Deleted Added
full compact
1/*-
2 * Copyright (c) 2011 Chelsio Communications, Inc.
3 * All rights reserved.
4 * Written by: Navdeep Parhar <np@FreeBSD.org>
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25 * SUCH DAMAGE.
26 */
27
28#include <sys/cdefs.h>
29__FBSDID("$FreeBSD: head/sys/dev/cxgbe/t4_sge.c 220643 2011-04-14 20:06:23Z np $");
29__FBSDID("$FreeBSD: head/sys/dev/cxgbe/t4_sge.c 220649 2011-04-15 03:09:27Z np $");
30
31#include "opt_inet.h"
32
33#include <sys/types.h>
34#include <sys/mbuf.h>
35#include <sys/socket.h>
36#include <sys/kernel.h>
37#include <sys/malloc.h>
38#include <sys/queue.h>
39#include <sys/taskqueue.h>
40#include <sys/sysctl.h>
41#include <net/bpf.h>
42#include <net/ethernet.h>
43#include <net/if.h>
44#include <net/if_vlan_var.h>
45#include <netinet/in.h>
46#include <netinet/ip.h>
47#include <netinet/tcp.h>
48
49#include "common/common.h"
50#include "common/t4_regs.h"
51#include "common/t4_regs_values.h"
52#include "common/t4_msg.h"
53#include "common/t4fw_interface.h"
54
55struct fl_buf_info {
56 int size;
57 int type;
58 uma_zone_t zone;
59};
60
61/* Filled up by t4_sge_modload */
62static struct fl_buf_info fl_buf_info[FL_BUF_SIZES];
63
64#define FL_BUF_SIZE(x) (fl_buf_info[x].size)
65#define FL_BUF_TYPE(x) (fl_buf_info[x].type)
66#define FL_BUF_ZONE(x) (fl_buf_info[x].zone)
67
68enum {
69 FL_PKTSHIFT = 2
70};
71
72#define FL_ALIGN min(CACHE_LINE_SIZE, 32)
73#if CACHE_LINE_SIZE > 64
74#define SPG_LEN 128
75#else
76#define SPG_LEN 64
77#endif
78
79/* Used to track coalesced tx work request */
80struct txpkts {
81 uint64_t *flitp; /* ptr to flit where next pkt should start */
82 uint8_t npkt; /* # of packets in this work request */
83 uint8_t nflits; /* # of flits used by this work request */
84 uint16_t plen; /* total payload (sum of all packets) */
85};
86
87/* A packet's SGL. This + m_pkthdr has all info needed for tx */
88struct sgl {
89 int nsegs; /* # of segments in the SGL, 0 means imm. tx */
90 int nflits; /* # of flits needed for the SGL */
91 bus_dma_segment_t seg[TX_SGL_SEGS];
92};
93
94static inline void init_iq(struct sge_iq *, struct adapter *, int, int, int,
95 int, iq_intr_handler_t *, char *);
96static inline void init_fl(struct sge_fl *, int, char *);
97static inline void init_txq(struct sge_txq *, int, char *);
98static int alloc_ring(struct adapter *, size_t, bus_dma_tag_t *, bus_dmamap_t *,
99 bus_addr_t *, void **);
100static int free_ring(struct adapter *, bus_dma_tag_t, bus_dmamap_t, bus_addr_t,
101 void *);
102static int alloc_iq_fl(struct port_info *, struct sge_iq *, struct sge_fl *,
103 int);
104static int free_iq_fl(struct port_info *, struct sge_iq *, struct sge_fl *);
105static int alloc_iq(struct sge_iq *, int);
106static int free_iq(struct sge_iq *);
107static int alloc_rxq(struct port_info *, struct sge_rxq *, int, int);
108static int free_rxq(struct port_info *, struct sge_rxq *);
109static int alloc_txq(struct port_info *, struct sge_txq *, int);
110static int free_txq(struct port_info *, struct sge_txq *);
111static void oneseg_dma_callback(void *, bus_dma_segment_t *, int, int);
112static inline bool is_new_response(const struct sge_iq *, struct rsp_ctrl **);
113static inline void iq_next(struct sge_iq *);
114static inline void ring_fl_db(struct adapter *, struct sge_fl *);
115static void refill_fl(struct sge_fl *, int);
116static int alloc_fl_sdesc(struct sge_fl *);
117static void free_fl_sdesc(struct sge_fl *);
118static int alloc_eq_maps(struct sge_eq *);
119static void free_eq_maps(struct sge_eq *);
120static void set_fl_tag_idx(struct sge_fl *, int);
121
122static int get_pkt_sgl(struct sge_txq *, struct mbuf **, struct sgl *, int);
123static int free_pkt_sgl(struct sge_txq *, struct sgl *);
124static int write_txpkt_wr(struct port_info *, struct sge_txq *, struct mbuf *,
125 struct sgl *);
126static int add_to_txpkts(struct port_info *, struct sge_txq *, struct txpkts *,
127 struct mbuf *, struct sgl *);
128static void write_txpkts_wr(struct sge_txq *, struct txpkts *);
129static inline void write_ulp_cpl_sgl(struct port_info *, struct sge_txq *,
130 struct txpkts *, struct mbuf *, struct sgl *);
131static int write_sgl_to_txd(struct sge_eq *, struct sgl *, caddr_t *);
132static inline void copy_to_txd(struct sge_eq *, caddr_t, caddr_t *, int);
133static inline void ring_tx_db(struct adapter *, struct sge_eq *);
134static inline int reclaimable(struct sge_eq *);
135static int reclaim_tx_descs(struct sge_eq *, int, int);
136static void write_eqflush_wr(struct sge_eq *);
137static __be64 get_flit(bus_dma_segment_t *, int, int);
138static int handle_sge_egr_update(struct adapter *,
139 const struct cpl_sge_egr_update *);
140
141/*
142 * Called on MOD_LOAD and fills up fl_buf_info[].
143 */
144void
145t4_sge_modload(void)
146{
147 int i;
148 int bufsize[FL_BUF_SIZES] = {
149 MCLBYTES,
150#if MJUMPAGESIZE != MCLBYTES
151 MJUMPAGESIZE,
152#endif
153 MJUM9BYTES,
154 MJUM16BYTES
155 };
156
157 for (i = 0; i < FL_BUF_SIZES; i++) {
158 FL_BUF_SIZE(i) = bufsize[i];
159 FL_BUF_TYPE(i) = m_gettype(bufsize[i]);
160 FL_BUF_ZONE(i) = m_getzone(bufsize[i]);
161 }
162}
163
164/**
165 * t4_sge_init - initialize SGE
166 * @sc: the adapter
167 *
168 * Performs SGE initialization needed every time after a chip reset.
169 * We do not initialize any of the queues here, instead the driver
170 * top-level must request them individually.
171 */
172void
173t4_sge_init(struct adapter *sc)
174{
175 struct sge *s = &sc->sge;
176 int i;
177
178 t4_set_reg_field(sc, A_SGE_CONTROL, V_PKTSHIFT(M_PKTSHIFT) |
179 V_INGPADBOUNDARY(M_INGPADBOUNDARY) |
180 F_EGRSTATUSPAGESIZE,
181 V_INGPADBOUNDARY(ilog2(FL_ALIGN) - 5) |
182 V_PKTSHIFT(FL_PKTSHIFT) |
183 F_RXPKTCPLMODE |
184 V_EGRSTATUSPAGESIZE(SPG_LEN == 128));
185 t4_set_reg_field(sc, A_SGE_HOST_PAGE_SIZE,
186 V_HOSTPAGESIZEPF0(M_HOSTPAGESIZEPF0),
187 V_HOSTPAGESIZEPF0(PAGE_SHIFT - 10));
188
189 for (i = 0; i < FL_BUF_SIZES; i++) {
190 t4_write_reg(sc, A_SGE_FL_BUFFER_SIZE0 + (4 * i),
191 FL_BUF_SIZE(i));
192 }
193
194 t4_write_reg(sc, A_SGE_INGRESS_RX_THRESHOLD,
195 V_THRESHOLD_0(s->counter_val[0]) |
196 V_THRESHOLD_1(s->counter_val[1]) |
197 V_THRESHOLD_2(s->counter_val[2]) |
198 V_THRESHOLD_3(s->counter_val[3]));
199
200 t4_write_reg(sc, A_SGE_TIMER_VALUE_0_AND_1,
201 V_TIMERVALUE0(us_to_core_ticks(sc, s->timer_val[0])) |
202 V_TIMERVALUE1(us_to_core_ticks(sc, s->timer_val[1])));
203 t4_write_reg(sc, A_SGE_TIMER_VALUE_2_AND_3,
204 V_TIMERVALUE2(us_to_core_ticks(sc, s->timer_val[2])) |
205 V_TIMERVALUE3(us_to_core_ticks(sc, s->timer_val[3])));
206 t4_write_reg(sc, A_SGE_TIMER_VALUE_4_AND_5,
207 V_TIMERVALUE4(us_to_core_ticks(sc, s->timer_val[4])) |
208 V_TIMERVALUE5(us_to_core_ticks(sc, s->timer_val[5])));
209}
210
211int
212t4_create_dma_tag(struct adapter *sc)
213{
214 int rc;
215
216 rc = bus_dma_tag_create(bus_get_dma_tag(sc->dev), 1, 0,
217 BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, BUS_SPACE_MAXSIZE,
218 BUS_SPACE_UNRESTRICTED, BUS_SPACE_MAXSIZE, BUS_DMA_ALLOCNOW, NULL,
219 NULL, &sc->dmat);
220 if (rc != 0) {
221 device_printf(sc->dev,
222 "failed to create main DMA tag: %d\n", rc);
223 }
224
225 return (rc);
226}
227
228int
229t4_destroy_dma_tag(struct adapter *sc)
230{
231 if (sc->dmat)
232 bus_dma_tag_destroy(sc->dmat);
233
234 return (0);
235}
236
237/*
238 * Allocate and initialize the firmware event queue and the forwarded interrupt
239 * queues, if any. The adapter owns all these queues as they are not associated
240 * with any particular port.
241 *
242 * Returns errno on failure. Resources allocated up to that point may still be
243 * allocated. Caller is responsible for cleanup in case this function fails.
244 */
245int
246t4_setup_adapter_iqs(struct adapter *sc)
247{
248 int i, rc;
249 struct sge_iq *iq, *fwq;
250 iq_intr_handler_t *handler;
251 char name[16];
252
253 ADAPTER_LOCK_ASSERT_NOTOWNED(sc);
254
255 fwq = &sc->sge.fwq;
256 if (sc->flags & INTR_FWD) {
257 iq = &sc->sge.fiq[0];
258
259 /*
260 * Forwarded interrupt queues - allocate 1 if there's only 1
261 * vector available, one less than the number of vectors
262 * otherwise (the first vector is reserved for the error
263 * interrupt in that case).
264 */
265 i = sc->intr_count > 1 ? 1 : 0;
266 for (; i < sc->intr_count; i++, iq++) {
267
268 snprintf(name, sizeof(name), "%s fiq%d",
269 device_get_nameunit(sc->dev), i);
270 init_iq(iq, sc, 0, 0, (sc->sge.nrxq + 1) * 2, 16, NULL,
271 name);
272
273 rc = alloc_iq(iq, i);
274 if (rc != 0) {
275 device_printf(sc->dev,
276 "failed to create fwd intr queue %d: %d\n",
277 i, rc);
278 return (rc);
279 }
280 }
281
282 handler = t4_intr_evt;
282 handler = t4_evt_rx;
283 i = 0; /* forward fwq's interrupt to the first fiq */
284 } else {
285 handler = NULL;
286 i = 1; /* fwq should use vector 1 (0 is used by error) */
287 }
288
289 snprintf(name, sizeof(name), "%s fwq", device_get_nameunit(sc->dev));
290 init_iq(fwq, sc, 0, 0, FW_IQ_QSIZE, FW_IQ_ESIZE, handler, name);
291 rc = alloc_iq(fwq, i);
292 if (rc != 0) {
293 device_printf(sc->dev,
294 "failed to create firmware event queue: %d\n", rc);
295 }
296
297 return (rc);
298}
299
300/*
301 * Idempotent
302 */
303int
304t4_teardown_adapter_iqs(struct adapter *sc)
305{
306 int i;
307 struct sge_iq *iq;
308
309 ADAPTER_LOCK_ASSERT_NOTOWNED(sc);
310
311 iq = &sc->sge.fwq;
312 free_iq(iq);
313 if (sc->flags & INTR_FWD) {
314 for (i = 0; i < NFIQ(sc); i++) {
315 iq = &sc->sge.fiq[i];
316 free_iq(iq);
317 }
318 }
319
320 return (0);
321}
322
323int
324t4_setup_eth_queues(struct port_info *pi)
325{
326 int rc = 0, i, intr_idx;
327 struct sge_rxq *rxq;
328 struct sge_txq *txq;
329 char name[16];
330 struct adapter *sc = pi->adapter;
331
332 if (sysctl_ctx_init(&pi->ctx) == 0) {
333 struct sysctl_oid *oid = device_get_sysctl_tree(pi->dev);
334 struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid);
335
336 pi->oid_rxq = SYSCTL_ADD_NODE(&pi->ctx, children, OID_AUTO,
337 "rxq", CTLFLAG_RD, NULL, "rx queues");
338 pi->oid_txq = SYSCTL_ADD_NODE(&pi->ctx, children, OID_AUTO,
339 "txq", CTLFLAG_RD, NULL, "tx queues");
340 }
341
342 for_each_rxq(pi, i, rxq) {
343
344 snprintf(name, sizeof(name), "%s rxq%d-iq",
345 device_get_nameunit(pi->dev), i);
346 init_iq(&rxq->iq, sc, pi->tmr_idx, pi->pktc_idx,
347 pi->qsize_rxq, RX_IQ_ESIZE,
348 sc->flags & INTR_FWD ? t4_intr_data: NULL, name);
348 sc->flags & INTR_FWD ? t4_eth_rx : NULL, name);
349
350 snprintf(name, sizeof(name), "%s rxq%d-fl",
351 device_get_nameunit(pi->dev), i);
352 init_fl(&rxq->fl, pi->qsize_rxq / 8, name);
353
354 if (sc->flags & INTR_FWD)
355 intr_idx = (pi->first_rxq + i) % NFIQ(sc);
356 else
357 intr_idx = pi->first_rxq + i + 2;
358
359 rc = alloc_rxq(pi, rxq, intr_idx, i);
360 if (rc != 0)
361 goto done;
362
363 intr_idx++;
364 }
365
366 for_each_txq(pi, i, txq) {
367
368 snprintf(name, sizeof(name), "%s txq%d",
369 device_get_nameunit(pi->dev), i);
370 init_txq(txq, pi->qsize_txq, name);
371
372 rc = alloc_txq(pi, txq, i);
373 if (rc != 0)
374 goto done;
375 }
376
377done:
378 if (rc)
379 t4_teardown_eth_queues(pi);
380
381 return (rc);
382}
383
384/*
385 * Idempotent
386 */
387int
388t4_teardown_eth_queues(struct port_info *pi)
389{
390 int i;
391 struct sge_rxq *rxq;
392 struct sge_txq *txq;
393
394 /* Do this before freeing the queues */
395 if (pi->oid_txq || pi->oid_rxq) {
396 sysctl_ctx_free(&pi->ctx);
397 pi->oid_txq = pi->oid_rxq = NULL;
398 }
399
400 for_each_txq(pi, i, txq) {
401 free_txq(pi, txq);
402 }
403
404 for_each_rxq(pi, i, rxq) {
405 free_rxq(pi, rxq);
406 }
407
408 return (0);
409}
410
411/* Deals with errors and forwarded interrupts */
412void
413t4_intr_all(void *arg)
414{
415 struct adapter *sc = arg;
416
417 t4_intr_err(arg);
418 t4_intr_fwd(&sc->sge.fiq[0]);
419}
420
421/* Deals with forwarded interrupts on the given ingress queue */
422void
423t4_intr_fwd(void *arg)
424{
425 struct sge_iq *iq = arg, *q;
426 struct adapter *sc = iq->adapter;
427 struct rsp_ctrl *ctrl;
428 int ndesc_pending = 0, ndesc_total = 0;
429 int qid;
430
431 if (!atomic_cmpset_32(&iq->state, IQS_IDLE, IQS_BUSY))
432 return;
433
434 while (is_new_response(iq, &ctrl)) {
435
436 rmb();
437
438 /* Only interrupt muxing expected on this queue */
439 KASSERT(G_RSPD_TYPE(ctrl->u.type_gen) == X_RSPD_TYPE_INTR,
440 ("unexpected event on forwarded interrupt queue: %x",
441 G_RSPD_TYPE(ctrl->u.type_gen)));
442
443 qid = ntohl(ctrl->pldbuflen_qid) - sc->sge.iq_start;
444 q = sc->sge.iqmap[qid];
445
446 q->handler(q);
447
448 ndesc_total++;
449 if (++ndesc_pending >= iq->qsize / 4) {
450 t4_write_reg(sc, MYPF_REG(A_SGE_PF_GTS),
451 V_CIDXINC(ndesc_pending) |
452 V_INGRESSQID(iq->cntxt_id) |
453 V_SEINTARM(
454 V_QINTR_TIMER_IDX(X_TIMERREG_UPDATE_CIDX)));
455 ndesc_pending = 0;
456 }
457
458 iq_next(iq);
459 }
460
461 if (ndesc_total > 0) {
462 t4_write_reg(sc, MYPF_REG(A_SGE_PF_GTS),
463 V_CIDXINC(ndesc_pending) | V_INGRESSQID((u32)iq->cntxt_id) |
464 V_SEINTARM(iq->intr_params));
465 }
466
467 atomic_cmpset_32(&iq->state, IQS_BUSY, IQS_IDLE);
468}
469
470/* Deals with error interrupts */
471void
472t4_intr_err(void *arg)
473{
474 struct adapter *sc = arg;
475
476 if (sc->intr_type == INTR_INTX)
477 t4_write_reg(sc, MYPF_REG(A_PCIE_PF_CLI), 0);
478
479 t4_slow_intr_handler(sc);
480}
481
482/* Deals with the firmware event queue */
483void
484t4_intr_evt(void *arg)
485{
486 struct sge_iq *iq = arg;
487
488 if (!atomic_cmpset_32(&iq->state, IQS_IDLE, IQS_BUSY))
489 return;
490
491 t4_evt_rx(arg);
492
493 atomic_cmpset_32(&iq->state, IQS_BUSY, IQS_IDLE);
494}
495
496void
497t4_intr_data(void *arg)
498{
499 struct sge_iq *iq = arg;
500
501 if (!atomic_cmpset_32(&iq->state, IQS_IDLE, IQS_BUSY))
502 return;
503
504 t4_eth_rx(arg);
505
506 atomic_cmpset_32(&iq->state, IQS_BUSY, IQS_IDLE);
507}
508
509void
510t4_evt_rx(void *arg)
511{
512 struct sge_iq *iq = arg;
513 struct adapter *sc = iq->adapter;
514 struct rsp_ctrl *ctrl;
515 const struct rss_header *rss;
516 int ndesc_pending = 0, ndesc_total = 0;
517
518 KASSERT(iq == &sc->sge.fwq, ("%s: unexpected ingress queue", __func__));
519
520 while (is_new_response(iq, &ctrl)) {
521
522 rmb();
523
524 rss = (const void *)iq->cdesc;
525
526 /* Should only get CPL on this queue */
527 KASSERT(G_RSPD_TYPE(ctrl->u.type_gen) == X_RSPD_TYPE_CPL,
528 ("%s: unexpected type %d", __func__,
529 G_RSPD_TYPE(ctrl->u.type_gen)));
530
531 switch (rss->opcode) {
532 case CPL_FW4_MSG:
533 case CPL_FW6_MSG: {
534 const struct cpl_fw6_msg *cpl;
535
536 cpl = (const void *)(rss + 1);
537 if (cpl->type == FW6_TYPE_CMD_RPL)
538 t4_handle_fw_rpl(sc, cpl->data);
539
540 break;
541 }
542 case CPL_SGE_EGR_UPDATE:
543 handle_sge_egr_update(sc, (const void *)(rss + 1));
544 break;
545
546 default:
547 device_printf(sc->dev,
548 "can't handle CPL opcode %d.", rss->opcode);
549 }
550
551 ndesc_total++;
552 if (++ndesc_pending >= iq->qsize / 4) {
553 t4_write_reg(sc, MYPF_REG(A_SGE_PF_GTS),
554 V_CIDXINC(ndesc_pending) |
555 V_INGRESSQID(iq->cntxt_id) |
556 V_SEINTARM(
557 V_QINTR_TIMER_IDX(X_TIMERREG_UPDATE_CIDX)));
558 ndesc_pending = 0;
559 }
560 iq_next(iq);
561 }
562
563 if (ndesc_total > 0) {
564 t4_write_reg(sc, MYPF_REG(A_SGE_PF_GTS),
565 V_CIDXINC(ndesc_pending) | V_INGRESSQID(iq->cntxt_id) |
566 V_SEINTARM(iq->intr_params));
567 }
568}
569
570void
540t4_intr_data(void *arg)
571t4_eth_rx(void *arg)
572{
573 struct sge_rxq *rxq = arg;
574 struct sge_iq *iq = arg;
575 struct adapter *sc = iq->adapter;
576 struct rsp_ctrl *ctrl;
577 struct ifnet *ifp = rxq->ifp;
578 struct sge_fl *fl = &rxq->fl;
579 struct fl_sdesc *sd = &fl->sdesc[fl->cidx], *sd_next;
580 const struct rss_header *rss;
581 const struct cpl_rx_pkt *cpl;
582 uint32_t len;
583 int ndescs = 0, i;
584 struct mbuf *m0, *m;
585#ifdef INET
586 struct lro_ctrl *lro = &rxq->lro;
587 struct lro_entry *l;
588#endif
589
590 prefetch(sd->m);
591 prefetch(sd->cl);
592
593 iq->intr_next = iq->intr_params;
594 while (is_new_response(iq, &ctrl)) {
595
596 rmb();
597
598 rss = (const void *)iq->cdesc;
599 i = G_RSPD_TYPE(ctrl->u.type_gen);
600
601 if (__predict_false(i == X_RSPD_TYPE_CPL)) {
602
603 /* Can't be anything except an egress update */
604 KASSERT(rss->opcode == CPL_SGE_EGR_UPDATE,
605 ("%s: unexpected CPL %x", __func__, rss->opcode));
606
607 handle_sge_egr_update(sc, (const void *)(rss + 1));
608 goto nextdesc;
609 }
610 KASSERT(i == X_RSPD_TYPE_FLBUF && rss->opcode == CPL_RX_PKT,
611 ("%s: unexpected CPL %x rsp %d", __func__, rss->opcode, i));
612
613 sd_next = sd + 1;
614 if (__predict_false(fl->cidx + 1 == fl->cap))
615 sd_next = fl->sdesc;
616 prefetch(sd_next->m);
617 prefetch(sd_next->cl);
618
619 cpl = (const void *)(rss + 1);
620
621 m0 = sd->m;
622 sd->m = NULL; /* consumed */
623
624 len = be32toh(ctrl->pldbuflen_qid);
625 if (__predict_false((len & F_RSPD_NEWBUF) == 0))
626 panic("%s: cannot handle packed frames", __func__);
627 len = G_RSPD_LEN(len);
628
629 bus_dmamap_sync(fl->tag[sd->tag_idx], sd->map,
630 BUS_DMASYNC_POSTREAD);
631
632 m_init(m0, NULL, 0, M_NOWAIT, MT_DATA, M_PKTHDR);
633 if (len < MINCLSIZE) {
634 /* copy data to mbuf, buffer will be recycled */
635 bcopy(sd->cl, mtod(m0, caddr_t), len);
636 m0->m_len = len;
637 } else {
638 bus_dmamap_unload(fl->tag[sd->tag_idx], sd->map);
639 m_cljset(m0, sd->cl, FL_BUF_TYPE(sd->tag_idx));
640 sd->cl = NULL; /* consumed */
641 m0->m_len = min(len, FL_BUF_SIZE(sd->tag_idx));
642 }
643
644 len -= FL_PKTSHIFT;
645 m0->m_len -= FL_PKTSHIFT;
646 m0->m_data += FL_PKTSHIFT;
647
648 m0->m_pkthdr.len = len;
649 m0->m_pkthdr.rcvif = ifp;
650 m0->m_flags |= M_FLOWID;
651 m0->m_pkthdr.flowid = rss->hash_val;
652
653 if (cpl->csum_calc && !cpl->err_vec &&
654 ifp->if_capenable & IFCAP_RXCSUM) {
655 m0->m_pkthdr.csum_flags |= (CSUM_IP_CHECKED |
656 CSUM_IP_VALID | CSUM_DATA_VALID | CSUM_PSEUDO_HDR);
657 if (cpl->ip_frag)
658 m0->m_pkthdr.csum_data = be16toh(cpl->csum);
659 else
660 m0->m_pkthdr.csum_data = 0xffff;
661 rxq->rxcsum++;
662 }
663
664 if (cpl->vlan_ex) {
665 m0->m_pkthdr.ether_vtag = be16toh(cpl->vlan);
666 m0->m_flags |= M_VLANTAG;
667 rxq->vlan_extraction++;
668 }
669
670 i = 1; /* # of fl sdesc used */
671 sd = sd_next;
672 if (__predict_false(++fl->cidx == fl->cap))
673 fl->cidx = 0;
674
675 len -= m0->m_len;
676 m = m0;
677 while (len) {
678 i++;
679
680 sd_next = sd + 1;
681 if (__predict_false(fl->cidx + 1 == fl->cap))
682 sd_next = fl->sdesc;
683 prefetch(sd_next->m);
684 prefetch(sd_next->cl);
685
686 m->m_next = sd->m;
687 sd->m = NULL; /* consumed */
688 m = m->m_next;
689
690 bus_dmamap_sync(fl->tag[sd->tag_idx], sd->map,
691 BUS_DMASYNC_POSTREAD);
692
693 m_init(m, NULL, 0, M_NOWAIT, MT_DATA, 0);
694 if (len <= MLEN) {
695 bcopy(sd->cl, mtod(m, caddr_t), len);
696 m->m_len = len;
697 } else {
698 bus_dmamap_unload(fl->tag[sd->tag_idx],
699 sd->map);
700 m_cljset(m, sd->cl, FL_BUF_TYPE(sd->tag_idx));
701 sd->cl = NULL; /* consumed */
702 m->m_len = min(len, FL_BUF_SIZE(sd->tag_idx));
703 }
704
705 i++;
706 sd = sd_next;
707 if (__predict_false(++fl->cidx == fl->cap))
708 fl->cidx = 0;
709
710 len -= m->m_len;
711 }
712
713#ifdef INET
714 if (cpl->l2info & htobe32(F_RXF_LRO) &&
715 rxq->flags & RXQ_LRO_ENABLED &&
716 tcp_lro_rx(lro, m0, 0) == 0) {
717 /* queued for LRO */
718 } else
719#endif
720 ifp->if_input(ifp, m0);
721
722 FL_LOCK(fl);
723 fl->needed += i;
724 if (fl->needed >= 32)
725 refill_fl(fl, 64);
726 if (fl->pending >= 32)
727 ring_fl_db(sc, fl);
728 FL_UNLOCK(fl);
729
730nextdesc: ndescs++;
731 iq_next(iq);
732
733 if (ndescs > 32) {
734 t4_write_reg(sc, MYPF_REG(A_SGE_PF_GTS),
735 V_CIDXINC(ndescs) |
736 V_INGRESSQID((u32)iq->cntxt_id) |
737 V_SEINTARM(V_QINTR_TIMER_IDX(X_TIMERREG_UPDATE_CIDX)));
738 ndescs = 0;
739 }
740 }
741
742#ifdef INET
743 while (!SLIST_EMPTY(&lro->lro_active)) {
744 l = SLIST_FIRST(&lro->lro_active);
745 SLIST_REMOVE_HEAD(&lro->lro_active, next);
746 tcp_lro_flush(lro, l);
747 }
748#endif
749
750 t4_write_reg(sc, MYPF_REG(A_SGE_PF_GTS), V_CIDXINC(ndescs) |
751 V_INGRESSQID((u32)iq->cntxt_id) | V_SEINTARM(iq->intr_next));
752
753 FL_LOCK(fl);
754 if (fl->needed >= 32)
755 refill_fl(fl, 128);
756 if (fl->pending >= 8)
757 ring_fl_db(sc, fl);
758 FL_UNLOCK(fl);
759}
760
761/* Per-packet header in a coalesced tx WR, before the SGL starts (in flits) */
762#define TXPKTS_PKT_HDR ((\
763 sizeof(struct ulp_txpkt) + \
764 sizeof(struct ulptx_idata) + \
765 sizeof(struct cpl_tx_pkt_core) \
766 ) / 8)
767
768/* Header of a coalesced tx WR, before SGL of first packet (in flits) */
769#define TXPKTS_WR_HDR (\
770 sizeof(struct fw_eth_tx_pkts_wr) / 8 + \
771 TXPKTS_PKT_HDR)
772
773/* Header of a tx WR, before SGL of first packet (in flits) */
774#define TXPKT_WR_HDR ((\
775 sizeof(struct fw_eth_tx_pkt_wr) + \
776 sizeof(struct cpl_tx_pkt_core) \
777 ) / 8 )
778
779/* Header of a tx LSO WR, before SGL of first packet (in flits) */
780#define TXPKT_LSO_WR_HDR ((\
781 sizeof(struct fw_eth_tx_pkt_wr) + \
782 sizeof(struct cpl_tx_pkt_lso) + \
783 sizeof(struct cpl_tx_pkt_core) \
784 ) / 8 )
785
786int
787t4_eth_tx(struct ifnet *ifp, struct sge_txq *txq, struct mbuf *m)
788{
789 struct port_info *pi = (void *)ifp->if_softc;
790 struct adapter *sc = pi->adapter;
791 struct sge_eq *eq = &txq->eq;
792 struct buf_ring *br = eq->br;
793 struct mbuf *next;
794 int rc, coalescing, can_reclaim;
795 struct txpkts txpkts;
796 struct sgl sgl;
797
798 TXQ_LOCK_ASSERT_OWNED(txq);
799 KASSERT(m, ("%s: called with nothing to do.", __func__));
800
801 prefetch(&eq->desc[eq->pidx]);
802 prefetch(&eq->sdesc[eq->pidx]);
803
804 txpkts.npkt = 0;/* indicates there's nothing in txpkts */
805 coalescing = 0;
806
807 if (eq->avail < 8)
808 reclaim_tx_descs(eq, 0, 8);
809
810 for (; m; m = next ? next : drbr_dequeue(ifp, br)) {
811
812 if (eq->avail < 8)
813 break;
814
815 next = m->m_nextpkt;
816 m->m_nextpkt = NULL;
817
818 if (next || buf_ring_peek(br))
819 coalescing = 1;
820
821 rc = get_pkt_sgl(txq, &m, &sgl, coalescing);
822 if (rc != 0) {
823 if (rc == ENOMEM) {
824
825 /* Short of resources, suspend tx */
826
827 m->m_nextpkt = next;
828 break;
829 }
830
831 /*
832 * Unrecoverable error for this packet, throw it away
833 * and move on to the next. get_pkt_sgl may already
834 * have freed m (it will be NULL in that case and the
835 * m_freem here is still safe).
836 */
837
838 m_freem(m);
839 continue;
840 }
841
842 if (coalescing &&
843 add_to_txpkts(pi, txq, &txpkts, m, &sgl) == 0) {
844
845 /* Successfully absorbed into txpkts */
846
847 write_ulp_cpl_sgl(pi, txq, &txpkts, m, &sgl);
848 goto doorbell;
849 }
850
851 /*
852 * We weren't coalescing to begin with, or current frame could
853 * not be coalesced (add_to_txpkts flushes txpkts if a frame
854 * given to it can't be coalesced). Either way there should be
855 * nothing in txpkts.
856 */
857 KASSERT(txpkts.npkt == 0,
858 ("%s: txpkts not empty: %d", __func__, txpkts.npkt));
859
860 /* We're sending out individual packets now */
861 coalescing = 0;
862
863 if (eq->avail < 8)
864 reclaim_tx_descs(eq, 0, 8);
865 rc = write_txpkt_wr(pi, txq, m, &sgl);
866 if (rc != 0) {
867
868 /* Short of hardware descriptors, suspend tx */
869
870 /*
871 * This is an unlikely but expensive failure. We've
872 * done all the hard work (DMA mappings etc.) and now we
873 * can't send out the packet. What's worse, we have to
874 * spend even more time freeing up everything in sgl.
875 */
876 txq->no_desc++;
877 free_pkt_sgl(txq, &sgl);
878
879 m->m_nextpkt = next;
880 break;
881 }
882
883 ETHER_BPF_MTAP(ifp, m);
884 if (sgl.nsegs == 0)
885 m_freem(m);
886
887doorbell:
888 /* Fewer and fewer doorbells as the queue fills up */
889 if (eq->pending >= (1 << (fls(eq->qsize - eq->avail) / 2)))
890 ring_tx_db(sc, eq);
891
892 can_reclaim = reclaimable(eq);
893 if (can_reclaim >= 32)
894 reclaim_tx_descs(eq, can_reclaim, 32);
895 }
896
897 if (txpkts.npkt > 0)
898 write_txpkts_wr(txq, &txpkts);
899
900 /*
901 * m not NULL means there was an error but we haven't thrown it away.
902 * This can happen when we're short of tx descriptors (no_desc) or maybe
903 * even DMA maps (no_dmamap). Either way, a credit flush and reclaim
904 * will get things going again.
905 *
906 * If eq->avail is already 0 we know a credit flush was requested in the
907 * WR that reduced it to 0 so we don't need another flush (we don't have
908 * any descriptor for a flush WR anyway, duh).
909 */
910 if (m && eq->avail > 0 && !(eq->flags & EQ_CRFLUSHED))
911 write_eqflush_wr(eq);
912 txq->m = m;
913
914 if (eq->pending)
915 ring_tx_db(sc, eq);
916
917 can_reclaim = reclaimable(eq);
918 if (can_reclaim >= 32)
919 reclaim_tx_descs(eq, can_reclaim, 128);
920
921 return (0);
922}
923
924void
925t4_update_fl_bufsize(struct ifnet *ifp)
926{
927 struct port_info *pi = ifp->if_softc;
928 struct sge_rxq *rxq;
929 struct sge_fl *fl;
930 int i;
931
932 for_each_rxq(pi, i, rxq) {
933 fl = &rxq->fl;
934
935 FL_LOCK(fl);
936 set_fl_tag_idx(fl, ifp->if_mtu);
937 FL_UNLOCK(fl);
938 }
939}
940
941/*
942 * A non-NULL handler indicates this iq will not receive direct interrupts, the
943 * handler will be invoked by a forwarded interrupt queue.
944 */
945static inline void
946init_iq(struct sge_iq *iq, struct adapter *sc, int tmr_idx, int pktc_idx,
947 int qsize, int esize, iq_intr_handler_t *handler, char *name)
948{
949 KASSERT(tmr_idx >= 0 && tmr_idx < SGE_NTIMERS,
950 ("%s: bad tmr_idx %d", __func__, tmr_idx));
951 KASSERT(pktc_idx < SGE_NCOUNTERS, /* -ve is ok, means don't use */
952 ("%s: bad pktc_idx %d", __func__, pktc_idx));
953
954 iq->flags = 0;
955 iq->adapter = sc;
956 iq->intr_params = V_QINTR_TIMER_IDX(tmr_idx) |
957 V_QINTR_CNT_EN(pktc_idx >= 0);
958 iq->intr_pktc_idx = pktc_idx;
959 iq->qsize = roundup(qsize, 16); /* See FW_IQ_CMD/iqsize */
960 iq->esize = max(esize, 16); /* See FW_IQ_CMD/iqesize */
961 iq->handler = handler;
962 strlcpy(iq->lockname, name, sizeof(iq->lockname));
963}
964
965static inline void
966init_fl(struct sge_fl *fl, int qsize, char *name)
967{
968 fl->qsize = qsize;
969 strlcpy(fl->lockname, name, sizeof(fl->lockname));
970}
971
972static inline void
973init_txq(struct sge_txq *txq, int qsize, char *name)
974{
975 txq->eq.qsize = qsize;
976 strlcpy(txq->eq.lockname, name, sizeof(txq->eq.lockname));
977}
978
979static int
980alloc_ring(struct adapter *sc, size_t len, bus_dma_tag_t *tag,
981 bus_dmamap_t *map, bus_addr_t *pa, void **va)
982{
983 int rc;
984
985 rc = bus_dma_tag_create(sc->dmat, 512, 0, BUS_SPACE_MAXADDR,
986 BUS_SPACE_MAXADDR, NULL, NULL, len, 1, len, 0, NULL, NULL, tag);
987 if (rc != 0) {
988 device_printf(sc->dev, "cannot allocate DMA tag: %d\n", rc);
989 goto done;
990 }
991
992 rc = bus_dmamem_alloc(*tag, va,
993 BUS_DMA_WAITOK | BUS_DMA_COHERENT | BUS_DMA_ZERO, map);
994 if (rc != 0) {
995 device_printf(sc->dev, "cannot allocate DMA memory: %d\n", rc);
996 goto done;
997 }
998
999 rc = bus_dmamap_load(*tag, *map, *va, len, oneseg_dma_callback, pa, 0);
1000 if (rc != 0) {
1001 device_printf(sc->dev, "cannot load DMA map: %d\n", rc);
1002 goto done;
1003 }
1004done:
1005 if (rc)
1006 free_ring(sc, *tag, *map, *pa, *va);
1007
1008 return (rc);
1009}
1010
1011static int
1012free_ring(struct adapter *sc, bus_dma_tag_t tag, bus_dmamap_t map,
1013 bus_addr_t pa, void *va)
1014{
1015 if (pa)
1016 bus_dmamap_unload(tag, map);
1017 if (va)
1018 bus_dmamem_free(tag, va, map);
1019 if (tag)
1020 bus_dma_tag_destroy(tag);
1021
1022 return (0);
1023}
1024
1025/*
1026 * Allocates the ring for an ingress queue and an optional freelist. If the
1027 * freelist is specified it will be allocated and then associated with the
1028 * ingress queue.
1029 *
1030 * Returns errno on failure. Resources allocated up to that point may still be
1031 * allocated. Caller is responsible for cleanup in case this function fails.
1032 *
1033 * If the ingress queue will take interrupts directly (iq->handler == NULL) then
1034 * the intr_idx specifies the vector, starting from 0. Otherwise it specifies
1035 * the index of the queue to which its interrupts will be forwarded.
1036 */
1037static int
1038alloc_iq_fl(struct port_info *pi, struct sge_iq *iq, struct sge_fl *fl,
1039 int intr_idx)
1040{
1041 int rc, i, cntxt_id;
1042 size_t len;
1043 struct fw_iq_cmd c;
1044 struct adapter *sc = iq->adapter;
1045 __be32 v = 0;
1046
1047 /* The adapter queues are nominally allocated in port[0]'s name */
1048 if (pi == NULL)
1049 pi = sc->port[0];
1050
1020 mtx_init(&iq->iq_lock, iq->lockname, NULL, MTX_DEF);
1021
1051 len = iq->qsize * iq->esize;
1052 rc = alloc_ring(sc, len, &iq->desc_tag, &iq->desc_map, &iq->ba,
1053 (void **)&iq->desc);
1054 if (rc != 0)
1055 return (rc);
1056
1057 bzero(&c, sizeof(c));
1058 c.op_to_vfn = htobe32(V_FW_CMD_OP(FW_IQ_CMD) | F_FW_CMD_REQUEST |
1059 F_FW_CMD_WRITE | F_FW_CMD_EXEC | V_FW_IQ_CMD_PFN(sc->pf) |
1060 V_FW_IQ_CMD_VFN(0));
1061
1062 c.alloc_to_len16 = htobe32(F_FW_IQ_CMD_ALLOC | F_FW_IQ_CMD_IQSTART |
1063 FW_LEN16(c));
1064
1065 /* Special handling for firmware event queue */
1066 if (iq == &sc->sge.fwq)
1067 v |= F_FW_IQ_CMD_IQASYNCH;
1068
1069 if (iq->handler) {
1070 KASSERT(intr_idx < NFIQ(sc),
1071 ("%s: invalid indirect intr_idx %d", __func__, intr_idx));
1072 v |= F_FW_IQ_CMD_IQANDST;
1073 v |= V_FW_IQ_CMD_IQANDSTINDEX(sc->sge.fiq[intr_idx].abs_id);
1074 } else {
1075 KASSERT(intr_idx < sc->intr_count,
1076 ("%s: invalid direct intr_idx %d", __func__, intr_idx));
1077 v |= V_FW_IQ_CMD_IQANDSTINDEX(intr_idx);
1078 }
1079
1080 c.type_to_iqandstindex = htobe32(v |
1081 V_FW_IQ_CMD_TYPE(FW_IQ_TYPE_FL_INT_CAP) |
1082 V_FW_IQ_CMD_VIID(pi->viid) |
1083 V_FW_IQ_CMD_IQANUD(X_UPDATEDELIVERY_INTERRUPT));
1084 c.iqdroprss_to_iqesize = htobe16(V_FW_IQ_CMD_IQPCIECH(pi->tx_chan) |
1085 F_FW_IQ_CMD_IQGTSMODE |
1086 V_FW_IQ_CMD_IQINTCNTTHRESH(iq->intr_pktc_idx) |
1087 V_FW_IQ_CMD_IQESIZE(ilog2(iq->esize) - 4));
1088 c.iqsize = htobe16(iq->qsize);
1089 c.iqaddr = htobe64(iq->ba);
1090
1091 if (fl) {
1092 mtx_init(&fl->fl_lock, fl->lockname, NULL, MTX_DEF);
1093
1094 for (i = 0; i < FL_BUF_SIZES; i++) {
1095
1096 /*
1097 * A freelist buffer must be 16 byte aligned as the SGE
1098 * uses the low 4 bits of the bus addr to figure out the
1099 * buffer size.
1100 */
1101 rc = bus_dma_tag_create(sc->dmat, 16, 0,
1102 BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL,
1103 FL_BUF_SIZE(i), 1, FL_BUF_SIZE(i), BUS_DMA_ALLOCNOW,
1104 NULL, NULL, &fl->tag[i]);
1105 if (rc != 0) {
1106 device_printf(sc->dev,
1107 "failed to create fl DMA tag[%d]: %d\n",
1108 i, rc);
1109 return (rc);
1110 }
1111 }
1112 len = fl->qsize * RX_FL_ESIZE;
1113 rc = alloc_ring(sc, len, &fl->desc_tag, &fl->desc_map,
1114 &fl->ba, (void **)&fl->desc);
1115 if (rc)
1116 return (rc);
1117
1118 /* Allocate space for one software descriptor per buffer. */
1119 fl->cap = (fl->qsize - SPG_LEN / RX_FL_ESIZE) * 8;
1120 FL_LOCK(fl);
1121 set_fl_tag_idx(fl, pi->ifp->if_mtu);
1122 rc = alloc_fl_sdesc(fl);
1123 FL_UNLOCK(fl);
1124 if (rc != 0) {
1125 device_printf(sc->dev,
1126 "failed to setup fl software descriptors: %d\n",
1127 rc);
1128 return (rc);
1129 }
1130 fl->needed = fl->cap - 1; /* one less to avoid cidx = pidx */
1131
1132 c.iqns_to_fl0congen =
1133 htobe32(V_FW_IQ_CMD_FL0HOSTFCMODE(X_HOSTFCMODE_NONE));
1134 c.fl0dcaen_to_fl0cidxfthresh =
1135 htobe16(V_FW_IQ_CMD_FL0FBMIN(X_FETCHBURSTMIN_64B) |
1136 V_FW_IQ_CMD_FL0FBMAX(X_FETCHBURSTMAX_512B));
1137 c.fl0size = htobe16(fl->qsize);
1138 c.fl0addr = htobe64(fl->ba);
1139 }
1140
1141 rc = -t4_wr_mbox(sc, sc->mbox, &c, sizeof(c), &c);
1142 if (rc != 0) {
1143 device_printf(sc->dev,
1144 "failed to create ingress queue: %d\n", rc);
1145 return (rc);
1146 }
1147
1148 iq->cdesc = iq->desc;
1149 iq->cidx = 0;
1150 iq->gen = 1;
1151 iq->intr_next = iq->intr_params;
1152 iq->cntxt_id = be16toh(c.iqid);
1153 iq->abs_id = be16toh(c.physiqid);
1154 iq->flags |= (IQ_ALLOCATED | IQ_STARTED);
1155
1156 cntxt_id = iq->cntxt_id - sc->sge.iq_start;
1157 KASSERT(cntxt_id < sc->sge.niq,
1158 ("%s: iq->cntxt_id (%d) more than the max (%d)", __func__,
1159 cntxt_id, sc->sge.niq - 1));
1160 sc->sge.iqmap[cntxt_id] = iq;
1161
1162 if (fl) {
1163 fl->cntxt_id = be16toh(c.fl0id);
1164 fl->pidx = fl->cidx = 0;
1165
1166 cntxt_id = fl->cntxt_id - sc->sge.eq_start;
1167 KASSERT(cntxt_id < sc->sge.neq,
1168 ("%s: fl->cntxt_id (%d) more than the max (%d)", __func__,
1169 cntxt_id, sc->sge.neq - 1));
1170 sc->sge.eqmap[cntxt_id] = (void *)fl;
1171
1172 FL_LOCK(fl);
1173 refill_fl(fl, -1);
1174 if (fl->pending >= 8)
1175 ring_fl_db(sc, fl);
1176 FL_UNLOCK(fl);
1177 }
1178
1179 /* Enable IQ interrupts */
1180 atomic_store_rel_32(&iq->state, IQS_IDLE);
1181 t4_write_reg(sc, MYPF_REG(A_SGE_PF_GTS), V_SEINTARM(iq->intr_params) |
1182 V_INGRESSQID(iq->cntxt_id));
1183
1184 return (0);
1185}
1186
1187/*
1188 * This can be called with the iq/fl in any state - fully allocated and
1189 * functional, partially allocated, even all-zeroed out.
1190 */
1191static int
1192free_iq_fl(struct port_info *pi, struct sge_iq *iq, struct sge_fl *fl)
1193{
1194 int i, rc;
1195 struct adapter *sc = iq->adapter;
1196 device_t dev;
1197
1198 if (sc == NULL)
1199 return (0); /* nothing to do */
1200
1201 dev = pi ? pi->dev : sc->dev;
1202
1203 if (iq->flags & IQ_STARTED) {
1204 rc = -t4_iq_start_stop(sc, sc->mbox, 0, sc->pf, 0,
1205 iq->cntxt_id, fl ? fl->cntxt_id : 0xffff, 0xffff);
1206 if (rc != 0) {
1207 device_printf(dev,
1208 "failed to stop queue %p: %d\n", iq, rc);
1209 return (rc);
1210 }
1211 iq->flags &= ~IQ_STARTED;
1212
1213 /* Synchronize with the interrupt handler */
1214 while (!atomic_cmpset_32(&iq->state, IQS_IDLE, IQS_DISABLED))
1215 pause("iqfree", hz / 1000);
1216 }
1217
1218 if (iq->flags & IQ_ALLOCATED) {
1219
1220 rc = -t4_iq_free(sc, sc->mbox, sc->pf, 0,
1221 FW_IQ_TYPE_FL_INT_CAP, iq->cntxt_id,
1222 fl ? fl->cntxt_id : 0xffff, 0xffff);
1223 if (rc != 0) {
1224 device_printf(dev,
1225 "failed to free queue %p: %d\n", iq, rc);
1226 return (rc);
1227 }
1228 iq->flags &= ~IQ_ALLOCATED;
1229 }
1230
1231 free_ring(sc, iq->desc_tag, iq->desc_map, iq->ba, iq->desc);
1232
1199 if (mtx_initialized(&iq->iq_lock))
1200 mtx_destroy(&iq->iq_lock);
1201
1233 bzero(iq, sizeof(*iq));
1234
1235 if (fl) {
1236 free_ring(sc, fl->desc_tag, fl->desc_map, fl->ba,
1237 fl->desc);
1238
1239 if (fl->sdesc) {
1240 FL_LOCK(fl);
1241 free_fl_sdesc(fl);
1242 FL_UNLOCK(fl);
1243 }
1244
1245 if (mtx_initialized(&fl->fl_lock))
1246 mtx_destroy(&fl->fl_lock);
1247
1248 for (i = 0; i < FL_BUF_SIZES; i++) {
1249 if (fl->tag[i])
1250 bus_dma_tag_destroy(fl->tag[i]);
1251 }
1252
1253 bzero(fl, sizeof(*fl));
1254 }
1255
1256 return (0);
1257}
1258
1259static int
1260alloc_iq(struct sge_iq *iq, int intr_idx)
1261{
1262 return alloc_iq_fl(NULL, iq, NULL, intr_idx);
1263}
1264
1265static int
1266free_iq(struct sge_iq *iq)
1267{
1268 return free_iq_fl(NULL, iq, NULL);
1269}
1270
1271static int
1272alloc_rxq(struct port_info *pi, struct sge_rxq *rxq, int intr_idx, int idx)
1273{
1274 int rc;
1275 struct sysctl_oid *oid;
1276 struct sysctl_oid_list *children;
1277 char name[16];
1278
1279 rc = alloc_iq_fl(pi, &rxq->iq, &rxq->fl, intr_idx);
1280 if (rc != 0)
1281 return (rc);
1282
1283#ifdef INET
1284 rc = tcp_lro_init(&rxq->lro);
1285 if (rc != 0)
1286 return (rc);
1287 rxq->lro.ifp = pi->ifp; /* also indicates LRO init'ed */
1288
1289 if (pi->ifp->if_capenable & IFCAP_LRO)
1290 rxq->flags |= RXQ_LRO_ENABLED;
1291#endif
1292 rxq->ifp = pi->ifp;
1293
1294 children = SYSCTL_CHILDREN(pi->oid_rxq);
1295
1296 snprintf(name, sizeof(name), "%d", idx);
1297 oid = SYSCTL_ADD_NODE(&pi->ctx, children, OID_AUTO, name, CTLFLAG_RD,
1298 NULL, "rx queue");
1299 children = SYSCTL_CHILDREN(oid);
1300
1301#ifdef INET
1302 SYSCTL_ADD_INT(&pi->ctx, children, OID_AUTO, "lro_queued", CTLFLAG_RD,
1303 &rxq->lro.lro_queued, 0, NULL);
1304 SYSCTL_ADD_INT(&pi->ctx, children, OID_AUTO, "lro_flushed", CTLFLAG_RD,
1305 &rxq->lro.lro_flushed, 0, NULL);
1306#endif
1307 SYSCTL_ADD_UQUAD(&pi->ctx, children, OID_AUTO, "rxcsum", CTLFLAG_RD,
1308 &rxq->rxcsum, "# of times hardware assisted with checksum");
1309 SYSCTL_ADD_UQUAD(&pi->ctx, children, OID_AUTO, "vlan_extraction",
1310 CTLFLAG_RD, &rxq->vlan_extraction,
1311 "# of times hardware extracted 802.1Q tag");
1312
1313 return (rc);
1314}
1315
1316static int
1317free_rxq(struct port_info *pi, struct sge_rxq *rxq)
1318{
1319 int rc;
1320
1321#ifdef INET
1322 if (rxq->lro.ifp) {
1323 tcp_lro_free(&rxq->lro);
1324 rxq->lro.ifp = NULL;
1325 }
1326#endif
1327
1328 rc = free_iq_fl(pi, &rxq->iq, &rxq->fl);
1329 if (rc == 0)
1330 bzero(rxq, sizeof(*rxq));
1331
1332 return (rc);
1333}
1334
1335static int
1336alloc_txq(struct port_info *pi, struct sge_txq *txq, int idx)
1337{
1338 int rc, cntxt_id;
1339 size_t len;
1340 struct adapter *sc = pi->adapter;
1341 struct fw_eq_eth_cmd c;
1342 struct sge_eq *eq = &txq->eq;
1343 char name[16];
1344 struct sysctl_oid *oid;
1345 struct sysctl_oid_list *children;
1346
1347 txq->ifp = pi->ifp;
1348 TASK_INIT(&txq->resume_tx, 0, cxgbe_txq_start, txq);
1349
1350 mtx_init(&eq->eq_lock, eq->lockname, NULL, MTX_DEF);
1351
1352 len = eq->qsize * TX_EQ_ESIZE;
1353 rc = alloc_ring(sc, len, &eq->desc_tag, &eq->desc_map,
1354 &eq->ba, (void **)&eq->desc);
1355 if (rc)
1356 return (rc);
1357
1358 eq->cap = eq->qsize - SPG_LEN / TX_EQ_ESIZE;
1359 eq->spg = (void *)&eq->desc[eq->cap];
1360 eq->avail = eq->cap - 1; /* one less to avoid cidx = pidx */
1361 eq->sdesc = malloc(eq->cap * sizeof(struct tx_sdesc), M_CXGBE,
1362 M_ZERO | M_WAITOK);
1363 eq->br = buf_ring_alloc(eq->qsize, M_CXGBE, M_WAITOK, &eq->eq_lock);
1364 eq->iqid = sc->sge.rxq[pi->first_rxq].iq.cntxt_id;
1365
1366 rc = bus_dma_tag_create(sc->dmat, 1, 0, BUS_SPACE_MAXADDR,
1367 BUS_SPACE_MAXADDR, NULL, NULL, 64 * 1024, TX_SGL_SEGS,
1368 BUS_SPACE_MAXSIZE, BUS_DMA_ALLOCNOW, NULL, NULL, &eq->tx_tag);
1369 if (rc != 0) {
1370 device_printf(sc->dev,
1371 "failed to create tx DMA tag: %d\n", rc);
1372 return (rc);
1373 }
1374
1375 rc = alloc_eq_maps(eq);
1376 if (rc != 0) {
1377 device_printf(sc->dev, "failed to setup tx DMA maps: %d\n", rc);
1378 return (rc);
1379 }
1380
1381 bzero(&c, sizeof(c));
1382
1383 c.op_to_vfn = htobe32(V_FW_CMD_OP(FW_EQ_ETH_CMD) | F_FW_CMD_REQUEST |
1384 F_FW_CMD_WRITE | F_FW_CMD_EXEC | V_FW_EQ_ETH_CMD_PFN(sc->pf) |
1385 V_FW_EQ_ETH_CMD_VFN(0));
1386 c.alloc_to_len16 = htobe32(F_FW_EQ_ETH_CMD_ALLOC |
1387 F_FW_EQ_ETH_CMD_EQSTART | FW_LEN16(c));
1388 c.viid_pkd = htobe32(V_FW_EQ_ETH_CMD_VIID(pi->viid));
1389 c.fetchszm_to_iqid =
1390 htobe32(V_FW_EQ_ETH_CMD_HOSTFCMODE(X_HOSTFCMODE_STATUS_PAGE) |
1391 V_FW_EQ_ETH_CMD_PCIECHN(pi->tx_chan) |
1392 V_FW_EQ_ETH_CMD_IQID(eq->iqid));
1393 c.dcaen_to_eqsize = htobe32(V_FW_EQ_ETH_CMD_FBMIN(X_FETCHBURSTMIN_64B) |
1394 V_FW_EQ_ETH_CMD_FBMAX(X_FETCHBURSTMAX_512B) |
1395 V_FW_EQ_ETH_CMD_CIDXFTHRESH(X_CIDXFLUSHTHRESH_32) |
1396 V_FW_EQ_ETH_CMD_EQSIZE(eq->qsize));
1397 c.eqaddr = htobe64(eq->ba);
1398
1399 rc = -t4_wr_mbox(sc, sc->mbox, &c, sizeof(c), &c);
1400 if (rc != 0) {
1401 device_printf(pi->dev,
1402 "failed to create egress queue: %d\n", rc);
1403 return (rc);
1404 }
1405
1406 eq->pidx = eq->cidx = 0;
1407 eq->cntxt_id = G_FW_EQ_ETH_CMD_EQID(be32toh(c.eqid_pkd));
1408 eq->flags |= (EQ_ALLOCATED | EQ_STARTED);
1409
1410 cntxt_id = eq->cntxt_id - sc->sge.eq_start;
1411 KASSERT(cntxt_id < sc->sge.neq,
1412 ("%s: eq->cntxt_id (%d) more than the max (%d)", __func__,
1413 cntxt_id, sc->sge.neq - 1));
1414 sc->sge.eqmap[cntxt_id] = eq;
1415
1416 children = SYSCTL_CHILDREN(pi->oid_txq);
1417
1418 snprintf(name, sizeof(name), "%d", idx);
1419 oid = SYSCTL_ADD_NODE(&pi->ctx, children, OID_AUTO, name, CTLFLAG_RD,
1420 NULL, "tx queue");
1421 children = SYSCTL_CHILDREN(oid);
1422
1423 SYSCTL_ADD_UQUAD(&pi->ctx, children, OID_AUTO, "txcsum", CTLFLAG_RD,
1424 &txq->txcsum, "# of times hardware assisted with checksum");
1425 SYSCTL_ADD_UQUAD(&pi->ctx, children, OID_AUTO, "vlan_insertion",
1426 CTLFLAG_RD, &txq->vlan_insertion,
1427 "# of times hardware inserted 802.1Q tag");
1428 SYSCTL_ADD_UQUAD(&pi->ctx, children, OID_AUTO, "tso_wrs", CTLFLAG_RD,
1429 &txq->tso_wrs, "# of IPv4 TSO work requests");
1430 SYSCTL_ADD_UQUAD(&pi->ctx, children, OID_AUTO, "imm_wrs", CTLFLAG_RD,
1431 &txq->imm_wrs, "# of work requests with immediate data");
1432 SYSCTL_ADD_UQUAD(&pi->ctx, children, OID_AUTO, "sgl_wrs", CTLFLAG_RD,
1433 &txq->sgl_wrs, "# of work requests with direct SGL");
1434 SYSCTL_ADD_UQUAD(&pi->ctx, children, OID_AUTO, "txpkt_wrs", CTLFLAG_RD,
1435 &txq->txpkt_wrs, "# of txpkt work requests (one pkt/WR)");
1436 SYSCTL_ADD_UQUAD(&pi->ctx, children, OID_AUTO, "txpkts_wrs", CTLFLAG_RD,
1437 &txq->txpkts_wrs, "# of txpkts work requests (multiple pkts/WR)");
1438 SYSCTL_ADD_UQUAD(&pi->ctx, children, OID_AUTO, "txpkts_pkts", CTLFLAG_RD,
1439 &txq->txpkts_pkts, "# of frames tx'd using txpkts work requests");
1440
1441 SYSCTL_ADD_UINT(&pi->ctx, children, OID_AUTO, "no_dmamap", CTLFLAG_RD,
1442 &txq->no_dmamap, 0, "# of times txq ran out of DMA maps");
1443 SYSCTL_ADD_UINT(&pi->ctx, children, OID_AUTO, "no_desc", CTLFLAG_RD,
1444 &txq->no_desc, 0, "# of times txq ran out of hardware descriptors");
1445 SYSCTL_ADD_UINT(&pi->ctx, children, OID_AUTO, "egr_update", CTLFLAG_RD,
1446 &txq->egr_update, 0, "egress update notifications from the SGE");
1447
1448 return (rc);
1449}
1450
1451static int
1452free_txq(struct port_info *pi, struct sge_txq *txq)
1453{
1454 int rc;
1455 struct adapter *sc = pi->adapter;
1456 struct sge_eq *eq = &txq->eq;
1457
1458 if (eq->flags & (EQ_ALLOCATED | EQ_STARTED)) {
1459
1460 /*
1461 * Wait for the response to a credit flush if there's one
1462 * pending. Clearing the flag tells handle_sge_egr_update or
1463 * cxgbe_txq_start (depending on how far the response has made
1464 * it) that they should ignore the response and wake up free_txq
1465 * instead.
1466 *
1467 * The interface has been marked down by the time we get here
1468 * (both IFF_UP and IFF_DRV_RUNNING cleared). qflush has
1469 * emptied the tx buf_rings and we know nothing new is being
1470 * queued for tx so we don't have to worry about a new credit
1471 * flush request.
1472 */
1473 TXQ_LOCK(txq);
1474 if (eq->flags & EQ_CRFLUSHED) {
1475 eq->flags &= ~EQ_CRFLUSHED;
1476 msleep(txq, &eq->eq_lock, 0, "crflush", 0);
1477 }
1478 TXQ_UNLOCK(txq);
1479
1480 rc = -t4_eth_eq_free(sc, sc->mbox, sc->pf, 0, eq->cntxt_id);
1481 if (rc != 0) {
1482 device_printf(pi->dev,
1483 "failed to free egress queue %p: %d\n", eq, rc);
1484 return (rc);
1485 }
1486 eq->flags &= ~(EQ_ALLOCATED | EQ_STARTED);
1487 }
1488
1489 free_ring(sc, eq->desc_tag, eq->desc_map, eq->ba, eq->desc);
1490
1491 free(eq->sdesc, M_CXGBE);
1492
1493 if (eq->maps)
1494 free_eq_maps(eq);
1495
1496 buf_ring_free(eq->br, M_CXGBE);
1497
1498 if (eq->tx_tag)
1499 bus_dma_tag_destroy(eq->tx_tag);
1500
1501 if (mtx_initialized(&eq->eq_lock))
1502 mtx_destroy(&eq->eq_lock);
1503
1504 bzero(txq, sizeof(*txq));
1505 return (0);
1506}
1507
1508static void
1509oneseg_dma_callback(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1510{
1511 bus_addr_t *ba = arg;
1512
1513 KASSERT(nseg == 1,
1514 ("%s meant for single segment mappings only.", __func__));
1515
1516 *ba = error ? 0 : segs->ds_addr;
1517}
1518
1519static inline bool
1520is_new_response(const struct sge_iq *iq, struct rsp_ctrl **ctrl)
1521{
1522 *ctrl = (void *)((uintptr_t)iq->cdesc +
1523 (iq->esize - sizeof(struct rsp_ctrl)));
1524
1525 return (((*ctrl)->u.type_gen >> S_RSPD_GEN) == iq->gen);
1526}
1527
1528static inline void
1529iq_next(struct sge_iq *iq)
1530{
1531 iq->cdesc = (void *) ((uintptr_t)iq->cdesc + iq->esize);
1532 if (__predict_false(++iq->cidx == iq->qsize - 1)) {
1533 iq->cidx = 0;
1534 iq->gen ^= 1;
1535 iq->cdesc = iq->desc;
1536 }
1537}
1538
1539static inline void
1540ring_fl_db(struct adapter *sc, struct sge_fl *fl)
1541{
1542 int ndesc = fl->pending / 8;
1543
1544 /* Caller responsible for ensuring there's something useful to do */
1545 KASSERT(ndesc > 0, ("%s called with no useful work to do.", __func__));
1546
1547 wmb();
1548
1549 t4_write_reg(sc, MYPF_REG(A_SGE_PF_KDOORBELL), F_DBPRIO |
1550 V_QID(fl->cntxt_id) | V_PIDX(ndesc));
1551
1552 fl->pending &= 7;
1553}
1554
1555static void
1556refill_fl(struct sge_fl *fl, int nbufs)
1557{
1558 __be64 *d = &fl->desc[fl->pidx];
1559 struct fl_sdesc *sd = &fl->sdesc[fl->pidx];
1560 bus_dma_tag_t tag;
1561 bus_addr_t pa;
1562 caddr_t cl;
1563 int rc;
1564
1565 FL_LOCK_ASSERT_OWNED(fl);
1566
1567 if (nbufs < 0 || nbufs > fl->needed)
1568 nbufs = fl->needed;
1569
1570 while (nbufs--) {
1571
1572 if (sd->cl != NULL) {
1573
1574 /*
1575 * This happens when a frame small enough to fit
1576 * entirely in an mbuf was received in cl last time.
1577 * We'd held on to cl and can reuse it now. Note that
1578 * we reuse a cluster of the old size if fl->tag_idx is
1579 * no longer the same as sd->tag_idx.
1580 */
1581
1582 KASSERT(*d == sd->ba_tag,
1583 ("%s: recyling problem at pidx %d",
1584 __func__, fl->pidx));
1585
1586 d++;
1587 goto recycled;
1588 }
1589
1590
1591 if (fl->tag_idx != sd->tag_idx) {
1592 bus_dmamap_t map;
1593 bus_dma_tag_t newtag = fl->tag[fl->tag_idx];
1594 bus_dma_tag_t oldtag = fl->tag[sd->tag_idx];
1595
1596 /*
1597 * An MTU change can get us here. Discard the old map
1598 * which was created with the old tag, but only if
1599 * we're able to get a new one.
1600 */
1601 rc = bus_dmamap_create(newtag, 0, &map);
1602 if (rc == 0) {
1603 bus_dmamap_destroy(oldtag, sd->map);
1604 sd->map = map;
1605 sd->tag_idx = fl->tag_idx;
1606 }
1607 }
1608
1609 tag = fl->tag[sd->tag_idx];
1610
1611 cl = m_cljget(NULL, M_NOWAIT, FL_BUF_SIZE(sd->tag_idx));
1612 if (cl == NULL)
1613 break;
1614
1615 rc = bus_dmamap_load(tag, sd->map, cl, FL_BUF_SIZE(sd->tag_idx),
1616 oneseg_dma_callback, &pa, 0);
1617 if (rc != 0 || pa == 0) {
1618 fl->dmamap_failed++;
1619 uma_zfree(FL_BUF_ZONE(sd->tag_idx), cl);
1620 break;
1621 }
1622
1623 sd->cl = cl;
1624 *d++ = htobe64(pa | sd->tag_idx);
1625
1626#ifdef INVARIANTS
1627 sd->ba_tag = htobe64(pa | sd->tag_idx);
1628#endif
1629
1630recycled:
1631 /* sd->m is never recycled, should always be NULL */
1632 KASSERT(sd->m == NULL, ("%s: stray mbuf", __func__));
1633
1634 sd->m = m_gethdr(M_NOWAIT, MT_NOINIT);
1635 if (sd->m == NULL)
1636 break;
1637
1638 fl->pending++;
1639 fl->needed--;
1640 sd++;
1641 if (++fl->pidx == fl->cap) {
1642 fl->pidx = 0;
1643 sd = fl->sdesc;
1644 d = fl->desc;
1645 }
1646 }
1647}
1648
1649static int
1650alloc_fl_sdesc(struct sge_fl *fl)
1651{
1652 struct fl_sdesc *sd;
1653 bus_dma_tag_t tag;
1654 int i, rc;
1655
1656 FL_LOCK_ASSERT_OWNED(fl);
1657
1658 fl->sdesc = malloc(fl->cap * sizeof(struct fl_sdesc), M_CXGBE,
1659 M_ZERO | M_WAITOK);
1660
1661 tag = fl->tag[fl->tag_idx];
1662 sd = fl->sdesc;
1663 for (i = 0; i < fl->cap; i++, sd++) {
1664
1665 sd->tag_idx = fl->tag_idx;
1666 rc = bus_dmamap_create(tag, 0, &sd->map);
1667 if (rc != 0)
1668 goto failed;
1669 }
1670
1671 return (0);
1672failed:
1673 while (--i >= 0) {
1674 sd--;
1675 bus_dmamap_destroy(tag, sd->map);
1676 if (sd->m) {
1677 m_init(sd->m, NULL, 0, M_NOWAIT, MT_DATA, 0);
1678 m_free(sd->m);
1679 sd->m = NULL;
1680 }
1681 }
1682 KASSERT(sd == fl->sdesc, ("%s: EDOOFUS", __func__));
1683
1684 free(fl->sdesc, M_CXGBE);
1685 fl->sdesc = NULL;
1686
1687 return (rc);
1688}
1689
1690static void
1691free_fl_sdesc(struct sge_fl *fl)
1692{
1693 struct fl_sdesc *sd;
1694 int i;
1695
1696 FL_LOCK_ASSERT_OWNED(fl);
1697
1698 sd = fl->sdesc;
1699 for (i = 0; i < fl->cap; i++, sd++) {
1700
1701 if (sd->m) {
1702 m_init(sd->m, NULL, 0, M_NOWAIT, MT_DATA, 0);
1703 m_free(sd->m);
1704 sd->m = NULL;
1705 }
1706
1707 if (sd->cl) {
1708 bus_dmamap_unload(fl->tag[sd->tag_idx], sd->map);
1709 uma_zfree(FL_BUF_ZONE(sd->tag_idx), sd->cl);
1710 sd->cl = NULL;
1711 }
1712
1713 bus_dmamap_destroy(fl->tag[sd->tag_idx], sd->map);
1714 }
1715
1716 free(fl->sdesc, M_CXGBE);
1717 fl->sdesc = NULL;
1718}
1719
1720static int
1721alloc_eq_maps(struct sge_eq *eq)
1722{
1723 struct tx_map *txm;
1724 int i, rc, count;
1725
1726 /*
1727 * We can stuff ~10 frames in an 8-descriptor txpkts WR (8 is the SGE
1728 * limit for any WR). txq->no_dmamap events shouldn't occur if maps is
1729 * sized for the worst case.
1730 */
1731 count = eq->qsize * 10 / 8;
1732 eq->map_total = eq->map_avail = count;
1733 eq->map_cidx = eq->map_pidx = 0;
1734
1735 eq->maps = malloc(count * sizeof(struct tx_map), M_CXGBE,
1736 M_ZERO | M_WAITOK);
1737
1738 txm = eq->maps;
1739 for (i = 0; i < count; i++, txm++) {
1740 rc = bus_dmamap_create(eq->tx_tag, 0, &txm->map);
1741 if (rc != 0)
1742 goto failed;
1743 }
1744
1745 return (0);
1746failed:
1747 while (--i >= 0) {
1748 txm--;
1749 bus_dmamap_destroy(eq->tx_tag, txm->map);
1750 }
1751 KASSERT(txm == eq->maps, ("%s: EDOOFUS", __func__));
1752
1753 free(eq->maps, M_CXGBE);
1754 eq->maps = NULL;
1755
1756 return (rc);
1757}
1758
1759static void
1760free_eq_maps(struct sge_eq *eq)
1761{
1762 struct tx_map *txm;
1763 int i;
1764
1765 txm = eq->maps;
1766 for (i = 0; i < eq->map_total; i++, txm++) {
1767
1768 if (txm->m) {
1769 bus_dmamap_unload(eq->tx_tag, txm->map);
1770 m_freem(txm->m);
1771 txm->m = NULL;
1772 }
1773
1774 bus_dmamap_destroy(eq->tx_tag, txm->map);
1775 }
1776
1777 free(eq->maps, M_CXGBE);
1778 eq->maps = NULL;
1779}
1780
1781/*
1782 * We'll do immediate data tx for non-TSO, but only when not coalescing. We're
1783 * willing to use upto 2 hardware descriptors which means a maximum of 96 bytes
1784 * of immediate data.
1785 */
1786#define IMM_LEN ( \
1787 2 * TX_EQ_ESIZE \
1788 - sizeof(struct fw_eth_tx_pkt_wr) \
1789 - sizeof(struct cpl_tx_pkt_core))
1790
1791/*
1792 * Returns non-zero on failure, no need to cleanup anything in that case.
1793 *
1794 * Note 1: We always try to defrag the mbuf if required and return EFBIG only
1795 * if the resulting chain still won't fit in a tx descriptor.
1796 *
1797 * Note 2: We'll pullup the mbuf chain if TSO is requested and the first mbuf
1798 * does not have the TCP header in it.
1799 */
1800static int
1801get_pkt_sgl(struct sge_txq *txq, struct mbuf **fp, struct sgl *sgl,
1802 int sgl_only)
1803{
1804 struct mbuf *m = *fp;
1805 struct sge_eq *eq = &txq->eq;
1806 struct tx_map *txm;
1807 int rc, defragged = 0, n;
1808
1809 TXQ_LOCK_ASSERT_OWNED(txq);
1810
1811 if (m->m_pkthdr.tso_segsz)
1812 sgl_only = 1; /* Do not allow immediate data with LSO */
1813
1814start: sgl->nsegs = 0;
1815
1816 if (m->m_pkthdr.len <= IMM_LEN && !sgl_only)
1817 return (0); /* nsegs = 0 tells caller to use imm. tx */
1818
1819 if (eq->map_avail == 0) {
1820 txq->no_dmamap++;
1821 return (ENOMEM);
1822 }
1823 txm = &eq->maps[eq->map_pidx];
1824
1825 if (m->m_pkthdr.tso_segsz && m->m_len < 50) {
1826 *fp = m_pullup(m, 50);
1827 m = *fp;
1828 if (m == NULL)
1829 return (ENOBUFS);
1830 }
1831
1832 rc = bus_dmamap_load_mbuf_sg(eq->tx_tag, txm->map, m, sgl->seg,
1833 &sgl->nsegs, BUS_DMA_NOWAIT);
1834 if (rc == EFBIG && defragged == 0) {
1835 m = m_defrag(m, M_DONTWAIT);
1836 if (m == NULL)
1837 return (EFBIG);
1838
1839 defragged = 1;
1840 *fp = m;
1841 goto start;
1842 }
1843 if (rc != 0)
1844 return (rc);
1845
1846 txm->m = m;
1847 eq->map_avail--;
1848 if (++eq->map_pidx == eq->map_total)
1849 eq->map_pidx = 0;
1850
1851 KASSERT(sgl->nsegs > 0 && sgl->nsegs <= TX_SGL_SEGS,
1852 ("%s: bad DMA mapping (%d segments)", __func__, sgl->nsegs));
1853
1854 /*
1855 * Store the # of flits required to hold this frame's SGL in nflits. An
1856 * SGL has a (ULPTX header + len0, addr0) tuple optionally followed by
1857 * multiple (len0 + len1, addr0, addr1) tuples. If addr1 is not used
1858 * then len1 must be set to 0.
1859 */
1860 n = sgl->nsegs - 1;
1861 sgl->nflits = (3 * n) / 2 + (n & 1) + 2;
1862
1863 return (0);
1864}
1865
1866
1867/*
1868 * Releases all the txq resources used up in the specified sgl.
1869 */
1870static int
1871free_pkt_sgl(struct sge_txq *txq, struct sgl *sgl)
1872{
1873 struct sge_eq *eq = &txq->eq;
1874 struct tx_map *txm;
1875
1876 TXQ_LOCK_ASSERT_OWNED(txq);
1877
1878 if (sgl->nsegs == 0)
1879 return (0); /* didn't use any map */
1880
1881 /* 1 pkt uses exactly 1 map, back it out */
1882
1883 eq->map_avail++;
1884 if (eq->map_pidx > 0)
1885 eq->map_pidx--;
1886 else
1887 eq->map_pidx = eq->map_total - 1;
1888
1889 txm = &eq->maps[eq->map_pidx];
1890 bus_dmamap_unload(eq->tx_tag, txm->map);
1891 txm->m = NULL;
1892
1893 return (0);
1894}
1895
1896static int
1897write_txpkt_wr(struct port_info *pi, struct sge_txq *txq, struct mbuf *m,
1898 struct sgl *sgl)
1899{
1900 struct sge_eq *eq = &txq->eq;
1901 struct fw_eth_tx_pkt_wr *wr;
1902 struct cpl_tx_pkt_core *cpl;
1903 uint32_t ctrl; /* used in many unrelated places */
1904 uint64_t ctrl1;
1905 int nflits, ndesc, pktlen;
1906 struct tx_sdesc *txsd;
1907 caddr_t dst;
1908
1909 TXQ_LOCK_ASSERT_OWNED(txq);
1910
1911 pktlen = m->m_pkthdr.len;
1912
1913 /*
1914 * Do we have enough flits to send this frame out?
1915 */
1916 ctrl = sizeof(struct cpl_tx_pkt_core);
1917 if (m->m_pkthdr.tso_segsz) {
1918 nflits = TXPKT_LSO_WR_HDR;
1919 ctrl += sizeof(struct cpl_tx_pkt_lso);
1920 } else
1921 nflits = TXPKT_WR_HDR;
1922 if (sgl->nsegs > 0)
1923 nflits += sgl->nflits;
1924 else {
1925 nflits += howmany(pktlen, 8);
1926 ctrl += pktlen;
1927 }
1928 ndesc = howmany(nflits, 8);
1929 if (ndesc > eq->avail)
1930 return (ENOMEM);
1931
1932 /* Firmware work request header */
1933 wr = (void *)&eq->desc[eq->pidx];
1934 wr->op_immdlen = htobe32(V_FW_WR_OP(FW_ETH_TX_PKT_WR) |
1935 V_FW_WR_IMMDLEN(ctrl));
1936 ctrl = V_FW_WR_LEN16(howmany(nflits, 2));
1937 if (eq->avail == ndesc && !(eq->flags & EQ_CRFLUSHED)) {
1938 ctrl |= F_FW_WR_EQUEQ | F_FW_WR_EQUIQ;
1939 eq->flags |= EQ_CRFLUSHED;
1940 }
1941
1942 wr->equiq_to_len16 = htobe32(ctrl);
1943 wr->r3 = 0;
1944
1945 if (m->m_pkthdr.tso_segsz) {
1946 struct cpl_tx_pkt_lso *lso = (void *)(wr + 1);
1947 struct ether_header *eh;
1948 struct ip *ip;
1949 struct tcphdr *tcp;
1950
1951 ctrl = V_LSO_OPCODE(CPL_TX_PKT_LSO) | F_LSO_FIRST_SLICE |
1952 F_LSO_LAST_SLICE;
1953
1954 eh = mtod(m, struct ether_header *);
1955 if (eh->ether_type == htons(ETHERTYPE_VLAN)) {
1956 ctrl |= V_LSO_ETHHDR_LEN(1);
1957 ip = (void *)((struct ether_vlan_header *)eh + 1);
1958 } else
1959 ip = (void *)(eh + 1);
1960
1961 tcp = (void *)((uintptr_t)ip + ip->ip_hl * 4);
1962 ctrl |= V_LSO_IPHDR_LEN(ip->ip_hl) |
1963 V_LSO_TCPHDR_LEN(tcp->th_off);
1964
1965 lso->lso_ctrl = htobe32(ctrl);
1966 lso->ipid_ofst = htobe16(0);
1967 lso->mss = htobe16(m->m_pkthdr.tso_segsz);
1968 lso->seqno_offset = htobe32(0);
1969 lso->len = htobe32(pktlen);
1970
1971 cpl = (void *)(lso + 1);
1972
1973 txq->tso_wrs++;
1974 } else
1975 cpl = (void *)(wr + 1);
1976
1977 /* Checksum offload */
1978 ctrl1 = 0;
1979 if (!(m->m_pkthdr.csum_flags & CSUM_IP))
1980 ctrl1 |= F_TXPKT_IPCSUM_DIS;
1981 if (!(m->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP)))
1982 ctrl1 |= F_TXPKT_L4CSUM_DIS;
1983 if (m->m_pkthdr.csum_flags & (CSUM_IP | CSUM_TCP | CSUM_UDP))
1984 txq->txcsum++; /* some hardware assistance provided */
1985
1986 /* VLAN tag insertion */
1987 if (m->m_flags & M_VLANTAG) {
1988 ctrl1 |= F_TXPKT_VLAN_VLD | V_TXPKT_VLAN(m->m_pkthdr.ether_vtag);
1989 txq->vlan_insertion++;
1990 }
1991
1992 /* CPL header */
1993 cpl->ctrl0 = htobe32(V_TXPKT_OPCODE(CPL_TX_PKT) |
1994 V_TXPKT_INTF(pi->tx_chan) | V_TXPKT_PF(pi->adapter->pf));
1995 cpl->pack = 0;
1996 cpl->len = htobe16(pktlen);
1997 cpl->ctrl1 = htobe64(ctrl1);
1998
1999 /* Software descriptor */
2000 txsd = &eq->sdesc[eq->pidx];
2001 txsd->desc_used = ndesc;
2002
2003 eq->pending += ndesc;
2004 eq->avail -= ndesc;
2005 eq->pidx += ndesc;
2006 if (eq->pidx >= eq->cap)
2007 eq->pidx -= eq->cap;
2008
2009 /* SGL */
2010 dst = (void *)(cpl + 1);
2011 if (sgl->nsegs > 0) {
2012 txsd->map_used = 1;
2013 txq->sgl_wrs++;
2014 write_sgl_to_txd(eq, sgl, &dst);
2015 } else {
2016 txsd->map_used = 0;
2017 txq->imm_wrs++;
2018 for (; m; m = m->m_next) {
2019 copy_to_txd(eq, mtod(m, caddr_t), &dst, m->m_len);
2020#ifdef INVARIANTS
2021 pktlen -= m->m_len;
2022#endif
2023 }
2024#ifdef INVARIANTS
2025 KASSERT(pktlen == 0, ("%s: %d bytes left.", __func__, pktlen));
2026#endif
2027
2028 }
2029
2030 txq->txpkt_wrs++;
2031 return (0);
2032}
2033
2034/*
2035 * Returns 0 to indicate that m has been accepted into a coalesced tx work
2036 * request. It has either been folded into txpkts or txpkts was flushed and m
2037 * has started a new coalesced work request (as the first frame in a fresh
2038 * txpkts).
2039 *
2040 * Returns non-zero to indicate a failure - caller is responsible for
2041 * transmitting m, if there was anything in txpkts it has been flushed.
2042 */
2043static int
2044add_to_txpkts(struct port_info *pi, struct sge_txq *txq, struct txpkts *txpkts,
2045 struct mbuf *m, struct sgl *sgl)
2046{
2047 struct sge_eq *eq = &txq->eq;
2048 int can_coalesce;
2049 struct tx_sdesc *txsd;
2050 int flits;
2051
2052 TXQ_LOCK_ASSERT_OWNED(txq);
2053
2054 if (txpkts->npkt > 0) {
2055 flits = TXPKTS_PKT_HDR + sgl->nflits;
2056 can_coalesce = m->m_pkthdr.tso_segsz == 0 &&
2057 txpkts->nflits + flits <= TX_WR_FLITS &&
2058 txpkts->nflits + flits <= eq->avail * 8 &&
2059 txpkts->plen + m->m_pkthdr.len < 65536;
2060
2061 if (can_coalesce) {
2062 txpkts->npkt++;
2063 txpkts->nflits += flits;
2064 txpkts->plen += m->m_pkthdr.len;
2065
2066 txsd = &eq->sdesc[eq->pidx];
2067 txsd->map_used++;
2068
2069 return (0);
2070 }
2071
2072 /*
2073 * Couldn't coalesce m into txpkts. The first order of business
2074 * is to send txpkts on its way. Then we'll revisit m.
2075 */
2076 write_txpkts_wr(txq, txpkts);
2077 }
2078
2079 /*
2080 * Check if we can start a new coalesced tx work request with m as
2081 * the first packet in it.
2082 */
2083
2084 KASSERT(txpkts->npkt == 0, ("%s: txpkts not empty", __func__));
2085
2086 flits = TXPKTS_WR_HDR + sgl->nflits;
2087 can_coalesce = m->m_pkthdr.tso_segsz == 0 &&
2088 flits <= eq->avail * 8 && flits <= TX_WR_FLITS;
2089
2090 if (can_coalesce == 0)
2091 return (EINVAL);
2092
2093 /*
2094 * Start a fresh coalesced tx WR with m as the first frame in it.
2095 */
2096 txpkts->npkt = 1;
2097 txpkts->nflits = flits;
2098 txpkts->flitp = &eq->desc[eq->pidx].flit[2];
2099 txpkts->plen = m->m_pkthdr.len;
2100
2101 txsd = &eq->sdesc[eq->pidx];
2102 txsd->map_used = 1;
2103
2104 return (0);
2105}
2106
2107/*
2108 * Note that write_txpkts_wr can never run out of hardware descriptors (but
2109 * write_txpkt_wr can). add_to_txpkts ensures that a frame is accepted for
2110 * coalescing only if sufficient hardware descriptors are available.
2111 */
2112static void
2113write_txpkts_wr(struct sge_txq *txq, struct txpkts *txpkts)
2114{
2115 struct sge_eq *eq = &txq->eq;
2116 struct fw_eth_tx_pkts_wr *wr;
2117 struct tx_sdesc *txsd;
2118 uint32_t ctrl;
2119 int ndesc;
2120
2121 TXQ_LOCK_ASSERT_OWNED(txq);
2122
2123 ndesc = howmany(txpkts->nflits, 8);
2124
2125 wr = (void *)&eq->desc[eq->pidx];
2126 wr->op_immdlen = htobe32(V_FW_WR_OP(FW_ETH_TX_PKTS_WR) |
2127 V_FW_WR_IMMDLEN(0)); /* immdlen does not matter in this WR */
2128 ctrl = V_FW_WR_LEN16(howmany(txpkts->nflits, 2));
2129 if (eq->avail == ndesc && !(eq->flags & EQ_CRFLUSHED)) {
2130 ctrl |= F_FW_WR_EQUEQ | F_FW_WR_EQUIQ;
2131 eq->flags |= EQ_CRFLUSHED;
2132 }
2133 wr->equiq_to_len16 = htobe32(ctrl);
2134 wr->plen = htobe16(txpkts->plen);
2135 wr->npkt = txpkts->npkt;
2136 wr->r3 = wr->r4 = 0;
2137
2138 /* Everything else already written */
2139
2140 txsd = &eq->sdesc[eq->pidx];
2141 txsd->desc_used = ndesc;
2142
2143 KASSERT(eq->avail >= ndesc, ("%s: out of descriptors", __func__));
2144
2145 eq->pending += ndesc;
2146 eq->avail -= ndesc;
2147 eq->pidx += ndesc;
2148 if (eq->pidx >= eq->cap)
2149 eq->pidx -= eq->cap;
2150
2151 txq->txpkts_pkts += txpkts->npkt;
2152 txq->txpkts_wrs++;
2153 txpkts->npkt = 0; /* emptied */
2154}
2155
2156static inline void
2157write_ulp_cpl_sgl(struct port_info *pi, struct sge_txq *txq,
2158 struct txpkts *txpkts, struct mbuf *m, struct sgl *sgl)
2159{
2160 struct ulp_txpkt *ulpmc;
2161 struct ulptx_idata *ulpsc;
2162 struct cpl_tx_pkt_core *cpl;
2163 struct sge_eq *eq = &txq->eq;
2164 uintptr_t flitp, start, end;
2165 uint64_t ctrl;
2166 caddr_t dst;
2167
2168 KASSERT(txpkts->npkt > 0, ("%s: txpkts is empty", __func__));
2169
2170 start = (uintptr_t)eq->desc;
2171 end = (uintptr_t)eq->spg;
2172
2173 /* Checksum offload */
2174 ctrl = 0;
2175 if (!(m->m_pkthdr.csum_flags & CSUM_IP))
2176 ctrl |= F_TXPKT_IPCSUM_DIS;
2177 if (!(m->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP)))
2178 ctrl |= F_TXPKT_L4CSUM_DIS;
2179 if (m->m_pkthdr.csum_flags & (CSUM_IP | CSUM_TCP | CSUM_UDP))
2180 txq->txcsum++; /* some hardware assistance provided */
2181
2182 /* VLAN tag insertion */
2183 if (m->m_flags & M_VLANTAG) {
2184 ctrl |= F_TXPKT_VLAN_VLD | V_TXPKT_VLAN(m->m_pkthdr.ether_vtag);
2185 txq->vlan_insertion++;
2186 }
2187
2188 /*
2189 * The previous packet's SGL must have ended at a 16 byte boundary (this
2190 * is required by the firmware/hardware). It follows that flitp cannot
2191 * wrap around between the ULPTX master command and ULPTX subcommand (8
2192 * bytes each), and that it can not wrap around in the middle of the
2193 * cpl_tx_pkt_core either.
2194 */
2195 flitp = (uintptr_t)txpkts->flitp;
2196 KASSERT((flitp & 0xf) == 0,
2197 ("%s: last SGL did not end at 16 byte boundary: %p",
2198 __func__, txpkts->flitp));
2199
2200 /* ULP master command */
2201 ulpmc = (void *)flitp;
2202 ulpmc->cmd_dest = htonl(V_ULPTX_CMD(ULP_TX_PKT) | V_ULP_TXPKT_DEST(0) |
2203 V_ULP_TXPKT_FID(eq->iqid));
2204 ulpmc->len = htonl(howmany(sizeof(*ulpmc) + sizeof(*ulpsc) +
2205 sizeof(*cpl) + 8 * sgl->nflits, 16));
2206
2207 /* ULP subcommand */
2208 ulpsc = (void *)(ulpmc + 1);
2209 ulpsc->cmd_more = htobe32(V_ULPTX_CMD((u32)ULP_TX_SC_IMM) |
2210 F_ULP_TX_SC_MORE);
2211 ulpsc->len = htobe32(sizeof(struct cpl_tx_pkt_core));
2212
2213 flitp += sizeof(*ulpmc) + sizeof(*ulpsc);
2214 if (flitp == end)
2215 flitp = start;
2216
2217 /* CPL_TX_PKT */
2218 cpl = (void *)flitp;
2219 cpl->ctrl0 = htobe32(V_TXPKT_OPCODE(CPL_TX_PKT) |
2220 V_TXPKT_INTF(pi->tx_chan) | V_TXPKT_PF(pi->adapter->pf));
2221 cpl->pack = 0;
2222 cpl->len = htobe16(m->m_pkthdr.len);
2223 cpl->ctrl1 = htobe64(ctrl);
2224
2225 flitp += sizeof(*cpl);
2226 if (flitp == end)
2227 flitp = start;
2228
2229 /* SGL for this frame */
2230 dst = (caddr_t)flitp;
2231 txpkts->nflits += write_sgl_to_txd(eq, sgl, &dst);
2232 txpkts->flitp = (void *)dst;
2233
2234 KASSERT(((uintptr_t)dst & 0xf) == 0,
2235 ("%s: SGL ends at %p (not a 16 byte boundary)", __func__, dst));
2236}
2237
2238/*
2239 * If the SGL ends on an address that is not 16 byte aligned, this function will
2240 * add a 0 filled flit at the end. It returns 1 in that case.
2241 */
2242static int
2243write_sgl_to_txd(struct sge_eq *eq, struct sgl *sgl, caddr_t *to)
2244{
2245 __be64 *flitp, *end;
2246 struct ulptx_sgl *usgl;
2247 bus_dma_segment_t *seg;
2248 int i, padded;
2249
2250 KASSERT(sgl->nsegs > 0 && sgl->nflits > 0,
2251 ("%s: bad SGL - nsegs=%d, nflits=%d",
2252 __func__, sgl->nsegs, sgl->nflits));
2253
2254 KASSERT(((uintptr_t)(*to) & 0xf) == 0,
2255 ("%s: SGL must start at a 16 byte boundary: %p", __func__, *to));
2256
2257 flitp = (__be64 *)(*to);
2258 end = flitp + sgl->nflits;
2259 seg = &sgl->seg[0];
2260 usgl = (void *)flitp;
2261
2262 /*
2263 * We start at a 16 byte boundary somewhere inside the tx descriptor
2264 * ring, so we're at least 16 bytes away from the status page. There is
2265 * no chance of a wrap around in the middle of usgl (which is 16 bytes).
2266 */
2267
2268 usgl->cmd_nsge = htobe32(V_ULPTX_CMD(ULP_TX_SC_DSGL) |
2269 V_ULPTX_NSGE(sgl->nsegs));
2270 usgl->len0 = htobe32(seg->ds_len);
2271 usgl->addr0 = htobe64(seg->ds_addr);
2272 seg++;
2273
2274 if ((uintptr_t)end <= (uintptr_t)eq->spg) {
2275
2276 /* Won't wrap around at all */
2277
2278 for (i = 0; i < sgl->nsegs - 1; i++, seg++) {
2279 usgl->sge[i / 2].len[i & 1] = htobe32(seg->ds_len);
2280 usgl->sge[i / 2].addr[i & 1] = htobe64(seg->ds_addr);
2281 }
2282 if (i & 1)
2283 usgl->sge[i / 2].len[1] = htobe32(0);
2284 } else {
2285
2286 /* Will wrap somewhere in the rest of the SGL */
2287
2288 /* 2 flits already written, write the rest flit by flit */
2289 flitp = (void *)(usgl + 1);
2290 for (i = 0; i < sgl->nflits - 2; i++) {
2291 if ((uintptr_t)flitp == (uintptr_t)eq->spg)
2292 flitp = (void *)eq->desc;
2293 *flitp++ = get_flit(seg, sgl->nsegs - 1, i);
2294 }
2295 end = flitp;
2296 }
2297
2298 if ((uintptr_t)end & 0xf) {
2299 *(uint64_t *)end = 0;
2300 end++;
2301 padded = 1;
2302 } else
2303 padded = 0;
2304
2305 if ((uintptr_t)end == (uintptr_t)eq->spg)
2306 *to = (void *)eq->desc;
2307 else
2308 *to = (void *)end;
2309
2310 return (padded);
2311}
2312
2313static inline void
2314copy_to_txd(struct sge_eq *eq, caddr_t from, caddr_t *to, int len)
2315{
2316 if ((uintptr_t)(*to) + len <= (uintptr_t)eq->spg) {
2317 bcopy(from, *to, len);
2318 (*to) += len;
2319 } else {
2320 int portion = (uintptr_t)eq->spg - (uintptr_t)(*to);
2321
2322 bcopy(from, *to, portion);
2323 from += portion;
2324 portion = len - portion; /* remaining */
2325 bcopy(from, (void *)eq->desc, portion);
2326 (*to) = (caddr_t)eq->desc + portion;
2327 }
2328}
2329
2330static inline void
2331ring_tx_db(struct adapter *sc, struct sge_eq *eq)
2332{
2333 wmb();
2334 t4_write_reg(sc, MYPF_REG(A_SGE_PF_KDOORBELL),
2335 V_QID(eq->cntxt_id) | V_PIDX(eq->pending));
2336 eq->pending = 0;
2337}
2338
2339static inline int
2340reclaimable(struct sge_eq *eq)
2341{
2342 unsigned int cidx;
2343
2344 cidx = eq->spg->cidx; /* stable snapshot */
2345 cidx = be16_to_cpu(cidx);
2346
2347 if (cidx >= eq->cidx)
2348 return (cidx - eq->cidx);
2349 else
2350 return (cidx + eq->cap - eq->cidx);
2351}
2352
2353/*
2354 * There are "can_reclaim" tx descriptors ready to be reclaimed. Reclaim as
2355 * many as possible but stop when there are around "n" mbufs to free.
2356 *
2357 * The actual number reclaimed is provided as the return value.
2358 */
2359static int
2360reclaim_tx_descs(struct sge_eq *eq, int can_reclaim, int n)
2361{
2362 struct tx_sdesc *txsd;
2363 struct tx_map *txm;
2364 unsigned int reclaimed, maps;
2365
2366 EQ_LOCK_ASSERT_OWNED(eq);
2367
2368 if (can_reclaim == 0)
2369 can_reclaim = reclaimable(eq);
2370
2371 maps = reclaimed = 0;
2372 while (can_reclaim && maps < n) {
2373 int ndesc;
2374
2375 txsd = &eq->sdesc[eq->cidx];
2376 ndesc = txsd->desc_used;
2377
2378 /* Firmware doesn't return "partial" credits. */
2379 KASSERT(can_reclaim >= ndesc,
2380 ("%s: unexpected number of credits: %d, %d",
2381 __func__, can_reclaim, ndesc));
2382
2383 maps += txsd->map_used;
2384
2385 reclaimed += ndesc;
2386 can_reclaim -= ndesc;
2387
2388 eq->cidx += ndesc;
2389 if (__predict_false(eq->cidx >= eq->cap))
2390 eq->cidx -= eq->cap;
2391 }
2392
2393 txm = &eq->maps[eq->map_cidx];
2394 if (maps)
2395 prefetch(txm->m);
2396
2397 eq->avail += reclaimed;
2398 KASSERT(eq->avail < eq->cap, /* avail tops out at (cap - 1) */
2399 ("%s: too many descriptors available", __func__));
2400
2401 eq->map_avail += maps;
2402 KASSERT(eq->map_avail <= eq->map_total,
2403 ("%s: too many maps available", __func__));
2404
2405 while (maps--) {
2406 struct tx_map *next;
2407
2408 next = txm + 1;
2409 if (__predict_false(eq->map_cidx + 1 == eq->map_total))
2410 next = eq->maps;
2411 prefetch(next->m);
2412
2413 bus_dmamap_unload(eq->tx_tag, txm->map);
2414 m_freem(txm->m);
2415 txm->m = NULL;
2416
2417 txm = next;
2418 if (__predict_false(++eq->map_cidx == eq->map_total))
2419 eq->map_cidx = 0;
2420 }
2421
2422 return (reclaimed);
2423}
2424
2425static void
2426write_eqflush_wr(struct sge_eq *eq)
2427{
2428 struct fw_eq_flush_wr *wr;
2429 struct tx_sdesc *txsd;
2430
2431 EQ_LOCK_ASSERT_OWNED(eq);
2432 KASSERT(eq->avail > 0, ("%s: no descriptors left.", __func__));
2433
2434 wr = (void *)&eq->desc[eq->pidx];
2435 bzero(wr, sizeof(*wr));
2436 wr->opcode = FW_EQ_FLUSH_WR;
2437 wr->equiq_to_len16 = htobe32(V_FW_WR_LEN16(sizeof(*wr) / 16) |
2438 F_FW_WR_EQUEQ | F_FW_WR_EQUIQ);
2439
2440 txsd = &eq->sdesc[eq->pidx];
2441 txsd->desc_used = 1;
2442 txsd->map_used = 0;
2443
2444 eq->flags |= EQ_CRFLUSHED;
2445 eq->pending++;
2446 eq->avail--;
2447 if (++eq->pidx == eq->cap)
2448 eq->pidx = 0;
2449}
2450
2451static __be64
2452get_flit(bus_dma_segment_t *sgl, int nsegs, int idx)
2453{
2454 int i = (idx / 3) * 2;
2455
2456 switch (idx % 3) {
2457 case 0: {
2458 __be64 rc;
2459
2460 rc = htobe32(sgl[i].ds_len);
2461 if (i + 1 < nsegs)
2462 rc |= (uint64_t)htobe32(sgl[i + 1].ds_len) << 32;
2463
2464 return (rc);
2465 }
2466 case 1:
2467 return htobe64(sgl[i].ds_addr);
2468 case 2:
2469 return htobe64(sgl[i + 1].ds_addr);
2470 }
2471
2472 return (0);
2473}
2474
2475static void
2476set_fl_tag_idx(struct sge_fl *fl, int mtu)
2477{
2478 int i;
2479
2480 FL_LOCK_ASSERT_OWNED(fl);
2481
2482 for (i = 0; i < FL_BUF_SIZES - 1; i++) {
2483 if (FL_BUF_SIZE(i) >= (mtu + FL_PKTSHIFT))
2484 break;
2485 }
2486
2487 fl->tag_idx = i;
2488}
2489
2490static int
2491handle_sge_egr_update(struct adapter *sc, const struct cpl_sge_egr_update *cpl)
2492{
2493 unsigned int qid = G_EGR_QID(ntohl(cpl->opcode_qid));
2494 struct sge *s = &sc->sge;
2495 struct sge_txq *txq;
2496 struct port_info *pi;
2497
2498 txq = (void *)s->eqmap[qid - s->eq_start];
2499 TXQ_LOCK(txq);
2500 if (txq->eq.flags & EQ_CRFLUSHED) {
2501 pi = txq->ifp->if_softc;
2502 taskqueue_enqueue(pi->tq, &txq->resume_tx);
2503 txq->egr_update++;
2504 } else
2505 wakeup_one(txq); /* txq is going away, wakeup free_txq */
2506 TXQ_UNLOCK(txq);
2507
2448 KASSERT(txq->eq.flags & EQ_CRFLUSHED,
2449 ("%s: tx queue %p not expecting an update.", __func__, txq));
2450
2451 pi = txq->ifp->if_softc;
2452 taskqueue_enqueue(pi->tq, &txq->resume_tx);
2453 txq->egr_update++;
2454
2508 return (0);
2509}