 08:06:55Z yongari $");
103
104#include <sys/param.h>
105#include <sys/systm.h>
106#include <sys/bus.h>
107#include <sys/endian.h>
108#include <sys/mbuf.h>
109#include <sys/malloc.h>
110#include <sys/kernel.h>
111#include <sys/module.h>
112#include <sys/socket.h>
113#include <sys/sockio.h>
114#include <sys/queue.h>
115#include <sys/sysctl.h>
116#include <sys/taskqueue.h>
117
118#include <net/bpf.h>
119#include <net/ethernet.h>
120#include <net/if.h>
121#include <net/if_arp.h>
122#include <net/if_dl.h>
123#include <net/if_media.h>
124#include <net/if_types.h>
125#include <net/if_vlan_var.h>
126
127#include <netinet/in.h>
128#include <netinet/in_systm.h>
129#include <netinet/ip.h>
130#include <netinet/tcp.h>
131#include <netinet/udp.h>
132
133#include <machine/bus.h>
134#include <machine/in_cksum.h>
135#include <machine/resource.h>
136#include <sys/rman.h>
137
138#include <dev/mii/mii.h>
139#include <dev/mii/miivar.h>
140#include <dev/mii/brgphyreg.h>
141
142#include <dev/pci/pcireg.h>
143#include <dev/pci/pcivar.h>
144
145#include <dev/msk/if_mskreg.h>
146
147MODULE_DEPEND(msk, pci, 1, 1, 1);
148MODULE_DEPEND(msk, ether, 1, 1, 1);
149MODULE_DEPEND(msk, miibus, 1, 1, 1);
150
151/* "device miibus" required. See GENERIC if you get errors here. */
152#include "miibus_if.h"
153
154/* Tunables. */
155static int msi_disable = 0;
156TUNABLE_INT("hw.msk.msi_disable", &msi_disable);
157static int legacy_intr = 0;
158TUNABLE_INT("hw.msk.legacy_intr", &legacy_intr);
159static int jumbo_disable = 0;
160TUNABLE_INT("hw.msk.jumbo_disable", &jumbo_disable);
161
162#define MSK_CSUM_FEATURES (CSUM_TCP | CSUM_UDP)
163
164/*
165 * Devices supported by this driver.
166 */
167static struct msk_product {
168 uint16_t msk_vendorid;
169 uint16_t msk_deviceid;
170 const char *msk_name;
171} msk_products[] = {
172 { VENDORID_SK, DEVICEID_SK_YUKON2,
173 "SK-9Sxx Gigabit Ethernet" },
174 { VENDORID_SK, DEVICEID_SK_YUKON2_EXPR,
175 "SK-9Exx Gigabit Ethernet"},
176 { VENDORID_MARVELL, DEVICEID_MRVL_8021CU,
177 "Marvell Yukon 88E8021CU Gigabit Ethernet" },
178 { VENDORID_MARVELL, DEVICEID_MRVL_8021X,
179 "Marvell Yukon 88E8021 SX/LX Gigabit Ethernet" },
180 { VENDORID_MARVELL, DEVICEID_MRVL_8022CU,
181 "Marvell Yukon 88E8022CU Gigabit Ethernet" },
182 { VENDORID_MARVELL, DEVICEID_MRVL_8022X,
183 "Marvell Yukon 88E8022 SX/LX Gigabit Ethernet" },
184 { VENDORID_MARVELL, DEVICEID_MRVL_8061CU,
185 "Marvell Yukon 88E8061CU Gigabit Ethernet" },
186 { VENDORID_MARVELL, DEVICEID_MRVL_8061X,
187 "Marvell Yukon 88E8061 SX/LX Gigabit Ethernet" },
188 { VENDORID_MARVELL, DEVICEID_MRVL_8062CU,
189 "Marvell Yukon 88E8062CU Gigabit Ethernet" },
190 { VENDORID_MARVELL, DEVICEID_MRVL_8062X,
191 "Marvell Yukon 88E8062 SX/LX Gigabit Ethernet" },
192 { VENDORID_MARVELL, DEVICEID_MRVL_8035,
193 "Marvell Yukon 88E8035 Gigabit Ethernet" },
194 { VENDORID_MARVELL, DEVICEID_MRVL_8036,
195 "Marvell Yukon 88E8036 Gigabit Ethernet" },
196 { VENDORID_MARVELL, DEVICEID_MRVL_8038,
197 "Marvell Yukon 88E8038 Gigabit Ethernet" },
198 { VENDORID_MARVELL, DEVICEID_MRVL_8039,
199 "Marvell Yukon 88E8039 Gigabit Ethernet" },
200 { VENDORID_MARVELL, DEVICEID_MRVL_4361,
201 "Marvell Yukon 88E8050 Gigabit Ethernet" },
202 { VENDORID_MARVELL, DEVICEID_MRVL_4360,
203 "Marvell Yukon 88E8052 Gigabit Ethernet" },
204 { VENDORID_MARVELL, DEVICEID_MRVL_4362,
205 "Marvell Yukon 88E8053 Gigabit Ethernet" },
206 { VENDORID_MARVELL, DEVICEID_MRVL_4363,
207 "Marvell Yukon 88E8055 Gigabit Ethernet" },
208 { VENDORID_MARVELL, DEVICEID_MRVL_4364,
209 "Marvell Yukon 88E8056 Gigabit Ethernet" },
210 { VENDORID_MARVELL, DEVICEID_MRVL_436A,
211 "Marvell Yukon 88E8058 Gigabit Ethernet" },
212 { VENDORID_DLINK, DEVICEID_DLINK_DGE550SX,
213 "D-Link 550SX Gigabit Ethernet" },
214 { VENDORID_DLINK, DEVICEID_DLINK_DGE560T,
215 "D-Link 560T Gigabit Ethernet" }
216};
217
218static const char *model_name[] = {
219 "Yukon XL",
220 "Yukon EC Ultra",
221 "Yukon Unknown",
222 "Yukon EC",
223 "Yukon FE"
224};
225
226static int mskc_probe(device_t);
227static int mskc_attach(device_t);
228static int mskc_detach(device_t);
229static int mskc_shutdown(device_t);
230static int mskc_setup_rambuffer(struct msk_softc *);
231static int mskc_suspend(device_t);
232static int mskc_resume(device_t);
233static void mskc_reset(struct msk_softc *);
234
235static int msk_probe(device_t);
236static int msk_attach(device_t);
237static int msk_detach(device_t);
238
239static void msk_tick(void *);
240static void msk_legacy_intr(void *);
241static int msk_intr(void *);
242static void msk_int_task(void *, int);
243static void msk_intr_phy(struct msk_if_softc *);
244static void msk_intr_gmac(struct msk_if_softc *);
245static __inline void msk_rxput(struct msk_if_softc *);
246static int msk_handle_events(struct msk_softc *);
247static void msk_handle_hwerr(struct msk_if_softc *, uint32_t);
248static void msk_intr_hwerr(struct msk_softc *);
249#ifndef __NO_STRICT_ALIGNMENT
250static __inline void msk_fixup_rx(struct mbuf *);
251#endif
252static void msk_rxeof(struct msk_if_softc *, uint32_t, int);
253static void msk_jumbo_rxeof(struct msk_if_softc *, uint32_t, int);
254static void msk_txeof(struct msk_if_softc *, int);
255static int msk_encap(struct msk_if_softc *, struct mbuf **);
256static void msk_tx_task(void *, int);
257static void msk_start(struct ifnet *);
258static int msk_ioctl(struct ifnet *, u_long, caddr_t);
259static void msk_set_prefetch(struct msk_softc *, int, bus_addr_t, uint32_t);
260static void msk_set_rambuffer(struct msk_if_softc *);
261static void msk_init(void *);
262static void msk_init_locked(struct msk_if_softc *);
263static void msk_stop(struct msk_if_softc *);
264static void msk_watchdog(struct msk_if_softc *);
265static int msk_mediachange(struct ifnet *);
266static void msk_mediastatus(struct ifnet *, struct ifmediareq *);
267static void msk_phy_power(struct msk_softc *, int);
268static void msk_dmamap_cb(void *, bus_dma_segment_t *, int, int);
269static int msk_status_dma_alloc(struct msk_softc *);
270static void msk_status_dma_free(struct msk_softc *);
271static int msk_txrx_dma_alloc(struct msk_if_softc *);
272static int msk_rx_dma_jalloc(struct msk_if_softc *);
273static void msk_txrx_dma_free(struct msk_if_softc *);
274static void msk_rx_dma_jfree(struct msk_if_softc *);
275static int msk_init_rx_ring(struct msk_if_softc *);
276static int msk_init_jumbo_rx_ring(struct msk_if_softc *);
277static void msk_init_tx_ring(struct msk_if_softc *);
278static __inline void msk_discard_rxbuf(struct msk_if_softc *, int);
279static __inline void msk_discard_jumbo_rxbuf(struct msk_if_softc *, int);
280static int msk_newbuf(struct msk_if_softc *, int);
281static int msk_jumbo_newbuf(struct msk_if_softc *, int);
282
283static int msk_phy_readreg(struct msk_if_softc *, int, int);
284static int msk_phy_writereg(struct msk_if_softc *, int, int, int);
285static int msk_miibus_readreg(device_t, int, int);
286static int msk_miibus_writereg(device_t, int, int, int);
287static void msk_miibus_statchg(device_t);
288static void msk_link_task(void *, int);
289
290static void msk_setmulti(struct msk_if_softc *);
291static void msk_setvlan(struct msk_if_softc *, struct ifnet *);
292static void msk_setpromisc(struct msk_if_softc *);
293
103
104#include <sys/param.h>
105#include <sys/systm.h>
106#include <sys/bus.h>
107#include <sys/endian.h>
108#include <sys/mbuf.h>
109#include <sys/malloc.h>
110#include <sys/kernel.h>
111#include <sys/module.h>
112#include <sys/socket.h>
113#include <sys/sockio.h>
114#include <sys/queue.h>
115#include <sys/sysctl.h>
116#include <sys/taskqueue.h>
117
118#include <net/bpf.h>
119#include <net/ethernet.h>
120#include <net/if.h>
121#include <net/if_arp.h>
122#include <net/if_dl.h>
123#include <net/if_media.h>
124#include <net/if_types.h>
125#include <net/if_vlan_var.h>
126
127#include <netinet/in.h>
128#include <netinet/in_systm.h>
129#include <netinet/ip.h>
130#include <netinet/tcp.h>
131#include <netinet/udp.h>
132
133#include <machine/bus.h>
134#include <machine/in_cksum.h>
135#include <machine/resource.h>
136#include <sys/rman.h>
137
138#include <dev/mii/mii.h>
139#include <dev/mii/miivar.h>
140#include <dev/mii/brgphyreg.h>
141
142#include <dev/pci/pcireg.h>
143#include <dev/pci/pcivar.h>
144
145#include <dev/msk/if_mskreg.h>
146
147MODULE_DEPEND(msk, pci, 1, 1, 1);
148MODULE_DEPEND(msk, ether, 1, 1, 1);
149MODULE_DEPEND(msk, miibus, 1, 1, 1);
150
151/* "device miibus" required. See GENERIC if you get errors here. */
152#include "miibus_if.h"
153
154/* Tunables. */
155static int msi_disable = 0;
156TUNABLE_INT("hw.msk.msi_disable", &msi_disable);
157static int legacy_intr = 0;
158TUNABLE_INT("hw.msk.legacy_intr", &legacy_intr);
159static int jumbo_disable = 0;
160TUNABLE_INT("hw.msk.jumbo_disable", &jumbo_disable);
161
162#define MSK_CSUM_FEATURES (CSUM_TCP | CSUM_UDP)
163
164/*
165 * Devices supported by this driver.
166 */
167static struct msk_product {
168 uint16_t msk_vendorid;
169 uint16_t msk_deviceid;
170 const char *msk_name;
171} msk_products[] = {
172 { VENDORID_SK, DEVICEID_SK_YUKON2,
173 "SK-9Sxx Gigabit Ethernet" },
174 { VENDORID_SK, DEVICEID_SK_YUKON2_EXPR,
175 "SK-9Exx Gigabit Ethernet"},
176 { VENDORID_MARVELL, DEVICEID_MRVL_8021CU,
177 "Marvell Yukon 88E8021CU Gigabit Ethernet" },
178 { VENDORID_MARVELL, DEVICEID_MRVL_8021X,
179 "Marvell Yukon 88E8021 SX/LX Gigabit Ethernet" },
180 { VENDORID_MARVELL, DEVICEID_MRVL_8022CU,
181 "Marvell Yukon 88E8022CU Gigabit Ethernet" },
182 { VENDORID_MARVELL, DEVICEID_MRVL_8022X,
183 "Marvell Yukon 88E8022 SX/LX Gigabit Ethernet" },
184 { VENDORID_MARVELL, DEVICEID_MRVL_8061CU,
185 "Marvell Yukon 88E8061CU Gigabit Ethernet" },
186 { VENDORID_MARVELL, DEVICEID_MRVL_8061X,
187 "Marvell Yukon 88E8061 SX/LX Gigabit Ethernet" },
188 { VENDORID_MARVELL, DEVICEID_MRVL_8062CU,
189 "Marvell Yukon 88E8062CU Gigabit Ethernet" },
190 { VENDORID_MARVELL, DEVICEID_MRVL_8062X,
191 "Marvell Yukon 88E8062 SX/LX Gigabit Ethernet" },
192 { VENDORID_MARVELL, DEVICEID_MRVL_8035,
193 "Marvell Yukon 88E8035 Gigabit Ethernet" },
194 { VENDORID_MARVELL, DEVICEID_MRVL_8036,
195 "Marvell Yukon 88E8036 Gigabit Ethernet" },
196 { VENDORID_MARVELL, DEVICEID_MRVL_8038,
197 "Marvell Yukon 88E8038 Gigabit Ethernet" },
198 { VENDORID_MARVELL, DEVICEID_MRVL_8039,
199 "Marvell Yukon 88E8039 Gigabit Ethernet" },
200 { VENDORID_MARVELL, DEVICEID_MRVL_4361,
201 "Marvell Yukon 88E8050 Gigabit Ethernet" },
202 { VENDORID_MARVELL, DEVICEID_MRVL_4360,
203 "Marvell Yukon 88E8052 Gigabit Ethernet" },
204 { VENDORID_MARVELL, DEVICEID_MRVL_4362,
205 "Marvell Yukon 88E8053 Gigabit Ethernet" },
206 { VENDORID_MARVELL, DEVICEID_MRVL_4363,
207 "Marvell Yukon 88E8055 Gigabit Ethernet" },
208 { VENDORID_MARVELL, DEVICEID_MRVL_4364,
209 "Marvell Yukon 88E8056 Gigabit Ethernet" },
210 { VENDORID_MARVELL, DEVICEID_MRVL_436A,
211 "Marvell Yukon 88E8058 Gigabit Ethernet" },
212 { VENDORID_DLINK, DEVICEID_DLINK_DGE550SX,
213 "D-Link 550SX Gigabit Ethernet" },
214 { VENDORID_DLINK, DEVICEID_DLINK_DGE560T,
215 "D-Link 560T Gigabit Ethernet" }
216};
217
218static const char *model_name[] = {
219 "Yukon XL",
220 "Yukon EC Ultra",
221 "Yukon Unknown",
222 "Yukon EC",
223 "Yukon FE"
224};
225
226static int mskc_probe(device_t);
227static int mskc_attach(device_t);
228static int mskc_detach(device_t);
229static int mskc_shutdown(device_t);
230static int mskc_setup_rambuffer(struct msk_softc *);
231static int mskc_suspend(device_t);
232static int mskc_resume(device_t);
233static void mskc_reset(struct msk_softc *);
234
235static int msk_probe(device_t);
236static int msk_attach(device_t);
237static int msk_detach(device_t);
238
239static void msk_tick(void *);
240static void msk_legacy_intr(void *);
241static int msk_intr(void *);
242static void msk_int_task(void *, int);
243static void msk_intr_phy(struct msk_if_softc *);
244static void msk_intr_gmac(struct msk_if_softc *);
245static __inline void msk_rxput(struct msk_if_softc *);
246static int msk_handle_events(struct msk_softc *);
247static void msk_handle_hwerr(struct msk_if_softc *, uint32_t);
248static void msk_intr_hwerr(struct msk_softc *);
249#ifndef __NO_STRICT_ALIGNMENT
250static __inline void msk_fixup_rx(struct mbuf *);
251#endif
252static void msk_rxeof(struct msk_if_softc *, uint32_t, int);
253static void msk_jumbo_rxeof(struct msk_if_softc *, uint32_t, int);
254static void msk_txeof(struct msk_if_softc *, int);
255static int msk_encap(struct msk_if_softc *, struct mbuf **);
256static void msk_tx_task(void *, int);
257static void msk_start(struct ifnet *);
258static int msk_ioctl(struct ifnet *, u_long, caddr_t);
259static void msk_set_prefetch(struct msk_softc *, int, bus_addr_t, uint32_t);
260static void msk_set_rambuffer(struct msk_if_softc *);
261static void msk_init(void *);
262static void msk_init_locked(struct msk_if_softc *);
263static void msk_stop(struct msk_if_softc *);
264static void msk_watchdog(struct msk_if_softc *);
265static int msk_mediachange(struct ifnet *);
266static void msk_mediastatus(struct ifnet *, struct ifmediareq *);
267static void msk_phy_power(struct msk_softc *, int);
268static void msk_dmamap_cb(void *, bus_dma_segment_t *, int, int);
269static int msk_status_dma_alloc(struct msk_softc *);
270static void msk_status_dma_free(struct msk_softc *);
271static int msk_txrx_dma_alloc(struct msk_if_softc *);
272static int msk_rx_dma_jalloc(struct msk_if_softc *);
273static void msk_txrx_dma_free(struct msk_if_softc *);
274static void msk_rx_dma_jfree(struct msk_if_softc *);
275static int msk_init_rx_ring(struct msk_if_softc *);
276static int msk_init_jumbo_rx_ring(struct msk_if_softc *);
277static void msk_init_tx_ring(struct msk_if_softc *);
278static __inline void msk_discard_rxbuf(struct msk_if_softc *, int);
279static __inline void msk_discard_jumbo_rxbuf(struct msk_if_softc *, int);
280static int msk_newbuf(struct msk_if_softc *, int);
281static int msk_jumbo_newbuf(struct msk_if_softc *, int);
282
283static int msk_phy_readreg(struct msk_if_softc *, int, int);
284static int msk_phy_writereg(struct msk_if_softc *, int, int, int);
285static int msk_miibus_readreg(device_t, int, int);
286static int msk_miibus_writereg(device_t, int, int, int);
287static void msk_miibus_statchg(device_t);
288static void msk_link_task(void *, int);
289
290static void msk_setmulti(struct msk_if_softc *);
291static void msk_setvlan(struct msk_if_softc *, struct ifnet *);
292static void msk_setpromisc(struct msk_if_softc *);
293
294static void msk_stats_clear(struct msk_if_softc *);
295static void msk_stats_update(struct msk_if_softc *);
296static int msk_sysctl_stat32(SYSCTL_HANDLER_ARGS);
297static int msk_sysctl_stat64(SYSCTL_HANDLER_ARGS);
298static void msk_sysctl_node(struct msk_if_softc *);
294static int sysctl_int_range(SYSCTL_HANDLER_ARGS, int, int);
295static int sysctl_hw_msk_proc_limit(SYSCTL_HANDLER_ARGS);
296
297static device_method_t mskc_methods[] = {
298 /* Device interface */
299 DEVMETHOD(device_probe, mskc_probe),
300 DEVMETHOD(device_attach, mskc_attach),
301 DEVMETHOD(device_detach, mskc_detach),
302 DEVMETHOD(device_suspend, mskc_suspend),
303 DEVMETHOD(device_resume, mskc_resume),
304 DEVMETHOD(device_shutdown, mskc_shutdown),
305
306 /* bus interface */
307 DEVMETHOD(bus_print_child, bus_generic_print_child),
308 DEVMETHOD(bus_driver_added, bus_generic_driver_added),
309
310 { NULL, NULL }
311};
312
313static driver_t mskc_driver = {
314 "mskc",
315 mskc_methods,
316 sizeof(struct msk_softc)
317};
318
319static devclass_t mskc_devclass;
320
321static device_method_t msk_methods[] = {
322 /* Device interface */
323 DEVMETHOD(device_probe, msk_probe),
324 DEVMETHOD(device_attach, msk_attach),
325 DEVMETHOD(device_detach, msk_detach),
326 DEVMETHOD(device_shutdown, bus_generic_shutdown),
327
328 /* bus interface */
329 DEVMETHOD(bus_print_child, bus_generic_print_child),
330 DEVMETHOD(bus_driver_added, bus_generic_driver_added),
331
332 /* MII interface */
333 DEVMETHOD(miibus_readreg, msk_miibus_readreg),
334 DEVMETHOD(miibus_writereg, msk_miibus_writereg),
335 DEVMETHOD(miibus_statchg, msk_miibus_statchg),
336
337 { NULL, NULL }
338};
339
340static driver_t msk_driver = {
341 "msk",
342 msk_methods,
343 sizeof(struct msk_if_softc)
344};
345
346static devclass_t msk_devclass;
347
348DRIVER_MODULE(mskc, pci, mskc_driver, mskc_devclass, 0, 0);
349DRIVER_MODULE(msk, mskc, msk_driver, msk_devclass, 0, 0);
350DRIVER_MODULE(miibus, msk, miibus_driver, miibus_devclass, 0, 0);
351
352static struct resource_spec msk_res_spec_io[] = {
353 { SYS_RES_IOPORT, PCIR_BAR(1), RF_ACTIVE },
354 { -1, 0, 0 }
355};
356
357static struct resource_spec msk_res_spec_mem[] = {
358 { SYS_RES_MEMORY, PCIR_BAR(0), RF_ACTIVE },
359 { -1, 0, 0 }
360};
361
362static struct resource_spec msk_irq_spec_legacy[] = {
363 { SYS_RES_IRQ, 0, RF_ACTIVE | RF_SHAREABLE },
364 { -1, 0, 0 }
365};
366
367static struct resource_spec msk_irq_spec_msi[] = {
368 { SYS_RES_IRQ, 1, RF_ACTIVE },
369 { -1, 0, 0 }
370};
371
372static struct resource_spec msk_irq_spec_msi2[] = {
373 { SYS_RES_IRQ, 1, RF_ACTIVE },
374 { SYS_RES_IRQ, 2, RF_ACTIVE },
375 { -1, 0, 0 }
376};
377
378static int
379msk_miibus_readreg(device_t dev, int phy, int reg)
380{
381 struct msk_if_softc *sc_if;
382
383 if (phy != PHY_ADDR_MARV)
384 return (0);
385
386 sc_if = device_get_softc(dev);
387
388 return (msk_phy_readreg(sc_if, phy, reg));
389}
390
391static int
392msk_phy_readreg(struct msk_if_softc *sc_if, int phy, int reg)
393{
394 struct msk_softc *sc;
395 int i, val;
396
397 sc = sc_if->msk_softc;
398
399 GMAC_WRITE_2(sc, sc_if->msk_port, GM_SMI_CTRL,
400 GM_SMI_CT_PHY_AD(phy) | GM_SMI_CT_REG_AD(reg) | GM_SMI_CT_OP_RD);
401
402 for (i = 0; i < MSK_TIMEOUT; i++) {
403 DELAY(1);
404 val = GMAC_READ_2(sc, sc_if->msk_port, GM_SMI_CTRL);
405 if ((val & GM_SMI_CT_RD_VAL) != 0) {
406 val = GMAC_READ_2(sc, sc_if->msk_port, GM_SMI_DATA);
407 break;
408 }
409 }
410
411 if (i == MSK_TIMEOUT) {
412 if_printf(sc_if->msk_ifp, "phy failed to come ready\n");
413 val = 0;
414 }
415
416 return (val);
417}
418
419static int
420msk_miibus_writereg(device_t dev, int phy, int reg, int val)
421{
422 struct msk_if_softc *sc_if;
423
424 if (phy != PHY_ADDR_MARV)
425 return (0);
426
427 sc_if = device_get_softc(dev);
428
429 return (msk_phy_writereg(sc_if, phy, reg, val));
430}
431
432static int
433msk_phy_writereg(struct msk_if_softc *sc_if, int phy, int reg, int val)
434{
435 struct msk_softc *sc;
436 int i;
437
438 sc = sc_if->msk_softc;
439
440 GMAC_WRITE_2(sc, sc_if->msk_port, GM_SMI_DATA, val);
441 GMAC_WRITE_2(sc, sc_if->msk_port, GM_SMI_CTRL,
442 GM_SMI_CT_PHY_AD(phy) | GM_SMI_CT_REG_AD(reg));
443 for (i = 0; i < MSK_TIMEOUT; i++) {
444 DELAY(1);
445 if ((GMAC_READ_2(sc, sc_if->msk_port, GM_SMI_CTRL) &
446 GM_SMI_CT_BUSY) == 0)
447 break;
448 }
449 if (i == MSK_TIMEOUT)
450 if_printf(sc_if->msk_ifp, "phy write timeout\n");
451
452 return (0);
453}
454
455static void
456msk_miibus_statchg(device_t dev)
457{
458 struct msk_if_softc *sc_if;
459
460 sc_if = device_get_softc(dev);
461 taskqueue_enqueue(taskqueue_swi, &sc_if->msk_link_task);
462}
463
464static void
465msk_link_task(void *arg, int pending)
466{
467 struct msk_softc *sc;
468 struct msk_if_softc *sc_if;
469 struct mii_data *mii;
470 struct ifnet *ifp;
471 uint32_t gmac;
472
473 sc_if = (struct msk_if_softc *)arg;
474 sc = sc_if->msk_softc;
475
476 MSK_IF_LOCK(sc_if);
477
478 mii = device_get_softc(sc_if->msk_miibus);
479 ifp = sc_if->msk_ifp;
480 if (mii == NULL || ifp == NULL) {
481 MSK_IF_UNLOCK(sc_if);
482 return;
483 }
484
485 if (mii->mii_media_status & IFM_ACTIVE) {
486 if (IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)
487 sc_if->msk_link = 1;
488 } else
489 sc_if->msk_link = 0;
490
491 if (sc_if->msk_link != 0) {
492 /* Enable Tx FIFO Underrun. */
493 CSR_WRITE_1(sc, MR_ADDR(sc_if->msk_port, GMAC_IRQ_MSK),
494 GM_IS_TX_FF_UR | GM_IS_RX_FF_OR);
495 /*
496 * Because mii(4) notify msk(4) that it detected link status
497 * change, there is no need to enable automatic
498 * speed/flow-control/duplex updates.
499 */
500 gmac = GM_GPCR_AU_ALL_DIS;
501 switch (IFM_SUBTYPE(mii->mii_media_active)) {
502 case IFM_1000_SX:
503 case IFM_1000_T:
504 gmac |= GM_GPCR_SPEED_1000;
505 break;
506 case IFM_100_TX:
507 gmac |= GM_GPCR_SPEED_100;
508 break;
509 case IFM_10_T:
510 break;
511 }
512
513 if (((mii->mii_media_active & IFM_GMASK) & IFM_FDX) != 0)
514 gmac |= GM_GPCR_DUP_FULL;
515 /* Disable Rx flow control. */
516 if (((mii->mii_media_active & IFM_GMASK) & IFM_FLAG0) == 0)
517 gmac |= GM_GPCR_FC_RX_DIS;
518 /* Disable Tx flow control. */
519 if (((mii->mii_media_active & IFM_GMASK) & IFM_FLAG1) == 0)
520 gmac |= GM_GPCR_FC_TX_DIS;
521 gmac |= GM_GPCR_RX_ENA | GM_GPCR_TX_ENA;
522 GMAC_WRITE_2(sc, sc_if->msk_port, GM_GP_CTRL, gmac);
523 /* Read again to ensure writing. */
524 GMAC_READ_2(sc, sc_if->msk_port, GM_GP_CTRL);
525
526 gmac = GMC_PAUSE_ON;
527 if (((mii->mii_media_active & IFM_GMASK) &
528 (IFM_FLAG0 | IFM_FLAG1)) == 0)
529 gmac = GMC_PAUSE_OFF;
530 /* Diable pause for 10/100 Mbps in half-duplex mode. */
531 if ((((mii->mii_media_active & IFM_GMASK) & IFM_FDX) == 0) &&
532 (IFM_SUBTYPE(mii->mii_media_active) == IFM_100_TX ||
533 IFM_SUBTYPE(mii->mii_media_active) == IFM_10_T))
534 gmac = GMC_PAUSE_OFF;
535 CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, GMAC_CTRL), gmac);
536
537 /* Enable PHY interrupt for FIFO underrun/overflow. */
538 msk_phy_writereg(sc_if, PHY_ADDR_MARV,
539 PHY_MARV_INT_MASK, PHY_M_IS_FIFO_ERROR);
540 } else {
541 /*
542 * Link state changed to down.
543 * Disable PHY interrupts.
544 */
545 msk_phy_writereg(sc_if, PHY_ADDR_MARV, PHY_MARV_INT_MASK, 0);
546 /* Disable Rx/Tx MAC. */
547 gmac = GMAC_READ_2(sc, sc_if->msk_port, GM_GP_CTRL);
548 gmac &= ~(GM_GPCR_RX_ENA | GM_GPCR_TX_ENA);
549 GMAC_WRITE_2(sc, sc_if->msk_port, GM_GP_CTRL, gmac);
550 /* Read again to ensure writing. */
551 GMAC_READ_2(sc, sc_if->msk_port, GM_GP_CTRL);
552 }
553
554 MSK_IF_UNLOCK(sc_if);
555}
556
557static void
558msk_setmulti(struct msk_if_softc *sc_if)
559{
560 struct msk_softc *sc;
561 struct ifnet *ifp;
562 struct ifmultiaddr *ifma;
563 uint32_t mchash[2];
564 uint32_t crc;
565 uint16_t mode;
566
567 sc = sc_if->msk_softc;
568
569 MSK_IF_LOCK_ASSERT(sc_if);
570
571 ifp = sc_if->msk_ifp;
572
573 bzero(mchash, sizeof(mchash));
574 mode = GMAC_READ_2(sc, sc_if->msk_port, GM_RX_CTRL);
575 mode |= GM_RXCR_UCF_ENA;
576 if ((ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI)) != 0) {
577 if ((ifp->if_flags & IFF_PROMISC) != 0)
578 mode &= ~(GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA);
579 else if ((ifp->if_flags & IFF_ALLMULTI) != 0) {
580 mchash[0] = 0xffff;
581 mchash[1] = 0xffff;
582 }
583 } else {
584 IF_ADDR_LOCK(ifp);
585 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
586 if (ifma->ifma_addr->sa_family != AF_LINK)
587 continue;
588 crc = ether_crc32_be(LLADDR((struct sockaddr_dl *)
589 ifma->ifma_addr), ETHER_ADDR_LEN);
590 /* Just want the 6 least significant bits. */
591 crc &= 0x3f;
592 /* Set the corresponding bit in the hash table. */
593 mchash[crc >> 5] |= 1 << (crc & 0x1f);
594 }
595 IF_ADDR_UNLOCK(ifp);
596 mode |= GM_RXCR_MCF_ENA;
597 }
598
599 GMAC_WRITE_2(sc, sc_if->msk_port, GM_MC_ADDR_H1,
600 mchash[0] & 0xffff);
601 GMAC_WRITE_2(sc, sc_if->msk_port, GM_MC_ADDR_H2,
602 (mchash[0] >> 16) & 0xffff);
603 GMAC_WRITE_2(sc, sc_if->msk_port, GM_MC_ADDR_H3,
604 mchash[1] & 0xffff);
605 GMAC_WRITE_2(sc, sc_if->msk_port, GM_MC_ADDR_H4,
606 (mchash[1] >> 16) & 0xffff);
607 GMAC_WRITE_2(sc, sc_if->msk_port, GM_RX_CTRL, mode);
608}
609
610static void
611msk_setvlan(struct msk_if_softc *sc_if, struct ifnet *ifp)
612{
613 struct msk_softc *sc;
614
615 sc = sc_if->msk_softc;
616 if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0) {
617 CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_CTRL_T),
618 RX_VLAN_STRIP_ON);
619 CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T),
620 TX_VLAN_TAG_ON);
621 } else {
622 CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_CTRL_T),
623 RX_VLAN_STRIP_OFF);
624 CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T),
625 TX_VLAN_TAG_OFF);
626 }
627}
628
629static void
630msk_setpromisc(struct msk_if_softc *sc_if)
631{
632 struct msk_softc *sc;
633 struct ifnet *ifp;
634 uint16_t mode;
635
636 MSK_IF_LOCK_ASSERT(sc_if);
637
638 sc = sc_if->msk_softc;
639 ifp = sc_if->msk_ifp;
640
641 mode = GMAC_READ_2(sc, sc_if->msk_port, GM_RX_CTRL);
642 if (ifp->if_flags & IFF_PROMISC)
643 mode &= ~(GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA);
644 else
645 mode |= (GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA);
646 GMAC_WRITE_2(sc, sc_if->msk_port, GM_RX_CTRL, mode);
647}
648
649static int
650msk_init_rx_ring(struct msk_if_softc *sc_if)
651{
652 struct msk_ring_data *rd;
653 struct msk_rxdesc *rxd;
654 int i, prod;
655
656 MSK_IF_LOCK_ASSERT(sc_if);
657
658 sc_if->msk_cdata.msk_rx_cons = 0;
659 sc_if->msk_cdata.msk_rx_prod = 0;
660 sc_if->msk_cdata.msk_rx_putwm = MSK_PUT_WM;
661
662 rd = &sc_if->msk_rdata;
663 bzero(rd->msk_rx_ring, sizeof(struct msk_rx_desc) * MSK_RX_RING_CNT);
664 prod = sc_if->msk_cdata.msk_rx_prod;
665 for (i = 0; i < MSK_RX_RING_CNT; i++) {
666 rxd = &sc_if->msk_cdata.msk_rxdesc[prod];
667 rxd->rx_m = NULL;
668 rxd->rx_le = &rd->msk_rx_ring[prod];
669 if (msk_newbuf(sc_if, prod) != 0)
670 return (ENOBUFS);
671 MSK_INC(prod, MSK_RX_RING_CNT);
672 }
673
674 bus_dmamap_sync(sc_if->msk_cdata.msk_rx_ring_tag,
675 sc_if->msk_cdata.msk_rx_ring_map,
676 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
677
678 /* Update prefetch unit. */
679 sc_if->msk_cdata.msk_rx_prod = MSK_RX_RING_CNT - 1;
680 CSR_WRITE_2(sc_if->msk_softc,
681 Y2_PREF_Q_ADDR(sc_if->msk_rxq, PREF_UNIT_PUT_IDX_REG),
682 sc_if->msk_cdata.msk_rx_prod);
683
684 return (0);
685}
686
687static int
688msk_init_jumbo_rx_ring(struct msk_if_softc *sc_if)
689{
690 struct msk_ring_data *rd;
691 struct msk_rxdesc *rxd;
692 int i, prod;
693
694 MSK_IF_LOCK_ASSERT(sc_if);
695
696 sc_if->msk_cdata.msk_rx_cons = 0;
697 sc_if->msk_cdata.msk_rx_prod = 0;
698 sc_if->msk_cdata.msk_rx_putwm = MSK_PUT_WM;
699
700 rd = &sc_if->msk_rdata;
701 bzero(rd->msk_jumbo_rx_ring,
702 sizeof(struct msk_rx_desc) * MSK_JUMBO_RX_RING_CNT);
703 prod = sc_if->msk_cdata.msk_rx_prod;
704 for (i = 0; i < MSK_JUMBO_RX_RING_CNT; i++) {
705 rxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[prod];
706 rxd->rx_m = NULL;
707 rxd->rx_le = &rd->msk_jumbo_rx_ring[prod];
708 if (msk_jumbo_newbuf(sc_if, prod) != 0)
709 return (ENOBUFS);
710 MSK_INC(prod, MSK_JUMBO_RX_RING_CNT);
711 }
712
713 bus_dmamap_sync(sc_if->msk_cdata.msk_jumbo_rx_ring_tag,
714 sc_if->msk_cdata.msk_jumbo_rx_ring_map,
715 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
716
717 sc_if->msk_cdata.msk_rx_prod = MSK_JUMBO_RX_RING_CNT - 1;
718 CSR_WRITE_2(sc_if->msk_softc,
719 Y2_PREF_Q_ADDR(sc_if->msk_rxq, PREF_UNIT_PUT_IDX_REG),
720 sc_if->msk_cdata.msk_rx_prod);
721
722 return (0);
723}
724
725static void
726msk_init_tx_ring(struct msk_if_softc *sc_if)
727{
728 struct msk_ring_data *rd;
729 struct msk_txdesc *txd;
730 int i;
731
732 sc_if->msk_cdata.msk_tso_mtu = 0;
733 sc_if->msk_cdata.msk_tx_prod = 0;
734 sc_if->msk_cdata.msk_tx_cons = 0;
735 sc_if->msk_cdata.msk_tx_cnt = 0;
736
737 rd = &sc_if->msk_rdata;
738 bzero(rd->msk_tx_ring, sizeof(struct msk_tx_desc) * MSK_TX_RING_CNT);
739 for (i = 0; i < MSK_TX_RING_CNT; i++) {
740 txd = &sc_if->msk_cdata.msk_txdesc[i];
741 txd->tx_m = NULL;
742 txd->tx_le = &rd->msk_tx_ring[i];
743 }
744
745 bus_dmamap_sync(sc_if->msk_cdata.msk_tx_ring_tag,
746 sc_if->msk_cdata.msk_tx_ring_map,
747 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
748}
749
750static __inline void
751msk_discard_rxbuf(struct msk_if_softc *sc_if, int idx)
752{
753 struct msk_rx_desc *rx_le;
754 struct msk_rxdesc *rxd;
755 struct mbuf *m;
756
757 rxd = &sc_if->msk_cdata.msk_rxdesc[idx];
758 m = rxd->rx_m;
759 rx_le = rxd->rx_le;
760 rx_le->msk_control = htole32(m->m_len | OP_PACKET | HW_OWNER);
761}
762
763static __inline void
764msk_discard_jumbo_rxbuf(struct msk_if_softc *sc_if, int idx)
765{
766 struct msk_rx_desc *rx_le;
767 struct msk_rxdesc *rxd;
768 struct mbuf *m;
769
770 rxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[idx];
771 m = rxd->rx_m;
772 rx_le = rxd->rx_le;
773 rx_le->msk_control = htole32(m->m_len | OP_PACKET | HW_OWNER);
774}
775
776static int
777msk_newbuf(struct msk_if_softc *sc_if, int idx)
778{
779 struct msk_rx_desc *rx_le;
780 struct msk_rxdesc *rxd;
781 struct mbuf *m;
782 bus_dma_segment_t segs[1];
783 bus_dmamap_t map;
784 int nsegs;
785
786 m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
787 if (m == NULL)
788 return (ENOBUFS);
789
790 m->m_len = m->m_pkthdr.len = MCLBYTES;
791 if ((sc_if->msk_flags & MSK_FLAG_RAMBUF) == 0)
792 m_adj(m, ETHER_ALIGN);
793#ifndef __NO_STRICT_ALIGNMENT
794 else
795 m_adj(m, MSK_RX_BUF_ALIGN);
796#endif
797
798 if (bus_dmamap_load_mbuf_sg(sc_if->msk_cdata.msk_rx_tag,
799 sc_if->msk_cdata.msk_rx_sparemap, m, segs, &nsegs,
800 BUS_DMA_NOWAIT) != 0) {
801 m_freem(m);
802 return (ENOBUFS);
803 }
804 KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
805
806 rxd = &sc_if->msk_cdata.msk_rxdesc[idx];
807 if (rxd->rx_m != NULL) {
808 bus_dmamap_sync(sc_if->msk_cdata.msk_rx_tag, rxd->rx_dmamap,
809 BUS_DMASYNC_POSTREAD);
810 bus_dmamap_unload(sc_if->msk_cdata.msk_rx_tag, rxd->rx_dmamap);
811 }
812 map = rxd->rx_dmamap;
813 rxd->rx_dmamap = sc_if->msk_cdata.msk_rx_sparemap;
814 sc_if->msk_cdata.msk_rx_sparemap = map;
815 bus_dmamap_sync(sc_if->msk_cdata.msk_rx_tag, rxd->rx_dmamap,
816 BUS_DMASYNC_PREREAD);
817 rxd->rx_m = m;
818 rx_le = rxd->rx_le;
819 rx_le->msk_addr = htole32(MSK_ADDR_LO(segs[0].ds_addr));
820 rx_le->msk_control =
821 htole32(segs[0].ds_len | OP_PACKET | HW_OWNER);
822
823 return (0);
824}
825
826static int
827msk_jumbo_newbuf(struct msk_if_softc *sc_if, int idx)
828{
829 struct msk_rx_desc *rx_le;
830 struct msk_rxdesc *rxd;
831 struct mbuf *m;
832 bus_dma_segment_t segs[1];
833 bus_dmamap_t map;
834 int nsegs;
835
836 m = m_getjcl(M_DONTWAIT, MT_DATA, M_PKTHDR, MJUM9BYTES);
837 if (m == NULL)
838 return (ENOBUFS);
839 if ((m->m_flags & M_EXT) == 0) {
840 m_freem(m);
841 return (ENOBUFS);
842 }
843 m->m_len = m->m_pkthdr.len = MJUM9BYTES;
844 if ((sc_if->msk_flags & MSK_FLAG_RAMBUF) == 0)
845 m_adj(m, ETHER_ALIGN);
846#ifndef __NO_STRICT_ALIGNMENT
847 else
848 m_adj(m, MSK_RX_BUF_ALIGN);
849#endif
850
851 if (bus_dmamap_load_mbuf_sg(sc_if->msk_cdata.msk_jumbo_rx_tag,
852 sc_if->msk_cdata.msk_jumbo_rx_sparemap, m, segs, &nsegs,
853 BUS_DMA_NOWAIT) != 0) {
854 m_freem(m);
855 return (ENOBUFS);
856 }
857 KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
858
859 rxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[idx];
860 if (rxd->rx_m != NULL) {
861 bus_dmamap_sync(sc_if->msk_cdata.msk_jumbo_rx_tag,
862 rxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
863 bus_dmamap_unload(sc_if->msk_cdata.msk_jumbo_rx_tag,
864 rxd->rx_dmamap);
865 }
866 map = rxd->rx_dmamap;
867 rxd->rx_dmamap = sc_if->msk_cdata.msk_jumbo_rx_sparemap;
868 sc_if->msk_cdata.msk_jumbo_rx_sparemap = map;
869 bus_dmamap_sync(sc_if->msk_cdata.msk_jumbo_rx_tag, rxd->rx_dmamap,
870 BUS_DMASYNC_PREREAD);
871 rxd->rx_m = m;
872 rx_le = rxd->rx_le;
873 rx_le->msk_addr = htole32(MSK_ADDR_LO(segs[0].ds_addr));
874 rx_le->msk_control =
875 htole32(segs[0].ds_len | OP_PACKET | HW_OWNER);
876
877 return (0);
878}
879
880/*
881 * Set media options.
882 */
883static int
884msk_mediachange(struct ifnet *ifp)
885{
886 struct msk_if_softc *sc_if;
887 struct mii_data *mii;
888
889 sc_if = ifp->if_softc;
890
891 MSK_IF_LOCK(sc_if);
892 mii = device_get_softc(sc_if->msk_miibus);
893 mii_mediachg(mii);
894 MSK_IF_UNLOCK(sc_if);
895
896 return (0);
897}
898
899/*
900 * Report current media status.
901 */
902static void
903msk_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
904{
905 struct msk_if_softc *sc_if;
906 struct mii_data *mii;
907
908 sc_if = ifp->if_softc;
909 MSK_IF_LOCK(sc_if);
910 mii = device_get_softc(sc_if->msk_miibus);
911
912 mii_pollstat(mii);
913 MSK_IF_UNLOCK(sc_if);
914 ifmr->ifm_active = mii->mii_media_active;
915 ifmr->ifm_status = mii->mii_media_status;
916}
917
918static int
919msk_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
920{
921 struct msk_if_softc *sc_if;
922 struct ifreq *ifr;
923 struct mii_data *mii;
924 int error, mask;
925
926 sc_if = ifp->if_softc;
927 ifr = (struct ifreq *)data;
928 error = 0;
929
930 switch(command) {
931 case SIOCSIFMTU:
932 if (ifr->ifr_mtu > MSK_JUMBO_MTU || ifr->ifr_mtu < ETHERMIN)
933 error = EINVAL;
934 else if (ifp->if_mtu != ifr->ifr_mtu) {
935 if ((sc_if->msk_flags & MSK_FLAG_NOJUMBO) != 0 &&
936 ifr->ifr_mtu > ETHERMTU)
937 error = EINVAL;
938 else {
939 MSK_IF_LOCK(sc_if);
940 ifp->if_mtu = ifr->ifr_mtu;
941 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
942 msk_init_locked(sc_if);
943 MSK_IF_UNLOCK(sc_if);
944 }
945 }
946 break;
947 case SIOCSIFFLAGS:
948 MSK_IF_LOCK(sc_if);
949 if ((ifp->if_flags & IFF_UP) != 0) {
950 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
951 if (((ifp->if_flags ^ sc_if->msk_if_flags)
952 & IFF_PROMISC) != 0) {
953 msk_setpromisc(sc_if);
954 msk_setmulti(sc_if);
955 }
956 } else {
957 if (sc_if->msk_detach == 0)
958 msk_init_locked(sc_if);
959 }
960 } else {
961 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
962 msk_stop(sc_if);
963 }
964 sc_if->msk_if_flags = ifp->if_flags;
965 MSK_IF_UNLOCK(sc_if);
966 break;
967 case SIOCADDMULTI:
968 case SIOCDELMULTI:
969 MSK_IF_LOCK(sc_if);
970 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
971 msk_setmulti(sc_if);
972 MSK_IF_UNLOCK(sc_if);
973 break;
974 case SIOCGIFMEDIA:
975 case SIOCSIFMEDIA:
976 mii = device_get_softc(sc_if->msk_miibus);
977 error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
978 break;
979 case SIOCSIFCAP:
980 MSK_IF_LOCK(sc_if);
981 mask = ifr->ifr_reqcap ^ ifp->if_capenable;
982 if ((mask & IFCAP_TXCSUM) != 0) {
983 ifp->if_capenable ^= IFCAP_TXCSUM;
984 if ((IFCAP_TXCSUM & ifp->if_capenable) != 0 &&
985 (IFCAP_TXCSUM & ifp->if_capabilities) != 0)
986 ifp->if_hwassist |= MSK_CSUM_FEATURES;
987 else
988 ifp->if_hwassist &= ~MSK_CSUM_FEATURES;
989 }
990 if ((mask & IFCAP_VLAN_HWTAGGING) != 0) {
991 ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
992 msk_setvlan(sc_if, ifp);
993 }
994
995 if ((mask & IFCAP_TSO4) != 0) {
996 ifp->if_capenable ^= IFCAP_TSO4;
997 if ((IFCAP_TSO4 & ifp->if_capenable) != 0 &&
998 (IFCAP_TSO4 & ifp->if_capabilities) != 0)
999 ifp->if_hwassist |= CSUM_TSO;
1000 else
1001 ifp->if_hwassist &= ~CSUM_TSO;
1002 }
1003 if (ifp->if_mtu > ETHERMTU &&
1004 sc_if->msk_softc->msk_hw_id == CHIP_ID_YUKON_EC_U) {
1005 /*
1006 * In Yukon EC Ultra, TSO & checksum offload is not
1007 * supported for jumbo frame.
1008 */
1009 ifp->if_hwassist &= ~(MSK_CSUM_FEATURES | CSUM_TSO);
1010 ifp->if_capenable &= ~(IFCAP_TSO4 | IFCAP_TXCSUM);
1011 }
1012
1013 VLAN_CAPABILITIES(ifp);
1014 MSK_IF_UNLOCK(sc_if);
1015 break;
1016 default:
1017 error = ether_ioctl(ifp, command, data);
1018 break;
1019 }
1020
1021 return (error);
1022}
1023
1024static int
1025mskc_probe(device_t dev)
1026{
1027 struct msk_product *mp;
1028 uint16_t vendor, devid;
1029 int i;
1030
1031 vendor = pci_get_vendor(dev);
1032 devid = pci_get_device(dev);
1033 mp = msk_products;
1034 for (i = 0; i < sizeof(msk_products)/sizeof(msk_products[0]);
1035 i++, mp++) {
1036 if (vendor == mp->msk_vendorid && devid == mp->msk_deviceid) {
1037 device_set_desc(dev, mp->msk_name);
1038 return (BUS_PROBE_DEFAULT);
1039 }
1040 }
1041
1042 return (ENXIO);
1043}
1044
1045static int
1046mskc_setup_rambuffer(struct msk_softc *sc)
1047{
1048 int next;
1049 int i;
1050
1051 /* Get adapter SRAM size. */
1052 sc->msk_ramsize = CSR_READ_1(sc, B2_E_0) * 4;
1053 if (bootverbose)
1054 device_printf(sc->msk_dev,
1055 "RAM buffer size : %dKB\n", sc->msk_ramsize);
1056 if (sc->msk_ramsize == 0)
1057 return (0);
1058
1059 sc->msk_pflags |= MSK_FLAG_RAMBUF;
1060 /*
1061 * Give receiver 2/3 of memory and round down to the multiple
1062 * of 1024. Tx/Rx RAM buffer size of Yukon II shoud be multiple
1063 * of 1024.
1064 */
1065 sc->msk_rxqsize = rounddown((sc->msk_ramsize * 1024 * 2) / 3, 1024);
1066 sc->msk_txqsize = (sc->msk_ramsize * 1024) - sc->msk_rxqsize;
1067 for (i = 0, next = 0; i < sc->msk_num_port; i++) {
1068 sc->msk_rxqstart[i] = next;
1069 sc->msk_rxqend[i] = next + sc->msk_rxqsize - 1;
1070 next = sc->msk_rxqend[i] + 1;
1071 sc->msk_txqstart[i] = next;
1072 sc->msk_txqend[i] = next + sc->msk_txqsize - 1;
1073 next = sc->msk_txqend[i] + 1;
1074 if (bootverbose) {
1075 device_printf(sc->msk_dev,
1076 "Port %d : Rx Queue %dKB(0x%08x:0x%08x)\n", i,
1077 sc->msk_rxqsize / 1024, sc->msk_rxqstart[i],
1078 sc->msk_rxqend[i]);
1079 device_printf(sc->msk_dev,
1080 "Port %d : Tx Queue %dKB(0x%08x:0x%08x)\n", i,
1081 sc->msk_txqsize / 1024, sc->msk_txqstart[i],
1082 sc->msk_txqend[i]);
1083 }
1084 }
1085
1086 return (0);
1087}
1088
1089static void
1090msk_phy_power(struct msk_softc *sc, int mode)
1091{
1092 uint32_t val;
1093 int i;
1094
1095 switch (mode) {
1096 case MSK_PHY_POWERUP:
1097 /* Switch power to VCC (WA for VAUX problem). */
1098 CSR_WRITE_1(sc, B0_POWER_CTRL,
1099 PC_VAUX_ENA | PC_VCC_ENA | PC_VAUX_OFF | PC_VCC_ON);
1100 /* Disable Core Clock Division, set Clock Select to 0. */
1101 CSR_WRITE_4(sc, B2_Y2_CLK_CTRL, Y2_CLK_DIV_DIS);
1102
1103 val = 0;
1104 if (sc->msk_hw_id == CHIP_ID_YUKON_XL &&
1105 sc->msk_hw_rev > CHIP_REV_YU_XL_A1) {
1106 /* Enable bits are inverted. */
1107 val = Y2_PCI_CLK_LNK1_DIS | Y2_COR_CLK_LNK1_DIS |
1108 Y2_CLK_GAT_LNK1_DIS | Y2_PCI_CLK_LNK2_DIS |
1109 Y2_COR_CLK_LNK2_DIS | Y2_CLK_GAT_LNK2_DIS;
1110 }
1111 /*
1112 * Enable PCI & Core Clock, enable clock gating for both Links.
1113 */
1114 CSR_WRITE_1(sc, B2_Y2_CLK_GATE, val);
1115
1116 val = pci_read_config(sc->msk_dev, PCI_OUR_REG_1, 4);
1117 val &= ~(PCI_Y2_PHY1_POWD | PCI_Y2_PHY2_POWD);
1118 if (sc->msk_hw_id == CHIP_ID_YUKON_XL &&
1119 sc->msk_hw_rev > CHIP_REV_YU_XL_A1) {
1120 /* Deassert Low Power for 1st PHY. */
1121 val |= PCI_Y2_PHY1_COMA;
1122 if (sc->msk_num_port > 1)
1123 val |= PCI_Y2_PHY2_COMA;
1124 } else if (sc->msk_hw_id == CHIP_ID_YUKON_EC_U) {
1125 uint32_t our;
1126
1127 CSR_WRITE_2(sc, B0_CTST, Y2_HW_WOL_ON);
1128
1129 /* Enable all clocks. */
1130 pci_write_config(sc->msk_dev, PCI_OUR_REG_3, 0, 4);
1131 our = pci_read_config(sc->msk_dev, PCI_OUR_REG_4, 4);
1132 our &= (PCI_FORCE_ASPM_REQUEST|PCI_ASPM_GPHY_LINK_DOWN|
1133 PCI_ASPM_INT_FIFO_EMPTY|PCI_ASPM_CLKRUN_REQUEST);
1134 /* Set all bits to 0 except bits 15..12. */
1135 pci_write_config(sc->msk_dev, PCI_OUR_REG_4, our, 4);
1136 /* Set to default value. */
1137 pci_write_config(sc->msk_dev, PCI_OUR_REG_5, 0, 4);
1138 }
1139 /* Release PHY from PowerDown/COMA mode. */
1140 pci_write_config(sc->msk_dev, PCI_OUR_REG_1, val, 4);
1141 for (i = 0; i < sc->msk_num_port; i++) {
1142 CSR_WRITE_2(sc, MR_ADDR(i, GMAC_LINK_CTRL),
1143 GMLC_RST_SET);
1144 CSR_WRITE_2(sc, MR_ADDR(i, GMAC_LINK_CTRL),
1145 GMLC_RST_CLR);
1146 }
1147 break;
1148 case MSK_PHY_POWERDOWN:
1149 val = pci_read_config(sc->msk_dev, PCI_OUR_REG_1, 4);
1150 val |= PCI_Y2_PHY1_POWD | PCI_Y2_PHY2_POWD;
1151 if (sc->msk_hw_id == CHIP_ID_YUKON_XL &&
1152 sc->msk_hw_rev > CHIP_REV_YU_XL_A1) {
1153 val &= ~PCI_Y2_PHY1_COMA;
1154 if (sc->msk_num_port > 1)
1155 val &= ~PCI_Y2_PHY2_COMA;
1156 }
1157 pci_write_config(sc->msk_dev, PCI_OUR_REG_1, val, 4);
1158
1159 val = Y2_PCI_CLK_LNK1_DIS | Y2_COR_CLK_LNK1_DIS |
1160 Y2_CLK_GAT_LNK1_DIS | Y2_PCI_CLK_LNK2_DIS |
1161 Y2_COR_CLK_LNK2_DIS | Y2_CLK_GAT_LNK2_DIS;
1162 if (sc->msk_hw_id == CHIP_ID_YUKON_XL &&
1163 sc->msk_hw_rev > CHIP_REV_YU_XL_A1) {
1164 /* Enable bits are inverted. */
1165 val = 0;
1166 }
1167 /*
1168 * Disable PCI & Core Clock, disable clock gating for
1169 * both Links.
1170 */
1171 CSR_WRITE_1(sc, B2_Y2_CLK_GATE, val);
1172 CSR_WRITE_1(sc, B0_POWER_CTRL,
1173 PC_VAUX_ENA | PC_VCC_ENA | PC_VAUX_ON | PC_VCC_OFF);
1174 break;
1175 default:
1176 break;
1177 }
1178}
1179
1180static void
1181mskc_reset(struct msk_softc *sc)
1182{
1183 bus_addr_t addr;
1184 uint16_t status;
1185 uint32_t val;
1186 int i;
1187
1188 CSR_WRITE_2(sc, B0_CTST, CS_RST_CLR);
1189
1190 /* Disable ASF. */
1191 if (sc->msk_hw_id < CHIP_ID_YUKON_XL) {
1192 CSR_WRITE_4(sc, B28_Y2_ASF_STAT_CMD, Y2_ASF_RESET);
1193 CSR_WRITE_2(sc, B0_CTST, Y2_ASF_DISABLE);
1194 }
1195 /*
1196 * Since we disabled ASF, S/W reset is required for Power Management.
1197 */
1198 CSR_WRITE_2(sc, B0_CTST, CS_RST_SET);
1199 CSR_WRITE_2(sc, B0_CTST, CS_RST_CLR);
1200
1201 /* Clear all error bits in the PCI status register. */
1202 status = pci_read_config(sc->msk_dev, PCIR_STATUS, 2);
1203 CSR_WRITE_1(sc, B2_TST_CTRL1, TST_CFG_WRITE_ON);
1204
1205 pci_write_config(sc->msk_dev, PCIR_STATUS, status |
1206 PCIM_STATUS_PERR | PCIM_STATUS_SERR | PCIM_STATUS_RMABORT |
1207 PCIM_STATUS_RTABORT | PCIM_STATUS_PERRREPORT, 2);
1208 CSR_WRITE_2(sc, B0_CTST, CS_MRST_CLR);
1209
1210 switch (sc->msk_bustype) {
1211 case MSK_PEX_BUS:
1212 /* Clear all PEX errors. */
1213 CSR_PCI_WRITE_4(sc, PEX_UNC_ERR_STAT, 0xffffffff);
1214 val = CSR_PCI_READ_4(sc, PEX_UNC_ERR_STAT);
1215 if ((val & PEX_RX_OV) != 0) {
1216 sc->msk_intrmask &= ~Y2_IS_HW_ERR;
1217 sc->msk_intrhwemask &= ~Y2_IS_PCI_EXP;
1218 }
1219 break;
1220 case MSK_PCI_BUS:
1221 case MSK_PCIX_BUS:
1222 /* Set Cache Line Size to 2(8bytes) if configured to 0. */
1223 val = pci_read_config(sc->msk_dev, PCIR_CACHELNSZ, 1);
1224 if (val == 0)
1225 pci_write_config(sc->msk_dev, PCIR_CACHELNSZ, 2, 1);
1226 if (sc->msk_bustype == MSK_PCIX_BUS) {
1227 /* Set Cache Line Size opt. */
1228 val = pci_read_config(sc->msk_dev, PCI_OUR_REG_1, 4);
1229 val |= PCI_CLS_OPT;
1230 pci_write_config(sc->msk_dev, PCI_OUR_REG_1, val, 4);
1231 }
1232 break;
1233 }
1234 /* Set PHY power state. */
1235 msk_phy_power(sc, MSK_PHY_POWERUP);
1236
1237 /* Reset GPHY/GMAC Control */
1238 for (i = 0; i < sc->msk_num_port; i++) {
1239 /* GPHY Control reset. */
1240 CSR_WRITE_4(sc, MR_ADDR(i, GPHY_CTRL), GPC_RST_SET);
1241 CSR_WRITE_4(sc, MR_ADDR(i, GPHY_CTRL), GPC_RST_CLR);
1242 /* GMAC Control reset. */
1243 CSR_WRITE_4(sc, MR_ADDR(i, GMAC_CTRL), GMC_RST_SET);
1244 CSR_WRITE_4(sc, MR_ADDR(i, GMAC_CTRL), GMC_RST_CLR);
1245 CSR_WRITE_4(sc, MR_ADDR(i, GMAC_CTRL), GMC_F_LOOPB_OFF);
1246 }
1247 CSR_WRITE_1(sc, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
1248
1249 /* LED On. */
1250 CSR_WRITE_2(sc, B0_CTST, Y2_LED_STAT_ON);
1251
1252 /* Clear TWSI IRQ. */
1253 CSR_WRITE_4(sc, B2_I2C_IRQ, I2C_CLR_IRQ);
1254
1255 /* Turn off hardware timer. */
1256 CSR_WRITE_1(sc, B2_TI_CTRL, TIM_STOP);
1257 CSR_WRITE_1(sc, B2_TI_CTRL, TIM_CLR_IRQ);
1258
1259 /* Turn off descriptor polling. */
1260 CSR_WRITE_1(sc, B28_DPT_CTRL, DPT_STOP);
1261
1262 /* Turn off time stamps. */
1263 CSR_WRITE_1(sc, GMAC_TI_ST_CTRL, GMT_ST_STOP);
1264 CSR_WRITE_1(sc, GMAC_TI_ST_CTRL, GMT_ST_CLR_IRQ);
1265
1266 /* Configure timeout values. */
1267 for (i = 0; i < sc->msk_num_port; i++) {
1268 CSR_WRITE_2(sc, SELECT_RAM_BUFFER(i, B3_RI_CTRL), RI_RST_SET);
1269 CSR_WRITE_2(sc, SELECT_RAM_BUFFER(i, B3_RI_CTRL), RI_RST_CLR);
1270 CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_WTO_R1),
1271 MSK_RI_TO_53);
1272 CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_WTO_XA1),
1273 MSK_RI_TO_53);
1274 CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_WTO_XS1),
1275 MSK_RI_TO_53);
1276 CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_RTO_R1),
1277 MSK_RI_TO_53);
1278 CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_RTO_XA1),
1279 MSK_RI_TO_53);
1280 CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_RTO_XS1),
1281 MSK_RI_TO_53);
1282 CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_WTO_R2),
1283 MSK_RI_TO_53);
1284 CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_WTO_XA2),
1285 MSK_RI_TO_53);
1286 CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_WTO_XS2),
1287 MSK_RI_TO_53);
1288 CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_RTO_R2),
1289 MSK_RI_TO_53);
1290 CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_RTO_XA2),
1291 MSK_RI_TO_53);
1292 CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_RTO_XS2),
1293 MSK_RI_TO_53);
1294 }
1295
1296 /* Disable all interrupts. */
1297 CSR_WRITE_4(sc, B0_HWE_IMSK, 0);
1298 CSR_READ_4(sc, B0_HWE_IMSK);
1299 CSR_WRITE_4(sc, B0_IMSK, 0);
1300 CSR_READ_4(sc, B0_IMSK);
1301
1302 /*
1303 * On dual port PCI-X card, there is an problem where status
1304 * can be received out of order due to split transactions.
1305 */
1306 if (sc->msk_bustype == MSK_PCIX_BUS && sc->msk_num_port > 1) {
1307 int pcix;
1308 uint16_t pcix_cmd;
1309
1310 if (pci_find_extcap(sc->msk_dev, PCIY_PCIX, &pcix) == 0) {
1311 pcix_cmd = pci_read_config(sc->msk_dev, pcix + 2, 2);
1312 /* Clear Max Outstanding Split Transactions. */
1313 pcix_cmd &= ~0x70;
1314 CSR_WRITE_1(sc, B2_TST_CTRL1, TST_CFG_WRITE_ON);
1315 pci_write_config(sc->msk_dev, pcix + 2, pcix_cmd, 2);
1316 CSR_WRITE_1(sc, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
1317 }
1318 }
1319 if (sc->msk_bustype == MSK_PEX_BUS) {
1320 uint16_t v, width;
1321
1322 v = pci_read_config(sc->msk_dev, PEX_DEV_CTRL, 2);
1323 /* Change Max. Read Request Size to 4096 bytes. */
1324 v &= ~PEX_DC_MAX_RRS_MSK;
1325 v |= PEX_DC_MAX_RD_RQ_SIZE(5);
1326 pci_write_config(sc->msk_dev, PEX_DEV_CTRL, v, 2);
1327 width = pci_read_config(sc->msk_dev, PEX_LNK_STAT, 2);
1328 width = (width & PEX_LS_LINK_WI_MSK) >> 4;
1329 v = pci_read_config(sc->msk_dev, PEX_LNK_CAP, 2);
1330 v = (v & PEX_LS_LINK_WI_MSK) >> 4;
1331 if (v != width)
1332 device_printf(sc->msk_dev,
1333 "negotiated width of link(x%d) != "
1334 "max. width of link(x%d)\n", width, v);
1335 }
1336
1337 /* Clear status list. */
1338 bzero(sc->msk_stat_ring,
1339 sizeof(struct msk_stat_desc) * MSK_STAT_RING_CNT);
1340 sc->msk_stat_cons = 0;
1341 bus_dmamap_sync(sc->msk_stat_tag, sc->msk_stat_map,
1342 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1343 CSR_WRITE_4(sc, STAT_CTRL, SC_STAT_RST_SET);
1344 CSR_WRITE_4(sc, STAT_CTRL, SC_STAT_RST_CLR);
1345 /* Set the status list base address. */
1346 addr = sc->msk_stat_ring_paddr;
1347 CSR_WRITE_4(sc, STAT_LIST_ADDR_LO, MSK_ADDR_LO(addr));
1348 CSR_WRITE_4(sc, STAT_LIST_ADDR_HI, MSK_ADDR_HI(addr));
1349 /* Set the status list last index. */
1350 CSR_WRITE_2(sc, STAT_LAST_IDX, MSK_STAT_RING_CNT - 1);
1351 if (sc->msk_hw_id == CHIP_ID_YUKON_EC &&
1352 sc->msk_hw_rev == CHIP_REV_YU_EC_A1) {
1353 /* WA for dev. #4.3 */
1354 CSR_WRITE_2(sc, STAT_TX_IDX_TH, ST_TXTH_IDX_MASK);
1355 /* WA for dev. #4.18 */
1356 CSR_WRITE_1(sc, STAT_FIFO_WM, 0x21);
1357 CSR_WRITE_1(sc, STAT_FIFO_ISR_WM, 0x07);
1358 } else {
1359 CSR_WRITE_2(sc, STAT_TX_IDX_TH, 0x0a);
1360 CSR_WRITE_1(sc, STAT_FIFO_WM, 0x10);
1361 if (sc->msk_hw_id == CHIP_ID_YUKON_XL &&
1362 sc->msk_hw_rev == CHIP_REV_YU_XL_A0)
1363 CSR_WRITE_1(sc, STAT_FIFO_ISR_WM, 0x04);
1364 else
1365 CSR_WRITE_1(sc, STAT_FIFO_ISR_WM, 0x10);
1366 CSR_WRITE_4(sc, STAT_ISR_TIMER_INI, 0x0190);
1367 }
1368 /*
1369 * Use default value for STAT_ISR_TIMER_INI, STAT_LEV_TIMER_INI.
1370 */
1371 CSR_WRITE_4(sc, STAT_TX_TIMER_INI, MSK_USECS(sc, 1000));
1372
1373 /* Enable status unit. */
1374 CSR_WRITE_4(sc, STAT_CTRL, SC_STAT_OP_ON);
1375
1376 CSR_WRITE_1(sc, STAT_TX_TIMER_CTRL, TIM_START);
1377 CSR_WRITE_1(sc, STAT_LEV_TIMER_CTRL, TIM_START);
1378 CSR_WRITE_1(sc, STAT_ISR_TIMER_CTRL, TIM_START);
1379}
1380
1381static int
1382msk_probe(device_t dev)
1383{
1384 struct msk_softc *sc;
1385 char desc[100];
1386
1387 sc = device_get_softc(device_get_parent(dev));
1388 /*
1389 * Not much to do here. We always know there will be
1390 * at least one GMAC present, and if there are two,
1391 * mskc_attach() will create a second device instance
1392 * for us.
1393 */
1394 snprintf(desc, sizeof(desc),
1395 "Marvell Technology Group Ltd. %s Id 0x%02x Rev 0x%02x",
1396 model_name[sc->msk_hw_id - CHIP_ID_YUKON_XL], sc->msk_hw_id,
1397 sc->msk_hw_rev);
1398 device_set_desc_copy(dev, desc);
1399
1400 return (BUS_PROBE_DEFAULT);
1401}
1402
1403static int
1404msk_attach(device_t dev)
1405{
1406 struct msk_softc *sc;
1407 struct msk_if_softc *sc_if;
1408 struct ifnet *ifp;
1409 int i, port, error;
1410 uint8_t eaddr[6];
1411
1412 if (dev == NULL)
1413 return (EINVAL);
1414
1415 error = 0;
1416 sc_if = device_get_softc(dev);
1417 sc = device_get_softc(device_get_parent(dev));
1418 port = *(int *)device_get_ivars(dev);
1419
1420 sc_if->msk_if_dev = dev;
1421 sc_if->msk_port = port;
1422 sc_if->msk_softc = sc;
1423 sc_if->msk_flags = sc->msk_pflags;
1424 sc->msk_if[port] = sc_if;
1425 /* Setup Tx/Rx queue register offsets. */
1426 if (port == MSK_PORT_A) {
1427 sc_if->msk_txq = Q_XA1;
1428 sc_if->msk_txsq = Q_XS1;
1429 sc_if->msk_rxq = Q_R1;
1430 } else {
1431 sc_if->msk_txq = Q_XA2;
1432 sc_if->msk_txsq = Q_XS2;
1433 sc_if->msk_rxq = Q_R2;
1434 }
1435
1436 callout_init_mtx(&sc_if->msk_tick_ch, &sc_if->msk_softc->msk_mtx, 0);
1437 TASK_INIT(&sc_if->msk_link_task, 0, msk_link_task, sc_if);
299static int sysctl_int_range(SYSCTL_HANDLER_ARGS, int, int);
300static int sysctl_hw_msk_proc_limit(SYSCTL_HANDLER_ARGS);
301
302static device_method_t mskc_methods[] = {
303 /* Device interface */
304 DEVMETHOD(device_probe, mskc_probe),
305 DEVMETHOD(device_attach, mskc_attach),
306 DEVMETHOD(device_detach, mskc_detach),
307 DEVMETHOD(device_suspend, mskc_suspend),
308 DEVMETHOD(device_resume, mskc_resume),
309 DEVMETHOD(device_shutdown, mskc_shutdown),
310
311 /* bus interface */
312 DEVMETHOD(bus_print_child, bus_generic_print_child),
313 DEVMETHOD(bus_driver_added, bus_generic_driver_added),
314
315 { NULL, NULL }
316};
317
318static driver_t mskc_driver = {
319 "mskc",
320 mskc_methods,
321 sizeof(struct msk_softc)
322};
323
324static devclass_t mskc_devclass;
325
326static device_method_t msk_methods[] = {
327 /* Device interface */
328 DEVMETHOD(device_probe, msk_probe),
329 DEVMETHOD(device_attach, msk_attach),
330 DEVMETHOD(device_detach, msk_detach),
331 DEVMETHOD(device_shutdown, bus_generic_shutdown),
332
333 /* bus interface */
334 DEVMETHOD(bus_print_child, bus_generic_print_child),
335 DEVMETHOD(bus_driver_added, bus_generic_driver_added),
336
337 /* MII interface */
338 DEVMETHOD(miibus_readreg, msk_miibus_readreg),
339 DEVMETHOD(miibus_writereg, msk_miibus_writereg),
340 DEVMETHOD(miibus_statchg, msk_miibus_statchg),
341
342 { NULL, NULL }
343};
344
345static driver_t msk_driver = {
346 "msk",
347 msk_methods,
348 sizeof(struct msk_if_softc)
349};
350
351static devclass_t msk_devclass;
352
353DRIVER_MODULE(mskc, pci, mskc_driver, mskc_devclass, 0, 0);
354DRIVER_MODULE(msk, mskc, msk_driver, msk_devclass, 0, 0);
355DRIVER_MODULE(miibus, msk, miibus_driver, miibus_devclass, 0, 0);
356
357static struct resource_spec msk_res_spec_io[] = {
358 { SYS_RES_IOPORT, PCIR_BAR(1), RF_ACTIVE },
359 { -1, 0, 0 }
360};
361
362static struct resource_spec msk_res_spec_mem[] = {
363 { SYS_RES_MEMORY, PCIR_BAR(0), RF_ACTIVE },
364 { -1, 0, 0 }
365};
366
367static struct resource_spec msk_irq_spec_legacy[] = {
368 { SYS_RES_IRQ, 0, RF_ACTIVE | RF_SHAREABLE },
369 { -1, 0, 0 }
370};
371
372static struct resource_spec msk_irq_spec_msi[] = {
373 { SYS_RES_IRQ, 1, RF_ACTIVE },
374 { -1, 0, 0 }
375};
376
377static struct resource_spec msk_irq_spec_msi2[] = {
378 { SYS_RES_IRQ, 1, RF_ACTIVE },
379 { SYS_RES_IRQ, 2, RF_ACTIVE },
380 { -1, 0, 0 }
381};
382
383static int
384msk_miibus_readreg(device_t dev, int phy, int reg)
385{
386 struct msk_if_softc *sc_if;
387
388 if (phy != PHY_ADDR_MARV)
389 return (0);
390
391 sc_if = device_get_softc(dev);
392
393 return (msk_phy_readreg(sc_if, phy, reg));
394}
395
396static int
397msk_phy_readreg(struct msk_if_softc *sc_if, int phy, int reg)
398{
399 struct msk_softc *sc;
400 int i, val;
401
402 sc = sc_if->msk_softc;
403
404 GMAC_WRITE_2(sc, sc_if->msk_port, GM_SMI_CTRL,
405 GM_SMI_CT_PHY_AD(phy) | GM_SMI_CT_REG_AD(reg) | GM_SMI_CT_OP_RD);
406
407 for (i = 0; i < MSK_TIMEOUT; i++) {
408 DELAY(1);
409 val = GMAC_READ_2(sc, sc_if->msk_port, GM_SMI_CTRL);
410 if ((val & GM_SMI_CT_RD_VAL) != 0) {
411 val = GMAC_READ_2(sc, sc_if->msk_port, GM_SMI_DATA);
412 break;
413 }
414 }
415
416 if (i == MSK_TIMEOUT) {
417 if_printf(sc_if->msk_ifp, "phy failed to come ready\n");
418 val = 0;
419 }
420
421 return (val);
422}
423
424static int
425msk_miibus_writereg(device_t dev, int phy, int reg, int val)
426{
427 struct msk_if_softc *sc_if;
428
429 if (phy != PHY_ADDR_MARV)
430 return (0);
431
432 sc_if = device_get_softc(dev);
433
434 return (msk_phy_writereg(sc_if, phy, reg, val));
435}
436
437static int
438msk_phy_writereg(struct msk_if_softc *sc_if, int phy, int reg, int val)
439{
440 struct msk_softc *sc;
441 int i;
442
443 sc = sc_if->msk_softc;
444
445 GMAC_WRITE_2(sc, sc_if->msk_port, GM_SMI_DATA, val);
446 GMAC_WRITE_2(sc, sc_if->msk_port, GM_SMI_CTRL,
447 GM_SMI_CT_PHY_AD(phy) | GM_SMI_CT_REG_AD(reg));
448 for (i = 0; i < MSK_TIMEOUT; i++) {
449 DELAY(1);
450 if ((GMAC_READ_2(sc, sc_if->msk_port, GM_SMI_CTRL) &
451 GM_SMI_CT_BUSY) == 0)
452 break;
453 }
454 if (i == MSK_TIMEOUT)
455 if_printf(sc_if->msk_ifp, "phy write timeout\n");
456
457 return (0);
458}
459
460static void
461msk_miibus_statchg(device_t dev)
462{
463 struct msk_if_softc *sc_if;
464
465 sc_if = device_get_softc(dev);
466 taskqueue_enqueue(taskqueue_swi, &sc_if->msk_link_task);
467}
468
469static void
470msk_link_task(void *arg, int pending)
471{
472 struct msk_softc *sc;
473 struct msk_if_softc *sc_if;
474 struct mii_data *mii;
475 struct ifnet *ifp;
476 uint32_t gmac;
477
478 sc_if = (struct msk_if_softc *)arg;
479 sc = sc_if->msk_softc;
480
481 MSK_IF_LOCK(sc_if);
482
483 mii = device_get_softc(sc_if->msk_miibus);
484 ifp = sc_if->msk_ifp;
485 if (mii == NULL || ifp == NULL) {
486 MSK_IF_UNLOCK(sc_if);
487 return;
488 }
489
490 if (mii->mii_media_status & IFM_ACTIVE) {
491 if (IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)
492 sc_if->msk_link = 1;
493 } else
494 sc_if->msk_link = 0;
495
496 if (sc_if->msk_link != 0) {
497 /* Enable Tx FIFO Underrun. */
498 CSR_WRITE_1(sc, MR_ADDR(sc_if->msk_port, GMAC_IRQ_MSK),
499 GM_IS_TX_FF_UR | GM_IS_RX_FF_OR);
500 /*
501 * Because mii(4) notify msk(4) that it detected link status
502 * change, there is no need to enable automatic
503 * speed/flow-control/duplex updates.
504 */
505 gmac = GM_GPCR_AU_ALL_DIS;
506 switch (IFM_SUBTYPE(mii->mii_media_active)) {
507 case IFM_1000_SX:
508 case IFM_1000_T:
509 gmac |= GM_GPCR_SPEED_1000;
510 break;
511 case IFM_100_TX:
512 gmac |= GM_GPCR_SPEED_100;
513 break;
514 case IFM_10_T:
515 break;
516 }
517
518 if (((mii->mii_media_active & IFM_GMASK) & IFM_FDX) != 0)
519 gmac |= GM_GPCR_DUP_FULL;
520 /* Disable Rx flow control. */
521 if (((mii->mii_media_active & IFM_GMASK) & IFM_FLAG0) == 0)
522 gmac |= GM_GPCR_FC_RX_DIS;
523 /* Disable Tx flow control. */
524 if (((mii->mii_media_active & IFM_GMASK) & IFM_FLAG1) == 0)
525 gmac |= GM_GPCR_FC_TX_DIS;
526 gmac |= GM_GPCR_RX_ENA | GM_GPCR_TX_ENA;
527 GMAC_WRITE_2(sc, sc_if->msk_port, GM_GP_CTRL, gmac);
528 /* Read again to ensure writing. */
529 GMAC_READ_2(sc, sc_if->msk_port, GM_GP_CTRL);
530
531 gmac = GMC_PAUSE_ON;
532 if (((mii->mii_media_active & IFM_GMASK) &
533 (IFM_FLAG0 | IFM_FLAG1)) == 0)
534 gmac = GMC_PAUSE_OFF;
535 /* Diable pause for 10/100 Mbps in half-duplex mode. */
536 if ((((mii->mii_media_active & IFM_GMASK) & IFM_FDX) == 0) &&
537 (IFM_SUBTYPE(mii->mii_media_active) == IFM_100_TX ||
538 IFM_SUBTYPE(mii->mii_media_active) == IFM_10_T))
539 gmac = GMC_PAUSE_OFF;
540 CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, GMAC_CTRL), gmac);
541
542 /* Enable PHY interrupt for FIFO underrun/overflow. */
543 msk_phy_writereg(sc_if, PHY_ADDR_MARV,
544 PHY_MARV_INT_MASK, PHY_M_IS_FIFO_ERROR);
545 } else {
546 /*
547 * Link state changed to down.
548 * Disable PHY interrupts.
549 */
550 msk_phy_writereg(sc_if, PHY_ADDR_MARV, PHY_MARV_INT_MASK, 0);
551 /* Disable Rx/Tx MAC. */
552 gmac = GMAC_READ_2(sc, sc_if->msk_port, GM_GP_CTRL);
553 gmac &= ~(GM_GPCR_RX_ENA | GM_GPCR_TX_ENA);
554 GMAC_WRITE_2(sc, sc_if->msk_port, GM_GP_CTRL, gmac);
555 /* Read again to ensure writing. */
556 GMAC_READ_2(sc, sc_if->msk_port, GM_GP_CTRL);
557 }
558
559 MSK_IF_UNLOCK(sc_if);
560}
561
562static void
563msk_setmulti(struct msk_if_softc *sc_if)
564{
565 struct msk_softc *sc;
566 struct ifnet *ifp;
567 struct ifmultiaddr *ifma;
568 uint32_t mchash[2];
569 uint32_t crc;
570 uint16_t mode;
571
572 sc = sc_if->msk_softc;
573
574 MSK_IF_LOCK_ASSERT(sc_if);
575
576 ifp = sc_if->msk_ifp;
577
578 bzero(mchash, sizeof(mchash));
579 mode = GMAC_READ_2(sc, sc_if->msk_port, GM_RX_CTRL);
580 mode |= GM_RXCR_UCF_ENA;
581 if ((ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI)) != 0) {
582 if ((ifp->if_flags & IFF_PROMISC) != 0)
583 mode &= ~(GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA);
584 else if ((ifp->if_flags & IFF_ALLMULTI) != 0) {
585 mchash[0] = 0xffff;
586 mchash[1] = 0xffff;
587 }
588 } else {
589 IF_ADDR_LOCK(ifp);
590 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
591 if (ifma->ifma_addr->sa_family != AF_LINK)
592 continue;
593 crc = ether_crc32_be(LLADDR((struct sockaddr_dl *)
594 ifma->ifma_addr), ETHER_ADDR_LEN);
595 /* Just want the 6 least significant bits. */
596 crc &= 0x3f;
597 /* Set the corresponding bit in the hash table. */
598 mchash[crc >> 5] |= 1 << (crc & 0x1f);
599 }
600 IF_ADDR_UNLOCK(ifp);
601 mode |= GM_RXCR_MCF_ENA;
602 }
603
604 GMAC_WRITE_2(sc, sc_if->msk_port, GM_MC_ADDR_H1,
605 mchash[0] & 0xffff);
606 GMAC_WRITE_2(sc, sc_if->msk_port, GM_MC_ADDR_H2,
607 (mchash[0] >> 16) & 0xffff);
608 GMAC_WRITE_2(sc, sc_if->msk_port, GM_MC_ADDR_H3,
609 mchash[1] & 0xffff);
610 GMAC_WRITE_2(sc, sc_if->msk_port, GM_MC_ADDR_H4,
611 (mchash[1] >> 16) & 0xffff);
612 GMAC_WRITE_2(sc, sc_if->msk_port, GM_RX_CTRL, mode);
613}
614
615static void
616msk_setvlan(struct msk_if_softc *sc_if, struct ifnet *ifp)
617{
618 struct msk_softc *sc;
619
620 sc = sc_if->msk_softc;
621 if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0) {
622 CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_CTRL_T),
623 RX_VLAN_STRIP_ON);
624 CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T),
625 TX_VLAN_TAG_ON);
626 } else {
627 CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_CTRL_T),
628 RX_VLAN_STRIP_OFF);
629 CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T),
630 TX_VLAN_TAG_OFF);
631 }
632}
633
634static void
635msk_setpromisc(struct msk_if_softc *sc_if)
636{
637 struct msk_softc *sc;
638 struct ifnet *ifp;
639 uint16_t mode;
640
641 MSK_IF_LOCK_ASSERT(sc_if);
642
643 sc = sc_if->msk_softc;
644 ifp = sc_if->msk_ifp;
645
646 mode = GMAC_READ_2(sc, sc_if->msk_port, GM_RX_CTRL);
647 if (ifp->if_flags & IFF_PROMISC)
648 mode &= ~(GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA);
649 else
650 mode |= (GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA);
651 GMAC_WRITE_2(sc, sc_if->msk_port, GM_RX_CTRL, mode);
652}
653
654static int
655msk_init_rx_ring(struct msk_if_softc *sc_if)
656{
657 struct msk_ring_data *rd;
658 struct msk_rxdesc *rxd;
659 int i, prod;
660
661 MSK_IF_LOCK_ASSERT(sc_if);
662
663 sc_if->msk_cdata.msk_rx_cons = 0;
664 sc_if->msk_cdata.msk_rx_prod = 0;
665 sc_if->msk_cdata.msk_rx_putwm = MSK_PUT_WM;
666
667 rd = &sc_if->msk_rdata;
668 bzero(rd->msk_rx_ring, sizeof(struct msk_rx_desc) * MSK_RX_RING_CNT);
669 prod = sc_if->msk_cdata.msk_rx_prod;
670 for (i = 0; i < MSK_RX_RING_CNT; i++) {
671 rxd = &sc_if->msk_cdata.msk_rxdesc[prod];
672 rxd->rx_m = NULL;
673 rxd->rx_le = &rd->msk_rx_ring[prod];
674 if (msk_newbuf(sc_if, prod) != 0)
675 return (ENOBUFS);
676 MSK_INC(prod, MSK_RX_RING_CNT);
677 }
678
679 bus_dmamap_sync(sc_if->msk_cdata.msk_rx_ring_tag,
680 sc_if->msk_cdata.msk_rx_ring_map,
681 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
682
683 /* Update prefetch unit. */
684 sc_if->msk_cdata.msk_rx_prod = MSK_RX_RING_CNT - 1;
685 CSR_WRITE_2(sc_if->msk_softc,
686 Y2_PREF_Q_ADDR(sc_if->msk_rxq, PREF_UNIT_PUT_IDX_REG),
687 sc_if->msk_cdata.msk_rx_prod);
688
689 return (0);
690}
691
692static int
693msk_init_jumbo_rx_ring(struct msk_if_softc *sc_if)
694{
695 struct msk_ring_data *rd;
696 struct msk_rxdesc *rxd;
697 int i, prod;
698
699 MSK_IF_LOCK_ASSERT(sc_if);
700
701 sc_if->msk_cdata.msk_rx_cons = 0;
702 sc_if->msk_cdata.msk_rx_prod = 0;
703 sc_if->msk_cdata.msk_rx_putwm = MSK_PUT_WM;
704
705 rd = &sc_if->msk_rdata;
706 bzero(rd->msk_jumbo_rx_ring,
707 sizeof(struct msk_rx_desc) * MSK_JUMBO_RX_RING_CNT);
708 prod = sc_if->msk_cdata.msk_rx_prod;
709 for (i = 0; i < MSK_JUMBO_RX_RING_CNT; i++) {
710 rxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[prod];
711 rxd->rx_m = NULL;
712 rxd->rx_le = &rd->msk_jumbo_rx_ring[prod];
713 if (msk_jumbo_newbuf(sc_if, prod) != 0)
714 return (ENOBUFS);
715 MSK_INC(prod, MSK_JUMBO_RX_RING_CNT);
716 }
717
718 bus_dmamap_sync(sc_if->msk_cdata.msk_jumbo_rx_ring_tag,
719 sc_if->msk_cdata.msk_jumbo_rx_ring_map,
720 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
721
722 sc_if->msk_cdata.msk_rx_prod = MSK_JUMBO_RX_RING_CNT - 1;
723 CSR_WRITE_2(sc_if->msk_softc,
724 Y2_PREF_Q_ADDR(sc_if->msk_rxq, PREF_UNIT_PUT_IDX_REG),
725 sc_if->msk_cdata.msk_rx_prod);
726
727 return (0);
728}
729
730static void
731msk_init_tx_ring(struct msk_if_softc *sc_if)
732{
733 struct msk_ring_data *rd;
734 struct msk_txdesc *txd;
735 int i;
736
737 sc_if->msk_cdata.msk_tso_mtu = 0;
738 sc_if->msk_cdata.msk_tx_prod = 0;
739 sc_if->msk_cdata.msk_tx_cons = 0;
740 sc_if->msk_cdata.msk_tx_cnt = 0;
741
742 rd = &sc_if->msk_rdata;
743 bzero(rd->msk_tx_ring, sizeof(struct msk_tx_desc) * MSK_TX_RING_CNT);
744 for (i = 0; i < MSK_TX_RING_CNT; i++) {
745 txd = &sc_if->msk_cdata.msk_txdesc[i];
746 txd->tx_m = NULL;
747 txd->tx_le = &rd->msk_tx_ring[i];
748 }
749
750 bus_dmamap_sync(sc_if->msk_cdata.msk_tx_ring_tag,
751 sc_if->msk_cdata.msk_tx_ring_map,
752 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
753}
754
755static __inline void
756msk_discard_rxbuf(struct msk_if_softc *sc_if, int idx)
757{
758 struct msk_rx_desc *rx_le;
759 struct msk_rxdesc *rxd;
760 struct mbuf *m;
761
762 rxd = &sc_if->msk_cdata.msk_rxdesc[idx];
763 m = rxd->rx_m;
764 rx_le = rxd->rx_le;
765 rx_le->msk_control = htole32(m->m_len | OP_PACKET | HW_OWNER);
766}
767
768static __inline void
769msk_discard_jumbo_rxbuf(struct msk_if_softc *sc_if, int idx)
770{
771 struct msk_rx_desc *rx_le;
772 struct msk_rxdesc *rxd;
773 struct mbuf *m;
774
775 rxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[idx];
776 m = rxd->rx_m;
777 rx_le = rxd->rx_le;
778 rx_le->msk_control = htole32(m->m_len | OP_PACKET | HW_OWNER);
779}
780
781static int
782msk_newbuf(struct msk_if_softc *sc_if, int idx)
783{
784 struct msk_rx_desc *rx_le;
785 struct msk_rxdesc *rxd;
786 struct mbuf *m;
787 bus_dma_segment_t segs[1];
788 bus_dmamap_t map;
789 int nsegs;
790
791 m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
792 if (m == NULL)
793 return (ENOBUFS);
794
795 m->m_len = m->m_pkthdr.len = MCLBYTES;
796 if ((sc_if->msk_flags & MSK_FLAG_RAMBUF) == 0)
797 m_adj(m, ETHER_ALIGN);
798#ifndef __NO_STRICT_ALIGNMENT
799 else
800 m_adj(m, MSK_RX_BUF_ALIGN);
801#endif
802
803 if (bus_dmamap_load_mbuf_sg(sc_if->msk_cdata.msk_rx_tag,
804 sc_if->msk_cdata.msk_rx_sparemap, m, segs, &nsegs,
805 BUS_DMA_NOWAIT) != 0) {
806 m_freem(m);
807 return (ENOBUFS);
808 }
809 KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
810
811 rxd = &sc_if->msk_cdata.msk_rxdesc[idx];
812 if (rxd->rx_m != NULL) {
813 bus_dmamap_sync(sc_if->msk_cdata.msk_rx_tag, rxd->rx_dmamap,
814 BUS_DMASYNC_POSTREAD);
815 bus_dmamap_unload(sc_if->msk_cdata.msk_rx_tag, rxd->rx_dmamap);
816 }
817 map = rxd->rx_dmamap;
818 rxd->rx_dmamap = sc_if->msk_cdata.msk_rx_sparemap;
819 sc_if->msk_cdata.msk_rx_sparemap = map;
820 bus_dmamap_sync(sc_if->msk_cdata.msk_rx_tag, rxd->rx_dmamap,
821 BUS_DMASYNC_PREREAD);
822 rxd->rx_m = m;
823 rx_le = rxd->rx_le;
824 rx_le->msk_addr = htole32(MSK_ADDR_LO(segs[0].ds_addr));
825 rx_le->msk_control =
826 htole32(segs[0].ds_len | OP_PACKET | HW_OWNER);
827
828 return (0);
829}
830
831static int
832msk_jumbo_newbuf(struct msk_if_softc *sc_if, int idx)
833{
834 struct msk_rx_desc *rx_le;
835 struct msk_rxdesc *rxd;
836 struct mbuf *m;
837 bus_dma_segment_t segs[1];
838 bus_dmamap_t map;
839 int nsegs;
840
841 m = m_getjcl(M_DONTWAIT, MT_DATA, M_PKTHDR, MJUM9BYTES);
842 if (m == NULL)
843 return (ENOBUFS);
844 if ((m->m_flags & M_EXT) == 0) {
845 m_freem(m);
846 return (ENOBUFS);
847 }
848 m->m_len = m->m_pkthdr.len = MJUM9BYTES;
849 if ((sc_if->msk_flags & MSK_FLAG_RAMBUF) == 0)
850 m_adj(m, ETHER_ALIGN);
851#ifndef __NO_STRICT_ALIGNMENT
852 else
853 m_adj(m, MSK_RX_BUF_ALIGN);
854#endif
855
856 if (bus_dmamap_load_mbuf_sg(sc_if->msk_cdata.msk_jumbo_rx_tag,
857 sc_if->msk_cdata.msk_jumbo_rx_sparemap, m, segs, &nsegs,
858 BUS_DMA_NOWAIT) != 0) {
859 m_freem(m);
860 return (ENOBUFS);
861 }
862 KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
863
864 rxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[idx];
865 if (rxd->rx_m != NULL) {
866 bus_dmamap_sync(sc_if->msk_cdata.msk_jumbo_rx_tag,
867 rxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
868 bus_dmamap_unload(sc_if->msk_cdata.msk_jumbo_rx_tag,
869 rxd->rx_dmamap);
870 }
871 map = rxd->rx_dmamap;
872 rxd->rx_dmamap = sc_if->msk_cdata.msk_jumbo_rx_sparemap;
873 sc_if->msk_cdata.msk_jumbo_rx_sparemap = map;
874 bus_dmamap_sync(sc_if->msk_cdata.msk_jumbo_rx_tag, rxd->rx_dmamap,
875 BUS_DMASYNC_PREREAD);
876 rxd->rx_m = m;
877 rx_le = rxd->rx_le;
878 rx_le->msk_addr = htole32(MSK_ADDR_LO(segs[0].ds_addr));
879 rx_le->msk_control =
880 htole32(segs[0].ds_len | OP_PACKET | HW_OWNER);
881
882 return (0);
883}
884
885/*
886 * Set media options.
887 */
888static int
889msk_mediachange(struct ifnet *ifp)
890{
891 struct msk_if_softc *sc_if;
892 struct mii_data *mii;
893
894 sc_if = ifp->if_softc;
895
896 MSK_IF_LOCK(sc_if);
897 mii = device_get_softc(sc_if->msk_miibus);
898 mii_mediachg(mii);
899 MSK_IF_UNLOCK(sc_if);
900
901 return (0);
902}
903
904/*
905 * Report current media status.
906 */
907static void
908msk_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
909{
910 struct msk_if_softc *sc_if;
911 struct mii_data *mii;
912
913 sc_if = ifp->if_softc;
914 MSK_IF_LOCK(sc_if);
915 mii = device_get_softc(sc_if->msk_miibus);
916
917 mii_pollstat(mii);
918 MSK_IF_UNLOCK(sc_if);
919 ifmr->ifm_active = mii->mii_media_active;
920 ifmr->ifm_status = mii->mii_media_status;
921}
922
923static int
924msk_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
925{
926 struct msk_if_softc *sc_if;
927 struct ifreq *ifr;
928 struct mii_data *mii;
929 int error, mask;
930
931 sc_if = ifp->if_softc;
932 ifr = (struct ifreq *)data;
933 error = 0;
934
935 switch(command) {
936 case SIOCSIFMTU:
937 if (ifr->ifr_mtu > MSK_JUMBO_MTU || ifr->ifr_mtu < ETHERMIN)
938 error = EINVAL;
939 else if (ifp->if_mtu != ifr->ifr_mtu) {
940 if ((sc_if->msk_flags & MSK_FLAG_NOJUMBO) != 0 &&
941 ifr->ifr_mtu > ETHERMTU)
942 error = EINVAL;
943 else {
944 MSK_IF_LOCK(sc_if);
945 ifp->if_mtu = ifr->ifr_mtu;
946 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
947 msk_init_locked(sc_if);
948 MSK_IF_UNLOCK(sc_if);
949 }
950 }
951 break;
952 case SIOCSIFFLAGS:
953 MSK_IF_LOCK(sc_if);
954 if ((ifp->if_flags & IFF_UP) != 0) {
955 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
956 if (((ifp->if_flags ^ sc_if->msk_if_flags)
957 & IFF_PROMISC) != 0) {
958 msk_setpromisc(sc_if);
959 msk_setmulti(sc_if);
960 }
961 } else {
962 if (sc_if->msk_detach == 0)
963 msk_init_locked(sc_if);
964 }
965 } else {
966 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
967 msk_stop(sc_if);
968 }
969 sc_if->msk_if_flags = ifp->if_flags;
970 MSK_IF_UNLOCK(sc_if);
971 break;
972 case SIOCADDMULTI:
973 case SIOCDELMULTI:
974 MSK_IF_LOCK(sc_if);
975 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
976 msk_setmulti(sc_if);
977 MSK_IF_UNLOCK(sc_if);
978 break;
979 case SIOCGIFMEDIA:
980 case SIOCSIFMEDIA:
981 mii = device_get_softc(sc_if->msk_miibus);
982 error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
983 break;
984 case SIOCSIFCAP:
985 MSK_IF_LOCK(sc_if);
986 mask = ifr->ifr_reqcap ^ ifp->if_capenable;
987 if ((mask & IFCAP_TXCSUM) != 0) {
988 ifp->if_capenable ^= IFCAP_TXCSUM;
989 if ((IFCAP_TXCSUM & ifp->if_capenable) != 0 &&
990 (IFCAP_TXCSUM & ifp->if_capabilities) != 0)
991 ifp->if_hwassist |= MSK_CSUM_FEATURES;
992 else
993 ifp->if_hwassist &= ~MSK_CSUM_FEATURES;
994 }
995 if ((mask & IFCAP_VLAN_HWTAGGING) != 0) {
996 ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
997 msk_setvlan(sc_if, ifp);
998 }
999
1000 if ((mask & IFCAP_TSO4) != 0) {
1001 ifp->if_capenable ^= IFCAP_TSO4;
1002 if ((IFCAP_TSO4 & ifp->if_capenable) != 0 &&
1003 (IFCAP_TSO4 & ifp->if_capabilities) != 0)
1004 ifp->if_hwassist |= CSUM_TSO;
1005 else
1006 ifp->if_hwassist &= ~CSUM_TSO;
1007 }
1008 if (ifp->if_mtu > ETHERMTU &&
1009 sc_if->msk_softc->msk_hw_id == CHIP_ID_YUKON_EC_U) {
1010 /*
1011 * In Yukon EC Ultra, TSO & checksum offload is not
1012 * supported for jumbo frame.
1013 */
1014 ifp->if_hwassist &= ~(MSK_CSUM_FEATURES | CSUM_TSO);
1015 ifp->if_capenable &= ~(IFCAP_TSO4 | IFCAP_TXCSUM);
1016 }
1017
1018 VLAN_CAPABILITIES(ifp);
1019 MSK_IF_UNLOCK(sc_if);
1020 break;
1021 default:
1022 error = ether_ioctl(ifp, command, data);
1023 break;
1024 }
1025
1026 return (error);
1027}
1028
1029static int
1030mskc_probe(device_t dev)
1031{
1032 struct msk_product *mp;
1033 uint16_t vendor, devid;
1034 int i;
1035
1036 vendor = pci_get_vendor(dev);
1037 devid = pci_get_device(dev);
1038 mp = msk_products;
1039 for (i = 0; i < sizeof(msk_products)/sizeof(msk_products[0]);
1040 i++, mp++) {
1041 if (vendor == mp->msk_vendorid && devid == mp->msk_deviceid) {
1042 device_set_desc(dev, mp->msk_name);
1043 return (BUS_PROBE_DEFAULT);
1044 }
1045 }
1046
1047 return (ENXIO);
1048}
1049
1050static int
1051mskc_setup_rambuffer(struct msk_softc *sc)
1052{
1053 int next;
1054 int i;
1055
1056 /* Get adapter SRAM size. */
1057 sc->msk_ramsize = CSR_READ_1(sc, B2_E_0) * 4;
1058 if (bootverbose)
1059 device_printf(sc->msk_dev,
1060 "RAM buffer size : %dKB\n", sc->msk_ramsize);
1061 if (sc->msk_ramsize == 0)
1062 return (0);
1063
1064 sc->msk_pflags |= MSK_FLAG_RAMBUF;
1065 /*
1066 * Give receiver 2/3 of memory and round down to the multiple
1067 * of 1024. Tx/Rx RAM buffer size of Yukon II shoud be multiple
1068 * of 1024.
1069 */
1070 sc->msk_rxqsize = rounddown((sc->msk_ramsize * 1024 * 2) / 3, 1024);
1071 sc->msk_txqsize = (sc->msk_ramsize * 1024) - sc->msk_rxqsize;
1072 for (i = 0, next = 0; i < sc->msk_num_port; i++) {
1073 sc->msk_rxqstart[i] = next;
1074 sc->msk_rxqend[i] = next + sc->msk_rxqsize - 1;
1075 next = sc->msk_rxqend[i] + 1;
1076 sc->msk_txqstart[i] = next;
1077 sc->msk_txqend[i] = next + sc->msk_txqsize - 1;
1078 next = sc->msk_txqend[i] + 1;
1079 if (bootverbose) {
1080 device_printf(sc->msk_dev,
1081 "Port %d : Rx Queue %dKB(0x%08x:0x%08x)\n", i,
1082 sc->msk_rxqsize / 1024, sc->msk_rxqstart[i],
1083 sc->msk_rxqend[i]);
1084 device_printf(sc->msk_dev,
1085 "Port %d : Tx Queue %dKB(0x%08x:0x%08x)\n", i,
1086 sc->msk_txqsize / 1024, sc->msk_txqstart[i],
1087 sc->msk_txqend[i]);
1088 }
1089 }
1090
1091 return (0);
1092}
1093
1094static void
1095msk_phy_power(struct msk_softc *sc, int mode)
1096{
1097 uint32_t val;
1098 int i;
1099
1100 switch (mode) {
1101 case MSK_PHY_POWERUP:
1102 /* Switch power to VCC (WA for VAUX problem). */
1103 CSR_WRITE_1(sc, B0_POWER_CTRL,
1104 PC_VAUX_ENA | PC_VCC_ENA | PC_VAUX_OFF | PC_VCC_ON);
1105 /* Disable Core Clock Division, set Clock Select to 0. */
1106 CSR_WRITE_4(sc, B2_Y2_CLK_CTRL, Y2_CLK_DIV_DIS);
1107
1108 val = 0;
1109 if (sc->msk_hw_id == CHIP_ID_YUKON_XL &&
1110 sc->msk_hw_rev > CHIP_REV_YU_XL_A1) {
1111 /* Enable bits are inverted. */
1112 val = Y2_PCI_CLK_LNK1_DIS | Y2_COR_CLK_LNK1_DIS |
1113 Y2_CLK_GAT_LNK1_DIS | Y2_PCI_CLK_LNK2_DIS |
1114 Y2_COR_CLK_LNK2_DIS | Y2_CLK_GAT_LNK2_DIS;
1115 }
1116 /*
1117 * Enable PCI & Core Clock, enable clock gating for both Links.
1118 */
1119 CSR_WRITE_1(sc, B2_Y2_CLK_GATE, val);
1120
1121 val = pci_read_config(sc->msk_dev, PCI_OUR_REG_1, 4);
1122 val &= ~(PCI_Y2_PHY1_POWD | PCI_Y2_PHY2_POWD);
1123 if (sc->msk_hw_id == CHIP_ID_YUKON_XL &&
1124 sc->msk_hw_rev > CHIP_REV_YU_XL_A1) {
1125 /* Deassert Low Power for 1st PHY. */
1126 val |= PCI_Y2_PHY1_COMA;
1127 if (sc->msk_num_port > 1)
1128 val |= PCI_Y2_PHY2_COMA;
1129 } else if (sc->msk_hw_id == CHIP_ID_YUKON_EC_U) {
1130 uint32_t our;
1131
1132 CSR_WRITE_2(sc, B0_CTST, Y2_HW_WOL_ON);
1133
1134 /* Enable all clocks. */
1135 pci_write_config(sc->msk_dev, PCI_OUR_REG_3, 0, 4);
1136 our = pci_read_config(sc->msk_dev, PCI_OUR_REG_4, 4);
1137 our &= (PCI_FORCE_ASPM_REQUEST|PCI_ASPM_GPHY_LINK_DOWN|
1138 PCI_ASPM_INT_FIFO_EMPTY|PCI_ASPM_CLKRUN_REQUEST);
1139 /* Set all bits to 0 except bits 15..12. */
1140 pci_write_config(sc->msk_dev, PCI_OUR_REG_4, our, 4);
1141 /* Set to default value. */
1142 pci_write_config(sc->msk_dev, PCI_OUR_REG_5, 0, 4);
1143 }
1144 /* Release PHY from PowerDown/COMA mode. */
1145 pci_write_config(sc->msk_dev, PCI_OUR_REG_1, val, 4);
1146 for (i = 0; i < sc->msk_num_port; i++) {
1147 CSR_WRITE_2(sc, MR_ADDR(i, GMAC_LINK_CTRL),
1148 GMLC_RST_SET);
1149 CSR_WRITE_2(sc, MR_ADDR(i, GMAC_LINK_CTRL),
1150 GMLC_RST_CLR);
1151 }
1152 break;
1153 case MSK_PHY_POWERDOWN:
1154 val = pci_read_config(sc->msk_dev, PCI_OUR_REG_1, 4);
1155 val |= PCI_Y2_PHY1_POWD | PCI_Y2_PHY2_POWD;
1156 if (sc->msk_hw_id == CHIP_ID_YUKON_XL &&
1157 sc->msk_hw_rev > CHIP_REV_YU_XL_A1) {
1158 val &= ~PCI_Y2_PHY1_COMA;
1159 if (sc->msk_num_port > 1)
1160 val &= ~PCI_Y2_PHY2_COMA;
1161 }
1162 pci_write_config(sc->msk_dev, PCI_OUR_REG_1, val, 4);
1163
1164 val = Y2_PCI_CLK_LNK1_DIS | Y2_COR_CLK_LNK1_DIS |
1165 Y2_CLK_GAT_LNK1_DIS | Y2_PCI_CLK_LNK2_DIS |
1166 Y2_COR_CLK_LNK2_DIS | Y2_CLK_GAT_LNK2_DIS;
1167 if (sc->msk_hw_id == CHIP_ID_YUKON_XL &&
1168 sc->msk_hw_rev > CHIP_REV_YU_XL_A1) {
1169 /* Enable bits are inverted. */
1170 val = 0;
1171 }
1172 /*
1173 * Disable PCI & Core Clock, disable clock gating for
1174 * both Links.
1175 */
1176 CSR_WRITE_1(sc, B2_Y2_CLK_GATE, val);
1177 CSR_WRITE_1(sc, B0_POWER_CTRL,
1178 PC_VAUX_ENA | PC_VCC_ENA | PC_VAUX_ON | PC_VCC_OFF);
1179 break;
1180 default:
1181 break;
1182 }
1183}
1184
1185static void
1186mskc_reset(struct msk_softc *sc)
1187{
1188 bus_addr_t addr;
1189 uint16_t status;
1190 uint32_t val;
1191 int i;
1192
1193 CSR_WRITE_2(sc, B0_CTST, CS_RST_CLR);
1194
1195 /* Disable ASF. */
1196 if (sc->msk_hw_id < CHIP_ID_YUKON_XL) {
1197 CSR_WRITE_4(sc, B28_Y2_ASF_STAT_CMD, Y2_ASF_RESET);
1198 CSR_WRITE_2(sc, B0_CTST, Y2_ASF_DISABLE);
1199 }
1200 /*
1201 * Since we disabled ASF, S/W reset is required for Power Management.
1202 */
1203 CSR_WRITE_2(sc, B0_CTST, CS_RST_SET);
1204 CSR_WRITE_2(sc, B0_CTST, CS_RST_CLR);
1205
1206 /* Clear all error bits in the PCI status register. */
1207 status = pci_read_config(sc->msk_dev, PCIR_STATUS, 2);
1208 CSR_WRITE_1(sc, B2_TST_CTRL1, TST_CFG_WRITE_ON);
1209
1210 pci_write_config(sc->msk_dev, PCIR_STATUS, status |
1211 PCIM_STATUS_PERR | PCIM_STATUS_SERR | PCIM_STATUS_RMABORT |
1212 PCIM_STATUS_RTABORT | PCIM_STATUS_PERRREPORT, 2);
1213 CSR_WRITE_2(sc, B0_CTST, CS_MRST_CLR);
1214
1215 switch (sc->msk_bustype) {
1216 case MSK_PEX_BUS:
1217 /* Clear all PEX errors. */
1218 CSR_PCI_WRITE_4(sc, PEX_UNC_ERR_STAT, 0xffffffff);
1219 val = CSR_PCI_READ_4(sc, PEX_UNC_ERR_STAT);
1220 if ((val & PEX_RX_OV) != 0) {
1221 sc->msk_intrmask &= ~Y2_IS_HW_ERR;
1222 sc->msk_intrhwemask &= ~Y2_IS_PCI_EXP;
1223 }
1224 break;
1225 case MSK_PCI_BUS:
1226 case MSK_PCIX_BUS:
1227 /* Set Cache Line Size to 2(8bytes) if configured to 0. */
1228 val = pci_read_config(sc->msk_dev, PCIR_CACHELNSZ, 1);
1229 if (val == 0)
1230 pci_write_config(sc->msk_dev, PCIR_CACHELNSZ, 2, 1);
1231 if (sc->msk_bustype == MSK_PCIX_BUS) {
1232 /* Set Cache Line Size opt. */
1233 val = pci_read_config(sc->msk_dev, PCI_OUR_REG_1, 4);
1234 val |= PCI_CLS_OPT;
1235 pci_write_config(sc->msk_dev, PCI_OUR_REG_1, val, 4);
1236 }
1237 break;
1238 }
1239 /* Set PHY power state. */
1240 msk_phy_power(sc, MSK_PHY_POWERUP);
1241
1242 /* Reset GPHY/GMAC Control */
1243 for (i = 0; i < sc->msk_num_port; i++) {
1244 /* GPHY Control reset. */
1245 CSR_WRITE_4(sc, MR_ADDR(i, GPHY_CTRL), GPC_RST_SET);
1246 CSR_WRITE_4(sc, MR_ADDR(i, GPHY_CTRL), GPC_RST_CLR);
1247 /* GMAC Control reset. */
1248 CSR_WRITE_4(sc, MR_ADDR(i, GMAC_CTRL), GMC_RST_SET);
1249 CSR_WRITE_4(sc, MR_ADDR(i, GMAC_CTRL), GMC_RST_CLR);
1250 CSR_WRITE_4(sc, MR_ADDR(i, GMAC_CTRL), GMC_F_LOOPB_OFF);
1251 }
1252 CSR_WRITE_1(sc, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
1253
1254 /* LED On. */
1255 CSR_WRITE_2(sc, B0_CTST, Y2_LED_STAT_ON);
1256
1257 /* Clear TWSI IRQ. */
1258 CSR_WRITE_4(sc, B2_I2C_IRQ, I2C_CLR_IRQ);
1259
1260 /* Turn off hardware timer. */
1261 CSR_WRITE_1(sc, B2_TI_CTRL, TIM_STOP);
1262 CSR_WRITE_1(sc, B2_TI_CTRL, TIM_CLR_IRQ);
1263
1264 /* Turn off descriptor polling. */
1265 CSR_WRITE_1(sc, B28_DPT_CTRL, DPT_STOP);
1266
1267 /* Turn off time stamps. */
1268 CSR_WRITE_1(sc, GMAC_TI_ST_CTRL, GMT_ST_STOP);
1269 CSR_WRITE_1(sc, GMAC_TI_ST_CTRL, GMT_ST_CLR_IRQ);
1270
1271 /* Configure timeout values. */
1272 for (i = 0; i < sc->msk_num_port; i++) {
1273 CSR_WRITE_2(sc, SELECT_RAM_BUFFER(i, B3_RI_CTRL), RI_RST_SET);
1274 CSR_WRITE_2(sc, SELECT_RAM_BUFFER(i, B3_RI_CTRL), RI_RST_CLR);
1275 CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_WTO_R1),
1276 MSK_RI_TO_53);
1277 CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_WTO_XA1),
1278 MSK_RI_TO_53);
1279 CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_WTO_XS1),
1280 MSK_RI_TO_53);
1281 CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_RTO_R1),
1282 MSK_RI_TO_53);
1283 CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_RTO_XA1),
1284 MSK_RI_TO_53);
1285 CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_RTO_XS1),
1286 MSK_RI_TO_53);
1287 CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_WTO_R2),
1288 MSK_RI_TO_53);
1289 CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_WTO_XA2),
1290 MSK_RI_TO_53);
1291 CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_WTO_XS2),
1292 MSK_RI_TO_53);
1293 CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_RTO_R2),
1294 MSK_RI_TO_53);
1295 CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_RTO_XA2),
1296 MSK_RI_TO_53);
1297 CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_RTO_XS2),
1298 MSK_RI_TO_53);
1299 }
1300
1301 /* Disable all interrupts. */
1302 CSR_WRITE_4(sc, B0_HWE_IMSK, 0);
1303 CSR_READ_4(sc, B0_HWE_IMSK);
1304 CSR_WRITE_4(sc, B0_IMSK, 0);
1305 CSR_READ_4(sc, B0_IMSK);
1306
1307 /*
1308 * On dual port PCI-X card, there is an problem where status
1309 * can be received out of order due to split transactions.
1310 */
1311 if (sc->msk_bustype == MSK_PCIX_BUS && sc->msk_num_port > 1) {
1312 int pcix;
1313 uint16_t pcix_cmd;
1314
1315 if (pci_find_extcap(sc->msk_dev, PCIY_PCIX, &pcix) == 0) {
1316 pcix_cmd = pci_read_config(sc->msk_dev, pcix + 2, 2);
1317 /* Clear Max Outstanding Split Transactions. */
1318 pcix_cmd &= ~0x70;
1319 CSR_WRITE_1(sc, B2_TST_CTRL1, TST_CFG_WRITE_ON);
1320 pci_write_config(sc->msk_dev, pcix + 2, pcix_cmd, 2);
1321 CSR_WRITE_1(sc, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
1322 }
1323 }
1324 if (sc->msk_bustype == MSK_PEX_BUS) {
1325 uint16_t v, width;
1326
1327 v = pci_read_config(sc->msk_dev, PEX_DEV_CTRL, 2);
1328 /* Change Max. Read Request Size to 4096 bytes. */
1329 v &= ~PEX_DC_MAX_RRS_MSK;
1330 v |= PEX_DC_MAX_RD_RQ_SIZE(5);
1331 pci_write_config(sc->msk_dev, PEX_DEV_CTRL, v, 2);
1332 width = pci_read_config(sc->msk_dev, PEX_LNK_STAT, 2);
1333 width = (width & PEX_LS_LINK_WI_MSK) >> 4;
1334 v = pci_read_config(sc->msk_dev, PEX_LNK_CAP, 2);
1335 v = (v & PEX_LS_LINK_WI_MSK) >> 4;
1336 if (v != width)
1337 device_printf(sc->msk_dev,
1338 "negotiated width of link(x%d) != "
1339 "max. width of link(x%d)\n", width, v);
1340 }
1341
1342 /* Clear status list. */
1343 bzero(sc->msk_stat_ring,
1344 sizeof(struct msk_stat_desc) * MSK_STAT_RING_CNT);
1345 sc->msk_stat_cons = 0;
1346 bus_dmamap_sync(sc->msk_stat_tag, sc->msk_stat_map,
1347 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1348 CSR_WRITE_4(sc, STAT_CTRL, SC_STAT_RST_SET);
1349 CSR_WRITE_4(sc, STAT_CTRL, SC_STAT_RST_CLR);
1350 /* Set the status list base address. */
1351 addr = sc->msk_stat_ring_paddr;
1352 CSR_WRITE_4(sc, STAT_LIST_ADDR_LO, MSK_ADDR_LO(addr));
1353 CSR_WRITE_4(sc, STAT_LIST_ADDR_HI, MSK_ADDR_HI(addr));
1354 /* Set the status list last index. */
1355 CSR_WRITE_2(sc, STAT_LAST_IDX, MSK_STAT_RING_CNT - 1);
1356 if (sc->msk_hw_id == CHIP_ID_YUKON_EC &&
1357 sc->msk_hw_rev == CHIP_REV_YU_EC_A1) {
1358 /* WA for dev. #4.3 */
1359 CSR_WRITE_2(sc, STAT_TX_IDX_TH, ST_TXTH_IDX_MASK);
1360 /* WA for dev. #4.18 */
1361 CSR_WRITE_1(sc, STAT_FIFO_WM, 0x21);
1362 CSR_WRITE_1(sc, STAT_FIFO_ISR_WM, 0x07);
1363 } else {
1364 CSR_WRITE_2(sc, STAT_TX_IDX_TH, 0x0a);
1365 CSR_WRITE_1(sc, STAT_FIFO_WM, 0x10);
1366 if (sc->msk_hw_id == CHIP_ID_YUKON_XL &&
1367 sc->msk_hw_rev == CHIP_REV_YU_XL_A0)
1368 CSR_WRITE_1(sc, STAT_FIFO_ISR_WM, 0x04);
1369 else
1370 CSR_WRITE_1(sc, STAT_FIFO_ISR_WM, 0x10);
1371 CSR_WRITE_4(sc, STAT_ISR_TIMER_INI, 0x0190);
1372 }
1373 /*
1374 * Use default value for STAT_ISR_TIMER_INI, STAT_LEV_TIMER_INI.
1375 */
1376 CSR_WRITE_4(sc, STAT_TX_TIMER_INI, MSK_USECS(sc, 1000));
1377
1378 /* Enable status unit. */
1379 CSR_WRITE_4(sc, STAT_CTRL, SC_STAT_OP_ON);
1380
1381 CSR_WRITE_1(sc, STAT_TX_TIMER_CTRL, TIM_START);
1382 CSR_WRITE_1(sc, STAT_LEV_TIMER_CTRL, TIM_START);
1383 CSR_WRITE_1(sc, STAT_ISR_TIMER_CTRL, TIM_START);
1384}
1385
1386static int
1387msk_probe(device_t dev)
1388{
1389 struct msk_softc *sc;
1390 char desc[100];
1391
1392 sc = device_get_softc(device_get_parent(dev));
1393 /*
1394 * Not much to do here. We always know there will be
1395 * at least one GMAC present, and if there are two,
1396 * mskc_attach() will create a second device instance
1397 * for us.
1398 */
1399 snprintf(desc, sizeof(desc),
1400 "Marvell Technology Group Ltd. %s Id 0x%02x Rev 0x%02x",
1401 model_name[sc->msk_hw_id - CHIP_ID_YUKON_XL], sc->msk_hw_id,
1402 sc->msk_hw_rev);
1403 device_set_desc_copy(dev, desc);
1404
1405 return (BUS_PROBE_DEFAULT);
1406}
1407
1408static int
1409msk_attach(device_t dev)
1410{
1411 struct msk_softc *sc;
1412 struct msk_if_softc *sc_if;
1413 struct ifnet *ifp;
1414 int i, port, error;
1415 uint8_t eaddr[6];
1416
1417 if (dev == NULL)
1418 return (EINVAL);
1419
1420 error = 0;
1421 sc_if = device_get_softc(dev);
1422 sc = device_get_softc(device_get_parent(dev));
1423 port = *(int *)device_get_ivars(dev);
1424
1425 sc_if->msk_if_dev = dev;
1426 sc_if->msk_port = port;
1427 sc_if->msk_softc = sc;
1428 sc_if->msk_flags = sc->msk_pflags;
1429 sc->msk_if[port] = sc_if;
1430 /* Setup Tx/Rx queue register offsets. */
1431 if (port == MSK_PORT_A) {
1432 sc_if->msk_txq = Q_XA1;
1433 sc_if->msk_txsq = Q_XS1;
1434 sc_if->msk_rxq = Q_R1;
1435 } else {
1436 sc_if->msk_txq = Q_XA2;
1437 sc_if->msk_txsq = Q_XS2;
1438 sc_if->msk_rxq = Q_R2;
1439 }
1440
1441 callout_init_mtx(&sc_if->msk_tick_ch, &sc_if->msk_softc->msk_mtx, 0);
1442 TASK_INIT(&sc_if->msk_link_task, 0, msk_link_task, sc_if);
1443 msk_sysctl_node(sc_if);
1438
1439 /* Disable jumbo frame for Yukon FE. */
1440 if (sc_if->msk_softc->msk_hw_id == CHIP_ID_YUKON_FE)
1441 sc_if->msk_flags |= MSK_FLAG_NOJUMBO;
1442
1443 if ((error = msk_txrx_dma_alloc(sc_if) != 0))
1444 goto fail;
1445 msk_rx_dma_jalloc(sc_if);
1446
1447 ifp = sc_if->msk_ifp = if_alloc(IFT_ETHER);
1448 if (ifp == NULL) {
1449 device_printf(sc_if->msk_if_dev, "can not if_alloc()\n");
1450 error = ENOSPC;
1451 goto fail;
1452 }
1453 ifp->if_softc = sc_if;
1454 if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1455 ifp->if_mtu = ETHERMTU;
1456 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1457 /*
1458 * IFCAP_RXCSUM capability is intentionally disabled as the hardware
1459 * has serious bug in Rx checksum offload for all Yukon II family
1460 * hardware. It seems there is a workaround to make it work somtimes.
1461 * However, the workaround also have to check OP code sequences to
1462 * verify whether the OP code is correct. Sometimes it should compute
1463 * IP/TCP/UDP checksum in driver in order to verify correctness of
1464 * checksum computed by hardware. If you have to compute checksum
1465 * with software to verify the hardware's checksum why have hardware
1466 * compute the checksum? I think there is no reason to spend time to
1467 * make Rx checksum offload work on Yukon II hardware.
1468 */
1469 ifp->if_capabilities = IFCAP_TXCSUM | IFCAP_TSO4;
1470 ifp->if_hwassist = MSK_CSUM_FEATURES | CSUM_TSO;
1471 ifp->if_capenable = ifp->if_capabilities;
1472 ifp->if_ioctl = msk_ioctl;
1473 ifp->if_start = msk_start;
1474 ifp->if_timer = 0;
1475 ifp->if_watchdog = NULL;
1476 ifp->if_init = msk_init;
1477 IFQ_SET_MAXLEN(&ifp->if_snd, MSK_TX_RING_CNT - 1);
1478 ifp->if_snd.ifq_drv_maxlen = MSK_TX_RING_CNT - 1;
1479 IFQ_SET_READY(&ifp->if_snd);
1480
1481 TASK_INIT(&sc_if->msk_tx_task, 1, msk_tx_task, ifp);
1482
1483 /*
1484 * Get station address for this interface. Note that
1485 * dual port cards actually come with three station
1486 * addresses: one for each port, plus an extra. The
1487 * extra one is used by the SysKonnect driver software
1488 * as a 'virtual' station address for when both ports
1489 * are operating in failover mode. Currently we don't
1490 * use this extra address.
1491 */
1492 MSK_IF_LOCK(sc_if);
1493 for (i = 0; i < ETHER_ADDR_LEN; i++)
1494 eaddr[i] = CSR_READ_1(sc, B2_MAC_1 + (port * 8) + i);
1495
1496 /*
1497 * Call MI attach routine. Can't hold locks when calling into ether_*.
1498 */
1499 MSK_IF_UNLOCK(sc_if);
1500 ether_ifattach(ifp, eaddr);
1501 MSK_IF_LOCK(sc_if);
1502
1503 /*
1504 * VLAN capability setup
1505 * Due to Tx checksum offload hardware bugs, msk(4) manually
1506 * computes checksum for short frames. For VLAN tagged frames
1507 * this workaround does not work so disable checksum offload
1508 * for VLAN interface.
1509 */
1510 ifp->if_capabilities |= IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING;
1511 ifp->if_capenable = ifp->if_capabilities;
1512
1513 /*
1514 * Tell the upper layer(s) we support long frames.
1515 * Must appear after the call to ether_ifattach() because
1516 * ether_ifattach() sets ifi_hdrlen to the default value.
1517 */
1518 ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
1519
1520 /*
1521 * Do miibus setup.
1522 */
1523 MSK_IF_UNLOCK(sc_if);
1524 error = mii_phy_probe(dev, &sc_if->msk_miibus, msk_mediachange,
1525 msk_mediastatus);
1526 if (error != 0) {
1527 device_printf(sc_if->msk_if_dev, "no PHY found!\n");
1528 ether_ifdetach(ifp);
1529 error = ENXIO;
1530 goto fail;
1531 }
1532
1533fail:
1534 if (error != 0) {
1535 /* Access should be ok even though lock has been dropped */
1536 sc->msk_if[port] = NULL;
1537 msk_detach(dev);
1538 }
1539
1540 return (error);
1541}
1542
1543/*
1544 * Attach the interface. Allocate softc structures, do ifmedia
1545 * setup and ethernet/BPF attach.
1546 */
1547static int
1548mskc_attach(device_t dev)
1549{
1550 struct msk_softc *sc;
1551 int error, msic, msir, *port, reg;
1552
1553 sc = device_get_softc(dev);
1554 sc->msk_dev = dev;
1555 mtx_init(&sc->msk_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
1556 MTX_DEF);
1557
1558 /*
1559 * Map control/status registers.
1560 */
1561 pci_enable_busmaster(dev);
1562
1563 /* Allocate I/O resource */
1564#ifdef MSK_USEIOSPACE
1565 sc->msk_res_spec = msk_res_spec_io;
1566#else
1567 sc->msk_res_spec = msk_res_spec_mem;
1568#endif
1569 sc->msk_irq_spec = msk_irq_spec_legacy;
1570 error = bus_alloc_resources(dev, sc->msk_res_spec, sc->msk_res);
1571 if (error) {
1572 if (sc->msk_res_spec == msk_res_spec_mem)
1573 sc->msk_res_spec = msk_res_spec_io;
1574 else
1575 sc->msk_res_spec = msk_res_spec_mem;
1576 error = bus_alloc_resources(dev, sc->msk_res_spec, sc->msk_res);
1577 if (error) {
1578 device_printf(dev, "couldn't allocate %s resources\n",
1579 sc->msk_res_spec == msk_res_spec_mem ? "memory" :
1580 "I/O");
1581 mtx_destroy(&sc->msk_mtx);
1582 return (ENXIO);
1583 }
1584 }
1585
1586 CSR_WRITE_2(sc, B0_CTST, CS_RST_CLR);
1587 sc->msk_hw_id = CSR_READ_1(sc, B2_CHIP_ID);
1588 sc->msk_hw_rev = (CSR_READ_1(sc, B2_MAC_CFG) >> 4) & 0x0f;
1589 /* Bail out if chip is not recognized. */
1590 if (sc->msk_hw_id < CHIP_ID_YUKON_XL ||
1591 sc->msk_hw_id > CHIP_ID_YUKON_FE) {
1592 device_printf(dev, "unknown device: id=0x%02x, rev=0x%02x\n",
1593 sc->msk_hw_id, sc->msk_hw_rev);
1594 mtx_destroy(&sc->msk_mtx);
1595 return (ENXIO);
1596 }
1597
1598 SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
1599 SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
1600 OID_AUTO, "process_limit", CTLTYPE_INT | CTLFLAG_RW,
1601 &sc->msk_process_limit, 0, sysctl_hw_msk_proc_limit, "I",
1602 "max number of Rx events to process");
1603
1604 sc->msk_process_limit = MSK_PROC_DEFAULT;
1605 error = resource_int_value(device_get_name(dev), device_get_unit(dev),
1606 "process_limit", &sc->msk_process_limit);
1607 if (error == 0) {
1608 if (sc->msk_process_limit < MSK_PROC_MIN ||
1609 sc->msk_process_limit > MSK_PROC_MAX) {
1610 device_printf(dev, "process_limit value out of range; "
1611 "using default: %d\n", MSK_PROC_DEFAULT);
1612 sc->msk_process_limit = MSK_PROC_DEFAULT;
1613 }
1614 }
1615
1616 /* Soft reset. */
1617 CSR_WRITE_2(sc, B0_CTST, CS_RST_SET);
1618 CSR_WRITE_2(sc, B0_CTST, CS_RST_CLR);
1619 sc->msk_pmd = CSR_READ_1(sc, B2_PMD_TYP);
1620 if (sc->msk_pmd == 'L' || sc->msk_pmd == 'S')
1621 sc->msk_coppertype = 0;
1622 else
1623 sc->msk_coppertype = 1;
1624 /* Check number of MACs. */
1625 sc->msk_num_port = 1;
1626 if ((CSR_READ_1(sc, B2_Y2_HW_RES) & CFG_DUAL_MAC_MSK) ==
1627 CFG_DUAL_MAC_MSK) {
1628 if (!(CSR_READ_1(sc, B2_Y2_CLK_GATE) & Y2_STATUS_LNK2_INAC))
1629 sc->msk_num_port++;
1630 }
1631
1632 /* Check bus type. */
1633 if (pci_find_extcap(sc->msk_dev, PCIY_EXPRESS, &reg) == 0)
1634 sc->msk_bustype = MSK_PEX_BUS;
1635 else if (pci_find_extcap(sc->msk_dev, PCIY_PCIX, &reg) == 0)
1636 sc->msk_bustype = MSK_PCIX_BUS;
1637 else
1638 sc->msk_bustype = MSK_PCI_BUS;
1639
1640 switch (sc->msk_hw_id) {
1641 case CHIP_ID_YUKON_EC:
1642 case CHIP_ID_YUKON_EC_U:
1643 sc->msk_clock = 125; /* 125 Mhz */
1644 break;
1645 case CHIP_ID_YUKON_FE:
1646 sc->msk_clock = 100; /* 100 Mhz */
1647 break;
1648 case CHIP_ID_YUKON_XL:
1649 sc->msk_clock = 156; /* 156 Mhz */
1650 break;
1651 default:
1652 sc->msk_clock = 156; /* 156 Mhz */
1653 break;
1654 }
1655
1656 /* Allocate IRQ resources. */
1657 msic = pci_msi_count(dev);
1658 if (bootverbose)
1659 device_printf(dev, "MSI count : %d\n", msic);
1660 /*
1661 * The Yukon II reports it can handle two messages, one for each
1662 * possible port. We go ahead and allocate two messages and only
1663 * setup a handler for both if we have a dual port card.
1664 *
1665 * XXX: I haven't untangled the interrupt handler to handle dual
1666 * port cards with separate MSI messages, so for now I disable MSI
1667 * on dual port cards.
1668 */
1669 if (legacy_intr != 0)
1670 msi_disable = 1;
1671 if (msi_disable == 0) {
1672 switch (msic) {
1673 case 2:
1674 case 1: /* 88E8058 reports 1 MSI message */
1675 msir = msic;
1676 if (sc->msk_num_port == 1 &&
1677 pci_alloc_msi(dev, &msir) == 0) {
1678 if (msic == msir) {
1679 sc->msk_msi = 1;
1680 sc->msk_irq_spec = msic == 2 ?
1681 msk_irq_spec_msi2 :
1682 msk_irq_spec_msi;
1683 } else
1684 pci_release_msi(dev);
1685 }
1686 break;
1687 default:
1688 device_printf(dev,
1689 "Unexpected number of MSI messages : %d\n", msic);
1690 break;
1691 }
1692 }
1693
1694 error = bus_alloc_resources(dev, sc->msk_irq_spec, sc->msk_irq);
1695 if (error) {
1696 device_printf(dev, "couldn't allocate IRQ resources\n");
1697 goto fail;
1698 }
1699
1700 if ((error = msk_status_dma_alloc(sc)) != 0)
1701 goto fail;
1702
1703 /* Set base interrupt mask. */
1704 sc->msk_intrmask = Y2_IS_HW_ERR | Y2_IS_STAT_BMU;
1705 sc->msk_intrhwemask = Y2_IS_TIST_OV | Y2_IS_MST_ERR |
1706 Y2_IS_IRQ_STAT | Y2_IS_PCI_EXP | Y2_IS_PCI_NEXP;
1707
1708 /* Reset the adapter. */
1709 mskc_reset(sc);
1710
1711 if ((error = mskc_setup_rambuffer(sc)) != 0)
1712 goto fail;
1713
1714 sc->msk_devs[MSK_PORT_A] = device_add_child(dev, "msk", -1);
1715 if (sc->msk_devs[MSK_PORT_A] == NULL) {
1716 device_printf(dev, "failed to add child for PORT_A\n");
1717 error = ENXIO;
1718 goto fail;
1719 }
1720 port = malloc(sizeof(int), M_DEVBUF, M_WAITOK);
1721 if (port == NULL) {
1722 device_printf(dev, "failed to allocate memory for "
1723 "ivars of PORT_A\n");
1724 error = ENXIO;
1725 goto fail;
1726 }
1727 *port = MSK_PORT_A;
1728 device_set_ivars(sc->msk_devs[MSK_PORT_A], port);
1729
1730 if (sc->msk_num_port > 1) {
1731 sc->msk_devs[MSK_PORT_B] = device_add_child(dev, "msk", -1);
1732 if (sc->msk_devs[MSK_PORT_B] == NULL) {
1733 device_printf(dev, "failed to add child for PORT_B\n");
1734 error = ENXIO;
1735 goto fail;
1736 }
1737 port = malloc(sizeof(int), M_DEVBUF, M_WAITOK);
1738 if (port == NULL) {
1739 device_printf(dev, "failed to allocate memory for "
1740 "ivars of PORT_B\n");
1741 error = ENXIO;
1742 goto fail;
1743 }
1744 *port = MSK_PORT_B;
1745 device_set_ivars(sc->msk_devs[MSK_PORT_B], port);
1746 }
1747
1748 error = bus_generic_attach(dev);
1749 if (error) {
1750 device_printf(dev, "failed to attach port(s)\n");
1751 goto fail;
1752 }
1753
1754 /* Hook interrupt last to avoid having to lock softc. */
1755 if (legacy_intr)
1756 error = bus_setup_intr(dev, sc->msk_irq[0], INTR_TYPE_NET |
1757 INTR_MPSAFE, NULL, msk_legacy_intr, sc,
1758 &sc->msk_intrhand[0]);
1759 else {
1760 TASK_INIT(&sc->msk_int_task, 0, msk_int_task, sc);
1761 sc->msk_tq = taskqueue_create_fast("msk_taskq", M_WAITOK,
1762 taskqueue_thread_enqueue, &sc->msk_tq);
1763 taskqueue_start_threads(&sc->msk_tq, 1, PI_NET, "%s taskq",
1764 device_get_nameunit(sc->msk_dev));
1765 error = bus_setup_intr(dev, sc->msk_irq[0], INTR_TYPE_NET |
1766 INTR_MPSAFE, msk_intr, NULL, sc, &sc->msk_intrhand[0]);
1767 }
1768
1769 if (error != 0) {
1770 device_printf(dev, "couldn't set up interrupt handler\n");
1771 if (legacy_intr == 0)
1772 taskqueue_free(sc->msk_tq);
1773 sc->msk_tq = NULL;
1774 goto fail;
1775 }
1776fail:
1777 if (error != 0)
1778 mskc_detach(dev);
1779
1780 return (error);
1781}
1782
1783/*
1784 * Shutdown hardware and free up resources. This can be called any
1785 * time after the mutex has been initialized. It is called in both
1786 * the error case in attach and the normal detach case so it needs
1787 * to be careful about only freeing resources that have actually been
1788 * allocated.
1789 */
1790static int
1791msk_detach(device_t dev)
1792{
1793 struct msk_softc *sc;
1794 struct msk_if_softc *sc_if;
1795 struct ifnet *ifp;
1796
1797 sc_if = device_get_softc(dev);
1798 KASSERT(mtx_initialized(&sc_if->msk_softc->msk_mtx),
1799 ("msk mutex not initialized in msk_detach"));
1800 MSK_IF_LOCK(sc_if);
1801
1802 ifp = sc_if->msk_ifp;
1803 if (device_is_attached(dev)) {
1804 /* XXX */
1805 sc_if->msk_detach = 1;
1806 msk_stop(sc_if);
1807 /* Can't hold locks while calling detach. */
1808 MSK_IF_UNLOCK(sc_if);
1809 callout_drain(&sc_if->msk_tick_ch);
1810 taskqueue_drain(taskqueue_fast, &sc_if->msk_tx_task);
1811 taskqueue_drain(taskqueue_swi, &sc_if->msk_link_task);
1812 ether_ifdetach(ifp);
1813 MSK_IF_LOCK(sc_if);
1814 }
1815
1816 /*
1817 * We're generally called from mskc_detach() which is using
1818 * device_delete_child() to get to here. It's already trashed
1819 * miibus for us, so don't do it here or we'll panic.
1820 *
1821 * if (sc_if->msk_miibus != NULL) {
1822 * device_delete_child(dev, sc_if->msk_miibus);
1823 * sc_if->msk_miibus = NULL;
1824 * }
1825 */
1826
1827 msk_rx_dma_jfree(sc_if);
1828 msk_txrx_dma_free(sc_if);
1829 bus_generic_detach(dev);
1830
1831 if (ifp)
1832 if_free(ifp);
1833 sc = sc_if->msk_softc;
1834 sc->msk_if[sc_if->msk_port] = NULL;
1835 MSK_IF_UNLOCK(sc_if);
1836
1837 return (0);
1838}
1839
1840static int
1841mskc_detach(device_t dev)
1842{
1843 struct msk_softc *sc;
1844
1845 sc = device_get_softc(dev);
1846 KASSERT(mtx_initialized(&sc->msk_mtx), ("msk mutex not initialized"));
1847
1848 if (device_is_alive(dev)) {
1849 if (sc->msk_devs[MSK_PORT_A] != NULL) {
1850 free(device_get_ivars(sc->msk_devs[MSK_PORT_A]),
1851 M_DEVBUF);
1852 device_delete_child(dev, sc->msk_devs[MSK_PORT_A]);
1853 }
1854 if (sc->msk_devs[MSK_PORT_B] != NULL) {
1855 free(device_get_ivars(sc->msk_devs[MSK_PORT_B]),
1856 M_DEVBUF);
1857 device_delete_child(dev, sc->msk_devs[MSK_PORT_B]);
1858 }
1859 bus_generic_detach(dev);
1860 }
1861
1862 /* Disable all interrupts. */
1863 CSR_WRITE_4(sc, B0_IMSK, 0);
1864 CSR_READ_4(sc, B0_IMSK);
1865 CSR_WRITE_4(sc, B0_HWE_IMSK, 0);
1866 CSR_READ_4(sc, B0_HWE_IMSK);
1867
1868 /* LED Off. */
1869 CSR_WRITE_2(sc, B0_CTST, Y2_LED_STAT_OFF);
1870
1871 /* Put hardware reset. */
1872 CSR_WRITE_2(sc, B0_CTST, CS_RST_SET);
1873
1874 msk_status_dma_free(sc);
1875
1876 if (legacy_intr == 0 && sc->msk_tq != NULL) {
1877 taskqueue_drain(sc->msk_tq, &sc->msk_int_task);
1878 taskqueue_free(sc->msk_tq);
1879 sc->msk_tq = NULL;
1880 }
1881 if (sc->msk_intrhand[0]) {
1882 bus_teardown_intr(dev, sc->msk_irq[0], sc->msk_intrhand[0]);
1883 sc->msk_intrhand[0] = NULL;
1884 }
1885 if (sc->msk_intrhand[1]) {
1886 bus_teardown_intr(dev, sc->msk_irq[0], sc->msk_intrhand[0]);
1887 sc->msk_intrhand[1] = NULL;
1888 }
1889 bus_release_resources(dev, sc->msk_irq_spec, sc->msk_irq);
1890 if (sc->msk_msi)
1891 pci_release_msi(dev);
1892 bus_release_resources(dev, sc->msk_res_spec, sc->msk_res);
1893 mtx_destroy(&sc->msk_mtx);
1894
1895 return (0);
1896}
1897
1898struct msk_dmamap_arg {
1899 bus_addr_t msk_busaddr;
1900};
1901
1902static void
1903msk_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1904{
1905 struct msk_dmamap_arg *ctx;
1906
1907 if (error != 0)
1908 return;
1909 ctx = arg;
1910 ctx->msk_busaddr = segs[0].ds_addr;
1911}
1912
1913/* Create status DMA region. */
1914static int
1915msk_status_dma_alloc(struct msk_softc *sc)
1916{
1917 struct msk_dmamap_arg ctx;
1918 int error;
1919
1920 error = bus_dma_tag_create(
1921 bus_get_dma_tag(sc->msk_dev), /* parent */
1922 MSK_STAT_ALIGN, 0, /* alignment, boundary */
1923 BUS_SPACE_MAXADDR, /* lowaddr */
1924 BUS_SPACE_MAXADDR, /* highaddr */
1925 NULL, NULL, /* filter, filterarg */
1926 MSK_STAT_RING_SZ, /* maxsize */
1927 1, /* nsegments */
1928 MSK_STAT_RING_SZ, /* maxsegsize */
1929 0, /* flags */
1930 NULL, NULL, /* lockfunc, lockarg */
1931 &sc->msk_stat_tag);
1932 if (error != 0) {
1933 device_printf(sc->msk_dev,
1934 "failed to create status DMA tag\n");
1935 return (error);
1936 }
1937
1938 /* Allocate DMA'able memory and load the DMA map for status ring. */
1939 error = bus_dmamem_alloc(sc->msk_stat_tag,
1940 (void **)&sc->msk_stat_ring, BUS_DMA_WAITOK | BUS_DMA_COHERENT |
1941 BUS_DMA_ZERO, &sc->msk_stat_map);
1942 if (error != 0) {
1943 device_printf(sc->msk_dev,
1944 "failed to allocate DMA'able memory for status ring\n");
1945 return (error);
1946 }
1947
1948 ctx.msk_busaddr = 0;
1949 error = bus_dmamap_load(sc->msk_stat_tag,
1950 sc->msk_stat_map, sc->msk_stat_ring, MSK_STAT_RING_SZ,
1951 msk_dmamap_cb, &ctx, 0);
1952 if (error != 0) {
1953 device_printf(sc->msk_dev,
1954 "failed to load DMA'able memory for status ring\n");
1955 return (error);
1956 }
1957 sc->msk_stat_ring_paddr = ctx.msk_busaddr;
1958
1959 return (0);
1960}
1961
1962static void
1963msk_status_dma_free(struct msk_softc *sc)
1964{
1965
1966 /* Destroy status block. */
1967 if (sc->msk_stat_tag) {
1968 if (sc->msk_stat_map) {
1969 bus_dmamap_unload(sc->msk_stat_tag, sc->msk_stat_map);
1970 if (sc->msk_stat_ring) {
1971 bus_dmamem_free(sc->msk_stat_tag,
1972 sc->msk_stat_ring, sc->msk_stat_map);
1973 sc->msk_stat_ring = NULL;
1974 }
1975 sc->msk_stat_map = NULL;
1976 }
1977 bus_dma_tag_destroy(sc->msk_stat_tag);
1978 sc->msk_stat_tag = NULL;
1979 }
1980}
1981
1982static int
1983msk_txrx_dma_alloc(struct msk_if_softc *sc_if)
1984{
1985 struct msk_dmamap_arg ctx;
1986 struct msk_txdesc *txd;
1987 struct msk_rxdesc *rxd;
1988 bus_size_t rxalign;
1989 int error, i;
1990
1991 /* Create parent DMA tag. */
1992 /*
1993 * XXX
1994 * It seems that Yukon II supports full 64bits DMA operations. But
1995 * it needs two descriptors(list elements) for 64bits DMA operations.
1996 * Since we don't know what DMA address mappings(32bits or 64bits)
1997 * would be used in advance for each mbufs, we limits its DMA space
1998 * to be in range of 32bits address space. Otherwise, we should check
1999 * what DMA address is used and chain another descriptor for the
2000 * 64bits DMA operation. This also means descriptor ring size is
2001 * variable. Limiting DMA address to be in 32bit address space greatly
2002 * simplyfies descriptor handling and possibly would increase
2003 * performance a bit due to efficient handling of descriptors.
2004 * Apart from harassing checksum offloading mechanisms, it seems
2005 * it's really bad idea to use a seperate descriptor for 64bit
2006 * DMA operation to save small descriptor memory. Anyway, I've
2007 * never seen these exotic scheme on ethernet interface hardware.
2008 */
2009 error = bus_dma_tag_create(
2010 bus_get_dma_tag(sc_if->msk_if_dev), /* parent */
2011 1, 0, /* alignment, boundary */
2012 BUS_SPACE_MAXADDR_32BIT, /* lowaddr */
2013 BUS_SPACE_MAXADDR, /* highaddr */
2014 NULL, NULL, /* filter, filterarg */
2015 BUS_SPACE_MAXSIZE_32BIT, /* maxsize */
2016 0, /* nsegments */
2017 BUS_SPACE_MAXSIZE_32BIT, /* maxsegsize */
2018 0, /* flags */
2019 NULL, NULL, /* lockfunc, lockarg */
2020 &sc_if->msk_cdata.msk_parent_tag);
2021 if (error != 0) {
2022 device_printf(sc_if->msk_if_dev,
2023 "failed to create parent DMA tag\n");
2024 goto fail;
2025 }
2026 /* Create tag for Tx ring. */
2027 error = bus_dma_tag_create(sc_if->msk_cdata.msk_parent_tag,/* parent */
2028 MSK_RING_ALIGN, 0, /* alignment, boundary */
2029 BUS_SPACE_MAXADDR, /* lowaddr */
2030 BUS_SPACE_MAXADDR, /* highaddr */
2031 NULL, NULL, /* filter, filterarg */
2032 MSK_TX_RING_SZ, /* maxsize */
2033 1, /* nsegments */
2034 MSK_TX_RING_SZ, /* maxsegsize */
2035 0, /* flags */
2036 NULL, NULL, /* lockfunc, lockarg */
2037 &sc_if->msk_cdata.msk_tx_ring_tag);
2038 if (error != 0) {
2039 device_printf(sc_if->msk_if_dev,
2040 "failed to create Tx ring DMA tag\n");
2041 goto fail;
2042 }
2043
2044 /* Create tag for Rx ring. */
2045 error = bus_dma_tag_create(sc_if->msk_cdata.msk_parent_tag,/* parent */
2046 MSK_RING_ALIGN, 0, /* alignment, boundary */
2047 BUS_SPACE_MAXADDR, /* lowaddr */
2048 BUS_SPACE_MAXADDR, /* highaddr */
2049 NULL, NULL, /* filter, filterarg */
2050 MSK_RX_RING_SZ, /* maxsize */
2051 1, /* nsegments */
2052 MSK_RX_RING_SZ, /* maxsegsize */
2053 0, /* flags */
2054 NULL, NULL, /* lockfunc, lockarg */
2055 &sc_if->msk_cdata.msk_rx_ring_tag);
2056 if (error != 0) {
2057 device_printf(sc_if->msk_if_dev,
2058 "failed to create Rx ring DMA tag\n");
2059 goto fail;
2060 }
2061
2062 /* Create tag for Tx buffers. */
2063 error = bus_dma_tag_create(sc_if->msk_cdata.msk_parent_tag,/* parent */
2064 1, 0, /* alignment, boundary */
2065 BUS_SPACE_MAXADDR, /* lowaddr */
2066 BUS_SPACE_MAXADDR, /* highaddr */
2067 NULL, NULL, /* filter, filterarg */
2068 MSK_TSO_MAXSIZE, /* maxsize */
2069 MSK_MAXTXSEGS, /* nsegments */
2070 MSK_TSO_MAXSGSIZE, /* maxsegsize */
2071 0, /* flags */
2072 NULL, NULL, /* lockfunc, lockarg */
2073 &sc_if->msk_cdata.msk_tx_tag);
2074 if (error != 0) {
2075 device_printf(sc_if->msk_if_dev,
2076 "failed to create Tx DMA tag\n");
2077 goto fail;
2078 }
2079
2080 rxalign = 1;
2081 /*
2082 * Workaround hardware hang which seems to happen when Rx buffer
2083 * is not aligned on multiple of FIFO word(8 bytes).
2084 */
2085 if ((sc_if->msk_flags & MSK_FLAG_RAMBUF) != 0)
2086 rxalign = MSK_RX_BUF_ALIGN;
2087 /* Create tag for Rx buffers. */
2088 error = bus_dma_tag_create(sc_if->msk_cdata.msk_parent_tag,/* parent */
2089 rxalign, 0, /* alignment, boundary */
2090 BUS_SPACE_MAXADDR, /* lowaddr */
2091 BUS_SPACE_MAXADDR, /* highaddr */
2092 NULL, NULL, /* filter, filterarg */
2093 MCLBYTES, /* maxsize */
2094 1, /* nsegments */
2095 MCLBYTES, /* maxsegsize */
2096 0, /* flags */
2097 NULL, NULL, /* lockfunc, lockarg */
2098 &sc_if->msk_cdata.msk_rx_tag);
2099 if (error != 0) {
2100 device_printf(sc_if->msk_if_dev,
2101 "failed to create Rx DMA tag\n");
2102 goto fail;
2103 }
2104
2105 /* Allocate DMA'able memory and load the DMA map for Tx ring. */
2106 error = bus_dmamem_alloc(sc_if->msk_cdata.msk_tx_ring_tag,
2107 (void **)&sc_if->msk_rdata.msk_tx_ring, BUS_DMA_WAITOK |
2108 BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc_if->msk_cdata.msk_tx_ring_map);
2109 if (error != 0) {
2110 device_printf(sc_if->msk_if_dev,
2111 "failed to allocate DMA'able memory for Tx ring\n");
2112 goto fail;
2113 }
2114
2115 ctx.msk_busaddr = 0;
2116 error = bus_dmamap_load(sc_if->msk_cdata.msk_tx_ring_tag,
2117 sc_if->msk_cdata.msk_tx_ring_map, sc_if->msk_rdata.msk_tx_ring,
2118 MSK_TX_RING_SZ, msk_dmamap_cb, &ctx, 0);
2119 if (error != 0) {
2120 device_printf(sc_if->msk_if_dev,
2121 "failed to load DMA'able memory for Tx ring\n");
2122 goto fail;
2123 }
2124 sc_if->msk_rdata.msk_tx_ring_paddr = ctx.msk_busaddr;
2125
2126 /* Allocate DMA'able memory and load the DMA map for Rx ring. */
2127 error = bus_dmamem_alloc(sc_if->msk_cdata.msk_rx_ring_tag,
2128 (void **)&sc_if->msk_rdata.msk_rx_ring, BUS_DMA_WAITOK |
2129 BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc_if->msk_cdata.msk_rx_ring_map);
2130 if (error != 0) {
2131 device_printf(sc_if->msk_if_dev,
2132 "failed to allocate DMA'able memory for Rx ring\n");
2133 goto fail;
2134 }
2135
2136 ctx.msk_busaddr = 0;
2137 error = bus_dmamap_load(sc_if->msk_cdata.msk_rx_ring_tag,
2138 sc_if->msk_cdata.msk_rx_ring_map, sc_if->msk_rdata.msk_rx_ring,
2139 MSK_RX_RING_SZ, msk_dmamap_cb, &ctx, 0);
2140 if (error != 0) {
2141 device_printf(sc_if->msk_if_dev,
2142 "failed to load DMA'able memory for Rx ring\n");
2143 goto fail;
2144 }
2145 sc_if->msk_rdata.msk_rx_ring_paddr = ctx.msk_busaddr;
2146
2147 /* Create DMA maps for Tx buffers. */
2148 for (i = 0; i < MSK_TX_RING_CNT; i++) {
2149 txd = &sc_if->msk_cdata.msk_txdesc[i];
2150 txd->tx_m = NULL;
2151 txd->tx_dmamap = NULL;
2152 error = bus_dmamap_create(sc_if->msk_cdata.msk_tx_tag, 0,
2153 &txd->tx_dmamap);
2154 if (error != 0) {
2155 device_printf(sc_if->msk_if_dev,
2156 "failed to create Tx dmamap\n");
2157 goto fail;
2158 }
2159 }
2160 /* Create DMA maps for Rx buffers. */
2161 if ((error = bus_dmamap_create(sc_if->msk_cdata.msk_rx_tag, 0,
2162 &sc_if->msk_cdata.msk_rx_sparemap)) != 0) {
2163 device_printf(sc_if->msk_if_dev,
2164 "failed to create spare Rx dmamap\n");
2165 goto fail;
2166 }
2167 for (i = 0; i < MSK_RX_RING_CNT; i++) {
2168 rxd = &sc_if->msk_cdata.msk_rxdesc[i];
2169 rxd->rx_m = NULL;
2170 rxd->rx_dmamap = NULL;
2171 error = bus_dmamap_create(sc_if->msk_cdata.msk_rx_tag, 0,
2172 &rxd->rx_dmamap);
2173 if (error != 0) {
2174 device_printf(sc_if->msk_if_dev,
2175 "failed to create Rx dmamap\n");
2176 goto fail;
2177 }
2178 }
2179
2180fail:
2181 return (error);
2182}
2183
2184static int
2185msk_rx_dma_jalloc(struct msk_if_softc *sc_if)
2186{
2187 struct msk_dmamap_arg ctx;
2188 struct msk_rxdesc *jrxd;
2189 bus_size_t rxalign;
2190 int error, i;
2191
2192 if (jumbo_disable != 0 || (sc_if->msk_flags & MSK_FLAG_NOJUMBO) != 0) {
2193 sc_if->msk_flags |= MSK_FLAG_NOJUMBO;
2194 device_printf(sc_if->msk_if_dev,
2195 "disabling jumbo frame support\n");
2196 sc_if->msk_flags |= MSK_FLAG_NOJUMBO;
2197 return (0);
2198 }
2199 /* Create tag for jumbo Rx ring. */
2200 error = bus_dma_tag_create(sc_if->msk_cdata.msk_parent_tag,/* parent */
2201 MSK_RING_ALIGN, 0, /* alignment, boundary */
2202 BUS_SPACE_MAXADDR, /* lowaddr */
2203 BUS_SPACE_MAXADDR, /* highaddr */
2204 NULL, NULL, /* filter, filterarg */
2205 MSK_JUMBO_RX_RING_SZ, /* maxsize */
2206 1, /* nsegments */
2207 MSK_JUMBO_RX_RING_SZ, /* maxsegsize */
2208 0, /* flags */
2209 NULL, NULL, /* lockfunc, lockarg */
2210 &sc_if->msk_cdata.msk_jumbo_rx_ring_tag);
2211 if (error != 0) {
2212 device_printf(sc_if->msk_if_dev,
2213 "failed to create jumbo Rx ring DMA tag\n");
2214 goto jumbo_fail;
2215 }
2216
2217 rxalign = 1;
2218 /*
2219 * Workaround hardware hang which seems to happen when Rx buffer
2220 * is not aligned on multiple of FIFO word(8 bytes).
2221 */
2222 if ((sc_if->msk_flags & MSK_FLAG_RAMBUF) != 0)
2223 rxalign = MSK_RX_BUF_ALIGN;
2224 /* Create tag for jumbo Rx buffers. */
2225 error = bus_dma_tag_create(sc_if->msk_cdata.msk_parent_tag,/* parent */
2226 rxalign, 0, /* alignment, boundary */
2227 BUS_SPACE_MAXADDR, /* lowaddr */
2228 BUS_SPACE_MAXADDR, /* highaddr */
2229 NULL, NULL, /* filter, filterarg */
2230 MJUM9BYTES, /* maxsize */
2231 1, /* nsegments */
2232 MJUM9BYTES, /* maxsegsize */
2233 0, /* flags */
2234 NULL, NULL, /* lockfunc, lockarg */
2235 &sc_if->msk_cdata.msk_jumbo_rx_tag);
2236 if (error != 0) {
2237 device_printf(sc_if->msk_if_dev,
2238 "failed to create jumbo Rx DMA tag\n");
2239 goto jumbo_fail;
2240 }
2241
2242 /* Allocate DMA'able memory and load the DMA map for jumbo Rx ring. */
2243 error = bus_dmamem_alloc(sc_if->msk_cdata.msk_jumbo_rx_ring_tag,
2244 (void **)&sc_if->msk_rdata.msk_jumbo_rx_ring,
2245 BUS_DMA_WAITOK | BUS_DMA_COHERENT | BUS_DMA_ZERO,
2246 &sc_if->msk_cdata.msk_jumbo_rx_ring_map);
2247 if (error != 0) {
2248 device_printf(sc_if->msk_if_dev,
2249 "failed to allocate DMA'able memory for jumbo Rx ring\n");
2250 goto jumbo_fail;
2251 }
2252
2253 ctx.msk_busaddr = 0;
2254 error = bus_dmamap_load(sc_if->msk_cdata.msk_jumbo_rx_ring_tag,
2255 sc_if->msk_cdata.msk_jumbo_rx_ring_map,
2256 sc_if->msk_rdata.msk_jumbo_rx_ring, MSK_JUMBO_RX_RING_SZ,
2257 msk_dmamap_cb, &ctx, 0);
2258 if (error != 0) {
2259 device_printf(sc_if->msk_if_dev,
2260 "failed to load DMA'able memory for jumbo Rx ring\n");
2261 goto jumbo_fail;
2262 }
2263 sc_if->msk_rdata.msk_jumbo_rx_ring_paddr = ctx.msk_busaddr;
2264
2265 /* Create DMA maps for jumbo Rx buffers. */
2266 if ((error = bus_dmamap_create(sc_if->msk_cdata.msk_jumbo_rx_tag, 0,
2267 &sc_if->msk_cdata.msk_jumbo_rx_sparemap)) != 0) {
2268 device_printf(sc_if->msk_if_dev,
2269 "failed to create spare jumbo Rx dmamap\n");
2270 goto jumbo_fail;
2271 }
2272 for (i = 0; i < MSK_JUMBO_RX_RING_CNT; i++) {
2273 jrxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[i];
2274 jrxd->rx_m = NULL;
2275 jrxd->rx_dmamap = NULL;
2276 error = bus_dmamap_create(sc_if->msk_cdata.msk_jumbo_rx_tag, 0,
2277 &jrxd->rx_dmamap);
2278 if (error != 0) {
2279 device_printf(sc_if->msk_if_dev,
2280 "failed to create jumbo Rx dmamap\n");
2281 goto jumbo_fail;
2282 }
2283 }
2284
2285 return (0);
2286
2287jumbo_fail:
2288 msk_rx_dma_jfree(sc_if);
2289 device_printf(sc_if->msk_if_dev, "disabling jumbo frame support "
2290 "due to resource shortage\n");
2291 sc_if->msk_flags |= MSK_FLAG_NOJUMBO;
2292 return (error);
2293}
2294
2295static void
2296msk_txrx_dma_free(struct msk_if_softc *sc_if)
2297{
2298 struct msk_txdesc *txd;
2299 struct msk_rxdesc *rxd;
2300 int i;
2301
2302 /* Tx ring. */
2303 if (sc_if->msk_cdata.msk_tx_ring_tag) {
2304 if (sc_if->msk_cdata.msk_tx_ring_map)
2305 bus_dmamap_unload(sc_if->msk_cdata.msk_tx_ring_tag,
2306 sc_if->msk_cdata.msk_tx_ring_map);
2307 if (sc_if->msk_cdata.msk_tx_ring_map &&
2308 sc_if->msk_rdata.msk_tx_ring)
2309 bus_dmamem_free(sc_if->msk_cdata.msk_tx_ring_tag,
2310 sc_if->msk_rdata.msk_tx_ring,
2311 sc_if->msk_cdata.msk_tx_ring_map);
2312 sc_if->msk_rdata.msk_tx_ring = NULL;
2313 sc_if->msk_cdata.msk_tx_ring_map = NULL;
2314 bus_dma_tag_destroy(sc_if->msk_cdata.msk_tx_ring_tag);
2315 sc_if->msk_cdata.msk_tx_ring_tag = NULL;
2316 }
2317 /* Rx ring. */
2318 if (sc_if->msk_cdata.msk_rx_ring_tag) {
2319 if (sc_if->msk_cdata.msk_rx_ring_map)
2320 bus_dmamap_unload(sc_if->msk_cdata.msk_rx_ring_tag,
2321 sc_if->msk_cdata.msk_rx_ring_map);
2322 if (sc_if->msk_cdata.msk_rx_ring_map &&
2323 sc_if->msk_rdata.msk_rx_ring)
2324 bus_dmamem_free(sc_if->msk_cdata.msk_rx_ring_tag,
2325 sc_if->msk_rdata.msk_rx_ring,
2326 sc_if->msk_cdata.msk_rx_ring_map);
2327 sc_if->msk_rdata.msk_rx_ring = NULL;
2328 sc_if->msk_cdata.msk_rx_ring_map = NULL;
2329 bus_dma_tag_destroy(sc_if->msk_cdata.msk_rx_ring_tag);
2330 sc_if->msk_cdata.msk_rx_ring_tag = NULL;
2331 }
2332 /* Tx buffers. */
2333 if (sc_if->msk_cdata.msk_tx_tag) {
2334 for (i = 0; i < MSK_TX_RING_CNT; i++) {
2335 txd = &sc_if->msk_cdata.msk_txdesc[i];
2336 if (txd->tx_dmamap) {
2337 bus_dmamap_destroy(sc_if->msk_cdata.msk_tx_tag,
2338 txd->tx_dmamap);
2339 txd->tx_dmamap = NULL;
2340 }
2341 }
2342 bus_dma_tag_destroy(sc_if->msk_cdata.msk_tx_tag);
2343 sc_if->msk_cdata.msk_tx_tag = NULL;
2344 }
2345 /* Rx buffers. */
2346 if (sc_if->msk_cdata.msk_rx_tag) {
2347 for (i = 0; i < MSK_RX_RING_CNT; i++) {
2348 rxd = &sc_if->msk_cdata.msk_rxdesc[i];
2349 if (rxd->rx_dmamap) {
2350 bus_dmamap_destroy(sc_if->msk_cdata.msk_rx_tag,
2351 rxd->rx_dmamap);
2352 rxd->rx_dmamap = NULL;
2353 }
2354 }
2355 if (sc_if->msk_cdata.msk_rx_sparemap) {
2356 bus_dmamap_destroy(sc_if->msk_cdata.msk_rx_tag,
2357 sc_if->msk_cdata.msk_rx_sparemap);
2358 sc_if->msk_cdata.msk_rx_sparemap = 0;
2359 }
2360 bus_dma_tag_destroy(sc_if->msk_cdata.msk_rx_tag);
2361 sc_if->msk_cdata.msk_rx_tag = NULL;
2362 }
2363 if (sc_if->msk_cdata.msk_parent_tag) {
2364 bus_dma_tag_destroy(sc_if->msk_cdata.msk_parent_tag);
2365 sc_if->msk_cdata.msk_parent_tag = NULL;
2366 }
2367}
2368
2369static void
2370msk_rx_dma_jfree(struct msk_if_softc *sc_if)
2371{
2372 struct msk_rxdesc *jrxd;
2373 int i;
2374
2375 /* Jumbo Rx ring. */
2376 if (sc_if->msk_cdata.msk_jumbo_rx_ring_tag) {
2377 if (sc_if->msk_cdata.msk_jumbo_rx_ring_map)
2378 bus_dmamap_unload(sc_if->msk_cdata.msk_jumbo_rx_ring_tag,
2379 sc_if->msk_cdata.msk_jumbo_rx_ring_map);
2380 if (sc_if->msk_cdata.msk_jumbo_rx_ring_map &&
2381 sc_if->msk_rdata.msk_jumbo_rx_ring)
2382 bus_dmamem_free(sc_if->msk_cdata.msk_jumbo_rx_ring_tag,
2383 sc_if->msk_rdata.msk_jumbo_rx_ring,
2384 sc_if->msk_cdata.msk_jumbo_rx_ring_map);
2385 sc_if->msk_rdata.msk_jumbo_rx_ring = NULL;
2386 sc_if->msk_cdata.msk_jumbo_rx_ring_map = NULL;
2387 bus_dma_tag_destroy(sc_if->msk_cdata.msk_jumbo_rx_ring_tag);
2388 sc_if->msk_cdata.msk_jumbo_rx_ring_tag = NULL;
2389 }
2390 /* Jumbo Rx buffers. */
2391 if (sc_if->msk_cdata.msk_jumbo_rx_tag) {
2392 for (i = 0; i < MSK_JUMBO_RX_RING_CNT; i++) {
2393 jrxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[i];
2394 if (jrxd->rx_dmamap) {
2395 bus_dmamap_destroy(
2396 sc_if->msk_cdata.msk_jumbo_rx_tag,
2397 jrxd->rx_dmamap);
2398 jrxd->rx_dmamap = NULL;
2399 }
2400 }
2401 if (sc_if->msk_cdata.msk_jumbo_rx_sparemap) {
2402 bus_dmamap_destroy(sc_if->msk_cdata.msk_jumbo_rx_tag,
2403 sc_if->msk_cdata.msk_jumbo_rx_sparemap);
2404 sc_if->msk_cdata.msk_jumbo_rx_sparemap = 0;
2405 }
2406 bus_dma_tag_destroy(sc_if->msk_cdata.msk_jumbo_rx_tag);
2407 sc_if->msk_cdata.msk_jumbo_rx_tag = NULL;
2408 }
2409}
2410
2411static int
2412msk_encap(struct msk_if_softc *sc_if, struct mbuf **m_head)
2413{
2414 struct msk_txdesc *txd, *txd_last;
2415 struct msk_tx_desc *tx_le;
2416 struct mbuf *m;
2417 bus_dmamap_t map;
2418 bus_dma_segment_t txsegs[MSK_MAXTXSEGS];
2419 uint32_t control, prod, si;
2420 uint16_t offset, tcp_offset, tso_mtu;
2421 int error, i, nseg, tso;
2422
2423 MSK_IF_LOCK_ASSERT(sc_if);
2424
2425 tcp_offset = offset = 0;
2426 m = *m_head;
2427 if ((m->m_pkthdr.csum_flags & (MSK_CSUM_FEATURES | CSUM_TSO)) != 0) {
2428 /*
2429 * Since mbuf has no protocol specific structure information
2430 * in it we have to inspect protocol information here to
2431 * setup TSO and checksum offload. I don't know why Marvell
2432 * made a such decision in chip design because other GigE
2433 * hardwares normally takes care of all these chores in
2434 * hardware. However, TSO performance of Yukon II is very
2435 * good such that it's worth to implement it.
2436 */
2437 struct ether_header *eh;
2438 struct ip *ip;
2439 struct tcphdr *tcp;
2440
2441 if (M_WRITABLE(m) == 0) {
2442 /* Get a writable copy. */
2443 m = m_dup(*m_head, M_DONTWAIT);
2444 m_freem(*m_head);
2445 if (m == NULL) {
2446 *m_head = NULL;
2447 return (ENOBUFS);
2448 }
2449 *m_head = m;
2450 }
2451
2452 offset = sizeof(struct ether_header);
2453 m = m_pullup(m, offset);
2454 if (m == NULL) {
2455 *m_head = NULL;
2456 return (ENOBUFS);
2457 }
2458 eh = mtod(m, struct ether_header *);
2459 /* Check if hardware VLAN insertion is off. */
2460 if (eh->ether_type == htons(ETHERTYPE_VLAN)) {
2461 offset = sizeof(struct ether_vlan_header);
2462 m = m_pullup(m, offset);
2463 if (m == NULL) {
2464 *m_head = NULL;
2465 return (ENOBUFS);
2466 }
2467 }
2468 m = m_pullup(m, offset + sizeof(struct ip));
2469 if (m == NULL) {
2470 *m_head = NULL;
2471 return (ENOBUFS);
2472 }
2473 ip = (struct ip *)(mtod(m, char *) + offset);
2474 offset += (ip->ip_hl << 2);
2475 tcp_offset = offset;
2476 /*
2477 * It seems that Yukon II has Tx checksum offload bug for
2478 * small TCP packets that's less than 60 bytes in size
2479 * (e.g. TCP window probe packet, pure ACK packet).
2480 * Common work around like padding with zeros to make the
2481 * frame minimum ethernet frame size didn't work at all.
2482 * Instead of disabling checksum offload completely we
2483 * resort to S/W checksum routine when we encounter short
2484 * TCP frames.
2485 * Short UDP packets appear to be handled correctly by
2486 * Yukon II.
2487 */
2488 if (m->m_pkthdr.len < MSK_MIN_FRAMELEN &&
2489 (m->m_pkthdr.csum_flags & CSUM_TCP) != 0) {
2490 m = m_pullup(m, offset + sizeof(struct tcphdr));
2491 if (m == NULL) {
2492 *m_head = NULL;
2493 return (ENOBUFS);
2494 }
2495 *(uint16_t *)(m->m_data + offset +
2496 m->m_pkthdr.csum_data) = in_cksum_skip(m,
2497 m->m_pkthdr.len, offset);
2498 m->m_pkthdr.csum_flags &= ~CSUM_TCP;
2499 }
2500 if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
2501 m = m_pullup(m, offset + sizeof(struct tcphdr));
2502 if (m == NULL) {
2503 *m_head = NULL;
2504 return (ENOBUFS);
2505 }
2506 tcp = (struct tcphdr *)(mtod(m, char *) + offset);
2507 offset += (tcp->th_off << 2);
2508 }
2509 *m_head = m;
2510 }
2511
2512 prod = sc_if->msk_cdata.msk_tx_prod;
2513 txd = &sc_if->msk_cdata.msk_txdesc[prod];
2514 txd_last = txd;
2515 map = txd->tx_dmamap;
2516 error = bus_dmamap_load_mbuf_sg(sc_if->msk_cdata.msk_tx_tag, map,
2517 *m_head, txsegs, &nseg, BUS_DMA_NOWAIT);
2518 if (error == EFBIG) {
2519 m = m_collapse(*m_head, M_DONTWAIT, MSK_MAXTXSEGS);
2520 if (m == NULL) {
2521 m_freem(*m_head);
2522 *m_head = NULL;
2523 return (ENOBUFS);
2524 }
2525 *m_head = m;
2526 error = bus_dmamap_load_mbuf_sg(sc_if->msk_cdata.msk_tx_tag,
2527 map, *m_head, txsegs, &nseg, BUS_DMA_NOWAIT);
2528 if (error != 0) {
2529 m_freem(*m_head);
2530 *m_head = NULL;
2531 return (error);
2532 }
2533 } else if (error != 0)
2534 return (error);
2535 if (nseg == 0) {
2536 m_freem(*m_head);
2537 *m_head = NULL;
2538 return (EIO);
2539 }
2540
2541 /* Check number of available descriptors. */
2542 if (sc_if->msk_cdata.msk_tx_cnt + nseg >=
2543 (MSK_TX_RING_CNT - MSK_RESERVED_TX_DESC_CNT)) {
2544 bus_dmamap_unload(sc_if->msk_cdata.msk_tx_tag, map);
2545 return (ENOBUFS);
2546 }
2547
2548 control = 0;
2549 tso = 0;
2550 tx_le = NULL;
2551
2552 /* Check TSO support. */
2553 if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
2554 tso_mtu = offset + m->m_pkthdr.tso_segsz;
2555 if (tso_mtu != sc_if->msk_cdata.msk_tso_mtu) {
2556 tx_le = &sc_if->msk_rdata.msk_tx_ring[prod];
2557 tx_le->msk_addr = htole32(tso_mtu);
2558 tx_le->msk_control = htole32(OP_LRGLEN | HW_OWNER);
2559 sc_if->msk_cdata.msk_tx_cnt++;
2560 MSK_INC(prod, MSK_TX_RING_CNT);
2561 sc_if->msk_cdata.msk_tso_mtu = tso_mtu;
2562 }
2563 tso++;
2564 }
2565 /* Check if we have a VLAN tag to insert. */
2566 if ((m->m_flags & M_VLANTAG) != 0) {
2567 if (tso == 0) {
2568 tx_le = &sc_if->msk_rdata.msk_tx_ring[prod];
2569 tx_le->msk_addr = htole32(0);
2570 tx_le->msk_control = htole32(OP_VLAN | HW_OWNER |
2571 htons(m->m_pkthdr.ether_vtag));
2572 sc_if->msk_cdata.msk_tx_cnt++;
2573 MSK_INC(prod, MSK_TX_RING_CNT);
2574 } else {
2575 tx_le->msk_control |= htole32(OP_VLAN |
2576 htons(m->m_pkthdr.ether_vtag));
2577 }
2578 control |= INS_VLAN;
2579 }
2580 /* Check if we have to handle checksum offload. */
2581 if (tso == 0 && (m->m_pkthdr.csum_flags & MSK_CSUM_FEATURES) != 0) {
2582 tx_le = &sc_if->msk_rdata.msk_tx_ring[prod];
2583 tx_le->msk_addr = htole32(((tcp_offset + m->m_pkthdr.csum_data)
2584 & 0xffff) | ((uint32_t)tcp_offset << 16));
2585 tx_le->msk_control = htole32(1 << 16 | (OP_TCPLISW | HW_OWNER));
2586 control = CALSUM | WR_SUM | INIT_SUM | LOCK_SUM;
2587 if ((m->m_pkthdr.csum_flags & CSUM_UDP) != 0)
2588 control |= UDPTCP;
2589 sc_if->msk_cdata.msk_tx_cnt++;
2590 MSK_INC(prod, MSK_TX_RING_CNT);
2591 }
2592
2593 si = prod;
2594 tx_le = &sc_if->msk_rdata.msk_tx_ring[prod];
2595 tx_le->msk_addr = htole32(MSK_ADDR_LO(txsegs[0].ds_addr));
2596 if (tso == 0)
2597 tx_le->msk_control = htole32(txsegs[0].ds_len | control |
2598 OP_PACKET);
2599 else
2600 tx_le->msk_control = htole32(txsegs[0].ds_len | control |
2601 OP_LARGESEND);
2602 sc_if->msk_cdata.msk_tx_cnt++;
2603 MSK_INC(prod, MSK_TX_RING_CNT);
2604
2605 for (i = 1; i < nseg; i++) {
2606 tx_le = &sc_if->msk_rdata.msk_tx_ring[prod];
2607 tx_le->msk_addr = htole32(MSK_ADDR_LO(txsegs[i].ds_addr));
2608 tx_le->msk_control = htole32(txsegs[i].ds_len | control |
2609 OP_BUFFER | HW_OWNER);
2610 sc_if->msk_cdata.msk_tx_cnt++;
2611 MSK_INC(prod, MSK_TX_RING_CNT);
2612 }
2613 /* Update producer index. */
2614 sc_if->msk_cdata.msk_tx_prod = prod;
2615
2616 /* Set EOP on the last desciptor. */
2617 prod = (prod + MSK_TX_RING_CNT - 1) % MSK_TX_RING_CNT;
2618 tx_le = &sc_if->msk_rdata.msk_tx_ring[prod];
2619 tx_le->msk_control |= htole32(EOP);
2620
2621 /* Turn the first descriptor ownership to hardware. */
2622 tx_le = &sc_if->msk_rdata.msk_tx_ring[si];
2623 tx_le->msk_control |= htole32(HW_OWNER);
2624
2625 txd = &sc_if->msk_cdata.msk_txdesc[prod];
2626 map = txd_last->tx_dmamap;
2627 txd_last->tx_dmamap = txd->tx_dmamap;
2628 txd->tx_dmamap = map;
2629 txd->tx_m = m;
2630
2631 /* Sync descriptors. */
2632 bus_dmamap_sync(sc_if->msk_cdata.msk_tx_tag, map, BUS_DMASYNC_PREWRITE);
2633 bus_dmamap_sync(sc_if->msk_cdata.msk_tx_ring_tag,
2634 sc_if->msk_cdata.msk_tx_ring_map,
2635 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2636
2637 return (0);
2638}
2639
2640static void
2641msk_tx_task(void *arg, int pending)
2642{
2643 struct ifnet *ifp;
2644
2645 ifp = arg;
2646 msk_start(ifp);
2647}
2648
2649static void
2650msk_start(struct ifnet *ifp)
2651{
2652 struct msk_if_softc *sc_if;
2653 struct mbuf *m_head;
2654 int enq;
2655
2656 sc_if = ifp->if_softc;
2657
2658 MSK_IF_LOCK(sc_if);
2659
2660 if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
2661 IFF_DRV_RUNNING || sc_if->msk_link == 0) {
2662 MSK_IF_UNLOCK(sc_if);
2663 return;
2664 }
2665
2666 for (enq = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd) &&
2667 sc_if->msk_cdata.msk_tx_cnt <
2668 (MSK_TX_RING_CNT - MSK_RESERVED_TX_DESC_CNT); ) {
2669 IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
2670 if (m_head == NULL)
2671 break;
2672 /*
2673 * Pack the data into the transmit ring. If we
2674 * don't have room, set the OACTIVE flag and wait
2675 * for the NIC to drain the ring.
2676 */
2677 if (msk_encap(sc_if, &m_head) != 0) {
2678 if (m_head == NULL)
2679 break;
2680 IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
2681 ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2682 break;
2683 }
2684
2685 enq++;
2686 /*
2687 * If there's a BPF listener, bounce a copy of this frame
2688 * to him.
2689 */
2690 ETHER_BPF_MTAP(ifp, m_head);
2691 }
2692
2693 if (enq > 0) {
2694 /* Transmit */
2695 CSR_WRITE_2(sc_if->msk_softc,
2696 Y2_PREF_Q_ADDR(sc_if->msk_txq, PREF_UNIT_PUT_IDX_REG),
2697 sc_if->msk_cdata.msk_tx_prod);
2698
2699 /* Set a timeout in case the chip goes out to lunch. */
2700 sc_if->msk_watchdog_timer = MSK_TX_TIMEOUT;
2701 }
2702
2703 MSK_IF_UNLOCK(sc_if);
2704}
2705
2706static void
2707msk_watchdog(struct msk_if_softc *sc_if)
2708{
2709 struct ifnet *ifp;
2710 uint32_t ridx;
2711 int idx;
2712
2713 MSK_IF_LOCK_ASSERT(sc_if);
2714
2715 if (sc_if->msk_watchdog_timer == 0 || --sc_if->msk_watchdog_timer)
2716 return;
2717 ifp = sc_if->msk_ifp;
2718 if (sc_if->msk_link == 0) {
2719 if (bootverbose)
2720 if_printf(sc_if->msk_ifp, "watchdog timeout "
2721 "(missed link)\n");
2722 ifp->if_oerrors++;
2723 msk_init_locked(sc_if);
2724 return;
2725 }
2726
2727 /*
2728 * Reclaim first as there is a possibility of losing Tx completion
2729 * interrupts.
2730 */
2731 ridx = sc_if->msk_port == MSK_PORT_A ? STAT_TXA1_RIDX : STAT_TXA2_RIDX;
2732 idx = CSR_READ_2(sc_if->msk_softc, ridx);
2733 if (sc_if->msk_cdata.msk_tx_cons != idx) {
2734 msk_txeof(sc_if, idx);
2735 if (sc_if->msk_cdata.msk_tx_cnt == 0) {
2736 if_printf(ifp, "watchdog timeout (missed Tx interrupts) "
2737 "-- recovering\n");
2738 if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
2739 taskqueue_enqueue(taskqueue_fast,
2740 &sc_if->msk_tx_task);
2741 return;
2742 }
2743 }
2744
2745 if_printf(ifp, "watchdog timeout\n");
2746 ifp->if_oerrors++;
2747 msk_init_locked(sc_if);
2748 if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
2749 taskqueue_enqueue(taskqueue_fast, &sc_if->msk_tx_task);
2750}
2751
2752static int
2753mskc_shutdown(device_t dev)
2754{
2755 struct msk_softc *sc;
2756 int i;
2757
2758 sc = device_get_softc(dev);
2759 MSK_LOCK(sc);
2760 for (i = 0; i < sc->msk_num_port; i++) {
2761 if (sc->msk_if[i] != NULL)
2762 msk_stop(sc->msk_if[i]);
2763 }
2764
2765 /* Disable all interrupts. */
2766 CSR_WRITE_4(sc, B0_IMSK, 0);
2767 CSR_READ_4(sc, B0_IMSK);
2768 CSR_WRITE_4(sc, B0_HWE_IMSK, 0);
2769 CSR_READ_4(sc, B0_HWE_IMSK);
2770
2771 /* Put hardware reset. */
2772 CSR_WRITE_2(sc, B0_CTST, CS_RST_SET);
2773
2774 MSK_UNLOCK(sc);
2775 return (0);
2776}
2777
2778static int
2779mskc_suspend(device_t dev)
2780{
2781 struct msk_softc *sc;
2782 int i;
2783
2784 sc = device_get_softc(dev);
2785
2786 MSK_LOCK(sc);
2787
2788 for (i = 0; i < sc->msk_num_port; i++) {
2789 if (sc->msk_if[i] != NULL && sc->msk_if[i]->msk_ifp != NULL &&
2790 ((sc->msk_if[i]->msk_ifp->if_drv_flags &
2791 IFF_DRV_RUNNING) != 0))
2792 msk_stop(sc->msk_if[i]);
2793 }
2794
2795 /* Disable all interrupts. */
2796 CSR_WRITE_4(sc, B0_IMSK, 0);
2797 CSR_READ_4(sc, B0_IMSK);
2798 CSR_WRITE_4(sc, B0_HWE_IMSK, 0);
2799 CSR_READ_4(sc, B0_HWE_IMSK);
2800
2801 msk_phy_power(sc, MSK_PHY_POWERDOWN);
2802
2803 /* Put hardware reset. */
2804 CSR_WRITE_2(sc, B0_CTST, CS_RST_SET);
2805 sc->msk_suspended = 1;
2806
2807 MSK_UNLOCK(sc);
2808
2809 return (0);
2810}
2811
2812static int
2813mskc_resume(device_t dev)
2814{
2815 struct msk_softc *sc;
2816 int i;
2817
2818 sc = device_get_softc(dev);
2819
2820 MSK_LOCK(sc);
2821
2822 mskc_reset(sc);
2823 for (i = 0; i < sc->msk_num_port; i++) {
2824 if (sc->msk_if[i] != NULL && sc->msk_if[i]->msk_ifp != NULL &&
2825 ((sc->msk_if[i]->msk_ifp->if_flags & IFF_UP) != 0))
2826 msk_init_locked(sc->msk_if[i]);
2827 }
2828 sc->msk_suspended = 0;
2829
2830 MSK_UNLOCK(sc);
2831
2832 return (0);
2833}
2834
2835#ifndef __NO_STRICT_ALIGNMENT
2836static __inline void
2837msk_fixup_rx(struct mbuf *m)
2838{
2839 int i;
2840 uint16_t *src, *dst;
2841
2842 src = mtod(m, uint16_t *);
2843 dst = src - 3;
2844
2845 for (i = 0; i < (m->m_len / sizeof(uint16_t) + 1); i++)
2846 *dst++ = *src++;
2847
2848 m->m_data -= (MSK_RX_BUF_ALIGN - ETHER_ALIGN);
2849}
2850#endif
2851
2852static void
2853msk_rxeof(struct msk_if_softc *sc_if, uint32_t status, int len)
2854{
2855 struct mbuf *m;
2856 struct ifnet *ifp;
2857 struct msk_rxdesc *rxd;
2858 int cons, rxlen;
2859
2860 ifp = sc_if->msk_ifp;
2861
2862 MSK_IF_LOCK_ASSERT(sc_if);
2863
2864 cons = sc_if->msk_cdata.msk_rx_cons;
2865 do {
2866 rxlen = status >> 16;
2867 if ((status & GMR_FS_VLAN) != 0 &&
2868 (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0)
2869 rxlen -= ETHER_VLAN_ENCAP_LEN;
2870 if (len > sc_if->msk_framesize ||
2871 ((status & GMR_FS_ANY_ERR) != 0) ||
2872 ((status & GMR_FS_RX_OK) == 0) || (rxlen != len)) {
2873 /* Don't count flow-control packet as errors. */
2874 if ((status & GMR_FS_GOOD_FC) == 0)
2875 ifp->if_ierrors++;
2876 msk_discard_rxbuf(sc_if, cons);
2877 break;
2878 }
2879 rxd = &sc_if->msk_cdata.msk_rxdesc[cons];
2880 m = rxd->rx_m;
2881 if (msk_newbuf(sc_if, cons) != 0) {
2882 ifp->if_iqdrops++;
2883 /* Reuse old buffer. */
2884 msk_discard_rxbuf(sc_if, cons);
2885 break;
2886 }
2887 m->m_pkthdr.rcvif = ifp;
2888 m->m_pkthdr.len = m->m_len = len;
2889#ifndef __NO_STRICT_ALIGNMENT
2890 if ((sc_if->msk_flags & MSK_FLAG_RAMBUF) != 0)
2891 msk_fixup_rx(m);
2892#endif
2893 ifp->if_ipackets++;
2894 /* Check for VLAN tagged packets. */
2895 if ((status & GMR_FS_VLAN) != 0 &&
2896 (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0) {
2897 m->m_pkthdr.ether_vtag = sc_if->msk_vtag;
2898 m->m_flags |= M_VLANTAG;
2899 }
2900 MSK_IF_UNLOCK(sc_if);
2901 (*ifp->if_input)(ifp, m);
2902 MSK_IF_LOCK(sc_if);
2903 } while (0);
2904
2905 MSK_INC(sc_if->msk_cdata.msk_rx_cons, MSK_RX_RING_CNT);
2906 MSK_INC(sc_if->msk_cdata.msk_rx_prod, MSK_RX_RING_CNT);
2907}
2908
2909static void
2910msk_jumbo_rxeof(struct msk_if_softc *sc_if, uint32_t status, int len)
2911{
2912 struct mbuf *m;
2913 struct ifnet *ifp;
2914 struct msk_rxdesc *jrxd;
2915 int cons, rxlen;
2916
2917 ifp = sc_if->msk_ifp;
2918
2919 MSK_IF_LOCK_ASSERT(sc_if);
2920
2921 cons = sc_if->msk_cdata.msk_rx_cons;
2922 do {
2923 rxlen = status >> 16;
2924 if ((status & GMR_FS_VLAN) != 0 &&
2925 (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0)
2926 rxlen -= ETHER_VLAN_ENCAP_LEN;
2927 if (len > sc_if->msk_framesize ||
2928 ((status & GMR_FS_ANY_ERR) != 0) ||
2929 ((status & GMR_FS_RX_OK) == 0) || (rxlen != len)) {
2930 /* Don't count flow-control packet as errors. */
2931 if ((status & GMR_FS_GOOD_FC) == 0)
2932 ifp->if_ierrors++;
2933 msk_discard_jumbo_rxbuf(sc_if, cons);
2934 break;
2935 }
2936 jrxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[cons];
2937 m = jrxd->rx_m;
2938 if (msk_jumbo_newbuf(sc_if, cons) != 0) {
2939 ifp->if_iqdrops++;
2940 /* Reuse old buffer. */
2941 msk_discard_jumbo_rxbuf(sc_if, cons);
2942 break;
2943 }
2944 m->m_pkthdr.rcvif = ifp;
2945 m->m_pkthdr.len = m->m_len = len;
2946#ifndef __NO_STRICT_ALIGNMENT
2947 if ((sc_if->msk_flags & MSK_FLAG_RAMBUF) != 0)
2948 msk_fixup_rx(m);
2949#endif
2950 ifp->if_ipackets++;
2951 /* Check for VLAN tagged packets. */
2952 if ((status & GMR_FS_VLAN) != 0 &&
2953 (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0) {
2954 m->m_pkthdr.ether_vtag = sc_if->msk_vtag;
2955 m->m_flags |= M_VLANTAG;
2956 }
2957 MSK_IF_UNLOCK(sc_if);
2958 (*ifp->if_input)(ifp, m);
2959 MSK_IF_LOCK(sc_if);
2960 } while (0);
2961
2962 MSK_INC(sc_if->msk_cdata.msk_rx_cons, MSK_JUMBO_RX_RING_CNT);
2963 MSK_INC(sc_if->msk_cdata.msk_rx_prod, MSK_JUMBO_RX_RING_CNT);
2964}
2965
2966static void
2967msk_txeof(struct msk_if_softc *sc_if, int idx)
2968{
2969 struct msk_txdesc *txd;
2970 struct msk_tx_desc *cur_tx;
2971 struct ifnet *ifp;
2972 uint32_t control;
2973 int cons, prog;
2974
2975 MSK_IF_LOCK_ASSERT(sc_if);
2976
2977 ifp = sc_if->msk_ifp;
2978
2979 bus_dmamap_sync(sc_if->msk_cdata.msk_tx_ring_tag,
2980 sc_if->msk_cdata.msk_tx_ring_map,
2981 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2982 /*
2983 * Go through our tx ring and free mbufs for those
2984 * frames that have been sent.
2985 */
2986 cons = sc_if->msk_cdata.msk_tx_cons;
2987 prog = 0;
2988 for (; cons != idx; MSK_INC(cons, MSK_TX_RING_CNT)) {
2989 if (sc_if->msk_cdata.msk_tx_cnt <= 0)
2990 break;
2991 prog++;
2992 cur_tx = &sc_if->msk_rdata.msk_tx_ring[cons];
2993 control = le32toh(cur_tx->msk_control);
2994 sc_if->msk_cdata.msk_tx_cnt--;
2995 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2996 if ((control & EOP) == 0)
2997 continue;
2998 txd = &sc_if->msk_cdata.msk_txdesc[cons];
2999 bus_dmamap_sync(sc_if->msk_cdata.msk_tx_tag, txd->tx_dmamap,
3000 BUS_DMASYNC_POSTWRITE);
3001 bus_dmamap_unload(sc_if->msk_cdata.msk_tx_tag, txd->tx_dmamap);
3002
3003 ifp->if_opackets++;
3004 KASSERT(txd->tx_m != NULL, ("%s: freeing NULL mbuf!",
3005 __func__));
3006 m_freem(txd->tx_m);
3007 txd->tx_m = NULL;
3008 }
3009
3010 if (prog > 0) {
3011 sc_if->msk_cdata.msk_tx_cons = cons;
3012 if (sc_if->msk_cdata.msk_tx_cnt == 0)
3013 sc_if->msk_watchdog_timer = 0;
3014 /* No need to sync LEs as we didn't update LEs. */
3015 }
3016}
3017
3018static void
3019msk_tick(void *xsc_if)
3020{
3021 struct msk_if_softc *sc_if;
3022 struct mii_data *mii;
3023
3024 sc_if = xsc_if;
3025
3026 MSK_IF_LOCK_ASSERT(sc_if);
3027
3028 mii = device_get_softc(sc_if->msk_miibus);
3029
3030 mii_tick(mii);
3031 msk_watchdog(sc_if);
3032 callout_reset(&sc_if->msk_tick_ch, hz, msk_tick, sc_if);
3033}
3034
3035static void
3036msk_intr_phy(struct msk_if_softc *sc_if)
3037{
3038 uint16_t status;
3039
3040 msk_phy_readreg(sc_if, PHY_ADDR_MARV, PHY_MARV_INT_STAT);
3041 status = msk_phy_readreg(sc_if, PHY_ADDR_MARV, PHY_MARV_INT_STAT);
3042 /* Handle FIFO Underrun/Overflow? */
3043 if ((status & PHY_M_IS_FIFO_ERROR))
3044 device_printf(sc_if->msk_if_dev,
3045 "PHY FIFO underrun/overflow.\n");
3046}
3047
3048static void
3049msk_intr_gmac(struct msk_if_softc *sc_if)
3050{
3051 struct msk_softc *sc;
3052 uint8_t status;
3053
3054 sc = sc_if->msk_softc;
3055 status = CSR_READ_1(sc, MR_ADDR(sc_if->msk_port, GMAC_IRQ_SRC));
3056
3057 /* GMAC Rx FIFO overrun. */
3058 if ((status & GM_IS_RX_FF_OR) != 0) {
3059 CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_CTRL_T),
3060 GMF_CLI_RX_FO);
3061 device_printf(sc_if->msk_if_dev, "Rx FIFO overrun!\n");
3062 }
3063 /* GMAC Tx FIFO underrun. */
3064 if ((status & GM_IS_TX_FF_UR) != 0) {
3065 CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T),
3066 GMF_CLI_TX_FU);
3067 device_printf(sc_if->msk_if_dev, "Tx FIFO underrun!\n");
3068 /*
3069 * XXX
3070 * In case of Tx underrun, we may need to flush/reset
3071 * Tx MAC but that would also require resynchronization
3072 * with status LEs. Reintializing status LEs would
3073 * affect other port in dual MAC configuration so it
3074 * should be avoided as possible as we can.
3075 * Due to lack of documentation it's all vague guess but
3076 * it needs more investigation.
3077 */
3078 }
3079}
3080
3081static void
3082msk_handle_hwerr(struct msk_if_softc *sc_if, uint32_t status)
3083{
3084 struct msk_softc *sc;
3085
3086 sc = sc_if->msk_softc;
3087 if ((status & Y2_IS_PAR_RD1) != 0) {
3088 device_printf(sc_if->msk_if_dev,
3089 "RAM buffer read parity error\n");
3090 /* Clear IRQ. */
3091 CSR_WRITE_2(sc, SELECT_RAM_BUFFER(sc_if->msk_port, B3_RI_CTRL),
3092 RI_CLR_RD_PERR);
3093 }
3094 if ((status & Y2_IS_PAR_WR1) != 0) {
3095 device_printf(sc_if->msk_if_dev,
3096 "RAM buffer write parity error\n");
3097 /* Clear IRQ. */
3098 CSR_WRITE_2(sc, SELECT_RAM_BUFFER(sc_if->msk_port, B3_RI_CTRL),
3099 RI_CLR_WR_PERR);
3100 }
3101 if ((status & Y2_IS_PAR_MAC1) != 0) {
3102 device_printf(sc_if->msk_if_dev, "Tx MAC parity error\n");
3103 /* Clear IRQ. */
3104 CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T),
3105 GMF_CLI_TX_PE);
3106 }
3107 if ((status & Y2_IS_PAR_RX1) != 0) {
3108 device_printf(sc_if->msk_if_dev, "Rx parity error\n");
3109 /* Clear IRQ. */
3110 CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_rxq, Q_CSR), BMU_CLR_IRQ_PAR);
3111 }
3112 if ((status & (Y2_IS_TCP_TXS1 | Y2_IS_TCP_TXA1)) != 0) {
3113 device_printf(sc_if->msk_if_dev, "TCP segmentation error\n");
3114 /* Clear IRQ. */
3115 CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR), BMU_CLR_IRQ_TCP);
3116 }
3117}
3118
3119static void
3120msk_intr_hwerr(struct msk_softc *sc)
3121{
3122 uint32_t status;
3123 uint32_t tlphead[4];
3124
3125 status = CSR_READ_4(sc, B0_HWE_ISRC);
3126 /* Time Stamp timer overflow. */
3127 if ((status & Y2_IS_TIST_OV) != 0)
3128 CSR_WRITE_1(sc, GMAC_TI_ST_CTRL, GMT_ST_CLR_IRQ);
3129 if ((status & Y2_IS_PCI_NEXP) != 0) {
3130 /*
3131 * PCI Express Error occured which is not described in PEX
3132 * spec.
3133 * This error is also mapped either to Master Abort(
3134 * Y2_IS_MST_ERR) or Target Abort (Y2_IS_IRQ_STAT) bit and
3135 * can only be cleared there.
3136 */
3137 device_printf(sc->msk_dev,
3138 "PCI Express protocol violation error\n");
3139 }
3140
3141 if ((status & (Y2_IS_MST_ERR | Y2_IS_IRQ_STAT)) != 0) {
3142 uint16_t v16;
3143
3144 if ((status & Y2_IS_MST_ERR) != 0)
3145 device_printf(sc->msk_dev,
3146 "unexpected IRQ Status error\n");
3147 else
3148 device_printf(sc->msk_dev,
3149 "unexpected IRQ Master error\n");
3150 /* Reset all bits in the PCI status register. */
3151 v16 = pci_read_config(sc->msk_dev, PCIR_STATUS, 2);
3152 CSR_WRITE_1(sc, B2_TST_CTRL1, TST_CFG_WRITE_ON);
3153 pci_write_config(sc->msk_dev, PCIR_STATUS, v16 |
3154 PCIM_STATUS_PERR | PCIM_STATUS_SERR | PCIM_STATUS_RMABORT |
3155 PCIM_STATUS_RTABORT | PCIM_STATUS_PERRREPORT, 2);
3156 CSR_WRITE_1(sc, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
3157 }
3158
3159 /* Check for PCI Express Uncorrectable Error. */
3160 if ((status & Y2_IS_PCI_EXP) != 0) {
3161 uint32_t v32;
3162
3163 /*
3164 * On PCI Express bus bridges are called root complexes (RC).
3165 * PCI Express errors are recognized by the root complex too,
3166 * which requests the system to handle the problem. After
3167 * error occurence it may be that no access to the adapter
3168 * may be performed any longer.
3169 */
3170
3171 v32 = CSR_PCI_READ_4(sc, PEX_UNC_ERR_STAT);
3172 if ((v32 & PEX_UNSUP_REQ) != 0) {
3173 /* Ignore unsupported request error. */
3174 device_printf(sc->msk_dev,
3175 "Uncorrectable PCI Express error\n");
3176 }
3177 if ((v32 & (PEX_FATAL_ERRORS | PEX_POIS_TLP)) != 0) {
3178 int i;
3179
3180 /* Get TLP header form Log Registers. */
3181 for (i = 0; i < 4; i++)
3182 tlphead[i] = CSR_PCI_READ_4(sc,
3183 PEX_HEADER_LOG + i * 4);
3184 /* Check for vendor defined broadcast message. */
3185 if (!(tlphead[0] == 0x73004001 && tlphead[1] == 0x7f)) {
3186 sc->msk_intrhwemask &= ~Y2_IS_PCI_EXP;
3187 CSR_WRITE_4(sc, B0_HWE_IMSK,
3188 sc->msk_intrhwemask);
3189 CSR_READ_4(sc, B0_HWE_IMSK);
3190 }
3191 }
3192 /* Clear the interrupt. */
3193 CSR_WRITE_1(sc, B2_TST_CTRL1, TST_CFG_WRITE_ON);
3194 CSR_PCI_WRITE_4(sc, PEX_UNC_ERR_STAT, 0xffffffff);
3195 CSR_WRITE_1(sc, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
3196 }
3197
3198 if ((status & Y2_HWE_L1_MASK) != 0 && sc->msk_if[MSK_PORT_A] != NULL)
3199 msk_handle_hwerr(sc->msk_if[MSK_PORT_A], status);
3200 if ((status & Y2_HWE_L2_MASK) != 0 && sc->msk_if[MSK_PORT_B] != NULL)
3201 msk_handle_hwerr(sc->msk_if[MSK_PORT_B], status >> 8);
3202}
3203
3204static __inline void
3205msk_rxput(struct msk_if_softc *sc_if)
3206{
3207 struct msk_softc *sc;
3208
3209 sc = sc_if->msk_softc;
3210 if (sc_if->msk_framesize > (MCLBYTES - MSK_RX_BUF_ALIGN))
3211 bus_dmamap_sync(
3212 sc_if->msk_cdata.msk_jumbo_rx_ring_tag,
3213 sc_if->msk_cdata.msk_jumbo_rx_ring_map,
3214 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3215 else
3216 bus_dmamap_sync(
3217 sc_if->msk_cdata.msk_rx_ring_tag,
3218 sc_if->msk_cdata.msk_rx_ring_map,
3219 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3220 CSR_WRITE_2(sc, Y2_PREF_Q_ADDR(sc_if->msk_rxq,
3221 PREF_UNIT_PUT_IDX_REG), sc_if->msk_cdata.msk_rx_prod);
3222}
3223
3224static int
3225msk_handle_events(struct msk_softc *sc)
3226{
3227 struct msk_if_softc *sc_if;
3228 int rxput[2];
3229 struct msk_stat_desc *sd;
3230 uint32_t control, status;
3231 int cons, idx, len, port, rxprog;
3232
3233 idx = CSR_READ_2(sc, STAT_PUT_IDX);
3234 if (idx == sc->msk_stat_cons)
3235 return (0);
3236
3237 /* Sync status LEs. */
3238 bus_dmamap_sync(sc->msk_stat_tag, sc->msk_stat_map,
3239 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
3240 /* XXX Sync Rx LEs here. */
3241
3242 rxput[MSK_PORT_A] = rxput[MSK_PORT_B] = 0;
3243
3244 rxprog = 0;
3245 for (cons = sc->msk_stat_cons; cons != idx;) {
3246 sd = &sc->msk_stat_ring[cons];
3247 control = le32toh(sd->msk_control);
3248 if ((control & HW_OWNER) == 0)
3249 break;
3250 /*
3251 * Marvell's FreeBSD driver updates status LE after clearing
3252 * HW_OWNER. However we don't have a way to sync single LE
3253 * with bus_dma(9) API. bus_dma(9) provides a way to sync
3254 * an entire DMA map. So don't sync LE until we have a better
3255 * way to sync LEs.
3256 */
3257 control &= ~HW_OWNER;
3258 sd->msk_control = htole32(control);
3259 status = le32toh(sd->msk_status);
3260 len = control & STLE_LEN_MASK;
3261 port = (control >> 16) & 0x01;
3262 sc_if = sc->msk_if[port];
3263 if (sc_if == NULL) {
3264 device_printf(sc->msk_dev, "invalid port opcode "
3265 "0x%08x\n", control & STLE_OP_MASK);
3266 continue;
3267 }
3268
3269 switch (control & STLE_OP_MASK) {
3270 case OP_RXVLAN:
3271 sc_if->msk_vtag = ntohs(len);
3272 break;
3273 case OP_RXCHKSVLAN:
3274 sc_if->msk_vtag = ntohs(len);
3275 break;
3276 case OP_RXSTAT:
3277 if (sc_if->msk_framesize >
3278 (MCLBYTES - MSK_RX_BUF_ALIGN))
3279 msk_jumbo_rxeof(sc_if, status, len);
3280 else
3281 msk_rxeof(sc_if, status, len);
3282 rxprog++;
3283 /*
3284 * Because there is no way to sync single Rx LE
3285 * put the DMA sync operation off until the end of
3286 * event processing.
3287 */
3288 rxput[port]++;
3289 /* Update prefetch unit if we've passed water mark. */
3290 if (rxput[port] >= sc_if->msk_cdata.msk_rx_putwm) {
3291 msk_rxput(sc_if);
3292 rxput[port] = 0;
3293 }
3294 break;
3295 case OP_TXINDEXLE:
3296 if (sc->msk_if[MSK_PORT_A] != NULL)
3297 msk_txeof(sc->msk_if[MSK_PORT_A],
3298 status & STLE_TXA1_MSKL);
3299 if (sc->msk_if[MSK_PORT_B] != NULL)
3300 msk_txeof(sc->msk_if[MSK_PORT_B],
3301 ((status & STLE_TXA2_MSKL) >>
3302 STLE_TXA2_SHIFTL) |
3303 ((len & STLE_TXA2_MSKH) <<
3304 STLE_TXA2_SHIFTH));
3305 break;
3306 default:
3307 device_printf(sc->msk_dev, "unhandled opcode 0x%08x\n",
3308 control & STLE_OP_MASK);
3309 break;
3310 }
3311 MSK_INC(cons, MSK_STAT_RING_CNT);
3312 if (rxprog > sc->msk_process_limit)
3313 break;
3314 }
3315
3316 sc->msk_stat_cons = cons;
3317 /* XXX We should sync status LEs here. See above notes. */
3318
3319 if (rxput[MSK_PORT_A] > 0)
3320 msk_rxput(sc->msk_if[MSK_PORT_A]);
3321 if (rxput[MSK_PORT_B] > 0)
3322 msk_rxput(sc->msk_if[MSK_PORT_B]);
3323
3324 return (sc->msk_stat_cons != CSR_READ_2(sc, STAT_PUT_IDX));
3325}
3326
3327/* Legacy interrupt handler for shared interrupt. */
3328static void
3329msk_legacy_intr(void *xsc)
3330{
3331 struct msk_softc *sc;
3332 struct msk_if_softc *sc_if0, *sc_if1;
3333 struct ifnet *ifp0, *ifp1;
3334 uint32_t status;
3335
3336 sc = xsc;
3337 MSK_LOCK(sc);
3338
3339 /* Reading B0_Y2_SP_ISRC2 masks further interrupts. */
3340 status = CSR_READ_4(sc, B0_Y2_SP_ISRC2);
3341 if (status == 0 || status == 0xffffffff || sc->msk_suspended != 0 ||
3342 (status & sc->msk_intrmask) == 0) {
3343 CSR_WRITE_4(sc, B0_Y2_SP_ICR, 2);
3344 return;
3345 }
3346
3347 sc_if0 = sc->msk_if[MSK_PORT_A];
3348 sc_if1 = sc->msk_if[MSK_PORT_B];
3349 ifp0 = ifp1 = NULL;
3350 if (sc_if0 != NULL)
3351 ifp0 = sc_if0->msk_ifp;
3352 if (sc_if1 != NULL)
3353 ifp1 = sc_if1->msk_ifp;
3354
3355 if ((status & Y2_IS_IRQ_PHY1) != 0 && sc_if0 != NULL)
3356 msk_intr_phy(sc_if0);
3357 if ((status & Y2_IS_IRQ_PHY2) != 0 && sc_if1 != NULL)
3358 msk_intr_phy(sc_if1);
3359 if ((status & Y2_IS_IRQ_MAC1) != 0 && sc_if0 != NULL)
3360 msk_intr_gmac(sc_if0);
3361 if ((status & Y2_IS_IRQ_MAC2) != 0 && sc_if1 != NULL)
3362 msk_intr_gmac(sc_if1);
3363 if ((status & (Y2_IS_CHK_RX1 | Y2_IS_CHK_RX2)) != 0) {
3364 device_printf(sc->msk_dev, "Rx descriptor error\n");
3365 sc->msk_intrmask &= ~(Y2_IS_CHK_RX1 | Y2_IS_CHK_RX2);
3366 CSR_WRITE_4(sc, B0_IMSK, sc->msk_intrmask);
3367 CSR_READ_4(sc, B0_IMSK);
3368 }
3369 if ((status & (Y2_IS_CHK_TXA1 | Y2_IS_CHK_TXA2)) != 0) {
3370 device_printf(sc->msk_dev, "Tx descriptor error\n");
3371 sc->msk_intrmask &= ~(Y2_IS_CHK_TXA1 | Y2_IS_CHK_TXA2);
3372 CSR_WRITE_4(sc, B0_IMSK, sc->msk_intrmask);
3373 CSR_READ_4(sc, B0_IMSK);
3374 }
3375 if ((status & Y2_IS_HW_ERR) != 0)
3376 msk_intr_hwerr(sc);
3377
3378 while (msk_handle_events(sc) != 0)
3379 ;
3380 if ((status & Y2_IS_STAT_BMU) != 0)
3381 CSR_WRITE_4(sc, STAT_CTRL, SC_STAT_CLR_IRQ);
3382
3383 /* Reenable interrupts. */
3384 CSR_WRITE_4(sc, B0_Y2_SP_ICR, 2);
3385
3386 if (ifp0 != NULL && (ifp0->if_drv_flags & IFF_DRV_RUNNING) != 0 &&
3387 !IFQ_DRV_IS_EMPTY(&ifp0->if_snd))
3388 taskqueue_enqueue(taskqueue_fast, &sc_if0->msk_tx_task);
3389 if (ifp1 != NULL && (ifp1->if_drv_flags & IFF_DRV_RUNNING) != 0 &&
3390 !IFQ_DRV_IS_EMPTY(&ifp1->if_snd))
3391 taskqueue_enqueue(taskqueue_fast, &sc_if1->msk_tx_task);
3392
3393 MSK_UNLOCK(sc);
3394}
3395
3396static int
3397msk_intr(void *xsc)
3398{
3399 struct msk_softc *sc;
3400 uint32_t status;
3401
3402 sc = xsc;
3403 status = CSR_READ_4(sc, B0_Y2_SP_ISRC2);
3404 /* Reading B0_Y2_SP_ISRC2 masks further interrupts. */
3405 if (status == 0 || status == 0xffffffff) {
3406 CSR_WRITE_4(sc, B0_Y2_SP_ICR, 2);
3407 return (FILTER_STRAY);
3408 }
3409
3410 taskqueue_enqueue(sc->msk_tq, &sc->msk_int_task);
3411 return (FILTER_HANDLED);
3412}
3413
3414static void
3415msk_int_task(void *arg, int pending)
3416{
3417 struct msk_softc *sc;
3418 struct msk_if_softc *sc_if0, *sc_if1;
3419 struct ifnet *ifp0, *ifp1;
3420 uint32_t status;
3421 int domore;
3422
3423 sc = arg;
3424 MSK_LOCK(sc);
3425
3426 /* Get interrupt source. */
3427 status = CSR_READ_4(sc, B0_ISRC);
3428 if (status == 0 || status == 0xffffffff || sc->msk_suspended != 0 ||
3429 (status & sc->msk_intrmask) == 0)
3430 goto done;
3431
3432 sc_if0 = sc->msk_if[MSK_PORT_A];
3433 sc_if1 = sc->msk_if[MSK_PORT_B];
3434 ifp0 = ifp1 = NULL;
3435 if (sc_if0 != NULL)
3436 ifp0 = sc_if0->msk_ifp;
3437 if (sc_if1 != NULL)
3438 ifp1 = sc_if1->msk_ifp;
3439
3440 if ((status & Y2_IS_IRQ_PHY1) != 0 && sc_if0 != NULL)
3441 msk_intr_phy(sc_if0);
3442 if ((status & Y2_IS_IRQ_PHY2) != 0 && sc_if1 != NULL)
3443 msk_intr_phy(sc_if1);
3444 if ((status & Y2_IS_IRQ_MAC1) != 0 && sc_if0 != NULL)
3445 msk_intr_gmac(sc_if0);
3446 if ((status & Y2_IS_IRQ_MAC2) != 0 && sc_if1 != NULL)
3447 msk_intr_gmac(sc_if1);
3448 if ((status & (Y2_IS_CHK_RX1 | Y2_IS_CHK_RX2)) != 0) {
3449 device_printf(sc->msk_dev, "Rx descriptor error\n");
3450 sc->msk_intrmask &= ~(Y2_IS_CHK_RX1 | Y2_IS_CHK_RX2);
3451 CSR_WRITE_4(sc, B0_IMSK, sc->msk_intrmask);
3452 CSR_READ_4(sc, B0_IMSK);
3453 }
3454 if ((status & (Y2_IS_CHK_TXA1 | Y2_IS_CHK_TXA2)) != 0) {
3455 device_printf(sc->msk_dev, "Tx descriptor error\n");
3456 sc->msk_intrmask &= ~(Y2_IS_CHK_TXA1 | Y2_IS_CHK_TXA2);
3457 CSR_WRITE_4(sc, B0_IMSK, sc->msk_intrmask);
3458 CSR_READ_4(sc, B0_IMSK);
3459 }
3460 if ((status & Y2_IS_HW_ERR) != 0)
3461 msk_intr_hwerr(sc);
3462
3463 domore = msk_handle_events(sc);
3464 if ((status & Y2_IS_STAT_BMU) != 0)
3465 CSR_WRITE_4(sc, STAT_CTRL, SC_STAT_CLR_IRQ);
3466
3467 if (ifp0 != NULL && (ifp0->if_drv_flags & IFF_DRV_RUNNING) != 0 &&
3468 !IFQ_DRV_IS_EMPTY(&ifp0->if_snd))
3469 taskqueue_enqueue(taskqueue_fast, &sc_if0->msk_tx_task);
3470 if (ifp1 != NULL && (ifp1->if_drv_flags & IFF_DRV_RUNNING) != 0 &&
3471 !IFQ_DRV_IS_EMPTY(&ifp1->if_snd))
3472 taskqueue_enqueue(taskqueue_fast, &sc_if1->msk_tx_task);
3473
3474 if (domore > 0) {
3475 taskqueue_enqueue(sc->msk_tq, &sc->msk_int_task);
3476 MSK_UNLOCK(sc);
3477 return;
3478 }
3479done:
3480 MSK_UNLOCK(sc);
3481
3482 /* Reenable interrupts. */
3483 CSR_WRITE_4(sc, B0_Y2_SP_ICR, 2);
3484}
3485
3486static void
3487msk_init(void *xsc)
3488{
3489 struct msk_if_softc *sc_if = xsc;
3490
3491 MSK_IF_LOCK(sc_if);
3492 msk_init_locked(sc_if);
3493 MSK_IF_UNLOCK(sc_if);
3494}
3495
3496static void
3497msk_init_locked(struct msk_if_softc *sc_if)
3498{
3499 struct msk_softc *sc;
3500 struct ifnet *ifp;
3501 struct mii_data *mii;
3502 uint16_t eaddr[ETHER_ADDR_LEN / 2];
3503 uint16_t gmac;
3504 int error, i;
3505
3506 MSK_IF_LOCK_ASSERT(sc_if);
3507
3508 ifp = sc_if->msk_ifp;
3509 sc = sc_if->msk_softc;
3510 mii = device_get_softc(sc_if->msk_miibus);
3511
3512 error = 0;
3513 /* Cancel pending I/O and free all Rx/Tx buffers. */
3514 msk_stop(sc_if);
3515
3516 if (ifp->if_mtu < ETHERMTU)
3517 sc_if->msk_framesize = ETHERMTU;
3518 else
3519 sc_if->msk_framesize = ifp->if_mtu;
3520 sc_if->msk_framesize += ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
3521 if (ifp->if_mtu > ETHERMTU &&
3522 sc_if->msk_softc->msk_hw_id == CHIP_ID_YUKON_EC_U) {
3523 /*
3524 * In Yukon EC Ultra, TSO & checksum offload is not
3525 * supported for jumbo frame.
3526 */
3527 ifp->if_hwassist &= ~(MSK_CSUM_FEATURES | CSUM_TSO);
3528 ifp->if_capenable &= ~(IFCAP_TSO4 | IFCAP_TXCSUM);
3529 }
3530
3531 /*
3532 * Initialize GMAC first.
3533 * Without this initialization, Rx MAC did not work as expected
3534 * and Rx MAC garbled status LEs and it resulted in out-of-order
3535 * or duplicated frame delivery which in turn showed very poor
3536 * Rx performance.(I had to write a packet analysis code that
3537 * could be embeded in driver to diagnose this issue.)
3538 * I've spent almost 2 months to fix this issue. If I have had
3539 * datasheet for Yukon II I wouldn't have encountered this. :-(
3540 */
3541 gmac = GM_GPCR_SPEED_100 | GM_GPCR_SPEED_1000 | GM_GPCR_DUP_FULL;
3542 GMAC_WRITE_2(sc, sc_if->msk_port, GM_GP_CTRL, gmac);
3543
3544 /* Dummy read the Interrupt Source Register. */
3545 CSR_READ_1(sc, MR_ADDR(sc_if->msk_port, GMAC_IRQ_SRC));
3546
1444
1445 /* Disable jumbo frame for Yukon FE. */
1446 if (sc_if->msk_softc->msk_hw_id == CHIP_ID_YUKON_FE)
1447 sc_if->msk_flags |= MSK_FLAG_NOJUMBO;
1448
1449 if ((error = msk_txrx_dma_alloc(sc_if) != 0))
1450 goto fail;
1451 msk_rx_dma_jalloc(sc_if);
1452
1453 ifp = sc_if->msk_ifp = if_alloc(IFT_ETHER);
1454 if (ifp == NULL) {
1455 device_printf(sc_if->msk_if_dev, "can not if_alloc()\n");
1456 error = ENOSPC;
1457 goto fail;
1458 }
1459 ifp->if_softc = sc_if;
1460 if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1461 ifp->if_mtu = ETHERMTU;
1462 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1463 /*
1464 * IFCAP_RXCSUM capability is intentionally disabled as the hardware
1465 * has serious bug in Rx checksum offload for all Yukon II family
1466 * hardware. It seems there is a workaround to make it work somtimes.
1467 * However, the workaround also have to check OP code sequences to
1468 * verify whether the OP code is correct. Sometimes it should compute
1469 * IP/TCP/UDP checksum in driver in order to verify correctness of
1470 * checksum computed by hardware. If you have to compute checksum
1471 * with software to verify the hardware's checksum why have hardware
1472 * compute the checksum? I think there is no reason to spend time to
1473 * make Rx checksum offload work on Yukon II hardware.
1474 */
1475 ifp->if_capabilities = IFCAP_TXCSUM | IFCAP_TSO4;
1476 ifp->if_hwassist = MSK_CSUM_FEATURES | CSUM_TSO;
1477 ifp->if_capenable = ifp->if_capabilities;
1478 ifp->if_ioctl = msk_ioctl;
1479 ifp->if_start = msk_start;
1480 ifp->if_timer = 0;
1481 ifp->if_watchdog = NULL;
1482 ifp->if_init = msk_init;
1483 IFQ_SET_MAXLEN(&ifp->if_snd, MSK_TX_RING_CNT - 1);
1484 ifp->if_snd.ifq_drv_maxlen = MSK_TX_RING_CNT - 1;
1485 IFQ_SET_READY(&ifp->if_snd);
1486
1487 TASK_INIT(&sc_if->msk_tx_task, 1, msk_tx_task, ifp);
1488
1489 /*
1490 * Get station address for this interface. Note that
1491 * dual port cards actually come with three station
1492 * addresses: one for each port, plus an extra. The
1493 * extra one is used by the SysKonnect driver software
1494 * as a 'virtual' station address for when both ports
1495 * are operating in failover mode. Currently we don't
1496 * use this extra address.
1497 */
1498 MSK_IF_LOCK(sc_if);
1499 for (i = 0; i < ETHER_ADDR_LEN; i++)
1500 eaddr[i] = CSR_READ_1(sc, B2_MAC_1 + (port * 8) + i);
1501
1502 /*
1503 * Call MI attach routine. Can't hold locks when calling into ether_*.
1504 */
1505 MSK_IF_UNLOCK(sc_if);
1506 ether_ifattach(ifp, eaddr);
1507 MSK_IF_LOCK(sc_if);
1508
1509 /*
1510 * VLAN capability setup
1511 * Due to Tx checksum offload hardware bugs, msk(4) manually
1512 * computes checksum for short frames. For VLAN tagged frames
1513 * this workaround does not work so disable checksum offload
1514 * for VLAN interface.
1515 */
1516 ifp->if_capabilities |= IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING;
1517 ifp->if_capenable = ifp->if_capabilities;
1518
1519 /*
1520 * Tell the upper layer(s) we support long frames.
1521 * Must appear after the call to ether_ifattach() because
1522 * ether_ifattach() sets ifi_hdrlen to the default value.
1523 */
1524 ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
1525
1526 /*
1527 * Do miibus setup.
1528 */
1529 MSK_IF_UNLOCK(sc_if);
1530 error = mii_phy_probe(dev, &sc_if->msk_miibus, msk_mediachange,
1531 msk_mediastatus);
1532 if (error != 0) {
1533 device_printf(sc_if->msk_if_dev, "no PHY found!\n");
1534 ether_ifdetach(ifp);
1535 error = ENXIO;
1536 goto fail;
1537 }
1538
1539fail:
1540 if (error != 0) {
1541 /* Access should be ok even though lock has been dropped */
1542 sc->msk_if[port] = NULL;
1543 msk_detach(dev);
1544 }
1545
1546 return (error);
1547}
1548
1549/*
1550 * Attach the interface. Allocate softc structures, do ifmedia
1551 * setup and ethernet/BPF attach.
1552 */
1553static int
1554mskc_attach(device_t dev)
1555{
1556 struct msk_softc *sc;
1557 int error, msic, msir, *port, reg;
1558
1559 sc = device_get_softc(dev);
1560 sc->msk_dev = dev;
1561 mtx_init(&sc->msk_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
1562 MTX_DEF);
1563
1564 /*
1565 * Map control/status registers.
1566 */
1567 pci_enable_busmaster(dev);
1568
1569 /* Allocate I/O resource */
1570#ifdef MSK_USEIOSPACE
1571 sc->msk_res_spec = msk_res_spec_io;
1572#else
1573 sc->msk_res_spec = msk_res_spec_mem;
1574#endif
1575 sc->msk_irq_spec = msk_irq_spec_legacy;
1576 error = bus_alloc_resources(dev, sc->msk_res_spec, sc->msk_res);
1577 if (error) {
1578 if (sc->msk_res_spec == msk_res_spec_mem)
1579 sc->msk_res_spec = msk_res_spec_io;
1580 else
1581 sc->msk_res_spec = msk_res_spec_mem;
1582 error = bus_alloc_resources(dev, sc->msk_res_spec, sc->msk_res);
1583 if (error) {
1584 device_printf(dev, "couldn't allocate %s resources\n",
1585 sc->msk_res_spec == msk_res_spec_mem ? "memory" :
1586 "I/O");
1587 mtx_destroy(&sc->msk_mtx);
1588 return (ENXIO);
1589 }
1590 }
1591
1592 CSR_WRITE_2(sc, B0_CTST, CS_RST_CLR);
1593 sc->msk_hw_id = CSR_READ_1(sc, B2_CHIP_ID);
1594 sc->msk_hw_rev = (CSR_READ_1(sc, B2_MAC_CFG) >> 4) & 0x0f;
1595 /* Bail out if chip is not recognized. */
1596 if (sc->msk_hw_id < CHIP_ID_YUKON_XL ||
1597 sc->msk_hw_id > CHIP_ID_YUKON_FE) {
1598 device_printf(dev, "unknown device: id=0x%02x, rev=0x%02x\n",
1599 sc->msk_hw_id, sc->msk_hw_rev);
1600 mtx_destroy(&sc->msk_mtx);
1601 return (ENXIO);
1602 }
1603
1604 SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
1605 SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
1606 OID_AUTO, "process_limit", CTLTYPE_INT | CTLFLAG_RW,
1607 &sc->msk_process_limit, 0, sysctl_hw_msk_proc_limit, "I",
1608 "max number of Rx events to process");
1609
1610 sc->msk_process_limit = MSK_PROC_DEFAULT;
1611 error = resource_int_value(device_get_name(dev), device_get_unit(dev),
1612 "process_limit", &sc->msk_process_limit);
1613 if (error == 0) {
1614 if (sc->msk_process_limit < MSK_PROC_MIN ||
1615 sc->msk_process_limit > MSK_PROC_MAX) {
1616 device_printf(dev, "process_limit value out of range; "
1617 "using default: %d\n", MSK_PROC_DEFAULT);
1618 sc->msk_process_limit = MSK_PROC_DEFAULT;
1619 }
1620 }
1621
1622 /* Soft reset. */
1623 CSR_WRITE_2(sc, B0_CTST, CS_RST_SET);
1624 CSR_WRITE_2(sc, B0_CTST, CS_RST_CLR);
1625 sc->msk_pmd = CSR_READ_1(sc, B2_PMD_TYP);
1626 if (sc->msk_pmd == 'L' || sc->msk_pmd == 'S')
1627 sc->msk_coppertype = 0;
1628 else
1629 sc->msk_coppertype = 1;
1630 /* Check number of MACs. */
1631 sc->msk_num_port = 1;
1632 if ((CSR_READ_1(sc, B2_Y2_HW_RES) & CFG_DUAL_MAC_MSK) ==
1633 CFG_DUAL_MAC_MSK) {
1634 if (!(CSR_READ_1(sc, B2_Y2_CLK_GATE) & Y2_STATUS_LNK2_INAC))
1635 sc->msk_num_port++;
1636 }
1637
1638 /* Check bus type. */
1639 if (pci_find_extcap(sc->msk_dev, PCIY_EXPRESS, &reg) == 0)
1640 sc->msk_bustype = MSK_PEX_BUS;
1641 else if (pci_find_extcap(sc->msk_dev, PCIY_PCIX, &reg) == 0)
1642 sc->msk_bustype = MSK_PCIX_BUS;
1643 else
1644 sc->msk_bustype = MSK_PCI_BUS;
1645
1646 switch (sc->msk_hw_id) {
1647 case CHIP_ID_YUKON_EC:
1648 case CHIP_ID_YUKON_EC_U:
1649 sc->msk_clock = 125; /* 125 Mhz */
1650 break;
1651 case CHIP_ID_YUKON_FE:
1652 sc->msk_clock = 100; /* 100 Mhz */
1653 break;
1654 case CHIP_ID_YUKON_XL:
1655 sc->msk_clock = 156; /* 156 Mhz */
1656 break;
1657 default:
1658 sc->msk_clock = 156; /* 156 Mhz */
1659 break;
1660 }
1661
1662 /* Allocate IRQ resources. */
1663 msic = pci_msi_count(dev);
1664 if (bootverbose)
1665 device_printf(dev, "MSI count : %d\n", msic);
1666 /*
1667 * The Yukon II reports it can handle two messages, one for each
1668 * possible port. We go ahead and allocate two messages and only
1669 * setup a handler for both if we have a dual port card.
1670 *
1671 * XXX: I haven't untangled the interrupt handler to handle dual
1672 * port cards with separate MSI messages, so for now I disable MSI
1673 * on dual port cards.
1674 */
1675 if (legacy_intr != 0)
1676 msi_disable = 1;
1677 if (msi_disable == 0) {
1678 switch (msic) {
1679 case 2:
1680 case 1: /* 88E8058 reports 1 MSI message */
1681 msir = msic;
1682 if (sc->msk_num_port == 1 &&
1683 pci_alloc_msi(dev, &msir) == 0) {
1684 if (msic == msir) {
1685 sc->msk_msi = 1;
1686 sc->msk_irq_spec = msic == 2 ?
1687 msk_irq_spec_msi2 :
1688 msk_irq_spec_msi;
1689 } else
1690 pci_release_msi(dev);
1691 }
1692 break;
1693 default:
1694 device_printf(dev,
1695 "Unexpected number of MSI messages : %d\n", msic);
1696 break;
1697 }
1698 }
1699
1700 error = bus_alloc_resources(dev, sc->msk_irq_spec, sc->msk_irq);
1701 if (error) {
1702 device_printf(dev, "couldn't allocate IRQ resources\n");
1703 goto fail;
1704 }
1705
1706 if ((error = msk_status_dma_alloc(sc)) != 0)
1707 goto fail;
1708
1709 /* Set base interrupt mask. */
1710 sc->msk_intrmask = Y2_IS_HW_ERR | Y2_IS_STAT_BMU;
1711 sc->msk_intrhwemask = Y2_IS_TIST_OV | Y2_IS_MST_ERR |
1712 Y2_IS_IRQ_STAT | Y2_IS_PCI_EXP | Y2_IS_PCI_NEXP;
1713
1714 /* Reset the adapter. */
1715 mskc_reset(sc);
1716
1717 if ((error = mskc_setup_rambuffer(sc)) != 0)
1718 goto fail;
1719
1720 sc->msk_devs[MSK_PORT_A] = device_add_child(dev, "msk", -1);
1721 if (sc->msk_devs[MSK_PORT_A] == NULL) {
1722 device_printf(dev, "failed to add child for PORT_A\n");
1723 error = ENXIO;
1724 goto fail;
1725 }
1726 port = malloc(sizeof(int), M_DEVBUF, M_WAITOK);
1727 if (port == NULL) {
1728 device_printf(dev, "failed to allocate memory for "
1729 "ivars of PORT_A\n");
1730 error = ENXIO;
1731 goto fail;
1732 }
1733 *port = MSK_PORT_A;
1734 device_set_ivars(sc->msk_devs[MSK_PORT_A], port);
1735
1736 if (sc->msk_num_port > 1) {
1737 sc->msk_devs[MSK_PORT_B] = device_add_child(dev, "msk", -1);
1738 if (sc->msk_devs[MSK_PORT_B] == NULL) {
1739 device_printf(dev, "failed to add child for PORT_B\n");
1740 error = ENXIO;
1741 goto fail;
1742 }
1743 port = malloc(sizeof(int), M_DEVBUF, M_WAITOK);
1744 if (port == NULL) {
1745 device_printf(dev, "failed to allocate memory for "
1746 "ivars of PORT_B\n");
1747 error = ENXIO;
1748 goto fail;
1749 }
1750 *port = MSK_PORT_B;
1751 device_set_ivars(sc->msk_devs[MSK_PORT_B], port);
1752 }
1753
1754 error = bus_generic_attach(dev);
1755 if (error) {
1756 device_printf(dev, "failed to attach port(s)\n");
1757 goto fail;
1758 }
1759
1760 /* Hook interrupt last to avoid having to lock softc. */
1761 if (legacy_intr)
1762 error = bus_setup_intr(dev, sc->msk_irq[0], INTR_TYPE_NET |
1763 INTR_MPSAFE, NULL, msk_legacy_intr, sc,
1764 &sc->msk_intrhand[0]);
1765 else {
1766 TASK_INIT(&sc->msk_int_task, 0, msk_int_task, sc);
1767 sc->msk_tq = taskqueue_create_fast("msk_taskq", M_WAITOK,
1768 taskqueue_thread_enqueue, &sc->msk_tq);
1769 taskqueue_start_threads(&sc->msk_tq, 1, PI_NET, "%s taskq",
1770 device_get_nameunit(sc->msk_dev));
1771 error = bus_setup_intr(dev, sc->msk_irq[0], INTR_TYPE_NET |
1772 INTR_MPSAFE, msk_intr, NULL, sc, &sc->msk_intrhand[0]);
1773 }
1774
1775 if (error != 0) {
1776 device_printf(dev, "couldn't set up interrupt handler\n");
1777 if (legacy_intr == 0)
1778 taskqueue_free(sc->msk_tq);
1779 sc->msk_tq = NULL;
1780 goto fail;
1781 }
1782fail:
1783 if (error != 0)
1784 mskc_detach(dev);
1785
1786 return (error);
1787}
1788
1789/*
1790 * Shutdown hardware and free up resources. This can be called any
1791 * time after the mutex has been initialized. It is called in both
1792 * the error case in attach and the normal detach case so it needs
1793 * to be careful about only freeing resources that have actually been
1794 * allocated.
1795 */
1796static int
1797msk_detach(device_t dev)
1798{
1799 struct msk_softc *sc;
1800 struct msk_if_softc *sc_if;
1801 struct ifnet *ifp;
1802
1803 sc_if = device_get_softc(dev);
1804 KASSERT(mtx_initialized(&sc_if->msk_softc->msk_mtx),
1805 ("msk mutex not initialized in msk_detach"));
1806 MSK_IF_LOCK(sc_if);
1807
1808 ifp = sc_if->msk_ifp;
1809 if (device_is_attached(dev)) {
1810 /* XXX */
1811 sc_if->msk_detach = 1;
1812 msk_stop(sc_if);
1813 /* Can't hold locks while calling detach. */
1814 MSK_IF_UNLOCK(sc_if);
1815 callout_drain(&sc_if->msk_tick_ch);
1816 taskqueue_drain(taskqueue_fast, &sc_if->msk_tx_task);
1817 taskqueue_drain(taskqueue_swi, &sc_if->msk_link_task);
1818 ether_ifdetach(ifp);
1819 MSK_IF_LOCK(sc_if);
1820 }
1821
1822 /*
1823 * We're generally called from mskc_detach() which is using
1824 * device_delete_child() to get to here. It's already trashed
1825 * miibus for us, so don't do it here or we'll panic.
1826 *
1827 * if (sc_if->msk_miibus != NULL) {
1828 * device_delete_child(dev, sc_if->msk_miibus);
1829 * sc_if->msk_miibus = NULL;
1830 * }
1831 */
1832
1833 msk_rx_dma_jfree(sc_if);
1834 msk_txrx_dma_free(sc_if);
1835 bus_generic_detach(dev);
1836
1837 if (ifp)
1838 if_free(ifp);
1839 sc = sc_if->msk_softc;
1840 sc->msk_if[sc_if->msk_port] = NULL;
1841 MSK_IF_UNLOCK(sc_if);
1842
1843 return (0);
1844}
1845
1846static int
1847mskc_detach(device_t dev)
1848{
1849 struct msk_softc *sc;
1850
1851 sc = device_get_softc(dev);
1852 KASSERT(mtx_initialized(&sc->msk_mtx), ("msk mutex not initialized"));
1853
1854 if (device_is_alive(dev)) {
1855 if (sc->msk_devs[MSK_PORT_A] != NULL) {
1856 free(device_get_ivars(sc->msk_devs[MSK_PORT_A]),
1857 M_DEVBUF);
1858 device_delete_child(dev, sc->msk_devs[MSK_PORT_A]);
1859 }
1860 if (sc->msk_devs[MSK_PORT_B] != NULL) {
1861 free(device_get_ivars(sc->msk_devs[MSK_PORT_B]),
1862 M_DEVBUF);
1863 device_delete_child(dev, sc->msk_devs[MSK_PORT_B]);
1864 }
1865 bus_generic_detach(dev);
1866 }
1867
1868 /* Disable all interrupts. */
1869 CSR_WRITE_4(sc, B0_IMSK, 0);
1870 CSR_READ_4(sc, B0_IMSK);
1871 CSR_WRITE_4(sc, B0_HWE_IMSK, 0);
1872 CSR_READ_4(sc, B0_HWE_IMSK);
1873
1874 /* LED Off. */
1875 CSR_WRITE_2(sc, B0_CTST, Y2_LED_STAT_OFF);
1876
1877 /* Put hardware reset. */
1878 CSR_WRITE_2(sc, B0_CTST, CS_RST_SET);
1879
1880 msk_status_dma_free(sc);
1881
1882 if (legacy_intr == 0 && sc->msk_tq != NULL) {
1883 taskqueue_drain(sc->msk_tq, &sc->msk_int_task);
1884 taskqueue_free(sc->msk_tq);
1885 sc->msk_tq = NULL;
1886 }
1887 if (sc->msk_intrhand[0]) {
1888 bus_teardown_intr(dev, sc->msk_irq[0], sc->msk_intrhand[0]);
1889 sc->msk_intrhand[0] = NULL;
1890 }
1891 if (sc->msk_intrhand[1]) {
1892 bus_teardown_intr(dev, sc->msk_irq[0], sc->msk_intrhand[0]);
1893 sc->msk_intrhand[1] = NULL;
1894 }
1895 bus_release_resources(dev, sc->msk_irq_spec, sc->msk_irq);
1896 if (sc->msk_msi)
1897 pci_release_msi(dev);
1898 bus_release_resources(dev, sc->msk_res_spec, sc->msk_res);
1899 mtx_destroy(&sc->msk_mtx);
1900
1901 return (0);
1902}
1903
1904struct msk_dmamap_arg {
1905 bus_addr_t msk_busaddr;
1906};
1907
1908static void
1909msk_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1910{
1911 struct msk_dmamap_arg *ctx;
1912
1913 if (error != 0)
1914 return;
1915 ctx = arg;
1916 ctx->msk_busaddr = segs[0].ds_addr;
1917}
1918
1919/* Create status DMA region. */
1920static int
1921msk_status_dma_alloc(struct msk_softc *sc)
1922{
1923 struct msk_dmamap_arg ctx;
1924 int error;
1925
1926 error = bus_dma_tag_create(
1927 bus_get_dma_tag(sc->msk_dev), /* parent */
1928 MSK_STAT_ALIGN, 0, /* alignment, boundary */
1929 BUS_SPACE_MAXADDR, /* lowaddr */
1930 BUS_SPACE_MAXADDR, /* highaddr */
1931 NULL, NULL, /* filter, filterarg */
1932 MSK_STAT_RING_SZ, /* maxsize */
1933 1, /* nsegments */
1934 MSK_STAT_RING_SZ, /* maxsegsize */
1935 0, /* flags */
1936 NULL, NULL, /* lockfunc, lockarg */
1937 &sc->msk_stat_tag);
1938 if (error != 0) {
1939 device_printf(sc->msk_dev,
1940 "failed to create status DMA tag\n");
1941 return (error);
1942 }
1943
1944 /* Allocate DMA'able memory and load the DMA map for status ring. */
1945 error = bus_dmamem_alloc(sc->msk_stat_tag,
1946 (void **)&sc->msk_stat_ring, BUS_DMA_WAITOK | BUS_DMA_COHERENT |
1947 BUS_DMA_ZERO, &sc->msk_stat_map);
1948 if (error != 0) {
1949 device_printf(sc->msk_dev,
1950 "failed to allocate DMA'able memory for status ring\n");
1951 return (error);
1952 }
1953
1954 ctx.msk_busaddr = 0;
1955 error = bus_dmamap_load(sc->msk_stat_tag,
1956 sc->msk_stat_map, sc->msk_stat_ring, MSK_STAT_RING_SZ,
1957 msk_dmamap_cb, &ctx, 0);
1958 if (error != 0) {
1959 device_printf(sc->msk_dev,
1960 "failed to load DMA'able memory for status ring\n");
1961 return (error);
1962 }
1963 sc->msk_stat_ring_paddr = ctx.msk_busaddr;
1964
1965 return (0);
1966}
1967
1968static void
1969msk_status_dma_free(struct msk_softc *sc)
1970{
1971
1972 /* Destroy status block. */
1973 if (sc->msk_stat_tag) {
1974 if (sc->msk_stat_map) {
1975 bus_dmamap_unload(sc->msk_stat_tag, sc->msk_stat_map);
1976 if (sc->msk_stat_ring) {
1977 bus_dmamem_free(sc->msk_stat_tag,
1978 sc->msk_stat_ring, sc->msk_stat_map);
1979 sc->msk_stat_ring = NULL;
1980 }
1981 sc->msk_stat_map = NULL;
1982 }
1983 bus_dma_tag_destroy(sc->msk_stat_tag);
1984 sc->msk_stat_tag = NULL;
1985 }
1986}
1987
1988static int
1989msk_txrx_dma_alloc(struct msk_if_softc *sc_if)
1990{
1991 struct msk_dmamap_arg ctx;
1992 struct msk_txdesc *txd;
1993 struct msk_rxdesc *rxd;
1994 bus_size_t rxalign;
1995 int error, i;
1996
1997 /* Create parent DMA tag. */
1998 /*
1999 * XXX
2000 * It seems that Yukon II supports full 64bits DMA operations. But
2001 * it needs two descriptors(list elements) for 64bits DMA operations.
2002 * Since we don't know what DMA address mappings(32bits or 64bits)
2003 * would be used in advance for each mbufs, we limits its DMA space
2004 * to be in range of 32bits address space. Otherwise, we should check
2005 * what DMA address is used and chain another descriptor for the
2006 * 64bits DMA operation. This also means descriptor ring size is
2007 * variable. Limiting DMA address to be in 32bit address space greatly
2008 * simplyfies descriptor handling and possibly would increase
2009 * performance a bit due to efficient handling of descriptors.
2010 * Apart from harassing checksum offloading mechanisms, it seems
2011 * it's really bad idea to use a seperate descriptor for 64bit
2012 * DMA operation to save small descriptor memory. Anyway, I've
2013 * never seen these exotic scheme on ethernet interface hardware.
2014 */
2015 error = bus_dma_tag_create(
2016 bus_get_dma_tag(sc_if->msk_if_dev), /* parent */
2017 1, 0, /* alignment, boundary */
2018 BUS_SPACE_MAXADDR_32BIT, /* lowaddr */
2019 BUS_SPACE_MAXADDR, /* highaddr */
2020 NULL, NULL, /* filter, filterarg */
2021 BUS_SPACE_MAXSIZE_32BIT, /* maxsize */
2022 0, /* nsegments */
2023 BUS_SPACE_MAXSIZE_32BIT, /* maxsegsize */
2024 0, /* flags */
2025 NULL, NULL, /* lockfunc, lockarg */
2026 &sc_if->msk_cdata.msk_parent_tag);
2027 if (error != 0) {
2028 device_printf(sc_if->msk_if_dev,
2029 "failed to create parent DMA tag\n");
2030 goto fail;
2031 }
2032 /* Create tag for Tx ring. */
2033 error = bus_dma_tag_create(sc_if->msk_cdata.msk_parent_tag,/* parent */
2034 MSK_RING_ALIGN, 0, /* alignment, boundary */
2035 BUS_SPACE_MAXADDR, /* lowaddr */
2036 BUS_SPACE_MAXADDR, /* highaddr */
2037 NULL, NULL, /* filter, filterarg */
2038 MSK_TX_RING_SZ, /* maxsize */
2039 1, /* nsegments */
2040 MSK_TX_RING_SZ, /* maxsegsize */
2041 0, /* flags */
2042 NULL, NULL, /* lockfunc, lockarg */
2043 &sc_if->msk_cdata.msk_tx_ring_tag);
2044 if (error != 0) {
2045 device_printf(sc_if->msk_if_dev,
2046 "failed to create Tx ring DMA tag\n");
2047 goto fail;
2048 }
2049
2050 /* Create tag for Rx ring. */
2051 error = bus_dma_tag_create(sc_if->msk_cdata.msk_parent_tag,/* parent */
2052 MSK_RING_ALIGN, 0, /* alignment, boundary */
2053 BUS_SPACE_MAXADDR, /* lowaddr */
2054 BUS_SPACE_MAXADDR, /* highaddr */
2055 NULL, NULL, /* filter, filterarg */
2056 MSK_RX_RING_SZ, /* maxsize */
2057 1, /* nsegments */
2058 MSK_RX_RING_SZ, /* maxsegsize */
2059 0, /* flags */
2060 NULL, NULL, /* lockfunc, lockarg */
2061 &sc_if->msk_cdata.msk_rx_ring_tag);
2062 if (error != 0) {
2063 device_printf(sc_if->msk_if_dev,
2064 "failed to create Rx ring DMA tag\n");
2065 goto fail;
2066 }
2067
2068 /* Create tag for Tx buffers. */
2069 error = bus_dma_tag_create(sc_if->msk_cdata.msk_parent_tag,/* parent */
2070 1, 0, /* alignment, boundary */
2071 BUS_SPACE_MAXADDR, /* lowaddr */
2072 BUS_SPACE_MAXADDR, /* highaddr */
2073 NULL, NULL, /* filter, filterarg */
2074 MSK_TSO_MAXSIZE, /* maxsize */
2075 MSK_MAXTXSEGS, /* nsegments */
2076 MSK_TSO_MAXSGSIZE, /* maxsegsize */
2077 0, /* flags */
2078 NULL, NULL, /* lockfunc, lockarg */
2079 &sc_if->msk_cdata.msk_tx_tag);
2080 if (error != 0) {
2081 device_printf(sc_if->msk_if_dev,
2082 "failed to create Tx DMA tag\n");
2083 goto fail;
2084 }
2085
2086 rxalign = 1;
2087 /*
2088 * Workaround hardware hang which seems to happen when Rx buffer
2089 * is not aligned on multiple of FIFO word(8 bytes).
2090 */
2091 if ((sc_if->msk_flags & MSK_FLAG_RAMBUF) != 0)
2092 rxalign = MSK_RX_BUF_ALIGN;
2093 /* Create tag for Rx buffers. */
2094 error = bus_dma_tag_create(sc_if->msk_cdata.msk_parent_tag,/* parent */
2095 rxalign, 0, /* alignment, boundary */
2096 BUS_SPACE_MAXADDR, /* lowaddr */
2097 BUS_SPACE_MAXADDR, /* highaddr */
2098 NULL, NULL, /* filter, filterarg */
2099 MCLBYTES, /* maxsize */
2100 1, /* nsegments */
2101 MCLBYTES, /* maxsegsize */
2102 0, /* flags */
2103 NULL, NULL, /* lockfunc, lockarg */
2104 &sc_if->msk_cdata.msk_rx_tag);
2105 if (error != 0) {
2106 device_printf(sc_if->msk_if_dev,
2107 "failed to create Rx DMA tag\n");
2108 goto fail;
2109 }
2110
2111 /* Allocate DMA'able memory and load the DMA map for Tx ring. */
2112 error = bus_dmamem_alloc(sc_if->msk_cdata.msk_tx_ring_tag,
2113 (void **)&sc_if->msk_rdata.msk_tx_ring, BUS_DMA_WAITOK |
2114 BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc_if->msk_cdata.msk_tx_ring_map);
2115 if (error != 0) {
2116 device_printf(sc_if->msk_if_dev,
2117 "failed to allocate DMA'able memory for Tx ring\n");
2118 goto fail;
2119 }
2120
2121 ctx.msk_busaddr = 0;
2122 error = bus_dmamap_load(sc_if->msk_cdata.msk_tx_ring_tag,
2123 sc_if->msk_cdata.msk_tx_ring_map, sc_if->msk_rdata.msk_tx_ring,
2124 MSK_TX_RING_SZ, msk_dmamap_cb, &ctx, 0);
2125 if (error != 0) {
2126 device_printf(sc_if->msk_if_dev,
2127 "failed to load DMA'able memory for Tx ring\n");
2128 goto fail;
2129 }
2130 sc_if->msk_rdata.msk_tx_ring_paddr = ctx.msk_busaddr;
2131
2132 /* Allocate DMA'able memory and load the DMA map for Rx ring. */
2133 error = bus_dmamem_alloc(sc_if->msk_cdata.msk_rx_ring_tag,
2134 (void **)&sc_if->msk_rdata.msk_rx_ring, BUS_DMA_WAITOK |
2135 BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc_if->msk_cdata.msk_rx_ring_map);
2136 if (error != 0) {
2137 device_printf(sc_if->msk_if_dev,
2138 "failed to allocate DMA'able memory for Rx ring\n");
2139 goto fail;
2140 }
2141
2142 ctx.msk_busaddr = 0;
2143 error = bus_dmamap_load(sc_if->msk_cdata.msk_rx_ring_tag,
2144 sc_if->msk_cdata.msk_rx_ring_map, sc_if->msk_rdata.msk_rx_ring,
2145 MSK_RX_RING_SZ, msk_dmamap_cb, &ctx, 0);
2146 if (error != 0) {
2147 device_printf(sc_if->msk_if_dev,
2148 "failed to load DMA'able memory for Rx ring\n");
2149 goto fail;
2150 }
2151 sc_if->msk_rdata.msk_rx_ring_paddr = ctx.msk_busaddr;
2152
2153 /* Create DMA maps for Tx buffers. */
2154 for (i = 0; i < MSK_TX_RING_CNT; i++) {
2155 txd = &sc_if->msk_cdata.msk_txdesc[i];
2156 txd->tx_m = NULL;
2157 txd->tx_dmamap = NULL;
2158 error = bus_dmamap_create(sc_if->msk_cdata.msk_tx_tag, 0,
2159 &txd->tx_dmamap);
2160 if (error != 0) {
2161 device_printf(sc_if->msk_if_dev,
2162 "failed to create Tx dmamap\n");
2163 goto fail;
2164 }
2165 }
2166 /* Create DMA maps for Rx buffers. */
2167 if ((error = bus_dmamap_create(sc_if->msk_cdata.msk_rx_tag, 0,
2168 &sc_if->msk_cdata.msk_rx_sparemap)) != 0) {
2169 device_printf(sc_if->msk_if_dev,
2170 "failed to create spare Rx dmamap\n");
2171 goto fail;
2172 }
2173 for (i = 0; i < MSK_RX_RING_CNT; i++) {
2174 rxd = &sc_if->msk_cdata.msk_rxdesc[i];
2175 rxd->rx_m = NULL;
2176 rxd->rx_dmamap = NULL;
2177 error = bus_dmamap_create(sc_if->msk_cdata.msk_rx_tag, 0,
2178 &rxd->rx_dmamap);
2179 if (error != 0) {
2180 device_printf(sc_if->msk_if_dev,
2181 "failed to create Rx dmamap\n");
2182 goto fail;
2183 }
2184 }
2185
2186fail:
2187 return (error);
2188}
2189
2190static int
2191msk_rx_dma_jalloc(struct msk_if_softc *sc_if)
2192{
2193 struct msk_dmamap_arg ctx;
2194 struct msk_rxdesc *jrxd;
2195 bus_size_t rxalign;
2196 int error, i;
2197
2198 if (jumbo_disable != 0 || (sc_if->msk_flags & MSK_FLAG_NOJUMBO) != 0) {
2199 sc_if->msk_flags |= MSK_FLAG_NOJUMBO;
2200 device_printf(sc_if->msk_if_dev,
2201 "disabling jumbo frame support\n");
2202 sc_if->msk_flags |= MSK_FLAG_NOJUMBO;
2203 return (0);
2204 }
2205 /* Create tag for jumbo Rx ring. */
2206 error = bus_dma_tag_create(sc_if->msk_cdata.msk_parent_tag,/* parent */
2207 MSK_RING_ALIGN, 0, /* alignment, boundary */
2208 BUS_SPACE_MAXADDR, /* lowaddr */
2209 BUS_SPACE_MAXADDR, /* highaddr */
2210 NULL, NULL, /* filter, filterarg */
2211 MSK_JUMBO_RX_RING_SZ, /* maxsize */
2212 1, /* nsegments */
2213 MSK_JUMBO_RX_RING_SZ, /* maxsegsize */
2214 0, /* flags */
2215 NULL, NULL, /* lockfunc, lockarg */
2216 &sc_if->msk_cdata.msk_jumbo_rx_ring_tag);
2217 if (error != 0) {
2218 device_printf(sc_if->msk_if_dev,
2219 "failed to create jumbo Rx ring DMA tag\n");
2220 goto jumbo_fail;
2221 }
2222
2223 rxalign = 1;
2224 /*
2225 * Workaround hardware hang which seems to happen when Rx buffer
2226 * is not aligned on multiple of FIFO word(8 bytes).
2227 */
2228 if ((sc_if->msk_flags & MSK_FLAG_RAMBUF) != 0)
2229 rxalign = MSK_RX_BUF_ALIGN;
2230 /* Create tag for jumbo Rx buffers. */
2231 error = bus_dma_tag_create(sc_if->msk_cdata.msk_parent_tag,/* parent */
2232 rxalign, 0, /* alignment, boundary */
2233 BUS_SPACE_MAXADDR, /* lowaddr */
2234 BUS_SPACE_MAXADDR, /* highaddr */
2235 NULL, NULL, /* filter, filterarg */
2236 MJUM9BYTES, /* maxsize */
2237 1, /* nsegments */
2238 MJUM9BYTES, /* maxsegsize */
2239 0, /* flags */
2240 NULL, NULL, /* lockfunc, lockarg */
2241 &sc_if->msk_cdata.msk_jumbo_rx_tag);
2242 if (error != 0) {
2243 device_printf(sc_if->msk_if_dev,
2244 "failed to create jumbo Rx DMA tag\n");
2245 goto jumbo_fail;
2246 }
2247
2248 /* Allocate DMA'able memory and load the DMA map for jumbo Rx ring. */
2249 error = bus_dmamem_alloc(sc_if->msk_cdata.msk_jumbo_rx_ring_tag,
2250 (void **)&sc_if->msk_rdata.msk_jumbo_rx_ring,
2251 BUS_DMA_WAITOK | BUS_DMA_COHERENT | BUS_DMA_ZERO,
2252 &sc_if->msk_cdata.msk_jumbo_rx_ring_map);
2253 if (error != 0) {
2254 device_printf(sc_if->msk_if_dev,
2255 "failed to allocate DMA'able memory for jumbo Rx ring\n");
2256 goto jumbo_fail;
2257 }
2258
2259 ctx.msk_busaddr = 0;
2260 error = bus_dmamap_load(sc_if->msk_cdata.msk_jumbo_rx_ring_tag,
2261 sc_if->msk_cdata.msk_jumbo_rx_ring_map,
2262 sc_if->msk_rdata.msk_jumbo_rx_ring, MSK_JUMBO_RX_RING_SZ,
2263 msk_dmamap_cb, &ctx, 0);
2264 if (error != 0) {
2265 device_printf(sc_if->msk_if_dev,
2266 "failed to load DMA'able memory for jumbo Rx ring\n");
2267 goto jumbo_fail;
2268 }
2269 sc_if->msk_rdata.msk_jumbo_rx_ring_paddr = ctx.msk_busaddr;
2270
2271 /* Create DMA maps for jumbo Rx buffers. */
2272 if ((error = bus_dmamap_create(sc_if->msk_cdata.msk_jumbo_rx_tag, 0,
2273 &sc_if->msk_cdata.msk_jumbo_rx_sparemap)) != 0) {
2274 device_printf(sc_if->msk_if_dev,
2275 "failed to create spare jumbo Rx dmamap\n");
2276 goto jumbo_fail;
2277 }
2278 for (i = 0; i < MSK_JUMBO_RX_RING_CNT; i++) {
2279 jrxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[i];
2280 jrxd->rx_m = NULL;
2281 jrxd->rx_dmamap = NULL;
2282 error = bus_dmamap_create(sc_if->msk_cdata.msk_jumbo_rx_tag, 0,
2283 &jrxd->rx_dmamap);
2284 if (error != 0) {
2285 device_printf(sc_if->msk_if_dev,
2286 "failed to create jumbo Rx dmamap\n");
2287 goto jumbo_fail;
2288 }
2289 }
2290
2291 return (0);
2292
2293jumbo_fail:
2294 msk_rx_dma_jfree(sc_if);
2295 device_printf(sc_if->msk_if_dev, "disabling jumbo frame support "
2296 "due to resource shortage\n");
2297 sc_if->msk_flags |= MSK_FLAG_NOJUMBO;
2298 return (error);
2299}
2300
2301static void
2302msk_txrx_dma_free(struct msk_if_softc *sc_if)
2303{
2304 struct msk_txdesc *txd;
2305 struct msk_rxdesc *rxd;
2306 int i;
2307
2308 /* Tx ring. */
2309 if (sc_if->msk_cdata.msk_tx_ring_tag) {
2310 if (sc_if->msk_cdata.msk_tx_ring_map)
2311 bus_dmamap_unload(sc_if->msk_cdata.msk_tx_ring_tag,
2312 sc_if->msk_cdata.msk_tx_ring_map);
2313 if (sc_if->msk_cdata.msk_tx_ring_map &&
2314 sc_if->msk_rdata.msk_tx_ring)
2315 bus_dmamem_free(sc_if->msk_cdata.msk_tx_ring_tag,
2316 sc_if->msk_rdata.msk_tx_ring,
2317 sc_if->msk_cdata.msk_tx_ring_map);
2318 sc_if->msk_rdata.msk_tx_ring = NULL;
2319 sc_if->msk_cdata.msk_tx_ring_map = NULL;
2320 bus_dma_tag_destroy(sc_if->msk_cdata.msk_tx_ring_tag);
2321 sc_if->msk_cdata.msk_tx_ring_tag = NULL;
2322 }
2323 /* Rx ring. */
2324 if (sc_if->msk_cdata.msk_rx_ring_tag) {
2325 if (sc_if->msk_cdata.msk_rx_ring_map)
2326 bus_dmamap_unload(sc_if->msk_cdata.msk_rx_ring_tag,
2327 sc_if->msk_cdata.msk_rx_ring_map);
2328 if (sc_if->msk_cdata.msk_rx_ring_map &&
2329 sc_if->msk_rdata.msk_rx_ring)
2330 bus_dmamem_free(sc_if->msk_cdata.msk_rx_ring_tag,
2331 sc_if->msk_rdata.msk_rx_ring,
2332 sc_if->msk_cdata.msk_rx_ring_map);
2333 sc_if->msk_rdata.msk_rx_ring = NULL;
2334 sc_if->msk_cdata.msk_rx_ring_map = NULL;
2335 bus_dma_tag_destroy(sc_if->msk_cdata.msk_rx_ring_tag);
2336 sc_if->msk_cdata.msk_rx_ring_tag = NULL;
2337 }
2338 /* Tx buffers. */
2339 if (sc_if->msk_cdata.msk_tx_tag) {
2340 for (i = 0; i < MSK_TX_RING_CNT; i++) {
2341 txd = &sc_if->msk_cdata.msk_txdesc[i];
2342 if (txd->tx_dmamap) {
2343 bus_dmamap_destroy(sc_if->msk_cdata.msk_tx_tag,
2344 txd->tx_dmamap);
2345 txd->tx_dmamap = NULL;
2346 }
2347 }
2348 bus_dma_tag_destroy(sc_if->msk_cdata.msk_tx_tag);
2349 sc_if->msk_cdata.msk_tx_tag = NULL;
2350 }
2351 /* Rx buffers. */
2352 if (sc_if->msk_cdata.msk_rx_tag) {
2353 for (i = 0; i < MSK_RX_RING_CNT; i++) {
2354 rxd = &sc_if->msk_cdata.msk_rxdesc[i];
2355 if (rxd->rx_dmamap) {
2356 bus_dmamap_destroy(sc_if->msk_cdata.msk_rx_tag,
2357 rxd->rx_dmamap);
2358 rxd->rx_dmamap = NULL;
2359 }
2360 }
2361 if (sc_if->msk_cdata.msk_rx_sparemap) {
2362 bus_dmamap_destroy(sc_if->msk_cdata.msk_rx_tag,
2363 sc_if->msk_cdata.msk_rx_sparemap);
2364 sc_if->msk_cdata.msk_rx_sparemap = 0;
2365 }
2366 bus_dma_tag_destroy(sc_if->msk_cdata.msk_rx_tag);
2367 sc_if->msk_cdata.msk_rx_tag = NULL;
2368 }
2369 if (sc_if->msk_cdata.msk_parent_tag) {
2370 bus_dma_tag_destroy(sc_if->msk_cdata.msk_parent_tag);
2371 sc_if->msk_cdata.msk_parent_tag = NULL;
2372 }
2373}
2374
2375static void
2376msk_rx_dma_jfree(struct msk_if_softc *sc_if)
2377{
2378 struct msk_rxdesc *jrxd;
2379 int i;
2380
2381 /* Jumbo Rx ring. */
2382 if (sc_if->msk_cdata.msk_jumbo_rx_ring_tag) {
2383 if (sc_if->msk_cdata.msk_jumbo_rx_ring_map)
2384 bus_dmamap_unload(sc_if->msk_cdata.msk_jumbo_rx_ring_tag,
2385 sc_if->msk_cdata.msk_jumbo_rx_ring_map);
2386 if (sc_if->msk_cdata.msk_jumbo_rx_ring_map &&
2387 sc_if->msk_rdata.msk_jumbo_rx_ring)
2388 bus_dmamem_free(sc_if->msk_cdata.msk_jumbo_rx_ring_tag,
2389 sc_if->msk_rdata.msk_jumbo_rx_ring,
2390 sc_if->msk_cdata.msk_jumbo_rx_ring_map);
2391 sc_if->msk_rdata.msk_jumbo_rx_ring = NULL;
2392 sc_if->msk_cdata.msk_jumbo_rx_ring_map = NULL;
2393 bus_dma_tag_destroy(sc_if->msk_cdata.msk_jumbo_rx_ring_tag);
2394 sc_if->msk_cdata.msk_jumbo_rx_ring_tag = NULL;
2395 }
2396 /* Jumbo Rx buffers. */
2397 if (sc_if->msk_cdata.msk_jumbo_rx_tag) {
2398 for (i = 0; i < MSK_JUMBO_RX_RING_CNT; i++) {
2399 jrxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[i];
2400 if (jrxd->rx_dmamap) {
2401 bus_dmamap_destroy(
2402 sc_if->msk_cdata.msk_jumbo_rx_tag,
2403 jrxd->rx_dmamap);
2404 jrxd->rx_dmamap = NULL;
2405 }
2406 }
2407 if (sc_if->msk_cdata.msk_jumbo_rx_sparemap) {
2408 bus_dmamap_destroy(sc_if->msk_cdata.msk_jumbo_rx_tag,
2409 sc_if->msk_cdata.msk_jumbo_rx_sparemap);
2410 sc_if->msk_cdata.msk_jumbo_rx_sparemap = 0;
2411 }
2412 bus_dma_tag_destroy(sc_if->msk_cdata.msk_jumbo_rx_tag);
2413 sc_if->msk_cdata.msk_jumbo_rx_tag = NULL;
2414 }
2415}
2416
2417static int
2418msk_encap(struct msk_if_softc *sc_if, struct mbuf **m_head)
2419{
2420 struct msk_txdesc *txd, *txd_last;
2421 struct msk_tx_desc *tx_le;
2422 struct mbuf *m;
2423 bus_dmamap_t map;
2424 bus_dma_segment_t txsegs[MSK_MAXTXSEGS];
2425 uint32_t control, prod, si;
2426 uint16_t offset, tcp_offset, tso_mtu;
2427 int error, i, nseg, tso;
2428
2429 MSK_IF_LOCK_ASSERT(sc_if);
2430
2431 tcp_offset = offset = 0;
2432 m = *m_head;
2433 if ((m->m_pkthdr.csum_flags & (MSK_CSUM_FEATURES | CSUM_TSO)) != 0) {
2434 /*
2435 * Since mbuf has no protocol specific structure information
2436 * in it we have to inspect protocol information here to
2437 * setup TSO and checksum offload. I don't know why Marvell
2438 * made a such decision in chip design because other GigE
2439 * hardwares normally takes care of all these chores in
2440 * hardware. However, TSO performance of Yukon II is very
2441 * good such that it's worth to implement it.
2442 */
2443 struct ether_header *eh;
2444 struct ip *ip;
2445 struct tcphdr *tcp;
2446
2447 if (M_WRITABLE(m) == 0) {
2448 /* Get a writable copy. */
2449 m = m_dup(*m_head, M_DONTWAIT);
2450 m_freem(*m_head);
2451 if (m == NULL) {
2452 *m_head = NULL;
2453 return (ENOBUFS);
2454 }
2455 *m_head = m;
2456 }
2457
2458 offset = sizeof(struct ether_header);
2459 m = m_pullup(m, offset);
2460 if (m == NULL) {
2461 *m_head = NULL;
2462 return (ENOBUFS);
2463 }
2464 eh = mtod(m, struct ether_header *);
2465 /* Check if hardware VLAN insertion is off. */
2466 if (eh->ether_type == htons(ETHERTYPE_VLAN)) {
2467 offset = sizeof(struct ether_vlan_header);
2468 m = m_pullup(m, offset);
2469 if (m == NULL) {
2470 *m_head = NULL;
2471 return (ENOBUFS);
2472 }
2473 }
2474 m = m_pullup(m, offset + sizeof(struct ip));
2475 if (m == NULL) {
2476 *m_head = NULL;
2477 return (ENOBUFS);
2478 }
2479 ip = (struct ip *)(mtod(m, char *) + offset);
2480 offset += (ip->ip_hl << 2);
2481 tcp_offset = offset;
2482 /*
2483 * It seems that Yukon II has Tx checksum offload bug for
2484 * small TCP packets that's less than 60 bytes in size
2485 * (e.g. TCP window probe packet, pure ACK packet).
2486 * Common work around like padding with zeros to make the
2487 * frame minimum ethernet frame size didn't work at all.
2488 * Instead of disabling checksum offload completely we
2489 * resort to S/W checksum routine when we encounter short
2490 * TCP frames.
2491 * Short UDP packets appear to be handled correctly by
2492 * Yukon II.
2493 */
2494 if (m->m_pkthdr.len < MSK_MIN_FRAMELEN &&
2495 (m->m_pkthdr.csum_flags & CSUM_TCP) != 0) {
2496 m = m_pullup(m, offset + sizeof(struct tcphdr));
2497 if (m == NULL) {
2498 *m_head = NULL;
2499 return (ENOBUFS);
2500 }
2501 *(uint16_t *)(m->m_data + offset +
2502 m->m_pkthdr.csum_data) = in_cksum_skip(m,
2503 m->m_pkthdr.len, offset);
2504 m->m_pkthdr.csum_flags &= ~CSUM_TCP;
2505 }
2506 if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
2507 m = m_pullup(m, offset + sizeof(struct tcphdr));
2508 if (m == NULL) {
2509 *m_head = NULL;
2510 return (ENOBUFS);
2511 }
2512 tcp = (struct tcphdr *)(mtod(m, char *) + offset);
2513 offset += (tcp->th_off << 2);
2514 }
2515 *m_head = m;
2516 }
2517
2518 prod = sc_if->msk_cdata.msk_tx_prod;
2519 txd = &sc_if->msk_cdata.msk_txdesc[prod];
2520 txd_last = txd;
2521 map = txd->tx_dmamap;
2522 error = bus_dmamap_load_mbuf_sg(sc_if->msk_cdata.msk_tx_tag, map,
2523 *m_head, txsegs, &nseg, BUS_DMA_NOWAIT);
2524 if (error == EFBIG) {
2525 m = m_collapse(*m_head, M_DONTWAIT, MSK_MAXTXSEGS);
2526 if (m == NULL) {
2527 m_freem(*m_head);
2528 *m_head = NULL;
2529 return (ENOBUFS);
2530 }
2531 *m_head = m;
2532 error = bus_dmamap_load_mbuf_sg(sc_if->msk_cdata.msk_tx_tag,
2533 map, *m_head, txsegs, &nseg, BUS_DMA_NOWAIT);
2534 if (error != 0) {
2535 m_freem(*m_head);
2536 *m_head = NULL;
2537 return (error);
2538 }
2539 } else if (error != 0)
2540 return (error);
2541 if (nseg == 0) {
2542 m_freem(*m_head);
2543 *m_head = NULL;
2544 return (EIO);
2545 }
2546
2547 /* Check number of available descriptors. */
2548 if (sc_if->msk_cdata.msk_tx_cnt + nseg >=
2549 (MSK_TX_RING_CNT - MSK_RESERVED_TX_DESC_CNT)) {
2550 bus_dmamap_unload(sc_if->msk_cdata.msk_tx_tag, map);
2551 return (ENOBUFS);
2552 }
2553
2554 control = 0;
2555 tso = 0;
2556 tx_le = NULL;
2557
2558 /* Check TSO support. */
2559 if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
2560 tso_mtu = offset + m->m_pkthdr.tso_segsz;
2561 if (tso_mtu != sc_if->msk_cdata.msk_tso_mtu) {
2562 tx_le = &sc_if->msk_rdata.msk_tx_ring[prod];
2563 tx_le->msk_addr = htole32(tso_mtu);
2564 tx_le->msk_control = htole32(OP_LRGLEN | HW_OWNER);
2565 sc_if->msk_cdata.msk_tx_cnt++;
2566 MSK_INC(prod, MSK_TX_RING_CNT);
2567 sc_if->msk_cdata.msk_tso_mtu = tso_mtu;
2568 }
2569 tso++;
2570 }
2571 /* Check if we have a VLAN tag to insert. */
2572 if ((m->m_flags & M_VLANTAG) != 0) {
2573 if (tso == 0) {
2574 tx_le = &sc_if->msk_rdata.msk_tx_ring[prod];
2575 tx_le->msk_addr = htole32(0);
2576 tx_le->msk_control = htole32(OP_VLAN | HW_OWNER |
2577 htons(m->m_pkthdr.ether_vtag));
2578 sc_if->msk_cdata.msk_tx_cnt++;
2579 MSK_INC(prod, MSK_TX_RING_CNT);
2580 } else {
2581 tx_le->msk_control |= htole32(OP_VLAN |
2582 htons(m->m_pkthdr.ether_vtag));
2583 }
2584 control |= INS_VLAN;
2585 }
2586 /* Check if we have to handle checksum offload. */
2587 if (tso == 0 && (m->m_pkthdr.csum_flags & MSK_CSUM_FEATURES) != 0) {
2588 tx_le = &sc_if->msk_rdata.msk_tx_ring[prod];
2589 tx_le->msk_addr = htole32(((tcp_offset + m->m_pkthdr.csum_data)
2590 & 0xffff) | ((uint32_t)tcp_offset << 16));
2591 tx_le->msk_control = htole32(1 << 16 | (OP_TCPLISW | HW_OWNER));
2592 control = CALSUM | WR_SUM | INIT_SUM | LOCK_SUM;
2593 if ((m->m_pkthdr.csum_flags & CSUM_UDP) != 0)
2594 control |= UDPTCP;
2595 sc_if->msk_cdata.msk_tx_cnt++;
2596 MSK_INC(prod, MSK_TX_RING_CNT);
2597 }
2598
2599 si = prod;
2600 tx_le = &sc_if->msk_rdata.msk_tx_ring[prod];
2601 tx_le->msk_addr = htole32(MSK_ADDR_LO(txsegs[0].ds_addr));
2602 if (tso == 0)
2603 tx_le->msk_control = htole32(txsegs[0].ds_len | control |
2604 OP_PACKET);
2605 else
2606 tx_le->msk_control = htole32(txsegs[0].ds_len | control |
2607 OP_LARGESEND);
2608 sc_if->msk_cdata.msk_tx_cnt++;
2609 MSK_INC(prod, MSK_TX_RING_CNT);
2610
2611 for (i = 1; i < nseg; i++) {
2612 tx_le = &sc_if->msk_rdata.msk_tx_ring[prod];
2613 tx_le->msk_addr = htole32(MSK_ADDR_LO(txsegs[i].ds_addr));
2614 tx_le->msk_control = htole32(txsegs[i].ds_len | control |
2615 OP_BUFFER | HW_OWNER);
2616 sc_if->msk_cdata.msk_tx_cnt++;
2617 MSK_INC(prod, MSK_TX_RING_CNT);
2618 }
2619 /* Update producer index. */
2620 sc_if->msk_cdata.msk_tx_prod = prod;
2621
2622 /* Set EOP on the last desciptor. */
2623 prod = (prod + MSK_TX_RING_CNT - 1) % MSK_TX_RING_CNT;
2624 tx_le = &sc_if->msk_rdata.msk_tx_ring[prod];
2625 tx_le->msk_control |= htole32(EOP);
2626
2627 /* Turn the first descriptor ownership to hardware. */
2628 tx_le = &sc_if->msk_rdata.msk_tx_ring[si];
2629 tx_le->msk_control |= htole32(HW_OWNER);
2630
2631 txd = &sc_if->msk_cdata.msk_txdesc[prod];
2632 map = txd_last->tx_dmamap;
2633 txd_last->tx_dmamap = txd->tx_dmamap;
2634 txd->tx_dmamap = map;
2635 txd->tx_m = m;
2636
2637 /* Sync descriptors. */
2638 bus_dmamap_sync(sc_if->msk_cdata.msk_tx_tag, map, BUS_DMASYNC_PREWRITE);
2639 bus_dmamap_sync(sc_if->msk_cdata.msk_tx_ring_tag,
2640 sc_if->msk_cdata.msk_tx_ring_map,
2641 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2642
2643 return (0);
2644}
2645
2646static void
2647msk_tx_task(void *arg, int pending)
2648{
2649 struct ifnet *ifp;
2650
2651 ifp = arg;
2652 msk_start(ifp);
2653}
2654
2655static void
2656msk_start(struct ifnet *ifp)
2657{
2658 struct msk_if_softc *sc_if;
2659 struct mbuf *m_head;
2660 int enq;
2661
2662 sc_if = ifp->if_softc;
2663
2664 MSK_IF_LOCK(sc_if);
2665
2666 if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
2667 IFF_DRV_RUNNING || sc_if->msk_link == 0) {
2668 MSK_IF_UNLOCK(sc_if);
2669 return;
2670 }
2671
2672 for (enq = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd) &&
2673 sc_if->msk_cdata.msk_tx_cnt <
2674 (MSK_TX_RING_CNT - MSK_RESERVED_TX_DESC_CNT); ) {
2675 IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
2676 if (m_head == NULL)
2677 break;
2678 /*
2679 * Pack the data into the transmit ring. If we
2680 * don't have room, set the OACTIVE flag and wait
2681 * for the NIC to drain the ring.
2682 */
2683 if (msk_encap(sc_if, &m_head) != 0) {
2684 if (m_head == NULL)
2685 break;
2686 IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
2687 ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2688 break;
2689 }
2690
2691 enq++;
2692 /*
2693 * If there's a BPF listener, bounce a copy of this frame
2694 * to him.
2695 */
2696 ETHER_BPF_MTAP(ifp, m_head);
2697 }
2698
2699 if (enq > 0) {
2700 /* Transmit */
2701 CSR_WRITE_2(sc_if->msk_softc,
2702 Y2_PREF_Q_ADDR(sc_if->msk_txq, PREF_UNIT_PUT_IDX_REG),
2703 sc_if->msk_cdata.msk_tx_prod);
2704
2705 /* Set a timeout in case the chip goes out to lunch. */
2706 sc_if->msk_watchdog_timer = MSK_TX_TIMEOUT;
2707 }
2708
2709 MSK_IF_UNLOCK(sc_if);
2710}
2711
2712static void
2713msk_watchdog(struct msk_if_softc *sc_if)
2714{
2715 struct ifnet *ifp;
2716 uint32_t ridx;
2717 int idx;
2718
2719 MSK_IF_LOCK_ASSERT(sc_if);
2720
2721 if (sc_if->msk_watchdog_timer == 0 || --sc_if->msk_watchdog_timer)
2722 return;
2723 ifp = sc_if->msk_ifp;
2724 if (sc_if->msk_link == 0) {
2725 if (bootverbose)
2726 if_printf(sc_if->msk_ifp, "watchdog timeout "
2727 "(missed link)\n");
2728 ifp->if_oerrors++;
2729 msk_init_locked(sc_if);
2730 return;
2731 }
2732
2733 /*
2734 * Reclaim first as there is a possibility of losing Tx completion
2735 * interrupts.
2736 */
2737 ridx = sc_if->msk_port == MSK_PORT_A ? STAT_TXA1_RIDX : STAT_TXA2_RIDX;
2738 idx = CSR_READ_2(sc_if->msk_softc, ridx);
2739 if (sc_if->msk_cdata.msk_tx_cons != idx) {
2740 msk_txeof(sc_if, idx);
2741 if (sc_if->msk_cdata.msk_tx_cnt == 0) {
2742 if_printf(ifp, "watchdog timeout (missed Tx interrupts) "
2743 "-- recovering\n");
2744 if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
2745 taskqueue_enqueue(taskqueue_fast,
2746 &sc_if->msk_tx_task);
2747 return;
2748 }
2749 }
2750
2751 if_printf(ifp, "watchdog timeout\n");
2752 ifp->if_oerrors++;
2753 msk_init_locked(sc_if);
2754 if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
2755 taskqueue_enqueue(taskqueue_fast, &sc_if->msk_tx_task);
2756}
2757
2758static int
2759mskc_shutdown(device_t dev)
2760{
2761 struct msk_softc *sc;
2762 int i;
2763
2764 sc = device_get_softc(dev);
2765 MSK_LOCK(sc);
2766 for (i = 0; i < sc->msk_num_port; i++) {
2767 if (sc->msk_if[i] != NULL)
2768 msk_stop(sc->msk_if[i]);
2769 }
2770
2771 /* Disable all interrupts. */
2772 CSR_WRITE_4(sc, B0_IMSK, 0);
2773 CSR_READ_4(sc, B0_IMSK);
2774 CSR_WRITE_4(sc, B0_HWE_IMSK, 0);
2775 CSR_READ_4(sc, B0_HWE_IMSK);
2776
2777 /* Put hardware reset. */
2778 CSR_WRITE_2(sc, B0_CTST, CS_RST_SET);
2779
2780 MSK_UNLOCK(sc);
2781 return (0);
2782}
2783
2784static int
2785mskc_suspend(device_t dev)
2786{
2787 struct msk_softc *sc;
2788 int i;
2789
2790 sc = device_get_softc(dev);
2791
2792 MSK_LOCK(sc);
2793
2794 for (i = 0; i < sc->msk_num_port; i++) {
2795 if (sc->msk_if[i] != NULL && sc->msk_if[i]->msk_ifp != NULL &&
2796 ((sc->msk_if[i]->msk_ifp->if_drv_flags &
2797 IFF_DRV_RUNNING) != 0))
2798 msk_stop(sc->msk_if[i]);
2799 }
2800
2801 /* Disable all interrupts. */
2802 CSR_WRITE_4(sc, B0_IMSK, 0);
2803 CSR_READ_4(sc, B0_IMSK);
2804 CSR_WRITE_4(sc, B0_HWE_IMSK, 0);
2805 CSR_READ_4(sc, B0_HWE_IMSK);
2806
2807 msk_phy_power(sc, MSK_PHY_POWERDOWN);
2808
2809 /* Put hardware reset. */
2810 CSR_WRITE_2(sc, B0_CTST, CS_RST_SET);
2811 sc->msk_suspended = 1;
2812
2813 MSK_UNLOCK(sc);
2814
2815 return (0);
2816}
2817
2818static int
2819mskc_resume(device_t dev)
2820{
2821 struct msk_softc *sc;
2822 int i;
2823
2824 sc = device_get_softc(dev);
2825
2826 MSK_LOCK(sc);
2827
2828 mskc_reset(sc);
2829 for (i = 0; i < sc->msk_num_port; i++) {
2830 if (sc->msk_if[i] != NULL && sc->msk_if[i]->msk_ifp != NULL &&
2831 ((sc->msk_if[i]->msk_ifp->if_flags & IFF_UP) != 0))
2832 msk_init_locked(sc->msk_if[i]);
2833 }
2834 sc->msk_suspended = 0;
2835
2836 MSK_UNLOCK(sc);
2837
2838 return (0);
2839}
2840
2841#ifndef __NO_STRICT_ALIGNMENT
2842static __inline void
2843msk_fixup_rx(struct mbuf *m)
2844{
2845 int i;
2846 uint16_t *src, *dst;
2847
2848 src = mtod(m, uint16_t *);
2849 dst = src - 3;
2850
2851 for (i = 0; i < (m->m_len / sizeof(uint16_t) + 1); i++)
2852 *dst++ = *src++;
2853
2854 m->m_data -= (MSK_RX_BUF_ALIGN - ETHER_ALIGN);
2855}
2856#endif
2857
2858static void
2859msk_rxeof(struct msk_if_softc *sc_if, uint32_t status, int len)
2860{
2861 struct mbuf *m;
2862 struct ifnet *ifp;
2863 struct msk_rxdesc *rxd;
2864 int cons, rxlen;
2865
2866 ifp = sc_if->msk_ifp;
2867
2868 MSK_IF_LOCK_ASSERT(sc_if);
2869
2870 cons = sc_if->msk_cdata.msk_rx_cons;
2871 do {
2872 rxlen = status >> 16;
2873 if ((status & GMR_FS_VLAN) != 0 &&
2874 (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0)
2875 rxlen -= ETHER_VLAN_ENCAP_LEN;
2876 if (len > sc_if->msk_framesize ||
2877 ((status & GMR_FS_ANY_ERR) != 0) ||
2878 ((status & GMR_FS_RX_OK) == 0) || (rxlen != len)) {
2879 /* Don't count flow-control packet as errors. */
2880 if ((status & GMR_FS_GOOD_FC) == 0)
2881 ifp->if_ierrors++;
2882 msk_discard_rxbuf(sc_if, cons);
2883 break;
2884 }
2885 rxd = &sc_if->msk_cdata.msk_rxdesc[cons];
2886 m = rxd->rx_m;
2887 if (msk_newbuf(sc_if, cons) != 0) {
2888 ifp->if_iqdrops++;
2889 /* Reuse old buffer. */
2890 msk_discard_rxbuf(sc_if, cons);
2891 break;
2892 }
2893 m->m_pkthdr.rcvif = ifp;
2894 m->m_pkthdr.len = m->m_len = len;
2895#ifndef __NO_STRICT_ALIGNMENT
2896 if ((sc_if->msk_flags & MSK_FLAG_RAMBUF) != 0)
2897 msk_fixup_rx(m);
2898#endif
2899 ifp->if_ipackets++;
2900 /* Check for VLAN tagged packets. */
2901 if ((status & GMR_FS_VLAN) != 0 &&
2902 (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0) {
2903 m->m_pkthdr.ether_vtag = sc_if->msk_vtag;
2904 m->m_flags |= M_VLANTAG;
2905 }
2906 MSK_IF_UNLOCK(sc_if);
2907 (*ifp->if_input)(ifp, m);
2908 MSK_IF_LOCK(sc_if);
2909 } while (0);
2910
2911 MSK_INC(sc_if->msk_cdata.msk_rx_cons, MSK_RX_RING_CNT);
2912 MSK_INC(sc_if->msk_cdata.msk_rx_prod, MSK_RX_RING_CNT);
2913}
2914
2915static void
2916msk_jumbo_rxeof(struct msk_if_softc *sc_if, uint32_t status, int len)
2917{
2918 struct mbuf *m;
2919 struct ifnet *ifp;
2920 struct msk_rxdesc *jrxd;
2921 int cons, rxlen;
2922
2923 ifp = sc_if->msk_ifp;
2924
2925 MSK_IF_LOCK_ASSERT(sc_if);
2926
2927 cons = sc_if->msk_cdata.msk_rx_cons;
2928 do {
2929 rxlen = status >> 16;
2930 if ((status & GMR_FS_VLAN) != 0 &&
2931 (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0)
2932 rxlen -= ETHER_VLAN_ENCAP_LEN;
2933 if (len > sc_if->msk_framesize ||
2934 ((status & GMR_FS_ANY_ERR) != 0) ||
2935 ((status & GMR_FS_RX_OK) == 0) || (rxlen != len)) {
2936 /* Don't count flow-control packet as errors. */
2937 if ((status & GMR_FS_GOOD_FC) == 0)
2938 ifp->if_ierrors++;
2939 msk_discard_jumbo_rxbuf(sc_if, cons);
2940 break;
2941 }
2942 jrxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[cons];
2943 m = jrxd->rx_m;
2944 if (msk_jumbo_newbuf(sc_if, cons) != 0) {
2945 ifp->if_iqdrops++;
2946 /* Reuse old buffer. */
2947 msk_discard_jumbo_rxbuf(sc_if, cons);
2948 break;
2949 }
2950 m->m_pkthdr.rcvif = ifp;
2951 m->m_pkthdr.len = m->m_len = len;
2952#ifndef __NO_STRICT_ALIGNMENT
2953 if ((sc_if->msk_flags & MSK_FLAG_RAMBUF) != 0)
2954 msk_fixup_rx(m);
2955#endif
2956 ifp->if_ipackets++;
2957 /* Check for VLAN tagged packets. */
2958 if ((status & GMR_FS_VLAN) != 0 &&
2959 (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0) {
2960 m->m_pkthdr.ether_vtag = sc_if->msk_vtag;
2961 m->m_flags |= M_VLANTAG;
2962 }
2963 MSK_IF_UNLOCK(sc_if);
2964 (*ifp->if_input)(ifp, m);
2965 MSK_IF_LOCK(sc_if);
2966 } while (0);
2967
2968 MSK_INC(sc_if->msk_cdata.msk_rx_cons, MSK_JUMBO_RX_RING_CNT);
2969 MSK_INC(sc_if->msk_cdata.msk_rx_prod, MSK_JUMBO_RX_RING_CNT);
2970}
2971
2972static void
2973msk_txeof(struct msk_if_softc *sc_if, int idx)
2974{
2975 struct msk_txdesc *txd;
2976 struct msk_tx_desc *cur_tx;
2977 struct ifnet *ifp;
2978 uint32_t control;
2979 int cons, prog;
2980
2981 MSK_IF_LOCK_ASSERT(sc_if);
2982
2983 ifp = sc_if->msk_ifp;
2984
2985 bus_dmamap_sync(sc_if->msk_cdata.msk_tx_ring_tag,
2986 sc_if->msk_cdata.msk_tx_ring_map,
2987 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2988 /*
2989 * Go through our tx ring and free mbufs for those
2990 * frames that have been sent.
2991 */
2992 cons = sc_if->msk_cdata.msk_tx_cons;
2993 prog = 0;
2994 for (; cons != idx; MSK_INC(cons, MSK_TX_RING_CNT)) {
2995 if (sc_if->msk_cdata.msk_tx_cnt <= 0)
2996 break;
2997 prog++;
2998 cur_tx = &sc_if->msk_rdata.msk_tx_ring[cons];
2999 control = le32toh(cur_tx->msk_control);
3000 sc_if->msk_cdata.msk_tx_cnt--;
3001 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3002 if ((control & EOP) == 0)
3003 continue;
3004 txd = &sc_if->msk_cdata.msk_txdesc[cons];
3005 bus_dmamap_sync(sc_if->msk_cdata.msk_tx_tag, txd->tx_dmamap,
3006 BUS_DMASYNC_POSTWRITE);
3007 bus_dmamap_unload(sc_if->msk_cdata.msk_tx_tag, txd->tx_dmamap);
3008
3009 ifp->if_opackets++;
3010 KASSERT(txd->tx_m != NULL, ("%s: freeing NULL mbuf!",
3011 __func__));
3012 m_freem(txd->tx_m);
3013 txd->tx_m = NULL;
3014 }
3015
3016 if (prog > 0) {
3017 sc_if->msk_cdata.msk_tx_cons = cons;
3018 if (sc_if->msk_cdata.msk_tx_cnt == 0)
3019 sc_if->msk_watchdog_timer = 0;
3020 /* No need to sync LEs as we didn't update LEs. */
3021 }
3022}
3023
3024static void
3025msk_tick(void *xsc_if)
3026{
3027 struct msk_if_softc *sc_if;
3028 struct mii_data *mii;
3029
3030 sc_if = xsc_if;
3031
3032 MSK_IF_LOCK_ASSERT(sc_if);
3033
3034 mii = device_get_softc(sc_if->msk_miibus);
3035
3036 mii_tick(mii);
3037 msk_watchdog(sc_if);
3038 callout_reset(&sc_if->msk_tick_ch, hz, msk_tick, sc_if);
3039}
3040
3041static void
3042msk_intr_phy(struct msk_if_softc *sc_if)
3043{
3044 uint16_t status;
3045
3046 msk_phy_readreg(sc_if, PHY_ADDR_MARV, PHY_MARV_INT_STAT);
3047 status = msk_phy_readreg(sc_if, PHY_ADDR_MARV, PHY_MARV_INT_STAT);
3048 /* Handle FIFO Underrun/Overflow? */
3049 if ((status & PHY_M_IS_FIFO_ERROR))
3050 device_printf(sc_if->msk_if_dev,
3051 "PHY FIFO underrun/overflow.\n");
3052}
3053
3054static void
3055msk_intr_gmac(struct msk_if_softc *sc_if)
3056{
3057 struct msk_softc *sc;
3058 uint8_t status;
3059
3060 sc = sc_if->msk_softc;
3061 status = CSR_READ_1(sc, MR_ADDR(sc_if->msk_port, GMAC_IRQ_SRC));
3062
3063 /* GMAC Rx FIFO overrun. */
3064 if ((status & GM_IS_RX_FF_OR) != 0) {
3065 CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_CTRL_T),
3066 GMF_CLI_RX_FO);
3067 device_printf(sc_if->msk_if_dev, "Rx FIFO overrun!\n");
3068 }
3069 /* GMAC Tx FIFO underrun. */
3070 if ((status & GM_IS_TX_FF_UR) != 0) {
3071 CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T),
3072 GMF_CLI_TX_FU);
3073 device_printf(sc_if->msk_if_dev, "Tx FIFO underrun!\n");
3074 /*
3075 * XXX
3076 * In case of Tx underrun, we may need to flush/reset
3077 * Tx MAC but that would also require resynchronization
3078 * with status LEs. Reintializing status LEs would
3079 * affect other port in dual MAC configuration so it
3080 * should be avoided as possible as we can.
3081 * Due to lack of documentation it's all vague guess but
3082 * it needs more investigation.
3083 */
3084 }
3085}
3086
3087static void
3088msk_handle_hwerr(struct msk_if_softc *sc_if, uint32_t status)
3089{
3090 struct msk_softc *sc;
3091
3092 sc = sc_if->msk_softc;
3093 if ((status & Y2_IS_PAR_RD1) != 0) {
3094 device_printf(sc_if->msk_if_dev,
3095 "RAM buffer read parity error\n");
3096 /* Clear IRQ. */
3097 CSR_WRITE_2(sc, SELECT_RAM_BUFFER(sc_if->msk_port, B3_RI_CTRL),
3098 RI_CLR_RD_PERR);
3099 }
3100 if ((status & Y2_IS_PAR_WR1) != 0) {
3101 device_printf(sc_if->msk_if_dev,
3102 "RAM buffer write parity error\n");
3103 /* Clear IRQ. */
3104 CSR_WRITE_2(sc, SELECT_RAM_BUFFER(sc_if->msk_port, B3_RI_CTRL),
3105 RI_CLR_WR_PERR);
3106 }
3107 if ((status & Y2_IS_PAR_MAC1) != 0) {
3108 device_printf(sc_if->msk_if_dev, "Tx MAC parity error\n");
3109 /* Clear IRQ. */
3110 CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T),
3111 GMF_CLI_TX_PE);
3112 }
3113 if ((status & Y2_IS_PAR_RX1) != 0) {
3114 device_printf(sc_if->msk_if_dev, "Rx parity error\n");
3115 /* Clear IRQ. */
3116 CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_rxq, Q_CSR), BMU_CLR_IRQ_PAR);
3117 }
3118 if ((status & (Y2_IS_TCP_TXS1 | Y2_IS_TCP_TXA1)) != 0) {
3119 device_printf(sc_if->msk_if_dev, "TCP segmentation error\n");
3120 /* Clear IRQ. */
3121 CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR), BMU_CLR_IRQ_TCP);
3122 }
3123}
3124
3125static void
3126msk_intr_hwerr(struct msk_softc *sc)
3127{
3128 uint32_t status;
3129 uint32_t tlphead[4];
3130
3131 status = CSR_READ_4(sc, B0_HWE_ISRC);
3132 /* Time Stamp timer overflow. */
3133 if ((status & Y2_IS_TIST_OV) != 0)
3134 CSR_WRITE_1(sc, GMAC_TI_ST_CTRL, GMT_ST_CLR_IRQ);
3135 if ((status & Y2_IS_PCI_NEXP) != 0) {
3136 /*
3137 * PCI Express Error occured which is not described in PEX
3138 * spec.
3139 * This error is also mapped either to Master Abort(
3140 * Y2_IS_MST_ERR) or Target Abort (Y2_IS_IRQ_STAT) bit and
3141 * can only be cleared there.
3142 */
3143 device_printf(sc->msk_dev,
3144 "PCI Express protocol violation error\n");
3145 }
3146
3147 if ((status & (Y2_IS_MST_ERR | Y2_IS_IRQ_STAT)) != 0) {
3148 uint16_t v16;
3149
3150 if ((status & Y2_IS_MST_ERR) != 0)
3151 device_printf(sc->msk_dev,
3152 "unexpected IRQ Status error\n");
3153 else
3154 device_printf(sc->msk_dev,
3155 "unexpected IRQ Master error\n");
3156 /* Reset all bits in the PCI status register. */
3157 v16 = pci_read_config(sc->msk_dev, PCIR_STATUS, 2);
3158 CSR_WRITE_1(sc, B2_TST_CTRL1, TST_CFG_WRITE_ON);
3159 pci_write_config(sc->msk_dev, PCIR_STATUS, v16 |
3160 PCIM_STATUS_PERR | PCIM_STATUS_SERR | PCIM_STATUS_RMABORT |
3161 PCIM_STATUS_RTABORT | PCIM_STATUS_PERRREPORT, 2);
3162 CSR_WRITE_1(sc, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
3163 }
3164
3165 /* Check for PCI Express Uncorrectable Error. */
3166 if ((status & Y2_IS_PCI_EXP) != 0) {
3167 uint32_t v32;
3168
3169 /*
3170 * On PCI Express bus bridges are called root complexes (RC).
3171 * PCI Express errors are recognized by the root complex too,
3172 * which requests the system to handle the problem. After
3173 * error occurence it may be that no access to the adapter
3174 * may be performed any longer.
3175 */
3176
3177 v32 = CSR_PCI_READ_4(sc, PEX_UNC_ERR_STAT);
3178 if ((v32 & PEX_UNSUP_REQ) != 0) {
3179 /* Ignore unsupported request error. */
3180 device_printf(sc->msk_dev,
3181 "Uncorrectable PCI Express error\n");
3182 }
3183 if ((v32 & (PEX_FATAL_ERRORS | PEX_POIS_TLP)) != 0) {
3184 int i;
3185
3186 /* Get TLP header form Log Registers. */
3187 for (i = 0; i < 4; i++)
3188 tlphead[i] = CSR_PCI_READ_4(sc,
3189 PEX_HEADER_LOG + i * 4);
3190 /* Check for vendor defined broadcast message. */
3191 if (!(tlphead[0] == 0x73004001 && tlphead[1] == 0x7f)) {
3192 sc->msk_intrhwemask &= ~Y2_IS_PCI_EXP;
3193 CSR_WRITE_4(sc, B0_HWE_IMSK,
3194 sc->msk_intrhwemask);
3195 CSR_READ_4(sc, B0_HWE_IMSK);
3196 }
3197 }
3198 /* Clear the interrupt. */
3199 CSR_WRITE_1(sc, B2_TST_CTRL1, TST_CFG_WRITE_ON);
3200 CSR_PCI_WRITE_4(sc, PEX_UNC_ERR_STAT, 0xffffffff);
3201 CSR_WRITE_1(sc, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
3202 }
3203
3204 if ((status & Y2_HWE_L1_MASK) != 0 && sc->msk_if[MSK_PORT_A] != NULL)
3205 msk_handle_hwerr(sc->msk_if[MSK_PORT_A], status);
3206 if ((status & Y2_HWE_L2_MASK) != 0 && sc->msk_if[MSK_PORT_B] != NULL)
3207 msk_handle_hwerr(sc->msk_if[MSK_PORT_B], status >> 8);
3208}
3209
3210static __inline void
3211msk_rxput(struct msk_if_softc *sc_if)
3212{
3213 struct msk_softc *sc;
3214
3215 sc = sc_if->msk_softc;
3216 if (sc_if->msk_framesize > (MCLBYTES - MSK_RX_BUF_ALIGN))
3217 bus_dmamap_sync(
3218 sc_if->msk_cdata.msk_jumbo_rx_ring_tag,
3219 sc_if->msk_cdata.msk_jumbo_rx_ring_map,
3220 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3221 else
3222 bus_dmamap_sync(
3223 sc_if->msk_cdata.msk_rx_ring_tag,
3224 sc_if->msk_cdata.msk_rx_ring_map,
3225 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3226 CSR_WRITE_2(sc, Y2_PREF_Q_ADDR(sc_if->msk_rxq,
3227 PREF_UNIT_PUT_IDX_REG), sc_if->msk_cdata.msk_rx_prod);
3228}
3229
3230static int
3231msk_handle_events(struct msk_softc *sc)
3232{
3233 struct msk_if_softc *sc_if;
3234 int rxput[2];
3235 struct msk_stat_desc *sd;
3236 uint32_t control, status;
3237 int cons, idx, len, port, rxprog;
3238
3239 idx = CSR_READ_2(sc, STAT_PUT_IDX);
3240 if (idx == sc->msk_stat_cons)
3241 return (0);
3242
3243 /* Sync status LEs. */
3244 bus_dmamap_sync(sc->msk_stat_tag, sc->msk_stat_map,
3245 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
3246 /* XXX Sync Rx LEs here. */
3247
3248 rxput[MSK_PORT_A] = rxput[MSK_PORT_B] = 0;
3249
3250 rxprog = 0;
3251 for (cons = sc->msk_stat_cons; cons != idx;) {
3252 sd = &sc->msk_stat_ring[cons];
3253 control = le32toh(sd->msk_control);
3254 if ((control & HW_OWNER) == 0)
3255 break;
3256 /*
3257 * Marvell's FreeBSD driver updates status LE after clearing
3258 * HW_OWNER. However we don't have a way to sync single LE
3259 * with bus_dma(9) API. bus_dma(9) provides a way to sync
3260 * an entire DMA map. So don't sync LE until we have a better
3261 * way to sync LEs.
3262 */
3263 control &= ~HW_OWNER;
3264 sd->msk_control = htole32(control);
3265 status = le32toh(sd->msk_status);
3266 len = control & STLE_LEN_MASK;
3267 port = (control >> 16) & 0x01;
3268 sc_if = sc->msk_if[port];
3269 if (sc_if == NULL) {
3270 device_printf(sc->msk_dev, "invalid port opcode "
3271 "0x%08x\n", control & STLE_OP_MASK);
3272 continue;
3273 }
3274
3275 switch (control & STLE_OP_MASK) {
3276 case OP_RXVLAN:
3277 sc_if->msk_vtag = ntohs(len);
3278 break;
3279 case OP_RXCHKSVLAN:
3280 sc_if->msk_vtag = ntohs(len);
3281 break;
3282 case OP_RXSTAT:
3283 if (sc_if->msk_framesize >
3284 (MCLBYTES - MSK_RX_BUF_ALIGN))
3285 msk_jumbo_rxeof(sc_if, status, len);
3286 else
3287 msk_rxeof(sc_if, status, len);
3288 rxprog++;
3289 /*
3290 * Because there is no way to sync single Rx LE
3291 * put the DMA sync operation off until the end of
3292 * event processing.
3293 */
3294 rxput[port]++;
3295 /* Update prefetch unit if we've passed water mark. */
3296 if (rxput[port] >= sc_if->msk_cdata.msk_rx_putwm) {
3297 msk_rxput(sc_if);
3298 rxput[port] = 0;
3299 }
3300 break;
3301 case OP_TXINDEXLE:
3302 if (sc->msk_if[MSK_PORT_A] != NULL)
3303 msk_txeof(sc->msk_if[MSK_PORT_A],
3304 status & STLE_TXA1_MSKL);
3305 if (sc->msk_if[MSK_PORT_B] != NULL)
3306 msk_txeof(sc->msk_if[MSK_PORT_B],
3307 ((status & STLE_TXA2_MSKL) >>
3308 STLE_TXA2_SHIFTL) |
3309 ((len & STLE_TXA2_MSKH) <<
3310 STLE_TXA2_SHIFTH));
3311 break;
3312 default:
3313 device_printf(sc->msk_dev, "unhandled opcode 0x%08x\n",
3314 control & STLE_OP_MASK);
3315 break;
3316 }
3317 MSK_INC(cons, MSK_STAT_RING_CNT);
3318 if (rxprog > sc->msk_process_limit)
3319 break;
3320 }
3321
3322 sc->msk_stat_cons = cons;
3323 /* XXX We should sync status LEs here. See above notes. */
3324
3325 if (rxput[MSK_PORT_A] > 0)
3326 msk_rxput(sc->msk_if[MSK_PORT_A]);
3327 if (rxput[MSK_PORT_B] > 0)
3328 msk_rxput(sc->msk_if[MSK_PORT_B]);
3329
3330 return (sc->msk_stat_cons != CSR_READ_2(sc, STAT_PUT_IDX));
3331}
3332
3333/* Legacy interrupt handler for shared interrupt. */
3334static void
3335msk_legacy_intr(void *xsc)
3336{
3337 struct msk_softc *sc;
3338 struct msk_if_softc *sc_if0, *sc_if1;
3339 struct ifnet *ifp0, *ifp1;
3340 uint32_t status;
3341
3342 sc = xsc;
3343 MSK_LOCK(sc);
3344
3345 /* Reading B0_Y2_SP_ISRC2 masks further interrupts. */
3346 status = CSR_READ_4(sc, B0_Y2_SP_ISRC2);
3347 if (status == 0 || status == 0xffffffff || sc->msk_suspended != 0 ||
3348 (status & sc->msk_intrmask) == 0) {
3349 CSR_WRITE_4(sc, B0_Y2_SP_ICR, 2);
3350 return;
3351 }
3352
3353 sc_if0 = sc->msk_if[MSK_PORT_A];
3354 sc_if1 = sc->msk_if[MSK_PORT_B];
3355 ifp0 = ifp1 = NULL;
3356 if (sc_if0 != NULL)
3357 ifp0 = sc_if0->msk_ifp;
3358 if (sc_if1 != NULL)
3359 ifp1 = sc_if1->msk_ifp;
3360
3361 if ((status & Y2_IS_IRQ_PHY1) != 0 && sc_if0 != NULL)
3362 msk_intr_phy(sc_if0);
3363 if ((status & Y2_IS_IRQ_PHY2) != 0 && sc_if1 != NULL)
3364 msk_intr_phy(sc_if1);
3365 if ((status & Y2_IS_IRQ_MAC1) != 0 && sc_if0 != NULL)
3366 msk_intr_gmac(sc_if0);
3367 if ((status & Y2_IS_IRQ_MAC2) != 0 && sc_if1 != NULL)
3368 msk_intr_gmac(sc_if1);
3369 if ((status & (Y2_IS_CHK_RX1 | Y2_IS_CHK_RX2)) != 0) {
3370 device_printf(sc->msk_dev, "Rx descriptor error\n");
3371 sc->msk_intrmask &= ~(Y2_IS_CHK_RX1 | Y2_IS_CHK_RX2);
3372 CSR_WRITE_4(sc, B0_IMSK, sc->msk_intrmask);
3373 CSR_READ_4(sc, B0_IMSK);
3374 }
3375 if ((status & (Y2_IS_CHK_TXA1 | Y2_IS_CHK_TXA2)) != 0) {
3376 device_printf(sc->msk_dev, "Tx descriptor error\n");
3377 sc->msk_intrmask &= ~(Y2_IS_CHK_TXA1 | Y2_IS_CHK_TXA2);
3378 CSR_WRITE_4(sc, B0_IMSK, sc->msk_intrmask);
3379 CSR_READ_4(sc, B0_IMSK);
3380 }
3381 if ((status & Y2_IS_HW_ERR) != 0)
3382 msk_intr_hwerr(sc);
3383
3384 while (msk_handle_events(sc) != 0)
3385 ;
3386 if ((status & Y2_IS_STAT_BMU) != 0)
3387 CSR_WRITE_4(sc, STAT_CTRL, SC_STAT_CLR_IRQ);
3388
3389 /* Reenable interrupts. */
3390 CSR_WRITE_4(sc, B0_Y2_SP_ICR, 2);
3391
3392 if (ifp0 != NULL && (ifp0->if_drv_flags & IFF_DRV_RUNNING) != 0 &&
3393 !IFQ_DRV_IS_EMPTY(&ifp0->if_snd))
3394 taskqueue_enqueue(taskqueue_fast, &sc_if0->msk_tx_task);
3395 if (ifp1 != NULL && (ifp1->if_drv_flags & IFF_DRV_RUNNING) != 0 &&
3396 !IFQ_DRV_IS_EMPTY(&ifp1->if_snd))
3397 taskqueue_enqueue(taskqueue_fast, &sc_if1->msk_tx_task);
3398
3399 MSK_UNLOCK(sc);
3400}
3401
3402static int
3403msk_intr(void *xsc)
3404{
3405 struct msk_softc *sc;
3406 uint32_t status;
3407
3408 sc = xsc;
3409 status = CSR_READ_4(sc, B0_Y2_SP_ISRC2);
3410 /* Reading B0_Y2_SP_ISRC2 masks further interrupts. */
3411 if (status == 0 || status == 0xffffffff) {
3412 CSR_WRITE_4(sc, B0_Y2_SP_ICR, 2);
3413 return (FILTER_STRAY);
3414 }
3415
3416 taskqueue_enqueue(sc->msk_tq, &sc->msk_int_task);
3417 return (FILTER_HANDLED);
3418}
3419
3420static void
3421msk_int_task(void *arg, int pending)
3422{
3423 struct msk_softc *sc;
3424 struct msk_if_softc *sc_if0, *sc_if1;
3425 struct ifnet *ifp0, *ifp1;
3426 uint32_t status;
3427 int domore;
3428
3429 sc = arg;
3430 MSK_LOCK(sc);
3431
3432 /* Get interrupt source. */
3433 status = CSR_READ_4(sc, B0_ISRC);
3434 if (status == 0 || status == 0xffffffff || sc->msk_suspended != 0 ||
3435 (status & sc->msk_intrmask) == 0)
3436 goto done;
3437
3438 sc_if0 = sc->msk_if[MSK_PORT_A];
3439 sc_if1 = sc->msk_if[MSK_PORT_B];
3440 ifp0 = ifp1 = NULL;
3441 if (sc_if0 != NULL)
3442 ifp0 = sc_if0->msk_ifp;
3443 if (sc_if1 != NULL)
3444 ifp1 = sc_if1->msk_ifp;
3445
3446 if ((status & Y2_IS_IRQ_PHY1) != 0 && sc_if0 != NULL)
3447 msk_intr_phy(sc_if0);
3448 if ((status & Y2_IS_IRQ_PHY2) != 0 && sc_if1 != NULL)
3449 msk_intr_phy(sc_if1);
3450 if ((status & Y2_IS_IRQ_MAC1) != 0 && sc_if0 != NULL)
3451 msk_intr_gmac(sc_if0);
3452 if ((status & Y2_IS_IRQ_MAC2) != 0 && sc_if1 != NULL)
3453 msk_intr_gmac(sc_if1);
3454 if ((status & (Y2_IS_CHK_RX1 | Y2_IS_CHK_RX2)) != 0) {
3455 device_printf(sc->msk_dev, "Rx descriptor error\n");
3456 sc->msk_intrmask &= ~(Y2_IS_CHK_RX1 | Y2_IS_CHK_RX2);
3457 CSR_WRITE_4(sc, B0_IMSK, sc->msk_intrmask);
3458 CSR_READ_4(sc, B0_IMSK);
3459 }
3460 if ((status & (Y2_IS_CHK_TXA1 | Y2_IS_CHK_TXA2)) != 0) {
3461 device_printf(sc->msk_dev, "Tx descriptor error\n");
3462 sc->msk_intrmask &= ~(Y2_IS_CHK_TXA1 | Y2_IS_CHK_TXA2);
3463 CSR_WRITE_4(sc, B0_IMSK, sc->msk_intrmask);
3464 CSR_READ_4(sc, B0_IMSK);
3465 }
3466 if ((status & Y2_IS_HW_ERR) != 0)
3467 msk_intr_hwerr(sc);
3468
3469 domore = msk_handle_events(sc);
3470 if ((status & Y2_IS_STAT_BMU) != 0)
3471 CSR_WRITE_4(sc, STAT_CTRL, SC_STAT_CLR_IRQ);
3472
3473 if (ifp0 != NULL && (ifp0->if_drv_flags & IFF_DRV_RUNNING) != 0 &&
3474 !IFQ_DRV_IS_EMPTY(&ifp0->if_snd))
3475 taskqueue_enqueue(taskqueue_fast, &sc_if0->msk_tx_task);
3476 if (ifp1 != NULL && (ifp1->if_drv_flags & IFF_DRV_RUNNING) != 0 &&
3477 !IFQ_DRV_IS_EMPTY(&ifp1->if_snd))
3478 taskqueue_enqueue(taskqueue_fast, &sc_if1->msk_tx_task);
3479
3480 if (domore > 0) {
3481 taskqueue_enqueue(sc->msk_tq, &sc->msk_int_task);
3482 MSK_UNLOCK(sc);
3483 return;
3484 }
3485done:
3486 MSK_UNLOCK(sc);
3487
3488 /* Reenable interrupts. */
3489 CSR_WRITE_4(sc, B0_Y2_SP_ICR, 2);
3490}
3491
3492static void
3493msk_init(void *xsc)
3494{
3495 struct msk_if_softc *sc_if = xsc;
3496
3497 MSK_IF_LOCK(sc_if);
3498 msk_init_locked(sc_if);
3499 MSK_IF_UNLOCK(sc_if);
3500}
3501
3502static void
3503msk_init_locked(struct msk_if_softc *sc_if)
3504{
3505 struct msk_softc *sc;
3506 struct ifnet *ifp;
3507 struct mii_data *mii;
3508 uint16_t eaddr[ETHER_ADDR_LEN / 2];
3509 uint16_t gmac;
3510 int error, i;
3511
3512 MSK_IF_LOCK_ASSERT(sc_if);
3513
3514 ifp = sc_if->msk_ifp;
3515 sc = sc_if->msk_softc;
3516 mii = device_get_softc(sc_if->msk_miibus);
3517
3518 error = 0;
3519 /* Cancel pending I/O and free all Rx/Tx buffers. */
3520 msk_stop(sc_if);
3521
3522 if (ifp->if_mtu < ETHERMTU)
3523 sc_if->msk_framesize = ETHERMTU;
3524 else
3525 sc_if->msk_framesize = ifp->if_mtu;
3526 sc_if->msk_framesize += ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
3527 if (ifp->if_mtu > ETHERMTU &&
3528 sc_if->msk_softc->msk_hw_id == CHIP_ID_YUKON_EC_U) {
3529 /*
3530 * In Yukon EC Ultra, TSO & checksum offload is not
3531 * supported for jumbo frame.
3532 */
3533 ifp->if_hwassist &= ~(MSK_CSUM_FEATURES | CSUM_TSO);
3534 ifp->if_capenable &= ~(IFCAP_TSO4 | IFCAP_TXCSUM);
3535 }
3536
3537 /*
3538 * Initialize GMAC first.
3539 * Without this initialization, Rx MAC did not work as expected
3540 * and Rx MAC garbled status LEs and it resulted in out-of-order
3541 * or duplicated frame delivery which in turn showed very poor
3542 * Rx performance.(I had to write a packet analysis code that
3543 * could be embeded in driver to diagnose this issue.)
3544 * I've spent almost 2 months to fix this issue. If I have had
3545 * datasheet for Yukon II I wouldn't have encountered this. :-(
3546 */
3547 gmac = GM_GPCR_SPEED_100 | GM_GPCR_SPEED_1000 | GM_GPCR_DUP_FULL;
3548 GMAC_WRITE_2(sc, sc_if->msk_port, GM_GP_CTRL, gmac);
3549
3550 /* Dummy read the Interrupt Source Register. */
3551 CSR_READ_1(sc, MR_ADDR(sc_if->msk_port, GMAC_IRQ_SRC));
3552
3547 /* Set MIB Clear Counter Mode. */
3548 gmac = GMAC_READ_2(sc, sc_if->msk_port, GM_PHY_ADDR);
3549 GMAC_WRITE_2(sc, sc_if->msk_port, GM_PHY_ADDR, gmac | GM_PAR_MIB_CLR);
3550 /* Read all MIB Counters with Clear Mode set. */
3551 for (i = 0; i < GM_MIB_CNT_SIZE; i++)
3552 GMAC_READ_2(sc, sc_if->msk_port, GM_MIB_CNT_BASE + 8 * i);
3553 /* Clear MIB Clear Counter Mode. */
3554 gmac &= ~GM_PAR_MIB_CLR;
3555 GMAC_WRITE_2(sc, sc_if->msk_port, GM_PHY_ADDR, gmac);
3553 /* Clear MIB stats. */
3554 msk_stats_clear(sc_if);
3556
3557 /* Disable FCS. */
3558 GMAC_WRITE_2(sc, sc_if->msk_port, GM_RX_CTRL, GM_RXCR_CRC_DIS);
3559
3560 /* Setup Transmit Control Register. */
3561 GMAC_WRITE_2(sc, sc_if->msk_port, GM_TX_CTRL, TX_COL_THR(TX_COL_DEF));
3562
3563 /* Setup Transmit Flow Control Register. */
3564 GMAC_WRITE_2(sc, sc_if->msk_port, GM_TX_FLOW_CTRL, 0xffff);
3565
3566 /* Setup Transmit Parameter Register. */
3567 GMAC_WRITE_2(sc, sc_if->msk_port, GM_TX_PARAM,
3568 TX_JAM_LEN_VAL(TX_JAM_LEN_DEF) | TX_JAM_IPG_VAL(TX_JAM_IPG_DEF) |
3569 TX_IPG_JAM_DATA(TX_IPG_JAM_DEF) | TX_BACK_OFF_LIM(TX_BOF_LIM_DEF));
3570
3571 gmac = DATA_BLIND_VAL(DATA_BLIND_DEF) |
3572 GM_SMOD_VLAN_ENA | IPG_DATA_VAL(IPG_DATA_DEF);
3573
3574 if (ifp->if_mtu > ETHERMTU)
3575 gmac |= GM_SMOD_JUMBO_ENA;
3576 GMAC_WRITE_2(sc, sc_if->msk_port, GM_SERIAL_MODE, gmac);
3577
3578 /* Set station address. */
3579 bcopy(IF_LLADDR(ifp), eaddr, ETHER_ADDR_LEN);
3580 for (i = 0; i < ETHER_ADDR_LEN /2; i++)
3581 GMAC_WRITE_2(sc, sc_if->msk_port, GM_SRC_ADDR_1L + i * 4,
3582 eaddr[i]);
3583 for (i = 0; i < ETHER_ADDR_LEN /2; i++)
3584 GMAC_WRITE_2(sc, sc_if->msk_port, GM_SRC_ADDR_2L + i * 4,
3585 eaddr[i]);
3586
3587 /* Disable interrupts for counter overflows. */
3588 GMAC_WRITE_2(sc, sc_if->msk_port, GM_TX_IRQ_MSK, 0);
3589 GMAC_WRITE_2(sc, sc_if->msk_port, GM_RX_IRQ_MSK, 0);
3590 GMAC_WRITE_2(sc, sc_if->msk_port, GM_TR_IRQ_MSK, 0);
3591
3592 /* Configure Rx MAC FIFO. */
3593 CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_CTRL_T), GMF_RST_SET);
3594 CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_CTRL_T), GMF_RST_CLR);
3595 CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_CTRL_T),
3596 GMF_OPER_ON | GMF_RX_F_FL_ON);
3597
3598 /* Set promiscuous mode. */
3599 msk_setpromisc(sc_if);
3600
3601 /* Set multicast filter. */
3602 msk_setmulti(sc_if);
3603
3604 /* Flush Rx MAC FIFO on any flow control or error. */
3605 CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_FL_MSK),
3606 GMR_FS_ANY_ERR);
3607
3608 /*
3609 * Set Rx FIFO flush threshold to 64 bytes + 1 FIFO word
3610 * due to hardware hang on receipt of pause frames.
3611 */
3612 CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_FL_THR),
3613 RX_GMF_FL_THR_DEF + 1);
3614
3615 /* Configure Tx MAC FIFO. */
3616 CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T), GMF_RST_SET);
3617 CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T), GMF_RST_CLR);
3618 CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T), GMF_OPER_ON);
3619
3620 /* Configure hardware VLAN tag insertion/stripping. */
3621 msk_setvlan(sc_if, ifp);
3622
3623 if ((sc_if->msk_flags & MSK_FLAG_RAMBUF) == 0) {
3624 /* Set Rx Pause threshould. */
3625 CSR_WRITE_1(sc, MR_ADDR(sc_if->msk_port, RX_GMF_LP_THR),
3626 MSK_ECU_LLPP);
3627 CSR_WRITE_1(sc, MR_ADDR(sc_if->msk_port, RX_GMF_UP_THR),
3628 MSK_ECU_ULPP);
3629 if (ifp->if_mtu > ETHERMTU) {
3630 /*
3631 * Set Tx GMAC FIFO Almost Empty Threshold.
3632 */
3633 CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_AE_THR),
3634 MSK_ECU_JUMBO_WM << 16 | MSK_ECU_AE_THR);
3635 /* Disable Store & Forward mode for Tx. */
3636 CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T),
3637 TX_JUMBO_ENA | TX_STFW_DIS);
3638 } else {
3639 /* Enable Store & Forward mode for Tx. */
3640 CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T),
3641 TX_JUMBO_DIS | TX_STFW_ENA);
3642 }
3643 }
3644
3645 /*
3646 * Disable Force Sync bit and Alloc bit in Tx RAM interface
3647 * arbiter as we don't use Sync Tx queue.
3648 */
3649 CSR_WRITE_1(sc, MR_ADDR(sc_if->msk_port, TXA_CTRL),
3650 TXA_DIS_FSYNC | TXA_DIS_ALLOC | TXA_STOP_RC);
3651 /* Enable the RAM Interface Arbiter. */
3652 CSR_WRITE_1(sc, MR_ADDR(sc_if->msk_port, TXA_CTRL), TXA_ENA_ARB);
3653
3654 /* Setup RAM buffer. */
3655 msk_set_rambuffer(sc_if);
3656
3657 /* Disable Tx sync Queue. */
3658 CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_txsq, RB_CTRL), RB_RST_SET);
3659
3660 /* Setup Tx Queue Bus Memory Interface. */
3661 CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR), BMU_CLR_RESET);
3662 CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR), BMU_OPER_INIT);
3663 CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR), BMU_FIFO_OP_ON);
3664 CSR_WRITE_2(sc, Q_ADDR(sc_if->msk_txq, Q_WM), MSK_BMU_TX_WM);
3665 if (sc->msk_hw_id == CHIP_ID_YUKON_EC_U &&
3666 sc->msk_hw_rev == CHIP_REV_YU_EC_U_A0) {
3667 /* Fix for Yukon-EC Ultra: set BMU FIFO level */
3668 CSR_WRITE_2(sc, Q_ADDR(sc_if->msk_txq, Q_AL), MSK_ECU_TXFF_LEV);
3669 }
3670
3671 /* Setup Rx Queue Bus Memory Interface. */
3672 CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_rxq, Q_CSR), BMU_CLR_RESET);
3673 CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_rxq, Q_CSR), BMU_OPER_INIT);
3674 CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_rxq, Q_CSR), BMU_FIFO_OP_ON);
3675 CSR_WRITE_2(sc, Q_ADDR(sc_if->msk_rxq, Q_WM), MSK_BMU_RX_WM);
3676 if (sc->msk_hw_id == CHIP_ID_YUKON_EC_U &&
3677 sc->msk_hw_rev >= CHIP_REV_YU_EC_U_A1) {
3678 /* MAC Rx RAM Read is controlled by hardware. */
3679 CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_rxq, Q_F), F_M_RX_RAM_DIS);
3680 }
3681
3682 msk_set_prefetch(sc, sc_if->msk_txq,
3683 sc_if->msk_rdata.msk_tx_ring_paddr, MSK_TX_RING_CNT - 1);
3684 msk_init_tx_ring(sc_if);
3685
3686 /* Disable Rx checksum offload and RSS hash. */
3687 CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_rxq, Q_CSR),
3688 BMU_DIS_RX_CHKSUM | BMU_DIS_RX_RSS_HASH);
3689 if (sc_if->msk_framesize > (MCLBYTES - MSK_RX_BUF_ALIGN)) {
3690 msk_set_prefetch(sc, sc_if->msk_rxq,
3691 sc_if->msk_rdata.msk_jumbo_rx_ring_paddr,
3692 MSK_JUMBO_RX_RING_CNT - 1);
3693 error = msk_init_jumbo_rx_ring(sc_if);
3694 } else {
3695 msk_set_prefetch(sc, sc_if->msk_rxq,
3696 sc_if->msk_rdata.msk_rx_ring_paddr,
3697 MSK_RX_RING_CNT - 1);
3698 error = msk_init_rx_ring(sc_if);
3699 }
3700 if (error != 0) {
3701 device_printf(sc_if->msk_if_dev,
3702 "initialization failed: no memory for Rx buffers\n");
3703 msk_stop(sc_if);
3704 return;
3705 }
3706
3707 /* Configure interrupt handling. */
3708 if (sc_if->msk_port == MSK_PORT_A) {
3709 sc->msk_intrmask |= Y2_IS_PORT_A;
3710 sc->msk_intrhwemask |= Y2_HWE_L1_MASK;
3711 } else {
3712 sc->msk_intrmask |= Y2_IS_PORT_B;
3713 sc->msk_intrhwemask |= Y2_HWE_L2_MASK;
3714 }
3715 CSR_WRITE_4(sc, B0_HWE_IMSK, sc->msk_intrhwemask);
3716 CSR_READ_4(sc, B0_HWE_IMSK);
3717 CSR_WRITE_4(sc, B0_IMSK, sc->msk_intrmask);
3718 CSR_READ_4(sc, B0_IMSK);
3719
3720 sc_if->msk_link = 0;
3721 mii_mediachg(mii);
3722
3723 ifp->if_drv_flags |= IFF_DRV_RUNNING;
3724 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3725
3726 callout_reset(&sc_if->msk_tick_ch, hz, msk_tick, sc_if);
3727}
3728
3729static void
3730msk_set_rambuffer(struct msk_if_softc *sc_if)
3731{
3732 struct msk_softc *sc;
3733 int ltpp, utpp;
3734
3735 sc = sc_if->msk_softc;
3736 if ((sc_if->msk_flags & MSK_FLAG_RAMBUF) == 0)
3737 return;
3738
3739 /* Setup Rx Queue. */
3740 CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_rxq, RB_CTRL), RB_RST_CLR);
3741 CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_rxq, RB_START),
3742 sc->msk_rxqstart[sc_if->msk_port] / 8);
3743 CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_rxq, RB_END),
3744 sc->msk_rxqend[sc_if->msk_port] / 8);
3745 CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_rxq, RB_WP),
3746 sc->msk_rxqstart[sc_if->msk_port] / 8);
3747 CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_rxq, RB_RP),
3748 sc->msk_rxqstart[sc_if->msk_port] / 8);
3749
3750 utpp = (sc->msk_rxqend[sc_if->msk_port] + 1 -
3751 sc->msk_rxqstart[sc_if->msk_port] - MSK_RB_ULPP) / 8;
3752 ltpp = (sc->msk_rxqend[sc_if->msk_port] + 1 -
3753 sc->msk_rxqstart[sc_if->msk_port] - MSK_RB_LLPP_B) / 8;
3754 if (sc->msk_rxqsize < MSK_MIN_RXQ_SIZE)
3755 ltpp += (MSK_RB_LLPP_B - MSK_RB_LLPP_S) / 8;
3756 CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_rxq, RB_RX_UTPP), utpp);
3757 CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_rxq, RB_RX_LTPP), ltpp);
3758 /* Set Rx priority(RB_RX_UTHP/RB_RX_LTHP) thresholds? */
3759
3760 CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_rxq, RB_CTRL), RB_ENA_OP_MD);
3761 CSR_READ_1(sc, RB_ADDR(sc_if->msk_rxq, RB_CTRL));
3762
3763 /* Setup Tx Queue. */
3764 CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_txq, RB_CTRL), RB_RST_CLR);
3765 CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_txq, RB_START),
3766 sc->msk_txqstart[sc_if->msk_port] / 8);
3767 CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_txq, RB_END),
3768 sc->msk_txqend[sc_if->msk_port] / 8);
3769 CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_txq, RB_WP),
3770 sc->msk_txqstart[sc_if->msk_port] / 8);
3771 CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_txq, RB_RP),
3772 sc->msk_txqstart[sc_if->msk_port] / 8);
3773 /* Enable Store & Forward for Tx side. */
3774 CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_txq, RB_CTRL), RB_ENA_STFWD);
3775 CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_txq, RB_CTRL), RB_ENA_OP_MD);
3776 CSR_READ_1(sc, RB_ADDR(sc_if->msk_txq, RB_CTRL));
3777}
3778
3779static void
3780msk_set_prefetch(struct msk_softc *sc, int qaddr, bus_addr_t addr,
3781 uint32_t count)
3782{
3783
3784 /* Reset the prefetch unit. */
3785 CSR_WRITE_4(sc, Y2_PREF_Q_ADDR(qaddr, PREF_UNIT_CTRL_REG),
3786 PREF_UNIT_RST_SET);
3787 CSR_WRITE_4(sc, Y2_PREF_Q_ADDR(qaddr, PREF_UNIT_CTRL_REG),
3788 PREF_UNIT_RST_CLR);
3789 /* Set LE base address. */
3790 CSR_WRITE_4(sc, Y2_PREF_Q_ADDR(qaddr, PREF_UNIT_ADDR_LOW_REG),
3791 MSK_ADDR_LO(addr));
3792 CSR_WRITE_4(sc, Y2_PREF_Q_ADDR(qaddr, PREF_UNIT_ADDR_HI_REG),
3793 MSK_ADDR_HI(addr));
3794 /* Set the list last index. */
3795 CSR_WRITE_2(sc, Y2_PREF_Q_ADDR(qaddr, PREF_UNIT_LAST_IDX_REG),
3796 count);
3797 /* Turn on prefetch unit. */
3798 CSR_WRITE_4(sc, Y2_PREF_Q_ADDR(qaddr, PREF_UNIT_CTRL_REG),
3799 PREF_UNIT_OP_ON);
3800 /* Dummy read to ensure write. */
3801 CSR_READ_4(sc, Y2_PREF_Q_ADDR(qaddr, PREF_UNIT_CTRL_REG));
3802}
3803
3804static void
3805msk_stop(struct msk_if_softc *sc_if)
3806{
3807 struct msk_softc *sc;
3808 struct msk_txdesc *txd;
3809 struct msk_rxdesc *rxd;
3810 struct msk_rxdesc *jrxd;
3811 struct ifnet *ifp;
3812 uint32_t val;
3813 int i;
3814
3815 MSK_IF_LOCK_ASSERT(sc_if);
3816 sc = sc_if->msk_softc;
3817 ifp = sc_if->msk_ifp;
3818
3819 callout_stop(&sc_if->msk_tick_ch);
3820 sc_if->msk_watchdog_timer = 0;
3821
3822 /* Disable interrupts. */
3823 if (sc_if->msk_port == MSK_PORT_A) {
3824 sc->msk_intrmask &= ~Y2_IS_PORT_A;
3825 sc->msk_intrhwemask &= ~Y2_HWE_L1_MASK;
3826 } else {
3827 sc->msk_intrmask &= ~Y2_IS_PORT_B;
3828 sc->msk_intrhwemask &= ~Y2_HWE_L2_MASK;
3829 }
3830 CSR_WRITE_4(sc, B0_HWE_IMSK, sc->msk_intrhwemask);
3831 CSR_READ_4(sc, B0_HWE_IMSK);
3832 CSR_WRITE_4(sc, B0_IMSK, sc->msk_intrmask);
3833 CSR_READ_4(sc, B0_IMSK);
3834
3835 /* Disable Tx/Rx MAC. */
3836 val = GMAC_READ_2(sc, sc_if->msk_port, GM_GP_CTRL);
3837 val &= ~(GM_GPCR_RX_ENA | GM_GPCR_TX_ENA);
3838 GMAC_WRITE_2(sc, sc_if->msk_port, GM_GP_CTRL, val);
3839 /* Read again to ensure writing. */
3840 GMAC_READ_2(sc, sc_if->msk_port, GM_GP_CTRL);
3555
3556 /* Disable FCS. */
3557 GMAC_WRITE_2(sc, sc_if->msk_port, GM_RX_CTRL, GM_RXCR_CRC_DIS);
3558
3559 /* Setup Transmit Control Register. */
3560 GMAC_WRITE_2(sc, sc_if->msk_port, GM_TX_CTRL, TX_COL_THR(TX_COL_DEF));
3561
3562 /* Setup Transmit Flow Control Register. */
3563 GMAC_WRITE_2(sc, sc_if->msk_port, GM_TX_FLOW_CTRL, 0xffff);
3564
3565 /* Setup Transmit Parameter Register. */
3566 GMAC_WRITE_2(sc, sc_if->msk_port, GM_TX_PARAM,
3567 TX_JAM_LEN_VAL(TX_JAM_LEN_DEF) | TX_JAM_IPG_VAL(TX_JAM_IPG_DEF) |
3568 TX_IPG_JAM_DATA(TX_IPG_JAM_DEF) | TX_BACK_OFF_LIM(TX_BOF_LIM_DEF));
3569
3570 gmac = DATA_BLIND_VAL(DATA_BLIND_DEF) |
3571 GM_SMOD_VLAN_ENA | IPG_DATA_VAL(IPG_DATA_DEF);
3572
3573 if (ifp->if_mtu > ETHERMTU)
3574 gmac |= GM_SMOD_JUMBO_ENA;
3575 GMAC_WRITE_2(sc, sc_if->msk_port, GM_SERIAL_MODE, gmac);
3576
3577 /* Set station address. */
3578 bcopy(IF_LLADDR(ifp), eaddr, ETHER_ADDR_LEN);
3579 for (i = 0; i < ETHER_ADDR_LEN /2; i++)
3580 GMAC_WRITE_2(sc, sc_if->msk_port, GM_SRC_ADDR_1L + i * 4,
3581 eaddr[i]);
3582 for (i = 0; i < ETHER_ADDR_LEN /2; i++)
3583 GMAC_WRITE_2(sc, sc_if->msk_port, GM_SRC_ADDR_2L + i * 4,
3584 eaddr[i]);
3585
3586 /* Disable interrupts for counter overflows. */
3587 GMAC_WRITE_2(sc, sc_if->msk_port, GM_TX_IRQ_MSK, 0);
3588 GMAC_WRITE_2(sc, sc_if->msk_port, GM_RX_IRQ_MSK, 0);
3589 GMAC_WRITE_2(sc, sc_if->msk_port, GM_TR_IRQ_MSK, 0);
3590
3591 /* Configure Rx MAC FIFO. */
3592 CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_CTRL_T), GMF_RST_SET);
3593 CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_CTRL_T), GMF_RST_CLR);
3594 CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_CTRL_T),
3595 GMF_OPER_ON | GMF_RX_F_FL_ON);
3596
3597 /* Set promiscuous mode. */
3598 msk_setpromisc(sc_if);
3599
3600 /* Set multicast filter. */
3601 msk_setmulti(sc_if);
3602
3603 /* Flush Rx MAC FIFO on any flow control or error. */
3604 CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_FL_MSK),
3605 GMR_FS_ANY_ERR);
3606
3607 /*
3608 * Set Rx FIFO flush threshold to 64 bytes + 1 FIFO word
3609 * due to hardware hang on receipt of pause frames.
3610 */
3611 CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_FL_THR),
3612 RX_GMF_FL_THR_DEF + 1);
3613
3614 /* Configure Tx MAC FIFO. */
3615 CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T), GMF_RST_SET);
3616 CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T), GMF_RST_CLR);
3617 CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T), GMF_OPER_ON);
3618
3619 /* Configure hardware VLAN tag insertion/stripping. */
3620 msk_setvlan(sc_if, ifp);
3621
3622 if ((sc_if->msk_flags & MSK_FLAG_RAMBUF) == 0) {
3623 /* Set Rx Pause threshould. */
3624 CSR_WRITE_1(sc, MR_ADDR(sc_if->msk_port, RX_GMF_LP_THR),
3625 MSK_ECU_LLPP);
3626 CSR_WRITE_1(sc, MR_ADDR(sc_if->msk_port, RX_GMF_UP_THR),
3627 MSK_ECU_ULPP);
3628 if (ifp->if_mtu > ETHERMTU) {
3629 /*
3630 * Set Tx GMAC FIFO Almost Empty Threshold.
3631 */
3632 CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_AE_THR),
3633 MSK_ECU_JUMBO_WM << 16 | MSK_ECU_AE_THR);
3634 /* Disable Store & Forward mode for Tx. */
3635 CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T),
3636 TX_JUMBO_ENA | TX_STFW_DIS);
3637 } else {
3638 /* Enable Store & Forward mode for Tx. */
3639 CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T),
3640 TX_JUMBO_DIS | TX_STFW_ENA);
3641 }
3642 }
3643
3644 /*
3645 * Disable Force Sync bit and Alloc bit in Tx RAM interface
3646 * arbiter as we don't use Sync Tx queue.
3647 */
3648 CSR_WRITE_1(sc, MR_ADDR(sc_if->msk_port, TXA_CTRL),
3649 TXA_DIS_FSYNC | TXA_DIS_ALLOC | TXA_STOP_RC);
3650 /* Enable the RAM Interface Arbiter. */
3651 CSR_WRITE_1(sc, MR_ADDR(sc_if->msk_port, TXA_CTRL), TXA_ENA_ARB);
3652
3653 /* Setup RAM buffer. */
3654 msk_set_rambuffer(sc_if);
3655
3656 /* Disable Tx sync Queue. */
3657 CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_txsq, RB_CTRL), RB_RST_SET);
3658
3659 /* Setup Tx Queue Bus Memory Interface. */
3660 CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR), BMU_CLR_RESET);
3661 CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR), BMU_OPER_INIT);
3662 CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR), BMU_FIFO_OP_ON);
3663 CSR_WRITE_2(sc, Q_ADDR(sc_if->msk_txq, Q_WM), MSK_BMU_TX_WM);
3664 if (sc->msk_hw_id == CHIP_ID_YUKON_EC_U &&
3665 sc->msk_hw_rev == CHIP_REV_YU_EC_U_A0) {
3666 /* Fix for Yukon-EC Ultra: set BMU FIFO level */
3667 CSR_WRITE_2(sc, Q_ADDR(sc_if->msk_txq, Q_AL), MSK_ECU_TXFF_LEV);
3668 }
3669
3670 /* Setup Rx Queue Bus Memory Interface. */
3671 CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_rxq, Q_CSR), BMU_CLR_RESET);
3672 CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_rxq, Q_CSR), BMU_OPER_INIT);
3673 CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_rxq, Q_CSR), BMU_FIFO_OP_ON);
3674 CSR_WRITE_2(sc, Q_ADDR(sc_if->msk_rxq, Q_WM), MSK_BMU_RX_WM);
3675 if (sc->msk_hw_id == CHIP_ID_YUKON_EC_U &&
3676 sc->msk_hw_rev >= CHIP_REV_YU_EC_U_A1) {
3677 /* MAC Rx RAM Read is controlled by hardware. */
3678 CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_rxq, Q_F), F_M_RX_RAM_DIS);
3679 }
3680
3681 msk_set_prefetch(sc, sc_if->msk_txq,
3682 sc_if->msk_rdata.msk_tx_ring_paddr, MSK_TX_RING_CNT - 1);
3683 msk_init_tx_ring(sc_if);
3684
3685 /* Disable Rx checksum offload and RSS hash. */
3686 CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_rxq, Q_CSR),
3687 BMU_DIS_RX_CHKSUM | BMU_DIS_RX_RSS_HASH);
3688 if (sc_if->msk_framesize > (MCLBYTES - MSK_RX_BUF_ALIGN)) {
3689 msk_set_prefetch(sc, sc_if->msk_rxq,
3690 sc_if->msk_rdata.msk_jumbo_rx_ring_paddr,
3691 MSK_JUMBO_RX_RING_CNT - 1);
3692 error = msk_init_jumbo_rx_ring(sc_if);
3693 } else {
3694 msk_set_prefetch(sc, sc_if->msk_rxq,
3695 sc_if->msk_rdata.msk_rx_ring_paddr,
3696 MSK_RX_RING_CNT - 1);
3697 error = msk_init_rx_ring(sc_if);
3698 }
3699 if (error != 0) {
3700 device_printf(sc_if->msk_if_dev,
3701 "initialization failed: no memory for Rx buffers\n");
3702 msk_stop(sc_if);
3703 return;
3704 }
3705
3706 /* Configure interrupt handling. */
3707 if (sc_if->msk_port == MSK_PORT_A) {
3708 sc->msk_intrmask |= Y2_IS_PORT_A;
3709 sc->msk_intrhwemask |= Y2_HWE_L1_MASK;
3710 } else {
3711 sc->msk_intrmask |= Y2_IS_PORT_B;
3712 sc->msk_intrhwemask |= Y2_HWE_L2_MASK;
3713 }
3714 CSR_WRITE_4(sc, B0_HWE_IMSK, sc->msk_intrhwemask);
3715 CSR_READ_4(sc, B0_HWE_IMSK);
3716 CSR_WRITE_4(sc, B0_IMSK, sc->msk_intrmask);
3717 CSR_READ_4(sc, B0_IMSK);
3718
3719 sc_if->msk_link = 0;
3720 mii_mediachg(mii);
3721
3722 ifp->if_drv_flags |= IFF_DRV_RUNNING;
3723 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3724
3725 callout_reset(&sc_if->msk_tick_ch, hz, msk_tick, sc_if);
3726}
3727
3728static void
3729msk_set_rambuffer(struct msk_if_softc *sc_if)
3730{
3731 struct msk_softc *sc;
3732 int ltpp, utpp;
3733
3734 sc = sc_if->msk_softc;
3735 if ((sc_if->msk_flags & MSK_FLAG_RAMBUF) == 0)
3736 return;
3737
3738 /* Setup Rx Queue. */
3739 CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_rxq, RB_CTRL), RB_RST_CLR);
3740 CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_rxq, RB_START),
3741 sc->msk_rxqstart[sc_if->msk_port] / 8);
3742 CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_rxq, RB_END),
3743 sc->msk_rxqend[sc_if->msk_port] / 8);
3744 CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_rxq, RB_WP),
3745 sc->msk_rxqstart[sc_if->msk_port] / 8);
3746 CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_rxq, RB_RP),
3747 sc->msk_rxqstart[sc_if->msk_port] / 8);
3748
3749 utpp = (sc->msk_rxqend[sc_if->msk_port] + 1 -
3750 sc->msk_rxqstart[sc_if->msk_port] - MSK_RB_ULPP) / 8;
3751 ltpp = (sc->msk_rxqend[sc_if->msk_port] + 1 -
3752 sc->msk_rxqstart[sc_if->msk_port] - MSK_RB_LLPP_B) / 8;
3753 if (sc->msk_rxqsize < MSK_MIN_RXQ_SIZE)
3754 ltpp += (MSK_RB_LLPP_B - MSK_RB_LLPP_S) / 8;
3755 CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_rxq, RB_RX_UTPP), utpp);
3756 CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_rxq, RB_RX_LTPP), ltpp);
3757 /* Set Rx priority(RB_RX_UTHP/RB_RX_LTHP) thresholds? */
3758
3759 CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_rxq, RB_CTRL), RB_ENA_OP_MD);
3760 CSR_READ_1(sc, RB_ADDR(sc_if->msk_rxq, RB_CTRL));
3761
3762 /* Setup Tx Queue. */
3763 CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_txq, RB_CTRL), RB_RST_CLR);
3764 CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_txq, RB_START),
3765 sc->msk_txqstart[sc_if->msk_port] / 8);
3766 CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_txq, RB_END),
3767 sc->msk_txqend[sc_if->msk_port] / 8);
3768 CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_txq, RB_WP),
3769 sc->msk_txqstart[sc_if->msk_port] / 8);
3770 CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_txq, RB_RP),
3771 sc->msk_txqstart[sc_if->msk_port] / 8);
3772 /* Enable Store & Forward for Tx side. */
3773 CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_txq, RB_CTRL), RB_ENA_STFWD);
3774 CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_txq, RB_CTRL), RB_ENA_OP_MD);
3775 CSR_READ_1(sc, RB_ADDR(sc_if->msk_txq, RB_CTRL));
3776}
3777
3778static void
3779msk_set_prefetch(struct msk_softc *sc, int qaddr, bus_addr_t addr,
3780 uint32_t count)
3781{
3782
3783 /* Reset the prefetch unit. */
3784 CSR_WRITE_4(sc, Y2_PREF_Q_ADDR(qaddr, PREF_UNIT_CTRL_REG),
3785 PREF_UNIT_RST_SET);
3786 CSR_WRITE_4(sc, Y2_PREF_Q_ADDR(qaddr, PREF_UNIT_CTRL_REG),
3787 PREF_UNIT_RST_CLR);
3788 /* Set LE base address. */
3789 CSR_WRITE_4(sc, Y2_PREF_Q_ADDR(qaddr, PREF_UNIT_ADDR_LOW_REG),
3790 MSK_ADDR_LO(addr));
3791 CSR_WRITE_4(sc, Y2_PREF_Q_ADDR(qaddr, PREF_UNIT_ADDR_HI_REG),
3792 MSK_ADDR_HI(addr));
3793 /* Set the list last index. */
3794 CSR_WRITE_2(sc, Y2_PREF_Q_ADDR(qaddr, PREF_UNIT_LAST_IDX_REG),
3795 count);
3796 /* Turn on prefetch unit. */
3797 CSR_WRITE_4(sc, Y2_PREF_Q_ADDR(qaddr, PREF_UNIT_CTRL_REG),
3798 PREF_UNIT_OP_ON);
3799 /* Dummy read to ensure write. */
3800 CSR_READ_4(sc, Y2_PREF_Q_ADDR(qaddr, PREF_UNIT_CTRL_REG));
3801}
3802
3803static void
3804msk_stop(struct msk_if_softc *sc_if)
3805{
3806 struct msk_softc *sc;
3807 struct msk_txdesc *txd;
3808 struct msk_rxdesc *rxd;
3809 struct msk_rxdesc *jrxd;
3810 struct ifnet *ifp;
3811 uint32_t val;
3812 int i;
3813
3814 MSK_IF_LOCK_ASSERT(sc_if);
3815 sc = sc_if->msk_softc;
3816 ifp = sc_if->msk_ifp;
3817
3818 callout_stop(&sc_if->msk_tick_ch);
3819 sc_if->msk_watchdog_timer = 0;
3820
3821 /* Disable interrupts. */
3822 if (sc_if->msk_port == MSK_PORT_A) {
3823 sc->msk_intrmask &= ~Y2_IS_PORT_A;
3824 sc->msk_intrhwemask &= ~Y2_HWE_L1_MASK;
3825 } else {
3826 sc->msk_intrmask &= ~Y2_IS_PORT_B;
3827 sc->msk_intrhwemask &= ~Y2_HWE_L2_MASK;
3828 }
3829 CSR_WRITE_4(sc, B0_HWE_IMSK, sc->msk_intrhwemask);
3830 CSR_READ_4(sc, B0_HWE_IMSK);
3831 CSR_WRITE_4(sc, B0_IMSK, sc->msk_intrmask);
3832 CSR_READ_4(sc, B0_IMSK);
3833
3834 /* Disable Tx/Rx MAC. */
3835 val = GMAC_READ_2(sc, sc_if->msk_port, GM_GP_CTRL);
3836 val &= ~(GM_GPCR_RX_ENA | GM_GPCR_TX_ENA);
3837 GMAC_WRITE_2(sc, sc_if->msk_port, GM_GP_CTRL, val);
3838 /* Read again to ensure writing. */
3839 GMAC_READ_2(sc, sc_if->msk_port, GM_GP_CTRL);
3840 /* Update stats and clear counters. */
3841 msk_stats_update(sc_if);
3841
3842 /* Stop Tx BMU. */
3843 CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR), BMU_STOP);
3844 val = CSR_READ_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR));
3845 for (i = 0; i < MSK_TIMEOUT; i++) {
3846 if ((val & (BMU_STOP | BMU_IDLE)) == 0) {
3847 CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR),
3848 BMU_STOP);
3849 val = CSR_READ_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR));
3850 } else
3851 break;
3852 DELAY(1);
3853 }
3854 if (i == MSK_TIMEOUT)
3855 device_printf(sc_if->msk_if_dev, "Tx BMU stop failed\n");
3856 CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_txq, RB_CTRL),
3857 RB_RST_SET | RB_DIS_OP_MD);
3858
3859 /* Disable all GMAC interrupt. */
3860 CSR_WRITE_1(sc, MR_ADDR(sc_if->msk_port, GMAC_IRQ_MSK), 0);
3861 /* Disable PHY interrupt. */
3862 msk_phy_writereg(sc_if, PHY_ADDR_MARV, PHY_MARV_INT_MASK, 0);
3863
3864 /* Disable the RAM Interface Arbiter. */
3865 CSR_WRITE_1(sc, MR_ADDR(sc_if->msk_port, TXA_CTRL), TXA_DIS_ARB);
3866
3867 /* Reset the PCI FIFO of the async Tx queue */
3868 CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR),
3869 BMU_RST_SET | BMU_FIFO_RST);
3870
3871 /* Reset the Tx prefetch units. */
3872 CSR_WRITE_4(sc, Y2_PREF_Q_ADDR(sc_if->msk_txq, PREF_UNIT_CTRL_REG),
3873 PREF_UNIT_RST_SET);
3874
3875 /* Reset the RAM Buffer async Tx queue. */
3876 CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_txq, RB_CTRL), RB_RST_SET);
3877
3878 /* Reset Tx MAC FIFO. */
3879 CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T), GMF_RST_SET);
3880 /* Set Pause Off. */
3881 CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, GMAC_CTRL), GMC_PAUSE_OFF);
3882
3883 /*
3884 * The Rx Stop command will not work for Yukon-2 if the BMU does not
3885 * reach the end of packet and since we can't make sure that we have
3886 * incoming data, we must reset the BMU while it is not during a DMA
3887 * transfer. Since it is possible that the Rx path is still active,
3888 * the Rx RAM buffer will be stopped first, so any possible incoming
3889 * data will not trigger a DMA. After the RAM buffer is stopped, the
3890 * BMU is polled until any DMA in progress is ended and only then it
3891 * will be reset.
3892 */
3893
3894 /* Disable the RAM Buffer receive queue. */
3895 CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_rxq, RB_CTRL), RB_DIS_OP_MD);
3896 for (i = 0; i < MSK_TIMEOUT; i++) {
3897 if (CSR_READ_1(sc, RB_ADDR(sc_if->msk_rxq, Q_RSL)) ==
3898 CSR_READ_1(sc, RB_ADDR(sc_if->msk_rxq, Q_RL)))
3899 break;
3900 DELAY(1);
3901 }
3902 if (i == MSK_TIMEOUT)
3903 device_printf(sc_if->msk_if_dev, "Rx BMU stop failed\n");
3904 CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_rxq, Q_CSR),
3905 BMU_RST_SET | BMU_FIFO_RST);
3906 /* Reset the Rx prefetch unit. */
3907 CSR_WRITE_4(sc, Y2_PREF_Q_ADDR(sc_if->msk_rxq, PREF_UNIT_CTRL_REG),
3908 PREF_UNIT_RST_SET);
3909 /* Reset the RAM Buffer receive queue. */
3910 CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_rxq, RB_CTRL), RB_RST_SET);
3911 /* Reset Rx MAC FIFO. */
3912 CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_CTRL_T), GMF_RST_SET);
3913
3914 /* Free Rx and Tx mbufs still in the queues. */
3915 for (i = 0; i < MSK_RX_RING_CNT; i++) {
3916 rxd = &sc_if->msk_cdata.msk_rxdesc[i];
3917 if (rxd->rx_m != NULL) {
3918 bus_dmamap_sync(sc_if->msk_cdata.msk_rx_tag,
3919 rxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
3920 bus_dmamap_unload(sc_if->msk_cdata.msk_rx_tag,
3921 rxd->rx_dmamap);
3922 m_freem(rxd->rx_m);
3923 rxd->rx_m = NULL;
3924 }
3925 }
3926 for (i = 0; i < MSK_JUMBO_RX_RING_CNT; i++) {
3927 jrxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[i];
3928 if (jrxd->rx_m != NULL) {
3929 bus_dmamap_sync(sc_if->msk_cdata.msk_jumbo_rx_tag,
3930 jrxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
3931 bus_dmamap_unload(sc_if->msk_cdata.msk_jumbo_rx_tag,
3932 jrxd->rx_dmamap);
3933 m_freem(jrxd->rx_m);
3934 jrxd->rx_m = NULL;
3935 }
3936 }
3937 for (i = 0; i < MSK_TX_RING_CNT; i++) {
3938 txd = &sc_if->msk_cdata.msk_txdesc[i];
3939 if (txd->tx_m != NULL) {
3940 bus_dmamap_sync(sc_if->msk_cdata.msk_tx_tag,
3941 txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
3942 bus_dmamap_unload(sc_if->msk_cdata.msk_tx_tag,
3943 txd->tx_dmamap);
3944 m_freem(txd->tx_m);
3945 txd->tx_m = NULL;
3946 }
3947 }
3948
3949 /*
3950 * Mark the interface down.
3951 */
3952 ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
3953 sc_if->msk_link = 0;
3954}
3955
3842
3843 /* Stop Tx BMU. */
3844 CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR), BMU_STOP);
3845 val = CSR_READ_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR));
3846 for (i = 0; i < MSK_TIMEOUT; i++) {
3847 if ((val & (BMU_STOP | BMU_IDLE)) == 0) {
3848 CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR),
3849 BMU_STOP);
3850 val = CSR_READ_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR));
3851 } else
3852 break;
3853 DELAY(1);
3854 }
3855 if (i == MSK_TIMEOUT)
3856 device_printf(sc_if->msk_if_dev, "Tx BMU stop failed\n");
3857 CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_txq, RB_CTRL),
3858 RB_RST_SET | RB_DIS_OP_MD);
3859
3860 /* Disable all GMAC interrupt. */
3861 CSR_WRITE_1(sc, MR_ADDR(sc_if->msk_port, GMAC_IRQ_MSK), 0);
3862 /* Disable PHY interrupt. */
3863 msk_phy_writereg(sc_if, PHY_ADDR_MARV, PHY_MARV_INT_MASK, 0);
3864
3865 /* Disable the RAM Interface Arbiter. */
3866 CSR_WRITE_1(sc, MR_ADDR(sc_if->msk_port, TXA_CTRL), TXA_DIS_ARB);
3867
3868 /* Reset the PCI FIFO of the async Tx queue */
3869 CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR),
3870 BMU_RST_SET | BMU_FIFO_RST);
3871
3872 /* Reset the Tx prefetch units. */
3873 CSR_WRITE_4(sc, Y2_PREF_Q_ADDR(sc_if->msk_txq, PREF_UNIT_CTRL_REG),
3874 PREF_UNIT_RST_SET);
3875
3876 /* Reset the RAM Buffer async Tx queue. */
3877 CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_txq, RB_CTRL), RB_RST_SET);
3878
3879 /* Reset Tx MAC FIFO. */
3880 CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T), GMF_RST_SET);
3881 /* Set Pause Off. */
3882 CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, GMAC_CTRL), GMC_PAUSE_OFF);
3883
3884 /*
3885 * The Rx Stop command will not work for Yukon-2 if the BMU does not
3886 * reach the end of packet and since we can't make sure that we have
3887 * incoming data, we must reset the BMU while it is not during a DMA
3888 * transfer. Since it is possible that the Rx path is still active,
3889 * the Rx RAM buffer will be stopped first, so any possible incoming
3890 * data will not trigger a DMA. After the RAM buffer is stopped, the
3891 * BMU is polled until any DMA in progress is ended and only then it
3892 * will be reset.
3893 */
3894
3895 /* Disable the RAM Buffer receive queue. */
3896 CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_rxq, RB_CTRL), RB_DIS_OP_MD);
3897 for (i = 0; i < MSK_TIMEOUT; i++) {
3898 if (CSR_READ_1(sc, RB_ADDR(sc_if->msk_rxq, Q_RSL)) ==
3899 CSR_READ_1(sc, RB_ADDR(sc_if->msk_rxq, Q_RL)))
3900 break;
3901 DELAY(1);
3902 }
3903 if (i == MSK_TIMEOUT)
3904 device_printf(sc_if->msk_if_dev, "Rx BMU stop failed\n");
3905 CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_rxq, Q_CSR),
3906 BMU_RST_SET | BMU_FIFO_RST);
3907 /* Reset the Rx prefetch unit. */
3908 CSR_WRITE_4(sc, Y2_PREF_Q_ADDR(sc_if->msk_rxq, PREF_UNIT_CTRL_REG),
3909 PREF_UNIT_RST_SET);
3910 /* Reset the RAM Buffer receive queue. */
3911 CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_rxq, RB_CTRL), RB_RST_SET);
3912 /* Reset Rx MAC FIFO. */
3913 CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_CTRL_T), GMF_RST_SET);
3914
3915 /* Free Rx and Tx mbufs still in the queues. */
3916 for (i = 0; i < MSK_RX_RING_CNT; i++) {
3917 rxd = &sc_if->msk_cdata.msk_rxdesc[i];
3918 if (rxd->rx_m != NULL) {
3919 bus_dmamap_sync(sc_if->msk_cdata.msk_rx_tag,
3920 rxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
3921 bus_dmamap_unload(sc_if->msk_cdata.msk_rx_tag,
3922 rxd->rx_dmamap);
3923 m_freem(rxd->rx_m);
3924 rxd->rx_m = NULL;
3925 }
3926 }
3927 for (i = 0; i < MSK_JUMBO_RX_RING_CNT; i++) {
3928 jrxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[i];
3929 if (jrxd->rx_m != NULL) {
3930 bus_dmamap_sync(sc_if->msk_cdata.msk_jumbo_rx_tag,
3931 jrxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
3932 bus_dmamap_unload(sc_if->msk_cdata.msk_jumbo_rx_tag,
3933 jrxd->rx_dmamap);
3934 m_freem(jrxd->rx_m);
3935 jrxd->rx_m = NULL;
3936 }
3937 }
3938 for (i = 0; i < MSK_TX_RING_CNT; i++) {
3939 txd = &sc_if->msk_cdata.msk_txdesc[i];
3940 if (txd->tx_m != NULL) {
3941 bus_dmamap_sync(sc_if->msk_cdata.msk_tx_tag,
3942 txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
3943 bus_dmamap_unload(sc_if->msk_cdata.msk_tx_tag,
3944 txd->tx_dmamap);
3945 m_freem(txd->tx_m);
3946 txd->tx_m = NULL;
3947 }
3948 }
3949
3950 /*
3951 * Mark the interface down.
3952 */
3953 ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
3954 sc_if->msk_link = 0;
3955}
3956
3957/*
3958 * When GM_PAR_MIB_CLR bit of GM_PHY_ADDR is set, reading lower
3959 * counter clears high 16 bits of the counter such that accessing
3960 * lower 16 bits should be the last operation.
3961 */
3962#define MSK_READ_MIB32(x, y) \
3963 (((uint32_t)GMAC_READ_2(sc, x, (y) + 4)) << 16) + \
3964 (uint32_t)GMAC_READ_2(sc, x, y)
3965#define MSK_READ_MIB64(x, y) \
3966 (((uint64_t)MSK_READ_MIB32(x, (y) + 8)) << 32) + \
3967 (uint64_t)MSK_READ_MIB32(x, y)
3968
3969static void
3970msk_stats_clear(struct msk_if_softc *sc_if)
3971{
3972 struct msk_softc *sc;
3973 uint32_t reg;
3974 uint16_t gmac;
3975 int i;
3976
3977 MSK_IF_LOCK_ASSERT(sc_if);
3978
3979 sc = sc_if->msk_softc;
3980 /* Set MIB Clear Counter Mode. */
3981 gmac = GMAC_READ_2(sc, sc_if->msk_port, GM_PHY_ADDR);
3982 GMAC_WRITE_2(sc, sc_if->msk_port, GM_PHY_ADDR, gmac | GM_PAR_MIB_CLR);
3983 /* Read all MIB Counters with Clear Mode set. */
3984 for (i = GM_RXF_UC_OK; i <= GM_TXE_FIFO_UR; i++)
3985 reg = MSK_READ_MIB32(sc_if->msk_port, i);
3986 /* Clear MIB Clear Counter Mode. */
3987 gmac &= ~GM_PAR_MIB_CLR;
3988 GMAC_WRITE_2(sc, sc_if->msk_port, GM_PHY_ADDR, gmac);
3989}
3990
3991static void
3992msk_stats_update(struct msk_if_softc *sc_if)
3993{
3994 struct msk_softc *sc;
3995 struct ifnet *ifp;
3996 struct msk_hw_stats *stats;
3997 uint16_t gmac;
3998 uint32_t reg;
3999
4000 MSK_IF_LOCK_ASSERT(sc_if);
4001
4002 ifp = sc_if->msk_ifp;
4003 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
4004 return;
4005 sc = sc_if->msk_softc;
4006 stats = &sc_if->msk_stats;
4007 /* Set MIB Clear Counter Mode. */
4008 gmac = GMAC_READ_2(sc, sc_if->msk_port, GM_PHY_ADDR);
4009 GMAC_WRITE_2(sc, sc_if->msk_port, GM_PHY_ADDR, gmac | GM_PAR_MIB_CLR);
4010
4011 /* Rx stats. */
4012 stats->rx_ucast_frames +=
4013 MSK_READ_MIB32(sc_if->msk_port, GM_RXF_UC_OK);
4014 stats->rx_bcast_frames +=
4015 MSK_READ_MIB32(sc_if->msk_port, GM_RXF_BC_OK);
4016 stats->rx_pause_frames +=
4017 MSK_READ_MIB32(sc_if->msk_port, GM_RXF_MPAUSE);
4018 stats->rx_mcast_frames +=
4019 MSK_READ_MIB32(sc_if->msk_port, GM_RXF_MC_OK);
4020 stats->rx_crc_errs +=
4021 MSK_READ_MIB32(sc_if->msk_port, GM_RXF_FCS_ERR);
4022 reg = MSK_READ_MIB32(sc_if->msk_port, GM_RXF_SPARE1);
4023 stats->rx_good_octets +=
4024 MSK_READ_MIB64(sc_if->msk_port, GM_RXO_OK_LO);
4025 stats->rx_bad_octets +=
4026 MSK_READ_MIB64(sc_if->msk_port, GM_RXO_ERR_LO);
4027 stats->rx_runts +=
4028 MSK_READ_MIB32(sc_if->msk_port, GM_RXF_SHT);
4029 stats->rx_runt_errs +=
4030 MSK_READ_MIB32(sc_if->msk_port, GM_RXE_FRAG);
4031 stats->rx_pkts_64 +=
4032 MSK_READ_MIB32(sc_if->msk_port, GM_RXF_64B);
4033 stats->rx_pkts_65_127 +=
4034 MSK_READ_MIB32(sc_if->msk_port, GM_RXF_127B);
4035 stats->rx_pkts_128_255 +=
4036 MSK_READ_MIB32(sc_if->msk_port, GM_RXF_255B);
4037 stats->rx_pkts_256_511 +=
4038 MSK_READ_MIB32(sc_if->msk_port, GM_RXF_511B);
4039 stats->rx_pkts_512_1023 +=
4040 MSK_READ_MIB32(sc_if->msk_port, GM_RXF_1023B);
4041 stats->rx_pkts_1024_1518 +=
4042 MSK_READ_MIB32(sc_if->msk_port, GM_RXF_1518B);
4043 stats->rx_pkts_1519_max +=
4044 MSK_READ_MIB32(sc_if->msk_port, GM_RXF_MAX_SZ);
4045 stats->rx_pkts_too_long +=
4046 MSK_READ_MIB32(sc_if->msk_port, GM_RXF_LNG_ERR);
4047 stats->rx_pkts_jabbers +=
4048 MSK_READ_MIB32(sc_if->msk_port, GM_RXF_JAB_PKT);
4049 reg = MSK_READ_MIB32(sc_if->msk_port, GM_RXF_SPARE2);
4050 stats->rx_fifo_oflows +=
4051 MSK_READ_MIB32(sc_if->msk_port, GM_RXE_FIFO_OV);
4052 reg = MSK_READ_MIB32(sc_if->msk_port, GM_RXF_SPARE3);
4053
4054 /* Tx stats. */
4055 stats->tx_ucast_frames +=
4056 MSK_READ_MIB32(sc_if->msk_port, GM_TXF_UC_OK);
4057 stats->tx_bcast_frames +=
4058 MSK_READ_MIB32(sc_if->msk_port, GM_TXF_BC_OK);
4059 stats->tx_pause_frames +=
4060 MSK_READ_MIB32(sc_if->msk_port, GM_TXF_MPAUSE);
4061 stats->tx_mcast_frames +=
4062 MSK_READ_MIB32(sc_if->msk_port, GM_TXF_MC_OK);
4063 stats->tx_octets +=
4064 MSK_READ_MIB64(sc_if->msk_port, GM_TXO_OK_LO);
4065 stats->tx_pkts_64 +=
4066 MSK_READ_MIB32(sc_if->msk_port, GM_TXF_64B);
4067 stats->tx_pkts_65_127 +=
4068 MSK_READ_MIB32(sc_if->msk_port, GM_TXF_127B);
4069 stats->tx_pkts_128_255 +=
4070 MSK_READ_MIB32(sc_if->msk_port, GM_TXF_255B);
4071 stats->tx_pkts_256_511 +=
4072 MSK_READ_MIB32(sc_if->msk_port, GM_TXF_511B);
4073 stats->tx_pkts_512_1023 +=
4074 MSK_READ_MIB32(sc_if->msk_port, GM_TXF_1023B);
4075 stats->tx_pkts_1024_1518 +=
4076 MSK_READ_MIB32(sc_if->msk_port, GM_TXF_1518B);
4077 stats->tx_pkts_1519_max +=
4078 MSK_READ_MIB32(sc_if->msk_port, GM_TXF_MAX_SZ);
4079 reg = MSK_READ_MIB32(sc_if->msk_port, GM_TXF_SPARE1);
4080 stats->tx_colls +=
4081 MSK_READ_MIB32(sc_if->msk_port, GM_TXF_COL);
4082 stats->tx_late_colls +=
4083 MSK_READ_MIB32(sc_if->msk_port, GM_TXF_LAT_COL);
4084 stats->tx_excess_colls +=
4085 MSK_READ_MIB32(sc_if->msk_port, GM_TXF_ABO_COL);
4086 stats->tx_multi_colls +=
4087 MSK_READ_MIB32(sc_if->msk_port, GM_TXF_MUL_COL);
4088 stats->tx_single_colls +=
4089 MSK_READ_MIB32(sc_if->msk_port, GM_TXF_SNG_COL);
4090 stats->tx_underflows +=
4091 MSK_READ_MIB32(sc_if->msk_port, GM_TXE_FIFO_UR);
4092 /* Clear MIB Clear Counter Mode. */
4093 gmac &= ~GM_PAR_MIB_CLR;
4094 GMAC_WRITE_2(sc, sc_if->msk_port, GM_PHY_ADDR, gmac);
4095}
4096
3956static int
4097static int
4098msk_sysctl_stat32(SYSCTL_HANDLER_ARGS)
4099{
4100 struct msk_softc *sc;
4101 struct msk_if_softc *sc_if;
4102 uint32_t result, *stat;
4103 int off;
4104
4105 sc_if = (struct msk_if_softc *)arg1;
4106 sc = sc_if->msk_softc;
4107 off = arg2;
4108 stat = (uint32_t *)((uint8_t *)&sc_if->msk_stats + off);
4109
4110 MSK_IF_LOCK(sc_if);
4111 result = MSK_READ_MIB32(sc_if->msk_port, GM_MIB_CNT_BASE + off * 2);
4112 result += *stat;
4113 MSK_IF_UNLOCK(sc_if);
4114
4115 return (sysctl_handle_int(oidp, &result, 0, req));
4116}
4117
4118static int
4119msk_sysctl_stat64(SYSCTL_HANDLER_ARGS)
4120{
4121 struct msk_softc *sc;
4122 struct msk_if_softc *sc_if;
4123 uint64_t result, *stat;
4124 int off;
4125
4126 sc_if = (struct msk_if_softc *)arg1;
4127 sc = sc_if->msk_softc;
4128 off = arg2;
4129 stat = (uint64_t *)((uint8_t *)&sc_if->msk_stats + off);
4130
4131 MSK_IF_LOCK(sc_if);
4132 result = MSK_READ_MIB64(sc_if->msk_port, GM_MIB_CNT_BASE + off * 2);
4133 result += *stat;
4134 MSK_IF_UNLOCK(sc_if);
4135
4136 return (sysctl_handle_quad(oidp, &result, 0, req));
4137}
4138
4139#undef MSK_READ_MIB32
4140#undef MSK_READ_MIB64
4141
4142#define MSK_SYSCTL_STAT32(sc, c, o, p, n, d) \
4143 SYSCTL_ADD_PROC(c, p, OID_AUTO, o, CTLTYPE_UINT | CTLFLAG_RD, \
4144 sc, offsetof(struct msk_hw_stats, n), msk_sysctl_stat32, \
4145 "IU", d)
4146#define MSK_SYSCTL_STAT64(sc, c, o, p, n, d) \
4147 SYSCTL_ADD_PROC(c, p, OID_AUTO, o, CTLTYPE_UINT | CTLFLAG_RD, \
4148 sc, offsetof(struct msk_hw_stats, n), msk_sysctl_stat64, \
4149 "Q", d)
4150
4151static void
4152msk_sysctl_node(struct msk_if_softc *sc_if)
4153{
4154 struct sysctl_ctx_list *ctx;
4155 struct sysctl_oid_list *child, *schild;
4156 struct sysctl_oid *tree;
4157
4158 ctx = device_get_sysctl_ctx(sc_if->msk_if_dev);
4159 child = SYSCTL_CHILDREN(device_get_sysctl_tree(sc_if->msk_if_dev));
4160
4161 tree = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "stats", CTLFLAG_RD,
4162 NULL, "MSK Statistics");
4163 schild = child = SYSCTL_CHILDREN(tree);
4164 tree = SYSCTL_ADD_NODE(ctx, schild, OID_AUTO, "rx", CTLFLAG_RD,
4165 NULL, "MSK RX Statistics");
4166 child = SYSCTL_CHILDREN(tree);
4167 MSK_SYSCTL_STAT32(sc_if, ctx, "ucast_frames",
4168 child, rx_ucast_frames, "Good unicast frames");
4169 MSK_SYSCTL_STAT32(sc_if, ctx, "bcast_frames",
4170 child, rx_bcast_frames, "Good broadcast frames");
4171 MSK_SYSCTL_STAT32(sc_if, ctx, "pause_frames",
4172 child, rx_pause_frames, "Pause frames");
4173 MSK_SYSCTL_STAT32(sc_if, ctx, "mcast_frames",
4174 child, rx_mcast_frames, "Multicast frames");
4175 MSK_SYSCTL_STAT32(sc_if, ctx, "crc_errs",
4176 child, rx_crc_errs, "CRC errors");
4177 MSK_SYSCTL_STAT64(sc_if, ctx, "good_octets",
4178 child, rx_good_octets, "Good octets");
4179 MSK_SYSCTL_STAT64(sc_if, ctx, "bad_octets",
4180 child, rx_bad_octets, "Bad octets");
4181 MSK_SYSCTL_STAT32(sc_if, ctx, "frames_64",
4182 child, rx_pkts_64, "64 bytes frames");
4183 MSK_SYSCTL_STAT32(sc_if, ctx, "frames_65_127",
4184 child, rx_pkts_65_127, "65 to 127 bytes frames");
4185 MSK_SYSCTL_STAT32(sc_if, ctx, "frames_128_255",
4186 child, rx_pkts_128_255, "128 to 255 bytes frames");
4187 MSK_SYSCTL_STAT32(sc_if, ctx, "frames_256_511",
4188 child, rx_pkts_256_511, "256 to 511 bytes frames");
4189 MSK_SYSCTL_STAT32(sc_if, ctx, "frames_512_1023",
4190 child, rx_pkts_512_1023, "512 to 1023 bytes frames");
4191 MSK_SYSCTL_STAT32(sc_if, ctx, "frames_1024_1518",
4192 child, rx_pkts_1024_1518, "1024 to 1518 bytes frames");
4193 MSK_SYSCTL_STAT32(sc_if, ctx, "frames_1519_max",
4194 child, rx_pkts_1519_max, "1519 to max frames");
4195 MSK_SYSCTL_STAT32(sc_if, ctx, "frames_too_long",
4196 child, rx_pkts_too_long, "frames too long");
4197 MSK_SYSCTL_STAT32(sc_if, ctx, "jabbers",
4198 child, rx_pkts_jabbers, "Jabber errors");
4199 MSK_SYSCTL_STAT32(sc_if, ctx, "jabbers",
4200 child, rx_fifo_oflows, "FIFO overflows");
4201
4202 tree = SYSCTL_ADD_NODE(ctx, schild, OID_AUTO, "tx", CTLFLAG_RD,
4203 NULL, "MSK TX Statistics");
4204 child = SYSCTL_CHILDREN(tree);
4205 MSK_SYSCTL_STAT32(sc_if, ctx, "ucast_frames",
4206 child, tx_ucast_frames, "Unicast frames");
4207 MSK_SYSCTL_STAT32(sc_if, ctx, "bcast_frames",
4208 child, tx_bcast_frames, "Broadcast frames");
4209 MSK_SYSCTL_STAT32(sc_if, ctx, "pause_frames",
4210 child, tx_pause_frames, "Pause frames");
4211 MSK_SYSCTL_STAT32(sc_if, ctx, "mcast_frames",
4212 child, tx_mcast_frames, "Multicast frames");
4213 MSK_SYSCTL_STAT64(sc_if, ctx, "octets",
4214 child, tx_octets, "Octets");
4215 MSK_SYSCTL_STAT32(sc_if, ctx, "frames_64",
4216 child, tx_pkts_64, "64 bytes frames");
4217 MSK_SYSCTL_STAT32(sc_if, ctx, "frames_65_127",
4218 child, tx_pkts_65_127, "65 to 127 bytes frames");
4219 MSK_SYSCTL_STAT32(sc_if, ctx, "frames_128_255",
4220 child, tx_pkts_128_255, "128 to 255 bytes frames");
4221 MSK_SYSCTL_STAT32(sc_if, ctx, "frames_256_511",
4222 child, tx_pkts_256_511, "256 to 511 bytes frames");
4223 MSK_SYSCTL_STAT32(sc_if, ctx, "frames_512_1023",
4224 child, tx_pkts_512_1023, "512 to 1023 bytes frames");
4225 MSK_SYSCTL_STAT32(sc_if, ctx, "frames_1024_1518",
4226 child, tx_pkts_1024_1518, "1024 to 1518 bytes frames");
4227 MSK_SYSCTL_STAT32(sc_if, ctx, "frames_1519_max",
4228 child, tx_pkts_1519_max, "1519 to max frames");
4229 MSK_SYSCTL_STAT32(sc_if, ctx, "colls",
4230 child, tx_colls, "Collisions");
4231 MSK_SYSCTL_STAT32(sc_if, ctx, "late_colls",
4232 child, tx_late_colls, "Late collisions");
4233 MSK_SYSCTL_STAT32(sc_if, ctx, "excess_colls",
4234 child, tx_excess_colls, "Excessive collisions");
4235 MSK_SYSCTL_STAT32(sc_if, ctx, "multi_colls",
4236 child, tx_multi_colls, "Multiple collisions");
4237 MSK_SYSCTL_STAT32(sc_if, ctx, "single_colls",
4238 child, tx_single_colls, "Single collisions");
4239 MSK_SYSCTL_STAT32(sc_if, ctx, "underflows",
4240 child, tx_underflows, "FIFO underflows");
4241}
4242
4243#undef MSK_SYSCTL_STAT32
4244#undef MSK_SYSCTL_STAT64
4245
4246static int
3957sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high)
3958{
3959 int error, value;
3960
3961 if (!arg1)
3962 return (EINVAL);
3963 value = *(int *)arg1;
3964 error = sysctl_handle_int(oidp, &value, 0, req);
3965 if (error || !req->newptr)
3966 return (error);
3967 if (value < low || value > high)
3968 return (EINVAL);
3969 *(int *)arg1 = value;
3970
3971 return (0);
3972}
3973
3974static int
3975sysctl_hw_msk_proc_limit(SYSCTL_HANDLER_ARGS)
3976{
3977
3978 return (sysctl_int_range(oidp, arg1, arg2, req, MSK_PROC_MIN,
3979 MSK_PROC_MAX));
3980}
4247sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high)
4248{
4249 int error, value;
4250
4251 if (!arg1)
4252 return (EINVAL);
4253 value = *(int *)arg1;
4254 error = sysctl_handle_int(oidp, &value, 0, req);
4255 if (error || !req->newptr)
4256 return (error);
4257 if (value < low || value > high)
4258 return (EINVAL);
4259 *(int *)arg1 = value;
4260
4261 return (0);
4262}
4263
4264static int
4265sysctl_hw_msk_proc_limit(SYSCTL_HANDLER_ARGS)
4266{
4267
4268 return (sysctl_int_range(oidp, arg1, arg2, req, MSK_PROC_MIN,
4269 MSK_PROC_MAX));
4270}