Deleted Added
full compact
gencode.c (75110) gencode.c (98533)
1/*#define CHASE_CHAIN*/
2/*
3 * Copyright (c) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998
4 * The Regents of the University of California. All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that: (1) source code distributions
8 * retain the above copyright notice and this paragraph in its entirety, (2)
9 * distributions including binary code include the above copyright notice and
10 * this paragraph in its entirety in the documentation or other materials
11 * provided with the distribution, and (3) all advertising materials mentioning
12 * features or use of this software display the following acknowledgement:
13 * ``This product includes software developed by the University of California,
14 * Lawrence Berkeley Laboratory and its contributors.'' Neither the name of
15 * the University nor the names of its contributors may be used to endorse
16 * or promote products derived from this software without specific prior
17 * written permission.
18 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR IMPLIED
19 * WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF
20 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
21 *
1/*#define CHASE_CHAIN*/
2/*
3 * Copyright (c) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998
4 * The Regents of the University of California. All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that: (1) source code distributions
8 * retain the above copyright notice and this paragraph in its entirety, (2)
9 * distributions including binary code include the above copyright notice and
10 * this paragraph in its entirety in the documentation or other materials
11 * provided with the distribution, and (3) all advertising materials mentioning
12 * features or use of this software display the following acknowledgement:
13 * ``This product includes software developed by the University of California,
14 * Lawrence Berkeley Laboratory and its contributors.'' Neither the name of
15 * the University nor the names of its contributors may be used to endorse
16 * or promote products derived from this software without specific prior
17 * written permission.
18 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR IMPLIED
19 * WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF
20 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
21 *
22 * $FreeBSD: head/contrib/libpcap/gencode.c 75110 2001-04-03 04:32:48Z fenner $
22 * $FreeBSD: head/contrib/libpcap/gencode.c 98533 2002-06-21 01:38:14Z fenner $
23 */
24#ifndef lint
25static const char rcsid[] =
23 */
24#ifndef lint
25static const char rcsid[] =
26 "@(#) $Header: /tcpdump/master/libpcap/gencode.c,v 1.140.2.1 2001/01/14 06:48:35 guy Exp $ (LBL)";
26 "@(#) $Header: /tcpdump/master/libpcap/gencode.c,v 1.160 2001/11/30 07:25:48 guy Exp $ (LBL)";
27#endif
28
29#ifdef HAVE_CONFIG_H
30#include "config.h"
31#endif
32
33#include <sys/types.h>
34#include <sys/socket.h>
35#include <sys/time.h>
36#ifdef __NetBSD__
37#include <sys/param.h>
38#endif
39
40struct mbuf;
41struct rtentry;
42#include <net/if.h>
43
44#include <netinet/in.h>
45
46#include <stdlib.h>
47#include <string.h>
48#include <memory.h>
49#include <setjmp.h>
50#include <stdarg.h>
51
52#include "pcap-int.h"
53
54#include "ethertype.h"
55#include "nlpid.h"
27#endif
28
29#ifdef HAVE_CONFIG_H
30#include "config.h"
31#endif
32
33#include <sys/types.h>
34#include <sys/socket.h>
35#include <sys/time.h>
36#ifdef __NetBSD__
37#include <sys/param.h>
38#endif
39
40struct mbuf;
41struct rtentry;
42#include <net/if.h>
43
44#include <netinet/in.h>
45
46#include <stdlib.h>
47#include <string.h>
48#include <memory.h>
49#include <setjmp.h>
50#include <stdarg.h>
51
52#include "pcap-int.h"
53
54#include "ethertype.h"
55#include "nlpid.h"
56#include "llc.h"
56#include "gencode.h"
57#include "ppp.h"
58#include "sll.h"
57#include "gencode.h"
58#include "ppp.h"
59#include "sll.h"
60#include "arcnet.h"
59#include <pcap-namedb.h>
60#ifdef INET6
61#include <netdb.h>
62#include <sys/socket.h>
63#endif /*INET6*/
64
61#include <pcap-namedb.h>
62#ifdef INET6
63#include <netdb.h>
64#include <sys/socket.h>
65#endif /*INET6*/
66
65#define LLC_SNAP_LSAP 0xaa
66#define LLC_ISO_LSAP 0xfe
67
68#undef ETHERMTU
69#define ETHERMTU 1500
70
67#undef ETHERMTU
68#define ETHERMTU 1500
69
70#ifndef IPPROTO_SCTP
71#define IPPROTO_SCTP 132
72#endif
73
71#ifdef HAVE_OS_PROTO_H
72#include "os-proto.h"
73#endif
74
75#define JMP(c) ((c)|BPF_JMP|BPF_K)
76
77/* Locals */
78static jmp_buf top_ctx;
79static pcap_t *bpf_pcap;
80
74#ifdef HAVE_OS_PROTO_H
75#include "os-proto.h"
76#endif
77
78#define JMP(c) ((c)|BPF_JMP|BPF_K)
79
80/* Locals */
81static jmp_buf top_ctx;
82static pcap_t *bpf_pcap;
83
84/* Hack for updating VLAN offsets. */
85static u_int orig_linktype = -1, orig_nl = -1;
86
81/* XXX */
82#ifdef PCAP_FDDIPAD
83int pcap_fddipad = PCAP_FDDIPAD;
84#else
85int pcap_fddipad;
86#endif
87
88/* VARARGS */
89void
90bpf_error(const char *fmt, ...)
91
92{
93 va_list ap;
94
95 va_start(ap, fmt);
96 if (bpf_pcap != NULL)
97 (void)vsnprintf(pcap_geterr(bpf_pcap), PCAP_ERRBUF_SIZE,
98 fmt, ap);
99 va_end(ap);
100 longjmp(top_ctx, 1);
101 /* NOTREACHED */
102}
103
104static void init_linktype(int);
105
106static int alloc_reg(void);
107static void free_reg(int);
108
109static struct block *root;
110
111/*
112 * We divy out chunks of memory rather than call malloc each time so
113 * we don't have to worry about leaking memory. It's probably
114 * not a big deal if all this memory was wasted but it this ever
115 * goes into a library that would probably not be a good idea.
116 */
117#define NCHUNKS 16
118#define CHUNK0SIZE 1024
119struct chunk {
120 u_int n_left;
121 void *m;
122};
123
124static struct chunk chunks[NCHUNKS];
125static int cur_chunk;
126
127static void *newchunk(u_int);
128static void freechunks(void);
129static inline struct block *new_block(int);
130static inline struct slist *new_stmt(int);
131static struct block *gen_retblk(int);
132static inline void syntax(void);
133
134static void backpatch(struct block *, struct block *);
135static void merge(struct block *, struct block *);
136static struct block *gen_cmp(u_int, u_int, bpf_int32);
137static struct block *gen_cmp_gt(u_int, u_int, bpf_int32);
138static struct block *gen_mcmp(u_int, u_int, bpf_int32, bpf_u_int32);
139static struct block *gen_bcmp(u_int, u_int, const u_char *);
140static struct block *gen_uncond(int);
141static inline struct block *gen_true(void);
142static inline struct block *gen_false(void);
143static struct block *gen_linktype(int);
144static struct block *gen_snap(bpf_u_int32, bpf_u_int32, u_int);
145static struct block *gen_hostop(bpf_u_int32, bpf_u_int32, int, int, u_int, u_int);
146#ifdef INET6
147static struct block *gen_hostop6(struct in6_addr *, struct in6_addr *, int, int, u_int, u_int);
148#endif
87/* XXX */
88#ifdef PCAP_FDDIPAD
89int pcap_fddipad = PCAP_FDDIPAD;
90#else
91int pcap_fddipad;
92#endif
93
94/* VARARGS */
95void
96bpf_error(const char *fmt, ...)
97
98{
99 va_list ap;
100
101 va_start(ap, fmt);
102 if (bpf_pcap != NULL)
103 (void)vsnprintf(pcap_geterr(bpf_pcap), PCAP_ERRBUF_SIZE,
104 fmt, ap);
105 va_end(ap);
106 longjmp(top_ctx, 1);
107 /* NOTREACHED */
108}
109
110static void init_linktype(int);
111
112static int alloc_reg(void);
113static void free_reg(int);
114
115static struct block *root;
116
117/*
118 * We divy out chunks of memory rather than call malloc each time so
119 * we don't have to worry about leaking memory. It's probably
120 * not a big deal if all this memory was wasted but it this ever
121 * goes into a library that would probably not be a good idea.
122 */
123#define NCHUNKS 16
124#define CHUNK0SIZE 1024
125struct chunk {
126 u_int n_left;
127 void *m;
128};
129
130static struct chunk chunks[NCHUNKS];
131static int cur_chunk;
132
133static void *newchunk(u_int);
134static void freechunks(void);
135static inline struct block *new_block(int);
136static inline struct slist *new_stmt(int);
137static struct block *gen_retblk(int);
138static inline void syntax(void);
139
140static void backpatch(struct block *, struct block *);
141static void merge(struct block *, struct block *);
142static struct block *gen_cmp(u_int, u_int, bpf_int32);
143static struct block *gen_cmp_gt(u_int, u_int, bpf_int32);
144static struct block *gen_mcmp(u_int, u_int, bpf_int32, bpf_u_int32);
145static struct block *gen_bcmp(u_int, u_int, const u_char *);
146static struct block *gen_uncond(int);
147static inline struct block *gen_true(void);
148static inline struct block *gen_false(void);
149static struct block *gen_linktype(int);
150static struct block *gen_snap(bpf_u_int32, bpf_u_int32, u_int);
151static struct block *gen_hostop(bpf_u_int32, bpf_u_int32, int, int, u_int, u_int);
152#ifdef INET6
153static struct block *gen_hostop6(struct in6_addr *, struct in6_addr *, int, int, u_int, u_int);
154#endif
155static struct block *gen_ahostop(const u_char *, int);
149static struct block *gen_ehostop(const u_char *, int);
150static struct block *gen_fhostop(const u_char *, int);
151static struct block *gen_thostop(const u_char *, int);
152static struct block *gen_dnhostop(bpf_u_int32, int, u_int);
153static struct block *gen_host(bpf_u_int32, bpf_u_int32, int, int);
154#ifdef INET6
155static struct block *gen_host6(struct in6_addr *, struct in6_addr *, int, int);
156#endif
157#ifndef INET6
158static struct block *gen_gateway(const u_char *, bpf_u_int32 **, int, int);
159#endif
160static struct block *gen_ipfrag(void);
161static struct block *gen_portatom(int, bpf_int32);
162#ifdef INET6
163static struct block *gen_portatom6(int, bpf_int32);
164#endif
165struct block *gen_portop(int, int, int);
166static struct block *gen_port(int, int, int);
167#ifdef INET6
168struct block *gen_portop6(int, int, int);
169static struct block *gen_port6(int, int, int);
170#endif
171static int lookup_proto(const char *, int);
172static struct block *gen_protochain(int, int, int);
173static struct block *gen_proto(int, int, int);
174static struct slist *xfer_to_x(struct arth *);
175static struct slist *xfer_to_a(struct arth *);
176static struct block *gen_len(int, int);
177
178static void *
179newchunk(n)
180 u_int n;
181{
182 struct chunk *cp;
183 int k, size;
184
185#ifndef __NetBSD__
186 /* XXX Round up to nearest long. */
187 n = (n + sizeof(long) - 1) & ~(sizeof(long) - 1);
188#else
189 /* XXX Round up to structure boundary. */
190 n = ALIGN(n);
191#endif
192
193 cp = &chunks[cur_chunk];
194 if (n > cp->n_left) {
195 ++cp, k = ++cur_chunk;
196 if (k >= NCHUNKS)
197 bpf_error("out of memory");
198 size = CHUNK0SIZE << k;
199 cp->m = (void *)malloc(size);
200 memset((char *)cp->m, 0, size);
201 cp->n_left = size;
202 if (n > size)
203 bpf_error("out of memory");
204 }
205 cp->n_left -= n;
206 return (void *)((char *)cp->m + cp->n_left);
207}
208
209static void
210freechunks()
211{
212 int i;
213
214 cur_chunk = 0;
215 for (i = 0; i < NCHUNKS; ++i)
216 if (chunks[i].m != NULL) {
217 free(chunks[i].m);
218 chunks[i].m = NULL;
219 }
220}
221
222/*
223 * A strdup whose allocations are freed after code generation is over.
224 */
225char *
226sdup(s)
227 register const char *s;
228{
229 int n = strlen(s) + 1;
230 char *cp = newchunk(n);
231
232 strlcpy(cp, s, n);
233 return (cp);
234}
235
236static inline struct block *
237new_block(code)
238 int code;
239{
240 struct block *p;
241
242 p = (struct block *)newchunk(sizeof(*p));
243 p->s.code = code;
244 p->head = p;
245
246 return p;
247}
248
249static inline struct slist *
250new_stmt(code)
251 int code;
252{
253 struct slist *p;
254
255 p = (struct slist *)newchunk(sizeof(*p));
256 p->s.code = code;
257
258 return p;
259}
260
261static struct block *
262gen_retblk(v)
263 int v;
264{
265 struct block *b = new_block(BPF_RET|BPF_K);
266
267 b->s.k = v;
268 return b;
269}
270
271static inline void
272syntax()
273{
274 bpf_error("syntax error in filter expression");
275}
276
277static bpf_u_int32 netmask;
278static int snaplen;
279int no_optimize;
280
281int
282pcap_compile(pcap_t *p, struct bpf_program *program,
283 char *buf, int optimize, bpf_u_int32 mask)
284{
285 extern int n_errors;
286 int len;
287
288 no_optimize = 0;
289 n_errors = 0;
290 root = NULL;
291 bpf_pcap = p;
292 if (setjmp(top_ctx)) {
293 lex_cleanup();
294 freechunks();
295 return (-1);
296 }
297
298 netmask = mask;
299
300 snaplen = pcap_snapshot(p);
301 if (snaplen == 0) {
302 snprintf(p->errbuf, PCAP_ERRBUF_SIZE,
303 "snaplen of 0 rejects all packets");
304 return -1;
305 }
306
307 lex_init(buf ? buf : "");
308 init_linktype(pcap_datalink(p));
309 (void)pcap_parse();
310
311 if (n_errors)
312 syntax();
313
314 if (root == NULL)
315 root = gen_retblk(snaplen);
316
317 if (optimize && !no_optimize) {
318 bpf_optimize(&root);
319 if (root == NULL ||
320 (root->s.code == (BPF_RET|BPF_K) && root->s.k == 0))
321 bpf_error("expression rejects all packets");
322 }
323 program->bf_insns = icode_to_fcode(root, &len);
324 program->bf_len = len;
325
326 lex_cleanup();
327 freechunks();
328 return (0);
329}
330
331/*
332 * entry point for using the compiler with no pcap open
333 * pass in all the stuff that is needed explicitly instead.
334 */
335int
336pcap_compile_nopcap(int snaplen_arg, int linktype_arg,
337 struct bpf_program *program,
338 char *buf, int optimize, bpf_u_int32 mask)
339{
340 pcap_t *p;
341 int ret;
342
343 p = pcap_open_dead(linktype_arg, snaplen_arg);
344 if (p == NULL)
345 return (-1);
346 ret = pcap_compile(p, program, buf, optimize, mask);
347 pcap_close(p);
348 return (ret);
349}
350
351/*
352 * Clean up a "struct bpf_program" by freeing all the memory allocated
353 * in it.
354 */
355void
356pcap_freecode(struct bpf_program *program)
357{
358 program->bf_len = 0;
359 if (program->bf_insns != NULL) {
360 free((char *)program->bf_insns);
361 program->bf_insns = NULL;
362 }
363}
364
365/*
366 * Backpatch the blocks in 'list' to 'target'. The 'sense' field indicates
367 * which of the jt and jf fields has been resolved and which is a pointer
368 * back to another unresolved block (or nil). At least one of the fields
369 * in each block is already resolved.
370 */
371static void
372backpatch(list, target)
373 struct block *list, *target;
374{
375 struct block *next;
376
377 while (list) {
378 if (!list->sense) {
379 next = JT(list);
380 JT(list) = target;
381 } else {
382 next = JF(list);
383 JF(list) = target;
384 }
385 list = next;
386 }
387}
388
389/*
390 * Merge the lists in b0 and b1, using the 'sense' field to indicate
391 * which of jt and jf is the link.
392 */
393static void
394merge(b0, b1)
395 struct block *b0, *b1;
396{
397 register struct block **p = &b0;
398
399 /* Find end of list. */
400 while (*p)
401 p = !((*p)->sense) ? &JT(*p) : &JF(*p);
402
403 /* Concatenate the lists. */
404 *p = b1;
405}
406
407void
408finish_parse(p)
409 struct block *p;
410{
411 backpatch(p, gen_retblk(snaplen));
412 p->sense = !p->sense;
413 backpatch(p, gen_retblk(0));
414 root = p->head;
415}
416
417void
418gen_and(b0, b1)
419 struct block *b0, *b1;
420{
421 backpatch(b0, b1->head);
422 b0->sense = !b0->sense;
423 b1->sense = !b1->sense;
424 merge(b1, b0);
425 b1->sense = !b1->sense;
426 b1->head = b0->head;
427}
428
429void
430gen_or(b0, b1)
431 struct block *b0, *b1;
432{
433 b0->sense = !b0->sense;
434 backpatch(b0, b1->head);
435 b0->sense = !b0->sense;
436 merge(b1, b0);
437 b1->head = b0->head;
438}
439
440void
441gen_not(b)
442 struct block *b;
443{
444 b->sense = !b->sense;
445}
446
447static struct block *
448gen_cmp(offset, size, v)
449 u_int offset, size;
450 bpf_int32 v;
451{
452 struct slist *s;
453 struct block *b;
454
455 s = new_stmt(BPF_LD|BPF_ABS|size);
456 s->s.k = offset;
457
458 b = new_block(JMP(BPF_JEQ));
459 b->stmts = s;
460 b->s.k = v;
461
462 return b;
463}
464
465static struct block *
466gen_cmp_gt(offset, size, v)
467 u_int offset, size;
468 bpf_int32 v;
469{
470 struct slist *s;
471 struct block *b;
472
473 s = new_stmt(BPF_LD|BPF_ABS|size);
474 s->s.k = offset;
475
476 b = new_block(JMP(BPF_JGT));
477 b->stmts = s;
478 b->s.k = v;
479
480 return b;
481}
482
483static struct block *
484gen_mcmp(offset, size, v, mask)
485 u_int offset, size;
486 bpf_int32 v;
487 bpf_u_int32 mask;
488{
489 struct block *b = gen_cmp(offset, size, v);
490 struct slist *s;
491
492 if (mask != 0xffffffff) {
493 s = new_stmt(BPF_ALU|BPF_AND|BPF_K);
494 s->s.k = mask;
495 b->stmts->next = s;
496 }
497 return b;
498}
499
500static struct block *
501gen_bcmp(offset, size, v)
502 register u_int offset, size;
503 register const u_char *v;
504{
505 register struct block *b, *tmp;
506
507 b = NULL;
508 while (size >= 4) {
509 register const u_char *p = &v[size - 4];
510 bpf_int32 w = ((bpf_int32)p[0] << 24) |
511 ((bpf_int32)p[1] << 16) | ((bpf_int32)p[2] << 8) | p[3];
512
513 tmp = gen_cmp(offset + size - 4, BPF_W, w);
514 if (b != NULL)
515 gen_and(b, tmp);
516 b = tmp;
517 size -= 4;
518 }
519 while (size >= 2) {
520 register const u_char *p = &v[size - 2];
521 bpf_int32 w = ((bpf_int32)p[0] << 8) | p[1];
522
523 tmp = gen_cmp(offset + size - 2, BPF_H, w);
524 if (b != NULL)
525 gen_and(b, tmp);
526 b = tmp;
527 size -= 2;
528 }
529 if (size > 0) {
530 tmp = gen_cmp(offset, BPF_B, (bpf_int32)v[0]);
531 if (b != NULL)
532 gen_and(b, tmp);
533 b = tmp;
534 }
535 return b;
536}
537
538/*
539 * Various code constructs need to know the layout of the data link
540 * layer. These variables give the necessary offsets. off_linktype
541 * is set to -1 for no encapsulation, in which case, IP is assumed.
542 */
543static u_int off_linktype;
544static u_int off_nl;
545static int linktype;
546
547static void
548init_linktype(type)
549 int type;
550{
551 linktype = type;
552
156static struct block *gen_ehostop(const u_char *, int);
157static struct block *gen_fhostop(const u_char *, int);
158static struct block *gen_thostop(const u_char *, int);
159static struct block *gen_dnhostop(bpf_u_int32, int, u_int);
160static struct block *gen_host(bpf_u_int32, bpf_u_int32, int, int);
161#ifdef INET6
162static struct block *gen_host6(struct in6_addr *, struct in6_addr *, int, int);
163#endif
164#ifndef INET6
165static struct block *gen_gateway(const u_char *, bpf_u_int32 **, int, int);
166#endif
167static struct block *gen_ipfrag(void);
168static struct block *gen_portatom(int, bpf_int32);
169#ifdef INET6
170static struct block *gen_portatom6(int, bpf_int32);
171#endif
172struct block *gen_portop(int, int, int);
173static struct block *gen_port(int, int, int);
174#ifdef INET6
175struct block *gen_portop6(int, int, int);
176static struct block *gen_port6(int, int, int);
177#endif
178static int lookup_proto(const char *, int);
179static struct block *gen_protochain(int, int, int);
180static struct block *gen_proto(int, int, int);
181static struct slist *xfer_to_x(struct arth *);
182static struct slist *xfer_to_a(struct arth *);
183static struct block *gen_len(int, int);
184
185static void *
186newchunk(n)
187 u_int n;
188{
189 struct chunk *cp;
190 int k, size;
191
192#ifndef __NetBSD__
193 /* XXX Round up to nearest long. */
194 n = (n + sizeof(long) - 1) & ~(sizeof(long) - 1);
195#else
196 /* XXX Round up to structure boundary. */
197 n = ALIGN(n);
198#endif
199
200 cp = &chunks[cur_chunk];
201 if (n > cp->n_left) {
202 ++cp, k = ++cur_chunk;
203 if (k >= NCHUNKS)
204 bpf_error("out of memory");
205 size = CHUNK0SIZE << k;
206 cp->m = (void *)malloc(size);
207 memset((char *)cp->m, 0, size);
208 cp->n_left = size;
209 if (n > size)
210 bpf_error("out of memory");
211 }
212 cp->n_left -= n;
213 return (void *)((char *)cp->m + cp->n_left);
214}
215
216static void
217freechunks()
218{
219 int i;
220
221 cur_chunk = 0;
222 for (i = 0; i < NCHUNKS; ++i)
223 if (chunks[i].m != NULL) {
224 free(chunks[i].m);
225 chunks[i].m = NULL;
226 }
227}
228
229/*
230 * A strdup whose allocations are freed after code generation is over.
231 */
232char *
233sdup(s)
234 register const char *s;
235{
236 int n = strlen(s) + 1;
237 char *cp = newchunk(n);
238
239 strlcpy(cp, s, n);
240 return (cp);
241}
242
243static inline struct block *
244new_block(code)
245 int code;
246{
247 struct block *p;
248
249 p = (struct block *)newchunk(sizeof(*p));
250 p->s.code = code;
251 p->head = p;
252
253 return p;
254}
255
256static inline struct slist *
257new_stmt(code)
258 int code;
259{
260 struct slist *p;
261
262 p = (struct slist *)newchunk(sizeof(*p));
263 p->s.code = code;
264
265 return p;
266}
267
268static struct block *
269gen_retblk(v)
270 int v;
271{
272 struct block *b = new_block(BPF_RET|BPF_K);
273
274 b->s.k = v;
275 return b;
276}
277
278static inline void
279syntax()
280{
281 bpf_error("syntax error in filter expression");
282}
283
284static bpf_u_int32 netmask;
285static int snaplen;
286int no_optimize;
287
288int
289pcap_compile(pcap_t *p, struct bpf_program *program,
290 char *buf, int optimize, bpf_u_int32 mask)
291{
292 extern int n_errors;
293 int len;
294
295 no_optimize = 0;
296 n_errors = 0;
297 root = NULL;
298 bpf_pcap = p;
299 if (setjmp(top_ctx)) {
300 lex_cleanup();
301 freechunks();
302 return (-1);
303 }
304
305 netmask = mask;
306
307 snaplen = pcap_snapshot(p);
308 if (snaplen == 0) {
309 snprintf(p->errbuf, PCAP_ERRBUF_SIZE,
310 "snaplen of 0 rejects all packets");
311 return -1;
312 }
313
314 lex_init(buf ? buf : "");
315 init_linktype(pcap_datalink(p));
316 (void)pcap_parse();
317
318 if (n_errors)
319 syntax();
320
321 if (root == NULL)
322 root = gen_retblk(snaplen);
323
324 if (optimize && !no_optimize) {
325 bpf_optimize(&root);
326 if (root == NULL ||
327 (root->s.code == (BPF_RET|BPF_K) && root->s.k == 0))
328 bpf_error("expression rejects all packets");
329 }
330 program->bf_insns = icode_to_fcode(root, &len);
331 program->bf_len = len;
332
333 lex_cleanup();
334 freechunks();
335 return (0);
336}
337
338/*
339 * entry point for using the compiler with no pcap open
340 * pass in all the stuff that is needed explicitly instead.
341 */
342int
343pcap_compile_nopcap(int snaplen_arg, int linktype_arg,
344 struct bpf_program *program,
345 char *buf, int optimize, bpf_u_int32 mask)
346{
347 pcap_t *p;
348 int ret;
349
350 p = pcap_open_dead(linktype_arg, snaplen_arg);
351 if (p == NULL)
352 return (-1);
353 ret = pcap_compile(p, program, buf, optimize, mask);
354 pcap_close(p);
355 return (ret);
356}
357
358/*
359 * Clean up a "struct bpf_program" by freeing all the memory allocated
360 * in it.
361 */
362void
363pcap_freecode(struct bpf_program *program)
364{
365 program->bf_len = 0;
366 if (program->bf_insns != NULL) {
367 free((char *)program->bf_insns);
368 program->bf_insns = NULL;
369 }
370}
371
372/*
373 * Backpatch the blocks in 'list' to 'target'. The 'sense' field indicates
374 * which of the jt and jf fields has been resolved and which is a pointer
375 * back to another unresolved block (or nil). At least one of the fields
376 * in each block is already resolved.
377 */
378static void
379backpatch(list, target)
380 struct block *list, *target;
381{
382 struct block *next;
383
384 while (list) {
385 if (!list->sense) {
386 next = JT(list);
387 JT(list) = target;
388 } else {
389 next = JF(list);
390 JF(list) = target;
391 }
392 list = next;
393 }
394}
395
396/*
397 * Merge the lists in b0 and b1, using the 'sense' field to indicate
398 * which of jt and jf is the link.
399 */
400static void
401merge(b0, b1)
402 struct block *b0, *b1;
403{
404 register struct block **p = &b0;
405
406 /* Find end of list. */
407 while (*p)
408 p = !((*p)->sense) ? &JT(*p) : &JF(*p);
409
410 /* Concatenate the lists. */
411 *p = b1;
412}
413
414void
415finish_parse(p)
416 struct block *p;
417{
418 backpatch(p, gen_retblk(snaplen));
419 p->sense = !p->sense;
420 backpatch(p, gen_retblk(0));
421 root = p->head;
422}
423
424void
425gen_and(b0, b1)
426 struct block *b0, *b1;
427{
428 backpatch(b0, b1->head);
429 b0->sense = !b0->sense;
430 b1->sense = !b1->sense;
431 merge(b1, b0);
432 b1->sense = !b1->sense;
433 b1->head = b0->head;
434}
435
436void
437gen_or(b0, b1)
438 struct block *b0, *b1;
439{
440 b0->sense = !b0->sense;
441 backpatch(b0, b1->head);
442 b0->sense = !b0->sense;
443 merge(b1, b0);
444 b1->head = b0->head;
445}
446
447void
448gen_not(b)
449 struct block *b;
450{
451 b->sense = !b->sense;
452}
453
454static struct block *
455gen_cmp(offset, size, v)
456 u_int offset, size;
457 bpf_int32 v;
458{
459 struct slist *s;
460 struct block *b;
461
462 s = new_stmt(BPF_LD|BPF_ABS|size);
463 s->s.k = offset;
464
465 b = new_block(JMP(BPF_JEQ));
466 b->stmts = s;
467 b->s.k = v;
468
469 return b;
470}
471
472static struct block *
473gen_cmp_gt(offset, size, v)
474 u_int offset, size;
475 bpf_int32 v;
476{
477 struct slist *s;
478 struct block *b;
479
480 s = new_stmt(BPF_LD|BPF_ABS|size);
481 s->s.k = offset;
482
483 b = new_block(JMP(BPF_JGT));
484 b->stmts = s;
485 b->s.k = v;
486
487 return b;
488}
489
490static struct block *
491gen_mcmp(offset, size, v, mask)
492 u_int offset, size;
493 bpf_int32 v;
494 bpf_u_int32 mask;
495{
496 struct block *b = gen_cmp(offset, size, v);
497 struct slist *s;
498
499 if (mask != 0xffffffff) {
500 s = new_stmt(BPF_ALU|BPF_AND|BPF_K);
501 s->s.k = mask;
502 b->stmts->next = s;
503 }
504 return b;
505}
506
507static struct block *
508gen_bcmp(offset, size, v)
509 register u_int offset, size;
510 register const u_char *v;
511{
512 register struct block *b, *tmp;
513
514 b = NULL;
515 while (size >= 4) {
516 register const u_char *p = &v[size - 4];
517 bpf_int32 w = ((bpf_int32)p[0] << 24) |
518 ((bpf_int32)p[1] << 16) | ((bpf_int32)p[2] << 8) | p[3];
519
520 tmp = gen_cmp(offset + size - 4, BPF_W, w);
521 if (b != NULL)
522 gen_and(b, tmp);
523 b = tmp;
524 size -= 4;
525 }
526 while (size >= 2) {
527 register const u_char *p = &v[size - 2];
528 bpf_int32 w = ((bpf_int32)p[0] << 8) | p[1];
529
530 tmp = gen_cmp(offset + size - 2, BPF_H, w);
531 if (b != NULL)
532 gen_and(b, tmp);
533 b = tmp;
534 size -= 2;
535 }
536 if (size > 0) {
537 tmp = gen_cmp(offset, BPF_B, (bpf_int32)v[0]);
538 if (b != NULL)
539 gen_and(b, tmp);
540 b = tmp;
541 }
542 return b;
543}
544
545/*
546 * Various code constructs need to know the layout of the data link
547 * layer. These variables give the necessary offsets. off_linktype
548 * is set to -1 for no encapsulation, in which case, IP is assumed.
549 */
550static u_int off_linktype;
551static u_int off_nl;
552static int linktype;
553
554static void
555init_linktype(type)
556 int type;
557{
558 linktype = type;
559
560 orig_linktype = -1;
561 orig_nl = -1;
562
553 switch (type) {
554
563 switch (type) {
564
565 case DLT_ARCNET:
566 off_linktype = 2;
567 off_nl = 6; /* XXX in reality, variable! */
568 return;
569
555 case DLT_EN10MB:
556 off_linktype = 12;
557 off_nl = 14;
558 return;
559
560 case DLT_SLIP:
561 /*
562 * SLIP doesn't have a link level type. The 16 byte
563 * header is hacked into our SLIP driver.
564 */
565 off_linktype = -1;
566 off_nl = 16;
567 return;
568
569 case DLT_SLIP_BSDOS:
570 /* XXX this may be the same as the DLT_PPP_BSDOS case */
571 off_linktype = -1;
572 /* XXX end */
573 off_nl = 24;
574 return;
575
576 case DLT_NULL:
577 case DLT_LOOP:
578 off_linktype = 0;
579 off_nl = 4;
580 return;
581
582 case DLT_PPP:
570 case DLT_EN10MB:
571 off_linktype = 12;
572 off_nl = 14;
573 return;
574
575 case DLT_SLIP:
576 /*
577 * SLIP doesn't have a link level type. The 16 byte
578 * header is hacked into our SLIP driver.
579 */
580 off_linktype = -1;
581 off_nl = 16;
582 return;
583
584 case DLT_SLIP_BSDOS:
585 /* XXX this may be the same as the DLT_PPP_BSDOS case */
586 off_linktype = -1;
587 /* XXX end */
588 off_nl = 24;
589 return;
590
591 case DLT_NULL:
592 case DLT_LOOP:
593 off_linktype = 0;
594 off_nl = 4;
595 return;
596
597 case DLT_PPP:
583 case DLT_C_HDLC:
584 case DLT_PPP_SERIAL:
598 case DLT_C_HDLC: /* BSD/OS Cisco HDLC */
599 case DLT_PPP_SERIAL: /* NetBSD sync/async serial PPP */
585 off_linktype = 2;
586 off_nl = 4;
587 return;
588
600 off_linktype = 2;
601 off_nl = 4;
602 return;
603
604 case DLT_PPP_ETHER:
605 /*
606 * This does no include the Ethernet header, and
607 * only covers session state.
608 */
609 off_linktype = 6;
610 off_nl = 8;
611 return;
612
589 case DLT_PPP_BSDOS:
590 off_linktype = 5;
591 off_nl = 24;
592 return;
593
594 case DLT_FDDI:
595 /*
596 * FDDI doesn't really have a link-level type field.
613 case DLT_PPP_BSDOS:
614 off_linktype = 5;
615 off_nl = 24;
616 return;
617
618 case DLT_FDDI:
619 /*
620 * FDDI doesn't really have a link-level type field.
597 * We assume that SSAP = SNAP is being used and pick
598 * out the encapsulated Ethernet type.
621 * We set "off_linktype" to the offset of the LLC header.
599 *
622 *
623 * To check for Ethernet types, we assume that SSAP = SNAP
624 * is being used and pick out the encapsulated Ethernet type.
600 * XXX - should we generate code to check for SNAP?
601 */
625 * XXX - should we generate code to check for SNAP?
626 */
602 off_linktype = 19;
627 off_linktype = 13;
603#ifdef PCAP_FDDIPAD
604 off_linktype += pcap_fddipad;
605#endif
606 off_nl = 21;
607#ifdef PCAP_FDDIPAD
608 off_nl += pcap_fddipad;
609#endif
610 return;
611
612 case DLT_IEEE802:
613 /*
614 * Token Ring doesn't really have a link-level type field.
628#ifdef PCAP_FDDIPAD
629 off_linktype += pcap_fddipad;
630#endif
631 off_nl = 21;
632#ifdef PCAP_FDDIPAD
633 off_nl += pcap_fddipad;
634#endif
635 return;
636
637 case DLT_IEEE802:
638 /*
639 * Token Ring doesn't really have a link-level type field.
615 * We assume that SSAP = SNAP is being used and pick
616 * out the encapsulated Ethernet type.
640 * We set "off_linktype" to the offset of the LLC header.
617 *
641 *
642 * To check for Ethernet types, we assume that SSAP = SNAP
643 * is being used and pick out the encapsulated Ethernet type.
618 * XXX - should we generate code to check for SNAP?
619 *
620 * XXX - the header is actually variable-length.
621 * Some various Linux patched versions gave 38
622 * as "off_linktype" and 40 as "off_nl"; however,
623 * if a token ring packet has *no* routing
624 * information, i.e. is not source-routed, the correct
625 * values are 20 and 22, as they are in the vanilla code.
626 *
627 * A packet is source-routed iff the uppermost bit
628 * of the first byte of the source address, at an
629 * offset of 8, has the uppermost bit set. If the
630 * packet is source-routed, the total number of bytes
631 * of routing information is 2 plus bits 0x1F00 of
632 * the 16-bit value at an offset of 14 (shifted right
633 * 8 - figure out which byte that is).
634 */
644 * XXX - should we generate code to check for SNAP?
645 *
646 * XXX - the header is actually variable-length.
647 * Some various Linux patched versions gave 38
648 * as "off_linktype" and 40 as "off_nl"; however,
649 * if a token ring packet has *no* routing
650 * information, i.e. is not source-routed, the correct
651 * values are 20 and 22, as they are in the vanilla code.
652 *
653 * A packet is source-routed iff the uppermost bit
654 * of the first byte of the source address, at an
655 * offset of 8, has the uppermost bit set. If the
656 * packet is source-routed, the total number of bytes
657 * of routing information is 2 plus bits 0x1F00 of
658 * the 16-bit value at an offset of 14 (shifted right
659 * 8 - figure out which byte that is).
660 */
635 off_linktype = 20;
661 off_linktype = 14;
636 off_nl = 22;
637 return;
638
662 off_nl = 22;
663 return;
664
665 case DLT_IEEE802_11:
666 /*
667 * 802.11 doesn't really have a link-level type field.
668 * We set "off_linktype" to the offset of the LLC header.
669 *
670 * To check for Ethernet types, we assume that SSAP = SNAP
671 * is being used and pick out the encapsulated Ethernet type.
672 * XXX - should we generate code to check for SNAP?
673 *
674 * XXX - the header is actually variable-length. We
675 * assume a 24-byte link-layer header, as appears in
676 * data frames in networks with no bridges.
677 */
678 off_linktype = 24;
679 off_nl = 30;
680 return;
681
682 case DLT_PRISM_HEADER:
683 /*
684 * Same as 802.11, but with an additional header before
685 * the 802.11 header, containing a bunch of additional
686 * information including radio-level information.
687 *
688 * The header is 144 bytes long.
689 *
690 * XXX - same variable-length header problem; at least
691 * the Prism header is fixed-length.
692 */
693 off_linktype = 144+24;
694 off_nl = 144+30;
695 return;
696
639 case DLT_ATM_RFC1483:
640 /*
641 * assume routed, non-ISO PDUs
642 * (i.e., LLC = 0xAA-AA-03, OUT = 0x00-00-00)
643 */
644 off_linktype = 6;
645 off_nl = 8;
646 return;
647
648 case DLT_RAW:
649 off_linktype = -1;
650 off_nl = 0;
651 return;
652
653 case DLT_ATM_CLIP: /* Linux ATM defines this */
654 off_linktype = 6;
655 off_nl = 8;
656 return;
657
658 case DLT_LINUX_SLL: /* fake header for Linux cooked socket */
659 off_linktype = 14;
660 off_nl = 16;
661 return;
697 case DLT_ATM_RFC1483:
698 /*
699 * assume routed, non-ISO PDUs
700 * (i.e., LLC = 0xAA-AA-03, OUT = 0x00-00-00)
701 */
702 off_linktype = 6;
703 off_nl = 8;
704 return;
705
706 case DLT_RAW:
707 off_linktype = -1;
708 off_nl = 0;
709 return;
710
711 case DLT_ATM_CLIP: /* Linux ATM defines this */
712 off_linktype = 6;
713 off_nl = 8;
714 return;
715
716 case DLT_LINUX_SLL: /* fake header for Linux cooked socket */
717 off_linktype = 14;
718 off_nl = 16;
719 return;
720
721 case DLT_LTALK:
722 /*
723 * LocalTalk does have a 1-byte type field in the LLAP header,
724 * but really it just indicates whether there is a "short" or
725 * "long" DDP packet following.
726 */
727 off_linktype = -1;
728 off_nl = 0;
729 return;
662 }
663 bpf_error("unknown data link type %d", linktype);
664 /* NOTREACHED */
665}
666
667static struct block *
668gen_uncond(rsense)
669 int rsense;
670{
671 struct block *b;
672 struct slist *s;
673
674 s = new_stmt(BPF_LD|BPF_IMM);
675 s->s.k = !rsense;
676 b = new_block(JMP(BPF_JEQ));
677 b->stmts = s;
678
679 return b;
680}
681
682static inline struct block *
683gen_true()
684{
685 return gen_uncond(1);
686}
687
688static inline struct block *
689gen_false()
690{
691 return gen_uncond(0);
692}
693
694/*
695 * Byte-swap a 32-bit number.
696 * ("htonl()" or "ntohl()" won't work - we want to byte-swap even on
697 * big-endian platforms.)
698 */
699#define SWAPLONG(y) \
700((((y)&0xff)<<24) | (((y)&0xff00)<<8) | (((y)&0xff0000)>>8) | (((y)>>24)&0xff))
701
702static struct block *
703gen_linktype(proto)
704 register int proto;
705{
706 struct block *b0, *b1;
707
730 }
731 bpf_error("unknown data link type %d", linktype);
732 /* NOTREACHED */
733}
734
735static struct block *
736gen_uncond(rsense)
737 int rsense;
738{
739 struct block *b;
740 struct slist *s;
741
742 s = new_stmt(BPF_LD|BPF_IMM);
743 s->s.k = !rsense;
744 b = new_block(JMP(BPF_JEQ));
745 b->stmts = s;
746
747 return b;
748}
749
750static inline struct block *
751gen_true()
752{
753 return gen_uncond(1);
754}
755
756static inline struct block *
757gen_false()
758{
759 return gen_uncond(0);
760}
761
762/*
763 * Byte-swap a 32-bit number.
764 * ("htonl()" or "ntohl()" won't work - we want to byte-swap even on
765 * big-endian platforms.)
766 */
767#define SWAPLONG(y) \
768((((y)&0xff)<<24) | (((y)&0xff00)<<8) | (((y)&0xff0000)>>8) | (((y)>>24)&0xff))
769
770static struct block *
771gen_linktype(proto)
772 register int proto;
773{
774 struct block *b0, *b1;
775
708 /* If we're not using encapsulation, we're done */
709 if (off_linktype == -1)
710 return gen_true();
711
712 switch (linktype) {
713
714 case DLT_EN10MB:
776 switch (linktype) {
777
778 case DLT_EN10MB:
715 /*
716 * XXX - handle other LLC-encapsulated protocols here
717 * (IPX, OSI)?
718 */
719 switch (proto) {
720
779 switch (proto) {
780
721 case LLC_ISO_LSAP:
781 case LLCSAP_ISONS:
722 /*
723 * OSI protocols always use 802.2 encapsulation.
782 /*
783 * OSI protocols always use 802.2 encapsulation.
784 * XXX - should we check both the DSAP and the
785 * SSAP, like this, or should we check just the
786 * DSAP?
724 */
725 b0 = gen_cmp_gt(off_linktype, BPF_H, ETHERMTU);
726 gen_not(b0);
727 b1 = gen_cmp(off_linktype + 2, BPF_H, (bpf_int32)
787 */
788 b0 = gen_cmp_gt(off_linktype, BPF_H, ETHERMTU);
789 gen_not(b0);
790 b1 = gen_cmp(off_linktype + 2, BPF_H, (bpf_int32)
728 ((LLC_ISO_LSAP << 8) | LLC_ISO_LSAP));
791 ((LLCSAP_ISONS << 8) | LLCSAP_ISONS));
729 gen_and(b0, b1);
730 return b1;
731
792 gen_and(b0, b1);
793 return b1;
794
795 case LLCSAP_NETBEUI:
796 /*
797 * NetBEUI always uses 802.2 encapsulation.
798 * XXX - should we check both the DSAP and the
799 * SSAP, like this, or should we check just the
800 * DSAP?
801 */
802 b0 = gen_cmp_gt(off_linktype, BPF_H, ETHERMTU);
803 gen_not(b0);
804 b1 = gen_cmp(off_linktype + 2, BPF_H, (bpf_int32)
805 ((LLCSAP_NETBEUI << 8) | LLCSAP_NETBEUI));
806 gen_and(b0, b1);
807 return b1;
808
809 case LLCSAP_IPX:
810 /*
811 * Check for;
812 *
813 * Ethernet_II frames, which are Ethernet
814 * frames with a frame type of ETHERTYPE_IPX;
815 *
816 * Ethernet_802.3 frames, which are 802.3
817 * frames (i.e., the type/length field is
818 * a length field, <= ETHERMTU, rather than
819 * a type field) with the first two bytes
820 * after the Ethernet/802.3 header being
821 * 0xFFFF;
822 *
823 * Ethernet_802.2 frames, which are 802.3
824 * frames with an 802.2 LLC header and
825 * with the IPX LSAP as the DSAP in the LLC
826 * header;
827 *
828 * Ethernet_SNAP frames, which are 802.3
829 * frames with an LLC header and a SNAP
830 * header and with an OUI of 0x000000
831 * (encapsulated Ethernet) and a protocol
832 * ID of ETHERTYPE_IPX in the SNAP header.
833 *
834 * XXX - should we generate the same code both
835 * for tests for LLCSAP_IPX and for ETHERTYPE_IPX?
836 */
837
838 /*
839 * This generates code to check both for the
840 * IPX LSAP (Ethernet_802.2) and for Ethernet_802.3.
841 */
842 b0 = gen_cmp(off_linktype + 2, BPF_B,
843 (bpf_int32)LLCSAP_IPX);
844 b1 = gen_cmp(off_linktype + 2, BPF_H,
845 (bpf_int32)0xFFFF);
846 gen_or(b0, b1);
847
848 /*
849 * Now we add code to check for SNAP frames with
850 * ETHERTYPE_IPX, i.e. Ethernet_SNAP.
851 */
852 b0 = gen_snap(0x000000, ETHERTYPE_IPX, 14);
853 gen_or(b0, b1);
854
855 /*
856 * Now we generate code to check for 802.3
857 * frames in general.
858 */
859 b0 = gen_cmp_gt(off_linktype, BPF_H, ETHERMTU);
860 gen_not(b0);
861
862 /*
863 * Now add the check for 802.3 frames before the
864 * check for Ethernet_802.2 and Ethernet_802.3,
865 * as those checks should only be done on 802.3
866 * frames, not on Ethernet frames.
867 */
868 gen_and(b0, b1);
869
870 /*
871 * Now add the check for Ethernet_II frames, and
872 * do that before checking for the other frame
873 * types.
874 */
875 b0 = gen_cmp(off_linktype, BPF_H,
876 (bpf_int32)ETHERTYPE_IPX);
877 gen_or(b0, b1);
878 return b1;
879
732 case ETHERTYPE_ATALK:
733 case ETHERTYPE_AARP:
734 /*
735 * EtherTalk (AppleTalk protocols on Ethernet link
736 * layer) may use 802.2 encapsulation.
737 */
738
739 /*
740 * Check for 802.2 encapsulation (EtherTalk phase 2?);
741 * we check for an Ethernet type field less than
742 * 1500, which means it's an 802.3 length field.
743 */
744 b0 = gen_cmp_gt(off_linktype, BPF_H, ETHERMTU);
745 gen_not(b0);
746
747 /*
748 * 802.2-encapsulated ETHERTYPE_ATALK packets are
749 * SNAP packets with an organization code of
750 * 0x080007 (Apple, for Appletalk) and a protocol
751 * type of ETHERTYPE_ATALK (Appletalk).
752 *
753 * 802.2-encapsulated ETHERTYPE_AARP packets are
754 * SNAP packets with an organization code of
755 * 0x000000 (encapsulated Ethernet) and a protocol
756 * type of ETHERTYPE_AARP (Appletalk ARP).
757 */
758 if (proto == ETHERTYPE_ATALK)
759 b1 = gen_snap(0x080007, ETHERTYPE_ATALK, 14);
760 else /* proto == ETHERTYPE_AARP */
761 b1 = gen_snap(0x000000, ETHERTYPE_AARP, 14);
762 gen_and(b0, b1);
763
764 /*
765 * Check for Ethernet encapsulation (Ethertalk
766 * phase 1?); we just check for the Ethernet
767 * protocol type.
768 */
769 b0 = gen_cmp(off_linktype, BPF_H, (bpf_int32)proto);
770
771 gen_or(b0, b1);
772 return b1;
880 case ETHERTYPE_ATALK:
881 case ETHERTYPE_AARP:
882 /*
883 * EtherTalk (AppleTalk protocols on Ethernet link
884 * layer) may use 802.2 encapsulation.
885 */
886
887 /*
888 * Check for 802.2 encapsulation (EtherTalk phase 2?);
889 * we check for an Ethernet type field less than
890 * 1500, which means it's an 802.3 length field.
891 */
892 b0 = gen_cmp_gt(off_linktype, BPF_H, ETHERMTU);
893 gen_not(b0);
894
895 /*
896 * 802.2-encapsulated ETHERTYPE_ATALK packets are
897 * SNAP packets with an organization code of
898 * 0x080007 (Apple, for Appletalk) and a protocol
899 * type of ETHERTYPE_ATALK (Appletalk).
900 *
901 * 802.2-encapsulated ETHERTYPE_AARP packets are
902 * SNAP packets with an organization code of
903 * 0x000000 (encapsulated Ethernet) and a protocol
904 * type of ETHERTYPE_AARP (Appletalk ARP).
905 */
906 if (proto == ETHERTYPE_ATALK)
907 b1 = gen_snap(0x080007, ETHERTYPE_ATALK, 14);
908 else /* proto == ETHERTYPE_AARP */
909 b1 = gen_snap(0x000000, ETHERTYPE_AARP, 14);
910 gen_and(b0, b1);
911
912 /*
913 * Check for Ethernet encapsulation (Ethertalk
914 * phase 1?); we just check for the Ethernet
915 * protocol type.
916 */
917 b0 = gen_cmp(off_linktype, BPF_H, (bpf_int32)proto);
918
919 gen_or(b0, b1);
920 return b1;
921
922 default:
923 if (proto <= ETHERMTU) {
924 /*
925 * This is an LLC SAP value, so the frames
926 * that match would be 802.2 frames.
927 * Check that the frame is an 802.2 frame
928 * (i.e., that the length/type field is
929 * a length field, <= ETHERMTU) and
930 * then check the DSAP.
931 */
932 b0 = gen_cmp_gt(off_linktype, BPF_H, ETHERMTU);
933 gen_not(b0);
934 b1 = gen_cmp(off_linktype + 2, BPF_B,
935 (bpf_int32)proto);
936 gen_and(b0, b1);
937 return b1;
938 } else {
939 /*
940 * This is an Ethernet type, so compare
941 * the length/type field with it (if
942 * the frame is an 802.2 frame, the length
943 * field will be <= ETHERMTU, and, as
944 * "proto" is > ETHERMTU, this test
945 * will fail and the frame won't match,
946 * which is what we want).
947 */
948 return gen_cmp(off_linktype, BPF_H,
949 (bpf_int32)proto);
950 }
773 }
774 break;
775
951 }
952 break;
953
954 case DLT_IEEE802_11:
955 case DLT_PRISM_HEADER:
956 case DLT_FDDI:
957 case DLT_IEEE802:
958 case DLT_ATM_RFC1483:
959 case DLT_ATM_CLIP:
960 /*
961 * XXX - handle token-ring variable-length header.
962 */
963 switch (proto) {
964
965 case LLCSAP_ISONS:
966 return gen_cmp(off_linktype, BPF_H, (long)
967 ((LLCSAP_ISONS << 8) | LLCSAP_ISONS));
968
969 case LLCSAP_NETBEUI:
970 return gen_cmp(off_linktype, BPF_H, (long)
971 ((LLCSAP_NETBEUI << 8) | LLCSAP_NETBEUI));
972
973 case LLCSAP_IPX:
974 /*
975 * XXX - are there ever SNAP frames for IPX on
976 * non-Ethernet 802.x networks?
977 */
978 return gen_cmp(off_linktype, BPF_B,
979 (bpf_int32)LLCSAP_IPX);
980
981 case ETHERTYPE_ATALK:
982 /*
983 * 802.2-encapsulated ETHERTYPE_ATALK packets are
984 * SNAP packets with an organization code of
985 * 0x080007 (Apple, for Appletalk) and a protocol
986 * type of ETHERTYPE_ATALK (Appletalk).
987 *
988 * XXX - check for an organization code of
989 * encapsulated Ethernet as well?
990 */
991 return gen_snap(0x080007, ETHERTYPE_ATALK,
992 off_linktype);
993 break;
994
995 default:
996 /*
997 * XXX - we don't have to check for IPX 802.3
998 * here, but should we check for the IPX Ethertype?
999 */
1000 if (proto <= ETHERMTU) {
1001 /*
1002 * This is an LLC SAP value, so check
1003 * the DSAP.
1004 */
1005 return gen_cmp(off_linktype, BPF_B,
1006 (bpf_int32)proto);
1007 } else {
1008 /*
1009 * This is an Ethernet type; we assume
1010 * that it's unlikely that it'll
1011 * appear in the right place at random,
1012 * and therefore check only the
1013 * location that would hold the Ethernet
1014 * type in a SNAP frame with an organization
1015 * code of 0x000000 (encapsulated Ethernet).
1016 *
1017 * XXX - if we were to check for the SNAP DSAP
1018 * and LSAP, as per XXX, and were also to check
1019 * for an organization code of 0x000000
1020 * (encapsulated Ethernet), we'd do
1021 *
1022 * return gen_snap(0x000000, proto,
1023 * off_linktype);
1024 *
1025 * here; for now, we don't, as per the above.
1026 * I don't know whether it's worth the
1027 * extra CPU time to do the right check
1028 * or not.
1029 */
1030 return gen_cmp(off_linktype+6, BPF_H,
1031 (bpf_int32)proto);
1032 }
1033 }
1034 break;
1035
1036 case DLT_LINUX_SLL:
1037 switch (proto) {
1038
1039 case LLCSAP_ISONS:
1040 /*
1041 * OSI protocols always use 802.2 encapsulation.
1042 * XXX - should we check both the DSAP and the
1043 * LSAP, like this, or should we check just the
1044 * DSAP?
1045 */
1046 b0 = gen_cmp(off_linktype, BPF_H, LINUX_SLL_P_802_2);
1047 b1 = gen_cmp(off_linktype + 2, BPF_H, (bpf_int32)
1048 ((LLCSAP_ISONS << 8) | LLCSAP_ISONS));
1049 gen_and(b0, b1);
1050 return b1;
1051
1052 case LLCSAP_NETBEUI:
1053 /*
1054 * NetBEUI always uses 802.2 encapsulation.
1055 * XXX - should we check both the DSAP and the
1056 * LSAP, like this, or should we check just the
1057 * DSAP?
1058 */
1059 b0 = gen_cmp(off_linktype, BPF_H, LINUX_SLL_P_802_2);
1060 b1 = gen_cmp(off_linktype + 2, BPF_H, (bpf_int32)
1061 ((LLCSAP_NETBEUI << 8) | LLCSAP_NETBEUI));
1062 gen_and(b0, b1);
1063 return b1;
1064
1065 case LLCSAP_IPX:
1066 /*
1067 * Ethernet_II frames, which are Ethernet
1068 * frames with a frame type of ETHERTYPE_IPX;
1069 *
1070 * Ethernet_802.3 frames, which have a frame
1071 * type of LINUX_SLL_P_802_3;
1072 *
1073 * Ethernet_802.2 frames, which are 802.3
1074 * frames with an 802.2 LLC header (i.e, have
1075 * a frame type of LINUX_SLL_P_802_2) and
1076 * with the IPX LSAP as the DSAP in the LLC
1077 * header;
1078 *
1079 * Ethernet_SNAP frames, which are 802.3
1080 * frames with an LLC header and a SNAP
1081 * header and with an OUI of 0x000000
1082 * (encapsulated Ethernet) and a protocol
1083 * ID of ETHERTYPE_IPX in the SNAP header.
1084 *
1085 * First, do the checks on LINUX_SLL_P_802_2
1086 * frames; generate the check for either
1087 * Ethernet_802.2 or Ethernet_SNAP frames, and
1088 * then put a check for LINUX_SLL_P_802_2 frames
1089 * before it.
1090 */
1091 b0 = gen_cmp(off_linktype + 2, BPF_B,
1092 (bpf_int32)LLCSAP_IPX);
1093 b1 = gen_snap(0x000000, ETHERTYPE_IPX,
1094 off_linktype + 2);
1095 gen_or(b0, b1);
1096 b0 = gen_cmp(off_linktype, BPF_H, LINUX_SLL_P_802_2);
1097 gen_and(b0, b1);
1098
1099 /*
1100 * Now check for 802.3 frames and OR that with
1101 * the previous test.
1102 */
1103 b0 = gen_cmp(off_linktype, BPF_H, LINUX_SLL_P_802_3);
1104 gen_or(b0, b1);
1105
1106 /*
1107 * Now add the check for Ethernet_II frames, and
1108 * do that before checking for the other frame
1109 * types.
1110 */
1111 b0 = gen_cmp(off_linktype, BPF_H,
1112 (bpf_int32)ETHERTYPE_IPX);
1113 gen_or(b0, b1);
1114 return b1;
1115
1116 case ETHERTYPE_ATALK:
1117 case ETHERTYPE_AARP:
1118 /*
1119 * EtherTalk (AppleTalk protocols on Ethernet link
1120 * layer) may use 802.2 encapsulation.
1121 */
1122
1123 /*
1124 * Check for 802.2 encapsulation (EtherTalk phase 2?);
1125 * we check for the 802.2 protocol type in the
1126 * "Ethernet type" field.
1127 */
1128 b0 = gen_cmp(off_linktype, BPF_H, LINUX_SLL_P_802_2);
1129
1130 /*
1131 * 802.2-encapsulated ETHERTYPE_ATALK packets are
1132 * SNAP packets with an organization code of
1133 * 0x080007 (Apple, for Appletalk) and a protocol
1134 * type of ETHERTYPE_ATALK (Appletalk).
1135 *
1136 * 802.2-encapsulated ETHERTYPE_AARP packets are
1137 * SNAP packets with an organization code of
1138 * 0x000000 (encapsulated Ethernet) and a protocol
1139 * type of ETHERTYPE_AARP (Appletalk ARP).
1140 */
1141 if (proto == ETHERTYPE_ATALK)
1142 b1 = gen_snap(0x080007, ETHERTYPE_ATALK,
1143 off_linktype + 2);
1144 else /* proto == ETHERTYPE_AARP */
1145 b1 = gen_snap(0x000000, ETHERTYPE_AARP,
1146 off_linktype + 2);
1147 gen_and(b0, b1);
1148
1149 /*
1150 * Check for Ethernet encapsulation (Ethertalk
1151 * phase 1?); we just check for the Ethernet
1152 * protocol type.
1153 */
1154 b0 = gen_cmp(off_linktype, BPF_H, (bpf_int32)proto);
1155
1156 gen_or(b0, b1);
1157 return b1;
1158
1159 default:
1160 if (proto <= ETHERMTU) {
1161 /*
1162 * This is an LLC SAP value, so the frames
1163 * that match would be 802.2 frames.
1164 * Check for the 802.2 protocol type
1165 * in the "Ethernet type" field, and
1166 * then check the DSAP.
1167 */
1168 b0 = gen_cmp(off_linktype, BPF_H,
1169 LINUX_SLL_P_802_2);
1170 b1 = gen_cmp(off_linktype + 2, BPF_B,
1171 (bpf_int32)proto);
1172 gen_and(b0, b1);
1173 return b1;
1174 } else {
1175 /*
1176 * This is an Ethernet type, so compare
1177 * the length/type field with it (if
1178 * the frame is an 802.2 frame, the length
1179 * field will be <= ETHERMTU, and, as
1180 * "proto" is > ETHERMTU, this test
1181 * will fail and the frame won't match,
1182 * which is what we want).
1183 */
1184 return gen_cmp(off_linktype, BPF_H,
1185 (bpf_int32)proto);
1186 }
1187 }
1188 break;
1189
776 case DLT_SLIP:
1190 case DLT_SLIP:
777 return gen_false();
1191 case DLT_SLIP_BSDOS:
1192 case DLT_RAW:
1193 /*
1194 * These types don't provide any type field; packets
1195 * are always IP.
1196 *
1197 * XXX - for IPv4, check for a version number of 4, and,
1198 * for IPv6, check for a version number of 6?
1199 */
1200 switch (proto) {
778
1201
1202 case ETHERTYPE_IP:
1203#ifdef INET6
1204 case ETHERTYPE_IPV6:
1205#endif
1206 return gen_true(); /* always true */
1207
1208 default:
1209 return gen_false(); /* always false */
1210 }
1211 break;
1212
779 case DLT_PPP:
780 case DLT_PPP_SERIAL:
1213 case DLT_PPP:
1214 case DLT_PPP_SERIAL:
1215 case DLT_PPP_ETHER:
781 /*
782 * We use Ethernet protocol types inside libpcap;
783 * map them to the corresponding PPP protocol types.
784 */
785 switch (proto) {
786
787 case ETHERTYPE_IP:
788 proto = PPP_IP; /* XXX was 0x21 */
789 break;
790
791#ifdef INET6
792 case ETHERTYPE_IPV6:
793 proto = PPP_IPV6;
794 break;
795#endif
796
797 case ETHERTYPE_DN:
798 proto = PPP_DECNET;
799 break;
800
801 case ETHERTYPE_ATALK:
802 proto = PPP_APPLE;
803 break;
804
805 case ETHERTYPE_NS:
806 proto = PPP_NS;
807 break;
808
1216 /*
1217 * We use Ethernet protocol types inside libpcap;
1218 * map them to the corresponding PPP protocol types.
1219 */
1220 switch (proto) {
1221
1222 case ETHERTYPE_IP:
1223 proto = PPP_IP; /* XXX was 0x21 */
1224 break;
1225
1226#ifdef INET6
1227 case ETHERTYPE_IPV6:
1228 proto = PPP_IPV6;
1229 break;
1230#endif
1231
1232 case ETHERTYPE_DN:
1233 proto = PPP_DECNET;
1234 break;
1235
1236 case ETHERTYPE_ATALK:
1237 proto = PPP_APPLE;
1238 break;
1239
1240 case ETHERTYPE_NS:
1241 proto = PPP_NS;
1242 break;
1243
809 case LLC_ISO_LSAP:
1244 case LLCSAP_ISONS:
810 proto = PPP_OSI;
811 break;
1245 proto = PPP_OSI;
1246 break;
1247
1248 case LLCSAP_8021D:
1249 /*
1250 * I'm assuming the "Bridging PDU"s that go
1251 * over PPP are Spanning Tree Protocol
1252 * Bridging PDUs.
1253 */
1254 proto = PPP_BRPDU;
1255 break;
1256
1257 case LLCSAP_IPX:
1258 proto = PPP_IPX;
1259 break;
812 }
813 break;
814
815 case DLT_PPP_BSDOS:
816 /*
817 * We use Ethernet protocol types inside libpcap;
818 * map them to the corresponding PPP protocol types.
819 */
820 switch (proto) {
821
822 case ETHERTYPE_IP:
823 b0 = gen_cmp(off_linktype, BPF_H, PPP_IP);
824 b1 = gen_cmp(off_linktype, BPF_H, PPP_VJC);
825 gen_or(b0, b1);
826 b0 = gen_cmp(off_linktype, BPF_H, PPP_VJNC);
827 gen_or(b1, b0);
828 return b0;
829
830#ifdef INET6
831 case ETHERTYPE_IPV6:
832 proto = PPP_IPV6;
833 /* more to go? */
834 break;
835#endif
836
837 case ETHERTYPE_DN:
838 proto = PPP_DECNET;
839 break;
840
841 case ETHERTYPE_ATALK:
842 proto = PPP_APPLE;
843 break;
844
845 case ETHERTYPE_NS:
846 proto = PPP_NS;
847 break;
848
1260 }
1261 break;
1262
1263 case DLT_PPP_BSDOS:
1264 /*
1265 * We use Ethernet protocol types inside libpcap;
1266 * map them to the corresponding PPP protocol types.
1267 */
1268 switch (proto) {
1269
1270 case ETHERTYPE_IP:
1271 b0 = gen_cmp(off_linktype, BPF_H, PPP_IP);
1272 b1 = gen_cmp(off_linktype, BPF_H, PPP_VJC);
1273 gen_or(b0, b1);
1274 b0 = gen_cmp(off_linktype, BPF_H, PPP_VJNC);
1275 gen_or(b1, b0);
1276 return b0;
1277
1278#ifdef INET6
1279 case ETHERTYPE_IPV6:
1280 proto = PPP_IPV6;
1281 /* more to go? */
1282 break;
1283#endif
1284
1285 case ETHERTYPE_DN:
1286 proto = PPP_DECNET;
1287 break;
1288
1289 case ETHERTYPE_ATALK:
1290 proto = PPP_APPLE;
1291 break;
1292
1293 case ETHERTYPE_NS:
1294 proto = PPP_NS;
1295 break;
1296
849 case LLC_ISO_LSAP:
1297 case LLCSAP_ISONS:
850 proto = PPP_OSI;
851 break;
1298 proto = PPP_OSI;
1299 break;
1300
1301 case LLCSAP_8021D:
1302 /*
1303 * I'm assuming the "Bridging PDU"s that go
1304 * over PPP are Spanning Tree Protocol
1305 * Bridging PDUs.
1306 */
1307 proto = PPP_BRPDU;
1308 break;
1309
1310 case LLCSAP_IPX:
1311 proto = PPP_IPX;
1312 break;
852 }
853 break;
854
855 case DLT_NULL:
856 case DLT_LOOP:
857 /*
858 * For DLT_NULL, the link-layer header is a 32-bit
859 * word containing an AF_ value in *host* byte order.
860 *
861 * In addition, if we're reading a saved capture file,
862 * the host byte order in the capture may not be the
863 * same as the host byte order on this machine.
864 *
865 * For DLT_LOOP, the link-layer header is a 32-bit
866 * word containing an AF_ value in *network* byte order.
867 *
868 * XXX - AF_ values may, unfortunately, be platform-
869 * dependent; for example, FreeBSD's AF_INET6 is 24
870 * whilst NetBSD's and OpenBSD's is 26.
871 *
872 * This means that, when reading a capture file, just
873 * checking for our AF_INET6 value won't work if the
874 * capture file came from another OS.
875 */
876 switch (proto) {
877
878 case ETHERTYPE_IP:
879 proto = AF_INET;
880 break;
881
882#ifdef INET6
883 case ETHERTYPE_IPV6:
884 proto = AF_INET6;
885 break;
886#endif
887
888 default:
889 /*
890 * Not a type on which we support filtering.
891 * XXX - support those that have AF_ values
892 * #defined on this platform, at least?
893 */
894 return gen_false();
895 }
896
897 if (linktype == DLT_NULL) {
898 /*
899 * The AF_ value is in host byte order, but
900 * the BPF interpreter will convert it to
901 * network byte order.
902 *
903 * If this is a save file, and it's from a
904 * machine with the opposite byte order to
905 * ours, we byte-swap the AF_ value.
906 *
907 * Then we run it through "htonl()", and
908 * generate code to compare against the result.
909 */
910 if (bpf_pcap->sf.rfile != NULL &&
911 bpf_pcap->sf.swapped)
912 proto = SWAPLONG(proto);
913 proto = htonl(proto);
914 }
915 return (gen_cmp(0, BPF_W, (bpf_int32)proto));
1313 }
1314 break;
1315
1316 case DLT_NULL:
1317 case DLT_LOOP:
1318 /*
1319 * For DLT_NULL, the link-layer header is a 32-bit
1320 * word containing an AF_ value in *host* byte order.
1321 *
1322 * In addition, if we're reading a saved capture file,
1323 * the host byte order in the capture may not be the
1324 * same as the host byte order on this machine.
1325 *
1326 * For DLT_LOOP, the link-layer header is a 32-bit
1327 * word containing an AF_ value in *network* byte order.
1328 *
1329 * XXX - AF_ values may, unfortunately, be platform-
1330 * dependent; for example, FreeBSD's AF_INET6 is 24
1331 * whilst NetBSD's and OpenBSD's is 26.
1332 *
1333 * This means that, when reading a capture file, just
1334 * checking for our AF_INET6 value won't work if the
1335 * capture file came from another OS.
1336 */
1337 switch (proto) {
1338
1339 case ETHERTYPE_IP:
1340 proto = AF_INET;
1341 break;
1342
1343#ifdef INET6
1344 case ETHERTYPE_IPV6:
1345 proto = AF_INET6;
1346 break;
1347#endif
1348
1349 default:
1350 /*
1351 * Not a type on which we support filtering.
1352 * XXX - support those that have AF_ values
1353 * #defined on this platform, at least?
1354 */
1355 return gen_false();
1356 }
1357
1358 if (linktype == DLT_NULL) {
1359 /*
1360 * The AF_ value is in host byte order, but
1361 * the BPF interpreter will convert it to
1362 * network byte order.
1363 *
1364 * If this is a save file, and it's from a
1365 * machine with the opposite byte order to
1366 * ours, we byte-swap the AF_ value.
1367 *
1368 * Then we run it through "htonl()", and
1369 * generate code to compare against the result.
1370 */
1371 if (bpf_pcap->sf.rfile != NULL &&
1372 bpf_pcap->sf.swapped)
1373 proto = SWAPLONG(proto);
1374 proto = htonl(proto);
1375 }
1376 return (gen_cmp(0, BPF_W, (bpf_int32)proto));
1377
1378 case DLT_ARCNET:
1379 /*
1380 * XXX should we check for first fragment if the protocol
1381 * uses PHDS?
1382 */
1383 switch(proto) {
1384 default:
1385 return gen_false();
1386#ifdef INET6
1387 case ETHERTYPE_IPV6:
1388 return(gen_cmp(2, BPF_B,
1389 (bpf_int32)htonl(ARCTYPE_INET6)));
1390#endif /* INET6 */
1391 case ETHERTYPE_IP:
1392 b0 = gen_cmp(2, BPF_B, (bpf_int32)htonl(ARCTYPE_IP));
1393 b1 = gen_cmp(2, BPF_B,
1394 (bpf_int32)htonl(ARCTYPE_IP_OLD));
1395 gen_or(b0, b1);
1396 return(b1);
1397 case ETHERTYPE_ARP:
1398 b0 = gen_cmp(2, BPF_B, (bpf_int32)htonl(ARCTYPE_ARP));
1399 b1 = gen_cmp(2, BPF_B,
1400 (bpf_int32)htonl(ARCTYPE_ARP_OLD));
1401 gen_or(b0, b1);
1402 return(b1);
1403 case ETHERTYPE_REVARP:
1404 return(gen_cmp(2, BPF_B,
1405 (bpf_int32)htonl(ARCTYPE_REVARP)));
1406 case ETHERTYPE_ATALK:
1407 return(gen_cmp(2, BPF_B,
1408 (bpf_int32)htonl(ARCTYPE_ATALK)));
1409 }
1410 break;
1411
1412 case DLT_LTALK:
1413 switch (proto) {
1414 case ETHERTYPE_ATALK:
1415 return gen_true();
1416 default:
1417 return gen_false();
1418 }
1419 break;
916 }
1420 }
1421
1422 /*
1423 * All the types that have no encapsulation should either be
1424 * handled as DLT_SLIP, DLT_SLIP_BSDOS, and DLT_RAW are, if
1425 * all packets are IP packets, or should be handled in some
1426 * special case, if none of them are (if some are and some
1427 * aren't, the lack of encapsulation is a problem, as we'd
1428 * have to find some other way of determining the packet type).
1429 *
1430 * Therefore, if "off_linktype" is -1, there's an error.
1431 */
1432 if (off_linktype == -1)
1433 abort();
1434
1435 /*
1436 * Any type not handled above should always have an Ethernet
1437 * type at an offset of "off_linktype". (PPP is partially
1438 * handled above - the protocol type is mapped from the
1439 * Ethernet and LLC types we use internally to the corresponding
1440 * PPP type - but the PPP type is always specified by a value
1441 * at "off_linktype", so we don't have to do the code generation
1442 * above.)
1443 */
917 return gen_cmp(off_linktype, BPF_H, (bpf_int32)proto);
918}
919
920/*
921 * Check for an LLC SNAP packet with a given organization code and
922 * protocol type; we check the entire contents of the 802.2 LLC and
923 * snap headers, checking for DSAP and SSAP of SNAP and a control
924 * field of 0x03 in the LLC header, and for the specified organization
925 * code and protocol type in the SNAP header.
926 */
927static struct block *
928gen_snap(orgcode, ptype, offset)
929 bpf_u_int32 orgcode;
930 bpf_u_int32 ptype;
931 u_int offset;
932{
933 u_char snapblock[8];
934
1444 return gen_cmp(off_linktype, BPF_H, (bpf_int32)proto);
1445}
1446
1447/*
1448 * Check for an LLC SNAP packet with a given organization code and
1449 * protocol type; we check the entire contents of the 802.2 LLC and
1450 * snap headers, checking for DSAP and SSAP of SNAP and a control
1451 * field of 0x03 in the LLC header, and for the specified organization
1452 * code and protocol type in the SNAP header.
1453 */
1454static struct block *
1455gen_snap(orgcode, ptype, offset)
1456 bpf_u_int32 orgcode;
1457 bpf_u_int32 ptype;
1458 u_int offset;
1459{
1460 u_char snapblock[8];
1461
935 snapblock[0] = LLC_SNAP_LSAP; /* DSAP = SNAP */
936 snapblock[1] = LLC_SNAP_LSAP; /* SSAP = SNAP */
1462 snapblock[0] = LLCSAP_SNAP; /* DSAP = SNAP */
1463 snapblock[1] = LLCSAP_SNAP; /* SSAP = SNAP */
937 snapblock[2] = 0x03; /* control = UI */
938 snapblock[3] = (orgcode >> 16); /* upper 8 bits of organization code */
939 snapblock[4] = (orgcode >> 8); /* middle 8 bits of organization code */
940 snapblock[5] = (orgcode >> 0); /* lower 8 bits of organization code */
941 snapblock[6] = (ptype >> 8); /* upper 8 bits of protocol type */
942 snapblock[7] = (ptype >> 0); /* lower 8 bits of protocol type */
943 return gen_bcmp(offset, 8, snapblock);
944}
945
946static struct block *
947gen_hostop(addr, mask, dir, proto, src_off, dst_off)
948 bpf_u_int32 addr;
949 bpf_u_int32 mask;
950 int dir, proto;
951 u_int src_off, dst_off;
952{
953 struct block *b0, *b1;
954 u_int offset;
955
956 switch (dir) {
957
958 case Q_SRC:
959 offset = src_off;
960 break;
961
962 case Q_DST:
963 offset = dst_off;
964 break;
965
966 case Q_AND:
967 b0 = gen_hostop(addr, mask, Q_SRC, proto, src_off, dst_off);
968 b1 = gen_hostop(addr, mask, Q_DST, proto, src_off, dst_off);
969 gen_and(b0, b1);
970 return b1;
971
972 case Q_OR:
973 case Q_DEFAULT:
974 b0 = gen_hostop(addr, mask, Q_SRC, proto, src_off, dst_off);
975 b1 = gen_hostop(addr, mask, Q_DST, proto, src_off, dst_off);
976 gen_or(b0, b1);
977 return b1;
978
979 default:
980 abort();
981 }
982 b0 = gen_linktype(proto);
983 b1 = gen_mcmp(offset, BPF_W, (bpf_int32)addr, mask);
984 gen_and(b0, b1);
985 return b1;
986}
987
988#ifdef INET6
989static struct block *
990gen_hostop6(addr, mask, dir, proto, src_off, dst_off)
991 struct in6_addr *addr;
992 struct in6_addr *mask;
993 int dir, proto;
994 u_int src_off, dst_off;
995{
996 struct block *b0, *b1;
997 u_int offset;
998 u_int32_t *a, *m;
999
1000 switch (dir) {
1001
1002 case Q_SRC:
1003 offset = src_off;
1004 break;
1005
1006 case Q_DST:
1007 offset = dst_off;
1008 break;
1009
1010 case Q_AND:
1011 b0 = gen_hostop6(addr, mask, Q_SRC, proto, src_off, dst_off);
1012 b1 = gen_hostop6(addr, mask, Q_DST, proto, src_off, dst_off);
1013 gen_and(b0, b1);
1014 return b1;
1015
1016 case Q_OR:
1017 case Q_DEFAULT:
1018 b0 = gen_hostop6(addr, mask, Q_SRC, proto, src_off, dst_off);
1019 b1 = gen_hostop6(addr, mask, Q_DST, proto, src_off, dst_off);
1020 gen_or(b0, b1);
1021 return b1;
1022
1023 default:
1024 abort();
1025 }
1026 /* this order is important */
1027 a = (u_int32_t *)addr;
1028 m = (u_int32_t *)mask;
1029 b1 = gen_mcmp(offset + 12, BPF_W, ntohl(a[3]), ntohl(m[3]));
1030 b0 = gen_mcmp(offset + 8, BPF_W, ntohl(a[2]), ntohl(m[2]));
1031 gen_and(b0, b1);
1032 b0 = gen_mcmp(offset + 4, BPF_W, ntohl(a[1]), ntohl(m[1]));
1033 gen_and(b0, b1);
1034 b0 = gen_mcmp(offset + 0, BPF_W, ntohl(a[0]), ntohl(m[0]));
1035 gen_and(b0, b1);
1036 b0 = gen_linktype(proto);
1037 gen_and(b0, b1);
1038 return b1;
1039}
1040#endif /*INET6*/
1041
1042static struct block *
1043gen_ehostop(eaddr, dir)
1044 register const u_char *eaddr;
1045 register int dir;
1046{
1047 register struct block *b0, *b1;
1048
1049 switch (dir) {
1050 case Q_SRC:
1051 return gen_bcmp(6, 6, eaddr);
1052
1053 case Q_DST:
1054 return gen_bcmp(0, 6, eaddr);
1055
1056 case Q_AND:
1057 b0 = gen_ehostop(eaddr, Q_SRC);
1058 b1 = gen_ehostop(eaddr, Q_DST);
1059 gen_and(b0, b1);
1060 return b1;
1061
1062 case Q_DEFAULT:
1063 case Q_OR:
1064 b0 = gen_ehostop(eaddr, Q_SRC);
1065 b1 = gen_ehostop(eaddr, Q_DST);
1066 gen_or(b0, b1);
1067 return b1;
1068 }
1069 abort();
1070 /* NOTREACHED */
1071}
1072
1073/*
1074 * Like gen_ehostop, but for DLT_FDDI
1075 */
1076static struct block *
1077gen_fhostop(eaddr, dir)
1078 register const u_char *eaddr;
1079 register int dir;
1080{
1081 struct block *b0, *b1;
1082
1083 switch (dir) {
1084 case Q_SRC:
1085#ifdef PCAP_FDDIPAD
1086 return gen_bcmp(6 + 1 + pcap_fddipad, 6, eaddr);
1087#else
1088 return gen_bcmp(6 + 1, 6, eaddr);
1089#endif
1090
1091 case Q_DST:
1092#ifdef PCAP_FDDIPAD
1093 return gen_bcmp(0 + 1 + pcap_fddipad, 6, eaddr);
1094#else
1095 return gen_bcmp(0 + 1, 6, eaddr);
1096#endif
1097
1098 case Q_AND:
1099 b0 = gen_fhostop(eaddr, Q_SRC);
1100 b1 = gen_fhostop(eaddr, Q_DST);
1101 gen_and(b0, b1);
1102 return b1;
1103
1104 case Q_DEFAULT:
1105 case Q_OR:
1106 b0 = gen_fhostop(eaddr, Q_SRC);
1107 b1 = gen_fhostop(eaddr, Q_DST);
1108 gen_or(b0, b1);
1109 return b1;
1110 }
1111 abort();
1112 /* NOTREACHED */
1113}
1114
1115/*
1116 * Like gen_ehostop, but for DLT_IEEE802 (Token Ring)
1117 */
1118static struct block *
1119gen_thostop(eaddr, dir)
1120 register const u_char *eaddr;
1121 register int dir;
1122{
1123 register struct block *b0, *b1;
1124
1125 switch (dir) {
1126 case Q_SRC:
1127 return gen_bcmp(8, 6, eaddr);
1128
1129 case Q_DST:
1130 return gen_bcmp(2, 6, eaddr);
1131
1132 case Q_AND:
1133 b0 = gen_thostop(eaddr, Q_SRC);
1134 b1 = gen_thostop(eaddr, Q_DST);
1135 gen_and(b0, b1);
1136 return b1;
1137
1138 case Q_DEFAULT:
1139 case Q_OR:
1140 b0 = gen_thostop(eaddr, Q_SRC);
1141 b1 = gen_thostop(eaddr, Q_DST);
1142 gen_or(b0, b1);
1143 return b1;
1144 }
1145 abort();
1146 /* NOTREACHED */
1147}
1148
1149/*
1150 * This is quite tricky because there may be pad bytes in front of the
1151 * DECNET header, and then there are two possible data packet formats that
1152 * carry both src and dst addresses, plus 5 packet types in a format that
1153 * carries only the src node, plus 2 types that use a different format and
1154 * also carry just the src node.
1155 *
1156 * Yuck.
1157 *
1158 * Instead of doing those all right, we just look for data packets with
1159 * 0 or 1 bytes of padding. If you want to look at other packets, that
1160 * will require a lot more hacking.
1161 *
1162 * To add support for filtering on DECNET "areas" (network numbers)
1163 * one would want to add a "mask" argument to this routine. That would
1164 * make the filter even more inefficient, although one could be clever
1165 * and not generate masking instructions if the mask is 0xFFFF.
1166 */
1167static struct block *
1168gen_dnhostop(addr, dir, base_off)
1169 bpf_u_int32 addr;
1170 int dir;
1171 u_int base_off;
1172{
1173 struct block *b0, *b1, *b2, *tmp;
1174 u_int offset_lh; /* offset if long header is received */
1175 u_int offset_sh; /* offset if short header is received */
1176
1177 switch (dir) {
1178
1179 case Q_DST:
1180 offset_sh = 1; /* follows flags */
1181 offset_lh = 7; /* flgs,darea,dsubarea,HIORD */
1182 break;
1183
1184 case Q_SRC:
1185 offset_sh = 3; /* follows flags, dstnode */
1186 offset_lh = 15; /* flgs,darea,dsubarea,did,sarea,ssub,HIORD */
1187 break;
1188
1189 case Q_AND:
1190 /* Inefficient because we do our Calvinball dance twice */
1191 b0 = gen_dnhostop(addr, Q_SRC, base_off);
1192 b1 = gen_dnhostop(addr, Q_DST, base_off);
1193 gen_and(b0, b1);
1194 return b1;
1195
1196 case Q_OR:
1197 case Q_DEFAULT:
1198 /* Inefficient because we do our Calvinball dance twice */
1199 b0 = gen_dnhostop(addr, Q_SRC, base_off);
1200 b1 = gen_dnhostop(addr, Q_DST, base_off);
1201 gen_or(b0, b1);
1202 return b1;
1203
1204 case Q_ISO:
1205 bpf_error("ISO host filtering not implemented");
1206
1207 default:
1208 abort();
1209 }
1210 b0 = gen_linktype(ETHERTYPE_DN);
1211 /* Check for pad = 1, long header case */
1212 tmp = gen_mcmp(base_off + 2, BPF_H,
1213 (bpf_int32)ntohs(0x0681), (bpf_int32)ntohs(0x07FF));
1214 b1 = gen_cmp(base_off + 2 + 1 + offset_lh,
1215 BPF_H, (bpf_int32)ntohs(addr));
1216 gen_and(tmp, b1);
1217 /* Check for pad = 0, long header case */
1218 tmp = gen_mcmp(base_off + 2, BPF_B, (bpf_int32)0x06, (bpf_int32)0x7);
1219 b2 = gen_cmp(base_off + 2 + offset_lh, BPF_H, (bpf_int32)ntohs(addr));
1220 gen_and(tmp, b2);
1221 gen_or(b2, b1);
1222 /* Check for pad = 1, short header case */
1223 tmp = gen_mcmp(base_off + 2, BPF_H,
1224 (bpf_int32)ntohs(0x0281), (bpf_int32)ntohs(0x07FF));
1225 b2 = gen_cmp(base_off + 2 + 1 + offset_sh,
1226 BPF_H, (bpf_int32)ntohs(addr));
1227 gen_and(tmp, b2);
1228 gen_or(b2, b1);
1229 /* Check for pad = 0, short header case */
1230 tmp = gen_mcmp(base_off + 2, BPF_B, (bpf_int32)0x02, (bpf_int32)0x7);
1231 b2 = gen_cmp(base_off + 2 + offset_sh, BPF_H, (bpf_int32)ntohs(addr));
1232 gen_and(tmp, b2);
1233 gen_or(b2, b1);
1234
1235 /* Combine with test for linktype */
1236 gen_and(b0, b1);
1237 return b1;
1238}
1239
1240static struct block *
1241gen_host(addr, mask, proto, dir)
1242 bpf_u_int32 addr;
1243 bpf_u_int32 mask;
1244 int proto;
1245 int dir;
1246{
1247 struct block *b0, *b1;
1248
1249 switch (proto) {
1250
1251 case Q_DEFAULT:
1252 b0 = gen_host(addr, mask, Q_IP, dir);
1253 if (off_linktype != -1) {
1254 b1 = gen_host(addr, mask, Q_ARP, dir);
1255 gen_or(b0, b1);
1256 b0 = gen_host(addr, mask, Q_RARP, dir);
1257 gen_or(b1, b0);
1258 }
1259 return b0;
1260
1261 case Q_IP:
1262 return gen_hostop(addr, mask, dir, ETHERTYPE_IP,
1263 off_nl + 12, off_nl + 16);
1264
1265 case Q_RARP:
1266 return gen_hostop(addr, mask, dir, ETHERTYPE_REVARP,
1267 off_nl + 14, off_nl + 24);
1268
1269 case Q_ARP:
1270 return gen_hostop(addr, mask, dir, ETHERTYPE_ARP,
1271 off_nl + 14, off_nl + 24);
1272
1273 case Q_TCP:
1274 bpf_error("'tcp' modifier applied to host");
1275
1464 snapblock[2] = 0x03; /* control = UI */
1465 snapblock[3] = (orgcode >> 16); /* upper 8 bits of organization code */
1466 snapblock[4] = (orgcode >> 8); /* middle 8 bits of organization code */
1467 snapblock[5] = (orgcode >> 0); /* lower 8 bits of organization code */
1468 snapblock[6] = (ptype >> 8); /* upper 8 bits of protocol type */
1469 snapblock[7] = (ptype >> 0); /* lower 8 bits of protocol type */
1470 return gen_bcmp(offset, 8, snapblock);
1471}
1472
1473static struct block *
1474gen_hostop(addr, mask, dir, proto, src_off, dst_off)
1475 bpf_u_int32 addr;
1476 bpf_u_int32 mask;
1477 int dir, proto;
1478 u_int src_off, dst_off;
1479{
1480 struct block *b0, *b1;
1481 u_int offset;
1482
1483 switch (dir) {
1484
1485 case Q_SRC:
1486 offset = src_off;
1487 break;
1488
1489 case Q_DST:
1490 offset = dst_off;
1491 break;
1492
1493 case Q_AND:
1494 b0 = gen_hostop(addr, mask, Q_SRC, proto, src_off, dst_off);
1495 b1 = gen_hostop(addr, mask, Q_DST, proto, src_off, dst_off);
1496 gen_and(b0, b1);
1497 return b1;
1498
1499 case Q_OR:
1500 case Q_DEFAULT:
1501 b0 = gen_hostop(addr, mask, Q_SRC, proto, src_off, dst_off);
1502 b1 = gen_hostop(addr, mask, Q_DST, proto, src_off, dst_off);
1503 gen_or(b0, b1);
1504 return b1;
1505
1506 default:
1507 abort();
1508 }
1509 b0 = gen_linktype(proto);
1510 b1 = gen_mcmp(offset, BPF_W, (bpf_int32)addr, mask);
1511 gen_and(b0, b1);
1512 return b1;
1513}
1514
1515#ifdef INET6
1516static struct block *
1517gen_hostop6(addr, mask, dir, proto, src_off, dst_off)
1518 struct in6_addr *addr;
1519 struct in6_addr *mask;
1520 int dir, proto;
1521 u_int src_off, dst_off;
1522{
1523 struct block *b0, *b1;
1524 u_int offset;
1525 u_int32_t *a, *m;
1526
1527 switch (dir) {
1528
1529 case Q_SRC:
1530 offset = src_off;
1531 break;
1532
1533 case Q_DST:
1534 offset = dst_off;
1535 break;
1536
1537 case Q_AND:
1538 b0 = gen_hostop6(addr, mask, Q_SRC, proto, src_off, dst_off);
1539 b1 = gen_hostop6(addr, mask, Q_DST, proto, src_off, dst_off);
1540 gen_and(b0, b1);
1541 return b1;
1542
1543 case Q_OR:
1544 case Q_DEFAULT:
1545 b0 = gen_hostop6(addr, mask, Q_SRC, proto, src_off, dst_off);
1546 b1 = gen_hostop6(addr, mask, Q_DST, proto, src_off, dst_off);
1547 gen_or(b0, b1);
1548 return b1;
1549
1550 default:
1551 abort();
1552 }
1553 /* this order is important */
1554 a = (u_int32_t *)addr;
1555 m = (u_int32_t *)mask;
1556 b1 = gen_mcmp(offset + 12, BPF_W, ntohl(a[3]), ntohl(m[3]));
1557 b0 = gen_mcmp(offset + 8, BPF_W, ntohl(a[2]), ntohl(m[2]));
1558 gen_and(b0, b1);
1559 b0 = gen_mcmp(offset + 4, BPF_W, ntohl(a[1]), ntohl(m[1]));
1560 gen_and(b0, b1);
1561 b0 = gen_mcmp(offset + 0, BPF_W, ntohl(a[0]), ntohl(m[0]));
1562 gen_and(b0, b1);
1563 b0 = gen_linktype(proto);
1564 gen_and(b0, b1);
1565 return b1;
1566}
1567#endif /*INET6*/
1568
1569static struct block *
1570gen_ehostop(eaddr, dir)
1571 register const u_char *eaddr;
1572 register int dir;
1573{
1574 register struct block *b0, *b1;
1575
1576 switch (dir) {
1577 case Q_SRC:
1578 return gen_bcmp(6, 6, eaddr);
1579
1580 case Q_DST:
1581 return gen_bcmp(0, 6, eaddr);
1582
1583 case Q_AND:
1584 b0 = gen_ehostop(eaddr, Q_SRC);
1585 b1 = gen_ehostop(eaddr, Q_DST);
1586 gen_and(b0, b1);
1587 return b1;
1588
1589 case Q_DEFAULT:
1590 case Q_OR:
1591 b0 = gen_ehostop(eaddr, Q_SRC);
1592 b1 = gen_ehostop(eaddr, Q_DST);
1593 gen_or(b0, b1);
1594 return b1;
1595 }
1596 abort();
1597 /* NOTREACHED */
1598}
1599
1600/*
1601 * Like gen_ehostop, but for DLT_FDDI
1602 */
1603static struct block *
1604gen_fhostop(eaddr, dir)
1605 register const u_char *eaddr;
1606 register int dir;
1607{
1608 struct block *b0, *b1;
1609
1610 switch (dir) {
1611 case Q_SRC:
1612#ifdef PCAP_FDDIPAD
1613 return gen_bcmp(6 + 1 + pcap_fddipad, 6, eaddr);
1614#else
1615 return gen_bcmp(6 + 1, 6, eaddr);
1616#endif
1617
1618 case Q_DST:
1619#ifdef PCAP_FDDIPAD
1620 return gen_bcmp(0 + 1 + pcap_fddipad, 6, eaddr);
1621#else
1622 return gen_bcmp(0 + 1, 6, eaddr);
1623#endif
1624
1625 case Q_AND:
1626 b0 = gen_fhostop(eaddr, Q_SRC);
1627 b1 = gen_fhostop(eaddr, Q_DST);
1628 gen_and(b0, b1);
1629 return b1;
1630
1631 case Q_DEFAULT:
1632 case Q_OR:
1633 b0 = gen_fhostop(eaddr, Q_SRC);
1634 b1 = gen_fhostop(eaddr, Q_DST);
1635 gen_or(b0, b1);
1636 return b1;
1637 }
1638 abort();
1639 /* NOTREACHED */
1640}
1641
1642/*
1643 * Like gen_ehostop, but for DLT_IEEE802 (Token Ring)
1644 */
1645static struct block *
1646gen_thostop(eaddr, dir)
1647 register const u_char *eaddr;
1648 register int dir;
1649{
1650 register struct block *b0, *b1;
1651
1652 switch (dir) {
1653 case Q_SRC:
1654 return gen_bcmp(8, 6, eaddr);
1655
1656 case Q_DST:
1657 return gen_bcmp(2, 6, eaddr);
1658
1659 case Q_AND:
1660 b0 = gen_thostop(eaddr, Q_SRC);
1661 b1 = gen_thostop(eaddr, Q_DST);
1662 gen_and(b0, b1);
1663 return b1;
1664
1665 case Q_DEFAULT:
1666 case Q_OR:
1667 b0 = gen_thostop(eaddr, Q_SRC);
1668 b1 = gen_thostop(eaddr, Q_DST);
1669 gen_or(b0, b1);
1670 return b1;
1671 }
1672 abort();
1673 /* NOTREACHED */
1674}
1675
1676/*
1677 * This is quite tricky because there may be pad bytes in front of the
1678 * DECNET header, and then there are two possible data packet formats that
1679 * carry both src and dst addresses, plus 5 packet types in a format that
1680 * carries only the src node, plus 2 types that use a different format and
1681 * also carry just the src node.
1682 *
1683 * Yuck.
1684 *
1685 * Instead of doing those all right, we just look for data packets with
1686 * 0 or 1 bytes of padding. If you want to look at other packets, that
1687 * will require a lot more hacking.
1688 *
1689 * To add support for filtering on DECNET "areas" (network numbers)
1690 * one would want to add a "mask" argument to this routine. That would
1691 * make the filter even more inefficient, although one could be clever
1692 * and not generate masking instructions if the mask is 0xFFFF.
1693 */
1694static struct block *
1695gen_dnhostop(addr, dir, base_off)
1696 bpf_u_int32 addr;
1697 int dir;
1698 u_int base_off;
1699{
1700 struct block *b0, *b1, *b2, *tmp;
1701 u_int offset_lh; /* offset if long header is received */
1702 u_int offset_sh; /* offset if short header is received */
1703
1704 switch (dir) {
1705
1706 case Q_DST:
1707 offset_sh = 1; /* follows flags */
1708 offset_lh = 7; /* flgs,darea,dsubarea,HIORD */
1709 break;
1710
1711 case Q_SRC:
1712 offset_sh = 3; /* follows flags, dstnode */
1713 offset_lh = 15; /* flgs,darea,dsubarea,did,sarea,ssub,HIORD */
1714 break;
1715
1716 case Q_AND:
1717 /* Inefficient because we do our Calvinball dance twice */
1718 b0 = gen_dnhostop(addr, Q_SRC, base_off);
1719 b1 = gen_dnhostop(addr, Q_DST, base_off);
1720 gen_and(b0, b1);
1721 return b1;
1722
1723 case Q_OR:
1724 case Q_DEFAULT:
1725 /* Inefficient because we do our Calvinball dance twice */
1726 b0 = gen_dnhostop(addr, Q_SRC, base_off);
1727 b1 = gen_dnhostop(addr, Q_DST, base_off);
1728 gen_or(b0, b1);
1729 return b1;
1730
1731 case Q_ISO:
1732 bpf_error("ISO host filtering not implemented");
1733
1734 default:
1735 abort();
1736 }
1737 b0 = gen_linktype(ETHERTYPE_DN);
1738 /* Check for pad = 1, long header case */
1739 tmp = gen_mcmp(base_off + 2, BPF_H,
1740 (bpf_int32)ntohs(0x0681), (bpf_int32)ntohs(0x07FF));
1741 b1 = gen_cmp(base_off + 2 + 1 + offset_lh,
1742 BPF_H, (bpf_int32)ntohs(addr));
1743 gen_and(tmp, b1);
1744 /* Check for pad = 0, long header case */
1745 tmp = gen_mcmp(base_off + 2, BPF_B, (bpf_int32)0x06, (bpf_int32)0x7);
1746 b2 = gen_cmp(base_off + 2 + offset_lh, BPF_H, (bpf_int32)ntohs(addr));
1747 gen_and(tmp, b2);
1748 gen_or(b2, b1);
1749 /* Check for pad = 1, short header case */
1750 tmp = gen_mcmp(base_off + 2, BPF_H,
1751 (bpf_int32)ntohs(0x0281), (bpf_int32)ntohs(0x07FF));
1752 b2 = gen_cmp(base_off + 2 + 1 + offset_sh,
1753 BPF_H, (bpf_int32)ntohs(addr));
1754 gen_and(tmp, b2);
1755 gen_or(b2, b1);
1756 /* Check for pad = 0, short header case */
1757 tmp = gen_mcmp(base_off + 2, BPF_B, (bpf_int32)0x02, (bpf_int32)0x7);
1758 b2 = gen_cmp(base_off + 2 + offset_sh, BPF_H, (bpf_int32)ntohs(addr));
1759 gen_and(tmp, b2);
1760 gen_or(b2, b1);
1761
1762 /* Combine with test for linktype */
1763 gen_and(b0, b1);
1764 return b1;
1765}
1766
1767static struct block *
1768gen_host(addr, mask, proto, dir)
1769 bpf_u_int32 addr;
1770 bpf_u_int32 mask;
1771 int proto;
1772 int dir;
1773{
1774 struct block *b0, *b1;
1775
1776 switch (proto) {
1777
1778 case Q_DEFAULT:
1779 b0 = gen_host(addr, mask, Q_IP, dir);
1780 if (off_linktype != -1) {
1781 b1 = gen_host(addr, mask, Q_ARP, dir);
1782 gen_or(b0, b1);
1783 b0 = gen_host(addr, mask, Q_RARP, dir);
1784 gen_or(b1, b0);
1785 }
1786 return b0;
1787
1788 case Q_IP:
1789 return gen_hostop(addr, mask, dir, ETHERTYPE_IP,
1790 off_nl + 12, off_nl + 16);
1791
1792 case Q_RARP:
1793 return gen_hostop(addr, mask, dir, ETHERTYPE_REVARP,
1794 off_nl + 14, off_nl + 24);
1795
1796 case Q_ARP:
1797 return gen_hostop(addr, mask, dir, ETHERTYPE_ARP,
1798 off_nl + 14, off_nl + 24);
1799
1800 case Q_TCP:
1801 bpf_error("'tcp' modifier applied to host");
1802
1803 case Q_SCTP:
1804 bpf_error("'sctp' modifier applied to host");
1805
1276 case Q_UDP:
1277 bpf_error("'udp' modifier applied to host");
1278
1279 case Q_ICMP:
1280 bpf_error("'icmp' modifier applied to host");
1281
1282 case Q_IGMP:
1283 bpf_error("'igmp' modifier applied to host");
1284
1285 case Q_IGRP:
1286 bpf_error("'igrp' modifier applied to host");
1287
1288 case Q_PIM:
1289 bpf_error("'pim' modifier applied to host");
1290
1806 case Q_UDP:
1807 bpf_error("'udp' modifier applied to host");
1808
1809 case Q_ICMP:
1810 bpf_error("'icmp' modifier applied to host");
1811
1812 case Q_IGMP:
1813 bpf_error("'igmp' modifier applied to host");
1814
1815 case Q_IGRP:
1816 bpf_error("'igrp' modifier applied to host");
1817
1818 case Q_PIM:
1819 bpf_error("'pim' modifier applied to host");
1820
1821 case Q_VRRP:
1822 bpf_error("'vrrp' modifier applied to host");
1823
1291 case Q_ATALK:
1292 bpf_error("ATALK host filtering not implemented");
1293
1294 case Q_AARP:
1295 bpf_error("AARP host filtering not implemented");
1296
1297 case Q_DECNET:
1298 return gen_dnhostop(addr, dir, off_nl);
1299
1300 case Q_SCA:
1301 bpf_error("SCA host filtering not implemented");
1302
1303 case Q_LAT:
1304 bpf_error("LAT host filtering not implemented");
1305
1306 case Q_MOPDL:
1307 bpf_error("MOPDL host filtering not implemented");
1308
1309 case Q_MOPRC:
1310 bpf_error("MOPRC host filtering not implemented");
1311
1312#ifdef INET6
1313 case Q_IPV6:
1314 bpf_error("'ip6' modifier applied to ip host");
1315
1316 case Q_ICMPV6:
1317 bpf_error("'icmp6' modifier applied to host");
1318#endif /* INET6 */
1319
1320 case Q_AH:
1321 bpf_error("'ah' modifier applied to host");
1322
1323 case Q_ESP:
1324 bpf_error("'esp' modifier applied to host");
1325
1326 case Q_ISO:
1327 bpf_error("ISO host filtering not implemented");
1328
1329 case Q_ESIS:
1330 bpf_error("'esis' modifier applied to host");
1331
1332 case Q_ISIS:
1333 bpf_error("'isis' modifier applied to host");
1334
1335 case Q_CLNP:
1336 bpf_error("'clnp' modifier applied to host");
1337
1824 case Q_ATALK:
1825 bpf_error("ATALK host filtering not implemented");
1826
1827 case Q_AARP:
1828 bpf_error("AARP host filtering not implemented");
1829
1830 case Q_DECNET:
1831 return gen_dnhostop(addr, dir, off_nl);
1832
1833 case Q_SCA:
1834 bpf_error("SCA host filtering not implemented");
1835
1836 case Q_LAT:
1837 bpf_error("LAT host filtering not implemented");
1838
1839 case Q_MOPDL:
1840 bpf_error("MOPDL host filtering not implemented");
1841
1842 case Q_MOPRC:
1843 bpf_error("MOPRC host filtering not implemented");
1844
1845#ifdef INET6
1846 case Q_IPV6:
1847 bpf_error("'ip6' modifier applied to ip host");
1848
1849 case Q_ICMPV6:
1850 bpf_error("'icmp6' modifier applied to host");
1851#endif /* INET6 */
1852
1853 case Q_AH:
1854 bpf_error("'ah' modifier applied to host");
1855
1856 case Q_ESP:
1857 bpf_error("'esp' modifier applied to host");
1858
1859 case Q_ISO:
1860 bpf_error("ISO host filtering not implemented");
1861
1862 case Q_ESIS:
1863 bpf_error("'esis' modifier applied to host");
1864
1865 case Q_ISIS:
1866 bpf_error("'isis' modifier applied to host");
1867
1868 case Q_CLNP:
1869 bpf_error("'clnp' modifier applied to host");
1870
1871 case Q_STP:
1872 bpf_error("'stp' modifier applied to host");
1873
1874 case Q_IPX:
1875 bpf_error("IPX host filtering not implemented");
1876
1877 case Q_NETBEUI:
1878 bpf_error("'netbeui' modifier applied to host");
1879
1338 default:
1339 abort();
1340 }
1341 /* NOTREACHED */
1342}
1343
1344#ifdef INET6
1345static struct block *
1346gen_host6(addr, mask, proto, dir)
1347 struct in6_addr *addr;
1348 struct in6_addr *mask;
1349 int proto;
1350 int dir;
1351{
1352 switch (proto) {
1353
1354 case Q_DEFAULT:
1355 return gen_host6(addr, mask, Q_IPV6, dir);
1356
1357 case Q_IP:
1358 bpf_error("'ip' modifier applied to ip6 host");
1359
1360 case Q_RARP:
1361 bpf_error("'rarp' modifier applied to ip6 host");
1362
1363 case Q_ARP:
1364 bpf_error("'arp' modifier applied to ip6 host");
1365
1880 default:
1881 abort();
1882 }
1883 /* NOTREACHED */
1884}
1885
1886#ifdef INET6
1887static struct block *
1888gen_host6(addr, mask, proto, dir)
1889 struct in6_addr *addr;
1890 struct in6_addr *mask;
1891 int proto;
1892 int dir;
1893{
1894 switch (proto) {
1895
1896 case Q_DEFAULT:
1897 return gen_host6(addr, mask, Q_IPV6, dir);
1898
1899 case Q_IP:
1900 bpf_error("'ip' modifier applied to ip6 host");
1901
1902 case Q_RARP:
1903 bpf_error("'rarp' modifier applied to ip6 host");
1904
1905 case Q_ARP:
1906 bpf_error("'arp' modifier applied to ip6 host");
1907
1908 case Q_SCTP:
1909 bpf_error("'sctp' modifier applied to host");
1910
1366 case Q_TCP:
1367 bpf_error("'tcp' modifier applied to host");
1368
1369 case Q_UDP:
1370 bpf_error("'udp' modifier applied to host");
1371
1372 case Q_ICMP:
1373 bpf_error("'icmp' modifier applied to host");
1374
1375 case Q_IGMP:
1376 bpf_error("'igmp' modifier applied to host");
1377
1378 case Q_IGRP:
1379 bpf_error("'igrp' modifier applied to host");
1380
1381 case Q_PIM:
1382 bpf_error("'pim' modifier applied to host");
1383
1911 case Q_TCP:
1912 bpf_error("'tcp' modifier applied to host");
1913
1914 case Q_UDP:
1915 bpf_error("'udp' modifier applied to host");
1916
1917 case Q_ICMP:
1918 bpf_error("'icmp' modifier applied to host");
1919
1920 case Q_IGMP:
1921 bpf_error("'igmp' modifier applied to host");
1922
1923 case Q_IGRP:
1924 bpf_error("'igrp' modifier applied to host");
1925
1926 case Q_PIM:
1927 bpf_error("'pim' modifier applied to host");
1928
1929 case Q_VRRP:
1930 bpf_error("'vrrp' modifier applied to host");
1931
1384 case Q_ATALK:
1385 bpf_error("ATALK host filtering not implemented");
1386
1387 case Q_AARP:
1388 bpf_error("AARP host filtering not implemented");
1389
1390 case Q_DECNET:
1391 bpf_error("'decnet' modifier applied to ip6 host");
1392
1393 case Q_SCA:
1394 bpf_error("SCA host filtering not implemented");
1395
1396 case Q_LAT:
1397 bpf_error("LAT host filtering not implemented");
1398
1399 case Q_MOPDL:
1400 bpf_error("MOPDL host filtering not implemented");
1401
1402 case Q_MOPRC:
1403 bpf_error("MOPRC host filtering not implemented");
1404
1405 case Q_IPV6:
1406 return gen_hostop6(addr, mask, dir, ETHERTYPE_IPV6,
1407 off_nl + 8, off_nl + 24);
1408
1409 case Q_ICMPV6:
1410 bpf_error("'icmp6' modifier applied to host");
1411
1412 case Q_AH:
1413 bpf_error("'ah' modifier applied to host");
1414
1415 case Q_ESP:
1416 bpf_error("'esp' modifier applied to host");
1417
1418 case Q_ISO:
1419 bpf_error("ISO host filtering not implemented");
1420
1421 case Q_ESIS:
1422 bpf_error("'esis' modifier applied to host");
1423
1424 case Q_ISIS:
1425 bpf_error("'isis' modifier applied to host");
1426
1427 case Q_CLNP:
1428 bpf_error("'clnp' modifier applied to host");
1429
1932 case Q_ATALK:
1933 bpf_error("ATALK host filtering not implemented");
1934
1935 case Q_AARP:
1936 bpf_error("AARP host filtering not implemented");
1937
1938 case Q_DECNET:
1939 bpf_error("'decnet' modifier applied to ip6 host");
1940
1941 case Q_SCA:
1942 bpf_error("SCA host filtering not implemented");
1943
1944 case Q_LAT:
1945 bpf_error("LAT host filtering not implemented");
1946
1947 case Q_MOPDL:
1948 bpf_error("MOPDL host filtering not implemented");
1949
1950 case Q_MOPRC:
1951 bpf_error("MOPRC host filtering not implemented");
1952
1953 case Q_IPV6:
1954 return gen_hostop6(addr, mask, dir, ETHERTYPE_IPV6,
1955 off_nl + 8, off_nl + 24);
1956
1957 case Q_ICMPV6:
1958 bpf_error("'icmp6' modifier applied to host");
1959
1960 case Q_AH:
1961 bpf_error("'ah' modifier applied to host");
1962
1963 case Q_ESP:
1964 bpf_error("'esp' modifier applied to host");
1965
1966 case Q_ISO:
1967 bpf_error("ISO host filtering not implemented");
1968
1969 case Q_ESIS:
1970 bpf_error("'esis' modifier applied to host");
1971
1972 case Q_ISIS:
1973 bpf_error("'isis' modifier applied to host");
1974
1975 case Q_CLNP:
1976 bpf_error("'clnp' modifier applied to host");
1977
1978 case Q_STP:
1979 bpf_error("'stp' modifier applied to host");
1980
1981 case Q_IPX:
1982 bpf_error("IPX host filtering not implemented");
1983
1984 case Q_NETBEUI:
1985 bpf_error("'netbeui' modifier applied to host");
1986
1430 default:
1431 abort();
1432 }
1433 /* NOTREACHED */
1434}
1435#endif /*INET6*/
1436
1437#ifndef INET6
1438static struct block *
1439gen_gateway(eaddr, alist, proto, dir)
1440 const u_char *eaddr;
1441 bpf_u_int32 **alist;
1442 int proto;
1443 int dir;
1444{
1445 struct block *b0, *b1, *tmp;
1446
1447 if (dir != 0)
1448 bpf_error("direction applied to 'gateway'");
1449
1450 switch (proto) {
1451 case Q_DEFAULT:
1452 case Q_IP:
1453 case Q_ARP:
1454 case Q_RARP:
1455 if (linktype == DLT_EN10MB)
1456 b0 = gen_ehostop(eaddr, Q_OR);
1457 else if (linktype == DLT_FDDI)
1458 b0 = gen_fhostop(eaddr, Q_OR);
1459 else if (linktype == DLT_IEEE802)
1460 b0 = gen_thostop(eaddr, Q_OR);
1461 else
1462 bpf_error(
1463 "'gateway' supported only on ethernet, FDDI or token ring");
1464
1465 b1 = gen_host(**alist++, 0xffffffff, proto, Q_OR);
1466 while (*alist) {
1467 tmp = gen_host(**alist++, 0xffffffff, proto, Q_OR);
1468 gen_or(b1, tmp);
1469 b1 = tmp;
1470 }
1471 gen_not(b1);
1472 gen_and(b0, b1);
1473 return b1;
1474 }
1475 bpf_error("illegal modifier of 'gateway'");
1476 /* NOTREACHED */
1477}
1478#endif
1479
1480struct block *
1481gen_proto_abbrev(proto)
1482 int proto;
1483{
1484#ifdef INET6
1485 struct block *b0;
1486#endif
1487 struct block *b1;
1488
1489 switch (proto) {
1490
1987 default:
1988 abort();
1989 }
1990 /* NOTREACHED */
1991}
1992#endif /*INET6*/
1993
1994#ifndef INET6
1995static struct block *
1996gen_gateway(eaddr, alist, proto, dir)
1997 const u_char *eaddr;
1998 bpf_u_int32 **alist;
1999 int proto;
2000 int dir;
2001{
2002 struct block *b0, *b1, *tmp;
2003
2004 if (dir != 0)
2005 bpf_error("direction applied to 'gateway'");
2006
2007 switch (proto) {
2008 case Q_DEFAULT:
2009 case Q_IP:
2010 case Q_ARP:
2011 case Q_RARP:
2012 if (linktype == DLT_EN10MB)
2013 b0 = gen_ehostop(eaddr, Q_OR);
2014 else if (linktype == DLT_FDDI)
2015 b0 = gen_fhostop(eaddr, Q_OR);
2016 else if (linktype == DLT_IEEE802)
2017 b0 = gen_thostop(eaddr, Q_OR);
2018 else
2019 bpf_error(
2020 "'gateway' supported only on ethernet, FDDI or token ring");
2021
2022 b1 = gen_host(**alist++, 0xffffffff, proto, Q_OR);
2023 while (*alist) {
2024 tmp = gen_host(**alist++, 0xffffffff, proto, Q_OR);
2025 gen_or(b1, tmp);
2026 b1 = tmp;
2027 }
2028 gen_not(b1);
2029 gen_and(b0, b1);
2030 return b1;
2031 }
2032 bpf_error("illegal modifier of 'gateway'");
2033 /* NOTREACHED */
2034}
2035#endif
2036
2037struct block *
2038gen_proto_abbrev(proto)
2039 int proto;
2040{
2041#ifdef INET6
2042 struct block *b0;
2043#endif
2044 struct block *b1;
2045
2046 switch (proto) {
2047
2048 case Q_SCTP:
2049 b1 = gen_proto(IPPROTO_SCTP, Q_IP, Q_DEFAULT);
2050#ifdef INET6
2051 b0 = gen_proto(IPPROTO_SCTP, Q_IPV6, Q_DEFAULT);
2052 gen_or(b0, b1);
2053#endif
2054 break;
2055
1491 case Q_TCP:
1492 b1 = gen_proto(IPPROTO_TCP, Q_IP, Q_DEFAULT);
1493#ifdef INET6
1494 b0 = gen_proto(IPPROTO_TCP, Q_IPV6, Q_DEFAULT);
1495 gen_or(b0, b1);
1496#endif
1497 break;
1498
1499 case Q_UDP:
1500 b1 = gen_proto(IPPROTO_UDP, Q_IP, Q_DEFAULT);
1501#ifdef INET6
1502 b0 = gen_proto(IPPROTO_UDP, Q_IPV6, Q_DEFAULT);
1503 gen_or(b0, b1);
1504#endif
1505 break;
1506
1507 case Q_ICMP:
1508 b1 = gen_proto(IPPROTO_ICMP, Q_IP, Q_DEFAULT);
1509 break;
1510
1511#ifndef IPPROTO_IGMP
1512#define IPPROTO_IGMP 2
1513#endif
1514
1515 case Q_IGMP:
1516 b1 = gen_proto(IPPROTO_IGMP, Q_IP, Q_DEFAULT);
1517 break;
1518
1519#ifndef IPPROTO_IGRP
1520#define IPPROTO_IGRP 9
1521#endif
1522 case Q_IGRP:
1523 b1 = gen_proto(IPPROTO_IGRP, Q_IP, Q_DEFAULT);
1524 break;
1525
1526#ifndef IPPROTO_PIM
1527#define IPPROTO_PIM 103
1528#endif
1529
1530 case Q_PIM:
1531 b1 = gen_proto(IPPROTO_PIM, Q_IP, Q_DEFAULT);
1532#ifdef INET6
1533 b0 = gen_proto(IPPROTO_PIM, Q_IPV6, Q_DEFAULT);
1534 gen_or(b0, b1);
1535#endif
1536 break;
1537
2056 case Q_TCP:
2057 b1 = gen_proto(IPPROTO_TCP, Q_IP, Q_DEFAULT);
2058#ifdef INET6
2059 b0 = gen_proto(IPPROTO_TCP, Q_IPV6, Q_DEFAULT);
2060 gen_or(b0, b1);
2061#endif
2062 break;
2063
2064 case Q_UDP:
2065 b1 = gen_proto(IPPROTO_UDP, Q_IP, Q_DEFAULT);
2066#ifdef INET6
2067 b0 = gen_proto(IPPROTO_UDP, Q_IPV6, Q_DEFAULT);
2068 gen_or(b0, b1);
2069#endif
2070 break;
2071
2072 case Q_ICMP:
2073 b1 = gen_proto(IPPROTO_ICMP, Q_IP, Q_DEFAULT);
2074 break;
2075
2076#ifndef IPPROTO_IGMP
2077#define IPPROTO_IGMP 2
2078#endif
2079
2080 case Q_IGMP:
2081 b1 = gen_proto(IPPROTO_IGMP, Q_IP, Q_DEFAULT);
2082 break;
2083
2084#ifndef IPPROTO_IGRP
2085#define IPPROTO_IGRP 9
2086#endif
2087 case Q_IGRP:
2088 b1 = gen_proto(IPPROTO_IGRP, Q_IP, Q_DEFAULT);
2089 break;
2090
2091#ifndef IPPROTO_PIM
2092#define IPPROTO_PIM 103
2093#endif
2094
2095 case Q_PIM:
2096 b1 = gen_proto(IPPROTO_PIM, Q_IP, Q_DEFAULT);
2097#ifdef INET6
2098 b0 = gen_proto(IPPROTO_PIM, Q_IPV6, Q_DEFAULT);
2099 gen_or(b0, b1);
2100#endif
2101 break;
2102
2103#ifndef IPPROTO_VRRP
2104#define IPPROTO_VRRP 112
2105#endif
2106
2107 case Q_VRRP:
2108 b1 = gen_proto(IPPROTO_VRRP, Q_IP, Q_DEFAULT);
2109 break;
2110
1538 case Q_IP:
1539 b1 = gen_linktype(ETHERTYPE_IP);
1540 break;
1541
1542 case Q_ARP:
1543 b1 = gen_linktype(ETHERTYPE_ARP);
1544 break;
1545
1546 case Q_RARP:
1547 b1 = gen_linktype(ETHERTYPE_REVARP);
1548 break;
1549
1550 case Q_LINK:
1551 bpf_error("link layer applied in wrong context");
1552
1553 case Q_ATALK:
1554 b1 = gen_linktype(ETHERTYPE_ATALK);
1555 break;
1556
1557 case Q_AARP:
1558 b1 = gen_linktype(ETHERTYPE_AARP);
1559 break;
1560
1561 case Q_DECNET:
1562 b1 = gen_linktype(ETHERTYPE_DN);
1563 break;
1564
1565 case Q_SCA:
1566 b1 = gen_linktype(ETHERTYPE_SCA);
1567 break;
1568
1569 case Q_LAT:
1570 b1 = gen_linktype(ETHERTYPE_LAT);
1571 break;
1572
1573 case Q_MOPDL:
1574 b1 = gen_linktype(ETHERTYPE_MOPDL);
1575 break;
1576
1577 case Q_MOPRC:
1578 b1 = gen_linktype(ETHERTYPE_MOPRC);
1579 break;
1580
1581#ifdef INET6
1582 case Q_IPV6:
1583 b1 = gen_linktype(ETHERTYPE_IPV6);
1584 break;
1585
1586#ifndef IPPROTO_ICMPV6
1587#define IPPROTO_ICMPV6 58
1588#endif
1589 case Q_ICMPV6:
1590 b1 = gen_proto(IPPROTO_ICMPV6, Q_IPV6, Q_DEFAULT);
1591 break;
1592#endif /* INET6 */
1593
1594#ifndef IPPROTO_AH
1595#define IPPROTO_AH 51
1596#endif
1597 case Q_AH:
1598 b1 = gen_proto(IPPROTO_AH, Q_IP, Q_DEFAULT);
1599#ifdef INET6
1600 b0 = gen_proto(IPPROTO_AH, Q_IPV6, Q_DEFAULT);
1601 gen_or(b0, b1);
1602#endif
1603 break;
1604
1605#ifndef IPPROTO_ESP
1606#define IPPROTO_ESP 50
1607#endif
1608 case Q_ESP:
1609 b1 = gen_proto(IPPROTO_ESP, Q_IP, Q_DEFAULT);
1610#ifdef INET6
1611 b0 = gen_proto(IPPROTO_ESP, Q_IPV6, Q_DEFAULT);
1612 gen_or(b0, b1);
1613#endif
1614 break;
1615
1616 case Q_ISO:
2111 case Q_IP:
2112 b1 = gen_linktype(ETHERTYPE_IP);
2113 break;
2114
2115 case Q_ARP:
2116 b1 = gen_linktype(ETHERTYPE_ARP);
2117 break;
2118
2119 case Q_RARP:
2120 b1 = gen_linktype(ETHERTYPE_REVARP);
2121 break;
2122
2123 case Q_LINK:
2124 bpf_error("link layer applied in wrong context");
2125
2126 case Q_ATALK:
2127 b1 = gen_linktype(ETHERTYPE_ATALK);
2128 break;
2129
2130 case Q_AARP:
2131 b1 = gen_linktype(ETHERTYPE_AARP);
2132 break;
2133
2134 case Q_DECNET:
2135 b1 = gen_linktype(ETHERTYPE_DN);
2136 break;
2137
2138 case Q_SCA:
2139 b1 = gen_linktype(ETHERTYPE_SCA);
2140 break;
2141
2142 case Q_LAT:
2143 b1 = gen_linktype(ETHERTYPE_LAT);
2144 break;
2145
2146 case Q_MOPDL:
2147 b1 = gen_linktype(ETHERTYPE_MOPDL);
2148 break;
2149
2150 case Q_MOPRC:
2151 b1 = gen_linktype(ETHERTYPE_MOPRC);
2152 break;
2153
2154#ifdef INET6
2155 case Q_IPV6:
2156 b1 = gen_linktype(ETHERTYPE_IPV6);
2157 break;
2158
2159#ifndef IPPROTO_ICMPV6
2160#define IPPROTO_ICMPV6 58
2161#endif
2162 case Q_ICMPV6:
2163 b1 = gen_proto(IPPROTO_ICMPV6, Q_IPV6, Q_DEFAULT);
2164 break;
2165#endif /* INET6 */
2166
2167#ifndef IPPROTO_AH
2168#define IPPROTO_AH 51
2169#endif
2170 case Q_AH:
2171 b1 = gen_proto(IPPROTO_AH, Q_IP, Q_DEFAULT);
2172#ifdef INET6
2173 b0 = gen_proto(IPPROTO_AH, Q_IPV6, Q_DEFAULT);
2174 gen_or(b0, b1);
2175#endif
2176 break;
2177
2178#ifndef IPPROTO_ESP
2179#define IPPROTO_ESP 50
2180#endif
2181 case Q_ESP:
2182 b1 = gen_proto(IPPROTO_ESP, Q_IP, Q_DEFAULT);
2183#ifdef INET6
2184 b0 = gen_proto(IPPROTO_ESP, Q_IPV6, Q_DEFAULT);
2185 gen_or(b0, b1);
2186#endif
2187 break;
2188
2189 case Q_ISO:
1617 b1 = gen_linktype(LLC_ISO_LSAP);
2190 b1 = gen_linktype(LLCSAP_ISONS);
1618 break;
1619
1620 case Q_ESIS:
1621 b1 = gen_proto(ISO9542_ESIS, Q_ISO, Q_DEFAULT);
1622 break;
1623
1624 case Q_ISIS:
1625 b1 = gen_proto(ISO10589_ISIS, Q_ISO, Q_DEFAULT);
1626 break;
1627
1628 case Q_CLNP:
1629 b1 = gen_proto(ISO8473_CLNP, Q_ISO, Q_DEFAULT);
1630 break;
1631
2191 break;
2192
2193 case Q_ESIS:
2194 b1 = gen_proto(ISO9542_ESIS, Q_ISO, Q_DEFAULT);
2195 break;
2196
2197 case Q_ISIS:
2198 b1 = gen_proto(ISO10589_ISIS, Q_ISO, Q_DEFAULT);
2199 break;
2200
2201 case Q_CLNP:
2202 b1 = gen_proto(ISO8473_CLNP, Q_ISO, Q_DEFAULT);
2203 break;
2204
2205 case Q_STP:
2206 b1 = gen_linktype(LLCSAP_8021D);
2207 break;
2208
2209 case Q_IPX:
2210 b1 = gen_linktype(LLCSAP_IPX);
2211 break;
2212
2213 case Q_NETBEUI:
2214 b1 = gen_linktype(LLCSAP_NETBEUI);
2215 break;
2216
1632 default:
1633 abort();
1634 }
1635 return b1;
1636}
1637
1638static struct block *
1639gen_ipfrag()
1640{
1641 struct slist *s;
1642 struct block *b;
1643
1644 /* not ip frag */
1645 s = new_stmt(BPF_LD|BPF_H|BPF_ABS);
1646 s->s.k = off_nl + 6;
1647 b = new_block(JMP(BPF_JSET));
1648 b->s.k = 0x1fff;
1649 b->stmts = s;
1650 gen_not(b);
1651
1652 return b;
1653}
1654
1655static struct block *
1656gen_portatom(off, v)
1657 int off;
1658 bpf_int32 v;
1659{
1660 struct slist *s;
1661 struct block *b;
1662
1663 s = new_stmt(BPF_LDX|BPF_MSH|BPF_B);
1664 s->s.k = off_nl;
1665
1666 s->next = new_stmt(BPF_LD|BPF_IND|BPF_H);
1667 s->next->s.k = off_nl + off;
1668
1669 b = new_block(JMP(BPF_JEQ));
1670 b->stmts = s;
1671 b->s.k = v;
1672
1673 return b;
1674}
1675
1676#ifdef INET6
1677static struct block *
1678gen_portatom6(off, v)
1679 int off;
1680 bpf_int32 v;
1681{
1682 return gen_cmp(off_nl + 40 + off, BPF_H, v);
1683}
1684#endif/*INET6*/
1685
1686struct block *
1687gen_portop(port, proto, dir)
1688 int port, proto, dir;
1689{
1690 struct block *b0, *b1, *tmp;
1691
1692 /* ip proto 'proto' */
1693 tmp = gen_cmp(off_nl + 9, BPF_B, (bpf_int32)proto);
1694 b0 = gen_ipfrag();
1695 gen_and(tmp, b0);
1696
1697 switch (dir) {
1698 case Q_SRC:
1699 b1 = gen_portatom(0, (bpf_int32)port);
1700 break;
1701
1702 case Q_DST:
1703 b1 = gen_portatom(2, (bpf_int32)port);
1704 break;
1705
1706 case Q_OR:
1707 case Q_DEFAULT:
1708 tmp = gen_portatom(0, (bpf_int32)port);
1709 b1 = gen_portatom(2, (bpf_int32)port);
1710 gen_or(tmp, b1);
1711 break;
1712
1713 case Q_AND:
1714 tmp = gen_portatom(0, (bpf_int32)port);
1715 b1 = gen_portatom(2, (bpf_int32)port);
1716 gen_and(tmp, b1);
1717 break;
1718
1719 default:
1720 abort();
1721 }
1722 gen_and(b0, b1);
1723
1724 return b1;
1725}
1726
1727static struct block *
1728gen_port(port, ip_proto, dir)
1729 int port;
1730 int ip_proto;
1731 int dir;
1732{
1733 struct block *b0, *b1, *tmp;
1734
1735 /* ether proto ip */
1736 b0 = gen_linktype(ETHERTYPE_IP);
1737
1738 switch (ip_proto) {
1739 case IPPROTO_UDP:
1740 case IPPROTO_TCP:
2217 default:
2218 abort();
2219 }
2220 return b1;
2221}
2222
2223static struct block *
2224gen_ipfrag()
2225{
2226 struct slist *s;
2227 struct block *b;
2228
2229 /* not ip frag */
2230 s = new_stmt(BPF_LD|BPF_H|BPF_ABS);
2231 s->s.k = off_nl + 6;
2232 b = new_block(JMP(BPF_JSET));
2233 b->s.k = 0x1fff;
2234 b->stmts = s;
2235 gen_not(b);
2236
2237 return b;
2238}
2239
2240static struct block *
2241gen_portatom(off, v)
2242 int off;
2243 bpf_int32 v;
2244{
2245 struct slist *s;
2246 struct block *b;
2247
2248 s = new_stmt(BPF_LDX|BPF_MSH|BPF_B);
2249 s->s.k = off_nl;
2250
2251 s->next = new_stmt(BPF_LD|BPF_IND|BPF_H);
2252 s->next->s.k = off_nl + off;
2253
2254 b = new_block(JMP(BPF_JEQ));
2255 b->stmts = s;
2256 b->s.k = v;
2257
2258 return b;
2259}
2260
2261#ifdef INET6
2262static struct block *
2263gen_portatom6(off, v)
2264 int off;
2265 bpf_int32 v;
2266{
2267 return gen_cmp(off_nl + 40 + off, BPF_H, v);
2268}
2269#endif/*INET6*/
2270
2271struct block *
2272gen_portop(port, proto, dir)
2273 int port, proto, dir;
2274{
2275 struct block *b0, *b1, *tmp;
2276
2277 /* ip proto 'proto' */
2278 tmp = gen_cmp(off_nl + 9, BPF_B, (bpf_int32)proto);
2279 b0 = gen_ipfrag();
2280 gen_and(tmp, b0);
2281
2282 switch (dir) {
2283 case Q_SRC:
2284 b1 = gen_portatom(0, (bpf_int32)port);
2285 break;
2286
2287 case Q_DST:
2288 b1 = gen_portatom(2, (bpf_int32)port);
2289 break;
2290
2291 case Q_OR:
2292 case Q_DEFAULT:
2293 tmp = gen_portatom(0, (bpf_int32)port);
2294 b1 = gen_portatom(2, (bpf_int32)port);
2295 gen_or(tmp, b1);
2296 break;
2297
2298 case Q_AND:
2299 tmp = gen_portatom(0, (bpf_int32)port);
2300 b1 = gen_portatom(2, (bpf_int32)port);
2301 gen_and(tmp, b1);
2302 break;
2303
2304 default:
2305 abort();
2306 }
2307 gen_and(b0, b1);
2308
2309 return b1;
2310}
2311
2312static struct block *
2313gen_port(port, ip_proto, dir)
2314 int port;
2315 int ip_proto;
2316 int dir;
2317{
2318 struct block *b0, *b1, *tmp;
2319
2320 /* ether proto ip */
2321 b0 = gen_linktype(ETHERTYPE_IP);
2322
2323 switch (ip_proto) {
2324 case IPPROTO_UDP:
2325 case IPPROTO_TCP:
2326 case IPPROTO_SCTP:
1741 b1 = gen_portop(port, ip_proto, dir);
1742 break;
1743
1744 case PROTO_UNDEF:
1745 tmp = gen_portop(port, IPPROTO_TCP, dir);
1746 b1 = gen_portop(port, IPPROTO_UDP, dir);
1747 gen_or(tmp, b1);
2327 b1 = gen_portop(port, ip_proto, dir);
2328 break;
2329
2330 case PROTO_UNDEF:
2331 tmp = gen_portop(port, IPPROTO_TCP, dir);
2332 b1 = gen_portop(port, IPPROTO_UDP, dir);
2333 gen_or(tmp, b1);
2334 tmp = gen_portop(port, IPPROTO_SCTP, dir);
2335 gen_or(tmp, b1);
1748 break;
1749
1750 default:
1751 abort();
1752 }
1753 gen_and(b0, b1);
1754 return b1;
1755}
1756
1757#ifdef INET6
1758struct block *
1759gen_portop6(port, proto, dir)
1760 int port, proto, dir;
1761{
1762 struct block *b0, *b1, *tmp;
1763
1764 /* ip proto 'proto' */
1765 b0 = gen_cmp(off_nl + 6, BPF_B, (bpf_int32)proto);
1766
1767 switch (dir) {
1768 case Q_SRC:
1769 b1 = gen_portatom6(0, (bpf_int32)port);
1770 break;
1771
1772 case Q_DST:
1773 b1 = gen_portatom6(2, (bpf_int32)port);
1774 break;
1775
1776 case Q_OR:
1777 case Q_DEFAULT:
1778 tmp = gen_portatom6(0, (bpf_int32)port);
1779 b1 = gen_portatom6(2, (bpf_int32)port);
1780 gen_or(tmp, b1);
1781 break;
1782
1783 case Q_AND:
1784 tmp = gen_portatom6(0, (bpf_int32)port);
1785 b1 = gen_portatom6(2, (bpf_int32)port);
1786 gen_and(tmp, b1);
1787 break;
1788
1789 default:
1790 abort();
1791 }
1792 gen_and(b0, b1);
1793
1794 return b1;
1795}
1796
1797static struct block *
1798gen_port6(port, ip_proto, dir)
1799 int port;
1800 int ip_proto;
1801 int dir;
1802{
1803 struct block *b0, *b1, *tmp;
1804
1805 /* ether proto ip */
1806 b0 = gen_linktype(ETHERTYPE_IPV6);
1807
1808 switch (ip_proto) {
1809 case IPPROTO_UDP:
1810 case IPPROTO_TCP:
2336 break;
2337
2338 default:
2339 abort();
2340 }
2341 gen_and(b0, b1);
2342 return b1;
2343}
2344
2345#ifdef INET6
2346struct block *
2347gen_portop6(port, proto, dir)
2348 int port, proto, dir;
2349{
2350 struct block *b0, *b1, *tmp;
2351
2352 /* ip proto 'proto' */
2353 b0 = gen_cmp(off_nl + 6, BPF_B, (bpf_int32)proto);
2354
2355 switch (dir) {
2356 case Q_SRC:
2357 b1 = gen_portatom6(0, (bpf_int32)port);
2358 break;
2359
2360 case Q_DST:
2361 b1 = gen_portatom6(2, (bpf_int32)port);
2362 break;
2363
2364 case Q_OR:
2365 case Q_DEFAULT:
2366 tmp = gen_portatom6(0, (bpf_int32)port);
2367 b1 = gen_portatom6(2, (bpf_int32)port);
2368 gen_or(tmp, b1);
2369 break;
2370
2371 case Q_AND:
2372 tmp = gen_portatom6(0, (bpf_int32)port);
2373 b1 = gen_portatom6(2, (bpf_int32)port);
2374 gen_and(tmp, b1);
2375 break;
2376
2377 default:
2378 abort();
2379 }
2380 gen_and(b0, b1);
2381
2382 return b1;
2383}
2384
2385static struct block *
2386gen_port6(port, ip_proto, dir)
2387 int port;
2388 int ip_proto;
2389 int dir;
2390{
2391 struct block *b0, *b1, *tmp;
2392
2393 /* ether proto ip */
2394 b0 = gen_linktype(ETHERTYPE_IPV6);
2395
2396 switch (ip_proto) {
2397 case IPPROTO_UDP:
2398 case IPPROTO_TCP:
2399 case IPPROTO_SCTP:
1811 b1 = gen_portop6(port, ip_proto, dir);
1812 break;
1813
1814 case PROTO_UNDEF:
1815 tmp = gen_portop6(port, IPPROTO_TCP, dir);
1816 b1 = gen_portop6(port, IPPROTO_UDP, dir);
1817 gen_or(tmp, b1);
2400 b1 = gen_portop6(port, ip_proto, dir);
2401 break;
2402
2403 case PROTO_UNDEF:
2404 tmp = gen_portop6(port, IPPROTO_TCP, dir);
2405 b1 = gen_portop6(port, IPPROTO_UDP, dir);
2406 gen_or(tmp, b1);
2407 tmp = gen_portop6(port, IPPROTO_SCTP, dir);
2408 gen_or(tmp, b1);
1818 break;
1819
1820 default:
1821 abort();
1822 }
1823 gen_and(b0, b1);
1824 return b1;
1825}
1826#endif /* INET6 */
1827
1828static int
1829lookup_proto(name, proto)
1830 register const char *name;
1831 register int proto;
1832{
1833 register int v;
1834
1835 switch (proto) {
1836
1837 case Q_DEFAULT:
1838 case Q_IP:
2409 break;
2410
2411 default:
2412 abort();
2413 }
2414 gen_and(b0, b1);
2415 return b1;
2416}
2417#endif /* INET6 */
2418
2419static int
2420lookup_proto(name, proto)
2421 register const char *name;
2422 register int proto;
2423{
2424 register int v;
2425
2426 switch (proto) {
2427
2428 case Q_DEFAULT:
2429 case Q_IP:
2430 case Q_IPV6:
1839 v = pcap_nametoproto(name);
1840 if (v == PROTO_UNDEF)
1841 bpf_error("unknown ip proto '%s'", name);
1842 break;
1843
1844 case Q_LINK:
1845 /* XXX should look up h/w protocol type based on linktype */
1846 v = pcap_nametoeproto(name);
1847 if (v == PROTO_UNDEF)
1848 bpf_error("unknown ether proto '%s'", name);
1849 break;
1850
1851 case Q_ISO:
1852 if (strcmp(name, "esis") == 0)
1853 v = ISO9542_ESIS;
1854 else if (strcmp(name, "isis") == 0)
1855 v = ISO10589_ISIS;
1856 else if (strcmp(name, "clnp") == 0)
1857 v = ISO8473_CLNP;
1858 else
1859 bpf_error("unknown osi proto '%s'", name);
1860 break;
1861
1862 default:
1863 v = PROTO_UNDEF;
1864 break;
1865 }
1866 return v;
1867}
1868
1869#if 0
1870struct stmt *
1871gen_joinsp(s, n)
1872 struct stmt **s;
1873 int n;
1874{
1875 return NULL;
1876}
1877#endif
1878
1879static struct block *
1880gen_protochain(v, proto, dir)
1881 int v;
1882 int proto;
1883 int dir;
1884{
1885#ifdef NO_PROTOCHAIN
1886 return gen_proto(v, proto, dir);
1887#else
1888 struct block *b0, *b;
1889 struct slist *s[100];
1890 int fix2, fix3, fix4, fix5;
1891 int ahcheck, again, end;
1892 int i, max;
1893 int reg2 = alloc_reg();
1894
1895 memset(s, 0, sizeof(s));
1896 fix2 = fix3 = fix4 = fix5 = 0;
1897
1898 switch (proto) {
1899 case Q_IP:
1900 case Q_IPV6:
1901 break;
1902 case Q_DEFAULT:
1903 b0 = gen_protochain(v, Q_IP, dir);
1904 b = gen_protochain(v, Q_IPV6, dir);
1905 gen_or(b0, b);
1906 return b;
1907 default:
1908 bpf_error("bad protocol applied for 'protochain'");
1909 /*NOTREACHED*/
1910 }
1911
1912 no_optimize = 1; /*this code is not compatible with optimzer yet */
1913
1914 /*
1915 * s[0] is a dummy entry to protect other BPF insn from damaged
1916 * by s[fix] = foo with uninitialized variable "fix". It is somewhat
1917 * hard to find interdependency made by jump table fixup.
1918 */
1919 i = 0;
1920 s[i] = new_stmt(0); /*dummy*/
1921 i++;
1922
1923 switch (proto) {
1924 case Q_IP:
1925 b0 = gen_linktype(ETHERTYPE_IP);
1926
1927 /* A = ip->ip_p */
1928 s[i] = new_stmt(BPF_LD|BPF_ABS|BPF_B);
1929 s[i]->s.k = off_nl + 9;
1930 i++;
1931 /* X = ip->ip_hl << 2 */
1932 s[i] = new_stmt(BPF_LDX|BPF_MSH|BPF_B);
1933 s[i]->s.k = off_nl;
1934 i++;
1935 break;
1936#ifdef INET6
1937 case Q_IPV6:
1938 b0 = gen_linktype(ETHERTYPE_IPV6);
1939
1940 /* A = ip6->ip_nxt */
1941 s[i] = new_stmt(BPF_LD|BPF_ABS|BPF_B);
1942 s[i]->s.k = off_nl + 6;
1943 i++;
1944 /* X = sizeof(struct ip6_hdr) */
1945 s[i] = new_stmt(BPF_LDX|BPF_IMM);
1946 s[i]->s.k = 40;
1947 i++;
1948 break;
1949#endif
1950 default:
1951 bpf_error("unsupported proto to gen_protochain");
1952 /*NOTREACHED*/
1953 }
1954
1955 /* again: if (A == v) goto end; else fall through; */
1956 again = i;
1957 s[i] = new_stmt(BPF_JMP|BPF_JEQ|BPF_K);
1958 s[i]->s.k = v;
1959 s[i]->s.jt = NULL; /*later*/
1960 s[i]->s.jf = NULL; /*update in next stmt*/
1961 fix5 = i;
1962 i++;
1963
1964#ifndef IPPROTO_NONE
1965#define IPPROTO_NONE 59
1966#endif
1967 /* if (A == IPPROTO_NONE) goto end */
1968 s[i] = new_stmt(BPF_JMP|BPF_JEQ|BPF_K);
1969 s[i]->s.jt = NULL; /*later*/
1970 s[i]->s.jf = NULL; /*update in next stmt*/
1971 s[i]->s.k = IPPROTO_NONE;
1972 s[fix5]->s.jf = s[i];
1973 fix2 = i;
1974 i++;
1975
1976#ifdef INET6
1977 if (proto == Q_IPV6) {
1978 int v6start, v6end, v6advance, j;
1979
1980 v6start = i;
1981 /* if (A == IPPROTO_HOPOPTS) goto v6advance */
1982 s[i] = new_stmt(BPF_JMP|BPF_JEQ|BPF_K);
1983 s[i]->s.jt = NULL; /*later*/
1984 s[i]->s.jf = NULL; /*update in next stmt*/
1985 s[i]->s.k = IPPROTO_HOPOPTS;
1986 s[fix2]->s.jf = s[i];
1987 i++;
1988 /* if (A == IPPROTO_DSTOPTS) goto v6advance */
1989 s[i - 1]->s.jf = s[i] = new_stmt(BPF_JMP|BPF_JEQ|BPF_K);
1990 s[i]->s.jt = NULL; /*later*/
1991 s[i]->s.jf = NULL; /*update in next stmt*/
1992 s[i]->s.k = IPPROTO_DSTOPTS;
1993 i++;
1994 /* if (A == IPPROTO_ROUTING) goto v6advance */
1995 s[i - 1]->s.jf = s[i] = new_stmt(BPF_JMP|BPF_JEQ|BPF_K);
1996 s[i]->s.jt = NULL; /*later*/
1997 s[i]->s.jf = NULL; /*update in next stmt*/
1998 s[i]->s.k = IPPROTO_ROUTING;
1999 i++;
2000 /* if (A == IPPROTO_FRAGMENT) goto v6advance; else goto ahcheck; */
2001 s[i - 1]->s.jf = s[i] = new_stmt(BPF_JMP|BPF_JEQ|BPF_K);
2002 s[i]->s.jt = NULL; /*later*/
2003 s[i]->s.jf = NULL; /*later*/
2004 s[i]->s.k = IPPROTO_FRAGMENT;
2005 fix3 = i;
2006 v6end = i;
2007 i++;
2008
2009 /* v6advance: */
2010 v6advance = i;
2011
2012 /*
2013 * in short,
2014 * A = P[X];
2015 * X = X + (P[X + 1] + 1) * 8;
2016 */
2017 /* A = X */
2018 s[i] = new_stmt(BPF_MISC|BPF_TXA);
2019 i++;
2020 /* A = P[X + packet head] */
2021 s[i] = new_stmt(BPF_LD|BPF_IND|BPF_B);
2022 s[i]->s.k = off_nl;
2023 i++;
2024 /* MEM[reg2] = A */
2025 s[i] = new_stmt(BPF_ST);
2026 s[i]->s.k = reg2;
2027 i++;
2028 /* A = X */
2029 s[i] = new_stmt(BPF_MISC|BPF_TXA);
2030 i++;
2031 /* A += 1 */
2032 s[i] = new_stmt(BPF_ALU|BPF_ADD|BPF_K);
2033 s[i]->s.k = 1;
2034 i++;
2035 /* X = A */
2036 s[i] = new_stmt(BPF_MISC|BPF_TAX);
2037 i++;
2038 /* A = P[X + packet head]; */
2039 s[i] = new_stmt(BPF_LD|BPF_IND|BPF_B);
2040 s[i]->s.k = off_nl;
2041 i++;
2042 /* A += 1 */
2043 s[i] = new_stmt(BPF_ALU|BPF_ADD|BPF_K);
2044 s[i]->s.k = 1;
2045 i++;
2046 /* A *= 8 */
2047 s[i] = new_stmt(BPF_ALU|BPF_MUL|BPF_K);
2048 s[i]->s.k = 8;
2049 i++;
2050 /* X = A; */
2051 s[i] = new_stmt(BPF_MISC|BPF_TAX);
2052 i++;
2053 /* A = MEM[reg2] */
2054 s[i] = new_stmt(BPF_LD|BPF_MEM);
2055 s[i]->s.k = reg2;
2056 i++;
2057
2058 /* goto again; (must use BPF_JA for backward jump) */
2059 s[i] = new_stmt(BPF_JMP|BPF_JA);
2060 s[i]->s.k = again - i - 1;
2061 s[i - 1]->s.jf = s[i];
2062 i++;
2063
2064 /* fixup */
2065 for (j = v6start; j <= v6end; j++)
2066 s[j]->s.jt = s[v6advance];
2067 } else
2068#endif
2069 {
2070 /* nop */
2071 s[i] = new_stmt(BPF_ALU|BPF_ADD|BPF_K);
2072 s[i]->s.k = 0;
2073 s[fix2]->s.jf = s[i];
2074 i++;
2075 }
2076
2077 /* ahcheck: */
2078 ahcheck = i;
2079 /* if (A == IPPROTO_AH) then fall through; else goto end; */
2080 s[i] = new_stmt(BPF_JMP|BPF_JEQ|BPF_K);
2081 s[i]->s.jt = NULL; /*later*/
2082 s[i]->s.jf = NULL; /*later*/
2083 s[i]->s.k = IPPROTO_AH;
2084 if (fix3)
2085 s[fix3]->s.jf = s[ahcheck];
2086 fix4 = i;
2087 i++;
2088
2089 /*
2090 * in short,
2091 * A = P[X];
2092 * X = X + (P[X + 1] + 2) * 4;
2093 */
2094 /* A = X */
2095 s[i - 1]->s.jt = s[i] = new_stmt(BPF_MISC|BPF_TXA);
2096 i++;
2097 /* A = P[X + packet head]; */
2098 s[i] = new_stmt(BPF_LD|BPF_IND|BPF_B);
2099 s[i]->s.k = off_nl;
2100 i++;
2101 /* MEM[reg2] = A */
2102 s[i] = new_stmt(BPF_ST);
2103 s[i]->s.k = reg2;
2104 i++;
2105 /* A = X */
2106 s[i - 1]->s.jt = s[i] = new_stmt(BPF_MISC|BPF_TXA);
2107 i++;
2108 /* A += 1 */
2109 s[i] = new_stmt(BPF_ALU|BPF_ADD|BPF_K);
2110 s[i]->s.k = 1;
2111 i++;
2112 /* X = A */
2113 s[i] = new_stmt(BPF_MISC|BPF_TAX);
2114 i++;
2115 /* A = P[X + packet head] */
2116 s[i] = new_stmt(BPF_LD|BPF_IND|BPF_B);
2117 s[i]->s.k = off_nl;
2118 i++;
2119 /* A += 2 */
2120 s[i] = new_stmt(BPF_ALU|BPF_ADD|BPF_K);
2121 s[i]->s.k = 2;
2122 i++;
2123 /* A *= 4 */
2124 s[i] = new_stmt(BPF_ALU|BPF_MUL|BPF_K);
2125 s[i]->s.k = 4;
2126 i++;
2127 /* X = A; */
2128 s[i] = new_stmt(BPF_MISC|BPF_TAX);
2129 i++;
2130 /* A = MEM[reg2] */
2131 s[i] = new_stmt(BPF_LD|BPF_MEM);
2132 s[i]->s.k = reg2;
2133 i++;
2134
2135 /* goto again; (must use BPF_JA for backward jump) */
2136 s[i] = new_stmt(BPF_JMP|BPF_JA);
2137 s[i]->s.k = again - i - 1;
2138 i++;
2139
2140 /* end: nop */
2141 end = i;
2142 s[i] = new_stmt(BPF_ALU|BPF_ADD|BPF_K);
2143 s[i]->s.k = 0;
2144 s[fix2]->s.jt = s[end];
2145 s[fix4]->s.jf = s[end];
2146 s[fix5]->s.jt = s[end];
2147 i++;
2148
2149 /*
2150 * make slist chain
2151 */
2152 max = i;
2153 for (i = 0; i < max - 1; i++)
2154 s[i]->next = s[i + 1];
2155 s[max - 1]->next = NULL;
2156
2157 /*
2158 * emit final check
2159 */
2160 b = new_block(JMP(BPF_JEQ));
2161 b->stmts = s[1]; /*remember, s[0] is dummy*/
2162 b->s.k = v;
2163
2164 free_reg(reg2);
2165
2166 gen_and(b0, b);
2167 return b;
2168#endif
2169}
2170
2171static struct block *
2172gen_proto(v, proto, dir)
2173 int v;
2174 int proto;
2175 int dir;
2176{
2177 struct block *b0, *b1;
2178
2179 if (dir != Q_DEFAULT)
2180 bpf_error("direction applied to 'proto'");
2181
2182 switch (proto) {
2183 case Q_DEFAULT:
2184#ifdef INET6
2185 b0 = gen_proto(v, Q_IP, dir);
2186 b1 = gen_proto(v, Q_IPV6, dir);
2187 gen_or(b0, b1);
2188 return b1;
2189#else
2190 /*FALLTHROUGH*/
2191#endif
2192 case Q_IP:
2193 b0 = gen_linktype(ETHERTYPE_IP);
2194#ifndef CHASE_CHAIN
2195 b1 = gen_cmp(off_nl + 9, BPF_B, (bpf_int32)v);
2196#else
2197 b1 = gen_protochain(v, Q_IP);
2198#endif
2199 gen_and(b0, b1);
2200 return b1;
2201
2202 case Q_ISO:
2431 v = pcap_nametoproto(name);
2432 if (v == PROTO_UNDEF)
2433 bpf_error("unknown ip proto '%s'", name);
2434 break;
2435
2436 case Q_LINK:
2437 /* XXX should look up h/w protocol type based on linktype */
2438 v = pcap_nametoeproto(name);
2439 if (v == PROTO_UNDEF)
2440 bpf_error("unknown ether proto '%s'", name);
2441 break;
2442
2443 case Q_ISO:
2444 if (strcmp(name, "esis") == 0)
2445 v = ISO9542_ESIS;
2446 else if (strcmp(name, "isis") == 0)
2447 v = ISO10589_ISIS;
2448 else if (strcmp(name, "clnp") == 0)
2449 v = ISO8473_CLNP;
2450 else
2451 bpf_error("unknown osi proto '%s'", name);
2452 break;
2453
2454 default:
2455 v = PROTO_UNDEF;
2456 break;
2457 }
2458 return v;
2459}
2460
2461#if 0
2462struct stmt *
2463gen_joinsp(s, n)
2464 struct stmt **s;
2465 int n;
2466{
2467 return NULL;
2468}
2469#endif
2470
2471static struct block *
2472gen_protochain(v, proto, dir)
2473 int v;
2474 int proto;
2475 int dir;
2476{
2477#ifdef NO_PROTOCHAIN
2478 return gen_proto(v, proto, dir);
2479#else
2480 struct block *b0, *b;
2481 struct slist *s[100];
2482 int fix2, fix3, fix4, fix5;
2483 int ahcheck, again, end;
2484 int i, max;
2485 int reg2 = alloc_reg();
2486
2487 memset(s, 0, sizeof(s));
2488 fix2 = fix3 = fix4 = fix5 = 0;
2489
2490 switch (proto) {
2491 case Q_IP:
2492 case Q_IPV6:
2493 break;
2494 case Q_DEFAULT:
2495 b0 = gen_protochain(v, Q_IP, dir);
2496 b = gen_protochain(v, Q_IPV6, dir);
2497 gen_or(b0, b);
2498 return b;
2499 default:
2500 bpf_error("bad protocol applied for 'protochain'");
2501 /*NOTREACHED*/
2502 }
2503
2504 no_optimize = 1; /*this code is not compatible with optimzer yet */
2505
2506 /*
2507 * s[0] is a dummy entry to protect other BPF insn from damaged
2508 * by s[fix] = foo with uninitialized variable "fix". It is somewhat
2509 * hard to find interdependency made by jump table fixup.
2510 */
2511 i = 0;
2512 s[i] = new_stmt(0); /*dummy*/
2513 i++;
2514
2515 switch (proto) {
2516 case Q_IP:
2517 b0 = gen_linktype(ETHERTYPE_IP);
2518
2519 /* A = ip->ip_p */
2520 s[i] = new_stmt(BPF_LD|BPF_ABS|BPF_B);
2521 s[i]->s.k = off_nl + 9;
2522 i++;
2523 /* X = ip->ip_hl << 2 */
2524 s[i] = new_stmt(BPF_LDX|BPF_MSH|BPF_B);
2525 s[i]->s.k = off_nl;
2526 i++;
2527 break;
2528#ifdef INET6
2529 case Q_IPV6:
2530 b0 = gen_linktype(ETHERTYPE_IPV6);
2531
2532 /* A = ip6->ip_nxt */
2533 s[i] = new_stmt(BPF_LD|BPF_ABS|BPF_B);
2534 s[i]->s.k = off_nl + 6;
2535 i++;
2536 /* X = sizeof(struct ip6_hdr) */
2537 s[i] = new_stmt(BPF_LDX|BPF_IMM);
2538 s[i]->s.k = 40;
2539 i++;
2540 break;
2541#endif
2542 default:
2543 bpf_error("unsupported proto to gen_protochain");
2544 /*NOTREACHED*/
2545 }
2546
2547 /* again: if (A == v) goto end; else fall through; */
2548 again = i;
2549 s[i] = new_stmt(BPF_JMP|BPF_JEQ|BPF_K);
2550 s[i]->s.k = v;
2551 s[i]->s.jt = NULL; /*later*/
2552 s[i]->s.jf = NULL; /*update in next stmt*/
2553 fix5 = i;
2554 i++;
2555
2556#ifndef IPPROTO_NONE
2557#define IPPROTO_NONE 59
2558#endif
2559 /* if (A == IPPROTO_NONE) goto end */
2560 s[i] = new_stmt(BPF_JMP|BPF_JEQ|BPF_K);
2561 s[i]->s.jt = NULL; /*later*/
2562 s[i]->s.jf = NULL; /*update in next stmt*/
2563 s[i]->s.k = IPPROTO_NONE;
2564 s[fix5]->s.jf = s[i];
2565 fix2 = i;
2566 i++;
2567
2568#ifdef INET6
2569 if (proto == Q_IPV6) {
2570 int v6start, v6end, v6advance, j;
2571
2572 v6start = i;
2573 /* if (A == IPPROTO_HOPOPTS) goto v6advance */
2574 s[i] = new_stmt(BPF_JMP|BPF_JEQ|BPF_K);
2575 s[i]->s.jt = NULL; /*later*/
2576 s[i]->s.jf = NULL; /*update in next stmt*/
2577 s[i]->s.k = IPPROTO_HOPOPTS;
2578 s[fix2]->s.jf = s[i];
2579 i++;
2580 /* if (A == IPPROTO_DSTOPTS) goto v6advance */
2581 s[i - 1]->s.jf = s[i] = new_stmt(BPF_JMP|BPF_JEQ|BPF_K);
2582 s[i]->s.jt = NULL; /*later*/
2583 s[i]->s.jf = NULL; /*update in next stmt*/
2584 s[i]->s.k = IPPROTO_DSTOPTS;
2585 i++;
2586 /* if (A == IPPROTO_ROUTING) goto v6advance */
2587 s[i - 1]->s.jf = s[i] = new_stmt(BPF_JMP|BPF_JEQ|BPF_K);
2588 s[i]->s.jt = NULL; /*later*/
2589 s[i]->s.jf = NULL; /*update in next stmt*/
2590 s[i]->s.k = IPPROTO_ROUTING;
2591 i++;
2592 /* if (A == IPPROTO_FRAGMENT) goto v6advance; else goto ahcheck; */
2593 s[i - 1]->s.jf = s[i] = new_stmt(BPF_JMP|BPF_JEQ|BPF_K);
2594 s[i]->s.jt = NULL; /*later*/
2595 s[i]->s.jf = NULL; /*later*/
2596 s[i]->s.k = IPPROTO_FRAGMENT;
2597 fix3 = i;
2598 v6end = i;
2599 i++;
2600
2601 /* v6advance: */
2602 v6advance = i;
2603
2604 /*
2605 * in short,
2606 * A = P[X];
2607 * X = X + (P[X + 1] + 1) * 8;
2608 */
2609 /* A = X */
2610 s[i] = new_stmt(BPF_MISC|BPF_TXA);
2611 i++;
2612 /* A = P[X + packet head] */
2613 s[i] = new_stmt(BPF_LD|BPF_IND|BPF_B);
2614 s[i]->s.k = off_nl;
2615 i++;
2616 /* MEM[reg2] = A */
2617 s[i] = new_stmt(BPF_ST);
2618 s[i]->s.k = reg2;
2619 i++;
2620 /* A = X */
2621 s[i] = new_stmt(BPF_MISC|BPF_TXA);
2622 i++;
2623 /* A += 1 */
2624 s[i] = new_stmt(BPF_ALU|BPF_ADD|BPF_K);
2625 s[i]->s.k = 1;
2626 i++;
2627 /* X = A */
2628 s[i] = new_stmt(BPF_MISC|BPF_TAX);
2629 i++;
2630 /* A = P[X + packet head]; */
2631 s[i] = new_stmt(BPF_LD|BPF_IND|BPF_B);
2632 s[i]->s.k = off_nl;
2633 i++;
2634 /* A += 1 */
2635 s[i] = new_stmt(BPF_ALU|BPF_ADD|BPF_K);
2636 s[i]->s.k = 1;
2637 i++;
2638 /* A *= 8 */
2639 s[i] = new_stmt(BPF_ALU|BPF_MUL|BPF_K);
2640 s[i]->s.k = 8;
2641 i++;
2642 /* X = A; */
2643 s[i] = new_stmt(BPF_MISC|BPF_TAX);
2644 i++;
2645 /* A = MEM[reg2] */
2646 s[i] = new_stmt(BPF_LD|BPF_MEM);
2647 s[i]->s.k = reg2;
2648 i++;
2649
2650 /* goto again; (must use BPF_JA for backward jump) */
2651 s[i] = new_stmt(BPF_JMP|BPF_JA);
2652 s[i]->s.k = again - i - 1;
2653 s[i - 1]->s.jf = s[i];
2654 i++;
2655
2656 /* fixup */
2657 for (j = v6start; j <= v6end; j++)
2658 s[j]->s.jt = s[v6advance];
2659 } else
2660#endif
2661 {
2662 /* nop */
2663 s[i] = new_stmt(BPF_ALU|BPF_ADD|BPF_K);
2664 s[i]->s.k = 0;
2665 s[fix2]->s.jf = s[i];
2666 i++;
2667 }
2668
2669 /* ahcheck: */
2670 ahcheck = i;
2671 /* if (A == IPPROTO_AH) then fall through; else goto end; */
2672 s[i] = new_stmt(BPF_JMP|BPF_JEQ|BPF_K);
2673 s[i]->s.jt = NULL; /*later*/
2674 s[i]->s.jf = NULL; /*later*/
2675 s[i]->s.k = IPPROTO_AH;
2676 if (fix3)
2677 s[fix3]->s.jf = s[ahcheck];
2678 fix4 = i;
2679 i++;
2680
2681 /*
2682 * in short,
2683 * A = P[X];
2684 * X = X + (P[X + 1] + 2) * 4;
2685 */
2686 /* A = X */
2687 s[i - 1]->s.jt = s[i] = new_stmt(BPF_MISC|BPF_TXA);
2688 i++;
2689 /* A = P[X + packet head]; */
2690 s[i] = new_stmt(BPF_LD|BPF_IND|BPF_B);
2691 s[i]->s.k = off_nl;
2692 i++;
2693 /* MEM[reg2] = A */
2694 s[i] = new_stmt(BPF_ST);
2695 s[i]->s.k = reg2;
2696 i++;
2697 /* A = X */
2698 s[i - 1]->s.jt = s[i] = new_stmt(BPF_MISC|BPF_TXA);
2699 i++;
2700 /* A += 1 */
2701 s[i] = new_stmt(BPF_ALU|BPF_ADD|BPF_K);
2702 s[i]->s.k = 1;
2703 i++;
2704 /* X = A */
2705 s[i] = new_stmt(BPF_MISC|BPF_TAX);
2706 i++;
2707 /* A = P[X + packet head] */
2708 s[i] = new_stmt(BPF_LD|BPF_IND|BPF_B);
2709 s[i]->s.k = off_nl;
2710 i++;
2711 /* A += 2 */
2712 s[i] = new_stmt(BPF_ALU|BPF_ADD|BPF_K);
2713 s[i]->s.k = 2;
2714 i++;
2715 /* A *= 4 */
2716 s[i] = new_stmt(BPF_ALU|BPF_MUL|BPF_K);
2717 s[i]->s.k = 4;
2718 i++;
2719 /* X = A; */
2720 s[i] = new_stmt(BPF_MISC|BPF_TAX);
2721 i++;
2722 /* A = MEM[reg2] */
2723 s[i] = new_stmt(BPF_LD|BPF_MEM);
2724 s[i]->s.k = reg2;
2725 i++;
2726
2727 /* goto again; (must use BPF_JA for backward jump) */
2728 s[i] = new_stmt(BPF_JMP|BPF_JA);
2729 s[i]->s.k = again - i - 1;
2730 i++;
2731
2732 /* end: nop */
2733 end = i;
2734 s[i] = new_stmt(BPF_ALU|BPF_ADD|BPF_K);
2735 s[i]->s.k = 0;
2736 s[fix2]->s.jt = s[end];
2737 s[fix4]->s.jf = s[end];
2738 s[fix5]->s.jt = s[end];
2739 i++;
2740
2741 /*
2742 * make slist chain
2743 */
2744 max = i;
2745 for (i = 0; i < max - 1; i++)
2746 s[i]->next = s[i + 1];
2747 s[max - 1]->next = NULL;
2748
2749 /*
2750 * emit final check
2751 */
2752 b = new_block(JMP(BPF_JEQ));
2753 b->stmts = s[1]; /*remember, s[0] is dummy*/
2754 b->s.k = v;
2755
2756 free_reg(reg2);
2757
2758 gen_and(b0, b);
2759 return b;
2760#endif
2761}
2762
2763static struct block *
2764gen_proto(v, proto, dir)
2765 int v;
2766 int proto;
2767 int dir;
2768{
2769 struct block *b0, *b1;
2770
2771 if (dir != Q_DEFAULT)
2772 bpf_error("direction applied to 'proto'");
2773
2774 switch (proto) {
2775 case Q_DEFAULT:
2776#ifdef INET6
2777 b0 = gen_proto(v, Q_IP, dir);
2778 b1 = gen_proto(v, Q_IPV6, dir);
2779 gen_or(b0, b1);
2780 return b1;
2781#else
2782 /*FALLTHROUGH*/
2783#endif
2784 case Q_IP:
2785 b0 = gen_linktype(ETHERTYPE_IP);
2786#ifndef CHASE_CHAIN
2787 b1 = gen_cmp(off_nl + 9, BPF_B, (bpf_int32)v);
2788#else
2789 b1 = gen_protochain(v, Q_IP);
2790#endif
2791 gen_and(b0, b1);
2792 return b1;
2793
2794 case Q_ISO:
2203 b0 = gen_linktype(LLC_ISO_LSAP);
2795 b0 = gen_linktype(LLCSAP_ISONS);
2204 b1 = gen_cmp(off_nl + 3, BPF_B, (long)v);
2205 gen_and(b0, b1);
2206 return b1;
2207
2208 case Q_ARP:
2209 bpf_error("arp does not encapsulate another protocol");
2210 /* NOTREACHED */
2211
2212 case Q_RARP:
2213 bpf_error("rarp does not encapsulate another protocol");
2214 /* NOTREACHED */
2215
2216 case Q_ATALK:
2217 bpf_error("atalk encapsulation is not specifiable");
2218 /* NOTREACHED */
2219
2220 case Q_DECNET:
2221 bpf_error("decnet encapsulation is not specifiable");
2222 /* NOTREACHED */
2223
2224 case Q_SCA:
2225 bpf_error("sca does not encapsulate another protocol");
2226 /* NOTREACHED */
2227
2228 case Q_LAT:
2229 bpf_error("lat does not encapsulate another protocol");
2230 /* NOTREACHED */
2231
2232 case Q_MOPRC:
2233 bpf_error("moprc does not encapsulate another protocol");
2234 /* NOTREACHED */
2235
2236 case Q_MOPDL:
2237 bpf_error("mopdl does not encapsulate another protocol");
2238 /* NOTREACHED */
2239
2240 case Q_LINK:
2241 return gen_linktype(v);
2242
2243 case Q_UDP:
2244 bpf_error("'udp proto' is bogus");
2245 /* NOTREACHED */
2246
2247 case Q_TCP:
2248 bpf_error("'tcp proto' is bogus");
2249 /* NOTREACHED */
2250
2796 b1 = gen_cmp(off_nl + 3, BPF_B, (long)v);
2797 gen_and(b0, b1);
2798 return b1;
2799
2800 case Q_ARP:
2801 bpf_error("arp does not encapsulate another protocol");
2802 /* NOTREACHED */
2803
2804 case Q_RARP:
2805 bpf_error("rarp does not encapsulate another protocol");
2806 /* NOTREACHED */
2807
2808 case Q_ATALK:
2809 bpf_error("atalk encapsulation is not specifiable");
2810 /* NOTREACHED */
2811
2812 case Q_DECNET:
2813 bpf_error("decnet encapsulation is not specifiable");
2814 /* NOTREACHED */
2815
2816 case Q_SCA:
2817 bpf_error("sca does not encapsulate another protocol");
2818 /* NOTREACHED */
2819
2820 case Q_LAT:
2821 bpf_error("lat does not encapsulate another protocol");
2822 /* NOTREACHED */
2823
2824 case Q_MOPRC:
2825 bpf_error("moprc does not encapsulate another protocol");
2826 /* NOTREACHED */
2827
2828 case Q_MOPDL:
2829 bpf_error("mopdl does not encapsulate another protocol");
2830 /* NOTREACHED */
2831
2832 case Q_LINK:
2833 return gen_linktype(v);
2834
2835 case Q_UDP:
2836 bpf_error("'udp proto' is bogus");
2837 /* NOTREACHED */
2838
2839 case Q_TCP:
2840 bpf_error("'tcp proto' is bogus");
2841 /* NOTREACHED */
2842
2843 case Q_SCTP:
2844 bpf_error("'sctp proto' is bogus");
2845 /* NOTREACHED */
2846
2251 case Q_ICMP:
2252 bpf_error("'icmp proto' is bogus");
2253 /* NOTREACHED */
2254
2255 case Q_IGMP:
2256 bpf_error("'igmp proto' is bogus");
2257 /* NOTREACHED */
2258
2259 case Q_IGRP:
2260 bpf_error("'igrp proto' is bogus");
2261 /* NOTREACHED */
2262
2263 case Q_PIM:
2264 bpf_error("'pim proto' is bogus");
2265 /* NOTREACHED */
2266
2847 case Q_ICMP:
2848 bpf_error("'icmp proto' is bogus");
2849 /* NOTREACHED */
2850
2851 case Q_IGMP:
2852 bpf_error("'igmp proto' is bogus");
2853 /* NOTREACHED */
2854
2855 case Q_IGRP:
2856 bpf_error("'igrp proto' is bogus");
2857 /* NOTREACHED */
2858
2859 case Q_PIM:
2860 bpf_error("'pim proto' is bogus");
2861 /* NOTREACHED */
2862
2863 case Q_VRRP:
2864 bpf_error("'vrrp proto' is bogus");
2865 /* NOTREACHED */
2866
2267#ifdef INET6
2268 case Q_IPV6:
2269 b0 = gen_linktype(ETHERTYPE_IPV6);
2270#ifndef CHASE_CHAIN
2271 b1 = gen_cmp(off_nl + 6, BPF_B, (bpf_int32)v);
2272#else
2273 b1 = gen_protochain(v, Q_IPV6);
2274#endif
2275 gen_and(b0, b1);
2276 return b1;
2277
2278 case Q_ICMPV6:
2279 bpf_error("'icmp6 proto' is bogus");
2280#endif /* INET6 */
2281
2282 case Q_AH:
2283 bpf_error("'ah proto' is bogus");
2284
2285 case Q_ESP:
2286 bpf_error("'ah proto' is bogus");
2287
2867#ifdef INET6
2868 case Q_IPV6:
2869 b0 = gen_linktype(ETHERTYPE_IPV6);
2870#ifndef CHASE_CHAIN
2871 b1 = gen_cmp(off_nl + 6, BPF_B, (bpf_int32)v);
2872#else
2873 b1 = gen_protochain(v, Q_IPV6);
2874#endif
2875 gen_and(b0, b1);
2876 return b1;
2877
2878 case Q_ICMPV6:
2879 bpf_error("'icmp6 proto' is bogus");
2880#endif /* INET6 */
2881
2882 case Q_AH:
2883 bpf_error("'ah proto' is bogus");
2884
2885 case Q_ESP:
2886 bpf_error("'ah proto' is bogus");
2887
2888 case Q_STP:
2889 bpf_error("'stp proto' is bogus");
2890
2891 case Q_IPX:
2892 bpf_error("'ipx proto' is bogus");
2893
2894 case Q_NETBEUI:
2895 bpf_error("'netbeui proto' is bogus");
2896
2288 default:
2289 abort();
2290 /* NOTREACHED */
2291 }
2292 /* NOTREACHED */
2293}
2294
2295struct block *
2296gen_scode(name, q)
2297 register const char *name;
2298 struct qual q;
2299{
2300 int proto = q.proto;
2301 int dir = q.dir;
2302 int tproto;
2303 u_char *eaddr;
2304 bpf_u_int32 mask, addr;
2305#ifndef INET6
2306 bpf_u_int32 **alist;
2307#else
2308 int tproto6;
2309 struct sockaddr_in *sin;
2310 struct sockaddr_in6 *sin6;
2311 struct addrinfo *res, *res0;
2312 struct in6_addr mask128;
2313#endif /*INET6*/
2314 struct block *b, *tmp;
2315 int port, real_proto;
2316
2317 switch (q.addr) {
2318
2319 case Q_NET:
2320 addr = pcap_nametonetaddr(name);
2321 if (addr == 0)
2322 bpf_error("unknown network '%s'", name);
2323 /* Left justify network addr and calculate its network mask */
2324 mask = 0xffffffff;
2325 while (addr && (addr & 0xff000000) == 0) {
2326 addr <<= 8;
2327 mask <<= 8;
2328 }
2329 return gen_host(addr, mask, proto, dir);
2330
2331 case Q_DEFAULT:
2332 case Q_HOST:
2333 if (proto == Q_LINK) {
2334 switch (linktype) {
2335
2336 case DLT_EN10MB:
2337 eaddr = pcap_ether_hostton(name);
2338 if (eaddr == NULL)
2339 bpf_error(
2340 "unknown ether host '%s'", name);
2897 default:
2898 abort();
2899 /* NOTREACHED */
2900 }
2901 /* NOTREACHED */
2902}
2903
2904struct block *
2905gen_scode(name, q)
2906 register const char *name;
2907 struct qual q;
2908{
2909 int proto = q.proto;
2910 int dir = q.dir;
2911 int tproto;
2912 u_char *eaddr;
2913 bpf_u_int32 mask, addr;
2914#ifndef INET6
2915 bpf_u_int32 **alist;
2916#else
2917 int tproto6;
2918 struct sockaddr_in *sin;
2919 struct sockaddr_in6 *sin6;
2920 struct addrinfo *res, *res0;
2921 struct in6_addr mask128;
2922#endif /*INET6*/
2923 struct block *b, *tmp;
2924 int port, real_proto;
2925
2926 switch (q.addr) {
2927
2928 case Q_NET:
2929 addr = pcap_nametonetaddr(name);
2930 if (addr == 0)
2931 bpf_error("unknown network '%s'", name);
2932 /* Left justify network addr and calculate its network mask */
2933 mask = 0xffffffff;
2934 while (addr && (addr & 0xff000000) == 0) {
2935 addr <<= 8;
2936 mask <<= 8;
2937 }
2938 return gen_host(addr, mask, proto, dir);
2939
2940 case Q_DEFAULT:
2941 case Q_HOST:
2942 if (proto == Q_LINK) {
2943 switch (linktype) {
2944
2945 case DLT_EN10MB:
2946 eaddr = pcap_ether_hostton(name);
2947 if (eaddr == NULL)
2948 bpf_error(
2949 "unknown ether host '%s'", name);
2341 return gen_ehostop(eaddr, dir);
2950 b = gen_ehostop(eaddr, dir);
2951 free(eaddr);
2952 return b;
2342
2343 case DLT_FDDI:
2344 eaddr = pcap_ether_hostton(name);
2345 if (eaddr == NULL)
2346 bpf_error(
2347 "unknown FDDI host '%s'", name);
2953
2954 case DLT_FDDI:
2955 eaddr = pcap_ether_hostton(name);
2956 if (eaddr == NULL)
2957 bpf_error(
2958 "unknown FDDI host '%s'", name);
2348 return gen_fhostop(eaddr, dir);
2959 b = gen_fhostop(eaddr, dir);
2960 free(eaddr);
2961 return b;
2349
2350 case DLT_IEEE802:
2351 eaddr = pcap_ether_hostton(name);
2352 if (eaddr == NULL)
2353 bpf_error(
2354 "unknown token ring host '%s'", name);
2962
2963 case DLT_IEEE802:
2964 eaddr = pcap_ether_hostton(name);
2965 if (eaddr == NULL)
2966 bpf_error(
2967 "unknown token ring host '%s'", name);
2355 return gen_thostop(eaddr, dir);
2968 b = gen_thostop(eaddr, dir);
2969 free(eaddr);
2970 return b;
2356
2357 default:
2358 bpf_error(
2359 "only ethernet/FDDI/token ring supports link-level host name");
2360 break;
2361 }
2362 } else if (proto == Q_DECNET) {
2363 unsigned short dn_addr = __pcap_nametodnaddr(name);
2364 /*
2365 * I don't think DECNET hosts can be multihomed, so
2366 * there is no need to build up a list of addresses
2367 */
2368 return (gen_host(dn_addr, 0, proto, dir));
2369 } else {
2370#ifndef INET6
2371 alist = pcap_nametoaddr(name);
2372 if (alist == NULL || *alist == NULL)
2373 bpf_error("unknown host '%s'", name);
2374 tproto = proto;
2375 if (off_linktype == -1 && tproto == Q_DEFAULT)
2376 tproto = Q_IP;
2377 b = gen_host(**alist++, 0xffffffff, tproto, dir);
2378 while (*alist) {
2379 tmp = gen_host(**alist++, 0xffffffff,
2380 tproto, dir);
2381 gen_or(b, tmp);
2382 b = tmp;
2383 }
2384 return b;
2385#else
2386 memset(&mask128, 0xff, sizeof(mask128));
2387 res0 = res = pcap_nametoaddrinfo(name);
2388 if (res == NULL)
2389 bpf_error("unknown host '%s'", name);
2390 b = tmp = NULL;
2391 tproto = tproto6 = proto;
2392 if (off_linktype == -1 && tproto == Q_DEFAULT) {
2393 tproto = Q_IP;
2394 tproto6 = Q_IPV6;
2395 }
2396 for (res = res0; res; res = res->ai_next) {
2397 switch (res->ai_family) {
2398 case AF_INET:
2399 if (tproto == Q_IPV6)
2400 continue;
2401
2402 sin = (struct sockaddr_in *)
2403 res->ai_addr;
2404 tmp = gen_host(ntohl(sin->sin_addr.s_addr),
2405 0xffffffff, tproto, dir);
2406 break;
2407 case AF_INET6:
2408 if (tproto6 == Q_IP)
2409 continue;
2410
2411 sin6 = (struct sockaddr_in6 *)
2412 res->ai_addr;
2413 tmp = gen_host6(&sin6->sin6_addr,
2414 &mask128, tproto6, dir);
2415 break;
2971
2972 default:
2973 bpf_error(
2974 "only ethernet/FDDI/token ring supports link-level host name");
2975 break;
2976 }
2977 } else if (proto == Q_DECNET) {
2978 unsigned short dn_addr = __pcap_nametodnaddr(name);
2979 /*
2980 * I don't think DECNET hosts can be multihomed, so
2981 * there is no need to build up a list of addresses
2982 */
2983 return (gen_host(dn_addr, 0, proto, dir));
2984 } else {
2985#ifndef INET6
2986 alist = pcap_nametoaddr(name);
2987 if (alist == NULL || *alist == NULL)
2988 bpf_error("unknown host '%s'", name);
2989 tproto = proto;
2990 if (off_linktype == -1 && tproto == Q_DEFAULT)
2991 tproto = Q_IP;
2992 b = gen_host(**alist++, 0xffffffff, tproto, dir);
2993 while (*alist) {
2994 tmp = gen_host(**alist++, 0xffffffff,
2995 tproto, dir);
2996 gen_or(b, tmp);
2997 b = tmp;
2998 }
2999 return b;
3000#else
3001 memset(&mask128, 0xff, sizeof(mask128));
3002 res0 = res = pcap_nametoaddrinfo(name);
3003 if (res == NULL)
3004 bpf_error("unknown host '%s'", name);
3005 b = tmp = NULL;
3006 tproto = tproto6 = proto;
3007 if (off_linktype == -1 && tproto == Q_DEFAULT) {
3008 tproto = Q_IP;
3009 tproto6 = Q_IPV6;
3010 }
3011 for (res = res0; res; res = res->ai_next) {
3012 switch (res->ai_family) {
3013 case AF_INET:
3014 if (tproto == Q_IPV6)
3015 continue;
3016
3017 sin = (struct sockaddr_in *)
3018 res->ai_addr;
3019 tmp = gen_host(ntohl(sin->sin_addr.s_addr),
3020 0xffffffff, tproto, dir);
3021 break;
3022 case AF_INET6:
3023 if (tproto6 == Q_IP)
3024 continue;
3025
3026 sin6 = (struct sockaddr_in6 *)
3027 res->ai_addr;
3028 tmp = gen_host6(&sin6->sin6_addr,
3029 &mask128, tproto6, dir);
3030 break;
3031 default:
3032 continue;
2416 }
2417 if (b)
2418 gen_or(b, tmp);
2419 b = tmp;
2420 }
2421 freeaddrinfo(res0);
2422 if (b == NULL) {
2423 bpf_error("unknown host '%s'%s", name,
2424 (proto == Q_DEFAULT)
2425 ? ""
2426 : " for specified address family");
2427 }
2428 return b;
2429#endif /*INET6*/
2430 }
2431
2432 case Q_PORT:
3033 }
3034 if (b)
3035 gen_or(b, tmp);
3036 b = tmp;
3037 }
3038 freeaddrinfo(res0);
3039 if (b == NULL) {
3040 bpf_error("unknown host '%s'%s", name,
3041 (proto == Q_DEFAULT)
3042 ? ""
3043 : " for specified address family");
3044 }
3045 return b;
3046#endif /*INET6*/
3047 }
3048
3049 case Q_PORT:
2433 if (proto != Q_DEFAULT && proto != Q_UDP && proto != Q_TCP)
3050 if (proto != Q_DEFAULT &&
3051 proto != Q_UDP && proto != Q_TCP && proto != Q_SCTP)
2434 bpf_error("illegal qualifier of 'port'");
2435 if (pcap_nametoport(name, &port, &real_proto) == 0)
2436 bpf_error("unknown port '%s'", name);
2437 if (proto == Q_UDP) {
2438 if (real_proto == IPPROTO_TCP)
2439 bpf_error("port '%s' is tcp", name);
3052 bpf_error("illegal qualifier of 'port'");
3053 if (pcap_nametoport(name, &port, &real_proto) == 0)
3054 bpf_error("unknown port '%s'", name);
3055 if (proto == Q_UDP) {
3056 if (real_proto == IPPROTO_TCP)
3057 bpf_error("port '%s' is tcp", name);
3058 else if (real_proto == IPPROTO_SCTP)
3059 bpf_error("port '%s' is sctp", name);
2440 else
2441 /* override PROTO_UNDEF */
2442 real_proto = IPPROTO_UDP;
2443 }
2444 if (proto == Q_TCP) {
2445 if (real_proto == IPPROTO_UDP)
2446 bpf_error("port '%s' is udp", name);
3060 else
3061 /* override PROTO_UNDEF */
3062 real_proto = IPPROTO_UDP;
3063 }
3064 if (proto == Q_TCP) {
3065 if (real_proto == IPPROTO_UDP)
3066 bpf_error("port '%s' is udp", name);
3067
3068 else if (real_proto == IPPROTO_SCTP)
3069 bpf_error("port '%s' is sctp", name);
2447 else
2448 /* override PROTO_UNDEF */
2449 real_proto = IPPROTO_TCP;
2450 }
3070 else
3071 /* override PROTO_UNDEF */
3072 real_proto = IPPROTO_TCP;
3073 }
3074 if (proto == Q_SCTP) {
3075 if (real_proto == IPPROTO_UDP)
3076 bpf_error("port '%s' is udp", name);
3077
3078 else if (real_proto == IPPROTO_TCP)
3079 bpf_error("port '%s' is tcp", name);
3080 else
3081 /* override PROTO_UNDEF */
3082 real_proto = IPPROTO_SCTP;
3083 }
2451#ifndef INET6
2452 return gen_port(port, real_proto, dir);
2453#else
2454 {
2455 struct block *b;
2456 b = gen_port(port, real_proto, dir);
2457 gen_or(gen_port6(port, real_proto, dir), b);
2458 return b;
2459 }
2460#endif /* INET6 */
2461
2462 case Q_GATEWAY:
2463#ifndef INET6
2464 eaddr = pcap_ether_hostton(name);
2465 if (eaddr == NULL)
2466 bpf_error("unknown ether host: %s", name);
2467
2468 alist = pcap_nametoaddr(name);
2469 if (alist == NULL || *alist == NULL)
2470 bpf_error("unknown host '%s'", name);
3084#ifndef INET6
3085 return gen_port(port, real_proto, dir);
3086#else
3087 {
3088 struct block *b;
3089 b = gen_port(port, real_proto, dir);
3090 gen_or(gen_port6(port, real_proto, dir), b);
3091 return b;
3092 }
3093#endif /* INET6 */
3094
3095 case Q_GATEWAY:
3096#ifndef INET6
3097 eaddr = pcap_ether_hostton(name);
3098 if (eaddr == NULL)
3099 bpf_error("unknown ether host: %s", name);
3100
3101 alist = pcap_nametoaddr(name);
3102 if (alist == NULL || *alist == NULL)
3103 bpf_error("unknown host '%s'", name);
2471 return gen_gateway(eaddr, alist, proto, dir);
3104 b = gen_gateway(eaddr, alist, proto, dir);
3105 free(eaddr);
3106 return b;
2472#else
2473 bpf_error("'gateway' not supported in this configuration");
2474#endif /*INET6*/
2475
2476 case Q_PROTO:
2477 real_proto = lookup_proto(name, proto);
2478 if (real_proto >= 0)
2479 return gen_proto(real_proto, proto, dir);
2480 else
2481 bpf_error("unknown protocol: %s", name);
2482
2483 case Q_PROTOCHAIN:
2484 real_proto = lookup_proto(name, proto);
2485 if (real_proto >= 0)
2486 return gen_protochain(real_proto, proto, dir);
2487 else
2488 bpf_error("unknown protocol: %s", name);
2489
2490
2491 case Q_UNDEF:
2492 syntax();
2493 /* NOTREACHED */
2494 }
2495 abort();
2496 /* NOTREACHED */
2497}
2498
2499struct block *
2500gen_mcode(s1, s2, masklen, q)
2501 register const char *s1, *s2;
2502 register int masklen;
2503 struct qual q;
2504{
2505 register int nlen, mlen;
2506 bpf_u_int32 n, m;
2507
2508 nlen = __pcap_atoin(s1, &n);
2509 /* Promote short ipaddr */
2510 n <<= 32 - nlen;
2511
2512 if (s2 != NULL) {
2513 mlen = __pcap_atoin(s2, &m);
2514 /* Promote short ipaddr */
2515 m <<= 32 - mlen;
2516 if ((n & ~m) != 0)
2517 bpf_error("non-network bits set in \"%s mask %s\"",
2518 s1, s2);
2519 } else {
2520 /* Convert mask len to mask */
2521 if (masklen > 32)
2522 bpf_error("mask length must be <= 32");
2523 m = 0xffffffff << (32 - masklen);
2524 if ((n & ~m) != 0)
2525 bpf_error("non-network bits set in \"%s/%d\"",
2526 s1, masklen);
2527 }
2528
2529 switch (q.addr) {
2530
2531 case Q_NET:
2532 return gen_host(n, m, q.proto, q.dir);
2533
2534 default:
2535 bpf_error("Mask syntax for networks only");
2536 /* NOTREACHED */
2537 }
2538}
2539
2540struct block *
2541gen_ncode(s, v, q)
2542 register const char *s;
2543 bpf_u_int32 v;
2544 struct qual q;
2545{
2546 bpf_u_int32 mask;
2547 int proto = q.proto;
2548 int dir = q.dir;
2549 register int vlen;
2550
2551 if (s == NULL)
2552 vlen = 32;
2553 else if (q.proto == Q_DECNET)
2554 vlen = __pcap_atodn(s, &v);
2555 else
2556 vlen = __pcap_atoin(s, &v);
2557
2558 switch (q.addr) {
2559
2560 case Q_DEFAULT:
2561 case Q_HOST:
2562 case Q_NET:
2563 if (proto == Q_DECNET)
2564 return gen_host(v, 0, proto, dir);
2565 else if (proto == Q_LINK) {
2566 bpf_error("illegal link layer address");
2567 } else {
2568 mask = 0xffffffff;
2569 if (s == NULL && q.addr == Q_NET) {
2570 /* Promote short net number */
2571 while (v && (v & 0xff000000) == 0) {
2572 v <<= 8;
2573 mask <<= 8;
2574 }
2575 } else {
2576 /* Promote short ipaddr */
2577 v <<= 32 - vlen;
2578 mask <<= 32 - vlen;
2579 }
2580 return gen_host(v, mask, proto, dir);
2581 }
2582
2583 case Q_PORT:
2584 if (proto == Q_UDP)
2585 proto = IPPROTO_UDP;
2586 else if (proto == Q_TCP)
2587 proto = IPPROTO_TCP;
3107#else
3108 bpf_error("'gateway' not supported in this configuration");
3109#endif /*INET6*/
3110
3111 case Q_PROTO:
3112 real_proto = lookup_proto(name, proto);
3113 if (real_proto >= 0)
3114 return gen_proto(real_proto, proto, dir);
3115 else
3116 bpf_error("unknown protocol: %s", name);
3117
3118 case Q_PROTOCHAIN:
3119 real_proto = lookup_proto(name, proto);
3120 if (real_proto >= 0)
3121 return gen_protochain(real_proto, proto, dir);
3122 else
3123 bpf_error("unknown protocol: %s", name);
3124
3125
3126 case Q_UNDEF:
3127 syntax();
3128 /* NOTREACHED */
3129 }
3130 abort();
3131 /* NOTREACHED */
3132}
3133
3134struct block *
3135gen_mcode(s1, s2, masklen, q)
3136 register const char *s1, *s2;
3137 register int masklen;
3138 struct qual q;
3139{
3140 register int nlen, mlen;
3141 bpf_u_int32 n, m;
3142
3143 nlen = __pcap_atoin(s1, &n);
3144 /* Promote short ipaddr */
3145 n <<= 32 - nlen;
3146
3147 if (s2 != NULL) {
3148 mlen = __pcap_atoin(s2, &m);
3149 /* Promote short ipaddr */
3150 m <<= 32 - mlen;
3151 if ((n & ~m) != 0)
3152 bpf_error("non-network bits set in \"%s mask %s\"",
3153 s1, s2);
3154 } else {
3155 /* Convert mask len to mask */
3156 if (masklen > 32)
3157 bpf_error("mask length must be <= 32");
3158 m = 0xffffffff << (32 - masklen);
3159 if ((n & ~m) != 0)
3160 bpf_error("non-network bits set in \"%s/%d\"",
3161 s1, masklen);
3162 }
3163
3164 switch (q.addr) {
3165
3166 case Q_NET:
3167 return gen_host(n, m, q.proto, q.dir);
3168
3169 default:
3170 bpf_error("Mask syntax for networks only");
3171 /* NOTREACHED */
3172 }
3173}
3174
3175struct block *
3176gen_ncode(s, v, q)
3177 register const char *s;
3178 bpf_u_int32 v;
3179 struct qual q;
3180{
3181 bpf_u_int32 mask;
3182 int proto = q.proto;
3183 int dir = q.dir;
3184 register int vlen;
3185
3186 if (s == NULL)
3187 vlen = 32;
3188 else if (q.proto == Q_DECNET)
3189 vlen = __pcap_atodn(s, &v);
3190 else
3191 vlen = __pcap_atoin(s, &v);
3192
3193 switch (q.addr) {
3194
3195 case Q_DEFAULT:
3196 case Q_HOST:
3197 case Q_NET:
3198 if (proto == Q_DECNET)
3199 return gen_host(v, 0, proto, dir);
3200 else if (proto == Q_LINK) {
3201 bpf_error("illegal link layer address");
3202 } else {
3203 mask = 0xffffffff;
3204 if (s == NULL && q.addr == Q_NET) {
3205 /* Promote short net number */
3206 while (v && (v & 0xff000000) == 0) {
3207 v <<= 8;
3208 mask <<= 8;
3209 }
3210 } else {
3211 /* Promote short ipaddr */
3212 v <<= 32 - vlen;
3213 mask <<= 32 - vlen;
3214 }
3215 return gen_host(v, mask, proto, dir);
3216 }
3217
3218 case Q_PORT:
3219 if (proto == Q_UDP)
3220 proto = IPPROTO_UDP;
3221 else if (proto == Q_TCP)
3222 proto = IPPROTO_TCP;
3223 else if (proto == Q_SCTP)
3224 proto = IPPROTO_SCTP;
2588 else if (proto == Q_DEFAULT)
2589 proto = PROTO_UNDEF;
2590 else
2591 bpf_error("illegal qualifier of 'port'");
2592
2593#ifndef INET6
2594 return gen_port((int)v, proto, dir);
2595#else
2596 {
2597 struct block *b;
2598 b = gen_port((int)v, proto, dir);
2599 gen_or(gen_port6((int)v, proto, dir), b);
2600 return b;
2601 }
2602#endif /* INET6 */
2603
2604 case Q_GATEWAY:
2605 bpf_error("'gateway' requires a name");
2606 /* NOTREACHED */
2607
2608 case Q_PROTO:
2609 return gen_proto((int)v, proto, dir);
2610
2611 case Q_PROTOCHAIN:
2612 return gen_protochain((int)v, proto, dir);
2613
2614 case Q_UNDEF:
2615 syntax();
2616 /* NOTREACHED */
2617
2618 default:
2619 abort();
2620 /* NOTREACHED */
2621 }
2622 /* NOTREACHED */
2623}
2624
2625#ifdef INET6
2626struct block *
2627gen_mcode6(s1, s2, masklen, q)
2628 register const char *s1, *s2;
2629 register int masklen;
2630 struct qual q;
2631{
2632 struct addrinfo *res;
2633 struct in6_addr *addr;
2634 struct in6_addr mask;
2635 struct block *b;
2636 u_int32_t *a, *m;
2637
2638 if (s2)
2639 bpf_error("no mask %s supported", s2);
2640
2641 res = pcap_nametoaddrinfo(s1);
2642 if (!res)
2643 bpf_error("invalid ip6 address %s", s1);
2644 if (res->ai_next)
2645 bpf_error("%s resolved to multiple address", s1);
2646 addr = &((struct sockaddr_in6 *)res->ai_addr)->sin6_addr;
2647
2648 if (sizeof(mask) * 8 < masklen)
2649 bpf_error("mask length must be <= %u", (unsigned int)(sizeof(mask) * 8));
3225 else if (proto == Q_DEFAULT)
3226 proto = PROTO_UNDEF;
3227 else
3228 bpf_error("illegal qualifier of 'port'");
3229
3230#ifndef INET6
3231 return gen_port((int)v, proto, dir);
3232#else
3233 {
3234 struct block *b;
3235 b = gen_port((int)v, proto, dir);
3236 gen_or(gen_port6((int)v, proto, dir), b);
3237 return b;
3238 }
3239#endif /* INET6 */
3240
3241 case Q_GATEWAY:
3242 bpf_error("'gateway' requires a name");
3243 /* NOTREACHED */
3244
3245 case Q_PROTO:
3246 return gen_proto((int)v, proto, dir);
3247
3248 case Q_PROTOCHAIN:
3249 return gen_protochain((int)v, proto, dir);
3250
3251 case Q_UNDEF:
3252 syntax();
3253 /* NOTREACHED */
3254
3255 default:
3256 abort();
3257 /* NOTREACHED */
3258 }
3259 /* NOTREACHED */
3260}
3261
3262#ifdef INET6
3263struct block *
3264gen_mcode6(s1, s2, masklen, q)
3265 register const char *s1, *s2;
3266 register int masklen;
3267 struct qual q;
3268{
3269 struct addrinfo *res;
3270 struct in6_addr *addr;
3271 struct in6_addr mask;
3272 struct block *b;
3273 u_int32_t *a, *m;
3274
3275 if (s2)
3276 bpf_error("no mask %s supported", s2);
3277
3278 res = pcap_nametoaddrinfo(s1);
3279 if (!res)
3280 bpf_error("invalid ip6 address %s", s1);
3281 if (res->ai_next)
3282 bpf_error("%s resolved to multiple address", s1);
3283 addr = &((struct sockaddr_in6 *)res->ai_addr)->sin6_addr;
3284
3285 if (sizeof(mask) * 8 < masklen)
3286 bpf_error("mask length must be <= %u", (unsigned int)(sizeof(mask) * 8));
3287 memset(&mask, 0, sizeof(mask));
2650 memset(&mask, 0xff, masklen / 8);
2651 if (masklen % 8) {
2652 mask.s6_addr[masklen / 8] =
2653 (0xff << (8 - masklen % 8)) & 0xff;
2654 }
2655
2656 a = (u_int32_t *)addr;
2657 m = (u_int32_t *)&mask;
2658 if ((a[0] & ~m[0]) || (a[1] & ~m[1])
2659 || (a[2] & ~m[2]) || (a[3] & ~m[3])) {
2660 bpf_error("non-network bits set in \"%s/%d\"", s1, masklen);
2661 }
2662
2663 switch (q.addr) {
2664
2665 case Q_DEFAULT:
2666 case Q_HOST:
2667 if (masklen != 128)
2668 bpf_error("Mask syntax for networks only");
2669 /* FALLTHROUGH */
2670
2671 case Q_NET:
2672 b = gen_host6(addr, &mask, q.proto, q.dir);
2673 freeaddrinfo(res);
2674 return b;
2675
2676 default:
2677 bpf_error("invalid qualifier against IPv6 address");
2678 /* NOTREACHED */
2679 }
2680}
2681#endif /*INET6*/
2682
2683struct block *
2684gen_ecode(eaddr, q)
2685 register const u_char *eaddr;
2686 struct qual q;
2687{
2688 if ((q.addr == Q_HOST || q.addr == Q_DEFAULT) && q.proto == Q_LINK) {
2689 if (linktype == DLT_EN10MB)
2690 return gen_ehostop(eaddr, (int)q.dir);
2691 if (linktype == DLT_FDDI)
2692 return gen_fhostop(eaddr, (int)q.dir);
2693 if (linktype == DLT_IEEE802)
2694 return gen_thostop(eaddr, (int)q.dir);
2695 bpf_error("ethernet addresses supported only on ethernet, FDDI or token ring");
2696 }
2697 bpf_error("ethernet address used in non-ether expression");
2698 /* NOTREACHED */
2699}
2700
2701void
2702sappend(s0, s1)
2703 struct slist *s0, *s1;
2704{
2705 /*
2706 * This is definitely not the best way to do this, but the
2707 * lists will rarely get long.
2708 */
2709 while (s0->next)
2710 s0 = s0->next;
2711 s0->next = s1;
2712}
2713
2714static struct slist *
2715xfer_to_x(a)
2716 struct arth *a;
2717{
2718 struct slist *s;
2719
2720 s = new_stmt(BPF_LDX|BPF_MEM);
2721 s->s.k = a->regno;
2722 return s;
2723}
2724
2725static struct slist *
2726xfer_to_a(a)
2727 struct arth *a;
2728{
2729 struct slist *s;
2730
2731 s = new_stmt(BPF_LD|BPF_MEM);
2732 s->s.k = a->regno;
2733 return s;
2734}
2735
2736struct arth *
2737gen_load(proto, index, size)
2738 int proto;
2739 struct arth *index;
2740 int size;
2741{
2742 struct slist *s, *tmp;
2743 struct block *b;
2744 int regno = alloc_reg();
2745
2746 free_reg(index->regno);
2747 switch (size) {
2748
2749 default:
2750 bpf_error("data size must be 1, 2, or 4");
2751
2752 case 1:
2753 size = BPF_B;
2754 break;
2755
2756 case 2:
2757 size = BPF_H;
2758 break;
2759
2760 case 4:
2761 size = BPF_W;
2762 break;
2763 }
2764 switch (proto) {
2765 default:
2766 bpf_error("unsupported index operation");
2767
2768 case Q_LINK:
2769 s = xfer_to_x(index);
2770 tmp = new_stmt(BPF_LD|BPF_IND|size);
2771 sappend(s, tmp);
2772 sappend(index->s, s);
2773 break;
2774
2775 case Q_IP:
2776 case Q_ARP:
2777 case Q_RARP:
2778 case Q_ATALK:
2779 case Q_DECNET:
2780 case Q_SCA:
2781 case Q_LAT:
2782 case Q_MOPRC:
2783 case Q_MOPDL:
2784#ifdef INET6
2785 case Q_IPV6:
2786#endif
2787 /* XXX Note that we assume a fixed link header here. */
2788 s = xfer_to_x(index);
2789 tmp = new_stmt(BPF_LD|BPF_IND|size);
2790 tmp->s.k = off_nl;
2791 sappend(s, tmp);
2792 sappend(index->s, s);
2793
2794 b = gen_proto_abbrev(proto);
2795 if (index->b)
2796 gen_and(index->b, b);
2797 index->b = b;
2798 break;
2799
3288 memset(&mask, 0xff, masklen / 8);
3289 if (masklen % 8) {
3290 mask.s6_addr[masklen / 8] =
3291 (0xff << (8 - masklen % 8)) & 0xff;
3292 }
3293
3294 a = (u_int32_t *)addr;
3295 m = (u_int32_t *)&mask;
3296 if ((a[0] & ~m[0]) || (a[1] & ~m[1])
3297 || (a[2] & ~m[2]) || (a[3] & ~m[3])) {
3298 bpf_error("non-network bits set in \"%s/%d\"", s1, masklen);
3299 }
3300
3301 switch (q.addr) {
3302
3303 case Q_DEFAULT:
3304 case Q_HOST:
3305 if (masklen != 128)
3306 bpf_error("Mask syntax for networks only");
3307 /* FALLTHROUGH */
3308
3309 case Q_NET:
3310 b = gen_host6(addr, &mask, q.proto, q.dir);
3311 freeaddrinfo(res);
3312 return b;
3313
3314 default:
3315 bpf_error("invalid qualifier against IPv6 address");
3316 /* NOTREACHED */
3317 }
3318}
3319#endif /*INET6*/
3320
3321struct block *
3322gen_ecode(eaddr, q)
3323 register const u_char *eaddr;
3324 struct qual q;
3325{
3326 if ((q.addr == Q_HOST || q.addr == Q_DEFAULT) && q.proto == Q_LINK) {
3327 if (linktype == DLT_EN10MB)
3328 return gen_ehostop(eaddr, (int)q.dir);
3329 if (linktype == DLT_FDDI)
3330 return gen_fhostop(eaddr, (int)q.dir);
3331 if (linktype == DLT_IEEE802)
3332 return gen_thostop(eaddr, (int)q.dir);
3333 bpf_error("ethernet addresses supported only on ethernet, FDDI or token ring");
3334 }
3335 bpf_error("ethernet address used in non-ether expression");
3336 /* NOTREACHED */
3337}
3338
3339void
3340sappend(s0, s1)
3341 struct slist *s0, *s1;
3342{
3343 /*
3344 * This is definitely not the best way to do this, but the
3345 * lists will rarely get long.
3346 */
3347 while (s0->next)
3348 s0 = s0->next;
3349 s0->next = s1;
3350}
3351
3352static struct slist *
3353xfer_to_x(a)
3354 struct arth *a;
3355{
3356 struct slist *s;
3357
3358 s = new_stmt(BPF_LDX|BPF_MEM);
3359 s->s.k = a->regno;
3360 return s;
3361}
3362
3363static struct slist *
3364xfer_to_a(a)
3365 struct arth *a;
3366{
3367 struct slist *s;
3368
3369 s = new_stmt(BPF_LD|BPF_MEM);
3370 s->s.k = a->regno;
3371 return s;
3372}
3373
3374struct arth *
3375gen_load(proto, index, size)
3376 int proto;
3377 struct arth *index;
3378 int size;
3379{
3380 struct slist *s, *tmp;
3381 struct block *b;
3382 int regno = alloc_reg();
3383
3384 free_reg(index->regno);
3385 switch (size) {
3386
3387 default:
3388 bpf_error("data size must be 1, 2, or 4");
3389
3390 case 1:
3391 size = BPF_B;
3392 break;
3393
3394 case 2:
3395 size = BPF_H;
3396 break;
3397
3398 case 4:
3399 size = BPF_W;
3400 break;
3401 }
3402 switch (proto) {
3403 default:
3404 bpf_error("unsupported index operation");
3405
3406 case Q_LINK:
3407 s = xfer_to_x(index);
3408 tmp = new_stmt(BPF_LD|BPF_IND|size);
3409 sappend(s, tmp);
3410 sappend(index->s, s);
3411 break;
3412
3413 case Q_IP:
3414 case Q_ARP:
3415 case Q_RARP:
3416 case Q_ATALK:
3417 case Q_DECNET:
3418 case Q_SCA:
3419 case Q_LAT:
3420 case Q_MOPRC:
3421 case Q_MOPDL:
3422#ifdef INET6
3423 case Q_IPV6:
3424#endif
3425 /* XXX Note that we assume a fixed link header here. */
3426 s = xfer_to_x(index);
3427 tmp = new_stmt(BPF_LD|BPF_IND|size);
3428 tmp->s.k = off_nl;
3429 sappend(s, tmp);
3430 sappend(index->s, s);
3431
3432 b = gen_proto_abbrev(proto);
3433 if (index->b)
3434 gen_and(index->b, b);
3435 index->b = b;
3436 break;
3437
3438 case Q_SCTP:
2800 case Q_TCP:
2801 case Q_UDP:
2802 case Q_ICMP:
2803 case Q_IGMP:
2804 case Q_IGRP:
2805 case Q_PIM:
3439 case Q_TCP:
3440 case Q_UDP:
3441 case Q_ICMP:
3442 case Q_IGMP:
3443 case Q_IGRP:
3444 case Q_PIM:
3445 case Q_VRRP:
2806 s = new_stmt(BPF_LDX|BPF_MSH|BPF_B);
2807 s->s.k = off_nl;
2808 sappend(s, xfer_to_a(index));
2809 sappend(s, new_stmt(BPF_ALU|BPF_ADD|BPF_X));
2810 sappend(s, new_stmt(BPF_MISC|BPF_TAX));
2811 sappend(s, tmp = new_stmt(BPF_LD|BPF_IND|size));
2812 tmp->s.k = off_nl;
2813 sappend(index->s, s);
2814
2815 gen_and(gen_proto_abbrev(proto), b = gen_ipfrag());
2816 if (index->b)
2817 gen_and(index->b, b);
2818#ifdef INET6
2819 gen_and(gen_proto_abbrev(Q_IP), b);
2820#endif
2821 index->b = b;
2822 break;
2823#ifdef INET6
2824 case Q_ICMPV6:
2825 bpf_error("IPv6 upper-layer protocol is not supported by proto[x]");
2826 /*NOTREACHED*/
2827#endif
2828 }
2829 index->regno = regno;
2830 s = new_stmt(BPF_ST);
2831 s->s.k = regno;
2832 sappend(index->s, s);
2833
2834 return index;
2835}
2836
2837struct block *
2838gen_relation(code, a0, a1, reversed)
2839 int code;
2840 struct arth *a0, *a1;
2841 int reversed;
2842{
2843 struct slist *s0, *s1, *s2;
2844 struct block *b, *tmp;
2845
2846 s0 = xfer_to_x(a1);
2847 s1 = xfer_to_a(a0);
2848 s2 = new_stmt(BPF_ALU|BPF_SUB|BPF_X);
2849 b = new_block(JMP(code));
2850 if (code == BPF_JGT || code == BPF_JGE) {
2851 reversed = !reversed;
2852 b->s.k = 0x80000000;
2853 }
2854 if (reversed)
2855 gen_not(b);
2856
2857 sappend(s1, s2);
2858 sappend(s0, s1);
2859 sappend(a1->s, s0);
2860 sappend(a0->s, a1->s);
2861
2862 b->stmts = a0->s;
2863
2864 free_reg(a0->regno);
2865 free_reg(a1->regno);
2866
2867 /* 'and' together protocol checks */
2868 if (a0->b) {
2869 if (a1->b) {
2870 gen_and(a0->b, tmp = a1->b);
2871 }
2872 else
2873 tmp = a0->b;
2874 } else
2875 tmp = a1->b;
2876
2877 if (tmp)
2878 gen_and(tmp, b);
2879
2880 return b;
2881}
2882
2883struct arth *
2884gen_loadlen()
2885{
2886 int regno = alloc_reg();
2887 struct arth *a = (struct arth *)newchunk(sizeof(*a));
2888 struct slist *s;
2889
2890 s = new_stmt(BPF_LD|BPF_LEN);
2891 s->next = new_stmt(BPF_ST);
2892 s->next->s.k = regno;
2893 a->s = s;
2894 a->regno = regno;
2895
2896 return a;
2897}
2898
2899struct arth *
2900gen_loadi(val)
2901 int val;
2902{
2903 struct arth *a;
2904 struct slist *s;
2905 int reg;
2906
2907 a = (struct arth *)newchunk(sizeof(*a));
2908
2909 reg = alloc_reg();
2910
2911 s = new_stmt(BPF_LD|BPF_IMM);
2912 s->s.k = val;
2913 s->next = new_stmt(BPF_ST);
2914 s->next->s.k = reg;
2915 a->s = s;
2916 a->regno = reg;
2917
2918 return a;
2919}
2920
2921struct arth *
2922gen_neg(a)
2923 struct arth *a;
2924{
2925 struct slist *s;
2926
2927 s = xfer_to_a(a);
2928 sappend(a->s, s);
2929 s = new_stmt(BPF_ALU|BPF_NEG);
2930 s->s.k = 0;
2931 sappend(a->s, s);
2932 s = new_stmt(BPF_ST);
2933 s->s.k = a->regno;
2934 sappend(a->s, s);
2935
2936 return a;
2937}
2938
2939struct arth *
2940gen_arth(code, a0, a1)
2941 int code;
2942 struct arth *a0, *a1;
2943{
2944 struct slist *s0, *s1, *s2;
2945
2946 s0 = xfer_to_x(a1);
2947 s1 = xfer_to_a(a0);
2948 s2 = new_stmt(BPF_ALU|BPF_X|code);
2949
2950 sappend(s1, s2);
2951 sappend(s0, s1);
2952 sappend(a1->s, s0);
2953 sappend(a0->s, a1->s);
2954
2955 free_reg(a1->regno);
2956
2957 s0 = new_stmt(BPF_ST);
2958 a0->regno = s0->s.k = alloc_reg();
2959 sappend(a0->s, s0);
2960
2961 return a0;
2962}
2963
2964/*
2965 * Here we handle simple allocation of the scratch registers.
2966 * If too many registers are alloc'd, the allocator punts.
2967 */
2968static int regused[BPF_MEMWORDS];
2969static int curreg;
2970
2971/*
2972 * Return the next free register.
2973 */
2974static int
2975alloc_reg()
2976{
2977 int n = BPF_MEMWORDS;
2978
2979 while (--n >= 0) {
2980 if (regused[curreg])
2981 curreg = (curreg + 1) % BPF_MEMWORDS;
2982 else {
2983 regused[curreg] = 1;
2984 return curreg;
2985 }
2986 }
2987 bpf_error("too many registers needed to evaluate expression");
2988 /* NOTREACHED */
2989}
2990
2991/*
2992 * Return a register to the table so it can
2993 * be used later.
2994 */
2995static void
2996free_reg(n)
2997 int n;
2998{
2999 regused[n] = 0;
3000}
3001
3002static struct block *
3003gen_len(jmp, n)
3004 int jmp, n;
3005{
3006 struct slist *s;
3007 struct block *b;
3008
3009 s = new_stmt(BPF_LD|BPF_LEN);
3010 b = new_block(JMP(jmp));
3011 b->stmts = s;
3012 b->s.k = n;
3013
3014 return b;
3015}
3016
3017struct block *
3018gen_greater(n)
3019 int n;
3020{
3021 return gen_len(BPF_JGE, n);
3022}
3023
3024/*
3025 * Actually, this is less than or equal.
3026 */
3027struct block *
3028gen_less(n)
3029 int n;
3030{
3031 struct block *b;
3032
3033 b = gen_len(BPF_JGT, n);
3034 gen_not(b);
3035
3036 return b;
3037}
3038
3039struct block *
3040gen_byteop(op, idx, val)
3041 int op, idx, val;
3042{
3043 struct block *b;
3044 struct slist *s;
3045
3046 switch (op) {
3047 default:
3048 abort();
3049
3050 case '=':
3051 return gen_cmp((u_int)idx, BPF_B, (bpf_int32)val);
3052
3053 case '<':
3054 b = gen_cmp((u_int)idx, BPF_B, (bpf_int32)val);
3055 b->s.code = JMP(BPF_JGE);
3056 gen_not(b);
3057 return b;
3058
3059 case '>':
3060 b = gen_cmp((u_int)idx, BPF_B, (bpf_int32)val);
3061 b->s.code = JMP(BPF_JGT);
3062 return b;
3063
3064 case '|':
3065 s = new_stmt(BPF_ALU|BPF_OR|BPF_K);
3066 break;
3067
3068 case '&':
3069 s = new_stmt(BPF_ALU|BPF_AND|BPF_K);
3070 break;
3071 }
3072 s->s.k = val;
3073 b = new_block(JMP(BPF_JEQ));
3074 b->stmts = s;
3075 gen_not(b);
3076
3077 return b;
3078}
3079
3446 s = new_stmt(BPF_LDX|BPF_MSH|BPF_B);
3447 s->s.k = off_nl;
3448 sappend(s, xfer_to_a(index));
3449 sappend(s, new_stmt(BPF_ALU|BPF_ADD|BPF_X));
3450 sappend(s, new_stmt(BPF_MISC|BPF_TAX));
3451 sappend(s, tmp = new_stmt(BPF_LD|BPF_IND|size));
3452 tmp->s.k = off_nl;
3453 sappend(index->s, s);
3454
3455 gen_and(gen_proto_abbrev(proto), b = gen_ipfrag());
3456 if (index->b)
3457 gen_and(index->b, b);
3458#ifdef INET6
3459 gen_and(gen_proto_abbrev(Q_IP), b);
3460#endif
3461 index->b = b;
3462 break;
3463#ifdef INET6
3464 case Q_ICMPV6:
3465 bpf_error("IPv6 upper-layer protocol is not supported by proto[x]");
3466 /*NOTREACHED*/
3467#endif
3468 }
3469 index->regno = regno;
3470 s = new_stmt(BPF_ST);
3471 s->s.k = regno;
3472 sappend(index->s, s);
3473
3474 return index;
3475}
3476
3477struct block *
3478gen_relation(code, a0, a1, reversed)
3479 int code;
3480 struct arth *a0, *a1;
3481 int reversed;
3482{
3483 struct slist *s0, *s1, *s2;
3484 struct block *b, *tmp;
3485
3486 s0 = xfer_to_x(a1);
3487 s1 = xfer_to_a(a0);
3488 s2 = new_stmt(BPF_ALU|BPF_SUB|BPF_X);
3489 b = new_block(JMP(code));
3490 if (code == BPF_JGT || code == BPF_JGE) {
3491 reversed = !reversed;
3492 b->s.k = 0x80000000;
3493 }
3494 if (reversed)
3495 gen_not(b);
3496
3497 sappend(s1, s2);
3498 sappend(s0, s1);
3499 sappend(a1->s, s0);
3500 sappend(a0->s, a1->s);
3501
3502 b->stmts = a0->s;
3503
3504 free_reg(a0->regno);
3505 free_reg(a1->regno);
3506
3507 /* 'and' together protocol checks */
3508 if (a0->b) {
3509 if (a1->b) {
3510 gen_and(a0->b, tmp = a1->b);
3511 }
3512 else
3513 tmp = a0->b;
3514 } else
3515 tmp = a1->b;
3516
3517 if (tmp)
3518 gen_and(tmp, b);
3519
3520 return b;
3521}
3522
3523struct arth *
3524gen_loadlen()
3525{
3526 int regno = alloc_reg();
3527 struct arth *a = (struct arth *)newchunk(sizeof(*a));
3528 struct slist *s;
3529
3530 s = new_stmt(BPF_LD|BPF_LEN);
3531 s->next = new_stmt(BPF_ST);
3532 s->next->s.k = regno;
3533 a->s = s;
3534 a->regno = regno;
3535
3536 return a;
3537}
3538
3539struct arth *
3540gen_loadi(val)
3541 int val;
3542{
3543 struct arth *a;
3544 struct slist *s;
3545 int reg;
3546
3547 a = (struct arth *)newchunk(sizeof(*a));
3548
3549 reg = alloc_reg();
3550
3551 s = new_stmt(BPF_LD|BPF_IMM);
3552 s->s.k = val;
3553 s->next = new_stmt(BPF_ST);
3554 s->next->s.k = reg;
3555 a->s = s;
3556 a->regno = reg;
3557
3558 return a;
3559}
3560
3561struct arth *
3562gen_neg(a)
3563 struct arth *a;
3564{
3565 struct slist *s;
3566
3567 s = xfer_to_a(a);
3568 sappend(a->s, s);
3569 s = new_stmt(BPF_ALU|BPF_NEG);
3570 s->s.k = 0;
3571 sappend(a->s, s);
3572 s = new_stmt(BPF_ST);
3573 s->s.k = a->regno;
3574 sappend(a->s, s);
3575
3576 return a;
3577}
3578
3579struct arth *
3580gen_arth(code, a0, a1)
3581 int code;
3582 struct arth *a0, *a1;
3583{
3584 struct slist *s0, *s1, *s2;
3585
3586 s0 = xfer_to_x(a1);
3587 s1 = xfer_to_a(a0);
3588 s2 = new_stmt(BPF_ALU|BPF_X|code);
3589
3590 sappend(s1, s2);
3591 sappend(s0, s1);
3592 sappend(a1->s, s0);
3593 sappend(a0->s, a1->s);
3594
3595 free_reg(a1->regno);
3596
3597 s0 = new_stmt(BPF_ST);
3598 a0->regno = s0->s.k = alloc_reg();
3599 sappend(a0->s, s0);
3600
3601 return a0;
3602}
3603
3604/*
3605 * Here we handle simple allocation of the scratch registers.
3606 * If too many registers are alloc'd, the allocator punts.
3607 */
3608static int regused[BPF_MEMWORDS];
3609static int curreg;
3610
3611/*
3612 * Return the next free register.
3613 */
3614static int
3615alloc_reg()
3616{
3617 int n = BPF_MEMWORDS;
3618
3619 while (--n >= 0) {
3620 if (regused[curreg])
3621 curreg = (curreg + 1) % BPF_MEMWORDS;
3622 else {
3623 regused[curreg] = 1;
3624 return curreg;
3625 }
3626 }
3627 bpf_error("too many registers needed to evaluate expression");
3628 /* NOTREACHED */
3629}
3630
3631/*
3632 * Return a register to the table so it can
3633 * be used later.
3634 */
3635static void
3636free_reg(n)
3637 int n;
3638{
3639 regused[n] = 0;
3640}
3641
3642static struct block *
3643gen_len(jmp, n)
3644 int jmp, n;
3645{
3646 struct slist *s;
3647 struct block *b;
3648
3649 s = new_stmt(BPF_LD|BPF_LEN);
3650 b = new_block(JMP(jmp));
3651 b->stmts = s;
3652 b->s.k = n;
3653
3654 return b;
3655}
3656
3657struct block *
3658gen_greater(n)
3659 int n;
3660{
3661 return gen_len(BPF_JGE, n);
3662}
3663
3664/*
3665 * Actually, this is less than or equal.
3666 */
3667struct block *
3668gen_less(n)
3669 int n;
3670{
3671 struct block *b;
3672
3673 b = gen_len(BPF_JGT, n);
3674 gen_not(b);
3675
3676 return b;
3677}
3678
3679struct block *
3680gen_byteop(op, idx, val)
3681 int op, idx, val;
3682{
3683 struct block *b;
3684 struct slist *s;
3685
3686 switch (op) {
3687 default:
3688 abort();
3689
3690 case '=':
3691 return gen_cmp((u_int)idx, BPF_B, (bpf_int32)val);
3692
3693 case '<':
3694 b = gen_cmp((u_int)idx, BPF_B, (bpf_int32)val);
3695 b->s.code = JMP(BPF_JGE);
3696 gen_not(b);
3697 return b;
3698
3699 case '>':
3700 b = gen_cmp((u_int)idx, BPF_B, (bpf_int32)val);
3701 b->s.code = JMP(BPF_JGT);
3702 return b;
3703
3704 case '|':
3705 s = new_stmt(BPF_ALU|BPF_OR|BPF_K);
3706 break;
3707
3708 case '&':
3709 s = new_stmt(BPF_ALU|BPF_AND|BPF_K);
3710 break;
3711 }
3712 s->s.k = val;
3713 b = new_block(JMP(BPF_JEQ));
3714 b->stmts = s;
3715 gen_not(b);
3716
3717 return b;
3718}
3719
3720static u_char abroadcast[] = { 0x0 };
3721
3080struct block *
3081gen_broadcast(proto)
3082 int proto;
3083{
3084 bpf_u_int32 hostmask;
3085 struct block *b0, *b1, *b2;
3086 static u_char ebroadcast[] = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
3087
3088 switch (proto) {
3089
3090 case Q_DEFAULT:
3091 case Q_LINK:
3722struct block *
3723gen_broadcast(proto)
3724 int proto;
3725{
3726 bpf_u_int32 hostmask;
3727 struct block *b0, *b1, *b2;
3728 static u_char ebroadcast[] = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
3729
3730 switch (proto) {
3731
3732 case Q_DEFAULT:
3733 case Q_LINK:
3734 if (linktype == DLT_ARCNET)
3735 return gen_ahostop(abroadcast, Q_DST);
3092 if (linktype == DLT_EN10MB)
3093 return gen_ehostop(ebroadcast, Q_DST);
3094 if (linktype == DLT_FDDI)
3095 return gen_fhostop(ebroadcast, Q_DST);
3096 if (linktype == DLT_IEEE802)
3097 return gen_thostop(ebroadcast, Q_DST);
3098 bpf_error("not a broadcast link");
3099 break;
3100
3101 case Q_IP:
3102 b0 = gen_linktype(ETHERTYPE_IP);
3103 hostmask = ~netmask;
3104 b1 = gen_mcmp(off_nl + 16, BPF_W, (bpf_int32)0, hostmask);
3105 b2 = gen_mcmp(off_nl + 16, BPF_W,
3106 (bpf_int32)(~0 & hostmask), hostmask);
3107 gen_or(b1, b2);
3108 gen_and(b0, b2);
3109 return b2;
3110 }
3111 bpf_error("only ether/ip broadcast filters supported");
3112}
3113
3114struct block *
3115gen_multicast(proto)
3116 int proto;
3117{
3118 register struct block *b0, *b1;
3119 register struct slist *s;
3120
3121 switch (proto) {
3122
3123 case Q_DEFAULT:
3124 case Q_LINK:
3736 if (linktype == DLT_EN10MB)
3737 return gen_ehostop(ebroadcast, Q_DST);
3738 if (linktype == DLT_FDDI)
3739 return gen_fhostop(ebroadcast, Q_DST);
3740 if (linktype == DLT_IEEE802)
3741 return gen_thostop(ebroadcast, Q_DST);
3742 bpf_error("not a broadcast link");
3743 break;
3744
3745 case Q_IP:
3746 b0 = gen_linktype(ETHERTYPE_IP);
3747 hostmask = ~netmask;
3748 b1 = gen_mcmp(off_nl + 16, BPF_W, (bpf_int32)0, hostmask);
3749 b2 = gen_mcmp(off_nl + 16, BPF_W,
3750 (bpf_int32)(~0 & hostmask), hostmask);
3751 gen_or(b1, b2);
3752 gen_and(b0, b2);
3753 return b2;
3754 }
3755 bpf_error("only ether/ip broadcast filters supported");
3756}
3757
3758struct block *
3759gen_multicast(proto)
3760 int proto;
3761{
3762 register struct block *b0, *b1;
3763 register struct slist *s;
3764
3765 switch (proto) {
3766
3767 case Q_DEFAULT:
3768 case Q_LINK:
3769 if (linktype == DLT_ARCNET)
3770 /* all ARCnet multicasts use the same address */
3771 return gen_ahostop(abroadcast, Q_DST);
3772
3125 if (linktype == DLT_EN10MB) {
3126 /* ether[0] & 1 != 0 */
3127 s = new_stmt(BPF_LD|BPF_B|BPF_ABS);
3128 s->s.k = 0;
3129 b0 = new_block(JMP(BPF_JSET));
3130 b0->s.k = 1;
3131 b0->stmts = s;
3132 return b0;
3133 }
3134
3135 if (linktype == DLT_FDDI) {
3136 /* XXX TEST THIS: MIGHT NOT PORT PROPERLY XXX */
3137 /* fddi[1] & 1 != 0 */
3138 s = new_stmt(BPF_LD|BPF_B|BPF_ABS);
3139 s->s.k = 1;
3140 b0 = new_block(JMP(BPF_JSET));
3141 b0->s.k = 1;
3142 b0->stmts = s;
3143 return b0;
3144 }
3145
3146 /* TODO - check how token ring handles multicast */
3147 /* if (linktype == DLT_IEEE802) ... */
3148
3149 /* Link not known to support multicasts */
3150 break;
3151
3152 case Q_IP:
3153 b0 = gen_linktype(ETHERTYPE_IP);
3154 b1 = gen_cmp(off_nl + 16, BPF_B, (bpf_int32)224);
3155 b1->s.code = JMP(BPF_JGE);
3156 gen_and(b0, b1);
3157 return b1;
3158
3159#ifdef INET6
3160 case Q_IPV6:
3161 b0 = gen_linktype(ETHERTYPE_IPV6);
3162 b1 = gen_cmp(off_nl + 24, BPF_B, (bpf_int32)255);
3163 gen_and(b0, b1);
3164 return b1;
3165#endif /* INET6 */
3166 }
3167 bpf_error("only IP multicast filters supported on ethernet/FDDI");
3168}
3169
3170/*
3171 * generate command for inbound/outbound. It's here so we can
3172 * make it link-type specific. 'dir' = 0 implies "inbound",
3173 * = 1 implies "outbound".
3174 */
3175struct block *
3176gen_inbound(dir)
3177 int dir;
3178{
3179 register struct block *b0;
3180
3181 /*
3182 * Only some data link types support inbound/outbound qualifiers.
3183 */
3184 switch (linktype) {
3185 case DLT_SLIP:
3186 case DLT_PPP:
3187 b0 = gen_relation(BPF_JEQ,
3188 gen_load(Q_LINK, gen_loadi(0), 1),
3189 gen_loadi(0),
3190 dir);
3191 break;
3192
3193 default:
3194 bpf_error("inbound/outbound not supported on linktype %d\n",
3195 linktype);
3196 b0 = NULL;
3197 /* NOTREACHED */
3198 }
3199 return (b0);
3200}
3201
3773 if (linktype == DLT_EN10MB) {
3774 /* ether[0] & 1 != 0 */
3775 s = new_stmt(BPF_LD|BPF_B|BPF_ABS);
3776 s->s.k = 0;
3777 b0 = new_block(JMP(BPF_JSET));
3778 b0->s.k = 1;
3779 b0->stmts = s;
3780 return b0;
3781 }
3782
3783 if (linktype == DLT_FDDI) {
3784 /* XXX TEST THIS: MIGHT NOT PORT PROPERLY XXX */
3785 /* fddi[1] & 1 != 0 */
3786 s = new_stmt(BPF_LD|BPF_B|BPF_ABS);
3787 s->s.k = 1;
3788 b0 = new_block(JMP(BPF_JSET));
3789 b0->s.k = 1;
3790 b0->stmts = s;
3791 return b0;
3792 }
3793
3794 /* TODO - check how token ring handles multicast */
3795 /* if (linktype == DLT_IEEE802) ... */
3796
3797 /* Link not known to support multicasts */
3798 break;
3799
3800 case Q_IP:
3801 b0 = gen_linktype(ETHERTYPE_IP);
3802 b1 = gen_cmp(off_nl + 16, BPF_B, (bpf_int32)224);
3803 b1->s.code = JMP(BPF_JGE);
3804 gen_and(b0, b1);
3805 return b1;
3806
3807#ifdef INET6
3808 case Q_IPV6:
3809 b0 = gen_linktype(ETHERTYPE_IPV6);
3810 b1 = gen_cmp(off_nl + 24, BPF_B, (bpf_int32)255);
3811 gen_and(b0, b1);
3812 return b1;
3813#endif /* INET6 */
3814 }
3815 bpf_error("only IP multicast filters supported on ethernet/FDDI");
3816}
3817
3818/*
3819 * generate command for inbound/outbound. It's here so we can
3820 * make it link-type specific. 'dir' = 0 implies "inbound",
3821 * = 1 implies "outbound".
3822 */
3823struct block *
3824gen_inbound(dir)
3825 int dir;
3826{
3827 register struct block *b0;
3828
3829 /*
3830 * Only some data link types support inbound/outbound qualifiers.
3831 */
3832 switch (linktype) {
3833 case DLT_SLIP:
3834 case DLT_PPP:
3835 b0 = gen_relation(BPF_JEQ,
3836 gen_load(Q_LINK, gen_loadi(0), 1),
3837 gen_loadi(0),
3838 dir);
3839 break;
3840
3841 default:
3842 bpf_error("inbound/outbound not supported on linktype %d\n",
3843 linktype);
3844 b0 = NULL;
3845 /* NOTREACHED */
3846 }
3847 return (b0);
3848}
3849
3850struct block *
3851gen_acode(eaddr, q)
3852 register const u_char *eaddr;
3853 struct qual q;
3854{
3855 if ((q.addr == Q_HOST || q.addr == Q_DEFAULT) && q.proto == Q_LINK) {
3856 if (linktype == DLT_ARCNET)
3857 return gen_ahostop(eaddr, (int)q.dir);
3858 }
3859 bpf_error("ARCnet address used in non-arc expression");
3860 /* NOTREACHED */
3861}
3862
3863static struct block *
3864gen_ahostop(eaddr, dir)
3865 register const u_char *eaddr;
3866 register int dir;
3867{
3868 register struct block *b0, *b1;
3869
3870 switch (dir) {
3871 /* src comes first, different from Ethernet */
3872 case Q_SRC:
3873 return gen_bcmp(0, 1, eaddr);
3874
3875 case Q_DST:
3876 return gen_bcmp(1, 1, eaddr);
3877
3878 case Q_AND:
3879 b0 = gen_ahostop(eaddr, Q_SRC);
3880 b1 = gen_ahostop(eaddr, Q_DST);
3881 gen_and(b0, b1);
3882 return b1;
3883
3884 case Q_DEFAULT:
3885 case Q_OR:
3886 b0 = gen_ahostop(eaddr, Q_SRC);
3887 b1 = gen_ahostop(eaddr, Q_DST);
3888 gen_or(b0, b1);
3889 return b1;
3890 }
3891 abort();
3892 /* NOTREACHED */
3893}
3894
3202/*
3203 * support IEEE 802.1Q VLAN trunk over ethernet
3204 */
3205struct block *
3206gen_vlan(vlan_num)
3207 int vlan_num;
3208{
3895/*
3896 * support IEEE 802.1Q VLAN trunk over ethernet
3897 */
3898struct block *
3899gen_vlan(vlan_num)
3900 int vlan_num;
3901{
3209 static u_int orig_linktype = -1, orig_nl = -1;
3210 struct block *b0;
3211
3212 /*
3213 * Change the offsets to point to the type and data fields within
3214 * the VLAN packet. This is somewhat of a kludge.
3215 */
3216 if (orig_nl == (u_int)-1) {
3217 orig_linktype = off_linktype; /* save original values */
3218 orig_nl = off_nl;
3219
3220 switch (linktype) {
3221
3222 case DLT_EN10MB:
3223 off_linktype = 16;
3224 off_nl = 18;
3225 break;
3226
3227 default:
3228 bpf_error("no VLAN support for data link type %d",
3229 linktype);
3230 /*NOTREACHED*/
3231 }
3232 }
3233
3234 /* check for VLAN */
3235 b0 = gen_cmp(orig_linktype, BPF_H, (bpf_int32)ETHERTYPE_8021Q);
3236
3237 /* If a specific VLAN is requested, check VLAN id */
3238 if (vlan_num >= 0) {
3239 struct block *b1;
3240
3241 b1 = gen_cmp(orig_nl, BPF_H, (bpf_int32)vlan_num);
3242 gen_and(b0, b1);
3243 b0 = b1;
3244 }
3245
3246 return (b0);
3247}
3902 struct block *b0;
3903
3904 /*
3905 * Change the offsets to point to the type and data fields within
3906 * the VLAN packet. This is somewhat of a kludge.
3907 */
3908 if (orig_nl == (u_int)-1) {
3909 orig_linktype = off_linktype; /* save original values */
3910 orig_nl = off_nl;
3911
3912 switch (linktype) {
3913
3914 case DLT_EN10MB:
3915 off_linktype = 16;
3916 off_nl = 18;
3917 break;
3918
3919 default:
3920 bpf_error("no VLAN support for data link type %d",
3921 linktype);
3922 /*NOTREACHED*/
3923 }
3924 }
3925
3926 /* check for VLAN */
3927 b0 = gen_cmp(orig_linktype, BPF_H, (bpf_int32)ETHERTYPE_8021Q);
3928
3929 /* If a specific VLAN is requested, check VLAN id */
3930 if (vlan_num >= 0) {
3931 struct block *b1;
3932
3933 b1 = gen_cmp(orig_nl, BPF_H, (bpf_int32)vlan_num);
3934 gen_and(b0, b1);
3935 b0 = b1;
3936 }
3937
3938 return (b0);
3939}